
Purdue University
Purdue e-Pubs

Open Access Theses Theses and Dissertations

Spring 2015

Modeling and analysis of a resonant nanosystem
Scott L. Calvert
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/open_access_theses

Part of the Mechanical Engineering Commons, and the Nanoscience and Nanotechnology
Commons

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Recommended Citation
Calvert, Scott L., "Modeling and analysis of a resonant nanosystem" (2015). Open Access Theses. 547.
https://docs.lib.purdue.edu/open_access_theses/547

https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F547&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_theses?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F547&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/etd?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F547&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_theses?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F547&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F547&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/313?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F547&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/313?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F547&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_theses/547?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F547&utm_medium=PDF&utm_campaign=PDFCoverPages


Graduate School Form 30
Updated 1/15/2015

PURDUE UNIVERSITY
GRADUATE SCHOOL

Thesis/Dissertation Acceptance

This is to certify that the thesis/dissertation prepared

By  

Entitled

For the degree of 

Is approved by the final examining committee: 

To the best of my knowledge and as understood by the student in the Thesis/Dissertation 
Agreement, Publication Delay, and Certification Disclaimer (Graduate School Form 32), 
this thesis/dissertation adheres to the provisions of Purdue University’s “Policy of 
Integrity in Research” and the use of copyright material.

Approved by Major Professor(s): 

Approved by:
Head of the Departmental Graduate Program Date

Scott L. Calvert

Modeling and Analysis of a Resonant Nanosystem

Master of Science in Mechanical Engineering

Dr. Jeffrey F. Rhoads
Chair

Dr. Saeed Mohammadi

Dr. Charles M. Krousgrill

Dr. Jeffrey F. Rhoads

Dr. Ganesh Subbarayan 4/22/2015





MODELING AND ANALYSIS OF A RESONANT NANOSYSTEM

A Thesis

Submitted to the Faculty

of

Purdue University

by

Scott L. Calvert

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science in Mechanical Engineering

May 2015

Purdue University

West Lafayette, Indiana



ii

ACKNOWLEDGMENTS

Thank you to my advisor, Dr. Jeff Rhoads, for constantly being available for ques-

tions, as well as for his patience and guidance throughout the process of developing

this work, despite the often faced setbacks and mistakes.

Thank you to Dr. Andrew Sabater, for his step-by-step guidance and continu-

ous, thought-provoking questions as I slowly began to learn what was involved with

properly thinking about NEMS.

Thank you to Yanfei Shen and Hossein Pajouhi, for their patience throughout the

experimental process, and their assistance in understanding and using the simulator.

This thesis is based in part upon work supported by the National Science Foun-

dation under grant numbers 1233780 and 1247893. Any opinions, findings, and con-

clusions or recommendations expressed in this document are those of the author and

do not necessarily reflect the views of the National Science Foundation.



iii

TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Project Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 System Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2. SYSTEM-LEVEL MODEL DEVELOPMENT . . . . . . . . . . . . . . . 5
2.1 Mechanical Equation of Motion . . . . . . . . . . . . . . . . . . . . 5
2.2 Electrostatic Modeling . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Forcing Model . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Capacitance Model . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.3 Piezoresistive Effects . . . . . . . . . . . . . . . . . . . . . . 13

2.3 System-Level Circuit Representation . . . . . . . . . . . . . . . . . 16
2.4 Nondimensionalized System Model . . . . . . . . . . . . . . . . . . 20
2.5 Limitations of the Model . . . . . . . . . . . . . . . . . . . . . . . . 23

3. EXPERIMENTAL MODELING AND RESULTS . . . . . . . . . . . . . 26
3.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Mixing Methodology for Response Detection . . . . . . . . . . . . . 30
3.3 Obtained Response . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4. SYSTEM-LEVEL SIMULATION . . . . . . . . . . . . . . . . . . . . . . 33
4.1 Simulation Description . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Solution Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2.1 Time Domain Solution . . . . . . . . . . . . . . . . . . . . . 35
4.2.2 Harmonic Balance Solution . . . . . . . . . . . . . . . . . . 37

4.3 Performance Validation . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3.2 Modeled Response . . . . . . . . . . . . . . . . . . . . . . . 39

4.4 Practicality of Use . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5. MODEL ANALYSIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.1 Frequency Mixing Effects . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2 Natural Frequency Estimation . . . . . . . . . . . . . . . . . . . . . 48



iv

Page
5.3 Design for Softening . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6. CASE STUDIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.1 AC/DC Application Effects . . . . . . . . . . . . . . . . . . . . . . 54

6.1.1 Simulation Setup and Results . . . . . . . . . . . . . . . . . 54
6.1.2 Explanation of Responses . . . . . . . . . . . . . . . . . . . 56

6.2 Development of Systems for Self-Oscillation . . . . . . . . . . . . . 60
6.2.1 Circuit Design . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.2.2 Simulated Response . . . . . . . . . . . . . . . . . . . . . . . 62

6.3 A Study of Coupled Devices . . . . . . . . . . . . . . . . . . . . . . 65

7. CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

LIST OF REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74



v

LIST OF TABLES

Table Page

2.1 Coefficients - Dimensional Form. . . . . . . . . . . . . . . . . . . . . . 19

2.2 Nondimensional Parameters. . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Coefficients - Nondimensional Form. . . . . . . . . . . . . . . . . . . . 23

2.4 Coefficients - Nondimensional Form. Continued . . . . . . . . . . . . . 24

4.1 Nominal Parameter Values. . . . . . . . . . . . . . . . . . . . . . . . . 36

6.1 Input Cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.2 Response Resonance Frequencies. . . . . . . . . . . . . . . . . . . . . . 55

6.3 Resonant Amplitude Increase Above Background. . . . . . . . . . . . . 56

6.4 Required Circuit Gains. . . . . . . . . . . . . . . . . . . . . . . . . . . 65



vi

LIST OF FIGURES

Figure Page

1.1 A false-color scanning electron microscope image of a representative de-
vice. Image from [14]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Beam variables for a back gate only excitation scenario. The electrostatic
force acts between the bottom of the beam and the back gate when fringe
fields are neglected. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 A scanning electron micrograph of a representative beam, showing a large
undercut region below the top beam support. Photo Credit: Hossein
Pajouhi. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 An effective circuit representation of the nanobeam with a single gate.
The arrows define the direction of positive current flows. . . . . . . . . 16

2.4 A block diagram of the various interactions occurring between the input
voltage and output current for the system, including associated excitation
and measurement circuits. . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 Optical microscope image (20x magnification) of the device pads and probe
tips. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 The final circuit schematic of the excitation system, device representation,
parasitics and measurement system. The side gate is left floating in order
to simplify experimentation. . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 The amplitude (left) and phase (right) response of the modulation fre-
quency, fm = 1 kHz, for a characteristic experimental measurement. Both
the increasing and decreasing frequency sweeps are included to visualize
the hysteretic nature of the system. The nanobeam used had a length of
L = 4 µm and width of w = 180 nm. The excitation levels were Vdc = 6
V and Vac = 40 mVrms. . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1 A comparison of the simulated (left) and experimental (right) results for
both response amplitude (top) and phase (bottom). The results are col-
lected at the modulation frequency of the input, here 1 kHz, as the carrier
frequency is either increased or decreased around resonance. Note that,
Vdc = 6 V, Vac = 40 mVrms, L = 4 µm, and w = 180 nm. . . . . . . . . 40



vii

Figure Page

4.2 An SEM of the beam location for the experimentally tested device. The
beam was destroyed following testing, but the trench size gives an estimate
of the suspended length of the beam. The trench length, including visible
undercutting, is approximately 4 µm. The pad-to-pad length of the beam
is roughly 5.7 to 6 µm. Photo Credit: Hossein Pajouhi. . . . . . . . . . 41

4.3 The response amplitude (left) and phase (right) collected at the modula-
tion frequency of the input, here 1 kHz, as the carrier frequency is either
increased or decreased around resonance. Note, Vdc = 6 V, Vac = 40
mVrms, L = 5.9 µm, and w = 180 nm. . . . . . . . . . . . . . . . . . . 41

4.4 The response amplitude (left) and phase (right) collected at the modula-
tion frequency of the input, here 1 kHz, as the carrier frequency is either
increased or decreased around resonance. Note, Vdc = 6 V, Vac = 40
mVrms, L = 4 µm, and w = 180 nm. The compressive residual force, Sr,
is −375 MPa and c = 6E−6 kg/(m·s). . . . . . . . . . . . . . . . . . . 42

4.5 The effects of increasing the DC back-gate bias for a constant amplitude-
modulated signal across the beam, while Vac = 15 mVrms. The peak
amplitude (left) and resonance frequency (right) responses are normalized
around their 2 V levels to facilitate qualitative comparisons in response
nature. L = 6.3 µm, w = 120 nm. . . . . . . . . . . . . . . . . . . . . . 43

5.1 The amplitude (top) and phase (bottom) responses for an amplitude-
modulated signal measured at the down-mixed modulation frequency (left),
as well as for a single-frequency excitation, measured at that frequency
(right), for various DC bias amplitudes. Note the change in the shape of
the responses, as well as the changing resonance frequencies and tuning
behavior. Also note, Vac = 40 mVrms, L = 6.3 µm, and w = 120 nm. . . 46

5.2 The amplitude (top) and phase (bottom) responses for an amplitude-
modulated signal measured at the down-mixed modulation frequency (left),
as well as for a single-frequency excitation, measured at that frequency
(right), for various AC signal amplitudes. Note the change in the shape of
the responses, as well as the changing resonance frequencies as Vac changes.
Also note, Vdc = 6 V, L = 6.3 µm, and w = 120 nm. . . . . . . . . . . . 47

5.3 Electrostatic tuning of the beam’s simulated resonant frequency as com-
pared to the predicted natural frequency. The presence of the nonlin-
earities, as well as the interactions between the beam displacement and
voltage, result in large discrepancies between the resonant and natural
frequency responses in the increasing frequency sweeps. The tuning of the
peak amplitude in the down-sweep responses matches the linear natural
frequency prediction well. . . . . . . . . . . . . . . . . . . . . . . . . . 51



viii

Figure Page

6.1 Output current magnitude for different circuit connections. Cases 3 and
4, as well as 5 and 6, are identical due to the symmetry of the system.
The various cases result in changes in the response amplitude, frequency
and shape. Vac = 40 mVrms, Vdc = 6 V, L = 6.3 µm, w = 120 nm. . . . 56

6.2 Circuit schematic for an off-resonant excitation, including leakage through
the side gate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.3 The circuit schematic for the primary feedback system investigated. The
output was considered to be the voltage across the 1 kΩ resistor. . . . . 61

6.4 The output spectrum across the 1 kΩ resistor without any filtering in the
feedback loop. Hcir = 40.4785 dB (109x). . . . . . . . . . . . . . . . . . 62

6.5 Spectrum of the voltage output across the 1 kΩ resistor for ω and 2ω
filters in the feedback loop. Note that the 2ω response is likely to result
in pull-in. Hcir,ω = 41.7981 dB (122x), Hcir,2ω = 41.5836 dB (120x). . . 63

6.6 The change in the transient beam deflection due to a slight increase in
feedback gain. The smaller oscillation is negligible in comparison to the
larger oscillation, which is assumed to represent pull-in. . . . . . . . . . 64

6.7 Circuit layout for a series connection of two nanoresonators which exhibits
a coupling effect when the resonant frequencies are similar to each other. 66

6.8 The output power across a 50 Ω resistor (left) and beam displacements
(right) for a series of nanoresonator systems. The devices were actuated
using VD,1 = 6 Vdc and Vb,1,2 = 40 mVrms. . . . . . . . . . . . . . . . . 67

6.9 The output power across a 50 Ω resistor (left) and beam displacements
(right) for a series of nanoresonator systems. The devices were actuated
using VD,1 = 6 Vdc and Vb,1,2 = 40 mVrms. . . . . . . . . . . . . . . . . 68

6.10 The output power across a 50 Ω resistor (left) and beam displacements
(right) for a series of nanoresonator systems. The devices were actuated
using VD,1 = 6 Vdc and Vb,1,2 = 40 mVrms. . . . . . . . . . . . . . . . . 68

6.11 The output power across a 50 Ω resistor (left) and beam displacements
(right) for a series of nanoresonator systems. The devices were actuated
using VD,1 = 6 Vdc and Vb,1,2 = 40 mVrms. . . . . . . . . . . . . . . . . 69

6.12 The output power across a 50 Ω resistor (left) and beam displacements
(right) for a series of nanoresonator systems. The devices were actuated
using VD,1 = 6 Vdc and Vb,1,2 = 40 mVrms. . . . . . . . . . . . . . . . . 70

6.13 The output power across a 50 Ω resistor (left) and beam displacements
(right) for a series of nanoresonator systems. The devices were actuated
using VD,1 = 6 Vdc and Vb,1,2 = 40 mVrms. . . . . . . . . . . . . . . . . 71



ix

ABSTRACT

Calvert, Scott L. MSME, Purdue University, May 2015. Modeling and Analysis of a
Resonant Nanosystem. Major Professor: Jeffrey F. Rhoads, School of Mechanical
Engineering.

The majority of investigations into nanoelectromechanical resonators focus on a

single area of the resonator’s function. This focus varies from the development of a

model for a beam’s vibration, to the modeling of electrostatic forces, to a qualitative

explanation of experimentally-obtained currents. Despite these efforts, there remains

a gap between these works, and the level of sophistication needed to truly design

nanoresonant systems for efficient commercial use. Towards this end, a comprehensive

system model for both a nanobeam resonator and its related experimental setup

is proposed. Furthermore, a simulation arrangement is suggested as a method for

facilitating the study of the system-level behavior of these devices in a variety of

cases that could not be easily obtained experimentally or analytically.

The dynamics driving the nanoresonator’s motion, as well as the electrical inter-

actions influencing the forcing and output of the system, are modeled, experimentally

validated, and studied. The model seeks to develop both a simple circuit representa-

tion of the nanoresonator, and to create a mathematical system that can be used to

predict and interpret the observed behavior. Due to the assumptions used to simplify

the model to a point of reasonable comprehension, the model is most accurate for

small beam deflections near the first eigenmode of the beam.

The process and results of an experimental investigation are documented, and

compared with a circuit simulation modeling the full test system. The comparison

qualitatively proves the functionality of the model, while a numerical analysis serves

to validate the functionality and setup of the circuit simulation. The use of the sim-

ulation enables a much broader investigation of both the electrical behavior and the



x

physical device’s dynamics. It is used to complement an assessment of the tuning be-

havior of the system’s linear natural frequency by demonstrating the tuning behavior

of the full nonlinear response. The simulation is used to demonstrate the difficulties

with the contemporary mixing approach to experimental data collection and to com-

plete a variety of case studies investigating the use of the nanoresonator systems in

practical applications, such as signal filtering. Many of these case studies would be

difficult to complete analytically, but results are quickly achieved through the use of

the simulation.
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CHAPTER 1. INTRODUCTION

1.1 Background

The advantages that resonant micro/nanoelectromechanical systems (M/NEMS)

provide in comparison to their purely-electrical counterparts, such as higher quality

factors and narrower resonant bandwidths [1], has led to their proposed use in a variety

of applications ranging from tunable filters [2], logic elements [3], self-oscillators [4]

and transistors [5, 6] to microscopic radios [7, 8] and mass sensors [9–12]. Working

towards these ends, researchers have made a variety of advancements in M/NEMS

to streamline their fabrication [13–17], model their performance, and, to a limited

extent, enable design [1, 4–9,11,13,14,16,18–24,24–48].

