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ABSTRACT 

Hettich, Rachel C. M.S., Purdue University, May 2015. Subsidizing Carbon 
Sequestration via Forestry in Maryland: A Cost-Benefit Assessment. Major Professor: 
Philip Abbott.  
 

Carbon sequestration by forestry is one way to mitigate climate change, and policy 

incentives are in place to encourage private investment in forestry. State and federal 

forestry cost-share programs subsidize the establishment of trees and the improvement of 

existing forested land. The objective of this research was to determine the effectiveness 

of such programs in Maryland and to compare the monetized benefits from permanently 

sequestered carbon with the current subsidies. To meet this objective, private and social 

cost-benefit analyses were conducted for three forestry investment scenarios in Maryland 

that coincide with the main cost-share programs available there. Sensitivity analysis 

considered a range of values for the social cost of carbon, the discount rate, and program 

implementation costs.  

The first program considered was the state funded Woodland Incentive Program 

(WIP), which provides cost-share assistance for improving timber management. 

According to the cost-benefit analysis results, the program provides sufficient incentives 

to induce participation. For a discount rate of 5%, the investment in pre-commercial 

thinning with participation in WIP increases discounted returns by $60.62 per acre. 

However, the total program enrollment over the past eight years was only 24,443 acres, 

compared to GIS analysis results that show approximately 737,000 acres across Maryland 

are eligible for the program. The total cost share assistance provided by WIP for a timber 

management improvement practice of pre-commercial thinning was $81.34 per acre, 

while from society’s view, the discounted carbon sequestration benefits provided by the 

improved timber stand were $146.82 per acre. By basing the cost-share assistance on the 
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carbon benefits, and so increasing the subsidies, potential and actual program 

participation may converge.  

Two land conversion programs were considered: the federally funded Environmental 

Quality Incentives Program (EQIP) and the state funded Lawn to Woodland (L2W) 

Initiative. The cost-benefit analysis results show that the conversion from cropland to 

forest through EQIP does not provide enough incentive to induce program participation. 

Cropland rents generate income far greater than the benefits from forestry conversion, 

even when carbon benefits are included. In this case, the program is already providing 

subsidies larger than the carbon sequestration benefits, and the actual participation of 

only 344 acres between 2009 and 2013 is still very low. However, when using the 

pastureland rent, which is about half of the cropland rent, the conversion to forest is much 

more likely. There are around 750,000 acres of pastureland in Maryland that could be 

converted to forest to increase carbon sequestration across the state. 

The conversion from lawn to forest through L2W provided contrasting results. Since 

timber harvest is unlikely following the conversion from lawn to forest, the carbon 

benefits are much higher. The cost-share assistance was $335.91 per acre, and the 

discounted carbon benefits from the conversion were $1,245.87 per acre. Cost-share 

assistance based on the benefits from permanently sequestered carbon could justify 

increasing the incentive to participate by almost four times. Since neither land use in this 

scenario provides financial returns to the owner, the investment decision depends largely 

on the aesthetic values of lawn versus forest that the landowner possesses, which are 

difficult to estimate. GIS analysis estimated that approximately 230,000 acres are eligible 

for this new program across Maryland.  

Maryland is at the forefront when compared to other states, supplementing federal 

cost-share programs with its own resources to combat climate change. This analysis 

suggests the state financed initiatives may exhibit the potential to enhance carbon 

sequestration more than the federal programs, and for each state program there was scope 

to increase subsidies given the value of carbon benefits realized.
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CHAPTER 1. INTRODUCTION 

1.1 Motivation 

Increasing greenhouse gas (GHG) emissions and their impact on climate change 

have emerged as key political and economic topics in the United States and around the 

world. The impact of GHG emissions on climate change depends on several factors, 

including land use allocation and natural resource management (National Research 

Council, 2010). For example, maintaining existing forests and establishing new forests 

are two ways to mitigate the negative effects of GHG emissions because forests can 

sequester and store carbon.  

Forests provide many co-benefits in addition to carbon sequestration, such as 

improved water quality, improved air quality, wildlife habitat, recreational opportunities, 

and aesthetics. The value of these non-market benefits can be estimated, but private forest 

owners do not receive full financial compensation equal to the benefits they provide to 

society. In other words, the positive externalities that the forest owner provides to society 

are not fully internalized. Subsidies offered by government sponsored forestry cost-share 

programs help make it less costly for landowners to plant and maintain trees. However, it 

is not evident whether the subsidies are adequate to overcome the opportunity costs from 

investing in forestry. Moreover, social benefits from the positive externalities provided 

by forestry may justify larger subsidies that would elicit greater program participation.  

Through cost-benefit analysis (CBA), this research compares the profitability of 

owning forestland, including the possibility of participating in a government cost-share 

program, with other land use alternatives such as agriculture or lawn space. Further, a 

CBA from society’s perspective1, including the internalization of carbon sequestration  
1. I did not attempt to fully internalize the social value of all co-benefits from forestry 

investments. Prior literature does not provide good estimates of the value of these benefits in 

mostly rural areas 
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benefits, was conducted to compare current cost-share assistance with the societal carbon 

benefits. The focus is on forestry cost-share programs implemented in the state of 

Maryland.  

Maryland is at the forefront in addressing climate change on a broad scale, and 

especially when it comes to dedicating time and money to conserving its forests and 

providing incentives for landowners to do the same. 40% of Maryland’s land is currently 

forested, and the state Department of Natural Resources (DNR) has implemented many 

measures to maintain or expand this forest cover. For example, the Woodland Incentive 

Program (WIP) provides cost sharing to private woodland owners for planting new trees 

and implementing practices that improve existing timber stands (Maryland Forest 

Service, 2008). Another new program in Maryland is the Lawn to Woodland Initiative 

(L2W), which offers private landowners the opportunity to convert their existing lawn to 

trees at no cost to them (Maryland Forest Service, 2014).  

These state forestry cost-share programs, along with federal programs administered 

by the United States Department of Agriculture (USDA), serve as part of a larger GHG 

Emissions Reduction Act Plan (GHGRP), passed in 2012, which established an overall 

goal to reduce GHG emissions by 25% (using 2006 as the base year) in Maryland by 

2020 (Department of the Environment, 2013). The forestry and sequestration efforts are 

projected to result in a reduction of 4.56 million metric tons of carbon, which is 8.2% of 

the total reduction goal.  

 

1.2 Research Objectives 

The aim of this study is first to evaluate whether landowners will invest in forestry 

with and without participation in a cost-share program. In other words, the analysis 

attempts to answer the question of whether the current subsidies are large enough to elicit 

program participation from private landowners. Next, this research evaluates whether 

larger subsidies would be justified by internalizing the carbon sequestration benefits the 

public receives from the forestry investments. Larger subsidies may be required to 

achieve greater program participation and carbon sequestration. Third, this research will 
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assess the potential for these forestry efforts to make a difference in the fight against 

climate change in Maryland. 

The analysis conducted consists of three forestry investment scenarios that align 

with the three main forestry cost-share programs available to private landowners in 

Maryland. The first investment scenario is a landowner that owns a loblolly pine stand 

that is at the appropriate age to be pre-commercially thinned. Pre-commercial thinning is 

a timber management improvement practice that is eligible for WIP, which is the forestry 

cost-share program for this scenario. The next two scenarios are similar in that they both 

consider converting land to forest. One investigates the conversion of agricultural land to 

an oak/hickory forest, and the other looks at the conversion of lawn to a red oak forest. 

Tree establishment on cropland is a conservation practice that is eligible for the 

Environmental Quality Incentives Program (EQIP), which is administered by the USDA 

Natural Resources Conservation Service (NRCS), and tree establishment on lawns is the 

purpose of the new L2W program in Maryland.  

The net present value (NPV), which is the discounted value of a stream of annual 

net revenues, is calculated for a base case in each scenario, which is the case without the 

forestry investment in question. Next, the NPV is calculated assuming the landowner 

makes the forestry investment under two cases: with participation in a forestry cost-share 

program and without participation. Each of the NPVs are then calculated including 

potential financial compensation for the value of permanently sequestered carbon that 

results from the forestry investment. Sensitivity analyses are conducted to address 

uncertainty in the appropriate discount rate, carbon prices, social cost of carbon 

estimates, and scenario-specific elements.  

To provide an idea of the scope of forestry cost-share programs in Maryland, 

geographic information systems (GIS) analysis was also conducted, which ties in with 

another motivation for this research. The National Aeronautics and Space Administration 

(NASA) provided funding for this research as part of its Carbon Monitoring Systems 

(CMS) program. Dubayah, Hurtt, Huang, and Swatantran (2013) participated in the CMS 

program and developed several GIS data layers for the state of Maryland that report the 

tree cover, tree height, and aboveground biomass present. From these data layers and a 
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combination of other analyses, carbon sequestration potential of the land in Maryland 

was also calculated. There are various uses of the data produced by Dubayah et al. 

(2013), including using the data to monitor the success of forestry cost-share programs or 

to target eligible landowners. For this research, the data were used in the GIS analysis to 

estimate the total land in Maryland that is eligible for the forestry cost-share programs 

included in this research and the carbon sequestration potential should full program 

participation be achieved. The results of the GIS analysis provide another element to 

compare the actual and predicted program participation with the overall program 

potential.  

 

1.3 Highlights of Main Conclusions 

For the improving timber management scenario, pre-commercial thinning 

accelerates stand growth, which also accelerates carbon sequestration. For these reasons, 

the investment is definitely positive from a societal view, and it is positive from a private 

view if the additional timber benefits outweigh the pre-commercial thinning costs. At a 

discount rate of 5% (a typical private discount rate) and no participation in WIP, the 

benefits from pre-commercial thinning do not outweigh the costs. However, with cost-

share assistance from WIP, the investment in pre-commercial thinning is worth it, even at 

a discount rate of 5%. WIP seems to be providing enough incentive for landowners to 

choose to improve timber management, and investing more in this program could 

increase carbon sequestration. The results of the GIS analysis estimate that around 

737,000 acres of land in Maryland are eligible for WIP. However, from 2007 to 2014, 

only 814 landowners have participated in the program for improved management 

practices on 24,443 acres. Using the constant social cost of carbon estimate at a discount 

rate of 2.5% (a typical social discount rate), the carbon benefits provided by the improved 

timber management over the investment horizon are worth $146.82 per acre, while the 

current cost-share assistance is only $81.34 per acre. While the program already appears 

to provide the correct incentives to induce landowner participation, the actual 

participation may be increased by basing the cost-share assistance on benefits from 

permanently sequestered carbon.  
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For the conversion from cropland to forest scenario, the NPVs with annual 

collection of cropland cash rent are significantly higher than those of converting to forest, 

even with the cost-share assistance from EQIP. The NPVs are positive in all cases when 

the land is converted to forest, but they are not large enough to cover the opportunity cost 

of converting from agriculture. Even with the inclusion of carbon benefits, the landowner 

would likely not choose to convert their land to forestry. When the pastureland rent is 

used instead of the cropland rent, the NPVs from converting and participating in EQIP 

are higher than those without conversion for discount rates of both 2.5% and 3%. From 

2009 to 2013, tree stand establishments have been conducted on 344 acres in Maryland, 

which is a small number as predicted by the analysis results. Perhaps by targeting 

marginal cropland or pastureland, the program would have greater participation for tree 

establishment practices. 

For the conversion from lawn to forest scenario, the NPVs from converting to 

forest are substantially higher than those of maintaining lawn, even without harvesting 

any timber. The costs of managing a forest are much lower than those of managing a 

lawn. The decision of the landowner to participate in L2W and establish trees on their 

lawn space is largely determined by the aesthetic values of the landowner. Since it seems 

unlikely that the landowner would choose to harvest timber from one acre of trees, 

neither land use provides market benefits to the landowner, making the aesthetic benefits 

very important. The internalization of public benefits from carbon sequestration would 

make the investment in converting to forest even more attractive to the landowner. Using 

the constant social cost of carbon estimate discounted at 2.5%, the discounted carbon 

benefits provided by the conversion are worth $1,245.87 per acre when no timber is 

harvested, which is substantially higher than the current cost-share assistance of $335.91 

per acre. The GIS analysis results estimate that around 230,000 acres of land in Maryland 

are eligible for L2W, which is much lower than the one million acre estimate set forth 

when the program was first launched. Since the program is new, no conclusions can be 

made regarding actual versus potential program participation, but the initial enrollment 

appears to be slow. Because the carbon sequestration potential is high for land that has 

 
 
 

 



6 

not already been forested, investing more in L2W could accelerate Maryland’s progress 

towards its GHG reduction goals. 

Overall, several cases resulted where the NPV from the forestry investment did not 

exceed the opportunity costs using only private benefits and a typical private discount 

rate of 5%, but with a discount rate of 2.5% and carbon benefits included, the opportunity 

costs were exceeded. This represents a situation where the forestry investment is valuable 

to society, but from a private perspective, the landowner would likely not make the 

investment. The question of whether the government should make up the difference in 

order to induce the private landowner to invest and ultimately better society is raised 

from these results. Further, this question arises only with the internalization of one of the 

co-benefits (carbon sequestration), and in reality, the social benefits from forestry would 

be much more extensive. 

 

1.4 Organization 

The next chapter provides a review of climate change and forestry economics. The 

chapter includes topics such as the state of carbon prices around the globe, forestry’s role 

in the carbon cycle, and land use alternatives. Chapter Three presents an in-depth 

explanation of Maryland’s climate change initiatives and the role that forestry plays. 

Further, a detailed description of the forestry cost-share programs used for this analysis is 

laid out, including the results of the GIS analysis conducted to determine program 

eligibility across Maryland. Chapter Four discusses elements of CBA that are particularly 

important to analyzing forestry investments such as discounting and optimal timber 

rotations. Chapters Five, Six, and Seven explain the implementation of the three forestry 

investment scenarios and the results from each. Specifically, Chapter Five presents the 

improving timber management scenario and evaluates WIP, Chapter Six presents the 

conversion from agricultural land to forest scenario and evaluates EQIP, and Chapter 

Seven presents the conversion from lawn to forest scenario and evaluates L2W. Lastly, 

Chapter Eight provides a synthesized set of conclusions that use the CBA results, 

observed program participation, and the GIS analysis results. It also includes a discussion 

of the analysis limitations, future research, and policy recommendations.  
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CHAPTER 2. CLIMATE CHANGE AND FORESTRY ECONOMICS REVIEW 

2.1 Summary of Topics 

According to the International Panel on Climate Change’s (IPCC) most recent 

assessment report, concentrations of carbon dioxide in the atmosphere have increased by 

40% compared to pre-industrial levels, which is just one of many statistics that brings to 

light the global carbon problem our world is currently facing (IPCC, 2013). Preventing 

the problem from escalating and searching for a global solution have been important 

topics in the political arena for over 20 years. A working group consisting of several 

agencies, including the Environmental Protection Agency (EPA), has been conducting 

ongoing research since 2010 to estimate the social cost of carbon, which is used to 

measure the benefits of carbon reductions in regulatory impact analyses (Interagency 

Working Group on Social Cost of Carbon, 2013). Further, economies around the world 

have implemented carbon pricing approaches to internalize the external costs of carbon 

emissions, which is an important step towards mitigating climate change (World Bank & 

ECOFYS, 2014). 

One way that carbon in the atmosphere can be decreased is by sequestration, which 

is the process of capturing and storing carbon.. Sequestration by forests plays an 

important role in the carbon cycle, and increasing forested land is another component of 

the fight against climate change (Richardson & Macauley, 2012). However, since several 

alternative land uses to forestry exist, the costs and benefits that play a part in private 

land use decisions must be considered (Liu, Merrill, Gold, Kellogg, & Uchida, 2013). 

These topics will be covered in the following literature review to provide context for the 

analysis that follows.  
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2.2 Social Cost of Carbon 

Estimates of the social cost of carbon vary immensely in the literature, depending 

on what model is used and what assumptions are made. According to the interagency 

working group discussed previously that includes the EPA, the definition of the social 

cost of carbon is the “estimate of the economic damages associated with a small increase 

in carbon emissions, conventionally one metric ton, in a given year.” Some of the 

damages it includes are “changes in net agricultural productivity, human health, property 

damages from increased flood risk, and the value of ecosystem services due to climate 

change” (Interagency Working Group on Social Cost of Carbon, 2013). The interagency 

group establishes four values for the social cost of carbon, which are based on the 

average results of three well-known integrated assessment models (IAMs). The three 

models are the Dynamic Integrated Climate and Economy (DICE) model, first presented 

by Nordhaus (1994), the Policy Analysis of the Greenhouse Effect (PAGE) model, first 

presented by Hope, Anderson, and Wenman (1993), and the Climate Framework for 

Uncertainty, Negotiation, and Distribution (FUND) model, first presented by Tol (1997).  

Pindyck (2013) defined IAMs as models that combine a climate science model with 

an economic model. There are six main elements to the common IAMs (DICE, PAGE, 

and FUND): future carbon emissions projections, future atmospheric carbon projections, 

projections of climate changes as a result of higher carbon concentrations, economic 

impacts from higher temperature projections, abatement cost estimates, and utility and 

time preferences. The modeler has freedom to specify key components of the model, 

generally requiring strong assumptions regarding the functional forms and parameter 

values, which is why the models produce differing results.  

The models vary in how temperature changes are translated into economic damages 

(Greenstone, Kopits, & Wolverton, 2013). PAGE includes damages in three broad 

categories, while FUND and DICE include damages in several narrower categories. 

PAGE and DICE both include the possibility of catastrophic higher temperatures, while 

FUND does not. Another variation between the three models is in how they account for 

adaptation as a response to climate change. FUND induces adaptation practices in certain 

sectors, PAGE imposes adaptation exogenously, and DICE does not explicitly account 
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for adaptation. Overall, PAGE and DICE produce similar estimates of the social cost of 

carbon, while FUND estimates are generally much lower.  

Table 2.1 below shows the most recent estimates of the social cost of carbon from 

2010 to 2050 using three different discount rates (2.5%, 3%, and 5%). These estimates 

are used by the United States government in project and policy assessments. As Table 2.1 

shows, the social cost of carbon estimates increase over time. This is the case because 

“future emissions are expected to produce larger incremental damages as physical and 

economic systems become more stressed in response to greater climate change” 

(Interagency Working Group on Social Cost of Carbon, 2013, p. 14).  

Table 2.1 Annual Social Cost of Carbon Estimates, 2010-2050 
(2007 $/ton) 

      
 
 
 
 

                                                
                                                         

 
 
 
 
 
 
 
 
 

(Interagency Working Group on Social Cost of Carbon, 2013) 

As one can see in Table 2.1, the discount rate chosen has quite an impact on the 

social cost of carbon. The discount rate reflects the marginal rate of substitution between 

consumption now and consumption in the future, and it used to calculate the net present 

value of a stream of future damages (Greenstone et al., 2013). The common discount 

rates used by government agencies are 2.5%, 3%, and 5%. The two higher discount rates 

are determined by historical interest rates. Since there is a popular concern that interest 

rates are uncertain in the future, the low discount rate is included as well. As the discount 

Discount Rate 

Year 
5.0% 3.0% 2.5% 

2010 11 32 51 
2015 11 37 57 
2020 12 43 64 
2025 14 47 69 
2030 16 52 75 
2035 19 56 80 
2040 21 61 86 
2045 24 66 92 
2050 26 71 97 
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rate increases, the future becomes less important in the calculation. For example, the 

social cost of carbon in 2010 is $11 per ton using 5% as the discount rate and $51 per ton 

using 2.5%, which is a difference of $40. The power of discounting can make a drastic 

difference in calculating the damage caused by carbon emissions.  

Which discount rate to use causes a lot of disagreement about which social cost of 

carbon is accurate. Further, the limitations of IAMs are believed to underestimate the true 

damage caused by increased carbon emissions (Stern, 2013). Overall, the models have 

remained mostly the same since their development. For example, weak damage functions 

have continued to prevail as the models have evolved despite advancements in research 

about the impacts of climate change. Greenstone et al. (2013) pointed out that the IAMs 

do not include inter-sectoral or inter-regional relationships. For example, the damages in 

one region on a neighboring region are not captured. Further, the IAMs do not account 

for changes in technology that will decrease the costs of adaptation practices over time. 

Moore and Diaz (2015) recently published the results of their modified DICE model, 

which was altered to include the impact of increasing temperature on long-run GDP 

growth. They concluded that the social cost of carbon is actually as high as $220 per ton. 

Several limitations to IAMs can be discussed, but the important takeaway is that 

researchers are continually working to increase the accuracy of the social cost of carbon 

estimates and lower the discrepancy between estimates.   

 

2.3 Carbon Markets 

Carbon markets exist to internalize the externality of carbon emissions 

(MacKenzie, 2009). Without them, emitters do not have to bear the full cost of the 

external damage they cause to society. Carbon pricing instruments include carbon taxes 

and cap-and-trade schemes, and carbon markets use one of these approaches or a 

combination of both. The majority of carbon prices that have recently emerged from 

carbon markets are much lower than the social cost of carbon estimates discussed in the 

previous section. The social cost of carbon estimates the damage from future carbon 

emissions. In contrast to the social cost of carbon, carbon prices that have emerged from 

carbon markets are signals of the costs of mitigation now. In other words, the social cost 
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of carbon is the damage if we do nothing, and the carbon price is the cost to do something 

now. The relatively low carbon prices are an indication of the value of mitigating now to 

avoid the higher cost of damages in the future.  

