
Purdue University
Purdue e-Pubs

Open Access Theses Theses and Dissertations

Spring 2015

HUBcheck: Check the hub
Derrick S. Kearney
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/open_access_theses

Part of the Computer Engineering Commons

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Recommended Citation
Kearney, Derrick S., "HUBcheck: Check the hub" (2015). Open Access Theses. 490.
https://docs.lib.purdue.edu/open_access_theses/490

https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F490&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_theses?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F490&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/etd?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F490&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_theses?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F490&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F490&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_theses/490?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F490&utm_medium=PDF&utm_campaign=PDFCoverPages

HUBCHECK: CHECK THE HUB

A Thesis

Submitted to the Faculty

of

Purdue University

by

Derrick S. Kearney

In Partial Ful�llment of the

Requirements for the Degree

of

Master of Science in Electrical and Computer Engineering

May 2015

Purdue University

West Lafayette, Indiana

ii

ACKNOWLEDGMENTS

I would like to express my gratitude to everyone who encouraged and worked with

me through this process of exploring software based automation.

I would like to thank my family for pushing me to always pursue education.

I would like to thank my committee members, Professor Samuel Midki�, Professor

Mary Comer, Professor Milind Kulkarni, and Professor T. N. Vijaykumar, for teaching

me about research and challenging my scienti�c thought process.

I would like to thank Dr. Mike McLennan, Mr. George Howlett, and the HUBzero

Team for providing time, resources, and feedback while working on this project.

I would like to thank the members of the Purdue Perl Mongers and GLOSSY for

providing a platform where people can express their software related experiences and

idea.

I would like to thank the sta� and faculty of the College of Electrical and Computer

Engineering, especially the members of the Graduate O�ce who have helped me start,

continue, and �nish my graduate education.

iii

TABLE OF CONTENTS

Page

LIST OF TABLES . vi

LIST OF FIGURES . vii

ABSTRACT . x

1 INTRODUCTION . 1

1.1 Origins of Hub Testing . 1

1.2 A Hub Speci�c Testing Solution . 2

2 RELATED WORK . 4

3 HUBZERO . 7

3.1 The HUBzero Platform . 7

3.1.1 Simulation Tools . 7

3.1.2 Sharing Content . 8

3.1.3 Support for Collaboration 8

3.2 Hub Components . 9

3.2.1 Simulation Tools . 10

3.2.2 Resources . 11

3.2.3 Courses . 11

3.2.4 Groups . 11

3.2.5 Projects . 12

3.2.6 Databases . 12

3.2.7 Questions and Answers . 12

4 THE HUBCHECK PROBLEM SPACE 13

4.1 Hub Con�guration Issues . 13

4.2 Hub Upgrade Issues . 16

4.3 Hub Reboot Issues . 17

iv

Page

4.4 Multimodal System Automation . 20

5 EXTERNAL LIBRARIES . 24

5.1 Selenium WebDriver . 24

5.1.1 Launching a Web Browser 25

5.1.2 Locating Elements on the Web Page 26

5.1.3 Performing Actions on Web Elements 28

5.1.4 Performing Mouse Actions on Web Elements 29

5.1.5 Waiting for Web Elements 32

5.1.6 The Page Object Design Pattern 33

5.2 BrowserMob Proxy . 38

5.3 Paramiko . 40

6 HUBCHECK . 42

6.1 What is HUBcheck? . 42

6.2 HUBcheck Web Modules . 43

6.2.1 Con�guring HUBcheck . 45

6.2.2 Launching a Browser With the Browser Object 46

6.2.3 Navigating the Hub With the Catalog Object 46

6.2.4 Performing Common Tasks With the Utils Object 47

6.3 HUBcheck Shell Modules . 48

6.3.1 Starting a Remote SSH Session 49

6.3.2 Accessing a Hub's Tool Session Container Using SSH 50

6.3.3 Managing Tool Session Containers 59

6.3.4 Interacting With the Tool Session Container 61

6.3.5 Transferring Files Between The User Desktop and the Hub . 62

6.4 Building Applications Backed by the HUBcheck Library 65

6.4.1 Building a Tool . 66

6.4.2 Example Tools . 71

6.5 Writing Tests Using the HUBcheck Library 74

v

Page

6.5.1 Test Fixtures . 75

6.5.2 The TestCase2 Class . 75

6.5.3 Building a Test Case . 76

6.5.4 HUBcheck's Test Suites . 79

7 BUILDING PAGE OBJECTS FOR HUBCHECK 80

7.1 Review of the Page Object Design Pattern 80

7.2 Rebuilding the Login Page Object With HUBcheck 84

7.2.1 Matching Web Page Widgets to HUBcheck Page Object Classes 85

7.2.2 Specifying Element Locators for Page Object Classes 88

7.3 Incorporating Classic Design Patterns into Page Objects 90

7.3.1 WebForm Pattern . 90

7.3.2 ItemList Pattern . 95

7.3.3 IframeWrap Pattern . 107

7.4 Summary of Page Object Based Design Patterns 119

8 HUBCHECK AS A SOLUTION . 121

8.1 Turbulent Hubs . 121

8.2 Upgraded Hubs . 124

8.3 New Hubs . 126

9 FUTURE WORK . 128

9.1 Library Improvements . 128

9.2 Test Environments . 129

9.3 Adoption Within the HUBzero Team 129

LIST OF REFERENCES . 130

vi

LIST OF TABLES

Table Page

3.1 List of 2013's Largest hubs sorted by number of users 9

3.2 Hub components are built to power science 10

5.1 Selenium element locator methods provide a variety of ways to �nd ele-
ments on a web page. 27

6.1 HUBcheck's ToolSession class gives developers easy access to the hub's
Virtual SSH Commands. 52

vii

LIST OF FIGURES

Figure Page

4.1 The My Sessions module can be con�gured to show screen shots of the
tool session containers, provide short cut links to access the container, and
display the user's available disk storage on the hub. The module on the
left is fully con�gured showing the container screenshot, an enabled quick
start link, and storage meter. The module on the right has some of these
features disabled. 14

4.2 Accessing user's storage meter. 15

4.3 Sometimes errors show up after a hub upgrade like this one, where the
create date of a new hub group was not being displayed correctly. Finding
this type of bug is tedious for a human, but developers can use HUBcheck
to write tests which verify that multistep processes, like creating a group,
still produce expected results. 17

4.4 Simulation tool developers use a tool session container to develop and
deploy their work on the hub. Checking that the containers are properly
con�gured is time consuming for a human because of the layers of software
between the web browser and the container's services like Submit and the
Visualization servers. 18

4.5 Simulation tools are started by user's clicking a link on the hub website.
The link forwards the request to the middleware, which handles allocating
a tool session container and calling the tool's invoke script. The invoke
script sets up the environment for the tool to run in, and �nally, launches
the tool. 21

5.1 Hub login form. 27

5.2 SeleniumWebDriver provides ActionChains to automate performing mouse
actions on elements of a web page. ActionChains can be used for things
like right or left clicking on an element, drag and drop, and hovering the
mouse over an element. 30

6.1 The HUBcheck library builds on top of the Selenium and Paramiko li-
braries. 42

6.2 The HUBcheck library web module can be used to launch browsers and
interact with web pages. 43

viii

Figure Page

6.3 The HUBcheck library shell module can be used to SSH into systems and
interact through the command line. 49

6.4 Command line utilities can be built on top of the HUBcheck library by
using the hubcheck.Tool class. 65

6.5 One of HUBcheck's most used features is its test runner and its ability to
be embedded within tests. 74

7.1 The variation in locators used on the hub login page causes an additional
level of complexity when trying to develop automation scripts generic
enough to work across the hubs managed by the HUBzero team. 82

