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ABSTRACT

Cummiskey, Brian R. MSME, Purdue University, May 2015. Characterization and
Evaluation of Head Impact Sensors and Varsity Football Helmets. Major Professor:
Eric A. Nauman, School of Mechanical Engineering.

An increased understanding of the effects of brain injury in recent years has led to

greater attention being given to the topic. A desire to investigate the causal agents

of these injuries in athletes has led to the development and use of several devices that

track head impacts as well as improving helmet technology to protect players from

said impacts. In order to determine which devices are able to best measure head

impacts, a Hybrid III headform was used to quantify the accuracy for translational

and angular accelerations. Testing was performed by means of administering impacts

to a helmet on the headform, with each device mounted according to manufacturer

instruction, using an impulse hammer. For peak translational acceleration, the worst

locational root-mean-square error for a head mounted device was 74.68% while the

worst for a helmet mounted device was 297.62%. Head mounted devices outperformed

those mounted in helmets and should be the basis of future sensor designs. For the

sake of determining the effectiveness of recent helmet innovations, several helmet

models were fastened to the headform in order to measure the response accelerations

from impacts. The impulse hammer provided transient force data which allowed

for the comparison of the input blow and output accelerations for each impact, and

several metrics were defined and evaluated to determine helmet impact mitigation

ability. Relative helmet effectiveness between models varied by region. The lowest

peak translational acceleration metric was 0.31, and the highest was 0.57. The cor-

responding angular acceleration metric had a low of 0.23 and a high above one at

1.71. The helmets evaluated were more consistent in mitigating peak translational

acceleration than peak angular acceleration.
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1. INTRODUCTION

1.1 Motivation

A 2010 study of traumatic brain injury (TBI)-related emergency department vis-

its, hospitalizations, and deaths reported a total 2.5 million cases, up from 1.7 million

three years prior [1]. These head traumas typically result from motor vehicle col-

lisions, falls, and sports-related injuries [2]. For a variety of reasons, athletes are

particularly at risk [3]. Estimates have placed the number of sports-related TBIs in

the United States between 1.6 and 3.8 million per year, including those cases that did

not seek out medical care. [4]. A 2013 epidemiological study reported that 49.2% of

reported TBI in sports are determined to be concussions, and that the most common

mechanism (38.1%) of sport-related TBI was being either struck or kicked in football

or rugby [5]. [6].

In addition to concussions, it has been further shown that a large percentage

of high school football players experience substantial changes in neurophysiology in

the absence of easily recognizable symptoms as a result of repeated head impacts [7]

[8] [9]. Several recent studies have sought to better understand the nature of the

problem through questionnaires [10], quantification of impact mitigation by helmets

[11], neurocognitive testing [12], head impact tracking and recording [13] [14] [15] [16],

medical imaging, or a more comprehensive combination of these methods [17] [18]

[19] [20]. In order to relate head impacts to changes in neurophysiology, accurate

reconstruction of head accelerations during practices and games is critical.

For these purposes, the Head Impact Telemetry System (HITS) was the first

commercially available system to estimate and record translational and angular ac-

celerations. Additional systems have since been developed which possess a variety

of attachment mechanisms and differing electronics packages to interpret and record
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accelerations. It should also be noted that many of them have been modified for

use in other contact sports, including soccer [21], hockey [22], rugby, and lacrosse,

resulting in a large range of acceleration measurement systems.

Motivated by the sport-related TBI statistics, there is interest in reducing the fre-

quency and severity of head impacts experienced by athletes participating in contact

sports. The primary protective system used in football, lacrosse, and hockey is the

helmet, which has evolved dramatically over the years. Potential correlations have

been investigated between improved helmet design and reduced incidence of concus-

sion [23], although the studies to date have been inconclusive [24] [25] [26] [27]. A

comparison of modern varsity football helmets and their leather predecessors was able

to demonstrate that many modern helmets have been optimized to perform well un-

der certain conditions but do not necessarily do so under those subconcussive impacts

commonly experienced by football players [11]

1.2 Objectives

Although an early study demonstrated that the HITS system provided accurate

results for CoM impacts under highly idealized conditions [13], a later study, under

more realistic conditions, demonstrated a root-mean-square error (RMSE) for the

translational acceleration as high as 189.7% for one particular location on the helmet

[28]. The variability of sensor deployments and their methods for estimating the

accelerations of the head’s CoM, combined with limited assessment data, motivate

a need for their simultaneous comparison. As such, one of the major objectives of

this study was to not only determine the relative accuracies of each device, but also

to make recommendations for future sensor design aimed at improving head impact

measurement accuracy.

While helmet designs continue to evolve, there is little published data document-

ing the effectiveness of recent innovations. To date, independent verification of helmet

effectiveness has evaluated helmets through the administering of highly idealized im-
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pacts. This has been through the use of drop towers [29] and pendulums [11], but

these data are rarely released apart from in a form that has little physical signifi-

cance. It should also be noted that impacts experienced by football players are not

directed only normal to the surface of the helmet. There is also great variety in the

locations of head impacts experienced by football players. Prior studies have taken

neither of these facts into consideration in their experimental designs. To this end,

the other major objective of this study was to evaluate the locational effectiveness of

several commonly-used helmets in their ability to mitigate the severity of resultant

kinematics exhibited by the head under variable impact load conditions.
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2. LITERATURE REVIEW

2.1 Head Injury

Damage to the brain is one of the most difficult to understand, making diagnosis,

treatment, and prevention difficult. Several forms of brain injury have been clas-

sified over the years. Traumatic brain injury (TBI), and its less severe form mild

traumatic brain injury (mTBI), are injuries caused by externally applied mechanical

trauma. Chromic traumatic encephalopathy (CTE) is a degenerative disease of the

brain that results in individuals who have experienced head injury. These injury and

disease states have profound economic consequences [30] in addition to the personal

difficulties faced by the individuals who experience them.

Concussions are the most commonly diagnosed type of TBI, and is considered syn-

onymous with mTBI. A concussion is described as a temporarily partial loss of brain

function, which is sometimes evidential through headaches, difficulty with concentra-

tion, hindered coordination and balance, and memory loss [31]. Diagnosis involves a

physician and requires checking the individual for said symptoms, though they can

manifest in a wide variety of ways and thus can be difficult to detect. The primary

mechanism of treatment is rest of the individual, both physical and cognitive, until

symptoms are completely gone and potentially longer [32].

2.2 Return to Play Criteria

Football has been described as being in the middle of a ‘Concussion Crisis’ as

coined by one author [33] and perpetuated by others [34]. An initial report that

looked at the epidemiology of concussion in football players indicated that over five

percent of players were receiving at least one concussion during the monitored season,

and that those who received at least one concussion were three times more likely to
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receive another during the same season as the initial [35]. Recent study of the effects

of these concussions on retired National Football League (NFL) players has shown

a prevalance of CTE in these players post-mortem with the first case discovered in

2005 [36] and several more following suit [37].

Spurred on by these findings, the policy behind returning football athletes to play

began to fall under reconsideration [38]. Concucssed players would receive evaluations

that sought to diagnose the presence or absense of posttraumatic amnesia as a criteria

by which to determine safety in return to play decisions [39]. One study had previously

suggested using a pre-season baseline from which to compare a player’s performance

post-injury so as to have an objective means of determining a player’s state [40]. An

NFL study determined that neuropsychological testing had an important place in on-

field evaluation of players [41], but also reported that no statistical association could

be made for likelihood of concussion between same game return to play and over

seven days delay prior to return to play [42]. Computer-based neuropsycholocial test-

ing that built on this principle then began to grow in popularity. One such test that

became somewhat widely used was the Immediate Post-Concussion Assessment and

Cognitive Testing (ImPACT) which had the player complete the computerized assess-

ment and his score would be compared against his own baseline [12] [43]. Questions

regarding the diagnosticity of these tests have been raised due to high false positive

rates in flagging controls. In light of this growing body of research, the NFL has since

modified its policy on return to play criteria to require neurological examination by

an independent neurological consultant in addition to the team physician [44].

