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ABSTRACT 
 
This paper reports on a modeling study on the operational stability of an electronic expansion valve (EEV) 
controlled variable speed (VS) direct expansion (DX) air conditioning (A/C) system. An existing detailed, physical 
based dynamic model for a VS DX A/C system was further developed by adding equations for EEV’s temperature 
sensor. Using this further developed model, a modeling study on the stability of a VS DX A/C system based on the 
classical minimal-stable-signal (MSS) theory was carried out. The influences of the dynamics of EEV’s temperature 
sensor and the variable speed operation on the operational stability of the VS DX A/C system were investigated. The 
modelling results suggested that slowing down the rate of degree of superheat (DS) signal transfer would help 
mitigate the instability, while increasing the compressor speed or decreasing the supply fan speed would cause the 
movement of a mixture-vapor transition point towards evaporator exit, leading to potential instability of the VS DX 
A/C system.   
 
Key words: operational stability; sensor dynamics; variable speed; hunting; EEV.   
 

1. INTRODUCTION 
 
The instability in a refrigeration system, conventionally known as hunting, is the phenomena of the oscillation of 
certain system operational parameters such as the degree of refrigerant superheat (DS), refrigerant mass flow rate 
and evaporating pressure. Hunting has been noticed in not only the refrigeration systems controlled by thermostatic 
expansion valves (TEVs) (Eames et al., 2014; Huang et al., 2014; Wedekind, 1971; Wedekind and Stoecker, 1968; 
Yasuda et al., 1983), but also those controlled by electronic expansion valves (EEVs) (Chen et al., 2008; Fallahsohi 
et al., 2010; Li et al., 2004; Qi et al., 2010). Hunting leads to a lower operating safety and a higher energy 
consumption (Liang et al., 2010), and therefore, should be avoided as far as possible for the safe and energy efficient 
operation of a refrigeration system. 
 
The causes of unstable system operation have been explained by two different views. The first concentrated on the 
influence of the control characteristics of an expansion valve on system stability. A number of related modeling 
studies suggested that either increasing or decreasing the time constant of a TEV’s sensing bulb would reduce the 
hunting of DS (Broersen and Vanderjagt, 1980; Ibrahim, 1998; Mithraratne et al., 2000). However, the second tried 
to explain the cause of hunting based on the inherent characteristics of an evaporator. The theory of minimal-stable-
signal (MSS), defined as a critical minimal DS at which a refrigeration system could exhibit unstable operation as a 
mixture–vapor transition point moving toward evaporator exit, was proposed by Huelle (1967).  
 
In general, there are more studies on the operational stability for TEV-controlled refrigeration systems than that for 
EEV-controlled systems. For a TEV-controlled system, it was previously shown that the time constant of TEV’s 
sensing bulb did influence the system operational stability (Broersen and Vanderjagt, 1980; Ibrahim, 1998; 
Mithraratne et al., 2000), because it affected the rate of DS signal transfer. Similarly, for an EEV-controlled 
refrigeration system, the influences of the dynamics of EEV’s temperature sensor on the DS signal transfer should 
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also be considered. Furthermore, those reported studies were mainly based on water chillers, and therefore the 
influences of water side operating characteristics on the operational instability were investigated (Ibrahim, 1998; 
Mithraratne et al., 2000; Tahat et al., 2001). No previously studies on the influence of the air side operating 
characteristics on the operational stability in air coolers, most of DX type, may be identified. As a matter of fact, 
nowadays, variable speed compressors and supply fans are extensively used in DX A/C systems, and it was possible 
to vary compressor and supply fan speeds simultaneously for controlling both indoor air temperatures and relative 
humidity (RH) by outputting different sensible and latent cooling capacities (Li and Deng, 2007a; Li et al., 2015a; Li 
et al., 2015b), at different speed combinations of compressor and supply fan. Therefore, on the air side of a DX 
evaporator, or cooling coil, different air flow rates and wetness of coil surface will be resulted in, significantly 
affecting the air side heat transfer, and thus the overall heat transfer characteristics, leading to the possible change in 
refrigerant mass flow rate entering the evaporator. Consequently, it can be expected that the operational stability in a 
variable speed (VS) DX A/C system can be also affected by its variable speed operation.  
 
