
Purdue University
Purdue e-Pubs

Open Access Theses Theses and Dissertations

Spring 2015

Characterization of vectorization strategies for
recursive algorithms
Shruthi Balakrishna
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/open_access_theses

Part of the Computer Engineering Commons

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Recommended Citation
Balakrishna, Shruthi, "Characterization of vectorization strategies for recursive algorithms" (2015). Open Access Theses. 558.
https://docs.lib.purdue.edu/open_access_theses/558

https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F558&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_theses?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F558&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/etd?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F558&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_theses?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F558&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F558&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_theses/558?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F558&utm_medium=PDF&utm_campaign=PDFCoverPages

CHARACTERIZATION OF VECTORIZATION STRATEGIES FOR

RECURSIVE ALGORITHMS

A Thesis

Submitted to the Faculty

of

Purdue University

by

Shruthi Balakrishna

In Partial Fulfillment of the

Requirements for the Degree

of

Master Of Science in Electrical and Computer Engineering

May 2015

Purdue University

West Lafayette, Indiana

ii

To my Dad, Mom, Vishruth and Sukeerth.

iii

ACKNOWLEDGMENTS

First and foremost, I’d like to express my gratitude to my fantastic advisor,

Dr.Milind Kulkarni, who has mentored and guided me during my Thesis research.

I have had the fortune of starting research with Milind in my first semester here at

Purdue. Ever since, I have had a very fulfilling and enlightening experience . He has

been a very supportive and inspiring mentor and has definitely played the biggest

role in making my research experience here a fulfilling one. His teaching methods,

technical discussions during my one-on-one meetings every week and his insights into

research have completely changed my perspective about problem solving and research.

He has pushed me to think and solve problems while giving me freedom to express

my thoughts and ideas in my work. Whenever I am stuck with a problem which I

feel is very hard and complicated, I am always amazed at how he manages to pro-

vide extremely simple ideas and solutions to overcome them. I’m glad that I got an

opportunity to work with him and will be proud of it always.

I would like to thank my professors Mithuna Thottethodi and Dongyan Xu for

their courses in architecture and operating systems that gave me skills to conduct

my research. I’d like to thank Jack Lee for mentoring me during my Internship at

Qualcomm.

Last but not least, I must express gratitude to my family and close friends- here

and back in India for their support throughout my life. My parents and brother were

always there for me when I wanted to unwind and have been a big part of my support

system.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . vii

LIST OF FIGURES . viii

ABBREVIATIONS . x

ABSTRACT . xi

1 INTRODUCTION . 1

1.1 Motivation . 1

1.2 Vectorization of Recursive Tree Traversals 4

1.2.1 Modelling Recursion as a Computation Tree 4

1.2.2 Parallelism in Recursion . 5

1.3 Vectorization of MinMax trees . 5

1.4 Vectorization of Generic Binary Trees 6

1.5 Contributions and Organization . 7

2 BASELINE SCHEDULING MECHANISMS FOR VECTORIZATION . . 8

2.1 Challenges that limit Vectorization 8

2.2 Pseudo-Tail recursion . 9

2.2.1 Modifying recursion into pseudo-tail recursion 9

2.2.2 Transformation of T-Game into a Pseudo-tail minmax function 10

2.3 Work Generation . 13

2.3.1 Breadth-first execution to extract data parallelism 13

2.3.2 Evaluation Parameters . 16

2.3.3 Work Generation for Minmax 17

2.4 Conclusion . 21

3 EFFICIENT SCHEDULING MECHANISMS TO IMPROVE SIMD UTI-
LIZATION . 22

v

Page

3.1 Single Step Re-Expansion(SSR) . 23

3.1.1 DFS # # notation . 23

3.1.2 Policy explained . 23

3.1.3 Scope of the Policy . 25

3.2 Re-expansion - Switching between BFS and DFS Traversals 25

3.2.1 Policy Explained . 26

3.2.2 Scope of the Policy . 27

3.3 Restart Policy . 27

3.3.1 Policy Explained . 27

3.3.2 Scope of the Policy . 29

3.3.3 Generic Minimax Game . 30

3.3.4 Re-Expansion Scheduling Evaluation 31

3.3.5 Restart Scheduling Evaluation 35

3.3.6 Comparison of ReStart and ReExpansion scheduler policies . 37

3.4 Conclusion . 39

4 SIMD VECTORIZATION OF RANDOMLY SYNTHESIZED GENERIC
TREES . 40

4.1 Tree Topology . 40

4.2 Random Tree Generation . 41

4.2.1 Implementation . 41

4.2.2 Performance Analysis . 43

4.2.3 Repeated Trials . 45

4.3 Uniform Sampling of Node Splits 46

4.3.1 Generation of Probability Distribution for Binary Trees . . 47

4.3.2 Results . 50

4.4 Profiling-based Evaluation . 50

4.4.1 Repeated trials to sample utilization 51

4.4.2 SIMD utilization for deep trees 52

vi

Page

4.4.3 Impact of re-expansion . 53

4.5 Conclusion . 57

5 SUMMARY . 58

6 RELATED WORK . 60

REFERENCES . 62

vii

LIST OF TABLES

Table Page

3.1 Tree Shapes and Re-Start Trigger levels 37

4.1 Initialized Table for Tree Count . 49

viii

LIST OF FIGURES

Figure Page

2.1 A Simple Recursive Function Structure: The function call after recurse evaluation
invoked after the recurse function prevents e�cient vectorization 10

2.2 Pseudo-Recursive Function: The original recursive function modified to
strip the tail function in the inductive piece of the code. 11

2.3 MinMax illustrated . 12

2.4 T-Game with Minmax logic: The simplest form of this algorithm involves
invoking a recursive call for every possible move of the board, at each level
of the game tree. This is not pseudo-tail recursive. 13

2.5 T-Game with Pseudo-Minmax . 14

2.6 Pseudo-Recursive Function . 15

2.7 Work generation for the Pseudo-Recursive Function 15

2.8 TicTacToe Recursion Tree Structure: A sample tree for a 3x3 board is
shown above. The number of children for any given parent decreases with
the increase in the tree height. If any instance of the board terminates in
a win or draw, the node corresponding to it becomes a leaf node. . . . 18

2.9 SIMD Performance: Utilization and Underutilization ratios for various
SIMD widths using the abstract vectorization model for Minmax T-Game.
BFS-D is set to a depth of 3. 19

2.10 SIMD Performance: Utilization and Underutilization ratios for varying
BFS-D values using the abstract vectorization model for Minmax T-Game.
SIMD width is set to 16. 20

3.1 Improvement in Utilization illustrated with Single Step Re-expansion . 24

3.2 Strip Mining . 25

3.3 Reexpansion Tree Traversal . 26

3.4 Tree Traversal Table . 26

3.5 Re-Start Tree Traversal . 28

3.6 Tree Traversal Table . 29

ix

Figure Page

3.7 Impact of Re-expansion on SIMD Vectorization 32

3.8 Impact of SIMD width variation on Vectorization 33

3.9 Impact of re-expansion threshold point variation on SIMD Vectorization 34

3.10 Impact of SIMD width variation on Vectorization 35

3.11 Variation of fullness with probability of the game 36

3.12 Impact of Re-Start on SIMD Performance 36

3.13 Comparison of the behavior and impact of both the scheduling policies-
Reexpansion and Restart. M = % of block size that triggers new work gen-
eration. A and B represent the number of times Restart and Reexpansion
policies are triggered during the execution of the program. 38

4.1 Binary tree table algorithm . 42

4.2 Utilization Distribution among various SIMD states for 4 groups of tree-
topologies . 43

4.3 SIMD Utilization for 4 groups of tree-topologies 44

4.4 Utilization bins for various tree-topology groups over 1000 trials 46

4.5 Binary tree table generation . 48

4.6 Average SIMD Utilization of randomly generated rooted-binary trees . 49

4.7 Central limit theorem used to show that for 1k, 10k and 100k trials, the
distribution of utilization values is fairly normal. 51

4.8 Utilization ratio remains well above 50% for all tree depths 52

4.9 Impact of Re-expansion: Utilization achieved with and without re-expansion
for various class of trees . 53

4.10 Utilization vs. block size for di↵erent tree depths without re-expansion.
The horizontal line represents the minimum average utilization when using
re-expansion with a block size of 64 for the same tree depths. 55

4.11 SIMD utilization vs ratio of block size to SIMD width. As the radio
increases, amount of work available for each SIMD operation increases.
Hence, a greater percentage of full-vector operations occur as compared
to smaller block sizes. This ensure high average utilization. 55

4.12 SIMD width variation. As the SIMD vectors increase in size, they modify
utilization both positively and negatively depending on the tree shape. 56

x

ABBREVIATIONS

SIMD Single Instruction Multiple Data

SIMT Single Instruction Multiple Threads

SSE SIMD Extensions

GPU Graphics Processing Unit

AVX Advanced Vector Extensions

CUDA Compute Unified Device Architecture

BFS Breath-First Search

DFS Depth-First Search

DAG Directed Acyclic Graphs

RAW Read After Write

WAR Write After Read

T-Game 3x3 TicTacToe Game

SSR Single Step Reexpansion

PDF Probability Distribution Function

CDF Cumulative Distributive Function

xi

ABSTRACT

Balakrishna, Shruthi. MSECE, Purdue University, May 2015. Characterization of
Vectorization Strategies for Recursive Algorithms . Major Professor: Milind Kulka-
rni.

A successful architectural trend in parallelism is the emphasis on data parallelism

with SIMD hardware. Since SIMD extensions on commodity processors tend to re-

quire relatively little extra hardware, executing a SIMD instruction is essentially free

from a power perspective, making vector computation an attractive target for paral-

lelism.SIMD instructions are designed to accelerate the performance of applications

such as motion video, real-time physics and graphics. Such applications perform

repetitive operations on large arrays of numbers. While the key idea is to parallelize

significant portions of data that get operated by several sequential instructions into

a single instruction, not every application can be parallelized automatically. Regular

applications with dense matrices and arrays are easier to vectorize compared to ir-

regular applications that involve pointer based data structures like trees and graphs.

Programmers are burdened with the arduous task of manually tuning such applica-

tions for better performance. One such class of applications are recursive programs.

While they are not traditional serial instruction sequences, they follow a serialized

pattern in their control flow graph and exhibit dependencies. They can be visualized

to be directed trees data structures. Vectorizing recursive applications with SIMD

hardware cannot be achieved by using the existing intrinsics directly because of the

nature of these algorithms. In this dissertation, we argue that, for an important sub-

set of recursive programs which arise in many domains, there exists general techniques

to e�ciently vectorize the program to operate on SIMD architecture. Recursive algo-

rithms are very popular in graph problems, tree traversal algorithms, gaming applica-

xii

tions et al. While multi-core and GPU implementation of such algorithms have been

explored, methods to execute them e�ciently on vector units like SIMD and AVX

have not been explored. We investigate techniques for work generation and e�cient

vectorization to enable vectorization in recursion. We further implement a generic

tree model that allows us to guarantee lower bounds on its utilization e�ciency.