7.2 The part of the web page represented by the Login widget is outlined in
red. 84

7.3 The login web page is made up of several types of widgets. 86

7.4 Testing the hubzero.org support ticket form. 91

7.5 In the WebForm pattern, the FormBase base class provides the two ser-
vices essential to all web forms, populating the form and submitting the
form. 93

7.6 The hub Tool Pipeline table is a dynamically created list of items. Each
row in the table provides links and information regarding a speci�c simu-
lation tool registered on the hub. 96

7.7 The Container and Item classes are the foundation of the ItemList pattern. 97

7.8 The ItemList pattern uses a container class to represent the list and pro-
vide access to list meta-data while providing access to elements of the list
through an item class. It incorporates the Iterator and FactoryMethod
patterns. 98

7.9 Containers implement the Iterator pattern to allow sequential access to
items. 103

7.10 Containers use the Factory Method pattern to allow derived classes deter-
mine the type of Item class to return from searches. 104

7.11 HTML <textarea> based editor. 107

7.12 HTML iframe based editor. 108

7.13 Text input �elds embedded in di�erent levels of iframes. 109

7.14 Text input i0 exists in the default context. 110

7.15 Text input i1 exists in the frame1 context. 111

ix

Figure Page

7.16 Text input i2 exists in the frame2 context. 111

7.17 IframeWrap pattern wraps the core of methods with code to traverse
iframe contexts. 115

7.18 Decorator pattern . 115

7.19 Decorator pattern applied to text input �eld i1 in Frame1 context . . . 116

8.1 HUBcheck was used to track the health of hub A, a Turbulent hub, as
website and tool session container software were upgraded through 2014.
ntests represents the number of tests in the HUBcheck test suite that
ran and completed with either a pass or fail status. nerrors represents
the number of HUBcheck tests that partially ran and exited due to an
exception being raised. In a small number of cases, the exception is related
to an error in the HUBcheck library. An overwhelming amount of the time,
these errors signal a problem on the hub that prevented the test from being
properly setup. nfailures represents the number of tests that completed
and failed due to an assertion. 122

8.2 Upgraded hubs, like hub B, have a much smoother health graph, where, as
time progresses and the number of tests increase, the number of failures
decrease. 125

8.3 For New hubs, like hub C, once the setup has completed, the main source
of test failures is known problems in the HUBzero's core software. . . . 127

x

ABSTRACT

Kearney, Derrick S. M.S.E.C.E., Purdue University, May 2015. HUBcheck: Check
the Hub. Major Professor: Sam Midki�.

The HUBzero Platform is a framework for building websites, referred to as �hubs,�

that promote research communities through online simulation, data management,

and collaboration. With each software release, the HUBzero Team dedicates weeks of

team members' time toward manually testing, �xing, and retesting hub components.

The unique mixture of environments that make up a hub makes using existing auto-

mated testing solutions hard and shifts the burden of testing to humans, promoting

variation, spot checking of �xes, and other shortcuts to avoid the high cost of com-

pletely retesting the system. With over twenty hubs being actively managed by the

HUBzero Team, manually testing each one after a software update is resource and

time prohibitive.

The HUBcheck library, a collection of Python modules backed by Selenium Web-

Driver and Paramiko, was built to help developers write automation scripts for

HUBzero websites and the Debian Linux based virtual containers hosting the hub's

simulation tools. Today, the HUBzero Team is using HUBcheck to perform auto-

mated regression testing on all of its production hubs, regularly testing areas of the

hub that were previously overlooked. In this document, we investigate how HUBcheck

works, introduce three new design patterns that make writing page object based au-

tomation easier, and show how the use of HUBcheck has helped reduce the number

of miscon�gured systems during a one year period of hub upgrades.

1

1. INTRODUCTION

HUBzero is an open source software platform for building websites, or hubs, that

support collaborative research, science, and education. Like all software, the plat-

form has bugs being introduced and �xed with every release. Bugs in hubs can be

hard to �nd, and once �xed can be reintroduced in a later release, which make them

good candidates for automated testing. The HUBzero platform is a dual environment

system consisting of a website that uses pluggable components to provide services to

users, and middleware that provides access to Linux based containers where simula-

tion tools are developed and run. Due to its complexity, testing on the hub introduces

unique challenges involving the interactions between the web server and middleware

that cannot be addressed by currently available testing software. The HUBcheck li-

brary was created to address these challenges and provide hub developers with a single

toolkit for performing end user testing on hubs managed by the HUBzero Team at

Purdue University.

1.1 Origins of Hub Testing

In 2005, the HUBzero Team supported their �rst hub, nanoHUB.org. In 2007,

the number of hubs in production had risen to four, and by 2012, the team was

supporting twenty �ve hubs. The release of the open source version allowed others to

begin launching self-supported hubs. Each deployed hub started from a single core

version of the software and quickly bloomed into its own system with the standard

set of hub components and slightly di�erent con�gurations and content.

Despite the best intentions of the HUBzero Team, hub software was, and still

is, being released with bugs. The same economies of scale that allow the group to

rapidly deploy quality software work against the group when combating erroneous

2

software. A single bug that is discovered on one hub website is usually also on

numerous other hub websites. In the past, di�erent upgrade schedules and a lack of

upgrade documentation made it hard to tell which hubs had one of the many bugs

reported to the team. Additionally, the lack of a test suite made it di�cult to �nd

bugs before the software was released.

Before HUBcheck, the testing of hub components was performed by hand, making

it a time consuming and error prone process. The manual testing promoted variation

in tests performed. Due to its repetitive nature, each iteration of testing could be

performed a di�erent way, or not performed if forgotten. The escalating commitment

needed to setup and perform tests encouraged spot checking of bug �xes instead of a

broad retesting of components.

1.2 A Hub Speci�c Testing Solution

The hub is a controlled environment where the developers understand how the

components are supposed to work. HUBcheck, a set of hub automation libraries,

allows developers to take advantage of this knowledge and perform targeted end user

tests for hub components that the industry standard tools do not support. HUBcheck

provides a collection of tools which can be used to help automate the testing of how

users interact with hub components that would otherwise be performed by hand.

When compared to testing by hand, HUBcheck reduces testing time, increases test

coverage, and provides a reliable way to reproduce errors.

The HUBcheck libraries focus on two types of automation, hub access through a

secure shell (SSH) and hub access through a web browser. Building on top of Python's

Paramiko libraries and using ideas from Tcl's Expect, HUBcheck provides functions

to easily automate access to di�erent environments through SSH. This enables de-

velopers to test lower level system setup and con�guration, for example, within a

tool session container. Similarly, HUBcheck uses the Selenium library to automate

user interactions with the hub website. HUBcheck libraries provide abstractions of

3

hub components, that can be used to write maintainable automation scripts. When

combined, these two automation models can be used to verify that a hub is running

as it was intended. By using HUBcheck to write test cases for hub components, a hub

can be veri�ed in under a day. The decrease in testing time and increase in tested

components encourages the adoption of automated testing earlier in the development

cycle, where errors cost less to �x.