Cap-and-trade starts with the government setting a ‘cap,’ which is a maximum 

amount of aggregate total emissions (MacKenzie, 2009). A corresponding number of 

permits is distributed, either by giving them away or selling them at an auction. The 

‘trade’ part comes in when firms buy and sell permits with each other depending on how 

much it costs them to reduce emissions compared to other firms. The price of carbon 

depends on how severe the cap is and it reflects to some extent the cost of reducing 

carbon. As the cap increases, allowing more emissions, the price of carbon decreases. 

Similarly, as the cap tightens, the price of carbon increases. Another important part of 

emissions trading schemes is the inclusion of offset credits. Offset credits are given for 

projects that reduce carbon emissions in one area in order to allow emissions in another 

area. Examples are the development of renewable energy, increased energy efficiency, 

and land-use change. An offset project of specific importance to this research is that of 

forestry offsets. 

Using a carbon tax allows the carbon price to be set by the government through 

policy at a certain amount (World Bank & ECOFYS, 2014). Using the well-known 

Pigouvian approach, the optimal carbon tax should be set equal to its marginal social 

damage (Cremer, Gahvari, & Ladoux, 1998). This would mean that the carbon tax should 

be set to equal the governmental social cost of carbon estimate, but this has not happened 

because of uncertainty in markets and the social cost of carbon estimates themselves. 

Carbon taxes are often used in areas where there are not a large enough number of 

emitters to have a successful trading scheme. They are also used in conjunction with 

emissions trading approaches. For example, carbon taxes are combined with offset credits 

in South Africa and Mexico. Unique carbon market designs that blend different pricing 

approaches are essential for finding the most effective and efficient way to run a carbon 

market.  

Different approaches produce vastly different carbon prices internationally. For 

example, the Tokyo cap-and-trade price is $95 per ton, while the Regional GHG 
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Initiative (RGGI) in the Northeastern United States sells carbon credits for around $3 per 

ton (World Bank & ECOFYS, 2014). The carbon prices from the 2014 World Bank 

Group Report for different economies around the world are included in the Table 2.2 and 

Table 2.3 below. Table 2.2 shows the carbon taxes set by governments, some of which 

have lower and upper limits as shown. Table 2.3 shows the carbon prices that have 

emerged from cap-and-trade schemes. The carbon price in Japan of $95 per ton is an 

outlier, which is attributed to the fact that no excess credits were sold when the market 

was implemented, so no trading was possible.  

Table 2.2 Carbon Taxes around the World 
($ per ton of carbon) 

Region Carbon Tax 
Sweden 168 
Norway 4-69  
Switzerland 68 
Finland 48 
Denmark 31 
British Columbia, Canada 28 
Ireland 28 
Australia 22 
United Kingdom 16 
France 10 
Iceland 10 
South Africa 5 
Mexico 1-4 
Japan 2 

                                     (World Bank & ECOFYS, 2014) 
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Table 2.3 Carbon Prices from Cap-and-Trade Programs around the World 
($ per ton of carbon) 

Region Carbon Price 
Tokyo 95 
California, United States 11 
Shenzhen, China 11 
Guangdong, China 10 
Quebec, Canada 10 
Beijing, China 9 
European Union 9 
Shanghai, China 5 
Tianjin, China 4 
RGGI, United States 3 
New Zealand 1 

                                   (World Bank & ECOFYS, 2014) 

The two emissions trading schemes within the United States are in California and 

in the Northeastern region (RGGI). The California Cap-and-Trade Program was 

established in 2012, and the first compliance period began on January 1, 2013 (World 

Bank & ECOFYS, 2014). Carbon offsets are sold within the continental United States 

and Quebec. Carbon permits were initially allocated by the government to large entities 

based on production and efficiency, and the rest are auctioned off periodically. The 

original emissions cap was set 2% below the 2012 forecast of emissions, and it was set to 

decline 2% in 2014 and 3% in 2015 (Kossoy & Guigon, 2012). The carbon price at the 

beginning of 2012 was $15.40, which spiked at the end of July and then steadily 

decreased to around $11 by the end of 2012 (Climate Policy Iniative, 2015). In 2013, the 

price increased to $16.40 at the beginning of January but decreased back to around $11 

by the end of the year. At the beginning of 2015, the carbon price was $13.02, and has 

remained steady since then. The GHG Reduction Fund in California receives the auction 

proceeds, which are used to reach three main goals: sustainability in communities, clean 

and efficient energy, and improved waste diversion. 
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RGGI, launched in 2009, is a market-based program designed to reduce carbon 

emissions from power plants in the following nine states: Connecticut, Delaware, Maine, 

Maryland, Massachusetts, New Hampshire, New York, Rhode Island, and Vermont 

(World Bank & ECOFYS, 2014). In 2014, a new emissions cap of 91 million tons of 

carbon was implemented, which is 45% less than the previous cap set in 2012. The cap 

was lowered so substantially because the actual emissions had consistently been about 

35% lower than the earlier cap. The cap will decline by 2.5% annually from 2015 to 

2020. Most emission allowances are sold through auctions, and the proceeds are invested 

to promote energy efficiency and renewable energy. The clearing price for the first 

auction in September of 2008 was $3.07, which steadily decreased to around $1.90 by the 

end of 2009 and stayed about the same until the end of 2012 (RGGI Inc., 2015). At the 

beginning of 2013, the price started to increase, and the most recent auction in March of 

2015 cleared at $5.41. 

Both the RGGI and the California Cap-and-Trade Program incorporate forestry 

offsets into their initiatives, which the next section discusses. 

 

2.4 Forestry in the Carbon Process 

While the main focus of climate change legislation tends to be the reduction of new 

emissions, forestry plays a unique role in that it reduces carbon that is already in the 

atmosphere. Forested lands possess the ability to sequester carbon from the atmosphere, 

making them a valuable resource in the climate change arena. “Carbon sequestration is 

the process of capture (through photosynthesis) and long-term storage of atmospheric 

carbon dioxide” (Sedjo & Sohngen, 2012, p. 128).  

The carbon sequestration process in forests takes place within tree biomass, which 

is defined as “any part of living or nonliving tree tissue, for example, the trunk, branches, 

leaves, or roots” (Sedjo & Sohngen, 2012, p. 128). The walls of plant cells are comprised 

of cellulose or lignin, and carbon is needed to build these fibers. Plants sequester carbon 

for this purpose through photosynthesis, which is critical for plant growth. Carbon is also 

sequestered by the soils of forestland through two processes: humification and 

microphotosynthesis. Humification occurs when plants die and their biomass decomposes 
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into the soil, and microphotosynthesis occurs when photosynthetic bacteria in the soil 

itself sequesters carbon from the atmosphere. Existing forests can be managed to increase 

carbon sequestration in several ways such as extending harvest rotations or ensuring that 

carbon storage is maintained in wood products after harvest (Cunha-e-Sa, Rosa, & Costa-

Duarte, 2013).  

It is important to note that some of the sequestered carbon is released back into the 

atmosphere during harvest or when the tree dies and starts to decompose. Exactly how 

the forestry carbon cycle works depends on the tree species, the management practices 

used, the rotation length, and the use for harvested wood. If the timber is burned for fuel, 

the carbon will be released back into the atmosphere, but if it is used for building 

furniture or houses, the carbon remains sequestered. Figure 2.1 shows a simplified 

version of how vegetation sequesters and releases carbon through different facets.  

 Figure 2.1 Simplified Carbon Process  (Wieland & Strebel, 2008) 

 
 
 

 



16 

Since forestry is an important carbon sink, it makes sense that it would be included 

in carbon markets as an offset option. RGGI allows forest offset projects in the form of 

reforestation, improved forest management, avoided conversion, and afforestation (RGGI 

Inc., 2013). Reforestation is when trees are established on land that had recently been 

forested, and afforestation is when trees are established on land that was not previously 

forested. All offset projects must be in one of the nine RGGI states, but afforestation is 

only eligible in Connecticut and New York. Offset credits are awarded based on the net 

additional tons of carbon sequestered within the project boundary for each period. The 

California Cap-and-Trade Program allows the following forest offset projects: 

reforestation, improved forest management, and avoided conversion (Air Resources 

Board, 2011). The forestry projects can be located anywhere within the United States. 

Like RGGI, the offset credits are awarded based on any carbon sequestered in addition to 

a “business-as-usual” scenario. Protocols exist to establish the amount of carbon 

sequestered as a result of the various forestry offsets.  

Even though forestry offsets are included in many carbon markets, many 

challenges have arisen in their implementation. The first is additionality, which is the 

requirement that the emissions reductions (sequestration) would not have taken place if it 

were not for the offset project (Chomitz, 2000). A common example of a project where 

additionality is questionable is one where the project makes money and would be 

implemented with or without the offset program. The second challenge is determining the 

baseline “business as usual” scenario because so many different scenarios could take 

place in absence of the project. Similarly, the third challenge is the measurement of 

carbon sequestered with the project. Monitoring the progress of the offset project can 

become very costly. Finally, permanence is of concern because of the possibility of 

carbon sequestration being reversed, whether it is accidental or deliberate. Even though 

the challenges seem great, forestry cannot be ignored as valuable offset option and an 

integral piece in combating climate change.  
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2.5 Forestry and Alternative Land Uses 

As discussed above, forestland is valuable in the fight against climate change, but 

that does not guarantee that it is a profitable land use choice for a private landowner. One 

must consider alternative land uses such as agriculture and urban development. 

Urbanization in the eastern United States is causing a decline in agricultural and forest 

lands (Liu et al., 2013). With the loss of agricultural and forest lands also comes losses in 

ecosystem services like water filtration, wildlife habitat, and carbon storage. Private 

landowners have an incentive to provide private goods such as crops and timber, but they 

do not necessarily have incentives to preserve ecosystem services that benefit society 

since the positive social externalities are not internalized by the landowner.  

One way to incentivize private landowners to provide ecosystem services is by 

public policy. In the design of public policy, it is important to consider tradeoffs between 

alternative land uses when thinking of ways to preserve ecosystem services (Liu et al., 

2013). For example, conversion to forestland improves water quality and sequesters 

carbon, but it also takes land away from development and other agricultural uses. 

Urbanization and crop production play an important role in regional economic growth, 

which cannot be ignored. Decision-makers need to have an assessment of the tradeoffs 

between multiple land uses and land management scenarios.  

Private landowners make land use decisions based on the net present value (NPV) 

of the future revenue streams from all land use options (Nelson & Hellerstein, 1997). 

Output quantities, input and output prices, and the discount rate are all part of 

determining the NPV for each land use. Plantinga, Mauldin, and Miller (1999) estimated 

land use shares by solving an individual landowner’s profit maximization problem in 

three states: Maine, South Carolina, and Wisconsin. They then used an econometric 

model to predict the estimated land use shares using rents from agriculture and forestry, 

land quality measures, and transportation costs as explanatory variables. Rents from 

forestry were measured as the NPV of future timber revenues per acre, and rents from 

agriculture were measured as the NPV of future crop or pasture revenues per acre. They 

used population density measures to explain the share of land that was developed. As 

expected, their results showed that when forest rent increases, the share of agricultural 
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land relative to forestland decreases, all else equal. The opposite is also true. 

Interestingly, changes in forest and agricultural rents did not appear to have a significant 

effect on the allocation of land to urban development.  

Since this research has a focus on forestry, the rest of this section further explains 

the costs and benefits associated with forestry ownership.  

2.5.1 Private Costs of Forestry 

There are two types of forest owners: industrial and nonindustrial. Industrial forest 

lands are managed for timber production, and they are typically owned by wood 

processing facilities (Newman & Wear, 1993). Owners of nonindustrial private forest 

(NIPF) land are likely to value non-timber benefits, such as hunting, aesthetics, and wind 

breaks, as highly as the timber production benefits. Newman and Wear (1993) compared 

the behavior of industrial and nonindustrial forest owners, and they find that 

nonindustrial owners still practice profit maximizing behavior. Both types of forest 

owners will be treated equally in this research, and the NPV that maximizes profit will be 

used to predict landowner decisions.  

Most of the private costs of forest ownership are incurred at the time of forest 

establishment. Site preparation includes clearing past logging residue, preparing 

seedbeds, and controlling for weeds (Bair & Alig, 2006). Planting costs include 

seedlings, shelters, stakes and other equipment. Seedlings can be planted by hand or with 

machines, which makes labor and fuel prices important factors for forest landowners as 

well. Costs besides those incurred during forest stand establishment depend on the 

intermediate management strategies chosen. Some examples of intermediate management 

costs are fire protection, thinning costs, boundary maintenance, management plans, 

herbicide and fertilizer treatments, pruning, harvesting costs, and surveying (Bair & Alig, 

2006). Certain costs can depend on the tree species. For example, seedling costs and 

fertilizer recommendations vary amongst species. The United States Department of 

Agriculture (USDA) and several land grant university extension services publish periodic 

estimates of these costs. For this analysis, the extension services of the University of 

Maryland, Pennsylvania State, Virginia Tech, the University of Arkansas, and the 

University of Florida are used as data sources.  
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Private landowners who want to dedicate their land to forestry may have access to 

government cost-share programs. Such programs are in place to provide incentives for 

landowners to dedicate their land to forestry because governments recognize the benefits 

that forests provide, including those that help in the fight against climate change (Kooten, 

Binkley, & Delcourt, 1995). This has a significant impact on the private costs of owning 

forest. In some cases, 100% of the establishment costs are covered by the cost-share 

program, making it much less costly for landowners. However, there are often constraints 

to participating in such programs, such as long-term time commitments and eligibility 

requirements. Details on the current forestry cost-share programs available to Maryland 

landowners are included in the next chapter.  

2.5.2 Private Benefits of Forestry 

The main benefit that arises from forestry is the revenue from harvesting timber, 

which can come from a commercial thinning or a final harvest. In estimating the benefits 

from timber harvest, it is important to understand the distinctions between different 

grades of timber and the prices associated with each. As a tree grows, its grade shifts 

from pulpwood to sawtimber to veneer (Jacobson, 2008). However, certain species will 

never reach the veneer grade, so that needs to be taken into account. Further, the species 

is important in determining what the timber will likely be used for, which drastically 

impacts the benefits from carbon sequestration. Tree growth data for this analysis was 

obtained from the Forest Research Group, which is a private research organization in 

Massachusetts, and from the United States Forest Service, which will be discussed in 

detail in later chapters. Prices are commonly given in terms of volume, which could be 

board feet, cords, or cubic feet. The most recent analysis of timber prices in the United 

States conducted by the USDA includes real price projections to 2050 for hardwood and 

softwood timber of different grades from different regions, which will be used in this 

analysis (Haynes, 2003). While this publication may seem outdated, comparisons 

between the price predictions and more recently observed prices provided some 

validation for the predictions, which is discussed in more detail in the implementation 

chapters.  
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Another private benefit from forestry ownership is the aesthetic value of trees. The 

Forest Service conducts a National Woodland Owner Survey every year, which acts as a 

census of forest owners across the United States. When asked the question of the 

importance of owning trees to enjoy their beauty or scenery, approximately 70% of the 

forest owners that were surveyed answered “important” or “very important” (United 

States Forest Service, 2014). McPherson, Simpson, Peper, Maco, and Xiao (2005) 

included aesthetic benefits in their analysis of trees in five United States cities. They 

calculated aesthetic benefits based on the contribution of a large tree in the front yard to a 

house sale price in each city. Also, they take the distribution of street trees and the tree 

growth rates into account for each city. Annual aesthetic benefits per tree range from $21 

in Bismarck to $67 in Berkeley. These estimates are for urban trees, and this analysis is 

focused on rural trees, for which aesthetic values are more difficult to quantify. While 

timber revenues are much easier to monetize, aesthetic benefits are an important private 

benefit as well. Several other co-benefits from forestry are presented in the next section.  

2.5.3 Social Benefits of Forestry 

Public, or social, benefits from forestry ownership are extensive. Besides carbon 

sequestration, forests provide several co-benefits such as improved water quality, 

improved air quality, increased shade and reduction of building temperatures, energy 

savings, flood control, wildlife habitat preservation, and recreation opportunities. This 

section discusses the valuation techniques that have been used in the literature for carbon 

sequestration, improved air quality, and improved water quality as a result of forestry. 

As already discussed, trees can sequester carbon from the atmosphere and store it in 

their roots, trunks, branches and leaves over their lifetime. Nowak (1994b) conducted a 

valuation of the reduction in atmospheric carbon by urban forests in Chicago. First 

ground samples were collected for 8,996 trees in the study area including diameter at 

breast height (dbh), tree height, and species. Allometric equations, which are equations 

that relate the easily quantified characteristics of trees (such as height and species) with 

more difficult properties (such as biomass), were used to calculate biomass for each tree. 

Then, tree-growth was estimated based on measurement of growth increments. The 

growth increments came from a sample of 543 trees removed in Chicago in the early 
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1990’s that were measured to determine average annual growth for major tree species. 

The result estimated that 5.6 million tons of carbon is stored in Chicago’s trees. The total 

carbon storage can be monetized using the social costs of carbon estimates previously 

discussed. Nowak’s study illustrates the fact that estimating the benefits from carbon 

sequestration requires a large amount of ground sampling and historical growth data, 

which can be costly and difficult to obtain. However, governments rely on such measures 

for regulatory analysis, so these types of studies continue to be conducted.  

Trees improve air quality in several ways. First, they can lower building 

temperatures by shading, which can in turn lower building energy use (Nowak, 1994a). 

This decrease in energy use can decrease power plant emissions. Trees can also intercept 

particles from the atmosphere and absorb pollutants. Besides reducing carbon dioxide, 

trees can also help decrease carbon monoxide, nitrogen dioxide, ozone, sulfur dioxide, 

and other particulate matter in the atmosphere. To estimate the removal of air pollutants 

by trees, one must know the rate at which the surface of a tree cleans a given pollutant 

from the air. Once the pollution removal by trees is known, the monetary value of the 

pollutants removed is calculated by using the costs for emission control. In other words, 

the cost of preventing the emission of the pollution by using control strategies is used as 

the value of the pollutant removal by trees. Nowak uses the following 1990 dollar values 

per metric ton of pollutant removed from the California Energy Commission: $490 for 

ozone, $920 for carbon monoxide, $1,307 for particulate matter, $1,634 for sulfur 

dioxide, and $4,412 for nitrogen dioxide. For an acre of trees in Chicago, the estimated 

annual monetary value of pollution removal was $61 in 1991. 

Improved water quality as a result of trees is often measured by the amount of 

stormwater runoff reduction and monetized by using the costs for controlling stormwater 

runoff. Stormwater runoff is the “second most common source of water pollution for 

lakes and estuaries and the third most common source for rivers nationwide (Xiao, 

McPherson, Simpson, & Ustin, 1998). Trees are capable of intercepting and storing 

stormwater, which reduces runoff volumes. One way to monetize the costs for controlling 

stormwater runoff is to sum the total money spent to store water in a basin instead 

(McPherson et al., 2005). The costs would include acquiring retention basin land, 
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maintenance, operations, and construction. McPherson et al. (2005) calculated a 

stormwater reduction benefit ranging from $31 per tree in Glendale to $89 per tree in 

Berkeley. Improved water quality also arises when forests filter pollutants such as 

nitrogen and phosphorus that come from agricultural activities (Norton & Fisher, 2000).  

The co-benefits from forestry are vast but very difficult to quantify and especially 

to monetize, which becomes a limitation to evaluating forestry investments. Further, 

many of the attempts to quantify co-benefits from forestry in the literature have been for 

urban forests, as was presented in this section. Since this analysis considers rural forestry 

investments, the estimates from the literature are not directly applicable. It is important to 

note that only the benefits from permanently sequestered carbon are included in this 

analysis, so the total social benefits from the forestry investments in question are likely 

higher than the ones calculated. 

 

2.6 Forestry Investment and Policy Literature 

Econometric studies that explain the behavior and management decisions of forest 

landowners and try to identify the determinants of certain forestry investments have been 

conducted in the literature. Additionally, researchers have investigated the impacts of 

government forestry programs on private landowner investment decisions. 

Beach, Pattanayak, Yang, Murray, and Abt (2005) combined results from 39 

econometric studies through a meta-analysis with the goal of identifying the determinants 

of forest management by nonindustrial private forest owners. The meta-analysis 

technique used was vote-counting, which is the process of categorizing the findings from 

each study (significantly positive, significantly, negative, or not significant for each 

variable) and the category with the most “votes” for each variable is determined to be the 

best representation. Most of the studies used in their meta-analysis were from the United 

States, with a few from other countries. The majority of the models were either binary 

choice models that estimated the probability of a forest landowner making a certain 

management decision (timber stand improvements, reforestation, or harvesting) or 

ordinary least squares regressions that estimated the influence of the independent 

variables on the amount of a management activity that took place (measured by acres). 
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They used the following categorization of the determinants of forest management 

decisions: market drivers, policy variables, owner characteristics, and plot conditions. 

The main market driver that most studies included was timber prices, and surprisingly, 

the percentage of studies that found a significantly positive effect on forest management 

investment was lower than they expected. Plot size seemed to have a consistently positive 

and significant effect on forest management investment, but owner characteristics did not 

provide conclusive results across management practices. This suggests that forestry cost-

share programs might receive higher acreage participation if they were targeted towards 

large landowners 

The policy variables are of special importance to this analysis. Tax incentives, cost-

share programs, and technical assistance are typical examples of policy variables 

included in the analysis of forestry investments. Beach et al. (2005) found that policy 

variables were rarely included in harvesting studies, which makes sense since the purpose 

of such programs is usually to incentivize reforestation and timber stand improvements, 

not necessarily harvesting. The results regarding the impact of policy variables on the 

decision to reforest or improve timber stands are shown in Table 2.3 and 2.4. A total of 

16 reforestation studies and five timber stand improvement studies were used 

Overall, they concluded that more empirical analyses found that landowners 

respond to government programs than found that landowners respond to other factors, 

such as market prices. However, the results showed that the frequency of significance 

was higher for reforestation than for timber stand improvement. This may indicate that 

cost-share assistance for reforestation would result in higher participation than for timber 

stand improvements.  