1

1. INTRODUCTION

1.1 Motivation

The transistor limit reached for designing serialized, traditional central processing

units(CPUs) resulted in devoting increased transistor counts to achieve parallelism

with multiple cores. Successive generation of processors evolved by increasing their

core counts and scope of parallelism. While shared-memory parallel programming is

not trivial, many programming models and execution platforms have been developed

that allow programmers to write e�cient programs for these machines. Unfortunately,

due to concerns about power consumption and energy e�ciency, many vendors have

started developing throughput-oriented devices. Rather than providing a handful of

general-purpose cores, throughput oriented devices provide vastly more, but simpler,

computational cores. These can take the form of vector units attached to general

purpose cores such as the streaming SIMD extensions (SSE) or advanced vector ex-

tensions (AVX) or separate accelerators that are e↵ectively large vector machines,

such as GPUs. The common thread for all of these is that they provide substantially

more parallelism than general-purpose multicores. Intel’s newest Haswell chips have

4 cores per chip, while the AVX2 SIMD units attached to each core provide 8-wide

vector parallelism, and NVIDIA‘s latest Kepler GPUs have over 2500 CUDA cores.

The price to be paid for such vast parallel computing power is that programming

for these throughput-oriented cores is not as general and direct as general-purpose

processors. The programming models tend to be restrictive and vary in terms of

the programming language and approach. Their throughput e�ciency is a result of

certain restrictions imposed on the kind of operations, data distribution and memory

dependencies. For example, SIMD (Single Instruction, Multiple Data) vector units

2

are typically programmed using intrinsics, while SIMT (Single Instruction, Multiple

Thread) GPUs use low-level, data-parallel languages such as CUDA [1].

Moreover, extracting su�cient performance out of vector-based cores requires

carefully structuring code and data. While each core on a general-purpose multi-

core can run an independent thread, to fully exploit the 8-way parallelism o↵ered

by AVX2, a programmer must find 8 identical operations that operate on di↵erent

data, and then must be able to load that data e�ciently into SIMD registers, which

requires ensuring that the data is contiguous in memory. Though the GPU perfor-

mance model is somewhat less fragile, e�ciently exploiting SIMT parallelism requires

identifying threads that are performing much of the same work, and operating over

nearby data.

The result of these programmability issues is that most research in programming

vector units and GPUs have taken one of two tacks. One option is domain-specific

programming models, such as ones focusing on dense linear algebra, where data orga-

nization is straightforward and computations are regular and predictable and hence

can be vectorized easily. Another option is to invest substantial programmer time to

code, debug and tune hand-written implementations. In addition to the lack of gen-

erality, both of these options su↵er from another critical drawback: they do not o↵er

portability. They require learning new programming models to target throughput

architectures; there is no portability to other architectures, such as general-purpose

multicores.

The key challenge in e↵ectively vectorizing programs is to account for the two

important restrictions of vectorized execution models. First, to vectorize multiple

operations, the instructions must be the same; any system for vectorization must

therefore be able to e�ciently find identical computations to execute in parallel.

Second, a primary cost in performing vector operations is marshaling data that the

operations require (e.g., loading the operands into a register); an e↵ective system for

vectorization must therefore organize data so that it can be easily manipulated by

vector operations.

3

We consider a vector machine to be a set of P processors. These P processors can

each execute a di↵erent thread, with the following restrictions. First, the processors

only execute in parallel if they are performing the same operation. If only a subset

of the processors are performing the same operation, the other processors remain

idle until the operation is complete. We call this situation underutilization. Second,

if multiple processes are performing a load, they are not guaranteed to execute in

parallel, though the operations are the same. Loads only proceed in parallel if they

are either loading the same location, or are loading from “nearby” memory locations.

Hence, only if all the data that has to be loaded is in the cache, they can operate in

parallel.

To see why exploiting parallelism on such a machine is di�cult, consider the fol-

lowing naive strawman approach to running a program with P threads. As in a

multicore system, each processor runs a single thread and each thread runs indepen-

dently, tracking its own program counter, stack, etc. It is clear that there will not be

much parallelism available, as there is no reason that threads would be performing the

same operation. Moreover, even if threads are performing the same operation, simply

managing the thread stacks reduces parallelism. If every thread is at a di↵erent point

in its stack, then there is no way to lay out the stacks (e.g., by striping them) so

that stack accesses (e.g., to load local variables) are “nearby” and can be done in

parallel. Hence, in order to run multiple tasks on a vector machine in parallel, more

care must be taken to organize the tasks’ execution. This is straightforward in the

case of simple parallel for loops: each loop iteration becomes a task, the tasks are

all identical, and there is no issue with stack management as the loop body does not

have method calls. Unsurprisingly, parallel for loops are the source of most vectorized

computation. But parallel for loops are a limited programming model.

To expand the scope here and allow programmers to write more general programs

that are portable, vectorizable and e�cient, a programming abstraction model is

necessary. However, such an abstraction model must address various kind of applica-

tions e�ciently. In my research, I explore e�cient ways to vectorize one such class of

4

applications- recursive algorithms. Recrusive algorithms are definitely more complex

than parallel for loops and exhibit inherent data and control dependencies. Hence,

paralyzing recursive algorithms is a challenge in itself. Vectorizing such functions

require analysis of its dependencies and a novel method to vectorize them. Hence,

in my research, I work towards developing a simple, abstract vector machine model

that captures the limitations of existing vector architectures such as SIMD units, but

abstracts away the specifics of each of these architectures and their di↵erent low-level

programming models for recursive functions.

Recursive algorithms are very popular in many tree traversal problems, gaming

applications et al. Many n-player games employ recursive algorithms by following

zero-sum, non-zero payo↵ strategies. A recursive game is defined as a “finite set of

game elements, which are games for which the outcome of a single game (payo↵) is

either a real number, or another game of the set, but not both” [2].Games like chess,

tic-tac-toe and n-queen are implemented with recursion. While multi-core and GPU

implementation of such algorithms have been explored [3], methods to execute them

e�ciently on vector units like SIMD and AVX has not been explored. Hence, the

parallization model and implementation of vectorization for such recursive functions

is explained in this thesis.

1.2 Vectorization of Recursive Tree Traversals

1.2.1 Modelling Recursion as a Computation Tree

Vectorization of recursive algorithms is achieved by first modeling the recursive

algorithm as a tree building or tree traversal problem. Every parent-child recursive

call can be imagined to be a parent-child node pairs of a tree. The edges indicate

that the base case fails for the parent and hence a child node is spawned. When the

base case is true, the current node terminates as a leaf node. With this analogy, every

recursive algorithm can be imagined to be a tree traversal problem. The number of

recursive calls invoked by a parent indicates the number of children per node. The

5

edge weights and node contents are modelled based on the base case and induction

cases of the recursion function.

1.2.2 Parallelism in Recursion

Several techniques have been explored to parallalize recursive algorithms [4] [5],,

[6]. A popular linguistic and runtime technology for multi-threaded programming

is Cilk [7]. In CILK, the work stealing algorithm spawns new threads to parallelize

multiple recursive calls within the parent recursion function. All the spawned threads

must return before the parent function returns. Hence, for a system with P cores, upto

P threads can be executing at any time. CILK and most other existing techniques

explore ways to exploit parallelism from recursive functions in one of these ways-

• By operating on disjoint sections of data [5]

• Fine-grain parallelization techniques for recursive calls on multi-core and multi-

threaded architectures [4] [8]

• CUDA based automatic parallelization [6].

While the above techniques exploit task level parallelism in recursion or use GPU

units, not much research has been done on parallelizing trees for SIMD architectures.

The techniques that I propose in my research explores data level parallelism using

vectors for SIMD execution. Since recursion does not expose data parallelism di-

rectly, we need a scheduler that transforms the existing recursive calls to vectorizable

problems that can utilize vector units.

1.3 Vectorization of MinMax trees

Minmax algorithms are decision making algorithms used in many applications

of game-theory and statistics. It’s main idea is to minimize one player’s loss while

maximizing other player’s gain, given a set of game conditions. The Minmax theorem

6

was worded by John von Neumann states that “For every two-person, zero-sum game

with finite strategies, there exists a value V and a mixed strategy for each player,

such that

1. Given player 2’s strategy, the best payo↵ possible for player 1 is V

2. Given player 1’s strategy,the best payo↵ possible for player 2 is -V. ” [9].

As explained in the theorem, one player (say 1)’s strategy guarantees him a pay-

o↵ of V regardless of the other Player(say 2)’s strategy, and similarly Player 2 can

guarantee himself a payo↵ of -V. Hence, in this zero-sum game approach, each player

minimizes the maximum payo↵ possible for the other while he maximizes his own

minimum payo↵. MinMax was initially used in games covering cases where players

take alternate or simultaneous moves and later extended to more complex games

and decision-making problems. It employs recursion for evaluation and provides a

good starting point to study vectorization of recursion. I say so because games o↵er

wider scope of tree structures and can involve extensive computation for predicting

strategic moves. Hence, in my research, I begin exploring Recursion Vectorization by

implementing the vectorization model for a min-max based 3x3 tic-tac-toe game. This

provides a good starting point to experiment vectorization and verify its e↵ectiveness.

1.4 Vectorization of Generic Binary Trees

The scheduling techniques applied to minmax algorithms prove the e�ciency of

vectorization for a very limited set of recursive trees. Minmax trees are usually bushy

trees and exhibit a consistent pattern in its tree shape. It is very rare to find very

stringy trees, or trees with both bushy and stringy sub-trees together in such games.

Hence, to prove the credibility of these techniques, it is important to extend the

experimentation to other more generic trees. In my research, I do this by building a

variety of random binary trees to profile for the e↵ectiveness of vectorization. These

trees can represent non-SIMD compatible programs and provide a good platform

7

to test the scheduling policies. The shape of these DAGs are controlled with two

parameters - number of nodes in a tree and the maximum depth of the tree. Varying

these parameters result in diverse non-SIMD trees which can be vectorized using the

scheduling policies proposed in the future chapters. We hope that this exercise of

designing generic trees to test the scheduling policies will provide us with insight that

would enable us to design universal strategies that provide good bounds for a large

subset of computations.

1.5 Contributions and Organization

This thesis explores the challenges involved in vectorizing recursive function and

proposes scheduling techniques to enable vector operations for such functions. The

primary contributions are:

1. Development of necessary conditions for vectorization and analysis of recursive

algorithms to determine the scope of its vectorization.

2. Implementation of a Work Generation transformation to create a starting work-

vector that can utilize vector units for recursive functions.

3. Development of restart and re-expansion scheduling policies to improve utiliza-

tion of vector operations.

4. Build and analysis of generic binary trees using the new scheduling transforma-

tions to expose SIMD opportunities for a larger subset of recursive problems.

8

2. BASELINE SCHEDULING MECHANISMS FOR

VECTORIZATION

In this chapter, we describe the basic transformations and scheduling mechanisms

to extract vectorizable parallelism from SIMD-incompatible programs. In particular,

these transformations will be tested by transforming a two-player 3x3 Tic-Tac-Toe

game(will use the term T-game interchangeably for brevity) into a vectorizable form.

2.1 Challenges that limit Vectorization

Transforming recursive functions to generate vectors that can be executed in vector

machines is based on the following two ideas.

1. Pseudo-Tail Recursion: In short, for vectorization, bottom-up traversal of any

part of the recursion tree must not be allowed. Recursive functions, due to their

nature may require a recombination step at its parent node after computation.

