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ABSTRACT 
 

Bio methane is produced by removing undesirable components such as water vapor, carbon dioxide and other 

pollutants in a biogas upgrading process. Frosting the water vapor contained in the biogas is one of the dehydration 

processes used in a biogas upgrading process. In order to simulate a frost layer on a cold plate, many models have 

been developed. These models are valid for a limited temperature range. In this study, heat and mass transfer 

equations were used in a numerical approach to model the frost growth and its densification on the external side of a 

fin-and-tube heat exchanger. The model used in this study is valid for low temperatures from 0 to -65 °C and lower. 

The evaporation process of temperature glide refrigerants is also modelled. Results show that a decreased heat 

transfer rate occurred during frost mass growth on fins and rows. During its growth, frost layer thermal conductivity 

is relatively low leading to a decrease of the cooling load of the heat exchanger. On the other hand, frost layer 

thickness increases the external surface blockage, leading to higher pressure drop on the external side. This model 

has been validated by comparing numerical and experimental results. 

 

1. INTRODUCTION 

 
The initiation of frost formation on a fin-and-tube heat exchanger requires specific temperature and humidity 

conditions. From one hand, the surface temperature of the cold heat exchanger must be lower than the dew point 

temperature so that water vapor contained in the wet gas begins to condense. From the other hand, the cold surface 

temperature of the heat exchanger must be lower than the freezing temperature so that frost begins to form on the 

external side of the heat exchanger. The principal aim of frost formation analysis is to simulate the reduction of heat 

exchange with the increasing thermal resistance of the frost layer.  

Frost formation on cold surfaces have been modeled by several researchers. Most of these models focused on simple 

geometries such as flat plates, parallel plates and cylinders. O’Neal (1985) was the first to present a theoretical 

model for frost formation treating it as a porous structure. Using air properties, such as velocity and absolute 

humidity, his model predicted frost growth and its densification on a cold plate. Sami and Duong (1989) investigated 

another model for frost thickness growth and its densification, using local properties of frost, with function of time. 

Lee and al (1997) proposed a mathematical model for frost formation on a cold plate, using molecular diffusion of 

water vapor and heat generated by the sublimation of water vapor in the frost layer. Other models focused on fin-

and-tube heat exchangers geometries used in the refrigeration process for limited temperatures of -15 °C. Oskarsson 

(1990) developed three models in order to study the performance of a fin-and-tube heat exchanger under dry, wet 

and frosted conditions. He also tested a six row evaporator of a heat pump under real operating conditions. Rite 

(1990) studied experimentally heat exchangers integrated in domestic refrigerators. He concluded that the global 
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heat coefficient is on one hand proportional to air velocity, temperature and humidity. On the other hand, the global 

heat transfer coefficient decreases with the increasing air side pressure drop. Kondepudi and O’Neal (1991) studied 

numerically and experimentally the effect of the frost layer on a single row tube heat exchanger with wavy and 

corrugated fins. Many researchers provided correlations for frost thickness, density and conductivity as functions of 

air properties. Ogawa (1993) studied fin-and-tube heat exchanger performance used in domestic refrigeration.  

The purpose of this study is to investigate frost growth and its effect on the heat exchanger performance as a 

function of time. The evaporation of gliding temperature refrigerants is also modeled. The numerical model 

developed will be validated using experimental data extracted from a biogas upgrading pilot called BioGNVAL 

(2015). Fin-and-tube heat exchangers are used in the dehydration process of this pilot, so that water vapor is 

removed from biogas by frosting. 

 

2. NUMERICAL MODEL 

 
A numerical model has been developed to investigate frost growth impact on the performance of a fin-and-tube heat 

exchanger. This model uses the same heat exchanger geometry used in the BioGNVAL pilot. The specifications of 

the fin-and-tube heat exchanger are listed in Table 1. Both tubes and fins are made from stainless steel 316 L. 