2.3 Subconcussive Impacts

TBI has been studied for many years, but classical investigations have been cen-

tered around catastrophic events such as vehicular collisions [45]. Attempts at de-

veloping metrics that could quantify impact severity were accomplished in the form

of the Head Injury Criterion (HIC) [46] and Gadd Severity Index (GSI) [47]. How-
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ever, there was little investigation into head impacts other than the ones that directly

caused brain injury until a study that coined the term ‘Second Impact’ [48]. This

was among the first publications to formally postulate that sequential subconcussive

impacts could cause injury through compounding means rather than treating them

as isolated events.

One study with hockey players was able to utilize event-related potentials and

post-concussion syndrome self reports to show statistically significant changes be-

tween players who experienced no concussions and those with three or more [49].

More recently, studies have sought out to characterize the quantity and magnitude of

head impacts experienced by football players at both the high school and collegiate

levels [50]. Subconcussive impacts have been characterized to cause cognitive declines

that would typically be associated with aging [51]. CTE remains elusive in its connec-

tions with subconcussive impacts, but searches for biomarkers enabling its diagnoses

in alive athletes and thus its correlations with these impacts are underway [52].

Several studies have performed statistical analyses to determine what sort of cor-

relations exist between subconcussive impacts and various measures taken from

the players. Functional magnetic resonance imaging (fMRI) scans and computer-

based neuropsychological testing have become popular means of detecting neurologi-

cal changes in players [18] [17] [19]. Effects of subconcussive impacts on brain connec-

tivity have been expounded on [7] [8]. Recent investigations have even begun to make

predictions of deviant brain metabolism based on measured head impacts [20]. Spec-

troscopic evidence of brain injury has been determined in those athletes who went the

entire football season with no concussion diagnoses [9]. The effects of subconcussive

impacts are growing, and our understanding is becoming clearer as a consequence.

2.4 Helmet Development

One of the means of protecting the athlete’s head has been through the use of

personal protection equipment. For football, the use of the helmet can be traced
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back over 100 years if one includes their leather predecessors [53], but they did not

become mandatory unti 1939 for the collegiate level [54] and 1943 for the NFL [55].

Helmet developments followed with the change to primarily unibody molded plastic

shells, which increased helmet longevity as compared to their leather predecessors.

Air bladders came to replace traditional padding materials, and helmets began to be

fastened more securely through the advancement from two to four attachment point

chin straps.

More recently, studies have begun to investigate the epidemiological effects of hel-

met design on football players. One study evaluated two populations of high school

football players, one which wore new Riddell Revolution helmets and the other which

wore more traditional helmets. The findings were such that concussion rates decreased

from 7.6% to 5.3% with statistical significance, and these changes were attributed to

the technology and design of the Revolution helmets [23]. Several groups have since

sought out to characterize the varying degree of effectiveness with which helmets ac-

complish the task of protecting a player’s brain. The National Operating Committee

on Standards for Athletic Equipment (NOCSAE) originally designed a certification

program by which helmets could be deemed safe to use or not based on a defined

GSI threshold [56]. Biokinetics and Associates Ltd. performed a validation of the

methodology commonly used to measure headform kinematics in dummy heads [57].

One group developed a system of evaluation by which to rate various commercially

available football helmets [29]. Another study sought to evaluate modern varsity

football helmets compared to their leather predecessors and found that they often

failed to outperform their less technologically advanced bretheren in cases of subcon-

cussive head impacts, and the authors attributed this to the fact that many helmet

manufacturers were designing their helmets to perform well on NOCSAE drop tests

which put helmets through high-severity linear impacts rather than for the majority

of impacts sustained by the helmets’ wearers [11].



8

2.5 Head Impact Sensor Development

With the growing concern over head impacts in football, it became evident that a

system was needed that could monitor the impact sets being taken by players. Among

the first to emerge on the market was the Head Impact Telemetry System (HITS).

Some studies have found it to represent impacts with high accuracy [13]. One paper

showed that HITS performed better in estimating Peak Translational Acceleration

(PTA) than Peak Angular Acceleration (PAA) [58]. One experiment made an effort

to more accurately represent the fit of the helmet and found that the HITS device does

not perform as well as previously reported under realistic field conditions [28]. There

are kinematic shortcomings of determining the kinematics of a rigid body using only

six uniaxial accelerometers, requiring the searching of a database to determine impact

accelerations rather than directly computing them from measured accelerations. The

HITS system assumes that all rotation in the vertical axis is zero, an unrealistic

simplification.

Due to the growing interest in monitoring players’ head impacts, other devices have

begun to surface. The SHOCKBOX is a device that utilizes binary force switches to

emeasure impacts with linear accelerations of over 30g and has been used to monitor

head impacts in Pop Warner football [59]. Impacts in this young age group averaged,

on a per player basis, 1.5 per fractice and 3.7 per game. Another recent development

has been a mouthguard containing both a triaxial accelerometer and gyroscope, which

is therefore capable of recording PAA with higher accuracy than an underconstrained

six single axis accelerometer device [60]. In order to determine when the device was

securely in place, an infrared proximity sensor was incorporated to detect that the

player was biting down on the mouthguard so as to ensure that impacts measured

were in fact head impacts and not jostling of the device [61]. This was a common

problem with HITS, which could generate impacts when a player dropped or threw

his helmet on the ground. Verifiation of the kinematic accuracy proved that it has

higher fidelity of impact representation than previously available devices [62].
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3. GENERAL SETUP

3.1 The Hybrid III Headform

The Hybrid III 50th Percentile Male Crash Test Dummy was originally developed

by General Motors (Detroit, MI) and is now under the ownership and development

of Humanetics (Plymouth, MI). It is a crash test dummy, and for the purpose of

evaluating safety restraints in frontal crash tests, nothing else has been more widely

used throughout the world. The Hybrid III Headform (H3H) is thus representative of

an average male in size and mass. It is constructed of a single piece of aluminum with

a vinyl skin overlay. The neck that the headform sits on is made out of a butyl rubber

pieces with aluminum segments between them, and an adjustable center cable enables

alteration of the neck’s stiffness. It is described to exhibit an accurate representation

of the dynamic rotational and flexion responses [63].

The H3H was deemed desireable for the purpose of head impact testing due to

the versatility of impacts that can be administered to it. While the use of drop

towers allows for precise linear impacts to be delivered to a headform, the neck joint

is rigid and thus provides an unrealistic response during impact. However, the H3H

is attached to a neck that allows for a much more realistic response motion of the

headform. In order to secure this headform and neck, a neck mount was machined

and attached to a large steel block. This allowed for the portability of the headform

while also preventing motion of the neck’s base due to severe impacts.

3.2 Kinematic Data Acquisition

The primary purpose of using the H3H was to determine the kinematic response

of the headform during impacts. To this end, a sensor system was needed that

would determine both the translational and angular accelerations of the headform’s
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center of mass (CoM). Triaxial accelerometers are the obvious choice for translational

acceleration measurement, but measurement of angular acceleration has a pair of

options.

The first option is to utilize a triaxial gyroscope, the advantages of which are the

ability to place the sensor anywhere on the rigid body, only three channels of data

acquisition necessary, and no development of complex mounting hardware. However,

this option also holds a significant disadvantage in that the data acquired is angular

velocity. In order to determine angular acceleration, one must numerically differen-

tiate the angular velocity data. Small errors in angular velocity, which can be due

to sensor inaccuracy, acquisition hardware inaccuracy, or signal degredation, become

larger errors through the process of numerical differentiation. As a consequence, the

data acquired is less accurate.

The second option is to utilize a nine accelerometer protocol (NAP) in a 3-2-2-2

orientation originally defined by Padgaonkar et al. [64] (Fig. 3.1). The advantages to

this option are that translational accelerometers have higher accuracy than angular

sensors, there is no compounding of errors due to numerical differentiation, and this

protocol is well established in literature [13] [28] [58]. This was the method chosen.