This thesis describes the inner workings of HUBcheck and how it is utilized by the

HUBzero Team to track and reduce the number of software defects in the HUBzero

Platform. The thesis starts by reviewing related work in Chapter 2 and providing

background information about how the hub works in Chapter 3. Chapter 4 discusses

the types of problems commonly seen on the hub and the reasons they can be hard

to test. In Chapter 5, we look into the external libraries that HUBcheck depends on

to enable developers to automate processes. Chapter 6 dives into HUBcheck's mod-

ules, explaining how it builds upon tools like Selenium WebDriver and Paramiko to

provide a library for hub automation and testing. Chapter 7 continues the HUBcheck

discussion by introducing best practices for building maintainable test cases. Lastly,

empirical data from using HUBcheck on hubs managed by the HUBzero Team is

presented in Chapter 8 and future work for the HUBcheck project is laid out in

Chapter 9.

4

2. RELATED WORK

Automated tools exist to aid in the testing of web applications and cover popular

testing topics including performance, security, functionality, usability, and user inter-

faces. One popular class of automated web testing tools are web crawlers, such as

Crawljax [1] and IBM Security AppScan [2]. Web crawlers traverse a web application,

performing tests based on the existence of interactive widgets (text boxes, links, and

buttons) on web pages.

Using a web crawler can require very little coordination from a developer. The

crawler's semi-directed exploration of the web application allows it to treat the appli-

cation like a black box when checking for bugs. Web crawlers navigate to reachable

web pages, review the available widgets on the web page, attempt actions, and doc-

ument the results. This makes them ideal for building site maps, testing navigation,

checking for bad links, and performing security scans across generic web pages. The

use of a web crawler is not without cost. Web crawlers can take a long time to run

because their goal is to exhaust every path through a graph that represents a web

application under test. The upside is that they have the opportunity to run a large

number of tests on the web application, in an automated fashion, with little initial

investment of time from the developer.

For web crawlers, knowledge of how the web application works and its limits are

usually discovered at runtime, which can require a time consuming, exhaustive search

of the problem space. Even after the web application has been �learned,� there is no

authority to determine if the learned behavior is the correct behavior. For example,

an important part of building a successful hub is allowing content developers to create

and deploy their own resources. The �rst step of contributing a resource to the hub

is to �ll out a web form describing the content that is being contributed. The form

generally contains text boxes and drop down lists, some of which are required or have

5

special restrictions on accepted values. A web crawler would be able to interact with

the widgets in the web form, test navigation of links on the page, and test the security

of inputting values into the text boxes in the form. Without additional knowledge

provided by the developer, the web crawler would have a hard time determining if a

widget was supposed to be required or optional, or con�rming that each widget's input

validation was working properly. Exploring every path through the web application

graph is good for whole system testing, but when it comes to targeted testing of a

speci�c set of actions, another class of tools is available.

This second class of automated web testing tools are test recorders, including

Selenium WebDriver [3], Webking, and Sahi [4]. Test recorders have explicit web ap-

plication navigation based on actions previously recorded by the developer. Recording

the actions for these tools to perform is a time consuming, manual process compared

to the more automatic web crawlers, but can produce speci�c, targeted tests. In the

case of Selenium WebDriver, these recordings can be programmed into a script and

coordinated with actions performed by other remotely controlled applications such as

a terminal shell.

Using a test recorder based tool, hub developers could record or program the

steps of �lling in the registration form of the resource contribution process, described

in the previous example. Widget input validation can be exercised by running the

automated script with di�erent, developer speci�ed, input values. By allowing the

developer to choose the input values, knowledge of the widget's restrictions are em-

bedded within the collection of tests. While web crawler based tools would need to

discover a widget's restrictions, test recorder based tools have the restrictions de�ned

by the hub developer.

Web crawler and test recorder based tools are designed for testing web pages. On

the hub, content developers and users interact with web pages, but they also interact

with a component that is not a web page, called a tool session container. Tool session

containers are Debian Linux based OpenVZ containers that allow content developers

to build and deploy simulation tools on the hub. Testing within the tool session

6

container requires accessing it through a secure shell (SSH) connection. Traditional

web crawler and test recorder based tools are not designed for this, and, on their own,

cannot be used for this purpose.

7

3. HUBZERO

3.1 The HUBzero Platform

The HUBzero Platform [5] is an open source software platform designed to meet

the needs of researchers and educators through the use of dynamic web sites and

interactive simulation tools. Websites based on the HUBzero software stack, also

known as hubs, power science by supporting research, education, and collaboration.

Three groups of users interact with the hub environment. Hub developers build

the hub by writing website components, creating the middleware and application

toolkits, and monitoring content creation channels. Content developers produce the

presentations, articles, software simulators, and other material that attracts people

to the hub. While hub users are the consumers of content available on the hub, they

are often also content developers.

There are three features that separate a hub from other websites available on the

internet:

1. Simulation Tools - running software simulations from a web browser

2. Content Sharing - allowing users to upload and download content from the

community

3. Support for Collaboration - helping people work together and learn from each

other

3.1.1 Simulation Tools

Hubs allow content developers to build and deploy software applications as tools

with graphical user interfaces, available for hub users to run inside of a web browser.

8

The HUBzero platform provides the content developers with a virtual Linux envi-

ronment, called a tool session container, where they can develop simulation tools

that support their science. Inside the tool session container, developers are able to

access high performance computing resources and incorporate output from visualiza-

tion servers in their tool. Once created, these simulation tools can be published as

resources on the hub, where hub users can launch and interact with them through a

web browser. Publishing simulation tools on the hub removes the burden on users of

downloading and installing the software on their own computer, �ghting with com-

piler errors, and acquiring access to restricted resources. Simulation tools available

on the hub provide a seamless, end-to-end experience for users.

3.1.2 Sharing Content

Hubs allow content developers to upload datasets, presentations, teaching mate-

rials, publications, simulation tools (as mentioned in section 3.1.1), and other types

of materials. Once published on the hub, these materials can be shared with the

world. Hubs are community driven and the ability for users to in�uence and shape

the community is a key feature of the hub.

3.1.3 Support for Collaboration

Hubs allow users to work together and form communities. Users can create groups

within the hub to cultivate special interests, or create projects with document repos-

itories used to organize and track changes in data. Hubs support other methods

to collaborate with the community through the �Questions and Answers� forums,

where users can ask and respond to questions posted by other members, and through

wishlists, where users can suggest changes to help improve the hub.

A hub revolves around a scienti�c community, just as science itself does. The

HUBzero Team hosts over 20 hubs, supporting scientists researching nanotechnology,

earthquake engineering, healthcare systems, pharmaceutical manufacturing, cancer,

9

Table 3.1: List of 2013's Largest hubs sorted by number of users

Hub # Users # Visitors
nanohub.org [6] 269,461 557,663
nees.org [7] 78,177 265,075

pharmahub.org [8] 24,213 35,198
vhub.org [9] 13,841 38,600

stemedhub.org [10] 5,104 15,943
ccehub.org [11] 4,346 18,431

habricentral.org [12] 3,760 48,040
molecularhub.org [13] 2,675 15,995
purr.purdue.edu [14] 2,636 15,281
iemhub.org [15] 2,421 12,821
c3bio.org [16] 2,360 15,537

cleerhub.org [17] 1,257 7,988
drinet.hubzero.org [18] 1,082 10,123

iashub.org [19] 1,062 13,316
diagrid.org [20] 789 8,238
memshub.org [21] 781 5,851

geoshareproject.org [22] 600 6,630
catalyzecare.org [23] 460 8,050

volcanoes, biomass energy, and more. Together, these hubs comprise over 400,000

users and over a million visitors per year. Table 3.1 provides a breakdown of users

and visitors for the largest hubs supported by the HUBzero Team. User counts include

registered accounts, unregistered users with a unique IP address or hostname that

remained active while visiting the site for at least 15 minutes, and uniquely identi�able

unregistered users who download a resource from the website. Visitors are identi�ed

by a unique IP address or hostname.