Hence, bottom-up traversal of the tree may be required. This creates write-

after-read (WAR) dependencies in the tree. The vector nodes are forced to

access individual parent nodes which are distributed at di↵erent locations in

the memory layout. This introduces additional overhead and ine�ciency in the

scheduler. Moreover, this operation is again non-SIMD compatible. Creating

a scheduling technique to generate SIMD-Compatible code using non-SIMD

compatible instructions as part of the new code clearly defeats the purpose.

Hence, recursive functions must be transformed to a pseudo-tail recursive form

before vectorizing them.

2. Work Generation: Su�cient work (work and nodes are used interchangeably)

should be available to form a vector-block. Each node in this block must have

9

the same stack depth and execute the same computation. Recursive trees tra-

verse in a depth-first fashion naturally. Hence, at any point during its execution,

only one node is in its computation state. In some cases, independent sub-trees

can execute their respective nodes in a parallel thread. But determining such

nodes for every vector-formation is not feasible. Also, it requires one pass of

the tree prior to its actual traversal to determine dependencies. Hence, there

must be a generic work-generation function that creates a vector-block for SIMD

processing.

2.2 Pseudo-Tail recursion

2.2.1 Modifying recursion into pseudo-tail recursion

To achieve data parallelism, the recursion function is modified such that there are

no WAR dependencies. This is done by converting the existing recursive function to

a pseudo-tail recursive function [10]. A pseudo-tail-recursive function is a recursive

function where there are no operations that follow the recursive call. The recursion

function call in the last step of the function. In other works, a recursive function

call’s successor in a control-flow graph is one of these two types of block -it is either

a base-case-true exit node’s function call, or is another recursive function call. All

operations that occur after a recursive function call are either pushed to the children

nodes or to the leaf nodes. In other words, these computations happen before the

next recursive call is invoked or after all the recursive calls are completed and the

base case of recursion is encountered.

In the code shown in Figure 2.1, the base case and inductive case are clearly

distinguished with the if-else condition. The base case returns a final value. This

value is used to evaluate results based on the application in after recurse evaluation

function. Clearly, the after recurse evaluation function is a post-evaluation function

that is dependent on the result of the recursive call. To modify this into a pseudo-tail

algorithm, this post-evaluation function must be eliminated. The recursive call must

10

1 int r e cu r s e (node n)

2 i f (i sBase (n))

3 return baseCase () ; //Returned r e s u l t i s the l e a f va lue

4 else

5 for a l l (c h i l d c : n)

6 l e a f v a l = r e cu r s e (c)

7 //Computations a f t e r the r e c u r s i v e c a l l r e tu rn s

8 a f t e r r e c u r s e e v a l u a t i o n (r e su l t , l e a f v a l)

9 return r e s u l t

Fig. 2.1. A Simple Recursive Function Structure: The function call
after recurse evaluation invoked after the recurse function prevents
e�cient vectorization

Figure 2.2, the method after recurse evaluation seen in Figure 2.1 is replaced with

update evaluation function in the base case. Imagine this to be equivalent to pushing

the function from the parent node to its children. update evaluation tracks the recur-

sive calls and transition values and uses a global data structure to store intermediate

values sometimes. These store values are used to evaluate the final results of recursion

using innovative techniques.

be the last instruction in the control flow. This is done by re-modelling the function

call to the form shown in Figure 2.2.

2.2.2 Transformation of T-Game into a Pseudo-tail minmax function

We start by solving the problem of vectorizing recursive algorithms for an example

application-The TicTacToe game(abbreviated as T-Game) . A computerized T-Game

generates all possible moves for a given board state and evaluates the chances of a

player’s victory for each possible move. A popular implementation of this algorithm is

using the min-max approach. In order to vectorize this game, parallel tasks must be

identified. For recursive tree building, one must first modify the algorithm to ensure

that all the RAW dependencies are eliminated. This is a requirement to ensure that

11

1 int r e cu r s e (node parent , node n)

2 // Computations are pushed to the ch i l d r en

3 update eva luat i on (parent , n)

4 //Use data s t r u c t u r e s to s t o r e any data r equ i r ed f o r pseudo�t a i l

5 s tore temp data (parent , n)

6 i f (i sBase (n))

7 // Use the temp data to c a l c u l a t e new l e a f va lue

8 r e s u l t = eva lua t e r e su l t w i th t emp da ta (n)

9 return baseCase (r e s u l t)

10 else

11 for a l l (c h i l d c : n)

12 r e cu r s e (n , c)

Fig. 2.2. Pseudo-Recursive Function: The original recursive function
modified to strip the tail function in the inductive piece of the code.

point-blocking techniques can be applied to tree traversal e�ciently for vectorization.

To do this, let’s understand the original recursion in brief.

How does TicTacToe use minimax?

During a given turn, assuming player 1 is making a move. A search tree is gen-

erated with the code in Figure 2.4, starting from the current position up to the

game-end position. Next, from player 1’s perspective, since his strategy is to maxi-

mize the payo↵, he has to pick the move with the maximum payo↵ among its children.

To determine this, inner node values of the tree are filled up in a bottom-up fashion

using the leaf node’s values. The nodes that belong to player 1 receive the maximum

value of its children’s nodes. Nodes for player 2 will receive the minimum of its chil-

dren’s nodes. This choice of moves that happens in a bottom-up manner is illustrated

in Figure 2.3.

At the leaf level, node values are stored assuming player 1 ends the game. One level

above, since player 2 must have made a move, we assume that player 2 would pick the

12

Fig. 2.3. MinMax illustrated

move that works best: i.e. the minimum payo↵ child node. Next, player 1 will pick

the maximum-payo↵ child node, one level up. This illustrates the minimax behaviour

using recursion. The pseudo-code for this implementation is shown in Figure 2.4.

Here, the function minmax evaluation performs the minimax comparisons.

Transformation Details

Since minmax uses a bottom-up approach for updating inner node weights and

determining the best next move, it modifies the values of the inner nodes after the

complete traversal of the tree. Hence, vectorization of such a tree is not possible using

a direct technique. Such a tree should be transformed into a pseudo-tail recursive

tree. This is achieved by rewriting the eval function to determine the payo↵ value

for each move at the leaf level and keeping a score board to record these values in

update stats. The eval function is specific to the application and labels values to

the leaf nodes based on the board state and criticality of win or loss. If the current

player and the eval function’s winner are the same, then a positive weight is stored

in the scoreboard. If they are di↵erent, negative values are stored. Finally, the main

function uses this scoreboard in pick best move to decide the next player’s best move.

This is analogous to the min-max algorithm and enables the recursive function to be

re-written as a psesudo-tail function.

13

1 void game start (board a , root n)

2 int be s t move so f a r=none ;

3 while (! game ended (a)) // T i l l board i s f u l l or won

4 for a l l (move m : pos s ib l e next move (a))

5 r e s = minmax(a copy , m, s t a tu s) ;

6 //Try a l l moves and pick the bes t move

7 i f (minmax evaluation (res , b e s t move so f a r))

8 be s t move so f a r = r e s ;

9 make move (a , b e s t move so f a r) ;

10 return ;

11

12 int minmax(board a , node next move , gamestatus s t a tu s)

13 i f (game ended (a))

14 return minmax val (s t a tu s) ; //Leaf�node determines win/ l o s s /draw

15 else

16 make move (a , next move) ;

17 for a l l (move m : pos s ib l e next move (a))

18 va l = minmax(a ,m, s t a tu s) //Recurs ion

19 minmax evaluation (val , s t a tu s) ; //Post�f unc t i on eva lua t i on

20 return s t a tu s . bestmove ;

Fig. 2.4. T-Game with Minmax logic: The simplest form of this
algorithm involves invoking a recursive call for every possible move
of the board, at each level of the game tree. This is not pseudo-tail
recursive.

2.3 Work Generation

2.3.1 Breadth-first execution to extract data parallelism

Now that we have a recursive tree that can be vectorized, we need a vector to

start with. So the next question to address is that given a recursive tree, how do

we vectorize the tree to e�ciently use vector units like SIMD? To achieve this, we

define Work Generation as the next step for vectorization of recursive algorithms.

14

1 void game start (board a , root n)

2 while (! game ended (a))

3 for a l l (move m : pos s ib l e next move (a))

4 r e s = minmax(a copy , m, s t a tu s) ;

5 make move (a , p ick best move (game stats)) ;

6 return ;

7 int minmax(board a , node next move , gamestatus s t a tu s)

8 i f (game ended (a))

9 updat e s t a t s (game stats , s t a tu s) // Al l computations are done here

10 return ;

11 else

12 make move (a , next move) ;

13 for a l l (move m: pos s ib l e next move (a)

14 return minmax(a ,m, s t a tu s) //Pseudo�t a i l property s a t i s f i e d

Fig. 2.5. T-Game with Pseudo-Minmax

After transforming the application into a pseudo-tail recursive application, we extend

the idea of Breath-First Tree Traversal to generate su�cient work.

Our proposed scheduling approach for creating work is to perform a breadth-

first expansion of the recursive tree shown in Figure 2.6. That is, starting from the

initial recurse call, we will execute the program in a breadth-first manner. When

there is su�cient work, we design our scheduler to carefully control the execution so

that the computation tree is executed in a level-by-level manner from then on.

As shown in Figure 2.7, in order to generate multiple nodes for vectorization, a

breath-first traversal is performed starting from the root node till an intermediate

depth say BFS-D. At BFS-D, all the nodes available are used for vectorization and

the function dfs recurse is invoked. These nodes are grouped to form a vector block

and this vector block can be processed to simultaneously work on all the nodes using

SIMD hardware. To e↵ectively perform SIMD processing, the following steps are

followed for point-blocked code generation.

15

1 int r e cu r s e (node parent , node n)

2 // Computations are pushed to the ch i l d r en

3 update eva luat i on (parent , n)

4 s tore temp data (parent , n)

5 i f (i sBase (n))

6 // Use the temp data to c a l c u l a t e new l e a f va lue

7 r e s u l t = eva lua t e r e su l t w i th t emp da ta (n)

8 return baseCase (r e s u l t)

9 else

10 for a l l (c h i l d c : n)

11 r e cu r s e (n , c)

Fig. 2.6. Pseudo-Recursive Function

1 int b f s r e c u r s e (Block b , node parent)

2 Block next ;

3 i f (he ight <= BFS D)

4 //Compute ch i l d r en nodes f o r a l l nodes in the block ’b ’

5 for each (Node n : b)

6 update eva luat i on (parent , n)

7 s tore temp data (parent , n)

8 i f (i sBase (n))

9 // Use the temp data to c a l c u l a t e new l e a f va lue

10 r e s u l t = eva lua t e r e su l t w i th t emp da ta (n)

11 return baseCase (r e s u l t)

12 else

13 for a l l (c h i l d c : n)

14 next . add (new c) ;

15 b f s r e c u r s e (n , c)

16 else

17 d f s r e c u r s e (n , c)

Fig. 2.7. Work generation for the Pseudo-Recursive Function

16

Let the number of nodes present after BFS traversal till depth D be N. For a

SIMD width of W, the first W nodes out of the N nodes are grouped together. To

perform vectorization, we perform a depth-first traversal of the whole vector instead

of individual nodes till all the nodes are processed. After a vector-stack has completed

processing, the next set of W nodes are picked up from the pool of N nodes. This

process continues till all the N nodes are processed in N/W vectors stacks. Theoret-

ically, the computation time at each depth of the tree gets reduced by a factor of W,

excluding the overhead of vectorization and rearranging of the vector nodes. We’ll

discuss more about the overhead costs in a later chapter.