A brief derivation of the equations used to solve for the angular acceleration

follows. The origin is defined at a triaxial accelerometer placed at the CoM of the

H3H with E1 going forward through the front of the face, E2 going to the side through

the left side of the head, and E3 going up through the top of the head. There are

six single axis accelerometers, a4 through a9, placed strategically along the axes of

the triaxial accelerometer. The derivations for the accelerometers 4 in Equation (3.1)

and 9 in Equation (3.2) are combined to solve for α1E1 in Equation (3.3), and the

same process is done for the other four peripheral accelerometers in order to solve for

α2E2 in Equation (3.4) and α3E3 in Equation (3.5).
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Figure 3.1. Nine accelerometer channels were arranged with a triaxial
accelerometer at the H3H’s CoM, while a pair of single axis accelerom-
eters were placed strategically along three of the axes with orientations
orthogonal to them.
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rO4 = −ρ4E2 ρ4 = 1.545in

rO5 = −ρ5E2 ρ5 = 1.265in

rO6 = ρ6E1 ρ6 = 2.070in

rO7 = ρ7E1 ρ7 = 1.790in

rO8 = ρ8E3 ρ8 = 1.815in

rO9 = ρ9E3 ρ9 = 2.095in

[a4 = aO + ω × ω × rO4 + α× rO4] · E3

= [aO + ω × ω ×−ρ4E2 + α×−ρ4E2] · E3

a4 = a3 +−ω2ω3ρ4 − α1ρ4

α1 = (a3 − a4)/ρ4 − ω2ω3 (3.1)

[a9 = aO + ω × ω × rO9 + α× rO9] · −E2

= [aO + ω × ω × ρ9E3 + α× ρ9E3] · −E2

a4 = −a2 − ω3ω2ρ9 + α1ρ9

α1 = (a9 + a2)/ρ9 + ω3ω2 (3.2)

α1 =
(a3 − a2)

2ρ4
+

(a9 + a2)

2ρ9
(3.3)

α2 =
(a3 − a7)

2ρ7
+

(a8 + a1)

2ρ8
(3.4)

α3 =
(a5 − a1)

2ρ5
− (a6 + a2)

2ρ6
(3.5)
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3.3 Accelerometer Mount

In order to place the nine accelerometers in the locations and orientations nec-

essary for the previous derivation, a mount needed to be manufactured that would

secure the accelerometers during impacts exceeding 200g. A preliminary mount was

manufactured that accomplished this through the use of one central bracket and three

arms that extended along the axes of the triaxial accelerometer. All parts were ma-

chined out of aluminum using CNC mills to within 1/100th of an inch. Aluminum was

chosen due to its high strength while also adding minimal weight to the H3H assem-

bly. The accelerometers were held into place with Loctite 454 (Henkel; Dusseldorf,

Germany).

Once assembled, a preliminary use of the array revealed that one of the arms was

exhibiting a great deal of noise on the order of 10g. It was determined that the E3

arm was experiencing resonance through calculation of the resonant frequency. It was

also determined that neither of the other two arms (Figs. A.2, A.3) were experiencing

resonance, so the first resonant frequency was matched between the existing E2 arm

and the new design of the E3 arm as shown in Equation (3.6). The new design

was the original beam with an additional extrusion from each face, creating a plus

shape geometry (Fig. A.4) while maintaining its ability to be bolted to the base (Fig.

A.5). Upon incorporation with the rest of the setup (Fig. A.1), the cleanliness of

the signal confirmed that the beam resonance had been sufficiently driven up to a

higher frequency such that it was no longer affecting the output signal. Subsequent

evaluation of head impact sensors and football helmets was performed using this

finalized setup.

α2
n[

EI2
ρA2L4

2

]1/2 = ω2 = ω3 = α2
n[

EI3
ρA3L4

3

]1/2

I2
A2L4

2

=
I3

A3L4
3

I3 =
I2A3L

4
3

A2L4
2

(3.6)
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Figure 3.2. Nine accelerometer channels were arranged with a triaxial
accelerometer at the H3H’s CoM, while a pair of single axis accelerom-
eters were placed strategically along three of the axes with orientations
orthogonal to them.
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4. SENSOR VALIDATION

4.1 Methods

This sensor study consisted of the evaluation of several commercially available

sensor packages used to detect head impacts in athletes (Fig. 4.1): HITS (Simbex;

Lebanon, NH), Shockbox HD (Impakt Protective Inc.; Kanata, Ontario, Canada),

SIM-G (Triax Technologies Inc.; Norwalk, CT), xPatch (X2Biosystems, Seattle, WA),

and the CHECKLIGHT (Reebok; Canton, MA). HITS and Shockbox HD both mount

to the helmet although it should be noted that use of HITS is restricted to Riddell

brands. In contrast, the remaining systems attach to or fit on the head directly. The

SIM-G was enclosed in a headband and the sensing device rested on the back of the

head. The xPatch was affixed behind the ear with a custom double-sided adhesive

patch, and the CHECKLIGHT was integrated into a skullcap and its electronics

package stretched from the back of the head to roughly the left ear along the edge of

the skullcap.

4.1.1 Data Collection

All laboratory evaluations were performed with a 2012 Riddell Revolution hel-

met (size Large) outfitted with a 05-08C facemask and soft cup chin strap (Riddell;

Rosemont, IL). The helmet was fitted on a 50th percentile H3H [28].

The trigger mechanism for event recording was set to a threshhold of 10 pounds

of force as measured by an impulse hammer, and an impact recorded 200 ms split up

into 70 ms pre-trigger and 130 ms post-trigger. Each of nine accelerometer channels,

as well as the impulse hammer channel, were recorded over the same impact time

domain. The impulse hammer and accelerometer data were acquired using model 9234
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Figure 4.1. Five devices were evaluated in this study. The top row
illustrates the three head-mounted devices, SIM-G (Triax Technologies),
CHECKLIGHT (Reebok), and xPatch (X2Biosystems). The two helmet-
mounted devices are shown in the bottom row, the Shockbox HD (Impakt)
and HITS (Simbex).

data acquisition modules (NI; Austin, TX) with custom software [65] at a sampling

frequency of 5120 Hz (Fig. 4.2).

A total of 140 impacts (7 locations, 20 impacts per location) were delivered per

testing iteration using a modally tuned impulse hammer (PCB Piezotronics, Inc.;

Depew, NY) to record the impact force for each blow (Fig. 4.2). The impacts recorded

by each sensor package were compared to an accelerometer array housed inside of the

H3H consisting of 9 accelerometers (six uniaxial and one triaxial) arranged in the 3-2-

2-2 configuration originally proposed by Padgaonkar et al. [64]. One testing iteration

was performed for each of two devices of HITS, xPatch, and SIM-G, and one device

was tested twice for Shockbox HD and CHECKLIGHT.
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Figure 4.2. The experiments consisted of impacts delivered by an impulse
hammer to a H3H outfitted with a Riddell Revolution helmet. The Na-
tional Instruments 9234 Data Acquisition Modules digitized the voltage
output from both the impulse hammer and the accelerometers. Custom
software processed the data and provided force vs. time for the impulse
hammer as well as the translational and angular acceleration of the head-
form’s CoM.

Seven locations were chosen to determine device performance under a variety of

impact conditions (Fig. 4.3). All impacts were delivered approximately normal to

the helmet except for A’, which was applied at an angle of approximately 45◦.
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Figure 4.3. Seven impact locations were used in the current study. Im-
pacts at locations A-F were administered at an orientation normal to the
helmet surface, while those at A’ were administered at an oblique orien-
tation of approximately 45◦.

4.1.2 Post-Processing

The data recordings were post-processed by solving the kinematic equations for

the angular accelerations [64], and the peak translational (PTA) and angular (PAA)

accelerations were then determined for the CoM of the headform. Each sensor package

that reported information on individual impacts was correlated with the headform

data using their timestamps (Fig. 4.4). Successful recordings were tabulated and the

PTA and PAA were recorded for each head impact. Relative errors were calculated

using the headform data as the datum, and from these, the absolute error and the
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root mean square errors (RMSEs) were calculated as shown in Equation (4.1). Pm

is the peak measured translational or angular acceleration as appropriate, H3 is the

corresponding acceleration measured by the headform accelerometers, and N is the

number of data points.