Table 2.4 Impact of Policy Variables on Reforestation Behavior 

 
 

Policy Variables 

Frequency of 
Inclusion in Studies 

Frequency of Positive Significance 
(Out of total studies that included each 

variable) 

Cost-Share 80% 100% 
Technical Assistance 29% 100% 
Tax Incentives 18% 67% 

(Beach et al., 2005) 
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Table 2.5 Impact of Policy Variables on Timber Stand Improvement Behavior 

 
 

Policy Variables 

Frequency of 
Inclusion in Studies 

Frequency of Positive Significance 
(Out of total studies that included each 

variable) 

Cost-Share 50% 50% 
Technical Assistance 60% 67% 
Tax Incentives 20% 100% 

(Beach et al., 2005) 

Most agree that government cost-share programs have a positive impact on the 

forestry industry since timber production is a long-term commitment and incentives may 

be required to encourage investment by landowners. However, some argue that such 

programs do not induce additional investments in such activities as reforestation and 

improved timber management, but instead, they replace the private capital that would 

have been invested anyway. de Steiguer (1984) examined data from the participation of 

10 states in two federal government forestry cost-share programs, the Federal Incentives 

Program and the Agricultural Conservation Payments Program, to determine whether 

these programs induced additional investments in forestry. Using regression analysis, he 

estimated total private autonomous investment in tree planting as a function of personal 

income, expected stumpage prices, expected interest rates, and total cost-share money 

available for tree planting from the two cost-share programs mentioned above. He found 

no evidence of capital substitution, and therefore, concluded by saying that the opponents 

of forestry cost-share may not have a valid argument.  

The majority of the past research focuses on landowners who have already invested 

in forestry to try to explain and predict their behavior, some including government cost-

share programs and others without. This research analyzes the perspective of a private 

landowner facing an investment decision to either establish new forestland or improve 

existing forestland, and investigates the differences in investment decisions with and 

without cost-share programs. The results will contribute to the question of whether cost-

share programs are only substituting capital that would have been invested in forestry 

even in the absence of the program. Further, this analysis will explore the possibility of 
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compensating private landowners not only by covering the costs of investing in forestry, 

but also by subsidizing the carbon sequestration that results from their forestry 

investment. The analysis is set in the state of Maryland, and the next chapter will present 

an in-depth look at the cost-share programs currently available to landowners there and 

their role in Maryland’s climate change policy.  
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CHAPTER 3. THE ROLE OF FORESTRY PROGRAMS IN MARYLAND’S 
CLIMATE CHANGE INITIATIVES 

3.1 Maryland’s Climate Change Initiatives 

Maryland’s GHGRP, passed in 2012, established an overall goal to reduce GHG 

emissions by 25% (using 2006 as the base year) by 2020 (Department of the 

Environment, 2013). According to the Maryland Department of the Environment (Air 

and Radiation Management Administration, 2011), Maryland has one of the longest tidal 

coastlines (behind Florida, California, and Louisiana), which makes it one of the states 

that is most vulnerable to rising sea levels that result from climate change. There have 

been 20 states, including Maryland, that have implemented GHG emissions targets 

(Center for Climate and Energy Solutions, 2015). The reduction goals across states 

cannot be directly compared because they have different baseline years and target years. 

However, for some perspective on Maryland’s progressive goals, the state of Connecticut 

has a reduction target of 10% (using 1990 as the base year) by 2020. This is clearly a 

much more conservative goal than the one Maryland has in place.  

Maryland passed several pieces of legislation that led up to the GHGRP of 2012 

(Air and Radiation Management Administration, 2011). The Healthy Air Act, passed in 

2006, included a plan for Maryland to join RGGI. The Maryland Clean Cars Act, passed 

in 2007, implemented stringent emissions standards, and EmPOWER Maryland, passed 

in 2008, was designed to reduce electricity use by providing incentives for homeowners 

to increase their energy efficiency. Further, the Maryland Renewable Energy Portfolio 

Standard, amended in 2008, requires that 20% of the electricity used in Maryland must be 

from renewable sources by 2022.   

The GHGRP plan describes various programs in place to either reduce emissions or 

for offsetting reductions. The programs are divided into the following categories: energy, 

transportation, agriculture and forestry, zero waste, buildings, innovative initiatives, land 
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use, and other. Specific to forestry, the action plan focuses on managing forests to capture 

carbon, planting new forests, protecting wetlands to capture carbon, using biomass for 

energy production, and increasing urban trees. The forestry and sequestration efforts are 

projected to result in a reduction of 4.56 million metric tons of carbon dioxide emissions 

in Maryland by 2020, which is 8.2% of the total reduction goal. In order to reach the 

projected carbon emissions reduction from forestry and sequestration efforts, the DNR in 

Maryland, with help from federal agencies such as the NRCS, has many forestry cost-

share programs in place.  

Maryland’s land is currently around 40% forested, and in 2011, 89.4 million tons of 

carbon was stored by forests in Maryland (Department of the Environment, 2013). Figure 

3.1 shows the three physiographic regions in Maryland, which are determined by major 

geologic landforms. Pine species are common in the Coastal Plain region and a mix of 

northern hardwoods species are common in the Mountain and Piedmont regions 

(Highfield and Sprague 2011).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 3.1 Maryland’s Physiographic Provinces  (Highfield & Sprague, 2011) 
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3.2 United States Forestry Cost-Share Programs 

Forestry practices that are eligible for federal cost-share assistance are a subset of a 

longer list of agricultural conservation practices. The federal conservation programs are 

often intertwined, and this is by no means a comprehensive summary of all programs 

available. This section presents the main program that offers cost-share assistance for 

forestry practices to landowners in Maryland. Other programs such as the Conservation 

Reserve Enhancement Program and the Agricultural Management Assistance Program 

allow some forestry practices, but not nearly as extensively. 

The Environmental Quality Incentives Program (EQIP), administered by the 

NRCS, is a conservation program that provides financial assistance to agricultural 

landowners, including forest landowners, to reduce pollution and improve the state of 

natural resources in Maryland (Natural Resources Conservation Service, 2015). The 

program helps landowners plan and implement conservation practices, such as structural 

changes or management changes, on agricultural or forested land. One of the national 

priorities for EQIP is to increase biological carbon storage and sequestration, which is 

directly relevant for forestry and climate change. The financial assistance is based on the 

average cost to undergo the agreed upon conservation practices. Participants can have 

varying contract lengths depending on the conservation practice, but total assistance is 

limited to $300,000 per person over a six-year period. Examples of eligible conservation 

practices that deal with forests are forest stand improvement, riparian forest buffers, 

forest management plans, and tree and shrub site preparation and establishment. The 

conservation practices must be maintained for the life span of the specific practice, 

according to NRCS standards, which is 15 years for the forestry practices.  

 From 2009 to 2013, forest stand improvements have been conducted on 1,698 

acres in Maryland (Morgart, 2014). Tree and shrub establishments have taken place on 

344 acres, and 24 forest management plans have been executed through EQIP in 

Maryland. These seem like small numbers, but it is important to remember that EQIP 

focuses on many other conservation practices besides forestry. For the 2015 EQIP 

participants, there are 98 eligible practices, with only five of them dealing with forestry. 
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The average EQIP costs for forestry options relevant to this analysis will be included in a 

later chapter that discusses data.  

 

3.3 Maryland Forestry Cost-Share Programs 

Maryland is perhaps one of the more progressive states when it comes to providing 

cost-share assistance to landowners in order to incentivize forestry investments. A 

detailed description of Maryland’s forestry cost-share programs is presented in this 

section, followed by the results of a Geographic Information Systems (GIS) analysis that 

was conducted to shed some light on how much land in Maryland meets the eligibility 

requirements for each program and what the carbon sequestration potential of that land is.   

3.3.1 Woodland Incentive Program 

The Woodland Incentive Program (WIP), administered by the Maryland DNR, 

provides cost sharing to private woodland owners for planting new trees, site preparation, 

and timber stand improvement (Maryland Forest Service, 2008). Anyone who owns 

between 5 and 1,000 acres of woodland and agrees to uphold forestry practices for 15 

years is eligible for this program. The program covers up to 65% of the costs incurred by 

the private landowner for forest management, not to exceed $5,000 per year or $15,000 in 

a 3-year period. The 65% payment is made only after the costs have been incurred by the 

landowner. Eligible costs to improve woodland are thinning, pruning, prescribed burning, 

crop tree release, site preparation for reforestation, herbicide treatments, and seedling 

plantings. The program was put in place as a way of incentivizing the development and 

management of private nonindustrial forests because they provide environmental 

benefits, aesthetic benefits, and habitats for wildlife. From 2007 to 2014, 814 landowners 

have participated in the program for management practices on 24,443 acres (Rider, 

2014). The total cost-share assistance for these 814 participants was $834,803, which is 

an average of $104,350 annually.  

GIS Analysis was used to isolate any patches of land that meet the eligibility 

requirements for WIP2. The data used for this analysis were from the Maryland Carbon 
 

2. Refer to the appendix for a detailed description of the GIS analysis 
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Monitoring System (CMS) Database (Dubayah et al., 2013) and the Maryland Protected 

Lands Map Server (Maryland iMAP, 2014). The CMS data layers used were a statewide 

30 meter resolution canopy cover raster layer, which reports the percentage of canopy 

cover for each cell and a statewide 90 meter resolution carbon sequestration potential 

raster layer, which reports the difference between the total lifetime carbon sequestration 

potential and the current aboveground biomass for each cell. The total lifetime carbon 

sequestration potential was calculated using an ecosystem demography model, which 

assumed that the entire state was restored to its natural vegetation of trees. The iMap data 

layers used were a combination of layers showing land in Maryland that has already been 

conserved in some way, including land that DNR owns and land under easements.  

The process used to determine the patches of land that are eligible for WIP is 

shown in Figure 3.2. First, the cells that were not already in a conservation program and 

had a canopy cover of at least 95% were selected as eligible cells for WIP participation. 

From the eligible cells, polygons of at least 5 acres were selected, and the carbon 

sequestration potential statistics were calculated within the eligible polygons.  

 

 

 

 

 

 

 

 

 

 

 

The results showed a total of 736,761 acres of land in Maryland is eligible for WIP, 

and the carbon sequestration potential (excluding current aboveground biomass) on this 

land is approximately 138.8 million metric tons. To provide some context for these 

Eligible Cell Criteria: 
-Conservation Layers = ‘0’ (not conserved) 
-Canopy Cover = >=95% 

Select Patches of Eligible Cells: 
-Any eligible cell that was surrounded on 
all sides by eligible cells was selected 
-Each patch of eligible cells was converted 
to a polygon 
-All polygons >=5 acres were selected 
 

Figure 3.2 WIP Eligibility According to GIS Criteria 
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results, the size of Maryland is approximately 8 million acres, of which about 3 million 

acres are forested, and Maryland emitted approximately 97 million metric tons of carbon 

in 2013. In other words, about a year and a half’s worth of total emissions could be 

sequestered on eligible WIP land.  

The eligible land for WIP is much larger than the program participation that has 

been observed. Perhaps, private landowners observe negative net present values of 

improving timberland management, even with the cost-share assistance. The question of 

whether it is due to the size of the cost-share assistance not being large enough will be 

addressed in this analysis. 

3.3.2 Lawn to Woodland 

The L2W Initiative is a new program primarily aimed at afforestation, which is the 

establishment of new forest cover. The program is a joint effort of Maryland DNR and 

the Arbor Day Foundation. According to the advertisement materials for this new 

program, Maryland has nearly one million acres of lawn that could potentially be 

converted to forests (Maryland Forest Service, 2014). This program seeks to plant trees 

on land that is currently lawn, and it fully funds the trees, tree planting, and monitoring 

assistance. Any private landowner with more than one acre of turf qualifies for the 

program. The program was launched in 2104 in four pilot counties, Montgomery, 

Howard, Carroll, and Baltimore, and it is being extended statewide in 2015. In 2014, a 

total of 4,300 trees were planted on 12 sites that totaled 14.6 acres in size (Feldt, 2014).  

Again, GIS analysis was used to isolate patches of lawn that are eligible for this 

program in Maryland, with a specific goal to see where the one million acres of lawn 

estimate came from. The data used for this analysis were the same as for the WIP 

analysis, with the addition of data from the National Land Cover Dataset (NLCD) (Jin et 

al., 2013). The NLCD layer reports the land cover classification for each cell (total of 16 

classifications).  

The process used to determine the patches of land that are eligible for L2W is 

shown in Figure 3.3. First, the cells that were not already in conservation programs, had 

less than or equal to 30% canopy cover, and were classified as ‘21’ in the NLCD layer 

were selected as eligible cells for L2W participation. Originally, 0% canopy cover was 
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used as the eligibility criteria, but the resulting eligible acres was only around 28,000. In 

reality, most lawn space would have a few trees on it, so 30% canopy cover was chosen 

to account for that. The land cover classification of ‘21’ indicates ‘developed, open 

space,’ which is what most large lawn spaces in the Maryland imagery layer were 

classified as.  It is by no means a perfect choice though because the ‘developed, open 

space’ classification also includes land that is not lawn, such as baseball fields and golf 

courses. However, a choice needed to be made in order to move forward with the 

analysis. From the eligible cells, polygons of at least 1 acre were selected, and the carbon 

sequestration potential statistics were calculated within the eligible polygons.  

 

 

 

 

 

 

 

 

 

 

The results showed a total of 230,450 acres of land in Maryland is eligible for L2W, 

and the carbon sequestration potential (excluding aboveground biomass) on this land is 

approximately 301.6 million metric tons, which is equivalent to about three years of 

Maryland’s annual emissions. You can see that this result is much lower than the one 

million acre estimate, which could be due to differences in the GIS analyses approaches. 

However, the enormous difference in estimates raises some concerns. Perhaps the state 

overestimated the amount of eligible land for this new program. However, the great effort 

that the state of Maryland makes to promote new forest cover and improve management 

on existing forest cover is undeniable, regardless of the discrepancies in estimated 

eligible land.

Figure 3.3 L2W Eligibility According to GIS Criteria 

Eligible Cell Criteria: 
-Conservation Layers = ‘0’ (not conserved) 
-Canopy Cover <= 30% 
-NLCD = ‘21’ (Developed Open Space) 

Select Patches of Eligible Cells: 
-Any eligible cell that was adjacent to at 
least 3 other eligible cells was selected 
-Each patch of eligible cells was converted 
to a polygon 
-All polygons >=1 acre were selected 
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CHAPTER 4. COST-BENEFIT ANALYSIS APPLIED TO FORESTRY 
INVESTMENTS 

4.1 Components Critical to Forestry Investments 

Cost-Benefit Analysis (CBA) is a well-known method for evaluating alternative 

investments and can be used to analyze forestry investment scenarios. This research will 

use CBA to evaluate forestry investments, specifically focusing on the differences in 

returns with and without participation in a government cost-share program. There are a 

few aspects of CBA that are critical to forestry investments, which will be the focus of 

this chapter.  Specifically, since forestry is an abnormally long term investment, 

discounting plays a very important role in the analysis. We already saw the role that 

discounting plays in estimating the social cost of carbon as well. Also, there are different 

methods for determining the optimal rotation length, which can change the results. A 

brief description of the scenarios and sensitivity analysis conducted in this research is in 

order as well. 

 

4.2 Discounting and its Impact on Forestry Investments 

As previously stated, the discount rate reflects the marginal rate of substitution 

between consumption now and consumption in the future. It is used to calculate the net 

present value of a stream of future costs and benefits (Greenstone et al., 2013). The 

further the benefits and costs occur in the future, the lower their present value today. This 

becomes especially important for forestry investments because the majority of the costs, 

such as establishment costs and fertilizer treatments, are incurred towards the beginning 

of the time horizon and the benefits from harvesting timber occur much later. When a 

landowner is faced with the decision to invest in something that has substantial upfront 

costs and no benefits until year 20, it does not seem very appealing. However, people 
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continue to invest in forestry, which could be attributed to the co-benefits that forestry 

provides, such as aesthetic value, lower pollution levels, and carbon storage.  

Choosing the appropriate discount rate for forestry investments is a somewhat 

controversial matter. As the discount rate increases, the less the future is valued. Kula 

(1988) pointed out that discounting easily wipes away the future benefits from harvesting 

timber, even though the risk that forestry investments will become worthless someday in 

the future is very low. Because of this, some argue that forestry investments should be 

discounted at an especially low rate. However, choosing a specific discount rate just to 

make an investment look appealing does not seem like the best approach, especially since 

one could also argue that investing in forestry can come with substantial risks. Such risks 

might include fluctuating future prices of timber, fire damage, wildlife damage, invasive 

species, and wind or other weather damage. Perhaps forestry investments should be 

discounted the same as any other investment. Moreover, discounting is about the 

opportunity cost of investing elsewhere, and such alternatives are relevant for forestry 

investments as well 

The damages from GHG emissions occur over several decades and the same 

concerns about the longevity of the analysis are evident for estimating the social cost of 

carbon as estimating the private returns from a forestry investment. Consequently, it 

makes sense that the discount rates chosen for this analysis are based on those used by an 

interagency working group consisting of several agencies including the EPA and the 

USDA to estimate the social cost of carbon (2.5%, 3%, and 5%) (Greenstone et al., 

2013). The two higher discount rates (3% and 5%) were chosen to represent historically 

observed interest rates. The 2.5% discount rate was chosen to represent the concern that 

interest rates over time are uncertain and to incorporate the common environmentalist 

view that future outcomes matter. 

Recent low interest rates suggest that 2.5% may actually be the most accurate 

discount rate for social CBA. The interest rate on a 30-year treasury bill on March 13th, 

2015 was 2.7% (United States Department of the Treasury, 2015). However, private 

discount rates are likely higher than social discount rates because interest rates on private 

investments such as land and home mortgages are higher. Further, private interest rates 
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include a risk premium in addition to valuing current versus future consumption. 

GreenStone Farm Credit Services, which is one of the largest rural lenders in the United 

States, currently offers an interest rate between 4.3% and 6.8% for 30-year fixed 

mortgages on rural homes (GreenStone Farm Credit Services, 2015). The interest rate 

offered on a 30-year fixed loan for a parcel of land over 10 acres is between 5.3% and 

7.8%. These higher values suggest that the 5% discount rate may be the best rate for the 

private CBA, and it might actually be a lower bound for the actual private discount rate 

depending on the risk preferences of the landowner. The concept of private impatience 

becomes evident when discussing the difference between the social and private discount 

rates. From a social planner’s point of view (government’s point of view), the time 

horizon in consideration is much longer than that of a private individual. Because of this, 

private individuals are less patient than social planners and therefore their discount rate is 

higher.  

Results of this research will be presented using all three discount rates (2.5%, 3%, 

and 5%), which will also serve as an illustration for how much discounting impacts the 

analysis of forestry investments. The distinction between typical private and social 

discount rates will also be used to interpret the analysis results. Specifically, 2.5% will 

represent a typical social discount rate, and 5% will represent a typical private discount 

rate. For each discount rate, an NPV will be calculated with and without the forestry 

investment in question. Equation 1 shows the NPV formula used for a typical forestry 

investment, which is the basis for the private CBA conducted in this research. 

𝑵𝑵𝑵𝑵𝑵𝑵 = −𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸ℎ𝑚𝑚𝑚𝑚𝑚𝑚𝐸𝐸 𝐶𝐶𝐶𝐶𝐸𝐸𝐸𝐸𝐸𝐸

+ �
𝑇𝑇𝐸𝐸𝑚𝑚𝐸𝐸𝑚𝑚𝑇𝑇 𝑅𝑅𝑚𝑚𝑅𝑅𝑚𝑚𝑚𝑚𝑅𝑅𝑚𝑚𝑡𝑡 − 𝑀𝑀𝐸𝐸𝐸𝐸𝑚𝑚𝐸𝐸𝑚𝑚𝑚𝑚𝐸𝐸𝑚𝑚𝑒𝑒𝑚𝑚 𝐶𝐶𝐶𝐶𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡

(1 + 𝑑𝑑𝐸𝐸𝐸𝐸𝑒𝑒𝐶𝐶𝑅𝑅𝑚𝑚𝐸𝐸 𝑇𝑇𝐸𝐸𝐸𝐸𝑚𝑚)𝑡𝑡
       (1)

ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡 𝑦𝑦𝑎𝑎𝑎𝑎𝑎𝑎

𝑡𝑡=1

 

Equation 2 shows the inclusion of benefits from carbon sequestration that result from the 

forestry investment, which is the basis for the social CBA conducted in this research. 