 

Table 1: Heat Exchanger (Evaporator implemented in BioGNVAL) specifications 

 

Parameter Value 

Number of rows, pN  12 

Number of circuits, cN  3 

Fin pitch, aS (mm) 2 

Longitudinal tube 

spacing, lP (mm) 
34.65 

Transversal tube 

spacing, tP (mm) 
40 

Tube outside 

diameter, ed (mm) 
16.3 

Tube thickness, te (mm) 1 

Fin thickness, ae (mm) 0.15 

Tube length, tL (mm) 320 

Tube material 
Stainless  

Steel 316 L 

Fin material 
Stainless  

Steel 316 L 

 

2.1 Introducing the model 
The full geometry of the fin-and-tube heat exchanger used in this study is shown in Figure 1. In order to develop a 

numerical model, the heat exchanger was divided into several control volumes as shown in Figure 2. Each control 

volume of this heat exchanger is composed of a single row (3 or 2 tubes per row) and the number of associated fins. 

A blend of refrigerants is flowing into the tubes in a transverse direction with respect to the external flow (biogas). 

Frost growth on each control volume of the heat exchanger is supposed to be uniform and a one dimensional heat 

and mass transfer over the heat exchanger is assumed. Outlet properties for both biogas and refrigerant blends of a 

control volume are used as inlet properties for the next control volume. At each time step, the fin-and-tube heat 

exchanger geometry is updated (external surface) due to frost growth on the external surfaces. A computer program 

was written using Visual Basic while REFPROP 9.0 was used to calculate biogas and refrigerant blends properties, 

such as temperature, pressure, viscosity and density. The same inlet and outlet conditions (temperature and pressure 

for both flows) of the BioGNVAL pilot are used for this simulation. The computer program starts to run once initial 

conditions and heat exchanger geometry are provided. Then iterations are made to calculate the frost properties and 
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thickness, which will lead to modify the heat exchanger geometry so that the new geometry is taken into 

consideration at the next time step.  

 

(a)
 

(b)
 

Figure 1: Fin-and-tube heat exchanger geometry implemented in the BioGNVAL pilot: a) Front view b) Face view 

Row i+1

Row i

Row 1

Biogas inlet

Biogas outlet

Refrigerant inlet

Refrigerant outlet

 
Figure 2: Fin-and-tube heat exchanger control volumes for a single circuit 

 

2.2 Model governing equations 
The total heat transfer can be described using refrigerant enthalpies at the inlet and outlet of each row as given in 

Equation (1). This total heat transferred is the sum of the sensible and latent heat removed from the external flow 

represented by the biogas. 

 

   latsenrin,rout,rech QQiimQ    (1) 

 

On one hand, the sensible heat transfer between biogas and frost surface can be expressed as a function of average 

biogas temperature ( gavg,T ), frost surface temperature ( fsT ), sensible heat coefficient ( senh ) and effective heat 

transfer area ( cvA ) relative to each control volume. On the other hand, the sensible heat transfer can be expressed 

using biogas enthalpies at the inlet and outlet of each control volume. Both expressions are listed in Equation (2). 

 

    gout,gin,fsgavg,cvsen iimTTAhQ  
e  (2) 
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The convective sensible biogas side heat transfer coefficient is calculated using Wang, Chi and Chang correlation 

(2000) as given in Equation (3). 

 

 3/2
ggge PrVCpρjh    (3) 

 

Each control volume is associated with an effective heat transfer ( cvA ), wish is equal to the sum of the external tube 

surface area ( tA ) and the fin surface area ( aA ) multiplied by the fin global efficiency ( aη ) as given in Equation (4). 
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On one hand, the biogas and frost surface latent heat transfer is expressed as a function of average biogas 

temperature, frost surface temperature, latent heat coefficient ( lath ) and effective heat transfer area relative to each 

control volume. On the other hand, latent heat transfer is expressed using water enthalpy of sublimation ( svi ) and 

the mass of frost captured on each control volume ( fm ). Both expressions are listed in Equation (5). 

 

   svffsgavg,cvlatlat imTTAhQ    (5) 

 

Using the mass heat coefficient ( mh ), the sensible heat coefficient and dimensionless Lewis number (Threlkeld, 

1970), the latent biogas side heat coefficient is given by Equation (7). 
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The fins of the heat exchanger in this study have a rectangular geometry. Their global efficiency is given as a 

function of fin surface area ( aA ), total surface area ( totA ) and a dimensionless fin factor (m). The global efficiency 

is given by Equation (8). The dimensionless fin factor is expressed as functions of fin thermal conductivity ( aλ ), fin 

thickness ( ae ), frost thermal conductivity ( fλ ), frost thickness ( fδ ) and both sensible and latent heat coefficients 

as listed in Equation (9). 
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The refrigerant side heat transfer coefficient ( ih ) is calculated using Gungor and Winterton correlation (1986). 