2.3.2 Evaluation Parameters

To profile the behaviour of vectorization in recursion, we define a few parameters.

These parameters collectively provide an estimate of the e�ciency and overload costs

involved in the technique. Each of these parameters is defined below.

Utilization

We define SIMD utilization of a program run on a SIMD vector as the fraction of

SIMD lanes that are kept busy with active data during the run of a program. Average

Utilization is the arithmetic mean of every SIMD operations‘s utilization. This is the

foremost important parameter in the analysis of vectorization since it represents the

percentage of vectorization achieved as a result of the scheduling operations. Ideally,

we aim to achieve 100% for each vectorization operation. However, trade-o↵s are

made based on the overhead involved in generating su�cient and continuous work,

gains involved in scheduling vectors as opposed to serial execution and the overall

gain in a program’s e�ciency against its serial model.

17

Under-Utilization

Under-Utilization is the measure of ine�ciency in the vectorization process and

is measured by tracking the fraction of SIMD lanes in the vector that are inactive

during the run of a program. Not every SIMD operation is always full. SIMD vectors

can get executed with a few empty lanes. However, the aim of my scheduling policy

is to keep this as low as possible or below a certain threshold.

Fullness

Fullness is a measure of the shape and structure of the tree. Imagine an ideal

tree to be a fully balanced tree, where every parent node at a given level has fixed

number of children. Such a tree has no nodes missing and no space for adding new

nodes to the tree. Such a tree is 100% full. Now, to keep track of how many nodes

are missing from the tree, we define the fullness parameter as the ratio of total nodes

in the current tree to the total nodes possible for the given tree, in compliance with

the given algorithm. In essence, we want to know how close we are to having a tree

where each point does exactly the same thing. This is similar to utilization, but with

a subtle focus on understanding how various shaped trees behave when vectorized.

For example, a low percentage of fullness indicate stringy trees, while higher values

refer to bushy trees. It is also helpful to keep track of the height of the tree. The

ratio of the height of the tree to the number of nodes traversed is another measure of

fullness.

2.3.3 Work Generation for Minmax

For minmax application, after rewriting it into a pseudo-tail recursive algorithm,

the tree can be vectorized using the approach explained above. In my research, I

started with a 3x3 board and followed all the rules of tic-tac-toe. The recursive tree

for tic-tac-toe has the structure shown in Figure 2.8.

18

Fig. 2.8. TicTacToe Recursion Tree Structure: A sample tree for a
3x3 board is shown above. The number of children for any given
parent decreases with the increase in the tree height. If any instance
of the board terminates in a win or draw, the node corresponding to
it becomes a leaf node.

If BFS traversal is executed till a depth of say 3, the resulting nose bu↵er will

have a width of 8*7*6 = 336 nodes. If the vector unit’s width was greater than 336,

19

Fig. 2.9. SIMD Performance: Utilization and Underutilization ratios
for various SIMD widths using the abstract vectorization model for
Minmax T-Game. BFS-D is set to a depth of 3.

all these nodes can get executed in parallel in a depth-first fashion from here on,

till the end of the tree. If not, these nodes get executed in blocks , with each block

equal to the size of the SIMD vector. The total number of nodes reduces further

down the tree as many board-states terminate according to game rules. Hence, as

the nodes reduce, we ensure that the bu↵er gets compacted again by regrouping the

scattered nodes into a continuous stream before the next vector operation. This is

called stream compaction and is a popular technique used in SIMD and GPU vector

operations [11]. This improves the utilization ratio of the vector units and reduces

its under-utilization.

To see the e↵ect of vector width and BFS depth on this application, I ran a

few experiments. It is important to understand that the performance of vectorization

will depend on multiple factors. Some of them are the tree size, SIMD Width, BFS-

D and tree shape. For a T-Game application, tree size and shape is predictable

20

Fig. 2.10. SIMD Performance: Utilization and Underutilization ratios
for varying BFS-D values using the abstract vectorization model for
Minmax T-Game. SIMD width is set to 16.

and somewhat fixed. Hence, by manipulating the vector width and work generation

depth, the performance of vectorization is profiled. The graphs below illustrate the

dependence of vector utilization and under-utilization for various vector widths and

BFS depths.

As seen in the Figure 2.9, for a 3x3 board with BFS-D depth of 3, there are

su�cient number of points to exploit SIMD parallelism for lower SIMD widths. As

SIMD width increases, since there are insu�cient points, its utilization drops.

Hence, increasing the BFS depth should result in better SIMD utilization since

more nodes are available to work with at any point of time. However, it is to be

noted that increasing BFS results in more time and space overhead to generate larger

blocks. Depending on the SIMD width, a suitable BFS-D is heuristically chosen for

a given recursion tree. As shown in Figure 2.10 In case of a 3x3 board, utilization

saturates after a depth of 4 and hence does not reflect the impact of increasing BFS-

21

D. These numbers show significant improvement when higher dimension boards are

used with a larger BFS value for the T-Game.

2.4 Conclusion

Work Generation enabled vectorization of recursive tree traversals and provided a

means to use SIMD hardware for recursive serial functions. However, just generating

an initial vector is not su�cient to sustain a good average utilization ratio. E�cient

vectorization requires continuous monitoring of the vector data and ensuring that the

vectors get refilled with more work as its size dwindles and reduces utilization. The

next chapter deals with mechanisms implemented to sustain e�cient Vectorization.

22

3. EFFICIENT SCHEDULING MECHANISMS TO

IMPROVE SIMD UTILIZATION

In the previous chapter, we successfully transformed a serial tree-traversal algorithm

into a vectorized tree traversal algorithm using point-blocked code. This enables us

to parallelize such serial trees using vector-processors, which are widely available on

most architecture platforms. This is a good step and opens up opportunities to use

available resources for faster execution. After the basic problem of generating work

for vectorization has been addressed, the next natural question to answer is the ef-

fectiveness of this process. SIMD vectorization does not guarantee good utilization

numbers and improved execution speeds all the time. When blocks of nodes execute

in a vectorized manner, some nodes may “die out”, leaving the vector processors

underutilized. Hence, the e↵ectiveness of vectorization depends on many factors like

memory layouts of data structures used in vectorization, fullness of the SIMD units,

complexity of instructions executed, scheduling overheads and architecture-specific

constraint for data transfer to the vector units. Among such factors, fullness of SIMD

units executed depends on the compiler’s scheduler algorithms. For this scheduler to

be e↵ective, the utilization gain achieved by vectorization of the recursive trees must

justify the overhead introduced to generate the vectors and their traversal for the

remaining part of the tree. Since the scheduler can control the initial vector’s prop-

erties and the changes in its content and size during traversal, it plays an important

role in optimization of vectorization. Hence, in this section, I will focus on how to im-

prove the utilization of SIMD units for recursive trees by introducing new scheduling

techniques to improve utilization, both by reorganizing existing parallel computations

more e↵ectively and by generating additional parallel work when necessary.

Ensuring that the blocks are almost always full requires stealing work from other

parts of the tree where the nodes are untouched. As you can imagine, there is more

23

than one way to do this. One way to do would be to randomly pick any node in the

block , perform BFS of its children up to a certain depth and then add the resulting

nodes to the current block. Another approach is to perform BFS on all its current

nodes in the block till the block is full and then switch back to vectorized DFS. Yet

another approach is to process another vector from the top of the tree till the current

depth and add the new nodes to the old vector. These approaches are explained in

detail in this chapter.

3.1 Single Step Re-Expansion(SSR)

3.1.1 DFS # # notation

After BFSWork generation, the vector blocks get executed in a depth first manner.

For the sake of convenience, the steps are named with a ’DFS’ prefix in the figures

below. The first number indicates the depth of the DFS tree traversal , assuming the

1st stage of DFS after BFS starts from a depth of zero. The next number indicates

the iteration number of the block at the same depth. For example, in the table below,

DFS 2 1 is the name of the block at depth 2 with both sibling nodes processed(0th

and 1st). DFS 0 x represents a vector block at depth 0-assuming there exists a block

of nodes ready to be processed, and all sibling nodes at the depth processed.

3.1.2 Policy explained

In this approach, we re-expand the SIMD stream by searching for more work from

around the current node’s parents. In short, for all the current nodes in the block,

the scheduler looks for its unprocessed siblings and adds them to the block. This is

illustrated with the tree traversal in 3.1(a). For all the policies, SIMD width of 4

is used as the default value. In table 3.1(b), the SIMD block status at each level is

illustrated, following the same color codes as the tree traversal. For a block of size

4, assume that DFS 0 0 is the block available for vectorization after work generation.

24

(a) Single Step Re-expansion: Tree Traversal Pat-

tern for a SIMD Block and its re-expansion to refill

the block when its size shrinks is illustrated in this

tree diagram.

(b) Tree Traversal Table: Block contents and

its utilization at each stage of SIMD vector

operation is mapped in this table.

Fig. 3.1. Improvement in Utilization illustrated with Single Step Re-expansion

At dfs 1 0, the block has 4 nodes available and continues vectorization. However,

in the next level, nodes C4 and C6 terminate and do not supply children nodes the

block. Hence, the block size of dfs 2 0 reduces to 2. This results in a 50% utilization

ratio. This impact is carried forward to the lower levels as well, resulting an overall

utilization of 67%. Instead, at level 2, if we re-expand the block by addition the

pending siblings , the utilization can be maintained. As highlighted in the table,

re-expansion is triggered at both the dfs 2 0 stages after dfs 1 0 and dfs 1 1, causing

better utilization.

Strip Mining

To avoid using vector operations when there is insu�cient work, strip-mining

technique is adopted. It is a degenerate version of loop tiling, where we have only one

loop. In this technique, for a given block of nodes, vector operations occur in steps

of SIMD Width. If there are few nodes left out after full-vector operations, they

are executed in a serial fashion instead of vectors. This helps maintain utilization

25

1 // Block s i z e = N, SIMD width = W

2 for (i = 0 ; i < N � W; i += W)

3 SIMD OP() ; // Operates on f l o o r (N/W) b locks as vec to r ope ra t i on s

4 for (j = i ; j < N; j++)

5 OP() ; // Operates on the l e f t o v e r N � f l o o r (N/W) nodes s e r i a l l y .

Fig. 3.2. Strip Mining

while exploiting the advantage of interleaving serial and vector operation in SIMD

hardware. The code in Figure 3.2 illustrates this. The second loop is a ”clean-up”

loop in case W does not evenly divide N.

3.1.3 Scope of the Policy

Single Step Re-expansion works well only when there is su�cient work available

around the block. Also, for sibling-blocks at the same level, re-expansion impact

reduces from left to right. In the tree above, at dfs x 1, re-expansion scope reduces.

In general, work available reduces as one moves lower in the tree structure. Hence,

while these techniques are e↵ective, it cannot assure improved utilization for all tree

structures. In the above tree, if C4 and C6 had a left child each, reexpansion would

be triggered at a later stage, while processing a block with D1 and D5 . However,

re-expansion fails since both D1 and D5 have no unprocessed siblings left. Hence,

SSR alone cannot guarantee consistent utilization for all kinds of tree traversals. In

the next scheduling policy, I extend the idea of SSR to multiple steps to ensure better

performance.