𝑵𝑵𝑵𝑵𝑵𝑵 = −𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸ℎ𝑚𝑚𝑚𝑚𝑚𝑚𝐸𝐸 𝐶𝐶𝐶𝐶𝐸𝐸𝐸𝐸𝐸𝐸 

+ �
𝑇𝑇𝐸𝐸𝑚𝑚𝐸𝐸𝑚𝑚𝑇𝑇 𝑅𝑅𝑚𝑚𝑅𝑅𝑚𝑚𝑚𝑚𝑅𝑅𝑚𝑚𝑡𝑡 + 𝐶𝐶𝐸𝐸𝑇𝑇𝐸𝐸𝐶𝐶𝑚𝑚 𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚𝐵𝐵𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡 − 𝑀𝑀𝐸𝐸𝐸𝐸𝑚𝑚𝐸𝐸𝑚𝑚𝑚𝑚𝐸𝐸𝑚𝑚𝑒𝑒𝑚𝑚 𝐶𝐶𝐶𝐶𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡

(1 + 𝑑𝑑𝐸𝐸𝐸𝐸𝑒𝑒𝐶𝐶𝑅𝑅𝑚𝑚𝐸𝐸 𝑇𝑇𝐸𝐸𝐸𝐸𝑚𝑚)𝑡𝑡        (2)
ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡 𝑦𝑦𝑎𝑎𝑎𝑎𝑎𝑎

𝑡𝑡=1
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4.3 Determining the Optimal Rotation Length 

The decision on when to harvest timber depends first on the optimization objective 

of the landowner. The two objectives that a landowner can have are to maximize long-run 

growth (a biological optimum) or to maximize long-run net revenue (an economic 

optimum). Another way of looking at the differing objectives is to think of the biological 

optimum as maximizing carbon sequestration and the economic optimum as maximizing 

timber harvest net returns. Economic maturity of forests generally occurs sooner than 

biological maturity because the economic optimum accounts for the concept of earning 

interest on the forest investment (Jacobson, 2008). In other words, calculating the 

biological optimum rotation does not take into consideration that you could invest your 

money elsewhere. Different rotation lengths result depending on which optimization 

objective is used. However, you will see in the analysis results that the difference 

between the biological and economic rotations depends heavily on the species and growth 

rates of the stand.  

4.3.1 Biological Rotation 

Forest stand growth is commonly expressed in terms of volume per acre per year. 

Growth is not constant over the lifetime of a tree. Rather, it grows at an increasing rate 

for a period of time and slows to a decreasing growth rate, producing an S-shaped graph. 

The point when the growth rate is zero is called the biological maximum age. This 

concept is illustrated in Figure 4.1.  
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Between 0 and α, the tree is growing at an increasing rate; between α and β, the tree 

is growing at a decreasing rate; and at β, the biological maximum is achieved because the 

growth rate is zero. When volume growth per acre is averaged over the life of the stand, 

the result is called the mean annual increment (MAI). The MAI is calculated each year by 

taking the total volume of the stand divided by the age of the stand. The year in which the 

MAI is maximized is the optimal biological rotation, and the yield that year is called the 

maximum sustained yield (MSY) (Jacobson, 2008). No costs or benefits are taken into 

account when calculating the optimal biological rotation. Because of this, harvesting at 

the biological rotation definitely maximizes the physical harvest volume, but it might 

result in lower returns than the economically optimal rotation.  

4.3.2 Economic Rotation 

Financial maturity of a forest stand usually occurs earlier than biological maturity 

(Jacobson, 2008). The difference between the optimal biological rotation and the optimal 

economic rotation depends on the growth rate of the timber and the alternative rate of 

return. When these two rates equal each other, it is the optimal time to harvest timber. 

Figure 4.1 Representative Tree Growth Cycle  (Kula, 1988) 
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This method of solving for the optimal rotation age is also known as maximizing the land 

expectation value (LEV), which was first proposed by Faustmann (1849). The LEV is the 

net present value (NPV) of a stream of net revenues from an infinite series of optimal 

timber rotations. This optimal economic rotation is commonly known as the Faustmann 

rotation. Figure 4.2 illustrates the difference in rotation length between the optimal 

biological rotation and the optimal economic or “financial” rotation.  

The optimal economic rotation will be the primary rotation used for this analysis, 

but a discussion of how the biological and economic rotations differ will be included as 

well. In Figure 4.2, the difference between the two rotation lengths looks quite 

substantial, which is not always the case (as mentioned earlier). In one of the analysis 

scenarios, the optimal rotations are only one year apart, but in the other scenario the 

economic optimum occurs 20 years before the biological optimum. The difference lies in 

the varying growth rates of the tree species. 
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4.4 The With and Without Analysis Process 

The costs and benefits associated with making a forestry investment vary 

significantly based on the investment in question. An overview of the important costs and 

benefits to consider was presented already in the section on forestry and alternative land 

uses. This section presents an overview of the steps involved in using CBA to analyze 

forestry investment scenarios. An explanation of how our data are used to implement the 

relevant costs and benefits for our scenarios is discussed in the next chapter. 

 

Figure 4.2 Tree Volume Growth and the Optimal Rotations  (Jacobson, 2008) 
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One of the basic approaches to the benefit-cost analysis process is the with-and-

without approach (Campbell & Brown, 2003).  This approach includes opportunity costs, 

which are an important concept in cost-benefit analysis. Undertaking an investment in 

forestry means you are giving up the opportunity to do something else with your land. 

The opportunity cost is quantified in the ‘without’ portion of this approach. If the 

investment benefits from the ‘with’ analysis are greater than the investment opportunity 

costs in the ‘without’ analysis, the investment should be made. In this research, a third 

result is added to the traditional with-and-without approach. For each investment, there 

will be two results for the ‘with’ analysis: one assuming that the landowner participates in 

a forestry cost-share program and one where they do not participate. For each of the three 

scenarios, there is an appropriate forestry cost-share program that the landowner would 

be eligible for. An overview of the three scenarios follows. 

 

4.5 Forestry Investment Scenarios and Sensitivity Analysis 

The next three chapters present a detailed description of how CBA was used to 

assess the three forestry investment scenarios presented in Table 4.1. Each scenario 

coincides with one of the forestry cost-share programs discussed earlier.  

To test how sensitive the investment decisions are to the discount rate chosen, 

results will be presented using the three discount rates discussed in a previous section 

(2.5%, 3%, and 5%). In addition, sensitivity analysis of the carbon price used to calculate 

benefits from carbon sequestration will be conducted. Specifically, results will be 

presented using the actual carbon price from the California Cap-and-Trade Program to 

calculate the benefits from carbon sequestration. These results will be compared to results 

using the social cost of carbon estimates, as calculated by the Interagency Working 

Group discussed earlier, to calculate the benefits from carbon sequestration. The 

appropriate social cost of carbon will be used for each discount rate, since the choice of 

discount rates for this analysis was based off the rates used to report the social cost of 

carbon estimates. Scenario specific sensitivity analysis is conducted as well. For example, 

sensitivity analysis on the cost of pre-commercial thinning in the improving timber 

management scenario is conducted due to the large variability in costs.  
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Table 4.1 Overview of Forestry Investment Scenarios 

Forestry Investment Overview of Scenario 

Improving Timber 
Management 

• 30 acres 
• 4-year-old loblolly pine stand 
• Participate in WIP: Pre-commercially thin pine stand at 

age 4 (year 0 in this scenario), 65% of thinning costs 
covered 

• Timber sold as pulpwood 
• Carbon sequestration calculated using conversion 

factors for softwoods in the Northeastern United States 

Conversion from 
Agricultural Land to 

Forest 

• 17 acres 
• Cropland and pastureland separately considered 
• Oak/hickory stand establishment 
• Participate in EQIP: Cost-share based on average costs 

for high density, mechanical tree planting 
• Timber sold as sawtimber 
• Carbon sequestration calculated using conversion 

factors for hardwoods in the Northeastern United States 

Conversion from 
Lawn to Forest 

• 1 acre 
• Oak/Hickory stand establishment 
• Participate in L2W: 100% of establishment costs 

covered 
• Timber sold as sawtimber 
• Carbon sequestration calculated using conversion 

factors for hardwoods in the Northeastern United States 
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CHAPTER 5. IMPROVING TIMBER MANAGEMENT: IMPLEMENTATION 
AND RESULTS 

5.1 Scenario Overview 

The setting for this scenario is a private landowner in Wicomico County, Maryland 

who owns 30 acres of loblolly pine that was naturally regenerated following a seed tree 

harvest four years earlier. Naturally regenerated stands utilize the seeds from existing 

trees leftover from the previous harvest (Cunningham, Barry, & Walkingstick, 2008). 

The landowner is facing the decision of whether or not to improve management of the 

stand by pre-commercially thinning. Pre-commercial thinning of loblolly pine stands is 

recommended to be conducted in the first three or four years of growth for the best results 

(Williams, Bohn, McKeithen, & Demers, 2011), which is the basis for assuming the 

investment occurs in year four.  

Pre-commercial thinning is an eligible practice for WIP, which is a program in 

Maryland that provides cost-share assistance for the improvement of existing timber 

stands. Historical data showing participation in WIP between 2007 and 2014 reports that 

the average number of acres amongst program participants is 29.78 (Rider, 2014).  

The base case for this scenario, also called the ‘without’ case, assumes that the 

landowner does not pre-commercially thin the stand. Two ‘with’ cases result from this 

scenario: one assuming the landowner pre-commercially thins without receiving cost-

share assistance from WIP and one assuming the landowner pre-commercially thins and 

participates in WIP. Each piece of individual data needed for the CBA is presented in 

detail, followed by the results showing the NPVs of net revenue streams under different 

assumptions, from the year the pre-commercial thinning investment is made to the year of 

the economically optimal timber harvest. 
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5.2 Loblolly Pine Growth Function 

Loblolly Pine is a common species in the Coastal Plain of Maryland (Highfield & 

Sprague, 2011). Refer back to Figure 3.1 for an illustration of Maryland’s physiographic 

regions (defined by major geologic landforms).  

According to a University of Maryland extension publication about forest thinning, 

the main benefit from pre-commercial thinning is improved timber quality (Stewart & 

Dawson, 2013). Improved timber quality arises because pre-commercial thinning 

removes the inferior trees, which leaves the remaining trees with more resources, 

allowing them to grow faster and larger. Pre-commercial thinning is especially important 

for naturally regenerated loblolly pine stands because it is common for pine stands to 

produce seeds at a very high rate, which leads to overstocked stands (Williams et al., 

2011). Growth curves illustrating the concept that pre-commercially thinned loblolly pine 

stands result in greater timber volumes at harvest are presented next.  

5.2.1 Growth without Pre-commercial Thinning 

The growth function for a loblolly pine stand that has not been pre-commercially 

thinned was taken from a Forest Research Group publication (Lutz, 2011). The annual 

volume in tons per acre for the first 40 years was reported. The growth estimates were 

developed by averaging several growth curves from different forest owners. It is 

specified that no thinnings were applied on this hypothetical stand. For different stages of 

the analysis, the timber volume needs to be in cubic feet per acre (to convert to carbon 

per acre) and cords per acre (to sell as pulpwood). The appropriate volume conversion 

factors are shown below (Nix, 2015). A common measurement for timber volume is 

board feet, which is a board that is one foot in length, one foot wide, and one inch thick. 

One thousand board feet is abbreviated as MBF. It was necessary to convert tons per acre 

into MBF per acre first because of the available conversion factors.  

�
𝐸𝐸𝐶𝐶𝑚𝑚𝐸𝐸
𝐸𝐸𝑒𝑒𝑇𝑇𝑚𝑚

÷
7.5 𝐸𝐸𝐶𝐶𝑚𝑚𝐸𝐸
𝑀𝑀𝐵𝐵𝑀𝑀

� ×
183 𝑒𝑒𝑅𝑅𝐸𝐸𝐸𝐸𝑒𝑒 𝐵𝐵𝑚𝑚𝑚𝑚𝐸𝐸

𝑀𝑀𝐵𝐵𝑀𝑀
=
𝑒𝑒𝑅𝑅𝐸𝐸𝐸𝐸𝑒𝑒 𝐵𝐵𝑚𝑚𝑚𝑚𝐸𝐸

𝐸𝐸𝑒𝑒𝑇𝑇𝑚𝑚
       (3) 

�
𝐸𝐸𝐶𝐶𝑚𝑚𝐸𝐸
𝐸𝐸𝑒𝑒𝑇𝑇𝑚𝑚

÷
7.5 𝐸𝐸𝐶𝐶𝑚𝑚𝐸𝐸
𝑀𝑀𝐵𝐵𝑀𝑀

� ×
2.8 𝑒𝑒𝐶𝐶𝑇𝑇𝑑𝑑𝐸𝐸
𝑀𝑀𝐵𝐵𝑀𝑀

=
𝑒𝑒𝐶𝐶𝑇𝑇𝑑𝑑𝐸𝐸
𝐸𝐸𝑒𝑒𝑇𝑇𝑚𝑚

       (4) 

 
 



44 

5.2.2 Growth with Pre-commercial Thinning 

The growth function for a loblolly pine stand that has been pre-commercially 

thinned was taken from a Forest Service publication that reports regional cost information 

for different timberland management practices, as well as justifications for investing in 

timberland management, such as pre-commercial thinning (Bair & Alig, 2006). The 

volume in cubic feet per acre in five year increments for a pine stand that had been pre-

commercially thinned was reported, and a fitted equation was used to fill in the annual 

volume measures. Since the volume measures were already in cubic feet per acre, they 

only had to be converted to cords per acre (using equation 2 above).   

Table 5.1 shows the volume measures in cords per acre with and without pre-

commercial thinning that are used in this analysis, and Figure 5.2 shows the plotted 

volume curves for the values in Table 5.1. 
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Table 5.1 Loblolly Pine Volume Measures Used 
(cords/acre) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                   

 

 

 

 

 

 

 

Adapted from Lutz (2011) and Bair and Alig (2006) 

 

Year 
Without Pre-
Commercial 

Thinning 

With Pre-
Commercial 

Thinning 

1 0 0 
2 2.6 0 
3 3.6 0.5 
4 4.8 2.7 
5 6.3 6.0 
6 8.2 10.0 
7 10.8 14.7 
8 14.0 19.8 
9 17.2 25.1 
10 20.3 30.7 
11 23.3 36.2 
12 26.3 41.6 
13 29.2 46.9 
14 31.9 52.0 
15 34.6 56.7 
16 37.1 61.2 
17 39.5 65.2 
18 41.9 68.9 
19 44.1 72.2 
20 46.2 75.1 
21 48.2 77.6 
22 50.2 79.7 
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5.3 Management Costs 

The only management cost that is different between the ‘with’ and ‘without’ cases 

in this scenario is the inclusion of pre-commercial thinning cost. Other management costs 

including fertilizer, herbicide, and miscellaneous management costs would also be 

incurred by the landowner, but those would not change with the decision to pre-

commercially thin. Since the investment in question is pre-commercial thinning, that is 

the only cost that needs to be considered in the analysis. The analysis is done in real 2010 

dollars, so all of the costs and benefits are converted according to the Producer Price 

Index (PPI) for all commodities (United States Bureau of Labor FRED Economic Data, 

2015). The Producer Price Index measures average changes in over one thousand 
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commodity prices including prices of sawtimber, pulpwood, and other wood products, 

which makes it suitable for forestry analyses (Gunter & Haney Jr, 1984).  

The Alabama Cooperative Extension System (Alabama A&M University and 

Auburn University) conducts a survey of forest landowners in the Southern United States 

every two years, in which respondents are asked to report their major forestry costs 

(Dooley & Barlow, 2013). Maryland is included in the states that are surveyed. The most 

recent published survey results are from 2012, from which the average pre-commercial 

thinning cost per acre was taken. The authors noted a large variance in responses for pre-

commercial thinning costs, from $38 to $236 per acre. I used the average of these two 

values, which is $137 per acre ($125. 14 per acre in 2010 dollars). Since the range of pre-

commercial thinning costs is so large, sensitivity analysis is conducted using the two 

extremes. The cost is incurred in year zero (stand is four years old) for the ‘with’ cases.  

 

5.4 Optimal Rotation and Timber Benefits 

The difference between the optimal biologic and economic rotations was 

previously discussed. The biologically optimal rotation maximizes the mean annual 

increment (MAI) in tree volume, and it does not take any costs or benefits into 

consideration. The maximized MAI in this scenario occurs when the stand is 26 years old 

without pre-commercial thinning and at 23 years old with pre-commercial thinning. The 

difference in rotation lengths is attributed to the accelerated growth that follows pre-

commercial thinning, which leads to a shorter rotation length.  

For the analysis, the economically optimal rotation lengths were used since the 

landowner’s objective is to maximize timber profits. Faustmann’s  formula (below) that 

calculates the land expectation value (LEV) was used to determine the optimal economic 

rotation lengths with and without pre-commercial thinning (Faustmann, 1849). The LEV 

is an estimate of the net present value (NPV), using continuous discounting, of a stream 

of net revenues from rotations to infinity.  

𝐿𝐿𝐸𝐸𝐿𝐿 = −𝐶𝐶 + [(𝐿𝐿(𝐸𝐸) − 𝐶𝐶] �
1
𝑚𝑚𝑎𝑎𝑡𝑡

+
1
𝑚𝑚𝑎𝑎2𝑡𝑡

+
1
𝑚𝑚𝑎𝑎3𝑡𝑡

… �       (5) 

Equation 5 simplifies to Equation 6: 
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𝐿𝐿𝐸𝐸𝐿𝐿 = −𝐶𝐶 +
𝐿𝐿(𝐸𝐸) − 𝐶𝐶
𝑚𝑚𝑎𝑎𝑡𝑡 − 1

       (6) 

C in the equation above is the stand regeneration cost, which was obtained from the 

same Forest Service publication as the loblolly pine growth with pre-commercial thinning 

data (Bair & Alig, 2006). This publication reports regional cost estimates, which were 

produced by combining current and past prices, as well as prices for labor and fuel. For 

the Northeast region, the stand establishment costs for naturally regenerated softwood 

stands was estimated to be $92 per acre ($129.61 per acre in 2010 dollars).  

V(t) is the stumpage value when the stand is t years old. It is calculated by 

multiplying the stumpage price (in dollars per cord) by the timber volume in year t (in 

cords per acre). Stumpage prices are the prices that a logging company pays a landowner 

for the right to harvest their standing trees (J. S. Kays & Bittenbender, 2012). Harvesting 

costs such as cutting and hauling are already accounted for in stumpage prices. A Forest 

Service publication that analyzes the United States timber situation from 1952 to 2050 

reports historic stumpage prices by region and estimates price projections to 2050 

(Haynes, 2003). The 2003 publication is the most recent comprehensive Forest Service 

report of stumpage prices, which may seem outdated. However, since stumpage prices 

are determined on a case by case basis by logging companies, they are difficult to report 

on a frequent basis. The University of Maryland extension service no longer reports 

stumpage prices (as of 2006), and the closest extension services that do are Penn State 

and West Virginia University. When looking at their most recent stumpage prices reports, 

the number of observations raised some concerns. For example, in the most recent West 

Virginia price report (December 2014), the stumpage price for softwood pulpwood in the 

region closest to Maryland was $10.71 per cord ($9.63 per cord in 2010 dollars), but it is 

only based on the results of one survey (Appalacian Hardwood Center, 2014). I decided 

to use the 2003 Forest Service publication because it combined the results of small 

surveys such as the one in West Virginia to produce more robust stumpage price 

estimates. In addition, the price used from Haynes (2003) for softwood pulpwood was 

$9.24 per cord, which is actually very close to the one survey observation from West 

Virginia. 
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Loblolly pine is the primary tree species used by the paper industry, so I assumed 

that the harvested timber is sold as pulpwood (Cubbage et al., 2009). Real stumpage price 

increases are predicted to be quite substantial. The softwood pulpwood stumpage price is 

predicted to increase in real terms from $9.24 per cord in 2010 to $36.94 per cord in 2050 

(in 2010 dollars). The drastic increases are estimated to happen between 2030 and 2050 

due to a projected tightening supply of pulpwood. However, since real increases in other 

components such as regeneration and management costs are not considered in this 

analysis, I will assume that there are no real increases in stumpage prices. I used the 2010 

real softwood pulpwood stumpage price of $9.24 per cord to calculate V(t). This equation 

was also used to calculate timber benefits from harvesting. In reality, a few trees per acre 

would be left to provide seed trees for natural regeneration, but that was not accounted 

for in the calculation of timber benefits since the difference would be minimal. 

r is the discount rate, which in the base case is 3%. The discount rate of 3% was 

chosen because it is the middle value of the three discount rates considered in this 

analysis (2.5%, 3%, and 5%).  

The LEV using Equation 6 was calculated for each year (with and without pre-

commercial thinning), assuming the harvest occurred in that year. The year with the 

highest LEV was chosen as the optimal economic rotation length. The resulting optimal 

economic rotation lengths were age 25 without pre-commercial thinning and age 22 with 

pre-commercial thinning. Both economic rotation lengths are one year less than the 

respective biological rotation lengths. Since loblolly pine stands grow so quickly, the 

difference between the economic and biological rotations is minimal. However, in the 

case of an oak/hickory stand, which is presented in the next scenario, the difference is 

much larger.  

 

5.5 Woodland Incentive Program Participation 

Thinning is one of the eligible improved management practices that receives cost-

share assistance from WIP. WIP covers up to 65% of the costs of the improved 

management, so I assumed that 65% of the pre-commercial thinning costs were 

reimbursed to the landowner in the case with WIP participation. The total WIP cost-share 
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assistance per acre is $81.34 when the average pre-commercial thinning cost of $125.14 

per acre is used. The WIP cost-share assistance is adjusted to be 65% of the two extreme 

pre-commercial thinning costs used for sensitivity analysis as well. The resulting cost 

shares are $22.56 per acre using the minimum pre-commercial thinning cost and $140.12 

per acre using the maximum. The WIP cost-share assistance was adjusted because the 

amount of cost-share the landowner receives is determined after the costs are incurred, 

and it is based on the payment receipts for the management practice undergone as part of 

the program.  