In this paper, a modelling study on the influences of the dynamics of EEV’s temperature sensor and the variable 
speed operating parameters on the operational stability of an EEV-controlled VS DX A/C system is reported. Firstly, 
the further development of an existing physical dynamic model for an EEV-controlled VS DX A/C system (Chen 
and Deng, 2006) by adding the equations for the EEV’s temperature sensor for the purpose of the current study is 
reported. Secondly, using the further developed model, the effects of the dynamic characteristics of EEV’s 
temperature sensor and the variable speed operating parameters on the operational stability of the VS DX A/C 
system were numerically studied. Thirdly the modelling results and their related analysis are presented. 
 

2. FURTHER DEVELOPMENT OF AN EXISTING DYNAMIC MODEL FOR A VS DX 
A/C SYSTEM 

 

2.1 Description of the Modelled VS DX A/C System 
As shown in Figure 1, the modelled VS DX A/C system was composed of two parts, i.e., a DX refrigeration plant 
(refrigerant side) and an air distribution sub-system (air side). The major components in the DX refrigeration plant 
included a variable speed compressor, an EEV, a DX evaporator and an air-cooled condenser. The air-distribution 
sub-system included an air-distribution ductwork with return air dampers, a variable speed centrifugal supply fan, 
and a conditioned space. Inside the space, there were sensible heat and moisture load generating units (LGUs) for 
simulating the space cooling load. 
 

Receiver Air-cooled
Condensor

EEV
Variable Speed

Compressor

DX Evaporator

Conditioned Space

LGU

Variable Speed

Supply Fan

a4a5

Tr Pr

Controller

Return Air Supply Air

Ta1, ga1 Ta3, ga3

 

Figure 1: Schematic diagram of the modelled VS DX A/C system 
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2.2 Further Development of an Existing Model of the VS DX A/C System 
A dynamic mathematical model for the VS DX A/C system was previously developed (Chen and Deng, 2006). 
However, in this DX A/C model, the dynamics of EEV’s temperature sensor were not considered when modelling 
its EEV. For the purpose of the current modelling study, the model was further developed with respect to its EEV 
sub-model. 
 

Vapor refrigerant
Tre

Temperature sensor

Refrigerant pipe

Rre Ra

Tse

Tre Tse Ta

Thermal circuit

Ta

Cse

 

Figure 2: Schematic diagram of the installation of an EEV temperature sensor attached to the refrigerant pipeline at 
evaporator exit and its equivalent thermal circuits 

 
For an EEV-controlled refrigeration system, the DS as a control signal could be evaluated by using the refrigerant 
temperature leaving the evaporator and the evaporating pressure measured, by a temperature sensor and a pressure 
transducer, respectively. Generally, the temperature sensor is clamped to the refrigerant pipeline at evaporator exit, 
while the pressure transducer is directly connected to the outlet pipeline of the evaporator. For a pressure transducer, 
the time lag of the pressure signal transfer may be negligible because pressure wave travels at the speed of sound in 
tubes. Therefore, the time lag of measuring DS as the feedback signal to control the refrigerant flow entering the 
evaporator is caused by the dynamic characteristics of its EEV’s temperature sensor. 

 

Figure 2 shows the installation details of EEV’s temperature sensor attached to the refrigerant pipeline at evaporator 
exit and an equivalent thermal circuit for the heat transfer from refrigerant to the sensor. The heat transfer between 
the temperature sensor and the refrigerant inside the pipeline yielded: 
 

( ) ( ( ) ( )) ( ( ) ( ))
( ) se re se a se

p se

re a

dT t T t T t T t T t
C V

dt R R


 
   

(1) 

 
where Tre is the temperature of vapor refrigerant at evaporator exit, Ta the ambient temperature, Tse the temperature 
measured by the sensor. Rre is total thermal resistance between the vapor refrigerant and temperature sensor. Ra is the 
convective thermal resistance between the sensor and its surroundings. 
 
Generally, in refrigeration systems, EEV’s temperature sensors and the refrigerant pipe at evaporator exit are 
thermally insulated to reduce heat loss. Therefore, the natural convection heat transfer between the sensor and its 
surroundings can be neglected. Thus, equation (1) can be simplified to: 
 

( ) 1 1
( ) ( )se

se re

se se

dT t
T t T t

dt  
   (2) 

( )se re p seR C V   (3) 

 
where τse is the time constant of the temperature sensor, which is affected by the thermal resistance between the 
sensor and vapor refrigerant inside the pipe, as well as the heat capacity of the temperature sensor itself.  
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3. MODELING STUDY ON THE OPERATIONAL STABILITY OF THE VS DX A/C 
SYSTEM 

 
The existing model has been further developed by adding equations (1) – (3) and using the further developed model 
a modelling study has been carried out for the influences of the dynamics of EEV’s temperature sensor and the 
variable speed operation on the operational stability of an EEV-controlled VS DX A/C system and the study results 
are reported in this section. In the simulation results presented in this section, when the DS fluctuated around its 
setting with a magnitude over ±0.5 oC, the DX A/C system was regarded as unstable. 
 