RMSE =

√∑
(Pm−H3

H3
× 100)2

N
(4.1)

The CHECKLIGHT represented a special case in the sense that it does not provide

data for each hit. A green light was triggered if at least 100 “mild” impacts, a yellow

light corresponded to “intermediate” impacts and red lights were considered “severe,”

although definitions of mild, intermediate, and severe were not provided.

Figure 4.4. The HITS software, called the Sideline Response System
(SRS), provides a plot of the translational acceleration as soon as the im-
pact is read in. One such impact is displayed above. Also displayed is the
actual resultant translational acceleration of the H3H’s triaxial accelerom-
eter at its CoM for the same impact.
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4.1.3 Human Subjects

All research conducted in the currrent study was approved by an Institutional Re-

view Board. Where applicable, parental consent and participant assent were obtained

from study subjects. Seventeen male high school football players between the ages

of 15 and 18 were enrolled in the study for season five during Fall of 2013, and all

17 participated throughout the entire season. For an in season game, both HITS and

xPatch devices were deployed amongst these players. The HITS devices were installed

in the helmets of the players, while xPatches were placed behind the players’ right

ears. Close attention was paid to players throughout the game so as to ensure that

no artifical impacts were created by HITS through the jostling of a removed helmet

as well as to verify that the xPatches were adhering well to the players’ heads. The

data was collected for both systems using the same generation of devices as were used

in the rest of the current study.

4.2 Results

Of the four systems tested here that report on a per-impact basis, all of them

recorded at least 128 of the 140 head impacts (Table 4.1). The Shockbox, SIM-G,

and xPatch were all able to record impacts with no more than one event omission,

while HITS failed to record five impacts for Device 1 and twelve impacts for Device

2. Device designation of impacts as Valid or Invalid attempted to convey whether

an impact was a legitimate one to a player wearing the device. This was done in an

attempt to filter out illegitimate hits sensed by the devices when not being worn by

a player, such as HITS detecting an impact when a helmet gets dropped or xPatch

detecting an impact when the device fell off of a player.

As for correctly predicting the location of the impact, xPatch performed best of

the three that report such information. It is notable that the results for Shockbox

were device-dependent.
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Table 4.1.
The device impact recording, invalid designation, and location prediction
rates give insight as to the reliability of these devices in their respective
abilities to consistently record existent head impacts and depict the im-
pacts’ locations accurately.

Impacts Recorded Impacts Marked Invalid Correct Location Prediction

HITS Dev. 1 96.43% - 40.71%

HITS Dev. 2 91.43% 2.86% 53.57%

Shockbox Trial 1 100.00% - 27.14%

Shockbox Trial 2 100.00% - 65.00%

SIM-G Dev. 1 100.00% - -

SIM-G Dev. 2 99.29% - -

xPatch Right Dev. 1 99.29% 50.00% 77.86%

xPatch Right Dev. 2 100.00% 50.71% 80.00%

xPatch Left Dev. 1 100.00% 56.43% 86.43%

xPatch Left Dev. 2 100.00% 55.71% 91.43%

The Reebok Checklight was not included in any of the the surrounding analyses

because it does not provide a per-impact event reporting system. The first trial

yielded one green light corresponding to at least 100 mild severity impacts, four

yellow lights corresponding to four intermediate severity impacts, and one red light

corresponding to one severe impact. The most severe impact administered in the

first trial had a PTA of 123g and a PAA of 7660rad/s2. The second trial yielded

the same results except for zero red lights corresponding to zero severe impacts. The

most severe impact administered in this second trial had a PTA of 87g and a PAA of

9330rad/s2.

4.2.1 PTA Assessment

The RMSE for the PTA varied with sensor type, impact location, and device

(Table 4.2) with a minimum of 10.99% for the xPatch Device 2 placed on the right
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ear due to impacts at location A and a maximum of 297.62% for the first Shockbox

trial due to impacts at location D (Table 4.2). Except for the oblique Location A’,

the lowest average RMSE was obtained by one of the xPatch devices behind either

the right or left ear. The maximum RMSE was observed in the Shockbox for every

location except for E, in which HITS Device 1 narrowly exceeded the worst Shockbox

HD statistics (Table 4.2).

The mean absolute value of device error for the PTA had a low value of 7.74% for

xPatch Device 2 placed behind the right ear when measuring impacts administered

to location A, while the highest value was at 294.79% for the first Shockbox trial at

location D (Table 4.3). The maximum mean value was observed in the Shockbox for

every location including E. All devices were exposed to a similar set of impacts (Figs.

4.5 & 4.6).

Table 4.2.
The RMSE of device reported PTA varied by both device and impact
location.

PTA RMSE

A A’ B C D E F Average Rank

HITS Dev. 1 46.91% 49.10% 41.43% 60.55% 69.00% 197.80% 38.18%
3.71

HITS Dev. 2 62.27% 59.12% 60.65% 60.33% 36.95% 87.74% 33.42%

Shockbox Trial 1 138.36% 104.84% 222.93% 211.57% 297.62% 163.81% 138.42%
5.00

Shockbox Trial 2 141.79% 92.49% 210.12% 136.21% 100.18% 195.88% 223.68%

SIM-G Dev. 1 24.24% 12.97% 25.95% 33.80% 46.14% 52.91% 74.68%
2.43

SIM-G Dev. 2 17.91% 19.77% 23.19% 26.69% 34.95% 64.89% 68.14%

xPatch Right Dev. 1 13.60% 21.66% 17.14% 45.42% 16.06% 23.94% 37.18%
1.71

xPatch Right Dev. 2 10.99% 20.30% 21.93% 34.13% 11.81% 21.21% 23.90%

xPatch Left Dev. 1 22.13% 21.30% 29.25% 30.71% 58.64% 36.70% 16.05%
2.14

xPatch Left Dev. 2 18.43% 20.54% 31.90% 25.92% 49.65% 21.29% 24.50%
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Table 4.3.
The mean absolute value of the errors of device reported PTA varied by
both device and impact location.

PTA Mean Absolute Value of Error

A A’ B C D E F Average Rank

HITS Dev. 1 37.13% 35.59% 31.38% 42.98% 45.66% 149.27% 25.27%
3.71

HITS Dev. 2 50.77% 45.10% 43.89% 51.18% 31.09% 67.80% 26.32%

Shockbox Trial 1 133.61% 96.11% 217.52% 206.13% 294.79% 133.03% 98.51%
5.00

Shockbox Trial 2 128.80% 76.92% 192.08% 106.14% 79.17% 170.13% 214.31%

SIM-G Dev. 1 19.76% 10.30% 19.73% 24.85% 40.61% 42.82% 56.36%
2.29

SIM-G Dev. 2 15.90% 18.04% 19.57% 21.91% 28.21% 43.83% 50.36%

xPatch Right Dev. 1 11.02% 17.75% 14.62% 40.87% 12.49% 20.07% 31.49%
1.57

xPatch Right Dev. 2 7.74% 16.88% 17.51% 29.49% 9.90% 18.87% 20.27%

xPatch Left Dev. 1 19.25% 18.64% 27.43% 30.18% 57.94% 29.42% 12.90%
2.43

xPatch Left Dev. 2 15.11% 16.53% 30.02% 24.32% 46.02% 17.98% 17.50%

Figure 4.5. HITS, SIM-G, and xPatch exhibited different trends in errors
that were dependent on the impact location but not on the magnitude of
the acceleration. It can be seen that while SIM-G and the xPatch behind
both ears performed similarly, HITS had a broader range of errors for
impacts at location A.
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Figure 4.6. Location A impacts measured by Shockbox yielded PTA
errors that ranged from 20.63% to 275.24%. It should be noted that,
above 65g, the error decreased monotonically, but was consistently over
100%.

4.2.2 PAA Assessment

The RMSE for the PAA also varied with sensor type, impact location, and device

(Table 4.4). The xPatch Device 1 mounted behind the left ear exhibited the lowest

RMSE of all device and hit location combinations for location D, while the same

device for location E had the highest. The large RMSE and mean value of absolute

error statistics for the two xPatch devices behind the left ear, when measuring impacts

made at location E, were caused by a subset of the impacts that produced grossly

overestimated PAAs.