 

5.6 Carbon Sequestration Benefits 

The benefits from carbon sequestration were calculated using a sequence of 

conversions that result in the metric tons of carbon per acre that remain permanently 

sequestered in harvested wood products. The first step was to convert merchantable 

timber volume (in cubic feet per acre) into total above and below ground volume. The 

ratio of total above and below ground volume to merchantable volume for softwood 

species in the Northeast region is 2.193 (Birdsey, 1992). The second step was to convert 

the total volume (in cubic feet per acre) to pounds of carbon per acre. The factor to 

convert loblolly pine in the Northeast region from total volume to carbon is 15.28 

(Birdsey, 1992). The common measurement for carbon is metric tons, which is the unit 

that the social cost of carbon is reported in. To convert carbon from pounds to metric 

tons, pounds are multiplied by 0.00045359 (Environmental Protection Agency, 2004).  

The next step was to calculate the percentage of the carbon that actually remains 

sequestered in the harvested wood products. The process in California Cap-and-Trade 

Program’s forest offset protocol was used to estimate carbon in wood products (Air 

Resources Board, 2011). To account for carbon that is lost during harvest and in the 

processing of wood products, mill efficiency measures were calculated by the California 

Air Resources Board (CARB) for each state. The mill efficiency factor for softwood 

pulpwood in Maryland is 51.3%, which means 48.7% of the original carbon sequestered 

is lost before it can be transferred to wood products. The mill efficiency factors vary from 

about 50% to 70% across states. Any carbon that remains sequestered in in-use wood 
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products or in landfills for at least 100 years is considered to be permanent by CARB. 

Examples of in-use wood products are furniture, paper products, and wood used in 

construction. Smith, Heath, Skog, and Birdsey (2006) estimated the average carbon 

disposition patterns for saw logs and pulpwood for the United States by regions. For 

softwood pulpwood in the Northeast region, 0.6% remains in in-use wood products after 

100 years, and 8.4% remains in landfills after 100 years. A total of 9% of the original 

carbon sequestered by the loblolly pine stand remains permanently sequestered, so that is 

what was used to calculate the carbon benefits.  

The equation below shows the process of converting timber volume in cubic feet 

per acre to metric tons of carbon permanently sequestered per acre.  

𝑒𝑒𝑅𝑅𝐸𝐸𝐸𝐸𝑒𝑒 𝐵𝐵𝑚𝑚𝑚𝑚𝐸𝐸
𝐸𝐸𝑒𝑒𝑇𝑇𝑚𝑚

× 2.193 × 15.28 =
𝑝𝑝𝐶𝐶𝑅𝑅𝑚𝑚𝑑𝑑𝐸𝐸 𝐶𝐶𝐵𝐵 𝑒𝑒𝐸𝐸𝑇𝑇𝐸𝐸𝐶𝐶𝑚𝑚

𝐸𝐸𝑒𝑒𝑇𝑇𝑚𝑚
× 0.00045359

=
𝑚𝑚𝑚𝑚𝐸𝐸𝑇𝑇𝐸𝐸𝑒𝑒 𝐸𝐸𝐶𝐶𝑚𝑚𝐸𝐸 𝐶𝐶𝐵𝐵 𝑒𝑒𝐸𝐸𝑇𝑇𝐸𝐸𝐶𝐶𝑚𝑚

𝐸𝐸𝑒𝑒𝑇𝑇𝑚𝑚
× 51.3% × 9%

=
𝑚𝑚𝑚𝑚𝐸𝐸𝑇𝑇𝐸𝐸𝑒𝑒 𝐸𝐸𝐶𝐶𝑚𝑚𝐸𝐸 𝐶𝐶𝐵𝐵 𝑝𝑝𝑚𝑚𝑇𝑇𝑚𝑚𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚𝐸𝐸𝐸𝐸𝑝𝑝 𝐸𝐸𝑚𝑚𝑠𝑠𝑅𝑅𝑚𝑚𝐸𝐸𝐸𝐸𝑚𝑚𝑇𝑇𝑚𝑚𝑑𝑑 𝑒𝑒𝐸𝐸𝑇𝑇𝐸𝐸𝐶𝐶𝑚𝑚

𝐸𝐸𝑒𝑒𝑇𝑇𝑚𝑚
      (7) 

As previously discussed, the inclusion of carbon benefits using the Interagency 

Working Group’s social cost of carbon estimates will be compared to the inclusion of 

carbon benefits using the carbon price from the California Cap-and-Trade Program. The 

2015 social cost of carbon estimates in 2010 dollars using 2.5%, 3%, and 5% as discount 

rates are $60.96, $39.57, and $11.76 per metric ton respectively (Interagency Working 

Group on Social Cost of Carbon, 2013). As mentioned earlier, these social cost of carbon 

estimates increase over time (see Table 2.1). The carbon benefits are quantified here 

using both constant social cost of carbon estimates with the 2015 values and increasing 

social cost of carbon benefits with the corresponding annual value each year. The 

California carbon price on March 9th, 2015 was $12.63 per metric ton, which is $12.14 

per metric ton in real 2010 dollars (Climate Policy Iniative, 2015).The California carbon 

price is very similar to the social cost of carbon estimate using the highest discount rate, 

which is illustrated in the results. 

The tons of carbon sequestered per acre each year were adjusted to determine how 

much would remain permanently sequestered based on the conversion factors in Equation 
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7. The social cost of carbon estimates and the carbon price were multiplied by the annual 

incremental metric tons of permanently sequestered carbon per acre to calculate the 

annual carbon benefit, which is then discounted appropriately in the final NPV 

calculation for each case. In other words, the annual carbon benefit is only based on the 

carbon that remains permanently sequestered, and the temporary carbon sequestration is 

not valued. The debate about whether temporary carbon sequestration should be viewed 

as a way of mitigating climate change is ongoing. Kirschbaum (2006) claimed that 

temporary carbon sequestration achieves very little impact on mitigating climate change 

and should therefore not be incentivized by policy. In response to Kirschbaum’s paper, 

Dornburg and Marland (2008) argued that temporary carbon sequestration reduces carbon 

in the atmosphere in the short run, which helps “buy time” to pursue long term mitigation 

strategies. Since California’s forestry offset protocol does not value temporary carbon 

sequestration, I chose to do the same.  

 

5.7 Base Case Results 

The net revenue each year was calculated by subtracting the annual costs from the 

annual benefits. There are no quantified private benefits until the harvest year, so the net 

revenues are negative up to that point. The NPV is the discounted value of the stream of 

net revenues from the year of the investment (year zero in this case) to the harvest year 

(year 21 without pre-commercial thinning and year 18 with pre-commercial thinning). It 

is important to remember that the loblolly pine stand is already four years old in year zero 

of this scenario, so the optimal rotation lengths are four years longer than the number of 

years between the pre-commercial thinning investment and the harvest.  

It should be noted that net revenues from timber are taxed using capital gains tax 

rates since timber is a long-term investment. The results shown here are before taxes are 

subtracted, since including taxes would not alter any investment decisions. The results 

would decrease proportionately depending on which tax bracket the landowner falls into.  

The base case results are shown in Table 5.2.   

 

 
 



53 

Table 5.2 Improving Timber Management Results: Base Case NPVs 
($/acre) 

Discount 
Rate 

Without 
Pre-Commercial 

Thinning 

With 
Pre-Commercial 

Thinning 

With 
Pre-Commercial 
Thinning & WIP 

2.5% $265.25 $282.74 $364.09 
3% $239.49 $248.54 $329.88 
5% $159.91 $139.20 $220.54 

 It is important to note that the NPVs in Table 5.2 only include the pre-commercial 

thinning costs, so the actual net returns to the landowner would be different than these 

since they would pay the establishment and management costs as well. However, the 

investment in question is pre-commercial thinning, not the question of whether to allocate 

land to forest. The landowner had already decided to forest the land four years ago. As 

expected, the NPV with pre-commercial thinning and participation in WIP is higher. 

Even though all of the NPVs are positive, the interesting question is whether the NPVs 

with pre-commercial thinning are greater than those without pre-commercial thinning. 

This will differ depending on which discount rate is used. 

 

5.8 Discount Rate Sensitivity Results 

The difference between the ‘with’ and ‘without’ cases are reported in Table 5.3.  

Table 5.3 Improving Timber Management Results: Difference in NPVs 
($/acre) 

Discount 
Rate 

Additional NPV from Pre-
Commercial Thinning 

Additional NPV from Pre-
Commercial Thinning & WIP 

2.5% $17.49 $98.93 
3% $9.05 $90.39 
5% ($20.72) $60.62 

One can see that the discount rate makes a substantial difference in the landowner’s 

decision of whether to pre-commercially thin. With a discount rate of 5% and no 

participation in WIP, the NPV without pre-commercial thinning is higher than the NPV 
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with pre-commercial thinning. As discussed earlier, 2.5% is expected to be the best 

representation of a social discount rate, and 5% is closer to a private discount rate. With 

that assumption, private forest landowners would not choose to invest in pre-commercial 

thinning without cost-share assistance from WIP. With participation in WIP, the returns 

per acre from pre-commercial thinning are greater than those without thinning for all 

discount rates. The program seems to provide enough for the landowner to invest in pre-

commercial thinning, but it may depend on the pre-commercial thinning costs.  

 

5.9 Pre-Commercial Thinning Cost Sensitivity Results 

The survey results reporting the per acre pre-commercial thinning costs used for 

this analysis ranged from $38 per acre to $236 per acre ($34.71 and $215.57 per acre in 

real 2010 dollars) (Dooley & Barlow, 2013). For the base case, the average of $125.14 

per acre was used, but the wide uncertainty in pre-commercial thinning costs raises some 

concerns. Table 5.4 reports the difference between the ‘with’ and ‘without’ cases for the 

two extremes of the pre-commercial thinning cost per acre. The pre-commercial thinning 

costs are labeled minimum ($34.71 per acre), average ($125.14 per acre), and maximum 

($215.57 per acre) in Table 5.4.  

Table 5.4 Improving Timber Management Results: Difference in NPVs for Different Pre-
Commercial Thinning Costs 

($/acre) 

Discount 
Rate 

Pre-Commercial 
Thinning Cost Per 

Acre 

Additional NPV from 
Pre-Commercial 

Thinning 

Additional NPV from 
Pre-Commercial 
Thinning & WIP 

2.5% 
Minimum $107.92 $130.48 
Average $17.49 $98.83 

Maximum ($72.94) $67.18 

3% 
Minimum $99.48 $122.04 
Average $9.05 $90.39 

Maximum ($81.38) $58.74 

5% 
Minimum $69.71 $92.28 
Average ($20.72) 60.62 

Maximum ($111.15) $28.97 
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As expected the minimum reported pre-commercial thinning cost per acre yielded 

the highest NPVs and the maximum reported pre-commercial thinning cost per acre 

yielded the lowest NPVs. With the maximum pre-commercial thinning cost and no cost-

share assistance from WIP, the NPV is negative for all three discount rates. However, for 

a discount rate of 5%, participation in WIP just barely outweighs the high per-

commercial thinning cost with an NPV of just $28.97 per acre. Even with cost-share 

assistance from WIP, the landowner may choose not to invest in pre-commercial thinning 

if the costs are at the maximum. The variability in pre-commercial thinning costs 

definitely makes a different in the investment decision. 

 

5.10 Carbon Price Sensitivity Results 

The results below include potential compensation for carbon that remains 

permanently sequestered as a result of investing in pre-commercial thinning. The NPVs 

reported in Table 5.5 and 5.6 are the difference between the NPVs with pre-commercial 

thinning and carbon benefits and the ones without pre-commercial thinning in Table 5.2. 

The carbon benefits in Table 5.5 were calculated using the California carbon price, and 

those in Table 5.6 were calculated using both the constant and increasing social cost of 

carbon estimates for all three discount rates.  

Table 5.5 Improving Timber Management Results: Difference in NPVs Including Carbon 
Benefits based on California Carbon Price 

($/acre) 

Discount 
Rate 

Additional NPV from Pre-
Commercial Thinning & 

Carbon Benefits 

Additional NPV from Pre-
Commercial Thinning, WIP, & 

Carbon Benefits 

2.5% $46.73 $128.08 
3% $36.80 $118.15 
5% $1.93 $83.27 
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Table 5.6 Improving Timber Management Results: Difference in NPVs Including Carbon 
Benefits based on Social Cost of Carbon Estimates 

($/acre) 

Discount 
Rate 

Inclusion of the 
Social Cost of 

Carbon Estimates 

Additional NPV from 
Pre-Commercial 

Thinning & Carbon 
Benefits 

Additional NPV from Pre-
Commercial Thinning, 

WIP, & Carbon Benefits 

2.5% 
Constant $164.31 $245.65 

Increasing $197.70 $279.04 

3% 
Constant $99.49 $180.83 

Increasing $125.57 $206.91 

5% 
Constant $1.22 $82.57 

Increasing $7.89 $89.23 

The interpretation of Table 5.5 and Table 5.6 depends largely on the initial goals 

for WIP. If the original goal when implementing the program was to increase carbon 

sequestration, then the cost-share assistance would already be based on the carbon 

benefits. This would mean that the last column in Table 5.5 and Table 5.6 would be 

double counting the carbon benefits. The main goal of WIP was to “foster and encourage 

the development, management, and protection of the nonindustrial private woodlands” 

(Maryland Forest Service, 2008). The co-benefits of forestry such as environmental, 

wildlife, and aesthetic benefits are cited in the program information as well, but they are 

not at the forefront. This may indicate that the last column is not double counting 

anything, since the current cost-share assistance is likely not based on societal benefits 

from carbon sequestration. 

For the 2.5% and 3% discount rate results, the carbon benefits using the social cost 

of carbon are much higher than those that use the California carbon price. However, the 

5% discount rate results are almost identical. This is a clear illustration of the importance 

of discounting in both the calculation of the social cost of carbon and in the calculation of 

the discounted net returns for this scenario. With the inclusion of carbon benefits, the 

NPVs with pre-commercial thinning are all positive, even without participation in WIP. 

However, at a discount rate of 5% and no participation in WIP, the NPVs are less than 
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$2.00 per acre, which highlights the extent of private impatience in this scenario. Looking 

at the 2.5% discount rate results when carbon benefits are included, the investment in pre-

commercial thinning is definitely worth it from society’s perspective. It seems like there 

might be a gap between what is best from society’s point of view and what the landowner 

will actually choose. Perhaps the cost-share assistance should be increased in order to 

encourage private landowners to invest and therefore better society. Table 5.7 shows the 

current cost-share assistance compared with the amount if the cost-share assistance were 

based on the carbon benefits. The values in Table 5.7 are the NPVs of only the annual 

carbon benefits from pre-commercial thinning.  

Table 5.7 Improving Timber Management Results: Comparison of Cost-Share Assistance 
based on Carbon Benefits 

($/acre) 

Discount 
Rate 

Current 
WIP Cost-

Share 

California 
Carbon 
Price 

Constant 
Social Cost of 

Carbon 
Estimate 

Increasing 
Social Cost of 

Carbon 
Estimate 

2.5% $81.34 $29.25 $146.82 $180.21 
3% $81.34 $27.75 $90.44 $116.52 
5% $81.34 $22.65 $21.94 $28.61 

If the cost-share assistance were based on the 2.5% constant social cost of carbon 

estimate, the assistance per acre would be $146.82, compared to the current assistance of 

only $81.34 per acre. An even higher cost-share assistance would result if it were based 

on the increasing social cost of carbon estimates. The actual subsidies of $81.32 per acre 

are not as large as the carbon benefits provided to society. Further, the values in Table 5.7 

only illustrate what happens when the societal benefits from carbon sequestration are 

used to calculate subsidies, when in reality, many more social benefits arise from the 

forestry investments.  

The 5% discount rate results in Table 5.7 provide an interesting illustration of 

private impatience once again. If the cost-share assistance were based on the valuation of 

carbon benefits from the private point of view, the subsidies would actually be lower than 

they currently are. The internalization of the carbon benefits from a private perspective 
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and a social perspective result in very different values. If the cost-share assistance were 

based on the avoided damages from society’s perspective (using the 2.5% social cost of 

carbon estimate), the issue of private impatience may be fixed. 

Overall, in all cases where the landowner participates in WIP, the NPVs are 

positive and greater than the comparable NPVs without pre-commercial thinning. This 

indicates the success of WIP in incentivizing landowners to invest in a management 

practice such as pre-commercial thinning that leads to increased timber benefits to the 

landowner and carbon benefits to society. However, basing the cost-share assistance on 

the carbon benefits may lead to higher program participation and acceleration towards 

Maryland’s GHG reduction goals.  
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CHAPTER 6. CONVERSION FROM AGRICULTURAL LAND TO FOREST: 
IMPLEMENTATION AND RESULTS 

6.1 Scenario Overview 

The setting for this scenario is a private landowner in Harford County, Maryland 

who is considering converting 17 acres of cropland into an oak/hickory forest stand. The 

landowner currently collects cropland cash rent for the acreage and is wondering whether 

investing in forestry with the goal of harvesting timber in the future would provide a 

greater return. Another alternative considered is that the land is of lower quality, for 

which the pastureland cash rent is collected instead of cropland cash rent.   

Tree stand establishment is one of the eligible practices for EQIP, which is a 

federal conservation program that provides cost-share assistance based on the average 

costs of eligible practices. Historical data showing EQIP participation from 2009 to 2013 

reports that the average number of acres that landowners enrolled for tree establishment 

was 17.04 acres (Morgart, 2014).  

The base case for this scenario, also referred to as the ‘without’ case, assumes that 

the landowner continues to collect cropland or pastureland cash rent for the 17 acres. 

Two ‘with’ cases result from this scenario: one assuming the landowner converts to forest 

without participating in EQIP and one assuming the landowner converts to forest and 

receives cost-share assistance from EQIP for the tree establishment costs.  

 

6.2 Oak/Hickory Growth Function 

Oak/hickory mixed forests are the most common forest type in the state of 

Maryland (Highfield & Sprague, 2011). These forests contain a mix of many species, 

including northern red oak, white oak, chestnut oak, and pignut hickory, and they are 

common in the Piedmont region of Maryland (refer back to Figure 3.1).  
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The Forest Service conducted a survey of 409 plots of fully stocked, even-aged 

oak/hickory stands across a study region extending from Illinois eastward through New 

York that included plots in Maryland (Schnur, 1937). Field measurements were obtained 

from the plots and yield curves were produced for five different site indices: 40, 50, 60, 

70, and 80. A site index is a term used by the Forest Service to indicate the growth 

potential for trees at a specific location. It is most commonly reported as the height of the 

average dominant and co-dominant tree when the stand is 50 years old. In Harford 

County, Maryland the site indices range from 64 to 79, so I used the yield curve for the 

site index of 70 for this analysis (Maryland Watershed Services & Maryland Forest 

Service, 2003).  

The volume per acre in cubic feet was given in five year increments for 100 years 

of stand growth. A fitted polynomial equation was used to fill in the annual volume 

measures. For the purpose of selling hardwood timber, the volume measures needed to be 

converted from cubic feet per acre to MBF per acre to be sold as sawtimber. The 

appropriate volume conversion factors are shown in Equation 8 (Nix, 2015). 
𝑒𝑒𝑅𝑅𝐸𝐸𝐸𝐸𝑒𝑒 𝐵𝐵𝑚𝑚𝑚𝑚𝐸𝐸

𝐸𝐸𝑒𝑒𝑇𝑇𝑚𝑚
÷

183 𝑒𝑒𝑅𝑅𝐸𝐸𝐸𝐸𝑒𝑒 𝐵𝐵𝑚𝑚𝑚𝑚𝐸𝐸
𝑀𝑀𝐵𝐵𝑀𝑀

=
𝑀𝑀𝐵𝐵𝑀𝑀
𝐸𝐸𝑒𝑒𝑇𝑇𝑚𝑚

       (8) 

Table 6.1 shows the volume measures used for this analysis, and Figure 6.1 shows 

the plotted volume curve for the values in Table 6.1. Since oak/hickory stands are slower 

growing, the first volume measure reported is for year 17. 
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Table 6.1 Oak/Hickory Volume Measures Used 
(MBF/acre) 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Adapted from Schnur (1937) 

Year Volume 
Measures 

17 1.2 
18 1.5 
19 1.9 
20 2.3 
21 2.7 
22 3.1 
23 3.5 
24 3.9 
25 4.4 
26 4.8 
27 5.3 
28 5.8 
29 6.2 
30 6.7 
31 7.2 
32 7.7 
33 8.1 
34 8.6 
35 9.1 
36 9.6 
37 10.0 
38 10.5 
39 11.0 
40 11.4 
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6.3 Land Conversion and Management Costs 

Costs to convert agricultural land to forest include site preparation and planting. 

Bair and Alig (2006) reported regional cost estimates, which were also used in the 

previous scenario. Maryland is included in the Northeast region, but some of the costs are 

not reported for every region individually. In cases where the cost was not reported for 

the Northeast region, the Southeast region estimate was used. The Southeast region 

extends north up to Virginia, which borders Maryland. The hardwood site preparation 

cost to convert cropland to forest for the Southeast region was $81.16 per acre ($114.34 

per ace in 2010 dollars). Further, the planting cost for hardwood species in the Southeast 

region was $135.42 per acre ($190.79 per acre in 2010 dollars). The establishment costs 

are incurred in year zero of the investment time frame.  