3.2 Hub Components

The HUBzero platform uses a plugin based architecture. Customization and fea-

tures are added through plugin extensions named Components. Out of the box, a

hub comes with components that are designed to support research, education and

10

Table 3.2: Hub components are built to power science

Component Research Education Collaboration
Simulation Tools X X X

Courses X
Resources X X
Groups X X
Projects X X
Databases X X

Questions and Answers X

collaboration. Table 3.2 shows a few of the more popular components and how they

contribute to the hub powering Science.

3.2.1 Simulation Tools

The HUBzero platform supports the publishing of software simulation tools with

graphical user interfaces. Hubs follow a tool contribution process which outlines how

users can develop, install and publish their own software. This process allows scien-

tists and researchers to disseminate their software on the hub. Simulation tools run

in an OpenVZ [24] container called a tool session container. Tool session containers

are hosted on the hub, and have an X11 server that is projected to the user's desktop

through a VNC [25] connection. On hubs hosted by the HUBzero Team, tool session

containers have access to visualization servers and national grid computing resources.

Tool session containers on hosted hubs have access to visualizations servers that

can handle VTK data, PYMOL data, and the home grown nanoVIS data format.

Users working in these tool session containers can also submit jobs to various grid

computing resources including Diagrid [26], Open Science Grid [27] and XSEDE [28].

Access to these premium computing resources allows researchers to build simulation

tools for users who may not have access to the powerful machines needed to run

parallel cluster jobs or visually represent large datasets that are produced as results.

11

3.2.2 Resources

The Resources component provides hub content developers with a way to upload

their own online presentations, publications, animations, and other downloadable

content. Contributing a resource is similar to contributing a simulation tool. The

content developer provides a title, description, citation, and author information for

the resource being contributed. After being reviewed, the resource is published on the

hub. These materials, generated by the hub's community, are an important aspect

of the hub. When content developers upload resources, it promotes the education of

users and helps spread the work and ideas of community members.

3.2.3 Courses

The Courses component allows educators to upload various course material in-

cluding lectures, tests, quizzes, homework and notes, and organize them in a timeline

format for dissemination as a course. Courses can also pull in published hub resources

and simulations tools. Each course can support multiple o�erings, or versions of the

course, and each o�ering can support multiple sections running on di�erent sched-

ules. The Courses component has an interface for hub users where they can track

their progress, view lectures, take quizzes, and download homework. The Courses

component directly supports the educational goals of the hub.

3.2.4 Groups

Hub users can form specialized communities on the hub by creating a group using

the Groups component. Membership to user created groups can be opened to the

public, restricted to certain people, or completely private. Within a group, members

can upload resources, share content, start conversations and host projects. Groups

promote collaboration and help teams of people share research.

12

3.2.5 Projects

The Projects component on the hub makes collaborating with other hub users

easy. Similar to the Groups component, Projects lets users manage a team of users

and collaborate. Projects also provide users with management tools like to-do lists,

notes, a Git based �le repository, and connections to cloud resources such as Google

Drive and DropBox. Projects were created to help ease the process of collaborating

on funding proposals, writing research papers, and managing data.

3.2.6 Databases

The Databases component allows hub users to quickly populate and search a

database based on data from a spreadsheet or �le. Using the Databases component,

users can create views, plot, and combine data with maps. Data from databases can

also be shared with simulation tools for further processing.

3.2.7 Questions and Answers

The Questions and Answers component promotes education and collaboration

between hub users. Using this component, users can pose questions to the community

and get responses. The best questions are voted up and the best answers can receive

a reward of points that can be used on the hub website.

13

4. THE HUBCHECK PROBLEM SPACE

Problems on the hub creep in without developers noticing. Breakdowns in hub func-

tionality generally occur when the hub is �rst set up, after a hub software upgrade, or

after a hub server reboot. Below, we explore examples of problems seen on the hub

and investigate, at a high level, how HUBcheck can be used to alert hub developers

of the issues.

4.1 Hub Con�guration Issues

There are two types of con�gurations the HUBzero Team seeks to support: a

con�guration for hubs managed internally by the group and a con�guration for the

open source release of the HUBzero Platform. Out of the box, the hub provides

user friendly default con�guration values for the open source release. Hubs managed

internally use a slightly di�erent con�guration because the software often includes

advanced features not available in the open source release, like upgraded middleware

and web components. These di�erences can lead to miscon�gured internally managed

hubs. One example where support for these di�erent con�gurations can be seen is in

the My Sessions module, available on the user's Dashboard on the hub website.

The My Sessions module was designed to provide a way for users to manage

their active tool session containers. When fully con�gured, the My Sessions module

can also show a screenshot of the tool session container, provide a shortcut link to

open the tool session container, and display the user's available disk space on the

hub. Figure 4.1 compares a fully con�gured My Sessions module, on the left, with

one whose features are disabled or not working properly, on the right.

14

Quick start link

Container screenshot

Storage meter

Fig. 4.1.: The My Sessions module can be con�gured to show screen shots of the
tool session containers, provide short cut links to access the container, and display
the user's available disk storage on the hub. The module on the left is fully con�gured
showing the container screenshot, an enabled quick start link, and storage meter. The
module on the right has some of these features disabled.

The My Sessions module can be con�gured to provide the user with a shortcut

link to access active tool session containers and screen shots of applications running

inside of an active tool session container. Capturing screen shots of the tool session

container is a function performed by the middleware and is not available in the open

source release prior to version 1.2.1. Because of this, the feature is turned o� by

default. Hosted hubs, managed by the HUBzero Team, run an advanced version of

the middleware that supports this feature. When new hosted hubs are launched,

turning this feature on is often missed.

Similarly, the availability of the disk usage and quota information depends upon

the hub being con�gured to show the information and having the telequotad service

running on the hub's �leserver. When the hub is not con�gured to show the disk

usage, or the telequotad service is not running, users are shown messages like those in

the image on the right side of Figure 4.1, explaining that the information is unavailable

or simply stating the used disk space is 0% of 0GB when the user has no quota set.

When a hub is �rst installed, there are many settings that can be adjusted to

change the user experience. HUBcheck provides a library to help developers automate

15

the validation of these settings through the hub's website, from the user's perspective.

Using HUBcheck, developers can write automation scripts that can login to the hub

website as a user, start a tool session container, and test if the My Sessions module

is correctly showing screen shots and enabling short cut links.

Developers can also write HUBcheck based automation scripts to identify problems

like the improper disk usage calculation mentioned earlier. To do this by hand a

developer would:

1. login to the hub website as a user;

2. navigate to the user's Dashboard
web page;

3. locate and read the disk storage
string from the web page;

4. validate the string holds the proper
format.

Fig. 4.2.: Accessing user's storage meter.

The HUBcheck script shown in Listing 4.1 follows the same steps. The format of

the disk storage string should match the format similar to X% of YGB, where X

is an integer, ranging from 0 to 100, describing the percentage of the user's available

disk that has been used, and Y is a positive integer describing the amount of disk

space available to the user, in gigabytes.