3.2 Re-expansion - Switching between BFS and DFS Traversals

This second approach is something like a “mode swapping” BFS, where you have

some set of points in your block, and you can either execute the points in that block

in depth-first manner like how it is done in point blocking or in breadth-first manner

26

Fig. 3.3. Reexpansion Tree Traversal
Fig. 3.4. Tree Traversal Table

(as in BFS expansion), and swapping back and forth switches the block between

vectorized execution and work generation.

3.2.1 Policy Explained

In this technique, the scheduler does not depend on sibling nodes to generate

more work. After the initial work generation stage, the block traverses in a depth-

first-fashion till the minimum threshold for block size if encountered. At this point,

the block of nodes switches its execution mode to breath-first expansion again to refill

the block. All the nodes in the block execute BFS in a lock-step manner without using

the SIMD vectors . Hence, the utilization ratio of the SIMD units is una↵ected in this

stage. When su�ciently filled up, execution switches back to Depth first traversal.

As shown in the tree traversal table 3.4, dfs 1 0 step has a full block and gets

vectorized. However, at dfs 2 0, with only 2 nodes, the block is half-empty. Hence,

the nodes D0 and D4 traverse in a breath first manner till the block size reaches at

least four. This requires two levels for the given tree. At this stage, the block is full

27

again and switches to depth-first traversal again. Using this technique, the utilization

ratio for the steps traced in this traversal is 100%.

3.2.2 Scope of the Policy

In this technique, if the current block of points don’t have many children or they

don’t have ”bushy” trees below them, the technique may not be e↵ective. Work gen-

eration by breath-first expansion of children nodes in a non-SIMD operation. Multiple

levels of such operation defeats the purpose of solving the main problem of “Vector-

ization of recursive trees”. While this technique may work very well for a large subset

of trees, it surely does not address the vectorization of stringy trees. Hence, this is a

light-weight scheduling technique that works for many recursive functions, but does

not guarantee to work for all of them. In cases where both the above policies are not

e↵ective, we adopt restart mechanisms, this is explained in the next section.

3.3 Restart Policy

The previous technique involved searching for work around the current block by

re-expanding the working block of nodes. However, in some recursive functions, when

there is not much work available down the tree, multiple re-expansion calls need to

be triggered relative to the depth of the tree. In such cases, it may be e�cient to look

at the upper part of the tree to generate work. This idea is explored in the re-start

technique explained below.

3.3.1 Policy Explained

In this technique, I ensure that the blocks are almost full, by stealing work from

upper nodes. To steal nodes from the upper level, I choose the initial block obtained

after the first step of breath-first expansion. If more work can be found in the upper

parts of the tree, looking for it at the top-most level possible maximizes the possibility

28

Fig. 3.5. Re-Start Tree Traversal

of generating more work. So, for re-start, we start operating on another un-processed

block of nodes using the same techniques explained above. This can be imagined

to be a new stack of blocks processed after the existing stack of block has halted

execution at an arbitrary depth due to insu�cient block size. When the new stack of

blocks extends till the same depth where the old stack halted, the nodes from both

the blocks coalesce to form a single new block. This block has continues to move

down the tree as a new block.

In figure 3.5 below, the green nodes represent block-path traversed by the first

block. When the block size drops , re-start function triggers creating and execution

of a new stack of blocks . This is represented in red. At depth 3, the nodes from both

green and red paths merge to form a new block of yellow nodes. This new block is

wider than both the old blocks at the same level and provides better vectors to the

SIMD vector. Hence, its utilization is guaranteed to improve.

29

Fig. 3.6. Tree Traversal Table

3.3.2 Scope of the Policy

This technique is very e↵ective for extremely stringy trees, when re-expansion is

not the most e↵ective method of re-filling blocks. In-fact, this method is e↵ective for

any kind of tree- even the ones for which Re-expansion is e�cient. However, it is not

feasible to use re-start scheduling all the time because of the higher resources required

for its implementation. This must be used only for functions where re-expansion

fails. Scheduling for re-start requires more space and time and involves detailed

bookkeeping of multiple stacks of blocks. Hence, this is memory and computation

intensive in comparison to the previous scheduling policies.

Collectively, these 3 scheduling policies can be used with various recursive appli-

cations to vectorize them and maintain good utilization ratios. In the next section,

I have tested the performance of these policies for a minimax function. However,

since the T-Game restricts the shape of the recursion tree and does not result in

fundamentally di↵erent trees with each run, it cannot be a good example for testing.

Hence, I modify the T-game into a Generic Game and implement these policies over

them. The game’s implementation, its response to various scheduling policies and

utilization graphs are explained in the next section.

30

3.3.3 Generic Minimax Game

In order to simulate SIMD utilization behaviour for di↵erent pattern of trees, we

extend the idea of the tic-tac-toe minimax algorithm to a genetic game algorithm. For

this generic game, we control tree structures by varying a set of parameters. These

parameters are listed below.

Application Specific Parameters

1. Game termination probability(P) : Instead of following specific rules to deter-

mine if the given board state is won by a player or ended in a draw, a uniform

distribution function is used to determine if a board terminates. Win or loss

does not matter. Hence, any board state can terminate at any depth of the tree

based on the value of P generated in the eval() function. This value is can be

set to any value between 0 and 100. For example, a value of 30 indicates that

the boards terminate about 30% of the times during evaluation at any stage of

the game.

2. Boardsize (B): This indicates the length of the squared board used in the game.

While the original game has a length of 3 (3 x 3 square) , the game to be

extended to any N x N board by setting B=N. Higher values of B result in

larger and deeper tree traversal and helps evaluation of SIMD performance.

Architecture dependent parameters

3. SIMD-Width (W) : This indicates the size of the SIMD units used in the eval-

uation of vectorization. Usually, multiples of 2 are used as SIMD-sizes. This

can be configured to emulate SIMD vector behavior of various applications with

varying SIMD widths. Scheduler parameters

4. Block sizes : There are 2 block size parameters used in the experiments, namely

max blocksize and min blocksize. These values are used for two reasons. The

first reason is similar to the idea of block size in point-blocking. For a SIMD-Size

31

W, if the max blocksize is N , floor(N/W) SIMD operations can occur either

in parallel or serially. Hence, Hence, max blocksize provides an upper limit on

the number of SIMD operations that can operate in parallel or serially for a

given tree-depth. However, when the number of nodes in the block drops below

the SIMD width, utilization begins to take a big hit. At this stage, utilization

improvement techniques like reexpansion and re-start must be triggered. Hence,

min blocksize is used to trigger these scheduling operations. Min blocksize sets

the minimum block size required for SIMD opearations.

With these parameters, I tested the robustness of the restart and re-expansion policies

for di↵erent kinds of tic-tac-toe kind of minmax applications. This expands the

evaluation samples and provides a better estimate of the utilization benefits of the

new scheduler.

3.3.4 Re-Expansion Scheduling Evaluation

Profiling of re-expansion scheduling for a generic 3x3 minmax game.

In order to improve the utilization of SIMD units, re-expansion can be done at

di↵erent depths in the tree. Based on an application specific policy, when the number

of nodes in a given block falls below a certain threshold, its parent block can be re-

expanded to generate more work to fill the block. This can be done with minimalistic

changes to the existing design and results in higher utilization ratio for bushy trees.

The graphs in Figure 3.7 shows the improvement in Utilization and Underutilization

numbers achieved by re-expansion. The performance of the minmax algorithm with

re-expansion is compared with its older version that does not perform re-expansion.

The assumptions and parameter values used for profiling are noted below.

1. To show improvement in numbers, I have profiled for SIMD width of 128. Since

the work generated by a 3x3 minmax game quickly dwindles to values less than

128, the role of re-expansion can be observed clearly.

32

(a) a (b) b

Fig. 3.7. Impact of Re-expansion on SIMD Vectorization

2. All the points available after Work Generation are considered to form a single

block for vectorization.

3. The threshold limit that triggers re-expansion is set to be 1/3rd the block size.

This is a policy parameter and will depend on the application.

The graph in Figure 3.7 shows that as the probability of game termination in-

creases, the re-expansion code performs generated more work and hence results in

better utilization and underutilization numbers. For probability values lesser than

30%, the re-expansion function will not be triggered su�cient number of times since

the blocks are fairly full. Hence, SIMD performance does not vary too much. As

the probability increases, nodes are dropped from the block more frequently. Hence,

reexpansion re-fills the blocks and results in improved utilization.

Variation in Utilization for di↵erent SIMD widths

The graph in Figure 3.8 shows the changes in performance of vectorization for

variation in SIMD width. As seen in the figure, utilization improves with SIMD

width up to a certain point and then drops. An important point to consider while

analysing this graph is that the maximum size of the block on which point blocking

can be applied for a 3x3 board with BFS depth of 3 is 336. Hence, for SIMD widths

33

Fig. 3.8. Impact of SIMD width variation on Vectorization

from 8 to 256, the utilization decreases gradually. However, when the width is 512, all

the points fit into a single block. Utilization depends on the number of empty spots

in the block henceforth. This explains why it shows better utilization in comparison

with 256.

Variation in Performance for di↵erent re-expansion thresholds.

The graph in figure 3.9 provides insight into minimum operable block sizes to

guarantee good utilization. Threshold values here refer to the minimum fraction of

the full block size that is required, for vectorization to continue. When the block size

drops below this fraction, reexpansion or rescheduling is triggered.

As seen in the graph, for threshold values below 50% of the block-size, the utiliza-

tion improves as the fraction increases. This is because, if we consider the algorithm’s

34

Fig. 3.9. Impact of re-expansion threshold point variation on SIMD Vectorization

timeline, re-expansion is invoked at an earlier time (higher levels of the tree) for blocks

with higher thresholds and much later(at lower levels of the tree) for lower values .

Hence, better utilization is seen. However, when the threshold greater than 50%,

reexpansion is not useful. Why? Because re-expansion tries to add multiple siblings

for each node in the block. Hence, the size of the reexpanded block gets multiplied by

the number of siblings added per node. So, to have reexpansion, a minimum of one

sibling from each node in the block is necessary. If the number of nodes in the block

greater than 50% of block size, the reexpanded block is bound to overflow. Hence,

re-expansion is not performed. This can be changed such that, we allow the block to

overflow and handle the spill as a separate block. But this is not done in the present

implementation.

35

Fig. 3.10. Impact of SIMD width variation on Vectorization

3.3.5 Restart Scheduling Evaluation

Since Re-start mechanism is designed to address recursive cases where re-expansion

fails, it is important to analyse the fullness of tree structures as well. When the tree

fullness is low, re-expansion performs poorly. In such cases, restart works better.

Hence, to analyse restart mechanisms, we perform profiling similar to reexpansion

and then, compare the two scheduling policies for the same functions.

Graphs in Figure 3.10 and 3.11 show the performance of restart mechanism for

the generic minimax algorithm. Similar to Re-expansion, Utilization and Under-

Utilization improvements seen is shown in the plots in 3.10 and 3.11. Performance

improvement is similar to that of re-expansion. However, we modify the tree behavior

here by changing the probability of termination of each board sample of the game.

Higher termination probability results is less-full trees. For such trees, re-start’s

impact is seen prominently.