The mean absolute value of device error for the PAA had a low value of 9.48% for

xPatch Device 1 placed behind the left ear when measuring impacts administered to

location D, while the highest value was at 245.65% for the same device at location E

(Table 4.5). The maximum mean value observed for each location alternated between

xPatch and HITS.
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Table 4.4.
The RMSE of device reported PAA varied by both device and impact
location.

PAA RMSE

A A’ B C D E F Average Rank

HITS Dev. 1 82.02% 48.36% 50.22% 44.63% 58.26% 208.97% 42.08%
2.43

HITS Dev. 2 65.23% 70.44% 60.48% 27.37% 56.56% 106.38% 86.67%

Shockbox Trial 1 - - - - - - -
-

Shockbox Trial 2 - - - - - - -

SIM-G Dev. 1 - - - - - - -
-

SIM-G Dev. 2 - - - - - - -

xPatch Right Dev. 1 73.11% 61.34% 57.67% 36.56% 31.11% 32.47% 64.72%
1.43

xPatch Right Dev. 2 76.90% 50.56% 35.97% 35.20% 20.25% 40.30% 58.29%

xPatch Left Dev. 1 81.12% 63.61% 55.09% 20.82% 10.50% 350.10% 61.26%
2.14

xPatch Left Dev. 2 72.29% 64.53% 54.61% 21.74% 18.28% 123.52% 64.50%

Table 4.5.
The mean absolute value of the errors of device reported PAA varied by
both device and impact location.

PAA Mean Absolute Value of Error

A A’ B C D E F Average Rank

HITS Dev. 1 59.91% 41.42% 43.15% 34.46% 43.61% 159.97% 37.76%
2.14

HITS Dev. 2 56.64% 63.47% 47.99% 22.75% 49.97% 95.69% 86.06%

Shockbox Trial 1 - - - - - - -
-

Shockbox Trial 2 - - - - - - -

SIM-G Dev. 1 - - - - - - -
-

SIM-G Dev. 2 - - - - - - -

xPatch Right Dev. 1 72.75% 59.41% 42.38% 23.05% 27.08% 26.85% 63.53%
1.57

xPatch Right Dev. 2 76.58% 49.61% 32.28% 28.18% 17.32% 32.45% 57.93%

xPatch Left Dev. 1 80.93% 63.19% 54.68% 18.58% 9.48% 245.65% 60.86%
2.29

xPatch Left Dev. 2 71.99% 63.44% 54.03% 19.58% 12.78% 52.18% 63.26%
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4.2.3 Game Data

To further demonstrate the differences between two of the sensor packages, xPatch

and HITS, data were analyzed from a single football game.There was HITS data for

twelve players and xPatch data for fifteen. The number of impacts recorded by each

system were 224 and 231 for HITS and xPatch, respectively. However, the distribution

of these impacts differed substantially between the two systems (Fig. 4.7). HITS had

a tendency to record impacts in the bottom bin (20g to 40g), while xPatch acquired

a much broader distribution of impacts. HITS reported only 5 of the 224 recorded

blows (2.23%) as being above 80g, whereas xPatch reported 24 of the 231 recorded

blows (10.4%) as being above this level.

Figure 4.7. HITS and xPatch PTA impact distribution for one high school
football game. The dissimilar distributions indicate that the two sensor
packages produce visibly different sets of measurements in a real-world
situation.
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4.3 Discussion

The goal of this study was to evaluate a range of helmet-mounted and head-

mounted devices used to measure head accelerations using a common testing protocol.

Their accuracy was determined using two methods. The first method employed the

absolute error to provide an assessment of average sensor accuracy at a given location.

The second method was the RMSE, which provides a measure of the average reliability

of any particular measurement. Devices with low RMSE values are likely to provide

good measures of individual head impacts which would be required to determine what

types of hits were sustained just prior to a diagnosis of concussion. Based on the

data obtained herein, the head-mounted systems out-performed the helmet-mounted

sensors in the measurement of PTA and PAA.

Few studies have attempted to measure the accuracy of head acceleration mea-

surement systems, but of the systems commercially available, HITS has been studied

the most [13] [28] [58] . One such study demonstrated much smaller errors [58], but

placed a medium helmet on the same Hybrid III headform used herein. While it is

technically possible to fit a medium helmet on the headform, it is challenging and

requires much greater contact pressure than those generated by proper fitting of a hel-

met [28]. Utilizing a large helmet on the Hybrid III headform most closely represents

the proper fitting of the helmets, justifying its use for this study. It should be noted,

however, that the larger helmet allows for a small amount of relative motion between

the helmet and the head. Therefore, it is not surprising that the head-mounted de-

vices, which are not affected by helmet fit, were better able to reproduce the motion

of the head’s center of mass and would be likely to provide better data in practice

and game situations.

A strength of the present study was the use of an impulse hammer, resulting

in blows to the head that were not uniformly through its center of mass. Use of

the hammer also allowed us to easily deliver oblique impacts. The resulting range

of normal to oblique blows is certainly more consistent with the variety of impacts
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occurring in a game situation. The data collected in previous studies on HITS were

performed with a hydraulic linear impactor that delivered the blows through the

head center of mass [28] [58]. For the purposes of comparison, region C in this study

corresponded to region C in Jadischke et al. (2013). In the current study, the RSME

for the PTA of the two HITS devices were 60.6% and 60.3% while the Jadischke study

measured RMSE value of 11.3% and 19.0%.

Shockbox did not perform as well as the other helmet-mounted system, HITS.

Several of its impacts were labeled as > 150g despite the fact that none of the blows

were reported by the headform to have approached that level of acceleration. For

the purposes of analysis, these impacts were assumed to be exactly 150g, yielding a

conservative estimate of the total error. It should be noted, however, that the large

number of these inaccurate recordings resulted in a particularly high RMSE. It is

possible that the contact made between HITS and the player’s head limits motion to

some degree, but without a detailed description of the algorithm used by each system

it is difficult to discern the source of the differences.

The xPatch data reflected a much more accurate depiction of the accelerations

of the Hybrid III headform’s center of mass. Most notable was the discrepency be-

tween the devices’ abilities to accurately describe the impacts between right and left

locations. The data indicate that there is a fundamental issue with using the xPatch

behind the left ear, but the cause of this is not currently known. It is possible that

the mapping is more accurate for the right patch than the left one, but regardless of

the reason, we recommend only using the xPatch behind the right ear.

The data collected for the SIM-G device also demonstrated improvement over the

helmet-mounted devices. While it did not perform as well as the xPatch devices in

RMSE average rank, it outperformed the left xPatch in mean absolute value of error

average rank and the helmet mounted devices in both statistics. The headband-

based mount appears to minimize the relative motion when held in place by a foot-

ball helmet. It should be noted, however, that our group’s past experience with

headband-mounted sensors indicated that removing and repositioning the headband
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can generate false impact readings. This study did not address this concern, but it

would be worth investigating whether those motions have characteristics that would

allow them to be filtered.

This study originally planned to include Brain Sentry in addition to the other five

sensor packages, but both purchased devices failed early in the testing process.

With regards to the in-game data, the noted difference in reported fraction of

impacts above the 80g threshold could meaningfully affect future determinations of

safe and unsafe levels of contact exposure based on which system’s data is being

considered.

Among the devices examined here, only HITS and xPatch attempt to designate

whether a hit was legitimate or not based on the characteristics of the acceleration

waveform, although it should be noted that neither algorithm was supplied. Unfor-

tunately, the only way to characterize the accuracy of such an algorithm is to record

head impacts delivered to athletes in practice and game situations and then compare

each one to video recordings in order to quantify the system’s accuracy. Another area

that is in need of exploration pertains to devices that do not have a clear mounting

location. For devices such as the xPatch and Shockbox, there is variability with the

precise location to which the device is applied. An investigation ought to be per-

formed studying the effect of slight perturbations of these devices relative to their

defined ideal locations, particularly for head mounted devices applied to heads of

variable size. Compared to the RMSE reported here, however, small changes in posi-

tion are not likely to affect the accuracy substantially. Another way to look at device

reliability would be to look at more than two of each device.