HUBcheck's web automation library simpli�es common tasks like logging into the

hub website and navigating to web pages. The library also provides abstractions of

hub web pages, called page objects, so developers can reuse common blocks of code

and take advantage of a standard library for locating elements on the web page.

16

Listing 4.1: Checking user's storage meter, using a HUBcheck backed script

1 ...

2 # launch the browser and navigate to hub website

3 hc.browser.get(’https://hubzero.org’)

4

5 # login to the hub website as a user

6 hc.utils.account.login_as(username,userpass)

7

8 # navigate to the user’s Dashboard web page

9 po = hc.catalog.load_pageobject(’GenericPage’)

10 po.header.goto_myaccount()

11

12 # locate and read the disk storage string from the web page

13 po = hc.catalog.load_pageobject(’MembersDashboardPage’)

14 storage_amount = po.modules.my_sessions.storage.storage_meter()

15

16 # validate the string holds the proper format

17 assert storage_amount != ’’, ’invalid storage amount returned’

18 assert storage_amount != ’0% of 0GB’, ’user quotas not activated’

19 ...

4.2 Hub Upgrade Issues

Errors also tend to arise on the hub after software upgrades. These types of errors

can usually be traced back to con�guration changes in upgraded hub modules, the

release of errant software, or pre-existing errors on the upgraded hub that manifest

themselves after the upgrade. Running HUBcheck after a hub has been upgraded can

help identify errors related to hub upgrades before the user experiences them.

One example of a hub upgrade related error that HUBcheck was able to identify

occurred in the hub's Groups component. The Groups component allows users to

organize content and discussions within the hub community. The component provides

discussion forums, wiki pages, blogs, project spaces and more. Users can create

a group by �lling out a web form on the hub website. Groups on the hub have

17

Fig. 4.3.: Sometimes errors show up after a hub upgrade like this one, where the
create date of a new hub group was not being displayed correctly. Finding this type
of bug is tedious for a human, but developers can use HUBcheck to write tests which
verify that multistep processes, like creating a group, still produce expected results.

an overview web page that provides some properties of the group like group name,

description, number of members, join policy and create date.

In this case, HUBcheck was run on a test hub after a software upgrade. A failing

test alerted developers to an error in displaying the create date for newly created

groups. With knowledge of the problem, hub developers were able to identify and �x

the the errant code before it was propagated to more hubs, which would have resulted

in additional cleanup work.

To �nd this type of error, a new group needed to be created on the hub, and its

properties veri�ed. The process of creating and verifying a new group on the hub can

be tedious and error prone for a human, but with HUBcheck it can be done in a few

lines of code in a testing script.

4.3 Hub Reboot Issues

When the servers hosting a hub are shut down and brought back up, it is easy

for unexpected problems to arise. From hosts having trouble rebooting to remote

�lesystems not being properly mounted over the network, machine reboots are a time

where errors can happen that leave the hub not living up to its fullest potential.

18

Web Server

Middleware

User's Web
Browser

Submit
Proxy

Grid

Visualization

Tool Session
Containers

HUBzero
Infrastructure

Fig. 4.4.: Simulation tool developers use a tool session container to develop and deploy
their work on the hub. Checking that the containers are properly con�gured is time
consuming for a human because of the layers of software between the web browser
and the container's services like Submit and the Visualization servers.

Developers can exercise hub functions quickly by running HUBcheck after a reboot.

HUBcheck provides the type of automation primitives that encourage developers to

tackle the harder problems to automate, like checking that render servers are accepting

connections from within a tool session container.

One of the key features of a hub is its ability to run interactive simulation tools

that are displayed in the user's web browser. These simulation tools are run in an

environment called a tool session container on an execution host that is a part of

the hub. In their web browser, the user sees a display of the tool session container

that has been projected to them, from the hub, using the VNC protocol. Hosting

19

the interactive simulation tools on the hub allows the user to take advantage of many

features that would not normally be found on their own system, like access to grid

computing services and powerful rendering machines for interactive visualization.

The tool session container is a Debian Linux environment that supports the build-

ing of simulation tools by tool content developers and the execution of tools by hub

users. Access to grid computing and render machines are services provided to the

tool session containers. After a reboot of the hub these services should be restored,

and if they are not, the simulation tools may not work correctly.

There are two ways to access a tool session container. The most frequently used

way is through the web browser. Starting a tool on the hub gets the user access to a

tool session container. This approach doesn't allow the user to automate interaction

in a terminal with a shell. The second way is to connect over SSH, the secure shell

protocol. All tool developers can access a tool session container in this way. This

approach has the advantage that it gives access to a terminal with a shell, and shell

automation tools like Expect [29] have existed since the mid 1990s.

HUBcheck takes advantage of this second approach to accessing a tool session con-

tainer and provides a small, Expect-like, shell automation library. Using HUBcheck,

hub developers can write automation scripts that enter a tool session container and

examine the resources that are supposed to be available for tools to use, like access

to the render servers. They can also write scripts to check if a render server is ac-

cepting connections from within the tool session container, examine the container

�rewall setup, installation of software such as the Rappture Toolkit, access to grid

infrastructures through the use of the submit command, �le transfer between the

user's desktop and the user's hub account using the sftp, filexfer, or webDAV

protocols, and simulation tool invocation through invoke_app, all under the same

conditions a simulation tool would be making its request from.

20

4.4 Multimodal System Automation

HUBcheck's combination of web and shell automation libraries helps it provide

developers with the unique ability to write scripts that capture the user experience of

working in the dual environment system that is the hub. While a great deal of testing

and automation can be performed by libraries that only access the website, or only

access the tool session container, there exists a set of tasks whose operations span both

the website and the tool session container, that no other single tool can automate.

These are the cases of a growing area of interest within the hub, where information

is passed from resources published on the website to tools running inside of the tool

session container. In hub parlance, this is referred to as parameter passing.

Simulation tools run in a tool session container, either on the same host as the

hub's web server or on a separate execution host. While this approach has its advan-

tages with respect to deploying tools in a consistent environment � isolation between

di�erent users running tools and isolation between tools and the web server � there are

also a number of disadvantages, one of which is the inability to easily pass parameters

to the simulation tool before it has launched.

Launching a simulation tool on the hub involves coordination between both the

hub website and hub middleware. It can be explained in �ve steps and are shown in

Figure 4.5:

1. User click's link to launch tool from web page.

2. Web link calls PHP function which forwards request to middleware.

3. Middleware starts a new tool session container for the tool.

4. Middleware calls the tool's invoke script inside of the tool session container.

5. Invoke script execs command to start tool's graphical user interface.

There are a couple of ways to start the process to launch a simulation tool on the

hub. The most obvious way is to use a web browser to navigate to the tool's tool

21

Fig. 4.5.: Simulation tools are started by user's clicking a link on the hub website.
The link forwards the request to the middleware, which handles allocating a tool
session container and calling the tool's invoke script. The invoke script sets up the
environment for the tool to run in, and �nally, launches the tool.

information page, a web page that describes what the tool does, lists its authors and

funding sources, and includes a link to launch the tool. In the �rst step, the user

navigates to the tool information page and clicks the link to launch the tool. Clicking

the web link sends a request to the hub web server asking it to start the tool. The

hub web server receives the request and calls upon the hub middleware to launch the

new tool. In step three, the middleware supplies a tool session container to run the

requested tool.

Tools published on the hub include an invoke script which contains all of the

commands necessary to launch the simulation tool, including setting up system envi-

ronment variables with prerequisite library and executable paths. In step four above,

the middleware enters the tool session container as the user, and execs the tool's

22

invoke script to start the graphical user interface. Lastly, the invoke script sets envi-

ronment variables for the libraries needed by the tool and launches the tool.