As the basic understanding of different device designs has developed, the need to

begin looking at how to implement devices in their proposed end-use scenarios has

grown. Such efforts began on a single-device scale for many systems [8,34], but there

is a pressing need to begin building the infrastructure for the design and fabrication

of these devices at a mass production rate and in a very large scale integration (VLSI)

context, in a fashion similar to existing electrical components. In order to achieve

this, there is a need for accurate, system-level electromechanical models of M/NEMS.

This need points to experimentally-verified, first-principles based models as opposed

to phenomenological descriptions, because of the need to account for device behavior

under a wide variety of input and operating conditions.

In order to achieve mass production, and VLSI use, of M/NEMS, the model of

any device must be able to accurately integrate with other electrical components to

predict a system-level response. Stopping at developing a model to represent the

velocity or displacement of M/NEMS will likely fail to provide insight into even the

qualitative nature of the electrical response, as shown in [40]. Likewise, a model that
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only describes the currents driven by the dominant electromechanical transduction

mechanism can fall short of describing the true response by ignoring the feedback

and damping of the full circuitry involved. Therefore, experimentation and modeling

efforts must account for the full electrical system of the test setup to allow for the later

extraction of an isolated device model that could be correctly implemented with any

other circuitry. The use of the various model components and system-level effects in a

standard commercial circuit simulator, along with the use of a hardware description

language such as Verilog-A, allows for faster verification and tuning of the model

behavior when comparing to experimental results [49, 50]. It also serves as a direct

pathway to the later use of the device model on a larger scale. This method provides

an open door for the evaluation of the next steps towards practical implementations

of a device, such as impedance matching or filter design, because of the ease with

which the device model can be integrated into a larger system model.

1.2 Project Goals

This work further develops the understanding of the nanoresonator systems origi-

nally presented in [14], and described in the following section. A first-principles based

model to describe the beam’s mechanical and electrical dynamics is developed. Exper-

imental data is used to qualitatively verify the performance of the model and thereby

justify the understanding of how the electromechanical system operates. This model

is studied to determine the practical benefits and use cases that separate this nanores-

onator design from those presented in the prior work. Nonlinear system behavior can

be obtained even at low forcing voltages [47], which allows for intriguing behaviors

such as the electrostatic tuning of the resonant frequency [48] with slight changes in

the input. Features such as this pose an interesting design challenge while also being

a powerful tool for circuit developers. As the model is developed, the analysis seeks

to focus on the system-level response, not merely the beam dynamics. Studying the

variations in the system output and their correlation to differing inputs and system
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configurations will lead to several proposed uses and cautionary statements related

to the practical application of these nanoresonator systems.

1.3 System Description

Figure 1.1. A false-color scanning electron microscope image of a
representative device. Image from [14].

Figure 1.1 presents a false-color micrograph of the nanobeam system under consid-

eration. The beam is etched out of a Silicon on Insulator (SoI) wafer, and suspended

above a trench. The bottom substrate layer for this wafer serves as an electrode, or

gate, which can electrostatically interact with the beam when a potential difference

is applied between them. A second gate is also deposited to the left of the beam to

provide the capability for in-plane excitation. The device was initially proposed and

experimentally verified in [14], where more explicit detail on the fabrication processes

can be found.

Nanobeams, such as that shown in Figure 1.1, are fundamentally coupled between

the mechanical and electrical domains. As a result, their behavior needs to be studied

from a system-level perspective which accounts for both domains. For example, the

deflection of the beam inherently results in changes to the beam current and voltage
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and these changes then alter the forcing of the beam, which changes its deflection,

and further changes the electrical state of the device. Effectively, the coupled domains

lead to an internal feedback between the various transduction methods and the beam

voltage. This feedback could introduce vibration in the beam beyond what is gener-

ated by the AC voltage components at the system inputs. Looking at anything but a

system perspective of the device will not accurately capture these rich dynamics and

will inaccurately predict the device’s behavior.

One potential use of these systems is as electrical filters. The analysis, commentary

and applications provided herein are primarily focused in this direction. The silicon

nanobeams exhibit a mechanical resonance which occurs for only a narrow band of

frequencies. The coupling between the electrical and mechanical domains correlates

this to a narrow bandwidth of AC forcing frequencies which produce a resonant

response. Furthermore, the use of these systems in a vacuum removes a large viscous

damping force exerted by the air and leads to an increase in the resonant amplitude

and a correspondingly smaller range of frequencies which fall into the 3 dB range below

the resonant amplitude that is traditionally considered the pass-band of a filter. The

quality factor of a filter is a measure of the relative bandwidth of the system [51],

and has been shown to reach values as high as 2000 in similar beam resonators

tested at low temperatures [4, 9], and much higher in other configurations [52]. In

a linear system, the higher the quality factor, the narrower the bandwidth of the

filter at a given resonant frequency. For certain applications a large quality factor,

corresponding to a narrow bandwidth, is a highly desirable trait. For example, within

a wireless communication network, the ability to create a narrower passband allows

the use of more devices in a set frequency range.
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CHAPTER 2. SYSTEM-LEVEL MODEL DEVELOPMENT

The model presented herein differentiates itself from prior work by approaching the

description of the system output not merely as the displacement of the beam or the

amplitude of the source current, but as a full description of the system. Prior models

have been built using a variety of approximations for the beam’s behavior. They range

from treating the beam as a parallel plate [26,53] to treating it as a continuous beam

with midplane stretching and tension effects [47, 54]. Other works merely attempt

to model the output current by investigating the electrical interaction between the

beam and gate, and qualitatively compare this to experimental results [9, 34, 39]. In

contrast, the model developed here seeks to combine the best of each of these efforts

to form an appropriate system-level model that can predict both the beam response

and the circuit response, while accounting for the interaction between them.

2.1 Mechanical Equation of Motion

Within the mechanical domain, the beam was analyzed as a standard fixed-fixed

beam, despite several dimensions being only a hundred nanometers long. Prior work

[35, 45, 55] shows that despite the small size, classical beam models can still provide

accurate predictions of dynamic responses. Assuming that the shear throughout the

beam is negligibly small, and that the beam is slender (that is, assuming
√
I/A is

small, where I is the moment of inertia and A is the area of the beam cross-section), an

Euler-Bernoulli model of the beam was developed, which accounted for nonlinear mid-

plane stretching. The ability to investigate the effects of any residual axial stresses
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remaining from fabrication, which were assumed to be constant throughout the beam,

was also included. This led to the partial differential equation,

ρwh
∂2y(x, t)

∂t2
+c

∂y(x, t)

∂t
+ EI

∂4y(x, t)

∂x4

−

{
Srwh+

Ewh

2L

∫ L

0

[
∂y(x, t)

∂x

]2
dx

}
∂2y(x, t)

∂x2
= F (x, t),

(2.1)

where L, w and h are the length, width, and height of the beam, respectively, while

ρ is the mass density and E is the modulus of elasticity for the material. Sr is the

average, uniform, residual axial stress in the beam and y(x, t) is the deflection of the

beam at time t and at a distance along the beam, x. c is the specific viscous damping

coefficient for the beam. While the etching processes used to release the beam results

in a slight trapezoidal cross-section, it is sufficient to approximate the shape as the

desired rectangular cross section. This results in a moment of inertia for out-of-plane

motion of

I =
1

12
wh3. (2.2)

Figure 2.1 defines the positive direction for each of the relevant coordinates. It

should be noted that while the devices were fabricated with the potential to be ac-

tuated both in- and out-of-plane, the model developed here accounts only for out-of-

plane excitation from the back gate as a simplifying assumption. For information on

the effects of the side gate’s presence under this assumption, please refer to Section

3.1.

𝑦(𝑥, 𝑡) 𝑥 

BACK GATE 

ℎ 
𝐿 

𝑔 

Figure 2.1. Beam variables for a back gate only excitation scenario.
The electrostatic force acts between the bottom of the beam and the
back gate when fringe fields are neglected.
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If only small excitations near the first resonance of the beam are considered, then

the equation can be simplified using the single-mode approximation,

y(x, t) = φ(x)z(t). (2.3)

The spatial definition of the first natural mode of the beam, φ(x), was developed using

the single-mode approximation on the linear, unforced version of the beam equation.

The final definition of φ(x) depends upon the boundary conditions selected for the

beam. While it is clear from scanning electron micrographs (SEMs), such as Figure

2.2, that the fabrication of the devices can lead to undercutting of the beam ends

and produce difficult-to-model boundary conditions, it is assumed that the boundary

conditions for the beam can be approximated as ideally fixed on both ends. The true

effects of the non-ideal boundary conditions are still under investigation, and beyond

the scope of this work. More information on the effects of boundary conditions on

damping can be found in [24] and [37].

Figure 2.2. A scanning electron micrograph of a representative beam,
showing a large undercut region below the top beam support. Photo
Credit: Hossein Pajouhi.
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The mode shape, φ(x) is normalized such that it becomes unity at the beam

midpoint, x = L
2
. This simplifies the understanding of z(t) to be the deflection of

the beam midpoint, and thus the maximum deflection of the beam in the case of the

first natural mode of a fixed-fixed beam. Besides enabling an intuitive understanding,

it also simplifies the description of the electrostatic forcing and capacitance models,

which will be developed based upon the midpoint voltage of the beam in Section 2.2.

With a known mode shape, the partial differential equation can be discretized

using Galerkin methods to obtain an ordinary differential equation in terms of z(t),

ρwh

∫ L

0

φ2(x) dx z̈(t) + c

∫ L

0

φ2(x)dx ż(t)

+

[
EI

∫ L

0

φ′′′′(x)φ(x) dx − Srwh
∫ L

0

φ′′(x)φ(x) dx

]
z(t)

− Ewh

2L

∫ L

0

[φ′(x)]
2

dx

∫ L

0

φ′′(x)φ(x) dx z3(t)

=

∫ L

0

F (x, t)φ(x) dx,

(2.4)

where

(•)′ = ∂(•)
∂x

, ˙(•) =
∂(•)
∂t

. (2.5)

The damping that affects these beams is still a topic of research. Here a specific

damping constant, c, is used as an approximation to capture the possible effects of

both intrinsic and extrinsic damping from a wide variety of potential sources includ-

ing, but not limited to, squeeze film damping, support loss, thermoelastic dissipation

and phonon-phonon interactions. Various approximations exist throughout the lit-

erature [24, 25, 37, 38, 56, 57] for these effects. Viscous air damping, since it can be

more easily controlled than other factors, is one of the most thoroughly understood.

Reference [56] suggested that viscous damping for the devices presented here would

be negligible for testing at low pressures (such as <75µTorr, which was used for the

experimental data presented herein).
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2.2 Electrostatic Modeling

The usefulness of these NEMS devices arises from their electromechanical nature.

The ability to develop an electric potential within the beam opens the door to a variety

of interesting dynamic and electric effects beyond those associated with the purely-

mechanical displacement of a beam. By applying a potential difference between the

beam and a nearby electrode, also referred to as a gate, the beam is electrostatically

attracted towards the gate, resulting in the distributed force present in Equations (2.1)

and (2.4). At the same time, the beam-gate interaction forms a variable capacitor,

allowing for a current flow between the two surfaces, and the piezoresistive properties

of silicon result in a beam resistance that varies with the beam deflection. These

effects combine to form a delicate interaction between the beam and its voltage,

making a proper understanding of each interaction important.

2.2.1 Forcing Model

The potential difference between the beam and gate produces a distributed elec-

trostatic force attracting the beam towards the gate. The force per unit length is

dependant on the voltage of the beam and the distance between the two surfaces

according to

Fpp(x, t) =
ε0wV

2
gap(x, t)

[g − y(x, t)]2
, (2.6)

where Vgap(x, t) is the instantaneous potential difference between the gate and the

beam at some distance along the beam, x. Here g is the nominal gap size, and ε0 is

the permittivity of free space. For two surfaces with a uniform potential difference

and a uniform gap, referred to as the parallel-plate model, this force can be eas-

ily represented. The physically-accurate model is complicated by the non-constant

deflection along the beam and the internal resistance of the beam, which together

lead to a different potential and deflection at every point along the beam. Despite

this, it is not uncommon to utilize the parallel-plate description to approximate the

beam’s behavior by neglecting any curvature in the beam deflection and assuming
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that the entire beam is at a single voltage [18, 26, 39, 54]. Several theoretical studies

have investigated better approximations to more fully capture the dynamics of the

situation, often utilizing finite element analyses to support their theory. For example,

Reference [18] demonstrates the shortcomings of the parallel-plate model when con-

sidering a large beam curvature and proposes several expanded models to account for

the beam’s mode shape. Instead of focusing on the beam curvature, Reference [58]

proposes an improved capacitance model, which relates to the electrostatic forcing

through

F =
1

2
V 2
gap

∂C

∂y
, (2.7)

by including fringing field corrections to account for the electric field behavior around

the finite cross-section of the nanobeam. Both methods greatly improve the accuracy

of the model compared to the basic parallel-plate approximation. Specifically, the

models presented in [58] are shown to improve the estimation of the pull-in voltage.

Since the pull-in voltage was not of primary concern for this work, the forcing

model to use in the system-level description was selected from those presented in [18].

The model which most accurately matched the finite element analysis presented there

was a 4th-order perturbation of the spatial function describing the potential between

the beam and the gate. Because Equation (2.4) requires the integral of the forcing

function with respect to x, the forcing model presented in [18] was expanded in a

Taylor series about z(t) = 0, keeping terms up to z3(t), after substituting Equation

(2.3). This produces a forcing definition with no function of x in the denominator,

while enforcing the same order of accuracy as in Equation (2.1). This approach

inherently limits all analysis to small deflections of the beam [z(t) near zero]. It

also indicates that the model will not accurately predict pull-in effects, as the forcing
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model loses the singularity that occurs in the exact solution when z(t) approaches

the gap size, g. The final representation of the forcing,

FP4(x, t) ≈
ε0wV

2
gap(t)

90g5
(
45g3 +

{
90φ(x)− 2g2

[
15φ′′(x) + g2φ′′′′(x)

]}
g2z(t)

+
{

135gφ2(x) + g3
[
−15φ′2(x) + 3g2φ′′2(x) + 4g2φ′′′(x)φ′(x)

]
+2g3

[
−15φ′′(x)φ(x) + g2φ′′′′(x)φ(x)

]}
z2(t)

+
[
180gφ3(x)− 30g2φ′2(x)φ(x)− 30g2φ′′(x)φ2(x)

+48g4φ′′(x)φ′2(x)
]
z3(t)

)
,

(2.8)

is proportional to V 2
gap(t), which produces a mixing effect when harmonic voltages are

applied to the beam and/or gate.

It should be noted that the model presented here, and indeed most of the models

presented throughout the literature [18,34,48,59,60], assume a uniform voltage along

the beam. It is apparent from the finite element analysis in [18] that this is not an

excessive hindrance to the accuracy of the model. Throughout this thesis, V (t) can

be assumed to represent the voltage at the midpoint of the beam, which will be used

as a representative voltage for the entire beam. Similarly, Vb(t) will represent the

back gate voltage, such that

Vgap(t) = Vb(t)− V (t). (2.9)

This notation also assists with the definition of the capacitance and piezoresistance in

the following sections. The dependence of the forcing on both the potential difference

between the beam and gate, as well as the beam’s deflection, manifests in an ability

to electrostatically tune the resonant frequency. This effect can be more clearly seen

from the equations in Section 2.4 and will be explored in Section 4.1.