Management and other costs for this scenario include herbicide treatments, 

fertilizer treatments, miscellaneous management costs, and property taxes. Herbicide, 

Figure 6.1 Volume Curve for Oak/Hickory Stand  
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fertilizer, and miscellaneous management costs were obtained from the Forest Service 

publication previously discussed (Bair & Alig, 2006). The herbicide cost per acre for 

hardwood species in Southeast region was $58.48 per acre ($82.39 per acre in 2010 

dollars). Planted oak seedlings are susceptible to weeds in the first few years after 

establishment, so in this scenario, the herbicide treatment costs are incurred in year one of 

the investment time frame (Boozer, 2013). The fertilizer cost per acre for hardwood 

species in the Southeast was $14.82 ($20.88 per acre in 2010 dollars). Fertilizing an 

established oak stand every five years is recommended, so the fertilizer treatment cost is 

incurred every five years in this scenario, beginning in year five of the time frame 

(Boozer, 2013). The miscellaneous management cost category includes forest 

management plans, boundary maintenance, fire protection, and surveying, and it is 

estimated on a 10-year basis. For the Southeast region, the miscellaneous management 

estimate for hardwood species was $16.71 per acre ($23.54 per acre in 2010 dollars). 

This estimate is divided by 10 and included on an annual basis beginning in year one 

($2.35 per acre annually).  

In the state of Maryland, any forested land that is under a certified forest 

management plan is assessed at a land value of $187.50 per acre, which is significantly 

less than the average agricultural use assessment value (J. Kays & Schultz, 2002). Since I 

am including the miscellaneous management estimate, which includes a cost for 

management plans, I assumed that the landowner has a certified forest management plan. 

The Harford County property tax rate is 1.042 per $100 in assessed value, and the 

Maryland state property tax rate is 0.112 per $100 in assessed value (Maryland 

Department of Assessments & Taxation, 2015). With an assessment value of $187.50, the 

total county and state property tax per acre is $2.16, which is included annually in the 

‘with’ case. In the base case without conversion to forest, the land would be assessed 

using the average agricultural assessment value of $312.50 per acre. The total county and 

state property tax based on the assessment value of $312.50 per acre for cropland is 

$3.61, which is included annually in the ‘without’ case. 

A summary of the establishment and management costs and the timing of their 

inclusion in the analysis is presented in Table 6.2.  
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Table 6.2 Summary of Costs for Converting Agricultural Land to Forest 

Cost 
$/Acre 

(Real 2010 
Dollars) 

Inclusion in 
‘Without’ Case 

Inclusion in ‘With’ 
Case 

Site Preparation $114.34 - Year 0 
Planting $190.79 - Year 0 

Herbicide $82.39 - Year 1 

Fertilizer $20.88 - Years 5, 10, 15, 20, 
25, 30, 35, 40 

Miscellaneous 
Management $2.35 - Annually Beginning 

in Year 1 
Forest Property 

Tax $2.16 - Annually Beginning 
in Year 0 

Agricultural Land 
Property Tax $3.61 Annually Beginning 

in Year 0 - 

(Bair & Alig, 2006) and (Maryland Department of Assessments and Taxation, 2015) 

6.4 Optimal Rotation and Timber Benefits 

The maximized MAI in this scenario occurs when the stand is 60 years old, which 

is the biologically optimum rotation for the oak/hickory stand. For the analysis, the 

economically optimal rotation length, which maximizes the LEV, was used since the 

landowner’s objective is to maximize timber profits (refer to Equation 6 in the previous 

chapter).  

C in Equation 6 is the stand regeneration cost, which is the establishment cost in 

this scenario. The site preparation and planting costs discussed in the previous section 

were used as the establishment costs in the LEV equation. Again, the hardwood site 

preparation cost for the Southeast region was $114.34 per acre, and the planting cost for 

hardwood species in the Southeast region was $190.79 per acre (Bair & Alig, 2006). The 

total value for C in the LEV calculations was $305.13.  

V(t) is the stumpage value when the stand is t years old. Oak is commonly sold as 

sawtimber, so I assumed that the harvested timber from this oak/hickory stand is all sold 

as such (Szymanski & Pelkki, 2001). Real hardwood sawtimber stumpage prices are not 

predicted to increase as dramatically as the softwood pulpwood prices (Haynes, 2003). 
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The hardwood sawtimber stumpage price is predicted to increase in real terms from 

$387.87 per MBF in 2010 to $439.59 per MBF in 2050 (in 2010 dollars). Again, I will 

not include any real price increases in this scenario. I used the 2010 real hardwood 

sawtimber stumpage price of $387.87 per MBF to calculate V(t). This equation was also 

used to calculate timber benefits from harvesting.  

The maximized LEV occurs in year 40, which is the economically optimal rotation 

length used for this scenario. This is twenty years sooner than the optimal biologic 

rotation length, which is a substantial difference. The slower growing the trees are, the 

more spread out the biologic and economic rotations are, which is why there is more of a 

difference in rotation lengths in the oak/hickory stand than for the loblolly pine stand 

discussed previously.  

 

6.5 Environmental Quality Inventive Program Participation 

Tree stand establishment is one of the eligible conservation practices that receives 

cost-share assistance from EQIP. The cost-share assistance is based on the average cost to 

undergo the agreed upon conservation practices. Every year, the NRCS releases the 

eligible practices and payment rates. The 2015 payments rates were used in the 

calculation of benefits from EQIP to the landowner in this scenario (Natural Resources 

Conservation Service, 2015).  

There are several tree establishment practices that have varying costs. For example, 

costs for low density hand planting, high density hand planting, and high density 

mechanical planting are reported. The hand planting costs are much higher than the 

mechanical costs. The high density hand planting cost is $2595.81 per acre, as compared 

to the high density mechanical planting cost of $309.43 per acre. Since 17 acres are being 

planted with trees, hand planting seems unlikely, and the cost-share assistance is based on 

what is actually done. For this reason, I assumed the landowner receives cost-share 

assistance based on the cost for high density mechanical planting of $309.43 per acre in 

2015 ($297.51 per acre in 2010 dollars) because this is very close to the actual 

establishment costs incurred by the landowner of $305.13 per acre as calculated earlier. 
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The total EQIP cost-share assistance per acre in the case where the landowner 

participates in the program is $297.51. 

 

6.6 Agricultural Land Rent Benefits 

The average cropland cash rent for the state of Maryland was used to calculate the 

benefits to the landowner in the first ‘without’ case. In 2014, the average cropland cash 

rent in Maryland was $94.50 per acre, which is $84.98 per acre in 2010 dollars (National 

Agricultural Statistics Service, 2014). In reality, a parcel of lesser quality cropland would 

more likely be converted to forest, but the rent values reported are not quality specific. In 

the second ‘without’ case, the average pastureland rent for the state of Maryland was 

used, which was $43.50 per acre in 2014 ($39.12 in 2010 dollars).  

 

6.7 Carbon Sequestration Benefits 

Similar to the previous scenario, the benefits from carbon sequestration were 

calculated using a sequence of conversions that result in the metric tons of carbon per 

acre that remain permanently sequestered in harvested wood products (shown in Equation 

7). The first step was to convert the tree growth from cubic feet per acre to metric tons of 

carbon per acre. The next step was to calculate the percentage of the carbon that actually 

remains sequestered in the harvested wood products. The process from California Cap-

and-Trade Program’s forest offset protocol was explained earlier. The estimated mill 

efficiency for hardwood saw timber is 61.4%. For hardwood sawtimber harvested in the 

Northeast region, 3.5% is estimated to remain in in-use wood products after 100 years, 

and 28.1% remains in landfills after 100 years. A total of 31.6% of the original carbon 

sequestered by the oak/hickory stand remains permanently sequestered, so that is what 

was used to calculate the carbon benefits. The annual carbon benefits were calculated the 

same way as the previous scenario using both constant and increasing social cost of 

carbon estimates and the California carbon price.  
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𝑒𝑒𝑅𝑅𝐸𝐸𝐸𝐸𝑒𝑒 𝐵𝐵𝑚𝑚𝑚𝑚𝐸𝐸
𝐸𝐸𝑒𝑒𝑇𝑇𝑚𝑚

× 2.14 × 19.76 =
𝑝𝑝𝐶𝐶𝑅𝑅𝑚𝑚𝑑𝑑𝐸𝐸 𝐶𝐶𝐵𝐵 𝑒𝑒𝐸𝐸𝑇𝑇𝐸𝐸𝐶𝐶𝑚𝑚

𝐸𝐸𝑒𝑒𝑇𝑇𝑚𝑚
× 0.00045359

=
𝑚𝑚𝑚𝑚𝐸𝐸𝑇𝑇𝐸𝐸𝑒𝑒 𝐸𝐸𝐶𝐶𝑚𝑚𝐸𝐸 𝐶𝐶𝐵𝐵 𝑒𝑒𝐸𝐸𝑇𝑇𝐸𝐸𝐶𝐶𝑚𝑚

𝐸𝐸𝑒𝑒𝑇𝑇𝑚𝑚
× 61.4% × 31.6%

=
𝑚𝑚𝑚𝑚𝐸𝐸𝑇𝑇𝐸𝐸𝑒𝑒 𝐸𝐸𝐶𝐶𝑚𝑚𝐸𝐸 𝐶𝐶𝐵𝐵 𝑝𝑝𝑚𝑚𝑇𝑇𝑚𝑚𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚𝐸𝐸𝐸𝐸𝑝𝑝 𝐸𝐸𝑚𝑚𝑠𝑠𝑅𝑅𝑚𝑚𝐸𝐸𝐸𝐸𝑚𝑚𝑇𝑇𝑚𝑚𝑑𝑑 𝑒𝑒𝐸𝐸𝑇𝑇𝐸𝐸𝐶𝐶𝑚𝑚

𝐸𝐸𝑒𝑒𝑇𝑇𝑚𝑚
      (8) 

 

6.8 Base Case Results 

The base case results for the conversion from cropland to forest are shown in Table 

6.3 below. Again, the NPVs reported here are before capital gains and income taxes are 

subtracted. 

Table 6.3 Conversion from Cropland to Forest Results: Base Case NPVs 
($/acre) 

Discount 
Rate 

Without 
Conversion 

With 
Conversion 

With 
Conversion & EQIP 

2.5% $2124.08 $1,048.91 $1,346.42 
3% $1962.31 $775.30 $1072.81 
5% $1,477.67 $101.08 $398.59 

 All of the base case NPVs are positive, but one can tell by looking at Table 6.3 that 

the returns from receiving cropland rent are much higher than those from conversion. At 

a discount rate of 5%, the returns from converting to forest without cost-share assistance 

are only around $100 per acre, which is a significant decrease from the same result at a 

2.5% discount rate. Since 5% represents a typical private discount rate, the landowner 

would never find it profitable to convert average cropland to forest. As discussed earlier, 

5% may actually be a lower bound to an actual private discount rate, which makes it even 

less likely that the landowner would ever choose to make the conversion in reality. 

 

6.9 Discount Rate Sensitivity Results 

All of the NPVs are positive, but the ‘without’ case has significantly higher returns. 

Table 6.4 shows the difference in NPVs between the ‘with’ cases and the ‘without’ case 

at all three discount rates. 
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Table 6.4 Conversion from Cropland to Forest Results: Difference in NPVs 
($/acre) 

Discount 
Rate 

Additional NPV 
from Conversion 

Additional NPV from 
Conversion & EQIP 

2.5% ($1075.17) ($777.66) 
3% ($1,187.01) ($889.50) 
5% ($1,376.59 ($1,079.08) 

Converting the cropland in this scenario to forest results in much lower returns than 

leaving the land in its original agricultural use. The discount rate definitely makes a 

difference in NPVs, but the returns from cropland are higher in all cases. Participation in 

EQIP lessens the difference in NPVs between the ‘with’ and ‘without’ cases, but the 

landowner would still choose to leave the land as cropland. The cropland cash rent would 

need to be as low as $9.17 per acre to make the NPV with conversion equal to the NPV 

without conversion (using 5% as the discount rate). Similarly, if the landowner 

participates in EQIP, the cropland cash rent would have to be $25.56 per acre for the 

NPV with conversion to equal the NPV without conversion. The same results using 2.5% 

as the discount rate are $43.79 per acre (without EQIP participation) and $55.19 per acre 

(with EQIP participation). In reality, a landowner would never convert cropland to forest 

unless it was marginal land. As a proxy for the returns from marginal cropland, the 

average pastureland cash rent in Maryland in 2010 dollars of $39.12 per acre can be used. 

The results using pastureland rent in place of cropland rent are presented next.  

 

6.10 Pastureland Rent Sensitivity Results 

Table 6.5 shows the difference in NPVs between converting the land to forest and 

keeping it as pastureland. 
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Table 6.5 Conversion from Pastureland to Forest Results: Difference in NPVs 
($/acre) 

Discount 
Rate 

Additional NPV 
from Conversion 

Additional NPV from 
Conversion & EQIP 

2.5% $122.01 $419.52 
3% ($81.01) $216.50 
5% ($534.74) ($246.23) 

At a discount rate of 2.5%, the conversion to forest results in a higher NPV than 

continuing to collect pastureland rent on the land. However, at a 3% discount rate, the 

conversion is only worth it with cost-share assistance from EQIP. Further, at a 5% 

discount rate, the conversion results in lower NPVs even with participation in EQIP. 

Again, the personal discount rate of the landowner makes a big difference in the 

investment decision, and the private impatience is evident in this scenario when looking 

at the 5% discount rate results. Even though the conversion would be worth it from 

society’s point of view when dealing with pastureland, it would never be worth it from a 

private perspective. However, the conversion from pastureland or marginal land to forest 

is overall more likely than the conversion from cropland to forest.  

 

6.11 Carbon Price Sensitivity Results 

The results below include compensation for carbon that remains permanently 

sequestered as a result of investing in the conversion of agricultural land to forest. The 

NPVs reported in Table 6.6 and 6.7 are the difference between the NPVs with conversion 

and carbon benefits and the base case results without conversion in Table 6.3. Again, 

Table 6.6 calculates carbon benefits based on the California carbon price, and Table 6.7 

calculates carbon benefits based on both the constant and increasing social cost of carbon 

estimates. 
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Table 6.6 Conversion from Cropland to Forest Results: Difference in NPVs Including 
Carbon Benefits based on California Carbon Price 

($/acre) 

Discount 
Rate 

Additional NPV 
from Conversion & 

Carbon Benefits 

Additional NPV from 
Conversion, EQIP, & 

Carbon Benefits 

2.5% ($1,027.01) ($729.50) 
3% ($1,144.67) ($847.16) 
5% ($1,350.79) ($1,053.28) 

Table 6.7 Conversion from Cropland to Forest Results: Difference in NPVs Including 
Carbon Benefits based on Social Cost of Carbon Estimates 

($/acre) 

Discount 
Rate 

Inclusion of 
Social Cost of 

Carbon Estimates 

Additional NPV from 
Conversion & Carbon 

Benefits 

Additional NPV from 
Conversion, EQIP, & 

Carbon Benefits 

2.5% 
Constant ($833.44) ($535.93) 

Increasing ($703.64) ($406.13) 

3% 
Constant ($1,049.04) ($751.53) 

Increasing ($954.40) ($656.89) 

5% 
Constant ($1,351.59) ($1,054.08) 

Increasing ($1,328.07) ($1,030.56) 

One can see that even with the inclusion of carbon benefits, the conversion from 

cropland to forest would never overcome the opportunity costs. As before, the 

interpretation of Table 6.6 and Table 6.7 depends on whether the original goal of EQIP 

was to increase carbon sequestration. One of the seven national priorities for EQIP is to 

increase biological carbon storage and sequestration, which may indicate that last column 

in Table 6.6 and Table 6.7 is double counting the carbon benefits. However, even if 

double counting is an issue here, the conversion would still never be worth it to the 

landowner. Similar to the pre-commercial thinning scenario, at a discount rate of 5%, the 

resulting NPV from the inclusion of carbon benefits using the California carbon price are 

almost identical to those using the social cost of carbon estimates.  
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The same results using pastureland rent instead of cropland rent are shown in Table 

6.8 and Table 6.9 below.  

Table 6.8 Conversion from Pastureland to Forest Results: Difference in NPVs Including 
Carbon Benefits from California Carbon Price 

($/acre) 

Discount 
Rate 

Additional NPV 
from Conversion & 

Carbon Benefits 

Additional NPV from 
Conversion, EQIP, & 

Carbon Benefits 

2.5% $170.16 $467.67 
3% ($38.67) $258.84 
5% ($517.94) ($220.43) 

Table 6.9 Conversion from Pastureland to Forest Results: Difference in NPVs Including 
Carbon Benefits from Social Cost of Carbon Estimates 

($/acre) 

Discount 
Rate 

Inclusion of Social 
Cost of Carbon 

Estimates 

Additional NPV 
from Conversion & 

Carbon Benefits 

Additional NPV from 
Conversion, EQIP, & 

Carbon Benefits 

2.5% 
Constant $363.74 $661.25 

Increasing $493.54 $791.05 

3% 
Constant $56.96 $354.47 

Increasing $151.59 $449.10 

5% 
Constant ($518.75) ($221.23) 

Increasing ($495.22) ($197.71) 

The only case where the inclusion of carbon benefits leads to a different investment 

decision by the landowner is the case of a 3% discount rate and no participation in EQIP.  

For discounts rate of 2.5% and 3%, the inclusion of carbon benefits when the landowner 

participates in EQIP increases the returns from conversion significantly, but the 

landowner would choose to participate without carbon benefits as well. Assuming 5% is 

the most realistic private discount rate, the landowner would likely not choose to convert 

to forestry, regardless of whether the land was in crops or pasture. The comparison of 
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basing the cost-share assistance on the carbon benefits to society instead of the current 

cost-share assistance are shown in Table 6.10. 

Table 6.10 Conversion from Agricultural Land to Forest Results: Comparison of Cost-
Share Assistance based on Carbon Benefits 

($/acre) 

Discount 
Rate 

Current 
WIP Cost-

Share 

California 
Carbon 
Price 

Constant 
Social Cost of 

Carbon 
Estimate 

Increasing 
Social Cost of 

Carbon 
Estimate 

2.5% $297.51 $48.15 $241.73 $371.53 
3% $297.51 $42.34 $137.97 $232.61 
5% $297.51 $25.80 $25.00 $81.66 

When the cost-share assistance is based on the 2.5% increasing social cost of 

carbon estimate, the cost-share would be larger than it currently is. However, in all other 

cases, even when the cost-share assistance is based on the constant 2.5% social cost of 

carbon estimate, the cost-share is actually higher in its current state. This suggests that the 

cost-share assistance is close to the value of carbon benefits already. In this scenario, 

basing the cost-share assistance on the societal benefits may not induce any greater 

participation. Overall, the program may be more successful by targeting pastureland or 

marginal cropland because the difference in NPVs are positive in some cases when 

pastureland rent is used and always negative when average cropland rent is used.   
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CHAPTER 7. CONVERSION FROM LAWN TO FOREST: IMPLEMENTATION 
AND RESULTS 

7.1 Scenario Overview 

The setting for this scenario is a private homeowner in Montgomery County, 

Maryland who is considering converting one acre of lawn into a red oak forest stand. This 

scenario provides insights on homeowners’ preferences for lawn versus forest. The new 

L2W Initiative in Maryland covers all of the costs to establish trees on any patches of 

lawn that are at least one acre in size. All of the seedling and equipment purchases and 

planting are done by the Maryland DNR and the Arbor Day Foundation, so the 

landowner never has to incur any establishment costs. The program was launched in four 

pilot counties in 2014, including Montgomery County. The four species planted in 2014 

as part of this program were red oak, red bud, hazelnut, and persimmon (Feldt, 2014).  

For simplicity, the same volume measures used in the conversion from cropland 

scenario for an oak/hickory stand are used here. 79.7% of the 409 fully stocked, even-

aged oak/hickory plots surveyed by the Forest Service included red oak (Schnur, 1937). I 

assumed that the annual volume measures for the red oak stand established in this 

scenario would be the same as the oak/hickory stand established in the previous scenario. 

The economically optimal rotation length was calculated in the previous chapter as 40 

years, which is used here as well.  

The base case for this scenario, also referred to as the ‘without’ case, assumes that 

the homeowner leaves the one acre as lawn. Two ‘with’ cases result from this scenario: 

one assuming the homeowner converts the lawn to forest without participating in L2W 

and one assuming the homeowner converts the lawn to forest and receives cost-share 

assistance from L2W for the tree establishment costs. The results for the two ‘with’ cases 

are calculated both with and without timber harvest. The homeowner would likely not 
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harvest timber from one acre of trees, but calculating the revenue from timber harvest 

represents the maximum potential private benefits of establishing forest.  

 

7.2 Establishment and Management Costs 

The establishment costs used for this scenario are mostly the same as those used in 

the establishment of the oak/hickory stand in the previous scenario. The only difference is 

that the hardwood site preparation cost to convert pastureland to forest for the Southeast 

region was used in place of the cost to convert cropland to forest. The cost per acre to 

convert pastureland to forest in the Southeast region was $103.01 per acre ($145.13 per 

ace in 2010 dollars). The planting, herbicide, fertilizer, and miscellaneous management 

costs are identical to the previous scenario: $190.79 per acre, $82.39 per acre $20.88 per 

acre, and $2.35 per acre respectively (Bair & Alig, 2006).  

The property taxes on lawn space would be based on the assessed value of the 

home in reality, but it is difficult to calculate an average assessed value for a home. For 

simplicity, I assumed the one acre of land was assessed as average agricultural land in the 

‘without’ case and forested land under a certified management plan in the ‘with’ cases. 