36

Fig. 3.11. Variation of fullness with probability of the game

Performance of re-start scheduling policy

The restart mechanism’s performance is measured in terms of SIMD utilization

and underutilization and compared with the basic application that does not support

restart/reexpansion. These graphs vary depending on SIMD width and number of

times restart is triggered. The following graphs compare the performance for SIMD

Width of 64 and 128.

(a) a (b) b

Fig. 3.12. Impact of Re-Start on SIMD Performance

37

The graphs show us that restarting helps improve the performance of SIMD vector-

ization as expected. The deviation from the basic implementation is highly dependent

on the SIMD width, tree structure and number of restarts that can be invoked. In

these examples, I limit the number of restarts to 2 per turn of the game. The table

to the left further emphasizes the fact that the level at which restart is triggered in-

creases as the probability of termination decreases. Hence, irrespective of the current

state of the block, restart can be triggered when work must be generated.

Probability RestartDepths

.2 6,7

.3 5,6

.5 5,5

.7 4,4

Table 3.1.
Tree Shapes and Re-Start Trigger levels

As seen from the table, as the termination probability decreases, the trees become

less bushy. This results in re-start functions getting invoked higher up in the tree in

comparison the fuller trees.

3.3.6 Comparison of ReStart and ReExpansion scheduler policies

In this graph, I have compared the e↵ectiveness of re-expansion and restart mech-

anisms. Note that re-expansion and restart are triggered by the same minimum

conditions. Re-expansion can occur any number of times, as long as there is work

available at the sibling nodes of a given block. However, restart can occur only once

for every child node of the BFS block. E↵ectively, for a 3x3 minmax algorithm with

BFS depth of 3, restart can be triggered not more than 3 times. The graph shows

that restart gives better utilization almost all the time. However, Underutilization

ratio of re-start is much better than that for re-expansion, more so for higher values

38

M(%) A B

10 0 0

20 0 0

30 2 17

40 2 54

50 2 54

60 2 54

70 2 54

80 2 54

90 2 54

Fig. 3.13. Comparison of the behavior and impact of both the schedul-
ing policies- Reexpansion and Restart. M = % of block size that trig-
gers new work generation. A and B represent the number of times
Restart and Reexpansion policies are triggered during the execution
of the program.

of M. This is because, for M greater than 50%, we cannot perform re-expansion since

the mechanism will generate more work than what the block can accommodate. In

the case of re-start, since a new stack is allocated for each restart call, this problem

will not arise.

The table here compares the number of restart and re-expansion calls that are

made for 1 turn of the game. Clearly, a single restart function is more powerful

than multiple re-expansion functions when SIMD widths are chosen wisely. The pros

and cons of both the policies are already explained in the beginning sections of the

chapter. Hence, based on the tree traversal, one of these scheduling policies can be

applied.

39

3.4 Conclusion

This chapter explain the scheduling polices and showed its impact on the 3x3

TicTacToe game. Now, the scheduling policies’ behavior for other recursive trees

must be analysed. The next chapter explores the various possible tree traversal

shapes that out scheduler can vectorize and profiles its performance for the same.

It supports the results shown in this chapter and consolidates our observations.

40

4. SIMD VECTORIZATION OF RANDOMLY

SYNTHESIZED GENERIC TREES

The evaluation done so far has been on tic-tac-toe based minmax algorithms. The

e↵ect of SIMD width, block size and work generation techniques for such functions

are explained in the previous chapter and provide a sound idea about architecture

parameters. However, this does not provide information about the behavior of our

scheduler for various kinds of trees. For example, the minmax algorithm’s probability

function for evaluation of board termination creates similar kinds of subtrees.It does

not generate trees where some parts are very bushy and some are very stringy. Hence,

in order to understand the behavior of the scheduler for all kinds of trees, we generate

random trees and evaluate SIMD behavior and its utilization.

4.1 Tree Topology

Tree building is enabled by controlling the shape of the tree using a few parameters.

Mainly, the tree structure is controlled by two parameters.

1. Number of nodes in the tree(N)

2. Maximum Depth of the tree(D)

N nodes get distributed randomly to form a rooted binary tree where there is at

least one path that reaches depth D. The main idea of providing these 2 parameters

is to enable building trees that will aid in measuring the e↵ectiveness or limitations

of our vectorization algorithms designed so far.

41

4.2 Random Tree Generation

To build a binary tree with nodes N and depth D, a standard recursive binary

tree building algorithm is used. The criterion to meet are that the tree depth must

not be greater than or lesser than D, while every run of the program produced a

random tree. The idea here is to profile vectorization for binary trees with unknown

tree shapes and prove its e↵ectiveness for any binary tree. In order to build a tree

based on random tree splits one must ensure the tree depth is not more than D at

any time.The pseudocode for tree building is shown in Figure 4.1. The tree structure

generated using this code is used as the input for vectorization and analysis of various

work generation policies.

4.2.1 Implementation

In the code in Figure 4.1, the paths at each split are labelled red and green. The

green path must traverse till the maximum depth ’D’. The red paths can terminate at

any point before till depth ’D’. To build the tree, I ensure that the following conditions

are met at each split.

1. For the Green path, the number of nodes in the subtree should be su�cient

to at least form a single stringy path till ’D’. The maximum nodes permitted

is power(2,depth of remaining sub tree). Hence, in the code, minNodes and

maxNodes provide the min and maximum node conditions for the green path.

2. For the red path, the maximum number of permitted nodes is limited by the

maximum depth of the subtree possible. The tree cannot go beyond depth ’D’.

3. The split is a uniform random number between one and total nodes available

at the subtree root.

In this design the partitioning ratio at each level is determined randomly, in a unifrom

fashion, based on the total availability of nodes. A randomly generated valid number

42

1 max depth D;

2 void bu i l d t r e e (nodes n , depth d , path c o l o r)

3 i f (d == D)

4 return 0 ;

5

6 while ((n>1)) //Nodes a v a i l a b l e f o r t ree�bu i l d i ng

7 minNodes = D�d ; //Min nodes needed to reach depth D

8 maxNodes = pow(2 ,D�d) ; //Max nodes that can f i t i n to the subt ree

9 path (l c o l o r , r c o l o r)=RED

10 i f (GREEN == co l o r) //This subt ree must t r av e r s e t i l l depth ’D ’

11 s p l i t = rand () mod (n�1);

12 i f ((s p l i t >= max(minNodes , n � maxNodes))&&

13 (s p l i t <= maxNodes))

14 l c o l o r = GREEN;

15 break ; //Val id s p l i t

16 // e l s e , loop again and try another s p l i t

17 else i f (RED == co l o r)

18 s p l i t = rand () mod (n�1);

19 i f ((s p l i t <= maxNodes)&& //Ensure the se t r e e s don ’ t go below ’D ’

20 (n�s p l i t <= maxNodes))

21 break ;

22

23 bu i l d t r e e (s p l i t , d+1, l c o l o r) ;

24 bu i l d t r e e (n�s p l i t , d+1, r c o l o r) ;

25

26 int bu i ld (nodes n)

27 bu i l d t r e e (n , 0 ,GREEN) ;

Fig. 4.1. Binary tree table algorithm

between 1 and the total number of child nodes available provides the split ratio for

branching a node into 2 children nodes. This process continues for every node split

at every level of the tree. A tree built with such an algorithm provides a fairly unique

43

Fig. 4.2. Utilization Distribution among various SIMD states for 4
groups of tree-topologies

tree for each run of the program with the same parameters depending on the total

number of tree forms that can be theoretically built.

4.2.2 Performance Analysis

With the above implementation, I profiled vectorization with re-expansion tech-

nique for a number of tree structures. The results of these experiments show that

re-expansion ensures a good utilization ratio for SIMD operations on recursive trees.

In Figure 4.2, the plot sheds light into analysis of SIMD utilization based on three

important parameters. The parameters used in this experiment are - SIMDWidth(W)

is 16, Maximum width of the block(Max) is 64, Minimum block size to trigger re-

expansion(Min) is 16, number of nodes in the tree is 511(N).

1. Depth of the tree

In order to test for various topologies of trees, the graph tracks the utilization

for 4 di↵erent depths of tree. In this evaluation, for 511 nodes, a full binary

44

Fig. 4.3. SIMD Utilization for 4 groups of tree-topologies

tree has a depth of 8. In these experiments, the focus is to see the behavior of

the scheduler for constant * full-tree-depth. In this case, we profile for depths

of 8, 12, 16 and 17.

2. SIMD States

Re-expansion is triggered only when the block size goes below Min. However,

for larger blocks, they get vectorized in batched of size W. Hence, the last part of

the block can still get execute with under-utilization. State of the SIMD Block

is defined by how full the unit is. In the graph, the distribution of work among

various states of hardware is profiled. 100% of the work does not happen at

width 16.Some of it gets distributed in partial SIMD units as well. The X-axis

of the plot if Figure 4.2 represents the width of the SIMD units while vectorizing

blocks in the algorithm.

45

3. Minimum and Maximum Block sizes

This is a heuristic value based on the algorithm. It is set based on the how well

or badly the scheduler performs for a given combination of parameters.

4.2.3 Repeated Trials

The graph in Figure 4.2 shows that the utilization does not degrade below 50% in

most cases. The values are profiles by averaging the result of running each experiment

1000 times. Figure 4.3 shows the overall average Utilization values for trees of depth

17,16,12 and 8 for the same set of parameters mentioned above. The average utiliza-

tion stays above 50% for all the trees groups profiled. This is a significant result as it

helps guarantee a lower limit of the utilization gain obtained through vectorization.

Since these profiling data were averaged over 1000 trials, the variation in utiliza-

tion during each trial is sorted into bins in Figure 4.4. Figure 4.4(a) represents the

utilization for a fully balanced binary tree. As expected, each trial produced the

exact same number, 97.59% since they all operated on the same tree. For the rest

of the graphs, each trial run generated a di↵erent topology of the tree for the same

set of nodes and maxDepth. The variation in performance between these trials is

represented in the graphs. Clearly, for all the sample runs, bulk of the trials had

utilizations greater than 50%.

Now that we have su�cient data to support that re-expansion is almost always

e↵ective for upto 3*fulldepth depth trees, there is another subtle factor to be con-

sidered to strengthen our argument-which is the random tree generation. The trees

generated in these trials are not true-uniformly random samples. The next section

analysis the sampling policy and explains details about the implementation of a more

accurate node-splitting policy.

46

(a) (b)

(c) (d)

(e)

Fig. 4.4. Utilization bins for various tree-topology groups over 1000 trials

4.3 Uniform Sampling of Node Splits

The nodes available at each stage are split based on the random number generator

in the previous analysis.If split in Figure 4.1 is a random variable between 1 and total

nodes, the cumulative distribution function of split is uniform. However, binary tree

building algorithm does not follow a uniform distribution. It is important that we

47

sample a truly random tree-space to guarantee the behavior of our e�cient vector-

ization policies. In order to achieve this, I have written a function that stores the

number of possible binary rooted trees that can be constructed given the nodes and

depth of the tree. This function is based on the idea of catalan numbers and stores

the result in a table. The table is used to create splits in the tree building algorithm.

The code for this function is shown in Fig 4.5. Here, the array trees exact[] is used as

a reference to generate a probability distribution function for binary tree sampling.

The nodes at any stage are then split by referring to this PDF instead of a random

number generator. Hence, a new split finder() function replaces the existing rand()

function in line 10 of the code in Fig 4.1.