2.2.2 Capacitance Model

As highlighted in Equation (2.7), the electrostatic forcing and the capacitance

of the beam-gate system are directly related. Therefore, it is important that both
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are described with similar accuracy. Therefore, the capacitance model is again taken

from [18], and carries the same advantages as the selected forcing model. That is, the

model accounts for large beam curvatures, but approximates the distributed voltage

with the midpoint voltage and neglects fringing field effects. The capacitance equation

developed from the forcing model is initially in the form of
∂C

∂x
. Similar to the forcing

equation, Equation (2.8), this capacitance description is expanded in a Taylor series

around z(t) = 0, keeping terms up to z3(t). It is then integrated along the length of

the beam to provide the average capacitance,

C(t) =
ε0L

g

[
L+ k1z(t) + k2z

2(t) + k3z
3(t)
]
, (2.10)

where the geometric parameters k1 through k3 are defined in Table 2.1. The de-

pendence of the capacitance upon the beam displacement means that the standard

description of the current flow through a capacitor does not apply in this case. Be-

ginning instead with the general definition of the charge present in a capacitor,

Q(t) = Vgap(t)C(t), (2.11)

along with the general definition of current,

i(t) =
dQ

dt
, (2.12)

the product rule of differentiation shows that the current flow between the beam and

a gate is defined as

icap(t) = Ċ(t)Vgap(t) + C(t)V̇gap(t). (2.13)

Here, Q(t) is the charge build-up in the capacitor. The variable capacitance allows for

a purely-DC loaded capacitor to generate a current flow between the beam and gate

as the beam deflects. The dependence of the current upon Ċ(t) is truly a dependence

upon ż(t), and while the beam displacement may always be very small, it is possible

for the beam velocity to be much larger, and produce a current that can in turn

produce noticeable contributions to the overall output current.

Note from Equations (2.1) and (2.8) that z(t) will be proportional to V 2
gap(t).

Equation (2.10) then suggests that C(t) will be proportional to V 6
gap(t). The current
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equation, Equation (2.13), then reintroduces the gap voltage such that icap(t) will

be proportional to V 7
gap(t). The harmonic mixing terms in the electrical output are

therefore significant and will be explored further in Section 3.2 and Chapter 5.

2.2.3 Piezoresistive Effects

Silicon has been shown to exhibit an electrical dependence upon strain, known

as piezoresistivity. These properties of silicon were thoroughly described by Kanda

in [61], and have been experimentally verified throughout literature [46, 62]. Strains

both parallel and perpendicular to the current flow can affect the resistance observed

by the circuit. The strains in a beam due to linear deflections are equal and opposite

on either side of the neutral axis, which results in a net zero strain in any instantaneous

cross section and no net resistivity change [41]. However, mid-plane stretching implies

a lengthening of the neutral axis and a strain induced uniformly across a cross-section

of the beam, resulting in a net change in the resistivity. Therefore, in order to

determine the instantaneous resistance of the beam, the strain due to mid-plane

stretching must be determined. While this strain is typically small, the piezoresistive

coefficients in silicon can be large enough to ensure that piezoresistivity is a relevant

transduction mechanism.

As described in [41], the axial strain from mid-plane stretching, ε, can be shown

to be

ε(t) =
1

2L

∫ L

0

[
∂y(x, t)

∂x

]2
dx. (2.14)

For a fixed-fixed beam and assuming the first natural mode shape, Reference [41]

shows Equation (2.14) to simplify to

ε(t) = 2.44

[
z(t)

L

]2
. (2.15)

This approximation was verified by a numerical comparison to the strain model pre-

sented in [54], which derives a strain equation by analyzing the transverse and axial

strains arising during deflection. The different approaches were found to be in ex-

cellent agreement. The dependence of the strain on the square of the displacement
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captures the fact that the beam undergoes two periods of strain for every period of

beam deflection, as expected. The strain from midplane stretching develops only an

axial strain, and therefore the transverse and shear stresses can be assumed to be

negligible, leading to the beam resistance equation,

Rbeam(t) = R0 [1 + ε(t)GR] , (2.16)

where R0 is the nominal beam resistance given by

R0 =
ρrL

wh
. (2.17)

Here, ρr is the nominal resistivity of the doped silicon. GR in Equation (2.16) is the

resistance gauge factor,

GR = 1 + 2ν + EπL. (2.18)

This gauge factor captures both geometric effects, represented by (1 + 2ν), where ν is

Poisson’s ratio for the beam material, and piezoresitive effects, encompassed by EπL.

Here, πL is the effective longitudinal piezoresistive coefficient, which introduces the

dependence of the piezoresistive effect on crystal orientation and other parameters,

such as doping and temperature [61]. The crystal structure of silicon, and the direc-

tion of the current flow with respect to the crystal lattice, have a significant effect

on the piezoresistive variations observed. In some orientations, [61] shows near-unity

piezoresistive coefficents, which implies a resistive change on the same order as the

strain, which will lead to negligible resistance fluctations. In other configurations,

works such as [46] have shown large piezoresistive coefficents which can produce mea-

surable currents from a small strain. Reference [61] contains the information necessary

to determine proper πL values for a unique orientation, doping level and temperature

for single-crystal silicon. In [46], He and Yang show the effective piezoresistive coeffi-

cients in silicon nanowires to be highly dependent upon the diameter of the nanowires

in addition to the aforementioned parameters. They show that the piezoresistive ef-

fect is greatly amplified by having smaller diameter nanowires as compared to the

piezoresistive effects in bulk silicon. The exact nature and magnitude of a size effect
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on a silicon nanobeam of the size under investigation here has yet to be studied.

Therefore, the piezoresistive effects present in the nanobeams were assumbed to be

the same as those found in bulk silicon. It should also be noted that the assumption

to consider only axial strain will still hold if both the side gate and back gate are

implemented, but the approximation for the strain in the beam becomes significantly

more complex as both degrees of freedom are considered.

The final representation of the beam resistance,

Rbeam(t) =
ρrL

wh

{
1 + 2.44

[
z(t)

L

]2
(1 + 2ν + EπL)

}
, (2.19)

clearly shows the dependence of the beam resistance on z2(t). As described in Section

2.2.2, the dependence of z(t) on V 2
gap(t) implies that the fluctuations in resistance will

be related to V 4
gap(t).

It is rare to find literature describing a MEMS or NEMS device that considers

both capacitance modulation and piezoresistive effects simultaneously. The dearth

of models analyzing such a system is rooted in the typical device designs. In the

majority of work involving silicon nanobeams, it is not the current through the beam

that is monitored, rather a current flow from a gate to the beam, and often on

to another sensing gate, as is done in [13, 34, 51]. In these cases, the lack of current

flowing along the length of the beam provides no opportunity for piezoresistive effects

to modulate the current, since the axial strain is perpendicular to the current flow,

which leads to a small piezoresistive effect. Some devices do measure the current flow

along a beam, but in these cases they are either mechanically actuated, such that

a piezoresistive, or similar, measurement is all that is available [41, 46], or they are

fabricated from carbon nanotubes and other materials with different piezoresistive

properties [9,39,45]. Other systems focus primarily on the piezoresistive outputs that

arise from external strain gauges that are attached to the beam, but do not consist of

the entirety of the beam [63,64], and thereby ignore currents from capacitive effects.

That said, it is not unheard of to combine the two effects, as Grogg and Ionescu do

so in their work on the vibrating body transistor [6].
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2.3 System-Level Circuit Representation

With a basic understanding of the transduction mechanisms at work in these

systems, a representative circuit diagram can be developed in order to clearly relate

the electrical system inputs to the mechanical motion and electrical outputs. As

developed in Section 2.2.2, the interaction between the beam and gate can be defined

as a variable capacitor dependent on the potential difference between the gate and the

beam midpoint. Section 2.2.3 then describes the beam as a variable resistor, whose

resistance is dependent upon the beam deflection. To combine these two concepts,

the effective resistance of the beam is split into two halves, in order to properly model

the midpoint voltage’s interaction with the gate. Figure 2.3 demonstrates this circuit

representation.

𝐶𝑏(𝑡) 

𝑅𝑏𝑒𝑎𝑚 𝑡

2
 

Drain 

Source 

Back Gate 

𝑅𝑏𝑒𝑎𝑚 𝑡

2
 

𝑉𝐷(𝑡) 

𝑉𝑆(𝑡) 

𝑉𝑏(𝑡) 

𝑉(𝑡) 

𝑖𝑆(𝑡) 

𝑖𝐷(𝑡) 

𝑖𝑏(𝑡) 

Figure 2.3. An effective circuit representation of the nanobeam with
a single gate. The arrows define the direction of positive current flows.
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Figure 2.4. A block diagram of the various interactions occurring be-
tween the input voltage and output current for the system, including
associated excitation and measurement circuits.

Figure 2.4 charts the system interactions and assists in visualizing the complexity

of the interactions occurring during the device’s operation. The interaction between

the capacitive effects and the piezoresistive effects and their influence on the beam

displacement, and thus forcing, produces rich dynamics and what can be thought of

as a natural feedback loop internal to the system.

Kirchhoff’s current law can be used to develop an equation to describe the electri-

cal interactions of the circuit mathematically. Given the currents of Figure 2.3, and

summing at the ‘node’ representing the beam midpoint gives,

iD(t) + ib(t) = iS(t). (2.20)

Substituting Equation (2.13) for ib(t) while using Ohm’s law for iD(t) and iS(t) and

grouping the resistive terms together reveals that

2[V (t)− VS(t)]

Rbeam(t)
− 2[VD(t)− V (t)]

Rbeam(t)
= Ċb(t)[Vb(t)− V (t)] +Cb(t)[V̇b(t)− V̇ (t)]. (2.21)
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Expanding the capacitance [Equation (2.10)] and resistance [Equation (2.19)] further,

2[2V (t)− VD(t)− VS(t)]

k0R0 [1 + Prz2(t)]
=
[
k1 + 2k2z(t) + 3k3z

2(t)
]
ż(t) [Vb(t)− V (t)]

+
[
L+ k1z(t) + k2z

2(t) + k3z
3(t)
] [
V̇b(t)− V̇ (t)

]
, (2.22)

reveals a definition for the beam midpoint voltage and deflection in terms of the

circuit inputs, Vb(t), VD(t), and VS(t). The piezoresistive effects are represented here

as Pr = 2.44
Gr

L2
. Equations (2.4) and (2.8) can be combined to reveal the full beam

equation of motion,

B0z̈(t) +B1ż(t) +
{
B2 − αf1 [Vb(t)− V (t)]2

}
z(t)− αf2 [Vb(t)− V (t)]2 z2(t)

−
{
B3 + αf3 [Vb(t)− V (t)]2

}
z3(t)− αf0 [Vb(t)− V (t)]2 = 0, (2.23)

which, along with Equation (2.22), presents a system of equations describing the full

behavior of a single-gate resonator system. The coefficients in Equations (2.22) and

(2.23) can be found in Table 2.1. The beam equation maintains a near Duffing-like

form, with the exception of the electrostatic terms, which softens the linear stiffness

while also contributing quadratic and cubic nonlinearities.

It should be noted that while this set of equations represents a single-gate oper-

ation, and while the experimentation discussed in Chapter 3 considers only forcing

through the back gate, it was determined that the presence of the side gate is non-

negligible in the practical operation of the device. It was experimentally shown that

several of the devices had measurable resistances between the back and side gates,

and therefore when a potential is applied to one, it affects both gates. Due to the

increased gap size for the side gate (200 nm, as opposed to 144 nm for the back gate)

on the devices tested, and the drop in potential due to the resistance between the

gates, it is appropriate to presume that the leakage to the side gate will not result

in any forcing of the beam. Therefore, in the cases where the side gate must be

considered it is presented as a static capacitor acting between the gate and the beam.

This representation is included in Figure 3.2, along with other circuit representations

of wafer level effects discussed in Section 3.1.
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Table 2.1. Coefficients - Dimensional Form.

Coefficient Expression

B0 ρA

∫ L

0

φ2 dx

B1 c

∫ L

0

φ2 dx

B2 EIb

∫ L

0

φ′′′′φ dx− Srwh
∫ L

0

φ′′φ dx

B3
EA

2L

∫ L

0

φ′2 dx

∫ L

0

φ′′φ dx

f0 45g3
∫ L

0

φ dx

f1 g2
[
90

∫ L

0

φ2 dx− 2g2
(

15

∫ L

0

φ′′φ dx+ g2
∫ L

0

φ′′′′φ dx

)]
f2 135g

∫ L

0

φ3 dx+ g3
(
−15

∫ L

0

φ′2φ dx+ 3g2
∫ L

0

φ′′2φ dx+ 4g2
∫ L

0

φ′′′φ′φ dx

)
+ 2g3

(
−15

∫ L

0

φ′′φ2 dx+ g2
∫ L

0

φ′′′′φ2 dx

)
f3 180

∫ L

0

φ4 dx− 30g2
∫ L

0

φ′2φ2 dx− 30g2
∫ L

0

φ′′φ3 dx+ 48g4
∫ L

0

φ′′φ′2φ dx

fc
ε0wV

2(t)

90g5

κ1
1

g

∫ L

0

φ dx

κ2
1

g2

∫ L

0

φ2 dx+
1

3

∫ L

0

φ′2 dx+
g2

45

(∫ L

0

φ′′2 dx+ 2

∫ L

0

φ′′′φ′ dx

)
κ3

1

45g3

(
45

∫ L

0

φ3 dx+ 6g4
∫ L

0

φ′′φ′2 dx+ 15g2
∫ L

0

φ′2φ dx

−g4
∫ L

0

φ′′2φ dx− 2g4
∫ L

0

φ′′′φ′φ dx

)
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2.4 Nondimensionalized System Model

In order to better identify the impact that geometric and other design changes

have on the system behavior, the primary equations were normalized. This process led

to a variety of nondimensional terms, providing a reduction from the initial number

of system variables. Initially normalizing the independent variables, x and t, with

respect to the beam length, L, and the period of the linear beam’s first natural

resonance, gives

x̂ =
x

L
, (2.24)

t̂ = ωnt = ω0

√
Eh2

12ρL4
t. (2.25)

Note that t̂ assumes a square cross-sectional area for the beam. These definitions

change the behavior of the derivatives and integrals such that,

(•)′ = ∂(•)
∂x

=
1

L

∂(•)
∂x̂

(2.26)∫ L

0

(•) dx = L

∫ 1

0

(•) dx̂ (2.27)

˙(•) =
∂(•)
∂t

=
1

ωn

∂(•)
∂t̂

=
1

ω0

√
12ρL4

Eh2
∂(•)
∂t̂

. (2.28)

The mode shape of the beam deflection, φ(x), can now be redefined as

φ(x) = φ(x̂L) = φ̂(x̂). (2.29)

The midpoint deflection, z(t) was normalized to be

ẑ =
z

g
, (2.30)

such that ẑ = 1 represents a beam deflected the full range of the gap. Any voltages

may be normalized using the linear estimate of the static pull-in voltage,

V̂ =
3

32

√
12ε0L4

Eh3g3
V. (2.31)



21

Implementing these normalizations with Equations (2.22) and (2.23) leads to the

emergence of several other nondimensional parameters, summarized in Table 2.2.