Since the refrigerant blend is evaporating inside of the tubes, the correlation takes into consideration a two-phase 

fluid by calculating the vapor quality ( vx ), vapor density ( vρ ) and liquid density ( lρ ) as shown in Equation (10). 
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The overall heat transfer coefficient can be expressed as a function of all the heat transfer coefficient (convective 

and conduction) calculated for external flow, internal flow and frost layer. This can be expressed by using Equation 

(11). 
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Thus, the total heat transfer can be expressed using the DTLM method which refers to the mean logarithmic 

temperature difference method given in equation (12). 

 

 DTLMAUQ cvtot   (12) 

 

Biogas side pressure drop is calculated using Kays and London’s correlation (1994). Equation (13) is used to 

represent the external pressure drop. 
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  (13) 

Where f, is the friction factor calculated using the correlation of Wang et al. (2000). 

 

2.3 Frost properties equations 

The thermal conductivity of frost ( fλ ) is calculated as a function of the frost density ( fρ ) using Lee and Kim 

correlation (1997), as shown in Equation (14). 

 

 
2

f
7

f
4

f ρ106.1ρ1013.3132.0λ    (14) 

 

Using Kandula’s correlation (2011), frost surface density ( fsρ ) is calculated as a function of frost surface 

temperature ( fsT ), Reynolds number (Re), tube outlet surface temperature ( pT ) and melting temperature of ice 

( mT ). Frost surface density is expressed using Equation (15). 
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The mass of frost captured on each control volume of the heat exchanger is equal to the mass flow of biogas 

multiplied by the absolute humidity difference between the biogas inlet and outlet flows, as given in Equation (16). 

 

  g,outg,ingf wwmm        (16) 

 

The mass of frost captured is equal to the sum of two different portions, as given in Equation (17). A portion 

penetrates into the frost layer thus increasing its density ( ρm ), while the other portion increases the frost layer 

thickness ( δm ). 

 ρδf mmm        (17) 
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3. RESULTS AND DISCUSSION 
 

3.1 Frost growth 
Figure 3(a) shows the frost thickness growth as a function of time for each row of the heat exchanger. There is a 

difference of 72 % between frost thickness values comparing second row and final row. At the end of the simulation 

(after 300 minutes), frost thickness over the second row of the heat exchanger will reach 0.84 mm. This layer is 

distributed equally on each tube and fin surface of the control volume. Since the control volume takes into 

consideration half of the fin pitch, an 84 % blockage is reached at the end of the simulation for the second row as 

shown in Figure 3(b). The frost layer thickness at the end of the simulation for the final row will slightly increase to 

reach 0.12 mm, which is equal to a 12 % blockage. This percent blockage difference is due to non-uniform mass of 

frost captured between each control volume. Figure 4 shows the volumetric percentage of water contained in biogas 

as a function of temperature. This explains clearly the difference between frost thickness values comparing first and 

final row, since biogas at the final row will reach its lowest temperature. 
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Figure 3: Frost growth on each row of the heat  exchanger over time: a) thickness b) percentage of blockage 
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Figure 4: Volumetric percentage of water contained in biogas over temperature 

 

3.2 Heat exchanger performance 
On one hand, the heat exchanger performance is represented by its cooling capacity. The cooling capacity controls 

the lowest temperature reached by the external flow. On the other hand, since frost is growing during cooling, the 

external pressure drop affects also the heat exchanger performance and the frosting cycle duration. Figure 5 shows 

the cooling capacity decrease and the external pressure drop increase over time. Increasing frost thickness tends to 

decrease total heat transferred and to increase external pressure drop. The external pressure drop is increased due to 

passage reduction, while heat transferred or cooling capacity is decreased due to the high thermal resistance of the 

frost layer. At the end of the simulation (after 300 minutes), cooling capacity will decrease by 14 %, while pressure 

drop will be 150 times greater (40000 Pa) than its initial value (280 Pa). 
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Figure 5: Cooling load loss and external pressure drop over time 