Version 1.2 of the HUBzero software included new components that allowed users

to interact with learning concepts and data through the use of simulation and mod-

eling. Two examples of this include the Databases component and the Courses com-

ponent. The Databases component allows users to create databases of information

and construct views that help others understand their data. The Courses component

allows teachers to manage an online class, hosted on the hub, that incorporates hub

resources including simulation tools. With both of these components, developers may

want to pass data that is stored on the hub website over to a tool running in a tool

session container.

To address this need, a new algorithm for allowing parameters to be passed from

the website into a simulation tool running in a tool session container was created.

The algorithm accepts a limited number of data types (�le names, directory names,

and integers) and encodes the parameters into the URL used to launch the tool. The

parameters are passed through the hub web server and middleware, which have the

opportunity to check them for validity, and into the tool session container. Once

inside of the tool session container, they are stored in a �le, and the tool developer

is responsible for parsing them out of the �le, either through the tool's invoke script,

or in the simulation tool itself.

Whether it is data from a database being fed into a cancer prediction model, or

example parameters for simulating a circuit from a class, passing data between the

website and the tool session container involves many layers of software that have

the opportunity to manipulate or lose the data. Passing data is di�cult to do and

tedious to test. HUBcheck provides the automation primitives necessary to ease the

task of writing scripts that can interact with the website and tool session container

in the same script. In the case of parameter passing, hub developers were able to

use HUBcheck's web and shell automation libraries to build a test suite to exercise

passing parameters to a simulation tool by crafting both valid and invalid URLs. As a

23

part of the test suite, numerous simulation tools were installed on the hub and URLs

were generated to match the requirements and restrictions of the parameter passing

algorithm. After launching tools with the specialized URLs, the HUBcheck based

scripts accessed the tool session container running the simulation tool and veri�ed

that the parameters were passed through the tool invocation labyrinth (which includes

the web browser, web server, middleware, and tool session container), through the

tool's invoke script, and to the tool where they could be processed.

24

5. EXTERNAL LIBRARIES

HUBcheck builds upon several external libraries to provide web browser and shell

based automation. To support web automation, HUBcheck uses the Selenium Web-

Driver API [30] and the BrowserMob Proxy [31]. The WebDriver API is used to

control the web browser and is provided by the Selenium project along with bindings

for several programming languages. The BrowserMob Proxy is an open source web

proxy, maintained by Patrick Lightbody, which can be used to watch and manipulate

network tra�c. To support shell automation, HUBcheck builds upon Paramiko [32], a

Python implementation of the SSH version 2 protocol. Below we'll learn more about

the role each of these libraries plays.

5.1 Selenium WebDriver

Selenium is an open source project with a suite of tools used to automate web

browsers across many platforms. Selenium implements the WebDriver API as a part

of the Selenium WebDriver library. The WebDriver API provides an object-oriented

programming interface to communicate with and control a web browser, performing

the same actions a person would when interacting with a web page. Through the

WebDriver API, developers can launch a web browser, locate elements in web pages,

and perform actions on elements such as typing into them or clicking on them using

the mouse. The following subsections show examples of how Selenium WebDriver can

be used to control a Firefox web browser using the Python programming language.

25

5.1.1 Launching a Web Browser

The Selenium WebDriver Python bindings provide the webdriver module that

holds classes to represent the di�erent types of browsers that can be launched, includ-

ing Firefox, Chrome, Safari, Opera, and PhantomJS. Browsers can be launched locally

on the same machine running the automation program, or on a remote host that is

running a Selenium Server. Each browser has a special plugin which translates the

WebDriver requests, made from Selenium, to the browser's native automation API.

Launching a web browser using Selenium is as simple as instantiating a new

webdriver object for the browser the user wants to launch. With no initializa-

tion arguments, the user will be provided with a new browser they can control by

calling member functions of the returned object as demonstrated in Listing 5.1.

Listing 5.1: Launching a locally hosted Firefox web browser using Selenium Web-
Driver's Python API

1 from selenium import webdriver

2

3 browser = webdriver.Firefox()

4 browser.get(’https://hubzero.org’)

For some browsers, more �ne grained web browser controls are exposed to the

developer through access to the browser's pro�le. Not all browsers support the pro�le

concept. Firefox allows users to load a pre-con�gured pro�le or create one on the �y.

Listing 5.2: Adjusting the preferences in the Firefox browser.

1 from selenium import webdriver

2

3 profile = webdriver.FirefoxProfile()

4 profile.set_preference(’browser.startup.page’,0)

5 profile.set_preference(’app.update.enabled’,’False’)

6 profile.add_extension(’firebug-1.11.4.xpi’)

7 profile.set_preference(’extensions.firebug.currentVersion’,’1.11.4’)

8

9 browser = webdriver.Firefox(firefox_profile=profile)

10 browser.get(’https://hubzero.org’)

26

Listing 5.2 demonstrates setting up a Firefox browser pro�le that disables the

startup page, disables automatic updates to the browser, and installs the Firebug

browser extension. The FirefoxPro�le class allows developers to set preferences and

add extensions to the Firefox browser. Alternatively, users can take advantage of the

class's profile_directory argument to load a pre-con�gured browser pro�le.

The webdriver.Firefox class is used to launch the web browser. If a custom

pro�le was created it can be provided to the class and a web browser based on those

settings will be started. The object returned, shown in line 9 of Listing 5.2, is stored

in the variable browser, and is used in automation scripts as the object reference for

the web browser. All commands to the web browser, such as navigation and locating

web elements in the HTML DOM (Document Object Model), are performed on the

browser variable using the get() and find_element() family of methods.

5.1.2 Locating Elements on the Web Page

To perform actions on elements of a web page, Selenium must �rst be able to

locate the elements. Web element locators are used by Selenium commands to identify

elements on a web page. There are several di�erent strategies for locating web page

elements listed in Table 5.1. Two of the most popular strategies are XPath expressions

and CSS selectors.

There is typically overlap in how the di�erent locator strategies can be used to

locate elements on a web page. It is not uncommon for a single web element to be

identi�able by two or three of the locator strategies, but the key to building robust

automation scripts is to choose the most robust locator that will withstand updates

to the web page layout.

27

Table 5.1: Selenium element locator methods provide a variety of ways to �nd ele-
ments on a web page.

Locator Strategy Description Example Use
id Search for a web element

with an id attribute match-
ing the argument.

id=username

name Search for a web element
with a name attribute
matching the argument.

name=username

XPath Search for a web element us-
ing an XPath expression.

xpath=//input[@id='username']

link Search for a link (anchor
web element) with text
matching the provided pat-
tern.

link=link text

CSS Search for a web element us-
ing a CSS style selector.

css=input#username

Listing 5.3: HTML for username
�eld

1 <label>
2 Username:
3 <input id="username" class="

inputbox" type="text" name=
"username">

4 <\label>

Fig. 5.1.: Hub login form.

Take, for example, the hub login form shown in Figure 5.1. The form contains a

number of web elements we would like to interact with, the most important of which

are the username �eld, password �eld, and login button. Listing 5.3 shows the HTML

representation of the username element in the login form.

Several of the locating strategies in Selenium can be used to identify the element.

The examples in Table 5.1 show how this would be done. Among the available

28

strategies, the ones involving the id attribute are generally the most robust because

HTML requires that the id attribute be unique for all elements. This ensures that if

the id attribute exists for an element in the HTML DOM, then it should only exist

once, reducing the number of false positives when locating elements.