Substituting these parameters into Equations (2.22) and (2.23) and simplifying results

in a system of three first-order differential equations in state space by defining

y1(t̂) = ẑ(t̂), (2.32)

y2(t̂) = ˙̂z(t̂), (2.33)

y3(t̂) = V̂ (t̂), (2.34)

leads to a system of differential equations which can be written as

ẏ1(t̂) = y2(t̂), (2.35)

ẏ2(t̂) = βy2(t̂) +

{
α10 + α11

[
V̂b(t̂)− y3(t̂)

]2}
y1(t̂) + α2

[
V̂b(t̂)− y3(t̂)

]2
y21(t̂)

+

{
α30 + α31

[
V̂b(t̂)− y3(t̂)

]2}
y31(t̂) + α0

[
V̂b(t̂)− y3(t̂)

]2
, (2.36)

ẏ3(t̂) =
N

D
+

˙̂
Vb(t̂)

κ
. (2.37)

N = ψ
[
V̂D(t̂) + V̂S(t̂)

]
− η00y3(t̂) +

[
V̂b(t̂)− y3(t̂)

]
y2(t̂)

[
η0 + η1y1(t̂)

+ η2y
2
1(t̂) + η3y

3
1(t̂) + η4y

4
1(t̂)
]

D = κ
[
γ0 + γ1y1(t̂) + γ2y

2
1(t̂) + γ3y

3
1(t̂) + γ4y

4
1(t̂) + γ5y

5
1(t̂)
]

The corresponding coefficients are tabulated in Tables 2.3 and 2.4. Note that the

presented values are specifically for the single mode under consideration. Therefore,

the mode shape integrals and the nondimensional coefficient m̂ have already been

assigned values in Tables 2.3 and 2.4.

These equations clearly give evidence of the voltage’s effects with regards to soften-

ing the linear, and cubic, stiffness of the beam. It also provides a direct contribution

to the beam acceleration. The dependence of the voltage on the beam position is

complex, raising difficulties in developing immediate inituition for the system’s be-

havior. Since the circuit portion of the system of equations, ẏ3(t), is only a first-order

differential equation, it does not contribute its own resonant dynamics. Therefore



22

the system will still exhibit primarily Duffing-like responses, but the exact shape and

tuning of the resonances will vary due to more complex beam-voltage interactions.

Table 2.2. Nondimensional Parameters.

Parameter Expression Description

x̂
x

L
Ratio of position along beam to beam length

t̂ ω0

√
Eh2

12ρL4
t Nondimensional time

φ̂(x̂) φ(x) Beam mode shape

ẑ
z

g
Ratio of midpoint deflection through the gap

V̂
3

32

√
12ε0L4

Eh3g3
V Ratio of voltage to static pull-in

L̂
L

g
Effective aspect ratio of the system

ĝ 12
(g
h

)2
Ratio of gap size to beam height

ĉ
12c2L4

Eρw2h4
Nondimensional damping

ŝ
12L2Sr
E

Nondimensional residual stress

ρ̂r ε0ρr

√
E

12w2ρ
Capacitance and piezoresistance coupling

m̂ ω2
0 Mode scaling factor

ω̂
ω

ω0

√
Eh2

12ρL4

Ratio of frequency to linear resonant frequency
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Table 2.3. Coefficients - Nondimensional Form.

Coefficient Expression

β −0.0446
√
ĉ

α0 0.1496

α10 −(0.9976 + 0.0245ŝ)

α11 0.2268 +
0.9299

L̂2
− 2.5224

L̂4

α2 0.2847 +
0.6832

L̂2
+

1.5835

L̂4

α30 −0.0598ĝ

α31 0.3330 +
0.5637

L̂2
− 3.5547

L̂4

ψ 64

η00 128

η0 11.7194ρ̂rL̂

η1 22.3014
ρ̂r

L̂5
(4.5188E−5L̂2 + 3.2661L̂4 + 0.7964L̂6)

η2 22.3014
ρ̂r

L̂5
(5.56182L̂2 + (2.3997 + 1.2815Gr)L̂

4 + L̂6)

η3 22.3014
ρ̂rGr

L̂5
(1.1021E−4 + 7.9654L̂2 + 1.94238L̂4)

η4 22.3014
ρ̂rGr

L̂5
(13.5644 + 5.8524L̂2 + 2.4388L̂4)

2.5 Limitations of the Model

In order to condense the system into three ordinary differential equations, a vari-

ety of assumptions were made which place restrictions on the conditions under which

the results of this model may be trusted. Primarily, only the first eigenmode of
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Table 2.4. Coefficients - Nondimensional Form. Continued

Coefficient Expression

γ0 3.0132L̂6

γ1 1.5764L̂6

γ2 −13.2888L̂2 + (4.8991 + 7.3486Gr)L̂
4 + 1.1947L̂6

γ3 5.5618L̂2 + (2.3997 + 3.8446Gr)L̂
4 + L̂6

γ4 (−32.4092 + 11.9481L̂2 + 2.9136L̂4)Gr

γ5 (13.5644 + 5.8524L̂2 + 2.4388L̂4)Gr

κ 237.89
ρ̂r

L̂5

a fixed-fixed beam is represented in the final form of the equations, although they

could be easily adapted for any other single eigenmode. The excitation for the beam

cannot lead to situations which would normally require the expression of multiple

mode shapes. Included in this prohibition is excitation far from any eigenfrequency

of the beam since this will naturally lead to vibration in different mode shapes, which

this model will misrepresent. Large amplitude beam deflections, such as a beam ap-

proaching pull-in, are also likely to require higher-order nonlinearities to accurately

represent and therefore should be avoided. Because the modeled mode shape assumes

an initially straight beam, the actual voltage required for pull-in is likely to be over-

estimated by the numerical coefficients presented in Tables 2.3 and 2.4. Similarly,

the true midplane stretching strain will also have some non-zero offset correspond-

ing to a different nominal resistance. These issues could be addressed developing a

more detailed description of φ(x) for the coefficients in Table 2.1; however, the more

complicated the mode shape, the more expensive the computation of the modeled

response becomes.



25

Several steps in the model development required a Taylor series expansion around

z(t) = 0 and kept only up to third-order terms, which further restricts the model to

only small beam displacements. Therefore, the model is only advised for use with

small excitations. The lack of higher-order terms may lead to a slight misrepresen-

tation of the resonance shape, but for small beam displacements these discrepancies

should be negligible. However, in order to study the true transient behavior or pull-in

behavior of the beam, higher-order terms would be required. Further approximations,

such as the damping model used, neglected fringe fields, and the use of the midpoint

voltage for the forcing and capacitance calculations will result in slight variations from

the physical reality, but for the small displacements under consideration the losses

will be negligible. Practically speaking, the piezoresistive dependence upon crystal

orientation implies that the results presented in the following sections are only truly

valid for a system with the same crystal orientation as that described in Section 2.2.3.

These limitations, especially those related to the mode shapes represented, have

interesting implications towards using the model to look at the response for frequency

components affected and/or produced through the nonlinearities present in the beam

forcing and electrical equations (see Section 3.2 for a more detailed exposition of this

phenomena). While the primary frequency component may excite only a single mode

shape, the secondary frequency components may need other eigenmodes to properly

represent their response. However, since these secondary frequency components are

extremely small, it is a safe assumption to presume that the eigenmode associated

with the primary excitation will remain dominant and control the response.
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CHAPTER 3. EXPERIMENTAL MODELING AND RESULTS

In order to confirm the accuracy and relevance of the model, experimental character-

izations were completed, following the process previously developed for this class of

devices in [14]. The testing methodology utilizes signal mixing to avoid the parasitics

and test equipment limitations present in the megaHertz range, where the resonant

frequency is located for typical devices. The nanobeams are electrically connected

through a physical probe contact to metal pads deposited and attached to the beams

during fabrication, as shown in Figure 3.1. The external circuitry, such as sources

and filters, is also included in an overarching system-level model to predict the true

response of the device to the system inputs. There are also several circuit elements

added to the system in order to represent the parasitics and non-ideal performance

of the wafer and probes.

100 micrometers

Figure 3.1. Optical microscope image (20x magnification) of the
device pads and probe tips.
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3.1 Experimental Setup

Though the model developed in Chapter 2 may provide the most relevant dynam-

ics for an isolated, ideal nanobeam, it is only a subset of a full experimental test

system. The full experimental setup is represented in Figure 3.2 and was fully de-

scribed in [14]. For actuation, an amplitude-modulated AC signal was applied to the

beam through the drain pad while a DC bias is applied to the back gate (see Figure

3.1). The resulting current through the beam was measured by a lock-in amplifier at

the modulation frequency, fm, which is produced in the output current by the non-

linearities in the electrostatic forcing and other electromechanical interactions (see

Section 2.2). A typical experimental test consisted of slowly increasing or decreasing

the carrier frequency of the modulated signal and recording the resulting amplitude

and phase profile for the modulation frequency, which will be referred to as obtain-

ing the up or down frequency sweep for the remainder of this thesis. The required

signal sources, measurement systems and other parasitics must be considered in the

model to achieve an accurate comparison to experimental results. The schematic in

Figure 3.2 was developed to represent these interactions. Note that the inclusion of

the aforementioned subsystems implies that the voltages forcing the beam are not

the direct inputs applied to the system. Rather, the steady-state input to the beam

will be attenuated and have additional frequency components arising from the beam

nonlinearities.

Beyond those beam related dynamics presented in Chapter 2, there are several

wafer-level effects which were determined experimentally and are included here to

paint a full picture of the circuit under test. Due to the device substrate failing to

provide proper insulation between the source and drain pads, a resistance Rsubs, was

included to model the possibility of currents bypassing the beam to contribute a direct

feed-through current to the final output. Regrettably, a resistance measurement of

a device between the source and drain reveals the combined resistance of the beam

and substrate, so a unique identification of the substrate resistance was not directly
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obtainable. Several devices experienced some amount of finite resistance, and hence

the electrical coupling, between the side and back gates, represented in Figure 3.2 as

Rg. This leakage path prohibits the idea of performing a pure single-gate excitation

test, even when a gate is left floating as the side gate is in Figure 3.2. Note that

grounding the side gate would create a pathway to ground for the back gate bias,

eliminating the bias’ effect on the forcing of the beam.

The probes (American Probe & Technologies 72T series, 7 µm radius tip) and

pads at the source and drain were also close enough to introduce a capacitive bypass

of the beam, Cpads. Similar to the substrate resistance, but frequency dependent, this

created a parallel path for current to bypass the beam. The value of this capacitance

was estimated by assuming the probe tips were parallel plates placed at the ends of

the source and drain pads. It was also experimentally estimated by raising the probes

directly above the contact pads and looking at the response between the probes.

The measurement system also exhibited several parasitics affecting the final out-

put. The contact of the probes with the pads on the device resulted in a contact

resistance, RC , for every connection made. While the back gate was excited through

the bottom of the substrate, the contact with the probe station chuck was imperfect

and featured a similar resistance. Unfortunately, since the exact resistances of the

device components are unknown, the contact resistances can only be experimentally

estimated with low fidelity. Because of the small size of the contact resistances in

relation to the device resistance, it was assumed that a single average resistance value

could be used for all of the various contacts.

The rest of the circuit consists of approximations for the various sources and mea-

surement devices. The AC sources in the model represent the output of a modulation-

capable signal source (HP-8648D) through a high-pass filter (Minicircuits ZFHP-

0R23-S+). The high-pass filter was included experimentally in an attempt to prevent

any leakage from the modulation signal source at the modulation frequency. Initial

experimentation and simulations (see Chapter 4) showed that even a small amount of

leakage could have a significant impact on the small output currents measured. There-
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Figure 3.2. The final circuit schematic of the excitation system,
device representation, parasitics and measurement system. The side
gate is left floating in order to simplify experimentation.

fore, instead of capturing the full characteristics of the high-pass filter, the system was

modeled as having an ideal, amplitude-modulated signal with a constant-amplitude

leakage voltage, Vleak, at the modulation frequency. The lock-in amplifier (SRS-830)

is modeled as a 1 kΩ resistor to ground, as suggested in the device documentation.

While the probe station (Cascade Microtec PLV-50) has triaxial cable outputs, the

lab equipment was uniformly equipped with biaxial junctions. Bufferless adapters

were used and the parasitic prevention of the triaxial cables was lost. Therefore, the

wires of the system were all considered as a capacitance to ground, Cwr, followed by

a resistance, Rwr. The specific capacitance of the cables was both obtained from the

supplier and measured in the lab as verification. The resistance of the wires was also

measured and an average resistance was used for each implementation in the model.

The 1 GΩ resistor following the gate source was used to prevent an excessive current
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flow through the device in the case of beam pull-in and is not part of a sub-system

model.

3.2 Mixing Methodology for Response Detection

As electrical signals begin to enter the megaHertz range of frequencies and higher,

the effects of system parasitics become more critical to consider. Slight leakage ca-

pacitances in a wire or between probes can cause a significant effect [39]. In order to

overcome this, a common practice in the MEMS/NEMS field is to exploit the non-

linearities of the system to excite it at resonance while measuring at an easily-tested

frequency [8, 9, 33, 36, 39, 41, 43, 45, 65]. One such approach was implemented for this

work. By applying an amplitude-modulated signal to the drain of the device, while

applying a DC bias to the back gate, the forcing voltage,

Vgap = Vdc + Vac sin(ωct) +
mVac

2
sin[(ωc + ωm)t] +

mVac
2

sin[(ωc − ωm)t], (3.1)

is obtained, where m is the ratio of the modulated signal’s amplitude to the carrier

amplitude, Vac. The electrostatic forcing, and thus the vibration of the beam, is

dependent upon the square of this voltage, leading to a beam vibration related to

a DC component as well as ωc, ωc ± ωm, 2ωc, 2ωc ± ωm, 2ωc ± 2ωm, ωm, and 2ωm.

Since this produces a frequency component at the modulation frequency, ωm, the

output of the system will have a component that is created by the beam’s vibration,

which can be measured to obtain an approximate frequency response of the system.

By sweeping the carrier frequency, ωc, and measuring the output amplitude at the

modulation frequency, an output can be obtained that gives an accurate image of

the beam’s behavior while avoiding many of the parasitics that present technical

challenges to experimentation near the typical resonance frequencies of these devices.

While the mixing approach has its benefits, it is not without drawbacks. Because

the percentage of the forcing that occurs at the modulation frequency is small, the

final currents measured there are also small. For the majority of devices, this means

attempting to measure picoAmperes of current at the system output. This is one of
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the primary motivations for the use of lock-in amplifiers to take measurements for

these systems. Because a lock-in amplifier can measure the amplitude and phase of

a single-frequency component with little noise, they are well suited for these mixing

method measurements. The measurement of the modulation frequency also results

in the loss of a large portion of information about the system. While the data will

give an accurate representation of the beam’s behavior, it is inherently missing the

full frequency response of the system, and little is known about how the full electrical

system will react to a single, higher frequency input in a true application of the

system. This is problematic, since it is unlikely that a modulated input would be

used with these devices in a practical application. From a mechanical standpoint it

is also difficult to relate the system’s output to a specific eigenmode of the beam [35].

Refer to Chapter 5 for a more in-depth review of the benefits and issues of measuring

a down-mixed signal.

3.3 Obtained Response

Data was collected for multiple beams, varying in length and width but with

consistent heights (110 nm). All of the beams were etched into the same wafer

with the same orientation, so piezoresistive and material properties were identical for

each beam. Figure 3.3 reflects a prototypical measurement response. The presented

frequency response is that of the amplitude and phase of the modulation frequency

component at the source pad. All testing was completed using ωm = 1 kHz. Both

the amplitude and phase exhibit hysteresis, evidence of a region of bistability that

occurs around the resonance. As expected, the responses generally match the shape

of a hardening Duffing response. It is also seen that due to the nonlinearities of the

system, the DC bias on the back gate leads to tuning of both the amplitude and

frequency of the resonance curve. This effect will be further explored in Section 4.3.2.
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Figure 3.3. The amplitude (left) and phase (right) response of the
modulation frequency, fm = 1 kHz, for a characteristic experimental
measurement. Both the increasing and decreasing frequency sweeps
are included to visualize the hysteretic nature of the system. The
nanobeam used had a length of L = 4 µm and width of w = 180 nm.
The excitation levels were Vdc = 6 V and Vac = 40 mVrms.