3.1 The Influences of Dynamic Characteristics of EEV’s Temperature Sensor on the System 
Operational Stability 
As mentioned in Section 2.2, the dynamics of EEV’s temperature sensor, as reflected by its time constant, were 
determined by the thermal resistance between the sensor and vapor refrigerant inside the pipe, as well as the heat 
capacity of the sensor itself. Hence, for the temperature sensor listed in Table 1, four different cases of thermal 
contact resistances are given in Table 2 to examine their influences on the operational stability. In simulations, the 
DS setting was fixed at 6 oC, the proportional gain, Kp, and integral time, Ti, for the PI controller for the EEV were -
8 and 100s, respectively. The inlet air temperature and relative humidity to the DX A/C system were maintained as 
26 oC and 50%. 
 

Table 1: Specifications of EEV’s temperature sensor used in the simulation 
 

Sensor diameter (mm) 
Sensor length 

(mm) 
Heat capacity of the sheath wall 

(J K-1) 
Heat capacity of the sensor 

matrix (J K-1) 
4 30 1.79 2.23 

 
Table 2: Four cases of different unit thermal contact resistances  

 

Study 
group 

Study case 
Thermal contact resistance R2

’ (m2 K 
kW-1) 

Compressor speed 
(rpm) 

Supply fan speed 
(rpm) 

I 

1 0.050 

5544 2448 
2 0.075 

3 0.125 

4 0.200 
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Figure 3: The simulated DS for study group I 
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The simulation results of DS for the four cases are shown in Figure 3. As seen, when the contact resistance, R2
’, was 

increased from 0.050 to 0.075 m2 K-1 kW-1, the oscillation amplitude for DS was increased, suggesting an 
increasingly unstable operation of the system. However, when R2

’ was further increased to 0.20 m2·K kW-1, the 
oscillation amplitude was diminished to only 0.2 oC, suggesting a stable operation of the system. Considering the 
fact that different thermal resistances only influenced the rate of DS signal transfer in its DS control loop, slowing 
the rate of DS signal, therefore, may help mitigate hunting of the system. 

 
3.2 The Influences of the Variable Speed Operation on the System Operational Stability 
In order to examine the influences of variable speed operation on stability, three groups of different variable speed 
operating parameters shown in Table 3, were set. Kp, Ti and R2

’ were equal to -8, 100s and 0.20 m2·K kW-1, and the 
inlet air temperature and relative humidity were maintained at 26oC and 50%, respectively, when carrying out 
simulation  
 

Table 3: Three study groups of different variable speed operating parameters 
 

Study 
group 

Study 
case 

Compressor speed 
(rpm) 

Supply fan speed 
(rpm) 

DS setting (oC) 

III 
5 

4488 2160 
6 

6 5 
7 4.5 

IV 
8 4488 

2160 6 9 5016 
10 6072 

V 
11 

4488 
2160 

6 12 2064 
13 1968 
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Figure 4: The simulated DS in study group III 
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Figure 5: The simulated rtp in study group III 
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3.2.1 Simulation results for study group III: The simulation results of DS in group III are shown in Figure 4. As seen 
in Figure 4, the oscillation of DS occurred when its setting was decreased from 6 oC to 5 oC. When the DS setting 
was further decreased to 4.5 oC, its variation amplitude was further increased to 0.5 oC, which can be regarded as 
hunting of the system. On the other hand, as shown in Figure 5, the simulated ratio of the length of the two-phase 
region to the total length of the evaporator, rtp, was also increased. This can be understood that a smaller DS setting 
led to a shorter length of superheated region, causing the mixture-vapor transition point to move near to evaporator 
exit. The simulation results also validated the view of the classical MSS line theory (Huelle, 1972; Huelle, 1967) 
that, at decreased DS, the mixture-vapor transition point would move to evaporator exit, causing system hunting. 
 