The locating strategies map directly to the Selenium WebDriver API functions

used to locate elements on the web page from a program. For the Python bind-

ings, these are a part of the find_element_by_*() family of methods shown in

Listing 5.4 Any one of these methods can be used to locate elements on a web page.

Listing 5.4: The �nd_elements_by_*() functions locate web elements in Python.

1 # locating elements by the id attribute

2 element = browser.find_element_by_id(’username’)

3

4 # locating elements by name attribute

5 element = browser.find_element_by_name(’username’)

6

7 # locating elements by tag name

8 element = browser.find_element_by_tag_name(’input’)

9

10 # locating elements by XPath

11 element = browser.find_element_by_xpath("//input[@id=’username’]")

12

13 # locating elements by CSS Selector

14 element = browser.find_element_by_css_selector(’input#username’)

5.1.3 Performing Actions on Web Elements

Once an element has been located, an action can be performed on the element.

Common actions include clicking on the element, sending key strokes to the element,

reading the properties of the element, and checking if the element is displayed. List-

ing 5.5 demonstrates performing actions on the username �eld of the login web page.

In line 2, the username �eld is located using a CSS selector element locating strategy.

Lines 8 - 10 show that elements can be brought into focus on the web page with

the click() method, have its value erased using the clear() method, and a new

29

value assigned using the send_keys() method. By the end of this program, the

username �eld on the login page would be populated with the name �hctest�.

Listing 5.5: Filling in the username �eld on the login form

1 # locate the username field by CSS Selector

2 element = browser.find_element_by_css(’input#username’)

3

4 # perform actions on the element:

5 # click the field to set focus

6 # clear any previous value from the field

7 # send key strokes to the field to fill in the username

8 element.click()

9 element.clear()

10 element.send_keys(’hctest’)

5.1.4 Performing Mouse Actions on Web Elements

In addition to being able to perform normal actions on elements, Selenium Web-

Driver allows automation developers to perform mouse actions on elements with a

feature called ActionChains. ActionChains are useful for automating tasks where a

mouse movement is needed to trigger a property change in an element on the web

page. A common examples of this include JavaScript based menus that appear on

the screen when the mouse hovers over an element on the web page, as shown in

Figure 5.2a.

Selenium tries hard to only allow interaction with visible page elements that a

user would be able to interact with. If an element is present on the web page and is

available in the HTML DOM that the browser loaded, but is not visible to the user,

Selenium will not allow the automation code to perform actions on it. Properties, like

the text of the element or the attributes of its HTML, can still be read, but clicking

on the element or sending key strokes to the element will fail.

To emulate the movement of the mouse, the automation developer can use Sele-

nium WebDriver's ActionChains. ActionChains allow the automation developer to

30

specify elements on the web page to perform mouse actions on. ActionChains support

hovering the mouse over elements, single clicking elements, double clicking elements,

context (right) clicking elements, clicking and dragging elements, and pressing a num-

ber of meta (ctrl, alt, shift) key combinations in coordination with a mouse action.

(a) User account menu closed. (b) User account menu open.

Fig. 5.2.: Selenium WebDriver provides ActionChains to automate performing mouse
actions on elements of a web page. ActionChains can be used for things like right or
left clicking on an element, drag and drop, and hovering the mouse over an element.

On the hub, performing mouse actions is handy when trying to interact with the

user account menu, which requires the user to hover the mouse over the menu element,

shown in Figure 5.2a, in order to expose account navigation options that lead to the

user's Dashboard, Pro�le, Messages, or log the user out of the website. To do this

programmatically using the Python bindings, an automation script would use the

action_chains module.

31

Listing 5.6: Activating a JavaScript menu using ActionChains.

1 # load the ActionChains class

2 from selenium.webdriver.common.action_chains import ActionChains

3

4 # locate the menu and logout elements by CSS Selector

5 menu_element = browser.find_element_by_css(’#account’)

6 logout_element = browser.find_element_by_css(’#account-logout’)

7

8 # build the ActionChains object to perform a mouse action:

9 # move the mouse over the menu to activate the JavaScript menu

10 # move the mouse to the logout list item in the menu

11 # single click the logout menu item

12 actionProvider = ActionChains(browser)

13 actionProvider.move_to_element(menu_element)

14 actionProvider.move_to_element(logout_element)

15 actionProvider.click()

16 actionProvider.perform()

Developers use the ActionChains class to build (chain) a list of actions together

and send them to the web browser to be performed as if they came from the computer's

mouse. Listing 5.6 demonstrates this by providing a solution to the problem of

hovering the mouse over the menu in Figure 5.2a, exposing the account navigation

options shown in Figure 5.2b. More speci�cally, the script focuses on clicking the

Logout link in the menu.

As with most Selenium WebDriver related scripting tasks, the �rst step is to

locate the web elements items the script will be interacting with in the HTML DOM.

Lines 5 and 6 of Listing 5.6 are responsible for locating the menu element and the

logout link on the web page. Next, in lines 12 through 15, the script builds up a

list of commands that should be performed by the mouse. Each line in the script

adds another command that should be performed to the list stored in the variable

actionProvider. To get to the logout link, the mouse must �rst move to the

menu element, line 13, then move to the logout element, line 14, and lastly send

a click signal to press the logout link, line 15. The commands are stored until the

developer asks for them to be performed, shown in line 16 of the script.

32

5.1.5 Waiting for Web Elements

Asynchronous JavaScript and XML (AJAX) is a programming technique that

allows web applications, running in the user's browser, to communicate with the web

server and dynamically change the state of the web application without reloading the

web page. The use of AJAX on web pages poses a problem for some web automation

software that evaluates static HTML DOMs without evaluating the JavaScript that

accompanies it. After the browser makes a request for a web page, the web server

sends back a stream of HTML that can have JavaScript embedded within it. The web

browser is responsible for reading the HTML and evaluating the JavaScript inside,

which may request additional HTML from the web server.

Selenium WebDriver uses the HTML and JavaScript engines inside of the external

web browser it is controlling to build the HTML DOM that represents the web page

the web browser loaded. This allows Selenium WebDriver to leverage the same web

browser to interpret and evaluate the HTML and JavaScript that a user would. This

also adds a dimension of di�culty in locating web elements whose presence or visibility

on the web page is in�uenced by JavaScript. The dynamic nature of JavaScript

provides less structure to what it means for a web page to have �nished being `loaded'.

Loading up multiple pieces of a web page may be delayed, for example, by a slow

network. Selenium WebDriver provides two types of waiting strategies, Implicit Waits

and Explicit Waits, to work around these unexpected delays and deal with locating

elements that may not be immediately available.

Implicit Waits

In Selenium WebDriver, the default behavior is to search once for a locator in

the HTML DOM. If the locator cannot be found, a NoSuchElementException

is raised. Implicit Waits are a way to repeatedly search for a web element in the

HTML DOM, while blocking other commands from continuing, for a set amount of

time before raising the NoSuchElementException.

33

Implicit waits can be setup once and exist for the life of the webdriver object.

Setting up an implicit wait a�ects the whole family of find_element*() based

methods, which will repeatedly search for the element until either the element is found

or the timeout limit is hit.

Explicit Waits

Explicit Waits consider the more general case where the automation developer

wants to wait for a condition to be met. Without explicit waits, many people are

tempted to check for the condition to be met while inside a for loop, adding a call

to the programming language's sleep() function to space out the checks. This

approach should be avoided in favor of using the WebdriverWait class provided by

the Selenium libraries.