Because devices from this same wafer had been previously examined in [14], it was

possible to compare the current responses to those obtained previously. The primary

resonances are very similar. For comparable forcing voltages, the bandwidth of the

response is approximately the same. While the amplitude of the response varies, this

can easily be attributed to geometric differences in the beam. The previous data

collected in [14] identifies two different resonances, one for each gate, even though

only one gate had a nonzero potential. This difference can be traced to the practice

of grounding the side gate in [14]. When the second gate is grounded instead of

left floating (as is the case in this work), the extra gate maintains a fixed potential,

leading to a second forcing voltage actuating the beam. Therefore it is not incorrect

to view only a single peak in the results presented here, while two responses were

observed in the prior work.
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CHAPTER 4. SYSTEM-LEVEL SIMULATION

In order to compare the results produced by the modeled system and those found

experimentally, it was prudent to compile and implement the various aspects of the

presented model to form a numerical simulation of the nanosystem’s behavior that

could be easily combined in a circuit simulator with standard circuit components

and other compact models. Once developed, the functionality of the simulation was

verified by independently solving the base system of equations using numerical meth-

ods. The overall performance of the model was then confirmed through comparisons

with the experimental results in Chapter 3. By allowing for the rapid generation

of circuit designs, the simulation enables the testing of situations that could not be

easily developed experimentally. This allows for the investigation of both device-

level and system-level behaviors that could only be inferred with great difficulty from

laboratory data.

4.1 Simulation Description

Using Verilog-A, the differential and algebraic equations (see Chapter 2) describing

the system were coded to form two separate, but dependent, numerical simulations,

which when used together effectively simulate the beam’s electromechanical behavior.

One simulation captured the electrostatic effects and beam motion, by accepting the

beam-gate voltage as an input and determining the beam displacement and current

flow as outputs. The other simulation accepted the voltage drop across the beam

and the beam displacement as inputs to determine the current through the beam

when accounting for piezoresistive effects. These simulations represented the variable

capacitors and resistors in Figure 2.3, respectively.
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The Verilog-A components could be combined with any other standard or custom

circuit components and simulated, using the Spectre (a derivative of the SPICE sim-

ulator) harmonic balance solver to determine the steady-state outputs of the system.

Using the circuit presented in Figure 3.2 and plotting the outputs from the harmonic

balance solver, it was possible to generate plots directly reporting the same infor-

mation acquired experimentally. These plots depict changes in the amplitude and

phase of the signal at the modulation frequency as the carrier frequency is varied.

The simulation was also capable of producing transient waveforms and other results,

which can provide a dense amount of information about the system, but the harmonic

balance results provided the most direct comparisons to experimental data.

The nominal parameters used in the simulation were selected to correspond to the

systems tested experimentally. The beam had a height, h, of 110 nm, and the back and

side gates have nominal gap sizes of g = 144 nm and gs = 200 nm, respectively. The

beam was considered to have no residual stresses present after fabrication. ρ = 2330

kg/m3 is the density of silicon. The beam was approximated to have a value of

c ≈ 0.6E−6 kg/(m·s), the specific damping constant of the system as described

in Section 2.1. As discussed in Section 2.2.3, the crystal orientation of the beam

changes several of the effective material properties of silicon. The simulation was

setup to correspond to a crystal in the < 111 > orientation, consistent with the

beams tested experimentally. This resulted in E = 187.5 GPa and ν = 0.17 [66],

where ν is Poisson’s ratio. While the length and width of the beam were two of

the most common parameters varied, the most common combinations were L = 6.3

µm, w = 120 nm and L = 4 µm, w = 180 nm, which correspond to two of the

experimentally analyzed beams. The amplitude modulation of the input signal was

kept at a constant modulation index – the parameter defining the height of the side

bands in the modulated signal – m = 0.5, and modulation frequency, fm = 1 kHz.

Vac, Vdc and fc – the amplitude of the carrier signal, the DC bias, and the carrier

frequency, respectively – were used as the inputs to the system. Several basic electrical

parameters, such as Rwr, Rc, Rg, and Cwr were measured from the experimental setup
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or obtained by other approximations, as discussed in Section 3.1. It should be noted

that many of these values, and those not listed here, but included in Table 4.1,

have some measure of uncertainty. For example, there are fabrication tolerances

associated with the physical dimensions of the device and the exact doping level.

Other parameters, such as contact resistance, are highly uncertain (see Section 3.1).

4.2 Solution Algorithms

Regardless of the algorithm used, Spectre utilizes general tolerance variables to

define the accuracy required from the solution. The reltol, iabstol, and vabstol vari-

ables set the relative tolerance of both the current and voltage values, and the absolute

tolerance of the currents and voltages, respectively. To reach convergence, the change

in the current must meet

∆i < reltol ∗ (largest current into the node) + iabstol. (4.1)

Similarly, the voltage must satisfy

∆V < reltol ∗max(initial voltage, final voltage) + vabstol. (4.2)

When these conditions are met at every node, the step is considered to be converged.

Note that the size of the signals determines whether the absolute or relative tolerance

is the dominant constraint. For small signals, the absolute tolerance will dominate,

while the relative tolerance of a large signal is the limiting parameter. For both

the time domain and harmonic balance approaches, all tolerance values were set to

1E−8 to provide an accurate solution even with the small amplitudes inherent with

nanoscale systems.

4.2.1 Time Domain Solution

The simulation provides the ability to numerically integrate the full circuit and

beam system to determine its time domain response. There is the potential to pro-

vide detailed information about the transient behavior of the forcing voltage, system
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Table 4.1. Nominal Parameter Values.

Parameter Value

E 187.5 GPa

ρ 2330 kg/m3

h 110 nm

g 144 nm

c 0.6E−6 kg/(m·s)

Sr 0 Pa

Rlock 1000 Ω

Rwr 4 Ω

Rc 2 Ω

Rsubs 10 TΩ

Rg 263 kΩ

Rr 1 GΩ

Rbeam 51.2 kΩ

Cwr 0.6 nF

Cpads 1.45 fF

Cs 0.029 fF

πL 1.403 1/GPa

currents, as well as the beam displacement and velocity. Spectre’s transient analysis

utilizes three solving algorithms: backwards-Euler, trapezoidal, and Gears second-

order backwards-difference, each of which can also be used in combination to achieve

various balances of accuracy and speed. For the tests presented here, the Gear method
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with conservative error tolerances was utilized to get a solution without ringing and

false stability. While this method can provide a great insight into the system’s behav-

ior, it is typically slow. This is especially true with regard to a modulated input case,

because of the extended periods of time required to capture low-frequency components

like the modulation frequency.

4.2.2 Harmonic Balance Solution

The harmonic balance solver used a two-step approach to compute the steady-state

response of the system at specific frequency components. It first finds a DC operating

point for the circuit and then uses Newton methods to converge upon steady-state

values for the full system. For the typical simulations presented here, the harmonic

balance approach required consideration of at least 8 harmonics for both the car-

rier and modulation frequencies to produce a solution which did not change upon

the addition of further harmonics. In some cases, 14 harmonics were required for a

proper convergence. Depending on the amplitude of the response, either transient-

aided solving or source stepping homotopy methods were implemented to achieve an

initial operating point that would generate a converged steady-state output. The

transient aided homotopy develops an initial guess for the harmonic balance analy-

sis using a transient analysis, making it a more robust approach and useful in cases

where the amplitude of the system states was small and convergence was difficult.

The source-stepping homotopy approach gradually varies the source level in order

to reach a converged solution, and uses that as an initial guess. Therefore it can

be useful for strongly nonlinear systems. Generally, the transient-aided approach was

more reliable, but significantly slower (∼15 minutes/2 MHz sweep increasing through

resonance), than source-stepping (∼5 minutes/2 MHz sweep increasing through res-

onance).

It was generally noted that if a simulation failed to converge, the failure occurred

at the discontinuity associated with a bifurcation. Larger amplitude responses tended
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to have fewer issues, presumably due to the fact that smaller amplitudes result in a

smaller tolerance zone where convergence can be achieved. As a corollary to this,

increasing frequency sweeps tended to solve more reliably than decreasing sweeps,

since the hardening response results in the up-sweep exhibiting a larger amplitude.

Convergence is more easily obtained when the system’s bifurcation drives the ampli-

tude toward zero, as opposed to an indeterminate value as is the case for the down

sweep. Thus, it is common to require an extended transient-aided solving period

when computing a decreasing frequency sweep.

4.3 Performance Validation

In order to confirm that convergence was properly achieved, while simultaneously

providing validation of the model, the simulation results were compared to numerical

integrations of the base model as well as to experimental results.

4.3.1 Simulation Setup

In order to confirm that the simulation was running properly and that all tol-

erance values had been appropriately set, a simulation of the base circuit presented

in Figure 2.3 was compared against a numerical integration of Equations (2.35)-

(2.37), performed in Matlab. The numerical integration was performed using Matlab’s

ode15s routine. An implicit, variable-order solver, ode15s is designed for stiff differ-

ential equations and differential-algebraic equations like the ones under consideration

here [67]. The numerical integration was iteratively solved for all of the frequencies,

utilizing the steady-state conditions of one solution as the initial conditions for the

next input frequency. This continuation method allowed for a direct comparison of

the frequency responses obtained from Spectre. This method proved advantageous to

a direct comparison of the transient data simply as a reduction in the sheer amount

of information present. Viewing the frequency response also presents a better pic-

ture of the simulation’s ability to capture the desired information about the system.
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When the time domain results at a single frequency are compared there are discrep-

ancies in the transients between Spectre and Matlab, but the steady-state responses

match. The frequency responses showed that the simulation accurately represents the

derived equations. Furthermore, Spectre could achieve the same frequency response

faster than what could be achieved using Matlab. Additionally, while it was possible,

with changes in the tolerance settings, to cause the Matlab numerical integration to

bifurcate earlier along the backbone, this was attributed to a lack of accuracy in the

continuation method due to a larger frequency step than that used in Spectre. The

added accuracy that can be obtained from the circuit simulation due to its speed is

a major advantage encouraging its use.

4.3.2 Modeled Response

By developing a simulation that captures all of the elements present in Figure

3.2 and by analyzing the results of a harmonic balance sweep at the modulation

frequency, it was possible to compare the proposed model for the overall system

with the experimental data. Order-of-magnitude approximations were used for the

variables with large degrees of uncertainty, such as the specific damping coefficient.

Figure 4.1 shows the response for both the increasing and decreasing sweeps of the

carrier frequency without any detailed parameter refinement. Away from resonance

there is a small, flat background current and the phase approaches a constant value.

Near resonance the response becomes bistable and exhibits hysteresis, symbolic of

bifurcations occurring in the nonlinear system. The resonant frequency of the system

is defined here as the frequency associated with the largest peak current. While

discrepancies exist, it is probable that these differences could be attributed to the

intrinsic variability of the nominal system parameters. The most notable discrepancy

is that the resonant frequency predicted by the simulation is much larger than what

is seen experimentally.
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Figure 4.1. A comparison of the simulated (left) and experimental
(right) results for both response amplitude (top) and phase (bottom).
The results are collected at the modulation frequency of the input,
here 1 kHz, as the carrier frequency is either increased or decreased
around resonance. Note that, Vdc = 6 V, Vac = 40 mVrms, L = 4 µm,
and w = 180 nm.

When a scanning electron micrograph was taken of the beam location after test-

ing was completed, Figure 4.2, it was found that the trench, including the visible

undercutting at the edges, measured approximately 4 µm, the length used for the

simulation in Figure 4.1. It was noted that the pad-to-pad distance was roughly be-

tween 5.7 and 6 µm. If the simulation is instead run for a beam of length L = 5.9 µm,

the frequency and bandwidth of the hysteretic region more closely matches what is

seen experimentally, as seen in Figure 4.3. This would suggest that the entire length

of the beam was released from the substrate during the fabrication process, rather

than just across the trench.
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Figure 4.2. An SEM of the beam location for the experimentally
tested device. The beam was destroyed following testing, but the
trench size gives an estimate of the suspended length of the beam.
The trench length, including visible undercutting, is approximately
4 µm. The pad-to-pad length of the beam is roughly 5.7 to 6 µm.
Photo Credit: Hossein Pajouhi.
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Figure 4.3. The response amplitude (left) and phase (right) collected
at the modulation frequency of the input, here 1 kHz, as the carrier
frequency is either increased or decreased around resonance. Note,
Vdc = 6 V, Vac = 40 mVrms, L = 5.9 µm, and w = 180 nm.

The discrepancies in Figure 4.1 can also be diminished by making variations to

the residual stress and damping, which are both very difficult to measure and predict,

one can shift the response to a similar frequency and amplitude, as seen in Figure
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4.4. In this case, the differences in bandwidth and off-resonant current could be

explained through variations in a combination of other parameters. For example,

the leakage voltage at the modulation frequency plays a large role in determining the

nonzero off-resonant response as well as the shape of the phase response. Similarly, the

amplitude of the response could be shown to be highly dependent upon the effective

piezoresistive coefficient, which was shown in [46] to be dependent on diameter for

a silicon nanowire, but has not been fully characterized for nanobeams. Any size

correction was therefore neglected here and could result in the observed errors. It

was anticipated that, given the proper parameter set, the model would accurately

provide the down-mixed response near the first-mode beam resonance.
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Figure 4.4. The response amplitude (left) and phase (right) collected
at the modulation frequency of the input, here 1 kHz, as the carrier
frequency is either increased or decreased around resonance. Note,
Vdc = 6 V, Vac = 40 mVrms, L = 4 µm, and w = 180 nm. The
compressive residual force, Sr, is −375 MPa and c = 6E−6 kg/(m·s).

Further verification of the model was obtained by analyzing the tuning behavior

of the resonant response for varying DC bias levels. Figure 4.5 shows the experi-

mental and simulated impact of the gate bias, Vdc, on both the peak amplitude and

resonant frequency for a beam with L = 6.3 µm, w = 120 nm. The responses have

been normalized around their values at 2 V in order to facilitate a qualitative com-

parison in the face of unrefined parameter estimates for the simulation. A quadratic

increase in amplitude and decrease in frequency is present in both the simulation and
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experimentation. The responses are similar, even when only rough estimates of the

parameters are used. While the simulation and experimental data could be used to

complete a parametric study and improve the accuracy of the parameter estimates,

the qualitative match between the simulation and experiment was sufficient to sug-

gest that the model was adequately capturing the major dynamics of the system.