It should also be noted that many sensor packages claim to be able to accurately

locate the point of application of contact force, although potentially damaging ac-

celeration events can be caused without direct head impact by blows to the body

that produce a whiplash type event. Even if it is known that a force was delivered

to the head, there is a fundamental limitation to what information can be gleaned

about the force. When a force is applied to the head, there is necessarily a concomi-
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tant force and moment at the neck (Fig. 4.8). There are therefore three unknowns

associated with each of the following vector quantities: translational acceleration,

angular acceleration, impact force, position vector to the point of impact, resultant

force at the neck, and resultant moment at the neck. It is possible to reduce this set of

quantities from 18 unknowns to 12 using Euler’s equations to relate the translational

acceleration to the applied forces and the angular acceleration to the sum total of the

applied moments. If one further assumes that the geometry of the helmet is known

then only two components are required to unequal determine the location of the blow,

reducing the number of unknowns to 11. Accurately measuring the six acceleration

components leaves us with five unknowns. Consequently, it is not possible to uniquely

determine the location or the magnitude of the impact (or whether the head was even

struck at all) without additional data.

Overall, future head impact sensor design should focus on a head mounted sensor

design. Improvements may be possible through the use of tandem accelerometers in

different locations to provide redundancy and reduce errors. Higher sampling rates

would also be beneficial to data integrity, though power consumption is a genuine

concern in these portable devices. Future work needs to refine the algorithms used to

estimate the translational and angular accelerations and examine technologies that

better locate the source of the impact.
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Figure 4.8. Free body diagram of a helmeted head suffering an impact.
At the instant of impact, there are 18 unknowns: 3 components each
of translational acceleration, angular acceleration, impact force, position
vector to the point of impact, resultant force at the neck (Fn), and resul-
tant moment at the neck(Mn). Euler’s equations eliminate six of these
unknowns and, if the dimensions of the helmet are known, one component
of the position vector to the point of impact, r, can be eliminated, leaving
11 unknowns. Current head acceleration measurement technologies mea-
sure at most six components. Consequently, it is not possible to uniquely
determine the location or the magnitude of the impact (or whether the
head was even struck at all) without additional data.



32

5. HELMET EVALUATION

5.1 Methods

This study consisted of the evaluation of four varsity football helmet models, each

made by a different manufacturer. The four helmet models used were all manufac-

tured in either 2014 or 2015: Revolution Speed (Riddell; Rosemont, IL), AiR XP PRO

(Schutt; Litchfield, IL), X2E (Xenith; Lowell, MA), and SG (SG Helmets; Browns-

burg, IN) (Fig. 5.1). The use of Large size helmets was based on a previous study

that, when fastened to a 50th percentile H3H, demonstrated resting peak pressure

values at levels within the range determined to be tolerable to football players [28].

Figure 5.1. Four helmet models were used in this study: A) Revolution
Speed (Riddell; Rosemont, IL), B) AiR XP PRO (Schutt; Litchfield, IL),
C) X2E (Xenith; Lowell, MA), and D) SG (SG Helmets; Brownsburg, IN).
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5.1.1 Data Collection

Impacts were administered using a modally tuned impulse hammer (PCB Piezotron-

ics, Inc.; Depew, NY) to selected regions of the helmet or headform. Nine regions

were chosen for testing, and 20 impacts were administered to each location for a total

of 180 impacts per helmet (Fig. 4.2). Three of each model were tested for a total of

twelve helmets. Likewise, the bare headform was tested three times using the same

protocol. At each impact site, impacts were defined to occur within certain force

ranges that spanned from 200 lbf to 1200 lbf so as to administer a similar set of

impacts across sessions. This was done to ensure fair comparison of helmets.

During each impact, the transient force data at the tip of the hammer would cause

an event to be generated above a threshold of 10 pounds of force. During one of these

events, nine accelerometers (one triaxial and six uniaxial) arranged at or around

the CoM of the headform using the 3-2-2-2 configuration [64] produced acceleration

traces. Model 9234 data acquisition modules (NI; Austin, TX) were used to measure

all ten channels of data over coinciding time domains, and control of the hardware

was accomplished using a custom software package. Data was sampled at 5120 Hz,

well above the Nyquist rate of these impacts.

In order to evaluate each helmet over a heterogeneous distribution of impact con-

ditions, nine locations were chosen. The orientation of delivered impacts was approx-

imately normal to the surface of the helmet at the given location with the exceptions

of A’ and D’, both of which were administered at an angle of inclination of 45 deg

and will herein be defined as the oblique locations. The rotation of these impacts was

such that the impacts originated from the right side of the head for A’ and from the

back of the head for D’. Impacts at location G were performed to the center of the

facemask with horizontal directionality, as shown in Figure 5.2.
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Figure 5.2. Nine impact locations were used in the current study. Im-
pacts at locations A-G were administered at an orientation normal to the
helmet surface, while those at A’ and D’ were administered at an oblique
orientation of approximately 45◦.

5.1.2 Post-Processing

Data acquired was stored in files for later post-processing. The acceleration data

was processed using a low pass Butterworth filter with a cutoff frequency of 750 Hz.



35

The filtered acceleration traces were then used to kinematically determine transient

angular acceleration components [64] and resultant translational and angular accel-

erations, all at the headform’s CoM.

Impacts were defined as the duration during which the force was in its peak,

beginning 1ms before the force reached 10 lbf and ending when the force had reached

over 100 lbf and then fallen below 10lbf. This time domain is illustrated as red veritcal

lines (Figs. 5.3, 5.4). The PTA and PAA, as well as the peak force (PF) and impulse

(IM), were all calculated during this defined impact. IM was calculated using the

trapezoidal method of numerical intergration by integrating the force data over the

corresponding time data.

Figure 5.3. The impact administered was triggered when a force threshold
reached 10 lbf and was cut off once the force fell below 10 lbf. The time
domain of time impact was determined, and the IM was then calculated
over it. The PF within this time domain was also determined.
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Figure 5.4. The accelerations measured by the H3H allowed for the
calculating of PTA from the translational acceleration (left) and the PAA
from the angular acceleration (right). These peak values were calculated
during and always occurred within the same time domain as was defined
for the impact.

5.1.3 Helmet Evaluation

Metrics used in evaluating the impacts include several ratios. All of these metrics

relate the peak acceleration, whether PTA or PAA, to the IM. The first ratio, shown

in Equation (5.1), divides the PTA measured at the CoM of the heaform, |ap|, by the

IM that caused it, which is calculated by integrating the force F measured at the tip

of the impulse hammer over the duration dt of the impact. The second ratio, shown

in Equation (5.2), does the same with PAA, |θ̈p|.

R1 =
|ap|∫
Fdt

(5.1)

R2 =
|θ̈p|∫
Fdt

(5.2)
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In order to normalize the ratios for each location, the metrics previously defined

for helmet impacts were compared to the same metrics measured for the H3H impacts

without a helmet. The average value for each of these was defined for the bare H3H

as a datum in Equation (5.3) where a is the base metric from Equations (5.1) and

(5.2) used, X is the location of the impact, and n is the number of impacts at location

X (60 for the combined three trials). The metrics from each helmeted impact are

then divided by their corresponding locational H3H average value datum in Equation

(5.4).

R̄Ha,X =

n∑
i=1

Ra,X

n
(5.3)

Ra′,X =
Ra,X

R̄Ha,X

(5.4)

5.1.4 Human Subjects

All research conducted in the current study was approved by an Institutional

Review Board. Where applicable, parental consent and participant assent were ob-

tained from study subjects. Two male high school football players were enrolled in

the study for season six during Fall of 2014, and both participated throughout the

entire season. Head impact data was collected using the xPatch device mounted on

the head behind the players’ right ears using a custom adhesive patch. Attention was

paid to the players so as to ensure that the devices did not come loose and create

artificial impacts, and impacts created outside of the start and end times of practices

and games were cropped out from the data.

5.2 Results

The masses of the tested helmets are listed for the sake of reference (Table 5.1).

The three models that utilized polycarbonate shells and a solid steel facemask were
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similar in mass, and the model that instead utilized a composite weave and a hollow,

Chrome-Moly tubular facemask weighed roughly 40% less than the other three.