4.3.1 Generation of Probability Distribution for Binary Trees

Given ’N’ nodes, the total number of binary trees that can be constructed using

these N nodes is given by the closed form series of Catalan numbers. A binary tree

used in our experiments has the condition that each node in the tree is either a leaf

node or has two children. In other words, no node has an odd number of children.

Hence, all internal nodes have 2 branches. However, this does not take into account

the depth restriction required for our tree-building problem. Hence, to count trees

given (N,D), we use a bottom-up approach explained below. Given the number of

trees with ’N’ nodes and depth D, we can calculate the trees with node ’N’+2 as

follows. Put the N+2nd node as the root. Put the subtree with N nodes as the

left subtree and the N+1th node as the right subtree. Count the total trees with

this combination. Next, split the nodes into (N-2, 3) split and count the total trees.

Continue this till a split of (1, N) is encountered. The cumulative sum of all these

splits gives the total value. Hence, we can formulate an initial trees table[] and use

dynamic programming approach to extend the table. The pseudo-code for this is as

shown in Fig 4.5.

48

1 long eval treenum (nodes n , depth d)

2 /⇤Al l s p l i t�combinat ions from 1 : (n�1) to (n�1):1 ⇤/

3 l e f t = 1 , r i g h t = n�1;

4 for each (node i : n�1)

5 a = t r e e t o t a l [l e f t] [d�1]

6 b = t r e e t o t a l [r i g h t] [d�1]

7 /⇤For each o f the ’ a ’ t r e e shapes on the l e f t ,

8 ’b ’ r i g h t t r e e s are p o s s i b l e ⇤/

9 t o t a l += a⇤b

10 l e f t ++;

11 r ight ��;

12 return t o t a l ;

13

14 int b u i l d t r e e t a b l e (nodes N, depth D)

15 for each (nodes n : N)

16 for each (depth d :D)

17 /⇤Evaluate a l l t r e e s p o s s i b l e with nodes ’n ’ and maximum depth ’d ’ ⇤/

18 t r e e s t o t a l [n] [d] = eval treenum (n , d)

19 /⇤To get the exact t r e e s with depth ’d ’ and nodes ’n ’ ,

20 e l im ina t e a l l t r e e s with depth < ’ d ’ and nodes ’n ’ ⇤/

21 t r e e s e x a c t [n] [d] = t r e e s t o t a l [n] [d] � t r e e s t o t a l [n] [d�1] ;

22 return t rue ;

Fig. 4.5. Binary tree table generation

Implementation

The algorithm follows a dynamic programming approach to determine the maxi-

mum number of trees possible with nodes N and maximum Depth D. To enable this,

we initialize the 2-D tree table trees total with the arrangement shown in Table 4.1.

This information stored in the tree exact array forms the probability space for uniform

sampling of all possible tree shapes , given the node and depth constraints. Hence,

49

2 0 - .. -

1 1 1 .. 1

0 0 0 .. 0

Node# 0 1 .. D

Depth

Table 4.1.
Initialized Table for Tree Count

Fig. 4.6. Average SIMD Utilization of randomly generated rooted-binary trees

the random sampling function used to generate a binary split at each level of the tree

is now truly uniform.

50

4.3.2 Results

To reverify the results of vectorization with the new sampling, we profile vector-

ization with the new tree building function for 2k nodes and SIMD width of 16. For

2k nodes, a full binary tree has a depth of log(2k)= 10. The idea here is to test the

scheduler’s behavior for trees with depths based on the 2 rules below.

1. A small constant added to the full tree depth

2. Multiples of full tree depth .

The graph in Fig 4.6 tracks the utilization ratio for various trees with 2k(2047) nodes

and SIMD width of 16. The behaviour of re-balancing scheduler is analysed here for

trees whose depth varies from 12 to 30. As seen in the graph, the utilization ratio is

steady at around 70% and does not drop drastically with increase in tree depths.

4.4 Profiling-based Evaluation

We now evaluate the performance of our vectorization techniques using the tree

generation technique outlined in the previous section. Re-expansion exploits SIMD

hardware by creation and maintenance of data blocks. Therefore, SIMD width, block

size, re-expansion thresholds, and tree shapes (Nodes and Depth) determine the ben-

efits from SIMD utilization. Individually, these parameters show their distinct impact

on vectorization. Together, they are useful to analyze vectorization behavior in sys-

tems where there are constraints on some of these parameters.

For our analysis, we simulate vectorization with the following parameters as de-

fault values, unless otherwise specified: SIMD width of 16, block size of 64, and

10,000 nodes in the tree. All values are averaged over 100,000 trials. We perform our

simulations on an system with a 2.6GHz 8-core Intel E5-2670 CPU with 32KB L1

cache per core and 20MB last-level cache. The simulation code was compiled with

Intel icc-13.3.163 compiler with ‘-O3’.

51

 0

 20

 40

 60

 80

 100

 120

-4 0 4

%
 o

f T
ria

ls

Standard Deviations of the Utilization from the Mean

Normalized Utilization of 1000 Trials. Mean = 0.707 S.D = 0.01795
Normalized Utilization of 10000 Trials. Mean = 0.708 S.D = 0.0174

Normalized Utilization of 100000 Trials. Mean=0.7089 S.D=0.01815

Fig. 4.7. Central limit theorem used to show that for 1k, 10k and
100k trials, the distribution of utilization values is fairly normal.

4.4.1 Repeated trials to sample utilization

We measure average utilization over repeated independent trials to get consistent

results. Because all these trials are independent, su�ciently large trials will comply

to the central limit theorem. Using the default system settings of SIMD width 16,

block size 64, and 10,000 nodes, we choose a tree of depth 20 to show that the

variation in utilization over 100,000 trials obeys the theorem (Figure 4.7). As seen in

Figure 4.7, the distribution of trial values follows a normal distribution and remains

consistent for 1000, 10,000 and 100,000 trials. Based on this observation, we perform

all experiments with 100,000 or more trials to produce consistent averages.

52

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 20 40 60 80 100 120 140

SI
M

D
 U

til
iz

at
io

n

Max Depth of Tree

Utilization Ratio

Fig. 4.8. Utilization ratio remains well above 50% for all tree depths

4.4.2 SIMD utilization for deep trees

We empirically evaluate the SIMD utilization of the depth-first and re-expansion

strategies for trees whose depths are multiples of full-tree depth. SIMD utilization

ratio is high for full trees. As tree depth increases, the trees can get more sparsely

populated. Maintaining high SIMD utilization for such trees can become di�cult. Re-

expansion addresses this by switching between vectorization and work generation. To

see its impact on SIMD utilization in the context of deep trees, we profile vectorization

behavior for a 10,000-node (full-depth of 13) tree with varying depths. We start with

depths around the full-tree depth and evaluate depths that are multiples of full-depth.

As shown in the Figure 4.8, for trees with depths varying from 14 to 150, utilization

stays above 50%.

53

 0

 0.2

 0.4

 0.6

 0.8

 1

14 15 16 17 18 19 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

SI
M

D
 U

til
iz

at
io

n

Max Depth of Tree

Reexp
No-Rexp

Fig. 4.9. Impact of Re-expansion: Utilization achieved with and with-
out re-expansion for various class of trees

4.4.3 Impact of re-expansion

We measure the impact of re-expansion by comparing vectorization e�ciency with

and without re-expansion. Further, we analyze this impact for various class of trees

to emphasize its significance. For 10,000-node trees, we have an almost full-tree at

depth 13. In Figure 4.9, vectorization for random trees between depth 14 and 140 is

measured with and without re-expansion (for a fixed block size). For depth 14, plenty

of work is available and re-expansion does not significantly improve utilization. For

the same number of nodes, as the trees get deeper, the sparse nature of the trees

expose ine�ciencies incurred by depth-first execution. For depths greater than 20,

re-expansion improves vectorization by ⇠5 times.

We observe that re-expansion improves utilization for a given system configura-

tion. To attain similar performances without re-expansion, depth-first scheduling

54

without re-expansion needs to generate more parallel work at the cost of memory

by using larger block sizes. Large blocks perform breadth-first execution till deeper

levels in the tree to fill the chosen block size.

An alternate way of demonstrating the advantages of re-expansion is to study how

re-expansion allows us to use significantly smaller block sizes, and hence consume less

memory. We choose 4 trees of depth 18, 28, 52, and 100 as representative depths.

When run with re-expansion, and a block size of 64, the average utilization achieved

for these depths was 76%, 66%, 65%, and 61%, respectively. We then turned o↵

re-expansion, and studied how utilization changed with block size. The results are in

Figure 4.10(a). As in the previous study, we see that at a block size of 64, the non-

re-expansion runs have poor utilization. More significantly, we see that to achieve

the same utilization as re-expansion with a block size of 64, the non-re-expansion

runs require block sizes of over 400, 1750, 1800, and 2000, respectively. We also see

that such large block sizes mean that significant chunks of the tree must be explored

before switching to depth-first execution, as seen in Figure 4.10(b). These results

emphasize two points: (1) to match SIMD utilization without re-expansion, block

size needs to significantly increase with tree’s depth and (2) the utilization achieved

is less predictable.

Variation in SIMD width

SIMD width and block size together decide the percentage of work that gets

vectorized. Block size is usually greater than the SIMD width and holds multiple

vectors for e�cient vectorization. Keeping the SIMD width a constant, the variation

in utilization with changing sizes of the block is shown in Figure 4.11. As shown in

the figure, increase in block size relative to SIMD width causes better packing of data

for vectorization. For block size equal to SIMD width, utilization is poor and drops

to 40% for deeper trees. Bigger blocks result in lesser re-expansion calls and higher

percentage of execution performed by vector units.

55

 0

 0.2

 0.4

 0.6

 0.8

 1

 5
0
0

 1
0
0
0

 1
5
0
0

 2
0
0
0

 2
5
0
0

U
til

iz
a
tio

n

Blocksize

D:18
D:28
D:52

D:100
Min Avg Util

(a) BlockSize Increase to achieve higher utilization ratio (b) Shows the depth at which vector op-

erations begin for various trees classes

Fig. 4.10. Utilization vs. block size for di↵erent tree depths without
re-expansion. The horizontal line represents the minimum average
utilization when using re-expansion with a block size of 64 for the
same tree depths.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 1
0

 1
5

 2
0

 2
5

 3
0

SI
M

D
 U

til
iz

at
io

n

Ratio of block size to SIMD width

D:15
D:20
D:40
D:60

D:100

Fig. 4.11. SIMD utilization vs ratio of block size to SIMD width. As
the radio increases, amount of work available for each SIMD opera-
tion increases. Hence, a greater percentage of full-vector operations
occur as compared to smaller block sizes. This ensure high average
utilization.

56

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 20 40 60 80 100 120 140 160

S
IM

D
 U

til
iz

a
tio

n

SIMD Width

D:14
D:15
D:18
D:20
D:40
D:60

D:100

Fig. 4.12. SIMD width variation. As the SIMD vectors increase in
size, they modify utilization both positively and negatively depending
on the tree shape.

In Figure 4.12, we study the block size required to achieve good SIMD utilization

across SIMD vector sizes. Specifically, we evaluate the SIMD utilization achieved for

di↵erent SIMD widths when the ratio of block size of SIMD width is kept constant.