0 20 40 60 80 100 120 140 160 180 200
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Figure 6: The simulated DS in study group IV 
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Figure 7: The simulated rtp in study group IV 

 
3.2.2 Simulation results for study group IV: Figures 6 and 7 show the simulation results for study group IV on the 
influences of different compressor speeds on operational stability. As seen in Figure 6, the system was stable when 
the compressor speed was at 4488 rpm. However, when the compressor speed was further increased to 5016 rpm, DS 
started to oscillate. When the compressor speed was further increased to 6072 rpm, system hunting occurred since 
DS fluctuated around its setting with a magnitude of over ±0.5oC. This can be explained by analyzing the simulation 
results for rtp shown in Figure 7. As seen, at a specified supply fan speed, the influence of increasing compressor 
speed on rtp was similar to that of decreasing the DS settings, both causing the movement of the mixture-vapor 
transient point towards evaporator exit. This was due to that more refrigerant would be supplied to the evaporator as 
compressor speed was increased, but the potential cooling capacity provided by the increased refrigerant could not 
be fully taken away on the air side of the evaporator since the supply fan speed was unchanged, thus leading to the 
excess of liquid refrigerant in the evaporator, as reflected by a larger rtp. Therefore, at a given supply fan speed, 
increasing compressor speed may cause system instability. 
 
3.2.3 Simulation results for study group V: Figures 8 and 9 show the simulation results for study group V. In 
contrast to the influence of compressor speed on the system operational stability, DS would be more likely to 
oscillate at a lower supply fan speed. As shown in Figure 8, DS started to oscillate as the supply fan speed was 
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decreased from 2160 rpm to 2064 rpm, and the oscillation amplitude would be further increased to over ±0.5oC 
when the supply fan speed was decreased to 1968 rpm. Furthermore, as shown in Figure 9, decreasing supply fan 
speed would also cause an increase in rtp, leading to the movement of mixture-vapor transition point towards 
evaporator exit. This may be explained that for a given compressor speed, the potential cooling capacity provided 
could not be fully taken away on the air side of the evaporator when supply fan speed was decreased, leading to the 
less evaporation of liquid refrigerant. Although this would cause a decrease in EEV’s opening to reduce the 
refrigerant flow entering the evaporator, there would be a surplus in refrigerant supplied for the DX evaporator, 
causing the flooding of the evaporator. Therefore, at a fixed compressor speed, it would become more liable to 
hunting for the VS DX A/C system at a lower supply fan speed. 
 

0 20 40 60 80 100 120 140 160 180 200
5.2

5.4

5.6

5.8

6.0

6.2

6.4

6.6

6.8

D
S 

(o C
)

Time (s)

  Study case 11   Study case 12   Study case 13

 
Figure 8: The simulated DS in study group V 
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Figure 9: The simulated rtp in study group V 

 

4. DISCUSSIONS 
 
As mentioned earlier in Introduction, there have been two views on the causes for the hunting in a refrigeration 
system. The simulation study reported in this paper further developed these two views on the operational stability of 
a refrigeration system in the following two aspects: 
 
 The operating characteristics of an EEV did impact the operational stability for the VS DX A/C system. 
 The simulation results presented in Section 3.2 confirmed that the inherent operating characteristics of the DX 

evaporator under variable speed operation for the VS DX A/C system impacted the operational stability. A 
faster compressor speed or a slower supply fan speed would lead to the movement of the mixture-vapor point 
towards evaporator exit, which, according to the classical MSS line theory, would lead to system hunting 

 
5. CONCLUSION 

 
In this paper, an existing dynamic VS DX A/C model was further developed by adding the equations for EEV’s 
temperature sensor. A modeling study was therefore carried out using this further developed model to investigate the 
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influences of dynamics of EEV’s temperature sensor and variable speed operation on the stability of the VS DX A/C 
system. The simulation results shown that slowing down the rate of DS signal transfer by increasing the thermal 
resistance between the sensor and refrigerant inside the pipeline may help mitigate the instability. Furthermore, a 
higher compressor speed or a lower supply fan speed would cause the movement of mixture-vapor point towards 
evaporator exit, leading to likely system hunting. 

 
NOMENCLATURE 

 
T temperature  (°C) 
Cp specific heat (kJ kg-1·K-1) 
Kp proportional gain (–) 
Ti integral time (–) 
R thermal resistance (K kW-1) 
R’ unit thermal resistance (m2 K-1 kW-1) 
V volume (m3) 

DS refrigerant degree of superheat (oC) 
r length ratio (%) 
 
Subscripts 

  

re refrigerant side  
se sensor  
tp two phase  
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