Table 5.1.
The masses were similar for the three mainstream helmets, but the SG
helmet was much lighter.

Helmet Mass 1 (kg) Mass 2 (kg) Mass 3 (kg) Mean Mass (kg)

Speed 1.84 1.82 1.84 1.83

Air XP PRO 1.78 1.84 1.80 1.81

X2E 1.90 1.92 1.92 1.91

SG 1.08 1.12 1.12 1.11

5.2.1 Metric Analysis

The two metrics normalized by the H3H, calculated for each of the four helmets

at each of the nine locations, provide values that allow for comparison of the helmets.

Due to what these metrics represent, namely peak acceleration measured given an

applied input, lower values represent superior mitigation ability. Within a metric,

rank was assigned to the four helmets for a given impact location. The ranks for a

helmet at all nine locations were averaged to give the average rank.

Looking at the normalized metric one (Table 5.2), rank was not consistent across

locations. At location A, both the Air XP PRO and SG exhibited statistically sig-

nificantly (p < 0.05) smaller metric values than the Speed but likewise statistically

significantly larger values than the X2E. When looking at the average rank for the

three helmets, the X2E was the only one to stand out from the other three with the

lowest of the four.
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Table 5.2.
The metric R1′ , which has been normalized by the H3H mean on a per
location basis, depicts the fraction of PTA experiened by the headform
while wearing the helmet.

R1′ means

A A’ B C D D’ E F G Average Rank

Speed 0.46 0.44 0.40 0.34 0.43 0.54 0.39 0.46 0.57 2.78

Air XP PRO 0.39 0.43 0.39 0.47 0.46 0.55 0.40 0.54 0.45 2.89

X2E 0.31 0.38 0.38 0.39 0.41 0.49 0.43 0.44 0.56 1.67

SG 0.41 0.40 0.35 0.45 0.47 0.50 0.48 0.56 0.39 2.67

Rank again had little trend for the normalized metric two (Table 5.3). One notable

trend was that the SG received the worst rank for six of the nine locations. There

was less clustering for the average rank as compared to R1′ , and the X2E again had

the lowest.

Table 5.3.
The metric R2′ , which has been normalized by the H3H mean on a per
location basis, depicts the fraction of PAA experiened by the headform
while wearing the helmet.

R2′ means

A A’ B C D D’ E F G Average Rank

Speed 0.71 0.34 0.34 0.35 0.40 0.75 0.68 1.46 0.26 2.67

Air XP PRO 0.48 0.27 0.29 0.48 0.50 0.80 0.48 0.75 0.24 2.22

X2E 0.46 0.23 0.29 0.39 0.41 0.56 0.56 0.90 0.31 1.89

SG 0.71 0.35 0.27 0.61 0.60 0.87 0.70 1.71 0.23 3.22

A visualization of the helmets’ performances relative to the H3H was created by

plotting the two unnormalized metrics against their corresponding IMs (Figs. 5.5 -

5.8). The H3H data shows a tendency for both metrics to increase as a function of
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the input IM, whereas the helmets tend to show fairly flat trends if any exist at all.

The helmets also tend to have lower metric values at a given IM than does the H3H

(Figs. 5.5 - 5.7), but this was not always the case (Fig. 5.8).

Figure 5.5. Location A’ impacts show a relatively flat R1 distribution as
a function of IM for both the Speed and X2E, with the X2E lying slightly
below the Speed. The H3H shows a clear linear trend.
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Figure 5.6. Location A’ impacts show a relatively flat R2 distribution as
a function of IM for both the Speed and X2E. The H3H shows a linear
trend with a good bit of variability.

Figure 5.7. Location F impacts show a R1 distribution as a function
of IM that is slightly positively correlated for the Air XP PRO, more so
positively correlated for the H3H, and fairly flat for the SG.
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Figure 5.8. Location F impacts show a R2 distribution as a function of
IM that is positively correlated for both the Air XP PRO and H3H, and
negatively correlated for the SG. At a given IM, the SG has a higher R2

as compared to the Air XP PRO and H3H.

5.2.2 Ecological Validity of Testing

The SG Helmets experienced significant degredation over the course of the testing

process (Fig. 5.9 D). This was consistent across all three devices, while none of the

other helmets tested experienced more than a pair of small cracks.
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Figure 5.9. The four helmet models used in this study after one session
of impacts each: A) Revolution Speed, B) AiR XP PRO, C) X2E, and D)
SG. The SG helmets sustained the most damage, and the next to worst
was a pair of cracks initiating from a rear vent on one of the X2E helmets.

In order to determine if the loading on the helmet is appropriate in representing

that which a helmet worn by a football player would take, a histogram of PTA data

was created (Fig. 5.10). This histogram contains the head impact data for the

two high school football players, one of whom was chosen due to his high rate of
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impacts and the other for his more typical rate. These were compared to the impact

distribution of one of the two SG helmets that survived the entire session. Save for

the bottom bin which cropped out impacts collected by the xPatch and thus had

zero for both players, the SG helmet was exposed to fewer impacts within each bin

compared to even the typical high school football player in the study.

Figure 5.10. The SG helmets were exposed to a less severe set of impacts
than both the active and typical players in every bin except for the one be-
low which impacts were cropped out for the xPatches. The set of impacts
administered to the second SG helmet is therefore on the conservative side
of the spectrum of impacts experienced by helmets in the field.

5.3 Discussion

The goal of this study was to evaluate four commercially available varsity football

helmets in their ability to mitigate impacts through the measurement of IM inputs and
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acceleration outputs. The two defined metrics for the helmets, once normalized by the

H3H data, convey a helmet’s ability to reduce the severity of an impact compared to

what it would be if administered to the H3H. For these metrics, a value of one would

imply that the helmet is neither increasing nor decreasing said severity. The fact that

most of the metric values were below one suggest that the helmets are accomplishing

their intended purpose, though the degree to which they do so is dependent on both

the helmet model and the impact location.

While previous studies have evaluated the performance of football helmets un-

der highly specified impact conditions [26] which were determined through recon-

struction of impacts that caused concussion in the NFL [24], it has since been

determined that several subconcussive impacts can have significant effect on brain

function [17] [18] [19]. Likewise, while a previous study attempted to categorize

concussion-causing impacts analyzed by video evidence [25], impacts to helmet shells

can occur from oblique orientations as well as the previously investigated lateral im-

pacts. The current study covered both oblique impacts and a wider array of impact

locations than previously investigated, and did so over a range of impacts that are

relevant to the study of subconcussive impacts experienced by players that don’t

directly result in concussion.

The metrics computed determiend that the helmets provided reduction of the

severity of helmet impacts in all situations except for the PAA resulting from im-

pacts at location F. While a helmet ought to have a metric that is less than one,

which signifies a less severe response to an impact as compared to the response of

a bare headform, both the Speed and the SG resulted in metrics above one. These

suggest that the helmets are making these impacts more severe. While this may seem

surprising, the additional distance from the base of the H3H neck to the location of

the administered impact provide for a larger moment arm to be made and thus slight

deviations from impacts perfectly axial to the neck may result in larger moments

about the base of the neck. These would in turn explain the larger PAA values that

resulted in unexpected metric values.



46

The helmets evaluated reflect their respective designs. In order to pass the Na-

tional Operating Committee on Standards for Athletic Equipment (NOCSAE) tests

and certify one’s product as NOCSAE certified, these helmets must meet certain

requirements related to the maximum Gadd Severity Index (GSI) which is derived

from the translational acceleration. As such, it comes as no surprise that three of

the helmets yielded a clustered set of average ranks for R1′ , which was based on the

translational acceleration and thus related to the design criteria for these helmets in

order that they could be certified. However, the same three helmets yielded a set of

average ranks for R2′ , which was based on the angular acceleration and thus has no

significance to their being certified, that spanned an entire rank point. This suggests

that helmet designs often cater to the satisfying of certification criteria. The X2E

had the lowest average rank for both metrics, potentially reflecting the increased use

of viscoelastic materials rather than traditional hard foams and plastics. However, it

is possible that the reduction in severity of the impacts administered to these helmets

is primarily due to the additional inertia added to the head-helmet system by wearing

a helmet. While it is surprising that the more compliant SG helmet had the worst

performance, but it is possible that this was not because of poor design but instead

because of lower mass compared to the other three helmets.