 

To simulate the effect of the evaporation and the temperature glide phenomenon on the performance of the heat 

exchanger, two refrigerant blends where compared. Figure 6 shows temperature variations for biogas and for (a) 

blend X and (b) blend Y, at each row of the heat exchanger at the beginning of the simulation. Figure 6(a) shows 

that temperature difference between biogas and blend X is slightly increasing from rows 12 to 1 while blend X is 

evaporating with a high temperature glide. Figure 6(b) shows that temperature difference between biogas and blend 

Y is considerably increasing from rows 12 to 1 while blend Y is evaporating at a constant temperature with a slight 

superheating degree at the final row. In this case, blend X is classified as a non-azeotropic mixture (with temperature 

glide), while blend Y is classified as azeotropic mixture (no temperature glide). The comparison was made using the 

same mass flow and inlet temperature for both blends. While comparing biogas outlet temperature for both cases, it 

was found that using blend X instead of blend Y increases the heat exchanger performance by about 30 %.  
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Figure 6: Temperature variations and evaporation of refrigerant blends at each row of the heat exchanger: a) blend   

X, b) blend Y 

 

3.3 Data Comparison 
In order to validate the numerical model developed in this study, experimental data were collected from the biogas 

upgrading pilot. One of the data collected is the biogas outlet temperature as a function of time. Figure 7 compares 

biogas outlet temperature for both experimental and calculated data. The maximum error found was 13 % while 

comparing both temperature curves. The same initial conditions such as inlet temperature and pressure for both 

flows, operating the BioGNVAL pilot, were used to perform this comparison.  
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Figure 7: Biogas outlet temperature comparison between experimental and calculated data 

 

4. CONCLUSIONS 
 

In this study the investigation of frost growth on the cold surfaces of a stainless steel fin-and-tube heat exchanger 

was validated using a numerical model. The heat exchanger performance is affected during frost growth on its 

surfaces. This performance is represented by the cooling load capacity, which decreases as function of time due to 

the high thermal resistance of frost. The external pressure drop also increased due to the increased percentage of 

blockage wish generated a reduction in the external flow passage surface. Using a high temperature glide refrigerant 

blend tends to increase the heat exchanger performance.  

 

NOMENCLATURE 

 
A  surface area  (m²) 

Bo  boiling number  (-)  

Cp  isobaric heat capacity  (kJ/kg K)   

d  diameter  (mm) 

e  thickness  (mm) 

f  friction factor  (-) 

G  maximum mass flux  (kg/m² s) 

eh  convective biogas side heat transfer coefficient (W/m² K) 

ih  convective refrigerant side heat transfer coefficient (W/m² K) 

lath  latent heat transfer coefficient  (W/m² K) 

mh  mass transfer coefficient  (kg/m2 s) 

i  enthalpy  (kJ/kg) 

svi  latent heat of sublimation  (kJ/kg) 

Le  lewis number  (-) 

tL  tube length  (mm) 

m  dimensionless fin factor  (-) 

m  mass flow rate  (kg/s) 

cN  number of circuits  (-) 

pN  number of rows  (-) 

lP  longitudinal tube spacing  (mm) 

Pr  prandtl number  (-) 

tP  transversal tube spacing  (mm) 

Q  heat transferred  (W) 
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Re  reynols number  (-) 

aS  fin pitch  (mm) 

T  temperature  (°C) 

t  time  (min)  

U  global heat transfer coefficient  (W/m² K) 

w  absolute humidity  (kg/kg) 

x  quality  (-) 

 

Greek Symbols 

ρ  density  (kg/m³) 

aη  fin global efficiency  (-) 

fδ  frost thickness  (mm) 

σ  ratio of minimum flow area over face area (-) 

λ  thermal conductivity  (W/m K) 

 

Subscripts 

a fin p tube surface 

avg average r refrigerant 

c critical sens sensible 

f  frost t tube 

fs frost surface v vapor 

g biogas  

in inlet 

l liquid 

lat latent 

m melting 

out outlet 
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