Changing the SIMD width, for a given ratio of block size to SIMD width, improves

vectorization till work generation saturates, at which point there are not enough nodes

to exploit the large amount of slots made available by the larger SIMD vector widths

and data blocks. We observe that SIMD utilization remains high for fuller trees with

maximum depth of 14, 15, and 18. As trees get deeper, the inherent sparsity in the

trees causes gradual degradation in SIMD utilization achieved.

57

4.5 Conclusion

With the re-expansion algorithm in place, the graph proves that good utilization

is obtained for the trees generated. These results, along with results from the previous

section guarantee a low bound on the utilization benefits obtained from vectorization.

58

5. SUMMARY

In this thesis, we have shown that we can successfully transform a class of recursive

functions using several scheduler techniques.

In the first chapter, we transformed a serial tree-traversal algorithm into a vector-

ized tree traversal algorithm using point-blocked code. This enables us to parallelize

execution of such serial trees using vector-processors like SIMD which are widely avail-

able on most architecture platforms. This stage is called Work Generation and does

not guarantee and utilization benefits by itself. Hence, we next explore how to im-

prove the utilization of SIMD units for recursive trees by introducing new scheduling

techniques to improve utilization, both by reorganizing existing parallel computations

In the first technique Single Step Re-Expansion, we re-expand the SIMD stream

by searching for more work from around the current node’s parents. The second

approach- Re-expansion, is something like a “mode swapping” BFS, where you have

some set of points in our block, and we can either execute the points in that block in

depth-first manner like how it is done in point blocking or in breadth-first manner,

swapping back and forth to maintain the block’s population. These techniques work

well for most recursive algorithms and are e↵ective in maintain a good utilization

ratio for most groups of trees.

In cases where both the above policies are not e↵ective, we adopt restart mech-

anisms to improve utilization. In some recursive functions, when there is not much

work available down the tree, multiple re-expansion calls need to be triggered relative

to the depth of the tree. In such cases, it is more e�cient to look at the upper part

of the tree to generate work. So, in Restart technique, we start operating on another

un-processed block of nodes from the work generation block using the techniques ex-

plained above and merge the two blocks at some point to form a single new block.

This technique is very e↵ective for extremely stringy trees. Collectively, these three

59

scheduling policies can be used with various recursive applications to vectorize them

and maintain good utilization ratios.

In the next chapter, we provide a theoretical limit for SIMD utilization improve-

ment that we get with our scheduling techniques. To support this claim, we explore

the various possible tree traversal shapes that out scheduler can vectorize and profiles

its performance for the same We use a uniform distribution curve to generate random

tree topologies and show that our scheduler maintains utilization rations greater than

50% for trees with depths up to 10 times the full-tree depth, for a given number of

nodes. Vectorization results obtained over 1000 trials for various tree configurations

guarantee a low bound on the utilization benefits obtained with our schedulers.

60

6. RELATED WORK

Several programming languages for multicore systems explore the use of task parallel

constructs that correspond to the execution of computation trees. This includes

Cilk [12–14], Thread Building Blocks [15], Task Parallel Library [16], OpenMP [17],

and X10 [18]. Typical vectorization considerations in these models has focused on

inner vectorization where the base case is vectorized. In these cases, the induction

case runs as context-independent threads on one or multiple processors and the base

case is executed as a vector unit. Our work focuses on an analysis of the vectorization

opportunities in the recursion itself. One related SIMD optimization technique, Raja

is focused on enabling SIMD optimization of loop programs prevalent in scientific

applications in a performance portable fashion.

For task parallel programs running on multicore machines, many variants of work-

sharing and work-stealing schedulers provide theoretical guarantees of high utiliza-

tion [19–23]. In work-sharing schedulers, all the tasks that are ready to execute are

put in a shared pool and all workers take work from this pool when they need work. In

work-stealing schedulers, the pool is distributed among a worker and workers “steal”

work from other workers’ pool when it runs out of its own work. For work stealing

with multiple cores in the case of CILK, each processor has a stack that stores sus-

pended frames of the current processes running on the cores. But these stacks are

like dequeues and the suspended state can be removed form both ends. While each

processor can remove frames from the stack from the same end that it inserts them

in, other free processors can “steal” from the other end and begin execution. This

keeps all the processors busy.

In both work-sharing and work-stealing, the goal is to keep all workers busy —

however, since these strategies are designed for multicores, workers do not have to

work in a SIMD fashion. To the best of our knowledge, our work is the first to

61

characterize theoretical performance of schedulers that run task parallel programs

using SIMD machines.

The work-first strategy in Cilk [13] is similar to our depth-first execution scheme: a

processor encountered a task immediately begin recursive execution of the task. The

help-first strategy developed by Guo [24] is similar to out breadth-first re-expansion

strategy. They propose combining work-first and help-first strategies to combine

faster work dissemination as compared to a strict work-first model. This work does

not involve a systematic analysis of benefits such a combined approach for arbitrary

programs. More importantly, this work focused on optimizing task parallelism in

the context of independent threads that constitute a multicore system. We are not

aware of any prior work on systematic analysis of data parallelism and associated

vectorization potential in recursive programs.

REFERENCES

62

REFERENCES

[1] NVIDIA, CUDA, 2015. [Online]. Available:
http://www.nvidia.com/object/cuda home new.html

[2] J. Flesch, F. Thuijsman, and O. J. Vrieze, “Recursive repeated games with
absorbing states,” Mathematics of Operations Research, vol. 21, no. 4, pp.
1016–1022, 1996. [Online]. Available: http://dx.doi.org/10.1287/moor.21.4.1016

[3] K. Rocki and R. Suda, “Parallel minimax tree searching on gpu,” in Proceedings
of the 8th International Conference on Parallel Processing and Applied Mathemat-
ics: Part I, ser. PPAM’09. Berlin, Heidelberg: Springer-Verlag, 2010, pp. 449–
456. [Online]. Available: http://dl.acm.org/citation.cfm?id=1882792.1882846

[4] D. Saougkos, A. Mastoras, and G. Manis, “Fine grained parallelism in
recursive function calls,” in Proceedings of the 9th International Conference on
Parallel Processing and Applied Mathematics - Volume Part II, ser. PPAM’11.
Berlin, Heidelberg: Springer-Verlag, 2012, pp. 121–130. [Online]. Available:
http://dx.doi.org/10.1007/9783642315008 13

[5] R. Rugina and M. Rinard, “Automatic parallelization of divide and conquer
algorithms,” SIGPLAN Not., vol. 34, no. 8, pp. 72–83, May 1999. [Online].
Available: http://doi.acm.org/10.1145/329366.301111

[6] NVIDIA, “Cuda,” 2015. [Online]. Available:
http://developer.download.nvidia.com/assets/cuda/ files/CUDADownload-
s/TechBrief Dynamic Parallelism in CUDA.pdf

[7] Cilk 5.4.6 Reference Manual, Supercomputing Technologies Group, Mas-
sachusetts Institute of Technology Laboratory for Computer Science, Nov. 2001.
[Online]. Available: http://supertech.lcs.mit.edu/cilk/manual-5.4.6.pdf

[8] C. E. Leiserson and A. Plaat, “Programming parallel applications in Cilk,” SIAM
News, vol. 31, no. 4, pp. 6–7, May 1998.

[9] MinMax Theorem, March 2015. [Online]. Available:
http://www.princeton.edu/ achaney/tmve/wiki100k/docs/Minimax.html

[10] M. Goldfarb, Y. Jo, and M. Kulkarni, “General transformations for gpu
execution of tree traversals,” in Proceedings of the International Conference
on High Performance Computing, Networking, Storage and Analysis, ser. SC
’13. New York, NY, USA: ACM, 2013, pp. 10:1–10:12. [Online]. Available:
http://doi.acm.org/10.1145/2503210.2503223

63

[11] B. Ren, T. Poutanen, T. Mytkowicz, W. Schulte, G. Agrawal, and J. R.
Larus, “Simd parallelization of applications that traverse irregular data
structures,” in Proceedings of the 2013 IEEE/ACM International Symposium
on Code Generation and Optimization (CGO), ser. CGO ’13. Washington,
DC, USA: IEEE Computer Society, 2013, pp. 1–10. [Online]. Available:
http://dx.doi.org/10.1109/CGO.2013.6494989

[12] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H.
Randall, and Y. Zhou, “Cilk: An e�cient multithreaded runtime system,”
SIGPLAN Not., vol. 30, no. 8, pp. 207–216, Aug. 1995. [Online]. Available:
http://doi.acm.org/10.1145/209937.209958

[13] M. Frigo, C. E. Leiserson, and K. H. Randall, “The implementation of the
cilk-5 multithreaded language,” SIGPLAN Not., vol. 33, no. 5, pp. 212–223,
May 1998. [Online]. Available: http://doi.acm.org/10.1145/277652.277725

[14] J. S. Danaher, I.-T. A. Lee, and C. E. Leiserson, “Programming with exceptions
in jcilk,” Science of Computer Programming (SCP), vol. 63, no. 2, pp. 147–171,
Dec. 2006.

[15] J. Reinders, Intel threading building blocks - outfitting C++ for multi-core pro-
cessor parallelism. O’Reilly, 2007.

[16] The Task Parallel Library, Oct 2007. [Online]. Available:
http://msdn.microsoft.com/en-us/magazine/cc163340.aspx

[17] OpenMP Architecture Review Board, May 2008. [Online]. Available:
http://openmp.org/wp/

[18] The X10 Programming Language, Mar 2006. [Online]. Available:
www.research.ibm.com/x10/

[19] R. L. Graham, “Bounds on multiprocessing timing anomalies,” SIAM JOURNAL
ON APPLIED MATHEMATICS, vol. 17, no. 2, pp. 416–429, 1969.

[20] R. P. Brent, “The parallel evaluation of general arithmetic expressions,” Journal
of the ACM, vol. 21, pp. 201–206, 1974.

[21] R. D. Blumofe and C. E. Leiserson, “Scheduling multithreaded computations
by work stealing,” J. ACM, vol. 46, no. 5, pp. 720–748, Sep. 1999. [Online].
Available: http://doi.acm.org/10.1145/324133.324234

[22] N. S. Arora, R. D. Blumofe, and C. G. Plaxton, “Thread scheduling
for multiprogrammed multiprocessors,” in Proceedings of the Tenth Annual
ACM Symposium on Parallel Algorithms and Architectures, ser. SPAA
’98. New York, NY, USA: ACM, 1998, pp. 119–129. [Online]. Available:
http://doi.acm.org/10.1145/277651.277678

[23] G. E. Blelloch and P. B. Gibbons, “E↵ectively sharing a cache among threads.”
in SPAA, P. B. Gibbons and M. Adler, Eds. ACM, 2004, pp. 235–244. [Online].
Available: http://dblp.uni-trier.de/db/conf/spaa/spaa2004.html

64

[24] Y. Guo, R. Barik, R. Raman, and V. Sarkar, “Work-first and help-first
scheduling policies for async-finish task parallelism,” in Proceedings of the 2009
IEEE International Symposium on Parallel&Distributed Processing, ser. IPDPS
’09. Washington, DC, USA: IEEE Computer Society, 2009, pp. 1–12. [Online].
Available: http://dx.doi.org/10.1109/IPDPS.2009.5161079

	Purdue University
	Purdue e-Pubs
	Spring 2015

	Characterization of vectorization strategies for recursive algorithms
	Shruthi Balakrishna
	Recommended Citation

	Blank Page