The set of impacts that were administered in this study were not unusual compared

to the impacts recorded for players throughout the six seasons that Purdue Neuro-

trama Group has been collecting high school football head impact data. As such, a

helmet ought to be able to endure the set of 180 impacts administered throughout

its respective session. None of the Air XP PROs experienced any damage to the

shell, though cheek pads had a tendency to detatch from the snaps that held them.

One Speed developed a small crack near one of its vents, and all three X2Es did the

same, though these were due to impacts administered to Locations D and D’ which

were near to vents on both helmet models. However, all three SG helmets developed

severe fractures throughout the shell during testing. These fractures did not neces-

sarily originate at any sort of vents or other helmet features, but would begin and
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propogate in the middle of continuous shell region. While anecdotal evidence has

praised the technology that these helmets are based off of, said racing helmets are

designed to take a single blow and fracture to absorb maximal energy and protect the

wearer’s head from a catastrophic blow to the head. They appear not, however, to

be designed for the purpose of taking repeated impacts of a more moderate severity.

The fractures developed in the SG helmets give reason to reevaluate the helmet’s use

in football, particularly at the high school level which has been documented to take

even more severe season impact sets than this study administered.

While the current study managed to evaluate impacts administered to a helmeted

H3H compared to a bare H3H by means of matching the PF of impacts across ses-

sions, the same PF for an impact administered to a helmet resulted in greater IM

than when administered to the bare H3H due to the additional compliance of, and

mass added by, the helmet. As such, the range of IM for the impacts administered to

the H3H is in a narrower band than those administered to the helmets (See Figs. 5.5 -

5.8). While the trends are obvious to see in the range of IM that the two overlapped,

benefit would be had by including impacts at higher IM ranges such that the bare

H3H impacts spanned the same IM range as those of the helmets. Future helmet

evaluations should make it a goal to evaluate a helmet’s ability to reduce peak accel-

erations through the matching of IM, rather than matching PF or impact velocity. It

would be of value to perform such evaluations on newer generations of helmets as they

are released, in order to determine if subsequent design iterations provide measurable

improvements over their predecessors. Likewise, it would be worth evaluating helmet

design features incorporated into helmets of like additional translational and angu-

lar inertia when worn by the headform in order to determine which design features

reduce the severity of the impact more than others. This would remove mass as a

differentiating factor between helmet designs and allow for the design features to be

cross-compared directly.

Modern helmet design has served to reduce the severity of impacts experienced

by football players, but the dependency of this ability is highly dependent on impact
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location. In addition to retaining device integrity throughout a typical set of impacts,

these helmets need improvement in their mitigation abilities, particularly the PAA

due to impacts at Location F. Helmet designs that result in low metric values should

be pursued such that peak accelerations experienced by athletes are reduced, with

the end goal being the reduction of those athletes’ cognitive impairments.
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6. CONCLUSIONS

Sensor packages have come a long way in the last decade, from attaching a single

triaxial accelerometer to an individual hockey player to outfitting entire teams with

wireless devices capable of monitoring both translational and angular accelerations

of a player’s head. Further development is still needed, as even the most recent

devices have shown to have large errors in translational and especially in rotational

acceleration measurement. Future sensor design has several options for improvement.

First off, sampling rates of 1000Hz, common to several of the devices available today,

are insufficient to accurately reproduce the accelerations taking place during impact

events. Next, sensor designs need to focus on measuring the kinematic response

of the player’s head and thus need to be directly attached to it, rather than being

placed inside the helmet which has relative motion with respect to the head during

these impacts. Last, redundancy of sensors arranged around a player’s head with

noncommon axes would allow for the reduction of errors through the averaging out

of marginally conflicting data, particularly when it comes to angular acceleration and

the errors associated with numerical differentiation of angular velocity measured by

a gyroscope. However, major obstacles that need to be overcome for these to happen

are either the reduction of power consumption by these devices or the increase of

battery capacity, as the duration over which these devices must remain on to cover

entire sessions is a nonnegotiable design criterion.

The use of helmets has also had a great impact since the days of football com-

monly causing skull fractures. While it is questionable as to how effective some of

the padding materials in these helmets are when it comes to dissipating blows to

the head, it is inarguable that helmets do a remarkable job of spreading an impact

over a larger surface area so as to prevent breaking of bones. However, much of

modern helmet design has sought to satisfy NOCSAE standards rather than using a
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measure of impact severity reduction that is relevant to the majority of subconcus-

sive impacts taken by football players hundreds of times per season. With the up

and coming research being performed on the neurocognitive impacts of these sub-

concussive impacts, motivation now exists to design helmets to serve the purpose of

reducing more moderate impact severity in addition to the most severe of impacts.

While most materials present in helmets today have very rigid material properties,

investigation into materials with a much greater ability to dissipate the sudden onset

of impacts ought to be undertaken. One challenge with such materials is to include

them without adding signifiant weight or size to the helmet, but added weight in the

padding could potentially be offset through the utilization of lightweight composites

as a replacement to the polycarbonate shells currently employed. Another challenge

is to design aforementioned materials with mechanical endurance on par with that

of the much harder plastics currently used. The current standard is to get helmets

reconditioned once every two years of play, and any helmet designs ought to strive

for this same standard of durability.

Recent attention given to the study of the epidemiology and mitigation of head

impacts has been warranted but incomplete. Continued investigation into the de-

velopment of head impact monitors, specifically tied to neurocognitive evaluation

through techniques such as neuroimaging, will enable for the improved determination

of safe head impact exposure levels for football players. Likewise, furthering helmet

technology will enable players to continue participating in the sport by lowering these

exposure levels on a per-impact basis. Pursuing these two avenues as a means of

improving player safety will reduce health care costs, improve the quality of life for

participants, and play its part in solving the concussion crisis in which we currently

find ourselves.
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Figure A.3. The accelerometer mount arm in the E1 direction had slots
for accelerometers that were oriented in the −E2 and E3 directions.



60

 0
.2

50
0 

 0.8000 

 0.1250 

 0
.2

60
0 

 2
.1

50
0 

 0.1380 

 0.1500 

 0
.2

50
0 

 0.5250 

 0.2500 

 0
.1

50
0 

 0
.2

75
0 

 0.2750 

 1
.5

60
0 

 0.5250 

 0.2500 

 0
.0

50
0 

 0
.0

20
0 

 1
.8

40
0 

 0.8000 

 0
.0

62
5 

E3 ARM

2
DO NOT SCALE DRAWING

ARM3
SHEET 1 OF 1

2015/04/02BRC

UNLESS OTHERWISE SPECIFIED:

SCALE: 1:1 WEIGHT: 

REVDWG.  NO.

A
SIZE

TITLE:

NAME DATE

COMMENTS:

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

ALUMINUM
FINISH

MATERIAL

INTERPRET GEOMETRIC
TOLERANCING PER:

DIMENSIONS ARE IN INCHES
TOLERANCES:
FRACTIONAL
ANGULAR: MACH      BEND 
TWO PLACE DECIMAL    
THREE PLACE DECIMAL  0.002

APPLICATION

USED ONNEXT ASSY

PROPRIETARY AND CONFIDENTIAL
THE INFORMATION CONTAINED IN THIS
DRAWING IS THE SOLE PROPERTY OF
THE PURDUE HIRRT LAB.  ANY 
REPRODUCTION IN PART OR AS A WHOLE
WITHOUT THE WRITTEN PERMISSION OF
THE PURDUE HIRRT LAB IS PROHIBITED.

5 4 3 2 1

Figure A.4. The redesigned accelerometer mount arm in the E3 direc-
tion had slots for accelerometers that were oriented in the E1 and −E2

directions.
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Figure A.5. The accelerometer mount base had locations for the secure-
ment of all three accelerometer arms, a slot for the triaxial accelerometer,
and holes through which to fasten it to the H3H.
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