A complete parameter identification for the system would prove to be exceedingly

difficult using down-mixed methods. This difficulty arises from the various frequency

regimes where the parameters affect the system. In general, several parameters have

exceedingly minor effects at the low frequencies observed in the mixing methodol-

ogy. This prohibits proper identification of certain parameters when a down-mixing

scheme is used, since wide variations in the parameters can have only small effects on

the observed response. Reliance on the simulation instead of a closed-form analytical

solution also makes parameter identification exceedingly slow. Thus, the qualitative

fit was considered satisfactory to provide observations on the nature of the device

response.
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Figure 4.5. The effects of increasing the DC back-gate bias for a con-
stant amplitude-modulated signal across the beam, while Vac = 15
mVrms. The peak amplitude (left) and resonance frequency (right)
responses are normalized around their 2 V levels to facilitate qualita-
tive comparisons in response nature. L = 6.3 µm, w = 120 nm.
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4.4 Practicality of Use

Due to the interconnected nature of an electrical circuit, the change of a single

component can result in a large computational overhead to recompute the response if

the system is solved by re-deriving all of the relevant circuit equations. Numerically

solving the response of the circuit proves to be an excellent alternative for the rapid

design and prototyping of circuits. By bringing the complicated nonlinear dynamics

of the nanoresonator system into this environment, the ability to investigate the

potential of the device increases drastically. The ability to predict how the device

would react in complex circumstances or studying how changes in the beam and

material parameters affect the output, becomes straightforward. Furthermore, the

simulation provides the ability to determine what the device would do in a commercial

environment. With the ability to measure results, such as a high-frequency response,

it is possible to predict the system’s response in a way that could not be determined

in the lab. An investigation into the fundamental understanding of the system’s

dependencies, as revealed by the simulation, will be presented in Chapter 5. Chapter 6

focuses on presenting the power of the simulation to demonstrate what the nanobeam

system can achieve when placed in a variety of circuits.
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CHAPTER 5. MODEL ANALYSIS

5.1 Frequency Mixing Effects

Section 3.2 describes the mixing approach used to experimentally characterize the

nanoresonator’s response. While an amplitude-modulated input is representative of

an input with multiple frequency components, the proposed applications for many

NEMS devices do not require, or even desire, mixing (with a few exceptions, i.e.

[36]). Therefore, the simulation was used to predict the system’s response to a single-

frequency input, measuring the amplitude and phase of the output current at the

same frequency as the excitation. This was done with the same test circuit used in

the modulation testing (Figure 3.2), with different input/output signal configurations.

Note that no power correction was made to adapt for the loss of the side bands when

adjusting from the amplitude-modulated signal to the single-frequency signal.

Figure 5.1 presents the responses from the simulation for sweeps of increasing

frequency for both the modulated input, measured at the modulation frequency, as

well as a single-frequency input, measured at the excitation frequency. A qualitative

change in both the amplitude and phase response is immediately apparent, especially

as the resonant peak becomes an antiresonance. Equally importantly is that the

location of the resonant peak changes between the cases. For the modulation case,

the resonant frequency is around 25.75 MHz. However, when only the single input

frequency is used, the resonant frequency is varying around 26.75 MHz. The difference

in behavior exposes an issue with the methodologies common in testing NEMS to date.

If the modulation case does not accurately predict the resonant frequency or tuning

behavior for cases similar to possible final applications, such as a single-frequency

excitation, then the devices cannot be properly designed for those final-use cases based

upon current experimental methods. Figure 5.2 exposes a similar issue for variations
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Figure 5.1. The amplitude (top) and phase (bottom) responses for an
amplitude-modulated signal measured at the down-mixed modulation
frequency (left), as well as for a single-frequency excitation, measured
at that frequency (right), for various DC bias amplitudes. Note the
change in the shape of the responses, as well as the changing resonance
frequencies and tuning behavior. Also note, Vac = 40 mVrms, L = 6.3
µm, and w = 120 nm.

in the AC voltage of the carrier, while maintaining a constant DC bias. Even if

a single-frequency input does not fully represent a final-use case, the presence of a

resonance shift corresponding to an input variation implies that accurate predictions

of final behavior cannot be made using down-mixed testing. Reference [8] exhibits a

similar shift in system resonance frequency with a change from frequency-modulated

testing to amplitude-modulated testing.

As an aside, it is interesting to note that the tuning behavior in Figure 5.1 does

not match the curve in Figure 4.5. This implies that the tuning curve varies with

the AC amplitude applied, which is a reasonable conclusion considering the nonlinear



47

nature of the system. Both the AC and DC variations show differences in the amount

of tuning observed when comparing a modulated case to a single-frequency case. This

only serves to further complicate any device implementation based upon down-mixed

data. The relation between the excitation power and the frequency response is further

explored in Section 5.2.
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Figure 5.2. The amplitude (top) and phase (bottom) responses for an
amplitude-modulated signal measured at the down-mixed modulation
frequency (left), as well as for a single-frequency excitation, measured
at that frequency (right), for various AC signal amplitudes. Note the
change in the shape of the responses, as well as the changing resonance
frequencies as Vac changes. Also note, Vdc = 6 V, L = 6.3 µm, and
w = 120 nm.

The development of NEMS for final usage at any level depends on understanding

how the associated device will respond to stimuli when in use. Because the classical

mixing methods used for testing fail to capture all of the response behavior in the

regime where devices, such as the nanoresonator presented here, will be operating, the
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responses and properties from the modulated data, especially the system resonance

frequency, cannot be used to predict the device’s behavior in a final application. For

example, if the device here were to be used in a tunable filter design and built to

operate at a frequency and DC bias determined from the down-mixed data, then the

results presented here suggest that there is no guarantee the final passband of the

filter would be where it was designed to be. In fact, the variation between the mod-

ulation and single-frequency cases suggests that the filter would experience changes

in its passband location as the number of frequency components it receives varies,

essentially negating its usefulness as a filter. This is made evident by the shifts in the

system resonance frequency as the amplitude of the applied AC current is increased.

Any practical application of a filter is likely to receive a signal with a changing num-

ber of frequency components and amplitudes, and both changes have been shown to

produce variations in the system resonance frequency. Either a test procedure must

be developed to enable accurate testing of NEMS devices in final-use scenarios, or

testing is needed to determine if there is a region, perhaps under a larger DC bias,

where the changes in the AC signal have less of an impact upon the nature of the

device response. If such a region were to exist, then the down-mixed results may be

a more appropriate predictor of device behavior.

5.2 Natural Frequency Estimation

The defining feature of any resonant system is its resonance frequency. There-

fore, it is important to be able to design systems to operate at a specific frequency.

The previous section indicates a need to better understand the tuning behavior of

these systems in order to make that possible. Towards this end, it is advantageous

to develop an estimation of the linear natural frequency for the system. While the

nonlinearities in the system clearly shift the resonant frequency away from the natural

frequency, especially when the interactions between the beam voltage and displace-
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ment are considered, the natural frequency of the undamped, linear system provides

a decent approximation of the peak amplitude’s location.

In a linear sense, the natural frequency can be defined as

ωn =

√
Keff

Meff

, (5.1)

where Keff is the effective stiffness of the beam and Meff is the effective mass. For the

nondimensional definition of the beam equation, Equation (2.36), this is equivalent

to

ω̂n =

√
−α10 − α11

[
V̂b(t̂)− y3(t̂)

]2
. (5.2)

The residual stress left in the beam from fabrication, ŝ, is part of α10, and contributes

to the nominal resonant frequency, such that an increase in the compression of the

beam leads to a decrease in the nominal frequency. The dimensional value of the

nominal natural frequency, defined for no electrostatic forcing, will be

ωn =
√
−α10ω0

√
Eh2

12ρL4
, (5.3)

which will be lower than the frequency that would be predicted by the standard linear

beam model because of the nonlinearities within the system.

To study the electrostatic tuning, it is desirable to substitute Equation (2.9) into

Equation (5.2). Since the desired estimate of the natural frequency does not vary

with time, the time-varying voltages can be replaced by their RMS equivalents to

relate the frequency to the estimation of the forcing power, V̂gap,rms. Differentiating

the resulting equation provides the tuning sensitivity,

∂ω̂n

∂V̂gap,rms
=

−α11V̂gap,rms√
−α10 − α11V̂ 2

gap,rms

. (5.4)

Equation (5.4) enables a relation between the beam design and the natural frequency

of the system.

An increase in the forcing voltage will lead to an increase or decrease in the

natural frequency based upon the sign of α11, which is driven by the aspect ratio of
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the beam, L̂. For α11 greater than zero, the natural frequency decreases, coherent

with the standard electrostatic softening effect. However, based upon the definition

of α11 (Table 2.3), for values of L̂ < 1.3655, α11 will be negative and result in an

electrostatic hardening effect. To achieve this, the system must have a beam that is

nearly the same size as the nominal gap. Based upon fabrication restrictions for the

possible gap sizes, this requires a short beam. Correspondingly, the natural frequency

of that arrangement is likely to be large, since the beam height required to compensate

for such a short length is not feasible. This limits the realm of frequencies where an

increasing tuning can be achieved.

The nonlinear nature of the system will result in a resonant frequency and tuning

that is only approximated by what is predicted for the natural frequency in Equa-

tion (5.2). Figure 5.3 shows this discrepancy. While the resonant frequency of the

increasing frequency sweeps does not follow the predicted behavior, the peaks of the

decreasing frequency sweeps are very close to what is predicted by the natural fre-

quency. Note also that a small change in the AC voltage produces a large change in

up-sweep response, suggesting that the RMS approximation is poor and the presence

of harmonic content has a large effect on the nonlinear portions of the system that

lead to this response.

The dependence of V̂b,rms and y3,rms upon the circuitry encompassing the nanobeam

implies that the design of the beam should be dependant upon the circuitry involved.

Alternatively, it is possible to design the beam for a frequency slightly higher than de-

sired and electrostatically shift the resonant frequency to its desired location through

the use of the DC bias. The advantage of this method is that it is immune to nearly

all fabrication and design tolerances, as long as the nominal resonance frequency does

not require so large a forcing power that the beam is pulled-in during tuning. In

all, there is some explanation of the tuning observed in Section 5.1, since the change

in the signal power due to the presence or absence of the amplitude-modulated side

bands could explain some of the tuning. However, this does not alleviate the concerns
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Figure 5.3. Electrostatic tuning of the beam’s simulated resonant
frequency as compared to the predicted natural frequency. The pres-
ence of the nonlinearities, as well as the interactions between the
beam displacement and voltage, result in large discrepancies between
the resonant and natural frequency responses in the increasing fre-
quency sweeps. The tuning of the peak amplitude in the down-sweep
responses matches the linear natural frequency prediction well.

that Section 5.1 raises about the implications of this phenomena for the practical use

of these devices as filters.

5.3 Design for Softening

The frequency responses shown thus far have all exhibited hardening characteris-

tics, where the nonlinearities of the system have increased the frequency at which the

peak amplitude is observed above the predicted natural frequency. In practice, the

ability to design the system to instead exhibit a softening response, where the peak

frequency is below the linear natural frequency, could be beneficial. When combined

with the ability to tune the frequency of the response, this creates a very flexible

and powerful system. For a standard Duffing resonator, the presence of a hardening

or softening frequency response can be predicted using the sign of the cubic stiffness

term. For a system such as the one presented here, with a combination of both cubic
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and quadratic nonlinearities, the sign of a linear combination of both terms indicates

the direction of the frequency backbone. Under the same approximation of RMS

voltage used in Section 5.2, this linear combination, represented by αnl, is

αnl = −p2α2V̂
2
gap,rms − p3

(
α30 + α31V̂

2
gap,rms

)
, (5.5)

where p2 and p3 are proportionality constants defined by the system parameters and

interactions. They could be analytically approximated using perturbation methods,

or experimentally approximated by using regression techniques. It is the sign of αnl

that will indicate the system’s preference for a hardening or softening response.

Equation (5.5) demonstrates the dependence of the response shape to the electro-

static forcing. With this relation, it is possible to develop a single beam which could

be tuned between a hardening and softening response using the electrical loading of

the device. Under the substitution,

p2 = p× p3, (5.6)

the voltage required to achieve a softening response becomes

V̂gap,rms >

√
−α30

pα2 + α31

. (5.7)

The voltage criterion is then not only dependant upon the unknown proportionality

between the quadratic and cubic nonlinearities, but is also heavily dependant on the

geometry and mode shape of the beam through α2, α30, and α31. Even if the system

is such that p is small, if α2 is sufficiently larger than α31 then the frequency backbone

will still be dominantly influenced by the quadratic term. For an initially straight

beam, such as the one used for the generation of the terms in Tables 2.3 and 2.4, the

cubic terms will dominate the response backbone, since the equation of motion for

the beam, Equation (2.1), features no quadratic terms. Any quadratic effects arise

solely from the electrostatic forcing and are thereby naturally weaker than the cubic

term, which has contributions from both the beam’s mid-plane stretching and the

electrostatic forcing. In this configuration, it proves very difficult to achieve a soft-

ening response. For the beam described by Tables 2.3, 2.4 and 4.1, with an assumed
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dominant cubic solution (approximated here by p = 0), the minimum nondimensional

voltage to obtain a switching response is 1.9209, nearly twice the pull-in voltage.

In contrast, an initially arched beam is likely to exhibit a stronger quadratic

geometric nonlinearity, which could drastically change the response shape. Practically

speaking, it is reasonable to assume that the majority of fabricated beams will have

some form of an arch as the support structure underneath them is etched away.

Therefore, it is difficult to quantitatively specify the ability of the system to achieve a

softening response for a system with an unknown amount of initial arch. However, in

terms of aiding future designs, the criterion are clear that an initial curvature would

be very beneficial in this effort.
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CHAPTER 6. CASE STUDIES

The primary advantage of the simulation is its ability to rapidly iterate designs. Be-

cause of the ease with which it allows the combination of custom beam dynamics

and standard circuit components, it is possible to determine the effect of a full cir-

cuit very quickly and with reasonable accuracy. To exploit this, several case studies

were performed to better understand the dynamics of the system and to verify the

practicality of the nanoresonator.

6.1 AC/DC Application Effects

Inspired by the differences in the modulation and single-frequency inputs observed

in Section 5.1, a study was conducted to investigate the effects of various input

configurations. Specifically, the differences between AC and DC applications on each

node was investigated.

6.1.1 Simulation Setup and Results

Simulations were performed for six input cases, listed in Table 6.1. In each case,

the nanobeam had a cross section of 120 nm wide by 110 nm tall, and was 6.3 µm long.

All other parameters were congruent with those found in Table 4.1. The simulations

used a single-frequency, harmonic input instead of a modulated input, and analyzed

the component of the output current at the input frequency. For simulation purposes,

it was assumed that the output node was connected to ground, and any floating node

was left unspecified in Table 6.1. Spectre’s harmonic balance solver was used to

compute the frequency response with a transient-aided homotopy stop time of 10 ns

and with the inclusion of 13 harmonics for the carrier frequency. The AC input was

40 mVRMS, while the DC bias used was 6 V.
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Table 6.1. Input Cases.

Case Drain Source Gate

1 AC OUT DC

2 DC OUT AC

3 AC+DC OUT

4 OUT AC+DC

5 OUT OUT AC+DC

6 AC+DC AC+DC OUT

Figure 6.1 displays the frequency response of the output current for the various

input cases. Of note is the fact that Cases 3 and 4 are identical, as are the responses

for Cases 5 and 6. This proves the symmetry of the model because these loading

conditions are simply opposites of each other across the beam-gate gap. Interest-

ingly, each case provided a different peak frequency and response amplitude. These

amplitudes and frequencies are recorded and sorted in Tables 6.2 and 6.3. Case 1 is

the only response that features a significant off-resonant output current and features

an anti-resonance instead of a resonance. Cases three through six exhibited a small

off-resonance current, but not as small as that observed in Case 2.

Table 6.2. Response Resonance Frequencies.

Case Frequency (MHz)

1 26.96

3 & 4 27.64

2 29.37

5 & 6 29.43
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Figure 6.1. Output current magnitude for different circuit connec-
tions. Cases 3 and 4, as well as 5 and 6, are identical due to the
symmetry of the system. The various cases result in changes in the
response amplitude, frequency and shape. Vac = 40 mVrms, Vdc = 6
V, L = 6.3 µm, w = 120 nm.