The Montgomery County property tax rate is 0.732 per $100 in assessed value, and the 

Maryland state property tax rate is 0.112 per $100 in assessed value (Maryland 

Department of Assessments and Taxation 2015). With an assessment value of $187.50 

for forested land, the total county and state property tax per acre is $1.58, which is 

included annually in the ‘with’ case. The total county and state property tax based on the 

average agricultural land assessment value of $312.50 per acre for cropland is $2.64, 

which is included annually in the ‘without’ case. 

Zhou, Troy, Morgan Grove, and Jenkins (2009) conducted an econometric study to 

predict lawn-care expenditures based on demographic and socioeconomic indicators. In 

the process, they collected lawn care expenditures for Baltimore city and Baltimore 

County, Maryland. The average annual total lawn care expenditures were $319.71 in 

2003 ($427.59 in 2010 dollars). The total lawn care expenditures included spending on 

lawn care services, lawn care supplies, equipment repair and rentals, and purchases of 

new yard machinery. The average lawn size used to produce these cost estimates is not 
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reported, so this is a rough estimate to include for this scenario. One acre of lawn seems 

to be on the larger end of lawn size, so in reality, the expenditures may be more than 

these. However, I assumed that the annual lawn care maintenance cost is $427.59 per 

acre.  

A summary of the establishment and management costs and the timing of their 

inclusion in the analysis is presented in Table 7.1.  

Table 7.1 Summary of Costs for Converting Lawn to Forest 

Cost 
$/Acre 

(Real 2010 
Dollars) 

Inclusion in 
‘Without’ Case 

Inclusion in ‘With’ 
Case 

Site Preparation $145.13 - Year 0 
Planting $190.79 - Year 0 

Herbicide $82.39 - Year 1 

Fertilizer $20.88 - Years 5, 10, 15, 20, 
25, 30, 35, 40 

Miscellaneous 
Management $2.35 - Annually Beginning 

in Year 1 

Forest Property 
Tax $1.58 - Annually Beginning 

in Year 0 

Cropland Property 
Tax $2.64 Annually Beginning 

in Year 0 - 

Lawn Care Costs $427.59 Annually Beginning 
in Year 0 - 

(Bair and Alig 2006)  (Maryland Department of Assessments and Taxation, 2015) and 
(Zhou et al. 2009) 

7.3 Lawn to Woodland Participation 

As previously discussed, the L2W Initiative covers 100% of the establishment 

costs. In the case where the homeowner participates in L2W, the site preparation and 

planting costs are zero. In other words, the total cost-share assistance per acre is $335.91. 

The landowner is still responsible for the management costs with participation in L2W. 
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7.4 Carbon Sequestration Benefits 

The calculation of the carbon that remains permanently sequestered in harvested 

wood products for this scenario follows the same steps as the conversion from cropland 

to forest scenario. The process used to include carbon benefits in the ‘with’ cases that 

account for timber harvest is identical to the process used in the previous chapter. 

However, the ‘with’ cases in this scenario are also calculated without a timber harvest. 

Without harvesting any timber, the carbon that remains permanently sequestered as a 

result of the conversion to forest is much higher since none of it is released by harvesting. 

To calculate the carbon benefits in the ‘with’ cases that do not account for timber harvest, 

the total metric tons of annual carbon sequestration per acre (refer to equation 8 in the 

previous chapter) were multiplied by the appropriate carbon values. This calculation was 

done every year until the same year as the economically optimal rotation (year 40) to 

make the NPVs with and without timber harvest comparable.   

 

7.5 Base Case Results 

The net revenue each year was calculated by subtracting the annual costs from the 

annual benefits. In the ‘without’ case where the homeowner decides to keep the lawn as 

is, the net revenues in every year are negative since the aesthetic benefits from owning 

lawn are not monetized. Similar to the ‘without’ case, the ‘with’ cases that do not account 

for timber harvest have negative net revenues every year before the inclusion of carbon 

benefits. The base case NPVs are shown in Table 7.2. Lawn to Woodland is abbreviated 

as L2W in the result tables.  

Table 7.2 Conversion from Lawn to Forest Results: Base Case NPVs 
($/acre) 

 Without Timber Harvest With Timber Harvest 

Discount 
Rate 

Without 
Conversion 

With 
Conversion 

With 
Conversion 

& L2W 

With 
Conversion 

With 
Conversion 

& L2W 
2.5% ($11,230.18) ($616.41) ($280.50) $1,033.31 $1,369.22 
3% ($10,374.88) ($599.38) ($263.47) $758.54 $1,094.45 
5% ($7,812.57) ($548.35) ($212.44) $80.86 $416.77 
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 The base case results show how much more costly lawn is to maintain than forest. 

Conversion to forest also comes with costs, but they are much lower than the lawn 

maintenance costs. In reality, forest management costs would likely be higher than what 

is included in this scenario, but they would likely still be less than the lawn maintenance 

costs. Even without harvesting timber, converting to forest has a higher NPV than 

keeping it in lawn. Without participating in L2W, the homeowner still has enough 

incentive to invest in forestry if they plan on harvesting timber. Overall, on such a small 

piece of land as one acre, the investment decision likely depends more on the aesthetic 

values of lawn versus forest that the homeowner possesses. Large lawn space provides 

numerous benefits such as space for outdoor games and gatherings which cannot be 

estimated. In order for the landowner to decide not to convert to forest, their aesthetic 

value of lawn must be high enough to account for the large difference in NPVs between 

the ‘with’ and ‘without’ cases. Preference for lawn might limit participation in L2W and 

likely varies between landowners.  

 

7.6 Discount Rate Sensitivity Results 

The results in Table 7.3 show the difference in NPVs between the ‘with’ cases and 

the case without conversion to forest. 

Table 7.3 Conversion from Lawn to Forest Results: Difference in NPVs 
($/acre) 

 Without Timber Harvest With Timber Harvest 

Discount 
Rate 

Additional NPV 
from Conversion 

Additional NPV 
from Conversion 

& L2W 

Additional 
NPV from 
Conversion 

Additional NPV 
from Conversion 

& L2W 

2.5% $10,613.77 $10,949.68 $12,263.49 $12,599.40 
3% $9,775.50 $10,111.41 $11,133.42 $11,469.33 
5% $7,264.22 $7,600.14 $7,893.43 $8,229.34 

 In all cases, the homeowner could earn more by converting the lawn to forest.  

These results highlight how costly lawn maintenance is compared to forest maintenance. 

Again, even if the maintenance costs of the conversion to forest ended up being higher 
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than the ones included in this analysis, they would likely never be high enough to be 

more expensive than the lawn maintenance costs. This is especially true since the lawn 

maintenance cost included here is likely an underestimate as well. The values in Table 

7.3 can be thought of as the aesthetic value of lawn that the landowner would need in 

order to choose not to invest in forestry.  

 

7.7 Carbon Price Sensitivity Results 

The NPVs reported in Table 7.4 (using the California carbon price) and Table 7.5 

(using the constant and increasing social cost of carbon estimates) are the difference 

between the NPVs with carbon benefits and the ones in Table 7.2 without conversion to 

forest. The issue of double counting may be present again here when both the cost-share 

assistance from L2W and the carbon benefits are included. The program information cites 

cleaner water, cleaner air, cooler temperatures, and wildlife diversity as reasons why one 

should participate in the program (Maryland Forest Service, 2014). Since carbon 

sequestration is a component of the cleaner air benefit, the subsidies may already be 

accounting for the carbon benefits. However, the NPVs with conversion to forest were 

already substantially higher than the ‘without’ case, so the possible double counting does 

not impact the investment decision. 

Table 7.4 Conversion from Lawn to Forest Results: Difference in NPVs Including 
Carbon Benefits based on California Carbon Price 

($/acre) 

 Without Timber Harvest With Timber Harvest 

Discount 
Rate 

Additional NPV 
from Conversion 

& Carbon 
Benefits 

Additional NPV 
from Conversion, 
L2W, & Carbon 

Benefits 

Additional NPV 
from Conversion 

& Carbon 
Benefits 

Additional NPV 
from Conversion, 
L2W, & Carbon 

Benefits 

2.5% $10,861.95 $11,197.86 $12,311.64 $12,647.55 
3% $9,993.72 $10,329.63 $11,175.76 $11,511.67 
5% $7,397.22 $7,733.13 $7,919.23 $8,255.14 

 

 

 
 



79 

Table 7.5 Conversion from Lawn to Forest Results: Difference in NPVs Including 
Carbon Benefits based on Social Cost of Carbon Estimates 

($/acre) 

 Without Timber Harvest With Timber Harvest 

Discount 
Rate 

Inclusion 
of Social 
Cost of 
Carbon 

Estimates 

Additional 
NPV from 

Conversion & 
Carbon 
Benefits 

Additional NPV 
from 

Conversion, 
L2W, & Carbon 

Benefits 

Additional 
NPV from 

Conversion & 
Carbon 
Benefits 

Additional NPV 
from 

Conversion, 
L2W, & Carbon 

Benefits 

2.5% 
Constant $11,859.65 $12,195.56 $12,505.22 $12,841.13 

Increasing $12,528.64 $12,864.55 $12,635.02 $12,970.93 

3% 
Constant $10,486,60 $10,822.52 $11,271.39 $11,607.30 

Increasing $10,974.35 $11,310.26 $11,366.03 $11,701.94 

5% 
Constant $7,393.07 $7,728.98 $7,918.43 $8,254.34 

Increasing $7,514.32 $7,850.23 $7,941.95 $8,277.86 

 Since the NPVs with conversion were already so much higher than without 

conversion in all cases, it is difficult to tell how much difference the carbon benefits 

make by looking at Table 7.4 and Table 7.5.  In this case, it makes sense to show the 

actual NPVs including carbon benefits, without comparing them to the NPV without 

conversion. 

Table 7.6 Conversion from Lawn to Forest Results: NPVs Including Carbon Benefits 
based on California Carbon Price 

($/acre) 

 Without Timber Harvest With Timber Harvest 

Discount 
Rate 

With Conversion 
& Carbon 
Benefits 

With Conversion, 
L2W, & Carbon 

Benefits 

With Conversion 
& Carbon 
Benefits 

With Conversion, 
L2W, & Carbon 

Benefits 

2.5% ($368.23) ($32.32) $1,081.46 $1,417.37 
3% ($381.16) ($45.25) $800.88 $1,136.79 
5% ($415.35) ($79.44) $106.66 $442.57 
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Table 7.7 Conversion from Lawn to Forest Results: NPVs Including Carbon Benefits 
based on Social Cost of Carbon Estimates 

($/acre) 

 Without Timber Harvest With Timber Harvest 

Discount 
Rate 

Inclusion of 
Social Cost 
of Carbon 
Estimates 

With 
Conversion 
& Carbon 
Benefits 

With 
Conversion, 

L2W, & Carbon 
Benefits 

With 
Conversion 
& Carbon 
Benefits 

With 
Conversion, 

L2W, & Carbon 
Benefits 

2.5% 
Constant $629.47 $956.38 $1,275.03 $1,610.95 

Increasing $1,298.46 $1,634.37 $1,404.84 $1,740.75 

3% 
Constant $111.72 $447.63 $896.51 $1,232.42 

Increasing $599.47 $935.38 $991.14 $1,327.05 

5% 
Constant ($419.50) ($83.59) $105.86 $441.77 

Increasing ($298.25) $37.66 $129.38 $465.29 

 When the carbon benefits are based on the 2.5% and 3% social cost of carbon 

estimates, the conversion from lawn to forest results in a positive NPV, even without cost 

share from L2W. At a discount rate of 5% and including the carbon benefits based on the 

increasing social cost of carbon estimates, the conversion also results in a positive NPV 

without timber harvest. However, it is only when both the current L2W cost-share 

assistance and the carbon benefits are included, which may be double counting.  

Table 7.8 shows the cost-share assistance based on the discounted carbon benefits 

provided by the conversion when no timber is harvested. Table 7.9 shows the cost-share 

assistance based on the carbon benefits and timber harvest. 

Table 7.8 Conversion from Lawn to Forest Results: Comparison of Cost-Share 
Assistance based on Carbon Benefits without Timber Harvest 

($/acre) 

Discount 
Rate 

Current 
WIP Cost-

Share 

California 
Carbon 
Price 

Constant 
Social Cost of 

Carbon 
Estimate 

Increasing 
Social Cost of 

Carbon 
Estimates 

2.5% $335.91 $248.18 $1,245.87 $1,914.87 
3% $335.91 $218.22 $711.10 $1,198.85 
5% $335.91 $133.00 $128.85 $250.10 
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Table 7.9 Conversion from Lawn to Forest Results: Comparison of Cost-Share 
Assistance based on Carbon Benefits with Timber Harvest 

($/acre) 

Discount 
Rate 

Current 
WIP Cost-

Share 

California 
Carbon 
Price 

Constant 
Social Cost of 

Carbon 
Estimate 

Increasing 
Social Cost of 

Carbon 
Estimates 

2.5% $335.91 $48.15 $241.73 $371.53 
3% $335.91 $42.34 $137.97 $232.61 
5% $335.91 $25.80 $25.00 $48.52 

Cost-share assistance based on the 2.5% and 3% social cost of carbon estimates 

would be substantially higher than the current cost-share assistance. From society’s 

perspective the conversion is very valuable, but again, the private impatience at a 

discount rate of 5% might stop the private landowner from investing. The current cost-

share assistance at a 5% discount rate is already higher than the carbon benefits from a 

private perspective. Again, the question of whether the government should make up the 

difference by offering larger subsidies in order to increase program participation and 

better society as a whole arises. Since the investment decision in this scenario depends 

largely on the aesthetic values of the landowner, larger subsidies could help outweigh a 

potentially high aesthetic value of lawn.  
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CHAPTER 8. CONCLUSION 

8.1 Overview of Conclusions 

For each scenario, conclusions can be made by comparing the results of the CBA 

with the observed forestry cost-share program participation and the GIS analysis results. 

Further, the results can provide insights on how realistic the goals set forth by Maryland’s 

GHGRP are in regards to the forestry efforts. Figure 8.1 shows how the analysis results 

feed into the big picture of what is really happening in Maryland.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.1 Progression of Results 

Use private CBA results to 
estimate the individual’s economic 
return or loss from participating in 

a forestry cost-share program 

Compare CBA results to actual 
program participation 

Compare actual participation with 
the program scope according to 

GIS analysis results 

Compare program scope with 
goals set forth by the GHGRP 

Use social CBA results to compare 
current cost-share assistance to the 
social carbon benefits that result 

from the forestry investments 
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 A discussion of how the results for each scenario fit together using the flow 

diagram in Figure 8.1 will be presented in the next three sections.  

 

8.2 Improving Timber Management: Synthesis of Results 

The results of the CBA on improving timber management provide some insights on 

the observed WIP participation and the scope of land that is eligible for WIP. The timber 

management improvement in question was pre-commercial thinning of a four-year-old 

loblolly pine stand. With a pre-commercial thinning cost of $125.14 per acre, the 

resulting NPVs are positive in every case except the case with a discount rate of 5% and 

no participation in WIP. Since 5% is likely a representation of a private discount rate, this 

is an indicator that WIP should be successful in inducing improved timber management 

that would not have happened in the absence of the program. Even after adjusting for the 

uncertainty in pre-commercial thinning costs, the NPVs were positive with participation 

in WIP for all discount rates. Cost-share assistance from WIP is enough to result in a 

positive NPV from pre-commercial thinning, even at a discount rate of 5%. From these 

results, one could predict that forest owners would be willing to participate in WIP. 

The average number of acres annually enrolled in WIP, based on data from the past 

eight years, is 3,055 (Rider, 2014). This is actually above the projected goal set forth as 

part of the original program information of enrolling 1,500 to 2,000 acres annually 

(Forest Service, 2008). According to the GIS analysis conducted, there are 736,761 acres 

of land that meet the eligibility requirements for WIP. Participation in WIP has exceeded 

the original program scope, but the number of eligible acres in Maryland greatly exceeds 

the observed enrollment.  

Perhaps landowners are improving timber management without the help of cost-

share programs or they are not specifically managing their forests for maximized timber 

growth. Landowners can pay DNR or other private forest industry firms to assist in 

developing forest stewardship plans, examining planting sites, marking areas in need of 

timber stand improvement, and renting forestry equipment. The extent of participation in 

such services was not gathered as part of this research, so no conclusion can be made on 

the number of acres of forest land in Maryland that is managed intensively. However, for 
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landowners interested in improving timber management, WIP definitely provides the 

right incentives to induce participation.  

The permanently sequestered carbon is greater with pre-commercial thinning due to 

accelerated growth following the thinning. WIP is cited as one of the programs in the 

Maryland GHGRP that will help the state meet the 2020 GHG reduction target of 25% 

below 2006 levels by increasing carbon sequestration by forests (Department of the 

Environment, 2013). The CBA results definitely support the claim that pre-commercial 

thinning leads to greater carbon sequestration than in similar stands without thinning. 

According to the GIS analysis, the lifetime carbon sequestration potential of the land that 

is eligible for WIP is about 139 million tons of carbon, which is 188 tons of carbon per 

acre. This is far above the estimated 4.56 million tons of carbon emissions reductions 

from forestry efforts in the GHGRP. However, those two numbers cannot really be 

compared because the estimate from the GHGRP only accounts for reductions between 

2012 and 2020, while the carbon sequestration potential is over the entire plant lifetime. 

If anything, the GIS results provide evidence that the GHGRP estimate of carbon 

reductions due to forestry is reachable through increased participation in WIP.  

When the cost-share assistance is based on the carbon benefits provided to society 

by the investment in pre-commercial thinning, the decision of whether or not to 

participate in WIP does not change. However, it does increase the returns for the 

landowner, which could increase program participation if that benefit accrued to the 

landowner. Cost-share assistance based on the constant 2.5% social cost of carbon 

estimate would be $146.82 per acre, compared to the current cost-share assistance of 

$81.34 per acre. Subsidizing carbon sequestration that results from WIP participation 

would potentially accelerate Maryland’s progress towards the goals laid out by the 

GHGRP. 

  

8.3 Conversion from Agricultural Land to Forest: Synthesis of Results 

The CBA results of the decision to convert cropland to forest are largely in favor of 

leaving the land as cropland. EQIP, administered by the NRCS, provides cost-share 

assistance for a large number of conservation practices, including several forestry 
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practices. The conservation practice in question here was establishing new trees on 

cropland. Even with participation in EQIP, the NPVs from conversion to forest are 

around $1,000 per acre less than those of collecting cropland rent at all three discount 

rates (2.5%, 3%, and 5%). Based on these results, one would estimate that participation in 

EQIP for tree establishment would be relatively low.  

From 2009 to 2013, tree establishment through EQIP has only been implemented 

on 344 acres in Maryland, which is as expected based on the CBA results (Morgart, 

2014). According to the national land cover data that was used for the GIS analyses, there 

are around 1.2 million acres of cultivated cropland in Maryland (Jin et al., 2013). 344 

acres is miniscule compared to the total eligible land for EQIP. In reality, lower value 

cropland would be much more likely enrolled in EQIP, but the cropland rent used here 

was an average value. The cropland would have to be worth around 40% less than the 

average cash rent of approximately $85 per acre (2010 dollars) for the landowner to 

establish trees as part of EQIP and not lose money. Perhaps EQIP would be more 

successful if it targeted marginal lands.  

As a proxy for marginal cropland, the average pastureland rent of $39.12 per acre 

was used instead of the cropland rent. There are around 747,000 acres of pastureland in 

Maryland that could potentially be converted to forest. The NPVs with conversion of 

pastureland and EQIP participation were higher for discount rates of 2.5% and 3% than 

those without conversion. However, at a 5% discount rate, the conversion still results in 

lower NPVs even with participation in EQIP. Again, the personal discount rate of the 

landowner makes a big difference in the investment decision. However, the conversion 

from pastureland to forest is definitely more likely than the conversion from cropland to 

forest.  

EQIP is also cited as one of the programs in the Maryland GHGRP that will help 

the state meet the 2020 GHG reduction target by increasing carbon sequestration in 

forests. When carbon benefits are included in the CBA, the NPVs from conversion to 

forest are still significantly lower than those of leaving the land as is. Even in the case of 

using pastureland rent, at a 5% discount rate, the inclusion of carbon benefits still does 

not outweigh the NPV without conversion. This indicates that from society’s view, at a 
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2.5% discount rate, the pastureland should be converted to forest, but the private 

landowner will likely not make the investment. There may be potential for greater EQIP 

participation if the subsidies were increased to make the conversion from pastureland to 

forest a worthwhile investment at a 5% discount rate. Overall, larger subsidies are needed 

to induce landowners to convert any agricultural land to forest. Perhaps targeting land 

that is not committed to agriculture is a better option, which is discussed in the next 

section.  

 

8.4 Conversion from Lawn to Forest: Synthesis of Results 

According to the CBA results, targeting lawn for conversion to forest should yield 

much better results than targeting cropland. In all cases, the NPVs from converting to 

forest are greater than those from caring for lawn, even without harvesting any timber or 

participating in L2W. This is due to the large annual lawn maintenance costs. The 

aesthetic values that the landowner possesses for lawn versus forest become the 

determining factor for participation in a program like L2W because neither land use 

results in large returns to the landowner.  