Table 6.3. Resonant Amplitude Increase Above Background.

Case Increase (nA)

1 −191.2

2 165.7

3 & 4 456.5

5 & 6 714.0

6.1.2 Explanation of Responses

In order to explain the discrepancies in peak frequency and the variations in

amplitude between the different cases, the circuit was analyzed at both near- and off-

resonant frequencies. In the off-resonance case, the beam has a negligible amount of
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motion allowing the piezorestive properties of the beam to be approximated as a static

resistance, say R0, and the beam-gate capacitance as a static capacitance, say CB.

In this case, the substrate resistance Rsubs is much greater than the beam resistance,

and can be approximated as an open connection. The resulting schematic for the

off-resonant device can be found in Figure 6.2. In order to match the simulation,

the output node is treated as the reference potential (i.e. ground). In Case 1, the

𝐶𝐵 

𝐶𝑆 

𝑅0
2

 

𝑅0
2

 

𝑅𝑔 

Drain 

Back Gate 

Source 

Figure 6.2. Circuit schematic for an off-resonant excitation, including
leakage through the side gate.

AC signal on the nanobeam cannot jump the capacitive gap to the gate, since the

gate is at a higher voltage (6 V). Likewise, the DC bias has no current flow since

the capacitors act as open circuits and prevent transmission of the DC signal to the

beam. Therefore, the off-resonant current out of the drain is simply the AC signal

attenuated by the resistance of the beam. Computing the static beam resistance from

Equation (2.19), and using Ohm’s law to compute the output voltage develops a result

slightly larger than predicted by the simulation. This is reasonable when the static

deflection present in the beam due to the DC bias is considered. The added deflection

will increase the piezoresistance according to Equation (2.19) and correspondingly

decrease the output current. Near resonance, the beam motion creates fluctuations

in the resistance and capacitance. The oscillation in the beam resistance leads to both
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larger and smaller resistances, but, from an average perspective, the RMS value of

the resistance is increasing as resonance is approached. Therefore, it is reasonable to

assume that the output current will decrease as the resonant frequency is approached.

The motional capacitance allows some of the DC bias to generate small currents

flowing from the gate to the beam. It is interesting to consider the implications

of the nonlinearity of the system, especially with regard to the generation of other

frequency components. While the input frequency will commonly see a larger off-

resonant current and an antiresonance, a harmonic or mixed-frequency component

would see a small off-resonant current, as the motion of the beam would be too

small to produce harmonic signals. The extra frequency component would only have

more amplitude near resonance where the motional effects allow for generation of

these terms. Therefore it is reasonable to expect an antiresonance in one frequency

component but a resonance in another harmonic at the same time. Indeed, this is

what is observed in Section 5.1.

In Case 2, the AC signal cannot reach the output port at any frequency because

the beam’s midpoint voltage is greater than the amplitude of the AC signal. Thus

the magnitude of the output current is dependent solely on the modulation of the DC

biases through the piezoresistive effects, and the AC signal controls the vibration of

the beam defining that modulation. The capacitive interaction serves only to leach

current from the beam to the lower potential gate. Off-resonant frequencies generate

little motion, and therefore there is negligible harmonic content in the output. Near-

resonant inputs allow the modulation of the DC bias to generate AC currents, and

despite the current lost to the gate, the output sees a peak current at resonance for

its harmonic content. If the DC content of the output current was observed, it would

be expected that there would be an antiresonance with a larger off-resonance current,

similar to that observed for Case 1.

Cases 3 and 4 combine the AC and DC signals on a single input, and can be

considered as opposite loading conditions for the same circuit. Considering Case

3 in off-resonant loading, only the AC component of the signal will traverse the
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capacitance, after attenuation by half of the beam resistance. This will produce

only a small off-resonance current, but it will be larger than that in Case 2, which

has no direct AC contribution. Near-resonant currents will increase, as the RMS

capacitance increases according to Equation (2.10). The increase in capacitance will

correspondingly increase the output current following a capacitor’s current-voltage

relation, Equation (2.13). A slight current addition from the DC bias on the drain can

also be relied upon to increase the output current through the motional capacitance

term. When the circuit is reversed, the same effects are achieved, since the capacitive

and resistive elements are in series.

To adjust from Cases 3 and 4 to the coupled cases, 5 and 6, it is only necessary to

consider both halves of the beam’s resistance as being in parallel, instead of focusing

on only one half. Ultimately this reduces the effective resistance, allowing for a larger

output current. A smaller effective resistance also implies that more of the voltage

drop occurs across the beam-gate capacitance, resulting in a larger forcing voltage and

thus more displacement, cascading into a larger capacitance and capacitive current.

The increased capacitive current would be balanced by an accompanying increase in

the RMS resistance for the beam. However, in comparison to Cases 3 and 4, the

decreased resistance arising from treating the two halves of the beam resistance in

parallel means that the dominant effect will be to see a larger peak current flow.

In each case, these predictions align with the shape and amplitude order revealed

through the simulation.

Each set of cases saw a distinct frequency, as correlated in Table 6.2. This phe-

nomena is predicted by the analysis presented in Section 5.2. Since the geometry and

residual stress are not changing between each configuration, it must be the electro-

static terms alone that are altering the response location. The voltage in question

here is the potential across the beam-gate capacitor. Once again, let V (t) be approx-

imated by V = Vrms. For Case 1, the DC bias forms a constant 6 V potential on

one side, and the 40 mVrms AC input provides a 20 mVrms potential on the other,

leading to a maximum voltage of 6.02 Vrms. Similarly, Case 2 has a constant 40
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mVrms AC signal on one side of the capacitor, and a 3 V DC potential on the beam

side due to the beam resistance. The 3.04 Vrms voltage for Case 2 will result in less

electrostatic softening and result in a higher resonance frequency than Case 1. This

prediction matches what is observed in the simulation. The single path excitation

Cases, 3 through 6, are more challenging to compare with Cases 1 and 2, since the

forcing voltage is tied to the current through the entire path. It should again be noted

that the actual resonance location is clearly dependent on the nonlinear terms in the

beam equations, and the forcing voltage is also coupled to the piezoresistive effects

and the various capacitive effects, making a precise prediction of its location difficult,

as shown in Section 5.2. This is why the prediction for a larger forcing voltage in

Cases 5 and 6, as compared to Cases 3 and 4, can be accurate while 5 and 6 show a

larger peak frequency.

6.2 Development of Systems for Self-Oscillation

The potential to develop small, on-chip frequency sources is a very attractive

draw of M/NEMS. Stable frequency sources can be used in applications ranging from

clock signals to mass sensors. While quartz crystals are cheap and prolific, the po-

tential to miniaturize and integrate oscillators on chip is clearly appealing. Several

previous efforts have already successfully shown MEMS devices that can operate as

self-oscillators with the proper feedback arrangement [4, 68–70].

6.2.1 Circuit Design

To investigate the potential of the nanoresonators for use as self-oscillators, a sim-

ulation was created to directly excite the device model, simulating an on-chip set-up

rather than the probe station testing used in the experimentation. The simulation

used a 1 kΩ resistor to ground on the source node in order to consider a voltage

output. The simulation allowed the rapid testing of several input/output configu-

rations to optimize the layout. Based on observations from prior work [69, 70], the
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primary layout placed a DC bias on the back gate to tension the beam and cause an

initial transient vibration that was nourished into a sustained oscillation through the

feedback loop. Other layouts were investigated, but combinations were restricted by

the desire to avoid needing to implement a bias-tee to those that isolate DC and AC

signals on different ports.

Drain 

Source 

Back Gate 

1 𝑘Ω 

𝑉𝐷𝐶  

Bandpass 

Filter 
Amplifier 

Phase 

Shifter 
𝐻𝑐𝑖𝑟 

Figure 6.3. The circuit schematic for the primary feedback system
investigated. The output was considered to be the voltage across the
1 kΩ resistor.

The simulations focused on a 6.3 µm long beam with a 120 nm wide by 110 nm

tall cross-section. All other parameters were kept constant with those used in the

Table 4.1. The feedback setup had four primary settings that could be tuned, besides

the circuit layout. The filter pass band (center frequency and relative bandwidth),

the amplifier gain, and the phase shift. Note that within the simulation, the phase

shift was set by adjusting a desired frequency. However, testing revealed that the set

frequency receives a −133◦ phase shift through the shifter instead of −90◦ as might

be expected. Therefore, the set frequency was raised to create a constant −90◦ phase

shift up to at least 4ω. While this wide band is not a direct representation of a

physical system, the filtering of the feedback signal implies that only the phase shift

around the passband is relevant in any simulation. This allows the wideband to be

considered relevant for multiple filter frequencies.
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6.2.2 Simulated Response

Of the different input and feedback configurations tested, the case pictured in

Figure 6.3, and described above, produced the best oscillation for the smallest gains.

The following comments are relevant to that circuit layout.
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Figure 6.4. The output spectrum across the 1 kΩ resistor without
any filtering in the feedback loop. Hcir = 40.4785 dB (109x).

The nonlinearities of the resonator inherently produce multiple frequencies within

the output voltage. Therefore, initial feedback attempts resulted in a steady oscilla-

tion with a dominant fundamental frequency of 25.2718 MHz, but with many higher

harmonics also present, as seen in Figure 6.4. In order to restrict the final output to

a single frequency, a filter was used prior to the amplifier. Figure 6.5 shows that the

filter can successfully select which frequency dominates the output of the oscillator.

Each harmonic requires a slightly different gain setting to achieve a stable output.

The variation in the required gain can be attributed to the small initial amplitude for

the mixing-generated higher harmonic terms, which will require more gain to achieve

a stable oscillation.

The initial gain needed in the feedback loop was estimated using a transient re-

sponse from a DC step input with no feedback loop present. Referencing the peak
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Figure 6.5. Spectrum of the voltage output across the 1 kΩ resistor
for ω and 2ω filters in the feedback loop. Note that the 2ω response
is likely to result in pull-in. Hcir,ω = 41.7981 dB (122x), Hcir,2ω =
41.5836 dB (120x).

output amplitude to the initial DC voltage gave some measure of the system attenu-

ation. Using the amplitude condition of the Barkhausen stability criterion [68],

|Hres ×Hcir|fosc > 1 6 |Hres ×Hcir| = 0◦, (6.1)

the feedback gain could be selected to counteract the attenuation. This method

correctly predicted how much feedback gain would be needed, before the filter was

added. However, the initial transient measurement does not provide an estimate of

the phase shift required to meet the phase condition, because there is no AC input

reference. In the absence of an estimate, the simulations initially used a 90◦ phase

lag in correspondence with what was shown to be successful in prior work [68–70].

Other phase lags were tested, and those near 90◦ and 270◦ would produce sustained

oscillations. This corresponds with the idea that the phase shift within the resonator

is rooted in capacitive interaction and harmonic mixing, which inherently produce 90◦

shifts. It was noted that slight variations in the phase shift would produce different

oscillating frequencies. Reference [68] suggests that

fosc = fr

(
1 +

∆ψ

2Q

)
, (6.2)
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where ∆ψ is the phase shift beyond what is needed to reach the Barkhausen criteria,

in this case −90◦, fr is the nominal resonance frequency, and Q is the quality factor

of the resonator which is a measure of the system’s damping. This explains the

frequency-phase link and could potentially provide a methodology for quantifying the

damping of the nanoresonators, assuming the nominal resonant frequency as known.
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Figure 6.6. The change in the transient beam deflection due to a
slight increase in feedback gain. The smaller oscillation is negligible
in comparison to the larger oscillation, which is assumed to represent
pull-in.

Theoretically, the amplifier gain could be increased to achieve a larger output

signal. Under practical conditions, the resonator quickly runs into issues with forcing

voltages that produce pull-in effects. Because the resonator model expands the elec-

trostatic forcing around z(t) = 0, the model does not accurately predict responses for

large amplitude deflections (see Section 2.5). If the common 1/3 rule of static pull-in

is implemented and it is, rather conservatively, considered that pull-in will occur when

the beam deflects to 1/3 of the gap distance, then a threshold for which simulations

can be assumed to be valid or not is created. For the standard 144 nm gap on these

devices, this gives a maximum valid simulation displacement of 48 nm. This proves to

be a very limiting cut-off, and severely restricts the viable inputs and gains. Table 6.4

shows the final combinations that produce a sustained oscillation. Figure 6.6 shows
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that changing from a gain of 41.7272 dB (122x) to 41.7981 dB (123x) creates a large

difference in the beam deflection for a first harmonic, 2 VDC test case. On the other

hand, too little gain allows the transient response to quickly dissipate. Increasing the

DC bias also increases the amplitude of the beam displacement, resulting in no gain

that satisfactorily creates oscillation without pull-in for a 3 Vdc step input and higher.

Excitation at the second harmonic has a more restricted set of working frequencies,

because of the need for a larger gain to overcome the smaller initial amplitude and

due to the static beam deflection at steady state.

Table 6.4. Required Circuit Gains.

DC Bias 1st Harmonic Gain (dB)

1 42.3454− 42.4770 (131x-133x)

2 41.7272 (122x)

3 N/A

Due to the narrow ranges of viable gains and input power, along with the very

small power output of the devices, there appears to be few benefits to further pursuing

the use of these devices as self-oscillators, since other devices have already shown a

higher propensity for use in this field [4, 51].

6.3 A Study of Coupled Devices

While the coupling of the beam displacement with the electrostatic dynamics of

the beam voltage drastically increases the difficulty and effort required to analytically

analyze a single nanoresonator, the combination of even two of the systems would

prove extremely difficult to analyze. It is under these circumstances that the power

of the simulation shines. It is no more difficult to compute the response of two or

more devices than it is for a single device. From a design standpoint, there are many

situations where the combination of multiple devices could be beneficial. The ability
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to design an on-chip filter using a combination of devices in both the pass- and stop-

band configurations seen in Section 6.1 would allow a designer to create very precise

filter responses.

The simulation was used to analyze the effects of directly connecting two of the

beam systems, each excited by a common back gate. This accurately represents the

case for the majority of nanobeams that would be fabricated on chip, since there is

only one back gate substrate layer that all devices interact with. The exception to

this would be a chip of devices that were all fabricated to be actuated in-plane, in

which case each side gate could be independently biased. Both nanobeams matched

the parameters listed in Table 4.1, with a width of 120 nm. The length of each

beam was varied to study the effects of changing the natural frequencies on the final

output power. In order to provide each nanobeam with similar amounts of harmonic

forcing, the AC signal was applied to the back gate, while the DC bias was contributed

through the drain of the first nanoresonator. The second nanoresonator then receives

the same AC gate signal while also receiving both an AC and DC signal through

its drain. Therefore, the final response is not simply a product of the two resonant

frequencies, but also the order in which they are placed in the final filter setup. Figure

6.7 depicts this layout.

Device 1 Device 2 
Source Drain Drain Source 

Back 

Gate 

Back 

Gate 

𝑉𝐴𝐶 

𝑉𝐷𝐶  50 Ω 

Figure 6.7. Circuit layout for a series connection of two nanores-
onators which exhibits a coupling effect when the resonant frequencies
are similar to each other.
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When the lengths of the beam are different, such that the resonances are suffi-

ciently separated, then the net system response features two separate resonant peaks,

as seen in Figure 6.8. Here the amplitude of the first beam’s vibration is larger than

that of the second. As the length of the second beam approaches 6 µm, the peaks

begin to overlap, producing a joint resonance of a greater bandwidth, see Figure 6.9.