According to the GIS analysis results, there are 230,450 acres of eligible land for 

L2W, which is much lower than the one million acre estimate set forth as part of the 

program announcement (Forest Service, 2014a). Since the program is new, there is only 

one year of participation data to compare this to. In 2014, around 15 acres were enrolled 

in the program, which seems very small even though the program is new. The seemingly 

slow start to the program could be for a number of reasons. For example, it could be a 

program budget constraint, limited program administration resources, poor 

advertisement, or simply because private landowners do not want to convert their lawn to 

forest. 

The GIS analysis results estimate that the total lifetime sequestration potential of 

the eligible land is about 300 million tons of carbon, which is approximately 1,300 tons 

per acre. This is significantly higher than the carbon sequestration potential per acre on 

the WIP land of 188 tons. This makes sense since the carbon sequestration potential only 

accounts for additional sequestration beyond what is already there. The land eligible for 
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WIP is already forested, so the potential for further sequestration is lower than that of 

land that has not been forested yet.  

The inclusion of carbon benefits in this scenario is enough to outweigh the initial 

negative NPVs from conversion to forest without harvesting timber when the carbon 

benefits are calculated using the 2.5% and 3% social cost of carbon estimates. However, 

for a discount rate of 5%, which is likely more similar to a private discount rate, the 

carbon benefits do not outweigh the negative NPV of investing in forestry without 

harvesting timber, which illustrates the concept of private impatience. When the cost-

share assistance is based on the constant 2.5% social cost of carbon estimate, it is 

$1245.87 per acre, compared to the current cost-share assistance of $335.91 per acre. 

Since the conversion is so valuable from society’s perspective, increasing the cost-share 

assistance to fully internalize the positive external social benefits could increase program 

participation. Overall, from the three scenarios, it appears like increasing investment in 

the L2W program would make the greatest impact on reducing atmospheric carbon.  

 

8.5 Comparison of Carbon Sequestration Potential and Abatement Costs 

This section presents a discussion of the carbon sequestration potential of the 

forestry programs in Maryland and a comparison of the effective marginal abatement 

costs of forestry investments that qualify for each program. From Maryland’s GHGRP, 

the forestry and sequestration efforts between 2012 and 2020 were projected to result in a 

reduction in emissions of 4.56 million metric tons. The GIS analysis results estimated the 

lifetime carbon sequestration potential of all eligible land for each program, which was 

divided into a per acre estimate. This per acre estimate was multiplied by the actual 

program participation over the past few years to estimate how much carbon will be 

sequestered over the lifetime of the land that is already enrolled in each program. Further, 

in the case of L2W, the program implementation materials estimated how much land was 

eligible for the program, so the per acre lifetime carbon sequestration potential estimate 

was also multiplied by the program potential according to DNR. Table 8.1 shows how 

these carbon sequestration estimates compare. 
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Table 8.1 Carbon Sequestration Potential of Maryland’s Forestry Programs 
(millions of tons of carbon) 

One can see from Table 8.1 that the total lifetime carbon sequestration potential is 

not even close to being realized for any of the programs. Further, the DNR estimated 

carbon sequestration potential of L2W is much higher than the GIS analysis results. 

However, the GIS estimated lifetime carbon sequestration potentials for the three 

programs are still quite substantial. For perspective, the total 2013 Maryland GHG 

emissions was 96.8 million tons, so the total GIS estimated lifetime carbon sequestration 

potential for all three programs is the equivalent of about 30 years of annual emissions. 

Even though the lifetime potentials are far from being realized, the goal set forth by the 

2012 GHGRP for the total forestry and sequestration efforts to result in a reduction of 

4.56 million tons by 2020 appears to be doable. The total lifetime carbon sequestration 

potential for the land already enrolled in the programs is 5.08 million tons. Increasing 

participation in the forestry cost-share programs is definitely a climate change mitigation 

strategy that could be successful.  

The important question is how the abatement costs from the forestry cost-share 

program participants compare to abatement costs from carbon markets. Table 8.2 

compares the abatement costs of each forestry investment to the abatement costs from 

United States carbon markets (California and RGGI) and the marginal damages as 

estimated by the constant and increasing social cost of carbon estimates. The effective 

abatement costs were calculated by dividing the ‘with’ minus ‘without’ NPVs (in dollars 

 Program Participation 

 
Actual 

Realized 
Potential 

GIS Estimated 
Potential 

DNR/GHGRP 
Estimated 
Potential 

WIP 4.61 138.82 N/A 

EQIP 
     Conversion of Cropland 
     Conversion of Pastureland 

0.45 
 

1570.30 
977.39 

N/A 

L2W 0.02 301.56 1308.89 

Total Forestry Efforts 5.08 2988.07 4.56 
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per acre) for each scenario by the total permanently sequestered carbon (in tons per acre) 

that results from the forestry investment. The L2W abatement costs were also calculated 

using just the ‘with’ NPVs to provide a perspective of what happens when the lawn 

maintenance costs are not included as opportunity costs in the calculation. The timing of 

the carbon sequestration is not taken into account in these calculations. 

Table 8.2 Effective Abatement Costs of Forestry Investments 
(2010 $/ton) 

 Discount Rate 
 2.5% 3% 5% 

WIP - Pre-Commercial Thinning ($12.67) ($6.56) $15.02 

EQIP - Agricultural Land Conversion 
     Conversion of Cropland 
     Conversion of Pastureland 

 
$138.24 
($15.69) 

 
$152.62 
$10.42 

 
$176.99 
$69.91 

L2W - Lawn Conversion 
     With Timber Harvest 
     Without Timber Harvest 
  Excluding Lawn Maintenance Costs 
     With Timber Harvest 
     Without Timber Harvest 

 
($1,576.76) 
($102.70) 

 
($132.86) 

$5.96 

 
($1,431.47) 

($94.59) 
 

($97.53) 
$5.80 

 
($1,014.89) 

($70.29) 
 

($10.40) 
$5.31 

Marginal Abatement Costs – Carbon Markets 
     California Cap-and-Trade Program 
     RGGI 

 
$12.14 
$4.94 

 
$12.14 
$4.94 

 
$12.14 
$4.94 

Marginal Damage - Social Cost of Carbon 
     Constant 
     Rising 

 
$54.54 
$60.96 

 
$34.22 
$39.57 

 
$11.76 
$11.76 

 

In many cases, the abatement costs for forestry investments are negative, which 

means that those investments are profitable for private landowners at a given discount 

rate. Hence, the existing incentives are enough for the landowner to be willing to make 

the forestry investment, even without extra incentives to sequester carbon. The lawn 

conversion scenarios result in very large negative numbers, which means that the 

potential private benefits are quite substantial from the conversion. Even when the 

opportunity costs of lawn maintenance are excluded from the calculations, the abatement 
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costs are still very low. Large positive abatement costs indicate investments that are not 

privately profitable and therefore are not cost-effective mitigation strategies. The only 

cases where the abatement costs of forestry investments are higher than the California 

carbon price are the conversion from agricultural land cases. The only exceptions are the 

conversion from pastureland to forest at the 2.5% and 3% discount rates. Since the 

cropland cash rent is higher than the pastureland cash rent, the abatement costs are higher 

for cropland conversion than for pastureland conversion. 

Table 8.3 shows what the carbon price (California or RGGI) would need to be for 

the private landowner to make the forestry investment in question and gain the monetized 

external benefits from the permanently sequestered carbon that results from the 

investment. In other words, Table 8.3 shows the break-even carbon prices of the three 

forestry investment scenarios. The break-even carbon prices were calculated by 

determining which carbon price sets the ‘with’ minus ‘without’ NPVs equal to zero for 

each forestry investment. The ‘with’ minus ‘without’ NPVs used for the calculations 

were those that include carbon benefits based on the California carbon price. The timing 

of the carbon sequestration is taken into account in Table 8.3, which is different from 

Table 8.2. The carbon sequestered further in the future is discounted back to the 

beginning of the investment, so it is not as valuable. 

Table 8.3 Break-Even Carbon Prices of Forestry Investments 
(2010 $/ton) 

 Discount Rate 
 2.5% 3% 5% 

WIP - Pre-Commercial Thinning ($23.55) ($12.80) $35.64 

EQIP - Agricultural Land Conversion 
     Conversion of Cropland 
     Conversion of Pastureland 

 
$271.14 
($30.77) 

 
$340.44 
$23.23 

 
$647.81 
$255.88 

L2W - Lawn Conversion 
     With Timber Harvest 
     Without Timber Harvest 
  Excluding Lawn Maintenance Costs 
     With Timber Harvest 
     Without Timber Harvest 

 
($3,092.67) 
($519.33) 

 
($260.58) 

$30.16 

 
($3,193.13) 
($543.98) 

 
($217.55) 

$33.35 

 
($3,714.57) 
($663.27) 

 
($38.05) 
$50.07 
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 A positive break-even carbon price indicates that the current carbon price would 

have to increase to that level in order for the landowner to make the forestry investment. 

For example, in the case of conversion from cropland to forest at a typical private 

discount rate of 5%, the carbon price would need to increase to $647.81 per ton before 

the landowner would make the conversion and gain the monetized carbon benefits. 

Again, this illustrates how difficult it is to induce conversion of cropland to forest. In the 

case of conversion from pastureland to forest, the break-even carbon prices are much 

smaller. However, at a discount rate of 5%, the break-even carbon price for conversion 

from pastureland is $255.88, which is still quite large. 

There are many cases where the break-even California carbon price is substantially 

lower than the current California price of around $12 per ton. The main example of this is 

the lawn to forest scenarios, especially when the landowner harvests timber. However, 

even the cases without timber harvest result in large negative break-even carbon prices. A 

negative break-even carbon price indicates that the forestry investment is not contingent 

on participation in the carbon market. The investment is privately profitable without any 

monetized external carbon benefits. Since it is so cheap to sequester carbon by converting 

lawn to forest, pursuing this as a mitigation strategy makes sense for the state of 

Maryland. Further, pre-commercial thinning is relatively cheap as well, especially at the 

2.5% and 3% discount rates. These results suggest that increasing participation in the two 

state-funded programs (WIP and L2W) would be a cost-effective climate change 

mitigation strategy for Maryland. 

 

8.6 Analysis Limitations  

The analysis limitations are largely due to data imperfections and the need to 

condense the actual heterogeneity amongst land and forest stands in Maryland into three 

average case scenarios. The scenarios were region specific to Maryland, but not all of the 

data were region specific. For example, most of the costs taken from Bair and Alig’s 

(2006) regional cost publications were not reported for the Northeast region, so the costs 

for the Southeast region were used. Also, the volume growth measures for loblolly pine 

were not specific to a certain region. The growth rate could vary significantly based on 
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locational features. Even within the Northeast region, costs may vary significantly 

between states, which is not accounted for in much of the data used. Further, while the 

lawn care maintenance cost was specific to Maryland, the estimate did not account for 

lawn size, so some uncertainty surrounds the NPVs from the base case in the L2W 

scenario. If anything, the lawn maintenance costs were likely lower than they would be in 

reality, since one acre of lawn is quite large. Also, the projected prices from Haynes 

(2003) are outdated even though they seemed like the best available estimates to use. 

Uncertainty in the discount rate is another limitation that is common for most 

analyses of this type. Every landowner has a unique discount rate depending on their 

preferences for future consumption and risk, so assuming that every landowners’ discount 

rate will fall into one of the discount rates I used is a limitation. I assumed that 2.5% was 

a representation of the social discount rate, and 5% represented a private discount rate. 

However, private landowners could just as easily have discount rates much higher than 

5% in reality, which would make the forestry investments even less likely in all scenarios 

and further accelerate the problem of private impatience. This may explain the low 

program participation observed over the past few years. 

The uncertainty in carbon valuation that was discussed in the review of climate 

change economics section also exposes a limitation of this analysis. Uncertainty in future 

damages from carbon emissions as predicted by the IAMs used to estimate the social cost 

of carbon result in estimates ranging from around $12 a ton to $60 a ton for 2010 

(Greenstone et al., 2013). It has been argued by some that these values vastly 

underestimate the true damages from carbon emissions (Moore & Diaz, 2015). Further, 

the majority of carbon prices emerging from markets around the globe are on the low end 

of the social cost of carbon estimates. By using both the social cost of carbon estimates 

and the California carbon prices, some of the uncertainty was accounted for through 

sensitivity analysis.  

Lastly, the inclusion of only the carbon sequestration benefits excludes many other 

important co-benefits from forestry. For example, water quality improvements, wildlife 

habitats, and recreational opportunities could have been included in a social cost benefit 

analysis as well. Since only the benefits from carbon sequestration were included in this 
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analysis, the numbers resulting from the social CBA are only a lower bound of the actual 

benefits that forests provide to society. Further, the social benefits discussed here are 

global benefits, not just benefits for the state of Maryland. Regional programs are used in 

this analysis, and in reality, Maryland only realizes a portion of the benefits provided to 

society by the programs. To really deal with climate change problems, other states need 

to be doing what Maryland is doing. To suggest that Maryland needs to invest more in its 

forestry programs is one small piece of what needs to be done to solve the climate change 

problem. 

 

8.7 Future Research and Recommendations 

I plan to present the results of this analysis to employees of the Maryland DNR 

with hopes of providing a private landowner perspective on whether the forestry cost-

share programs provide the right incentives to induce participation. I would like to 

provide guidance to the Maryland DNR on what to emphasize in pushing the programs 

forward. Further, since this research illustrates a potential use of GIS data produced by 

Dubayah et al. (2013) as part of NASA’s CMS program, I hope to increase awareness of 

the value of such data. The GIS analysis provided considerable insights on the actual 

participation relative to the program scope and on the carbon sequestration potential. By 

illustrating the value of carbon monitoring data, the data is more likely to be updated in 

the future. 

 One of the main conclusions from this analysis is that even when the forestry cost-

share programs provide enough incentive to induce participation, the actual participation 

is much less than the potential. Even in cases where the program seems to be providing 

enough incentive for landowners to participate, the uptake of the program seems slow. 

Perhaps there is a budget constraint or limited administrative resources for the program, 

which both could limit participation. One recommendation for the DNR in Maryland is to 

increase advertisement of their forestry cost-share programs. The new L2W program is 

difficult to find on the DNR website, and the WIP advertisement materials do not seem 

like they have been updated since the program was first implemented.  
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In addition to increasing program advertisement, if the cost-share assistance was 

adjusted to include greater compensation for carbon sequestration, program participation 

may be increased. The difference in investment decisions using the 2.5% discount rate 

and 5% discount rate illustrates the idea of private impatience in all scenarios. If the cost-

share assistance fully internalized the external carbon sequestration benefits provided to 

society by the forestry investments, the problem of private impatience may decrease. 

Further work on what motivates program participation is warranted to fully understand 

what the Maryland DNR could do to increase participation. 
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 APPENDIX 

 The purpose of this appendix is to present a detailed description of the GIS analysis 

discussed in Chapter 3, which describes the forestry cost-share programs available for 

landowners in Maryland. The GIS analysis was conducted to determine the eligible 

number of acres for WIP and for L2W. As a reminder, anyone who owns between five 

and 1,000 acres of woodland and agrees to uphold improved forestry management 

practices for 15 years is eligible for WIP. Further, any private landowner with at least one 

acre of lawn qualifies for L2W. The eligibility criteria were based on these program 

requirements. Table 1 shows the GIS data sources used in the analysis.  

 GIS data layers are reported in either raster or vector format. Both were used for 

this analysis. Raster data is organized in a matrix of cells, in which each cell has a unique 

value. Vector data is organized in one of the following formats: polygons, lines, or points. 

The first step in the GIS analysis was to convert the polygon layers to raster layers. The 

reason for the conversion was because the eligibility requirements for the cost-share 

programs were first applied to each cell individually, so all of the data needed to be in 

raster format. Once the eligible cells were selected, appropriately sized portions of 

eligible cells were isolated by converting the eligible patches of cells back into polygons 

and using the polygon areas.  
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Appendix Table 1.  GIS Data Sources and Layers Used in Analysis 

Data Source Layers Used Layer Format 

Maryland Carbon 
Monitoring System 

(Dubayah et al., 2013) 

Maryland Statewide Canopy 
Cover 30-meter raster 

Maryland Statewide Carbon 
Sequestration Potential 90-meter raster 

National Land Cover 
Database (Jin et al., 2013) 

Maryland Statewide Land 
Cover Classifications 30-meter raster 

Maryland Protected Lands 
Map Server (Maryland 

iMAP 2014) 

Maryland DNR Owned 
Properties and Conservation 

Easements 
polygon 

Rural Legacy Properties polygon 

Maryland Environmental Trust 
Easements polygon 

Forest Conservation Act 
Easements polygon 

Maryland Agricultural Land 
Preservation Foundation 

Easements 
polygon 

Local Protected Lands polygon 

Private Conservation Lands polygon 

Protected Federal Lands polygon 

Once the polygon layers from the Maryland Protected Lands Map Server were 

converted to raster, they were combined into one layer. The reason for the combination of 

layers was to decrease the number of steps to select eligible cells for each program. In the 

combined layer, any cell with a value of ‘0’ was a piece of land that was not part of any 

of the original polygon layers. In other words, any cell with a value of ‘0’ was not owned 

by DNR or in some sort of conservation easement. The combined layer was named 

‘Conservation Layers,’ which is how it is labeled in the rest of the analysis.  
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Model Builder in ArcMap was used to do the rest of the analysis. The WIP and 

L2W models are very similar. The first goal of the analysis was to calculate a raster layer 

that reported a ‘1’ for all cells of eligible land, according to the criteria for the two 

programs.  

For the WIP model, the criteria were: Conservation Layers = 0 and Canopy Cover 

>= 95%. These criteria select all cells that are privately owned and contain a canopy 

cover of at least 95%. 

For the L2W model, the criteria were: Conservation Layers = 0, Canopy Cover <= 

30%, and NLCD = 21 (Developed, Open Space). Most large lawn spaces in the Maryland 

imagery were classified as ‘developed, open space,’ so that is how this criteria was 

chosen. These criteria select cells that are privately owned, covered by no more than 30% 

canopy cover, and classified as ‘developed, open space.’ Originally, an eligibility 

requirement of 0% canopy cover was chosen, but in reality, most lawn space has a few 

trees on it. For this reason, 30% canopy cover was used to represent lawn that may have 

some trees on it but would definitely be able to accommodate more trees from 

participation in the L2W program.  

The second goal of the analysis was to select only the patches of eligible land that 

met the acreage requirements (5 acres for WIP and 1 acre for L2W). The first step was to 

isolate patches of eligible land since there were so many long strings of cells that passed 

the eligibility criteria but were not actually eligible for the programs. For example, long 

strings of road side trees passed the eligibility criteria for WIP, but they are not actually 

forest patches. This task was accomplished by using the ‘Focal Statistics’ tool. This tool 

calculates a statistic of the values within a specified neighborhood around each cell. By 

using a 3x3 rectangle as the specified neighborhood around each cell, any cell with a 

value of ‘9’ was eligible land that was surrounded on all sides by eligible land. 

For the WIP model, a value of ‘9’ was used as the required criteria, and for L2W, 

any value >= ‘4’ was required. The reason why the L2W value is lower is because the 

acreage requirement is smaller, so it is not as important that a cell is surrounded on all 

sides by other eligible land.  
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The next step was to convert the eligible patches of land into polygons. As 

mentioned earlier, this conversion was made because the patches of eligible cells needed 

to be selected based on their acreage. The easiest way to calculate areas using GIS data is 

to have the data in a polygon format. For the WIP model, all polygons with an area >= 

20,234.3 m2 (5 acres) were selected, and for the L2W model, all polygons with an area 

>= 4,046.9 m2 (1 acre) were selected. By adding the areas of all of the eligible polygons, 

the total number of eligible acres for each program was calculated. 

The third goal of the analysis was to calculate the carbon sequestration potential for 

the selected eligible polygons. This task was accomplished by using the ‘Zonal Statistics’ 

tool. This tool calculates statistics based on values of a raster, within the zones of another 

dataset. In this case, the raster layer used was the Carbon Sequestration Potential layer, 

and the zones were the selected eligible polygons for each program. In other words, the 

carbon sequestration potential values for each cell within each eligible polygon were 

added together in this step, resulting in a total carbon sequestration potential value for 

each polygon. By adding the carbon sequestration potential values for all of the eligible 

polygons, the total carbon sequestration potential was calculated for each program.  

Example results are shown in Figure 1 and Figure 2. The resulting polygons are 

overlaid with Maryland imagery to illustrate that the analysis does in fact select polygons 

that look eligible according to the imagery. In Figure 1, the polygon is part of a large 

forested area (eligible for WIP), and in Figure 2 the polygons are in an urban fringe area 

where the houses are spread out enough to have large lawn space (eligible for L2W). A 

limitation of the L2W results is that certain areas of land meet all of the analysis 

requirements, but they are not actually lawn when they are compared with the imagery. 

For example, golf courses and baseball fields are included in the results.  

The total acreage eligible for each program is 736,761.5 acres for WIP and 230,450 

acres for L2W. The total carbon sequestration potential (excluding current aboveground 

biomass) for each program is 138,816,892 metric tons for WIP and 301,563,830 metric 

tons for L2W. These results indicate that the carbon sequestration potential of the land 

that could be enrolled in either WIP or L2W is quite substantial. It is important to 

remember that the carbon sequestration potential values are the sum of all carbon 
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sequestered over the lifetime of the trees. In other words, these are not annual values. 

However, over 400 million metric tons could be sequestered on the eligible land, which is 

about four years’ worth of total emissions for Maryland. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix Figure 1.  Example WIP Analysis Results 
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Appendix Figure 2.  Example L2W Analysis Results 
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