Finally, as the natural frequencies become closer, the system output becomes a single

pass-band, with one section of increased amplitude where both resonances overlap.

It is interesting to note that in the case of Figure 6.10, the amplitude of the second

beam is now dominant over that of the first beam, and that both resonances exhibit

their bifurcation at the same frequency. The second beam’s response is bifurcating

sooner than would be predicted from the previous cases, and results in a narrower

passband for the overall system.
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Device 1 (L=6 µm)
Device 2 (L=6.4 µm)

Figure 6.8. The output power across a 50 Ω resistor (left) and beam
displacements (right) for a series of nanoresonator systems. The de-
vices were actuated using VD,1 = 6 Vdc and Vb,1,2 = 40 mVrms.

If the lengths are reciprocated and kept within 1 µm, the second device now

exhibits the larger vibration, with the same system output response. Interestingly, as

the length of the first beam is now increased, the system response remains coupled

(Figure 6.12) until a larger difference in lengths is achieved than was require for
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Device 2 (L=6.2 µm)

Figure 6.9. The output power across a 50 Ω resistor (left) and beam
displacements (right) for a series of nanoresonator systems. The de-
vices were actuated using VD,1 = 6 Vdc and Vb,1,2 = 40 mVrms.
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Device 1 (L=6 µm)
Device 2 (L=6.1 µm)

Figure 6.10. The output power across a 50 Ω resistor (left) and
beam displacements (right) for a series of nanoresonator systems. The
devices were actuated using VD,1 = 6 Vdc and Vb,1,2 = 40 mVrms.

separation when beam 1 was larger than beam 2 (Figure 6.13). Throughout all of

this second set of responses, the first beam has maintained the larger amplitude

displacement. Until the beam resonances have moved far enough apart to decouple

the system resonance, both nanobeams bifurcate at the same frequency. This behavior
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occurs in Figure 6.12, despite the lack of response coupling for the reciprocal beam

arrangement in Figure 6.9. In this coupled case, neither beam reaches the same peak

displacement as when decoupled, bifurcating at a frequency in between both of the

peak frequencies observed in Figure 6.9.
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Device 2 (L=6 µm)

Figure 6.11. The output power across a 50 Ω resistor (left) and
beam displacements (right) for a series of nanoresonator systems. The
devices were actuated using VD,1 = 6 Vdc and Vb,1,2 = 40 mVrms.

It is proposed that the coupling effect arises when the start of a resonator’s pass-

band begins within the pass-band of the other. As the length of the second beam

decreases to match that of the first beam (Figures 6.8 through 6.10), the response is

only coupled once the first beam’s pass-band begins inside of the pass-band of the

second resonator. Similarly, as the length of the first beam increases away from the

length of the second beam (Figures 6.11 through 6.13), the responses continue to

bifurcate together until the length of the first beam is sufficient to drop the resonance

low enough that the pass-band of the second beam no longer begins within the pass-

band of the first. It is reasonable to consider that when one of the systems begins

its resonance under a loading defined by the resonant amplitude of the other device,

that when the initial resonant system bifurcates, the transition is enough to ruin

the stability of the other system. The difference between Figure 6.11 and Figure
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6.13 shows that the systems can exhibit a strong relation between the electrical and

mechanical responses, as when they are bifurcating and producing a joined system

resonance in Figure 6.11. Or, they may exhibit relatively independent responses, as is

the case in Figure 6.13, where the system has an electrical resonance corresponding to

each of the nanoresonators, but neither beam increases in amplitude during the other’s

resonance, and the mechanical resonances of each subsystem seem to be independent

of the other.
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Device 1 (L=6.2 µm)
Device 2 (L=6 µm)

Figure 6.12. The output power across a 50 Ω resistor (left) and
beam displacements (right) for a series of nanoresonator systems. The
devices were actuated using VD,1 = 6 Vdc and Vb,1,2 = 40 mVrms.

With these results, it may be possible to create a series of nanoresonators in order

of increasing frequency to create a much broader pass-band. Alternatively, these

phenomena could be utilized to increase the reliability of a chip design. By designing

a series of coupled devices of the same length, any tolerance issues should be mitigated

by the coupling of the net response to an average near the desired response.
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Device 2 (L=6 µm)

Figure 6.13. The output power across a 50 Ω resistor (left) and
beam displacements (right) for a series of nanoresonator systems. The
devices were actuated using VD,1 = 6 Vdc and Vb,1,2 = 40 mVrms.
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CHAPTER 7. CONCLUSION

It was shown that the mechanical nature of the nanobeam system can be modeled

using a Bernoulli-Euler beam model with mid-plane stretching and residual stress.

The electrical architecture of the system can be modeled using a combination of

variable resistors and capacitors, whose values are linked to the deformation of the

beam. This provides a system of equations determining the beam deflection and

voltage.

Experimental data was collected on a prototypical device in Chapter 3, and used

to qualitatively validate the performance of the model in Chapter 4. The system’s

equivalent circuit was simulated and studied to provide insight into the possible prac-

tical applications of the nanoresonator. A study relating the application of the AC

and DC signals to the output of the system and whether it displays a resonant or anti-

resonant response was presented in Section 6.1. It was also shown that the electrical

power provided to the system tunes the resonant frequency in Sections 5.1, 5.2, and

6.1. This is given as grounds for recommending against the use of mixing method-

ologies in experimentation, since the simulation shows great discrepancies between

the observed output in this case and a measurement taken directly at the excitation

frequency.

The mathematical system was used to predict the tuned, linear, natural frequency

in Section 5.2, but the simulation shows that this only accurately predicts the tuning

behavior of the down-sweep resonance. The hardening response results in a peak

frequency greater than what is predicted by the natural frequency. The nonlinear-

ities and displacement-voltage interactions lead to a different tuning behavior than

predicted for the up-sweep responses. In Section 5.3, the difficulties of achieving a

softening response for a beam with a dominant cubic nonlinearity were explored, and
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it was suggested that an initially curved beam would be beneficial to achieving a

design that could alternate between a hardening and softening response backbone.

Further case studies were also used to demonstrate possible applications of the

devices, such as a filter or self-oscillator. Section 6.2 demonstrated that while the

system is easily capable of achieving self-oscillation, the feedback requires a very

narrow band of large amplifications to produce a small output signal. Therefore it is

proposed that the devices not be considered for this use. It was proposed in Section

6.3 that using multiple resonators in series could serve as a method to overcome

fabrication tolerances through the coupling of their responses.



LIST OF REFERENCES



74

LIST OF REFERENCES

[1] A. K. Huttel, G. A. Steele, B. Witkamp, M. Poot, L. P. Kouwenhoven, and
H. S. J van der Zant. Carbon nanotubes as ultrahigh quality factor mechanical
resonators. Nano Letters, 9(7):2547–2552, 2009.

[2] K. Chen, X. Liu, A. Kovacs, W. J. Chappell, and D. Peroulis. Antibiased electro-
static RF MEMS varactors and tunable filters. IEEE Transactions on Microwave
Theory and Techniques, 58(12):3971–3981, 2010.

[3] A. Bachtold, P. Hadley, T. Nakanishi, and C. Dekker. Logic circuits with carbon
nanotube transistors. Science, 294(5545):1317–1320, 2001.

[4] X. L. Feng, C. J. White, A. Hajimiri, and M. L. Roukes. A self-sustaining
ultrahigh-frequency nanoelectromechanical oscillator. Nature Nanotechnology,
3(6):342–346, 2008.

[5] J. Chaste, L. Lechner, P. Morfin, G. Feve, T. Kontos, J.-M. Berroir, D.C. Glattli,
H. Happy, P. Hakonen, and B. Placais. Single carbon nanotube transistor at GHz
frequency. Nano letters, 8(2):525–528, 2008.

[6] D. Grogg and A. M. Ionescu. The vibrating body transistor. IEEE Transactions
on Electron Devices, 58(7):2113–2121, 2011.

[7] M. Koskenvuori and I. Tittonen. Towards micromechanical radio: Overtone
excitations of a microresonator through the nonlinearities of the second and
third order. Journal of Microelectromechanical Systems, 17(2):363–369, 2008.

[8] V. Gouttenoire, T. Barois, S. Perisanu, J.-L. Leclercq, S. T. Purcell, P. Vincent,
and A. Ayari. Digital and FM demodulation of a doubly clamped single-walled
carbon-nanotube oscillator: Towards a nanotube cell phone. Small, 6(9):1060–
1065, 2010.

[9] B. Lassagne, D. Garcia-Sanchez, A. Aguasca, and A. Bachtold. Ultrasensi-
tive mass sensing with a nanotube electromechanical resonator. Nano Letters,
8(11):3735–3738, 2008.

[10] J. Arcamone, M. Sansa, J. Verd, A. Uranga, G. Abadal, N. Barniol, M. van den
Boogaart, J. Brugger, and F. Perez-Murano. Nanomechanical mass sensor for
spatially resolved ultrasensitive monitoring of deposition rates in stencil lithog-
raphy. Small, 5(2):176–180, 2009.

[11] E. Forsen, G. Abadal, S. Ghatnekar-Nilsson, J. Teva, J. Verd, R. Sandberg,
W. Svendsen, F. Perez-Murano, J. Esteve, E. Figueras, F. Campabadal, L. Mon-
telius, N. Barniol, and A. Boisen. Ultrasensitive mass sensor fully integrated
with complementary metal-oxide-semiconductor circuitry. Applied Physics Let-
ters, 87(4):043507, 2005.



75

[12] J. Chaste, A. Eichler, J. Moser, G. Ceballos, R. Rurali, and A. Bachtold. A
mechanical mass sensor with yoctogram resolution. Nature Nanotechnology,
7(5):301–304, 2012.

[13] J. L. Lopez, J. Verd, J. Teva, G. Murillo, J. Giner, F. Torres, A. Uranga,
G. Abadal, and N. Barniol. Integration of RF-MEMS resonators on submi-
crometric commercial CMOS technologies. Journal of Micromechanics and Mi-
croengineering, 19(1):015002, 2009.

[14] L. Yu, H. Pajouhi, M. R. Nelis, J. F. Rhoads, and S. Mohammadi. Tunable,
dual-gate, silicon-on-insulator (SOI) nanoelectromechancial resonators. IEEE
Transactions on Nanotechnology, 11(6):1093–1099, 2012.

[15] J. Teva, G. Abadal, A. Uranga, J. Verd, F. Torres, J. L. Lopez, J. Esteve,
F. Perez-Murano, and N. Barniol. From VHF to UHF CMOS-MEMS mono-
lithically integrated resonators. In Proceedings of the IEEE 21st International
Conference on Micro Electro Mechanical Systems (MEMS), pages 82–85. IEEE,
2008.

[16] E. Ollier, C. Dupre, G. Arndt, J. Arcamone, C. Vizioz, L. Duraffourg, E. Sage,
A. Koumela, S. Hentz, G. Cibrario, P. Meininger, K. Benotmane, C. Mar-
coux, O. Rozeau, G. Billiot, E. Colinet, F. Andrieu, J. Philippe, F. Aussenac,
D. Mercier, H. Blanc, T. Ernst, and P. Robert. Ultra-scaled high-frequency
single-crystal Si NEMS resonators and their front-end co-integration with CMOS
for high sensitivity applications. In Procedings of the IEEE 25th International
Conference on Micro Electro Mechanical Systems (MEMS), pages 1368–1371.
IEEE, 2012.

[17] X. M. H. Huang, C. A. Zorman, M. Mehregany, and M. L. Roukes. Nanodevice
motion at microwave frequencies. Nature, 421(6922):496–497, 2003.

[18] S. Krylov and S. Serentensky. Higher order correction of electrostatic pressure
and its influence on the pull-in behavior of microstructures. Journal of Microme-
chanics and Microengineering, 16(7):1382–1396, 2006.

[19] B. Bhushan and G. B. Agrawal. Stress analysis of nanostructures using a finite
element method. Nanotechnology, 13(4):515–523, 2002.

[20] E. Hamad and A. Omar. An improved two-dimensional coupled electrostatic-
mechanical model for RF MEMS switches. Journal of Micromechanics and Mi-
croengineering, 16(7):1424–1429, 2006.

[21] C. O’Mahony, M. Hill, R. Duane, and A. Mathewson. Analysis of electromechan-
ical boundary effects on the pull-in of micromachined fixed–fixed beams. Journal
of Micromechanics and Microengineering, 13(4):S75–S80, 2003.

[22] F. Tay, X. Jun, Y. Liang, V. J. Logeeswaran, and Y. Yufeng. The effects of
non-parallel plates in a differential capacitive microaccelerometer. Journal of
Micromechanics and Microengineering, 9(4):283–293, 1999.

[23] A. N. Cleland. Thermomechanical noise limits on parametric sensing with
nanomechanical resonators. New Journal of Physics, 7(235):1–16, 2005.



76

[24] J. A. Judge, D. M. Photiadis, J. F. Vignola, B. H. Houston, and J. Jarzynski.
Attachment loss of micromechanical and nanomechanical resonators in the limits
of thick and thin support structures. Journal of Applied Physics, 101(1):013521,
2007.

[25] J. A. Judge, J. F. Vignola, and J. Jarzynski. Dissipation from microscale and
nanoscale beam resonators into a surrounding fluid. Applied Physics Letters,
92(12):124102, 2008.

[26] S. Ai and J. A. Pelesko. Dynamics of a canonical electrostatic MEMS/NEMS
system. Journal of Dynamics and Differential Equations, 20(3):609–641, 2008.

[27] W. G. Conley, A. Raman, C. M. Krousgrill, and S. Mohammadi. Nonlinear and
non-planar dynamics of suspended nanotube and nanowire resonators. Nano
Letters, 8(6):1590–1595, 2008.

[28] A. Vyas, A. K. Bajaj, A. Raman, and D. Peroulis. Nonlinear micromechanical
filters based on internal resonance phenomenon. In Proceedings of the Topical
Meeting on Silicon Monolithic Integrated Circuits in RF Systems, pages 35–38.
IEEE, 2006.

[29] R. C. Batra, M. Porfiri, and D. Spinello. Review of modeling electrostati-
cally actuated microelectromechanical systems. Smart Materials and Structures,
16(6):R23–R31, 2007.

[30] R. Lifshitz and M. L. Roukes. Thermoelastic damping in micro- and nanome-
chanical systems. Physical Review B, 61(8):5600–5609, 2000.

[31] E. M. Abdel-Rahman, M. I. Younis, and A. H. Nayfeh. Characterization of the
mechanical behavior of an electrically actuated microbeam. Journal of Microme-
chanics and Microengineering, 12(6):759–766, 2002.

[32] H. M. Ouakad and M. I. Younis. Nonlinear dynamics of electrically actuated
carbon nanotube resonators. Journal of Compuational and Nonlinear Dynamics,
5(1):011009, 2009.

[33] A. Eichler, J. Moser, J. Chaste, M. Zdrojek, I. Wilson-Rae, and A. Bachtold.
Nonlinear damping in mechanical resonators made from carbon nanotubes and
graphene. Nature Nanotechnology, 6(6):339–342, 2011.

[34] A. Uranga, J. Verd, E. Marigo, J. Giner, J. L. Munoz-Gamarra, and N. Barniol.
Exploitation of non-linearities in CMOS-NEMS electrostatic resonators for me-
chanical memories. Sensors and Actuators A: Physical, 197(0):88–95, 2013.

[35] D. Garcia-Sanchez, A. San Paulo, M. J. Esplandiu, F. Perez-Murano, L. Forró,
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