5.1.6 The Page Object Design Pattern

The Page Object design pattern provides a layer of abstraction between a web

page and automation scripts. It represents the services o�ered on a web page or a

portion of a web page. By writing automation scripts that interact with the page

object, developers can signi�cantly reduce the number of repeated lines of code in

their automation scripts, abstracting away many of the common features of the code

into a single class that needs to be updated as the web page interface changes.

Novice developers learning to use Selenium for their web automation may start by

using the Selenium IDE, a graphical user interface product of the Selenium project

that records the actions of the user and stores them using an internal representation

called Selenese. Selenium IDE also has the ability to convert Selenese to a number

of programming languages. The IDE allows developers to quickly create automation

scripts, but it su�ers from the same a�ictions as manually writing automation scripts

using the procedural programming paradigm. They both result in brittle scripts that

break easily and are painful to �x because of a lack of encapsulation. With a little

34

organization and refactoring, these brittle scripts can be turned into robust scripts

that require less code to write and are easier to understand.

Consider the automation script in Listing 5.7, which navigates the web browser

to the hubzero.org web page, clicks the link to login, then �lls in the username

�eld, �lls in the password �eld, and clicks the submit button.

Listing 5.7: Simple hub login automation script.

1 from selenium import webdriver

2

3 # setup automation script constants

4 base_url = "http://hubzero.org/"

5

6 # start the browser

7 driver = webdriver.Firefox()

8

9 # navigate to the login page

10 driver.get(base_url)

11 driver.find_element_by_id("account-login").click()

12

13 # perform the login action

14 driver.find_element_by_css_selector("#username").clear()

15 driver.find_element_by_css_selector("#username").send_keys("abc")

16 driver.find_element_by_css_selector("#passwd").clear()

17 driver.find_element_by_css_selector("#passwd").send_keys("123")

18 driver.find_element_by_css_selector("[name=’Submit’]").click()

Immediately looking at the code, a couple of patterns are apparent. The �rst

pattern involves repeated searches for commonly used �elds. This is true of the �eld

with id username, which is searched for in line 14 to clear it and again in line 15

to send it a value, and also for the the password �eld with id passwd for the same

reasons in lines 16 and 17. To clean up this code, it could be rewritten to save the

result of the �rst search to a variable and call the clear() and send_keys()

methods on that variable.

The second pattern involves the repeated steps used to populate a text �eld. Every

time a text �eld is populated, the script �rst searches for the element, then clears

the element of any previous value, and lastly, sends some keys to the element. These

35

actions could be combined into a function, as shown in Listing 5.8 to help reduce the

amount of repeated code.

Listing 5.8: populate_input function included in utils.py

1 def populate_input(driver,loc,text):

2 """type text into the element located by loc"""

3

4 e = driver.find_element_by_css_selector(loc)

5 e.clear()

6 e.send_keys(text)

An updated version of the automation script from Listing 5.7 that addresses the

�rst two patterns, including a function named populate_input() which �nds an

element and types text into it, would look like this:

Listing 5.9: Hub login script with repeated patterns abstracted away

1 from selenium import webdriver

2 from utils import populate_input

3

4 # setup automation script constants

5 base_url = "http://hubzero.org/"

6

7 # start the browser

8 driver = webdriver.Firefox()

9

10 # navigate to the login page

11 driver.get(base_url)

12 driver.find_element_by_css_selector("#account-login").click()

13

14 # perform the login action

15 populate_input(driver,"#username","abc")

16 populate_input(driver,"#passwd","123")

17 driver.find_element_by_css_selector("[name=’Submit’]").click()

At this point the automation script in Listing 5.9 is looking pretty good. We were

able to abstract out most of the repeated code into a function, populate_input(),

that we can pass arguments to and let it take care of locating and writing text to

elements of the HTML DOM. The act of logging into the website has been condensed

36

down to lines 15-17 in the automation script, but this version of the automation script

could still be considered brittle.

Many web automation script errors are caused by failures to locate elements in

the HTML DOM. This could be the result of poor element locator strategy or just

a new site design being implemented. If multiple automation scripts exist and they

all repeat lines 15-17 from Listing 5.9, then they all need to be changed to re�ect the

new design. The more scripts there are, the more painful the processes of updating

all of them is.

An alternative approach involves identifying common pieces of web pages that can

be interacted with and representing them as objects in code. The methods of these

objects are services provided by the web page. When the automation script navigates

to a web page, it would instantiate a page object, an object that represents the web

page, and call the page object's methods to perform actions on that web page.

Applying the Page Object design pattern to the automation script in Listing 5.9,

we �rst identify the web pages being visited. The �rst web page being visited is the

hub's index page. On the index page, the automation script locates and clicks the

login link. The �rst page object we create should represent the index page, and it

should provide the service of clicking the login link as one of its methods. Listing 5.10

shows a page object representing a generic web page where the user is logged out.

Listing 5.10: A generic page object, providing the login navigation service.

1 class GenericLoggedOutPage(object):

2

3 def __init__(self,driver):

4 self.driver = driver

5

6 def goto_login(self):

7 """navigate to the login page"""

8

9 self.driver.find_element_by_css_selector(’#account-login’).click()

In Listing 5.10, GenericLoggedOutPage objects are initialized with a handle

to the web browser through the driver variable. The class has a method named

37

goto_login() which provides an interface to the service of navigating to the login

web page by locating and clicking the login link.

After clicking the login link, the automation script in Listing 5.9 �lls in the login

page web form with a username and password, then clicks the submit button to

complete the login action. These commands can be grouped into another page object

that represents the login web page. In Listing 5.11, the LoginPage page object

provides the login_as()method to represent the service of �lling in and submitting

the login form.

Listing 5.11: The Login page object represents the services provided by the login
web page

1 from utils import populate_input

2

3 class LoginPage(object):

4

5 def __init__(self,driver,loctype):

6 self.driver = driver

7

8 def login_as(self,username,password):

9 """login a user by typing the username and password

10 into the login form, and pressing the submit button

11 """

12

13 populate_input(driver,’#username’,username)

14 populate_input(driver,’#passwd’,password)

15 self.driver.find_element_by_css_selector("[name=’Submit’]").click()

Listing 5.12 shows an updated version of the automation script which incorporates

the new page objects. The updated automation script puts more focus on the current

web page and delegates the steps to perform the actions to the page objects. The

page objects can be used in multiple automation scripts which promotes fewer lines of

repeated code, and cleaner looking, more readable automation scripts. Additionally,

all of the actions for a particular web page are centralized in the page object. When

the layout or locators for a web page change, only the page object needs to be updated,

38

provided the services of the web page don't change. This type of encapsulation is one

of the biggest advantages of the Page Object design pattern.

Listing 5.12: Revised automation script, using Page Objects to perform actions.

1 from selenium import webdriver

2 from po_login import LoginPage

3 from po_generic_logged_out import GenericLoggedOutPage

4

5 # setup automation script constants

6 base_url = "http://hubzero.org/"

7 username = "abc"

8 password = "123"

9

10 # start the browser

11 driver = webdriver.Firefox()

12 driver.get(base_url)

13

14 # navigate to the login page

15 po = GenericLoggedOutPage(driver)

16 po.goto_login()

17

18 # perform the login action

19 po = LoginPage(driver)

20 po.login_as(username,password)

5.2 BrowserMob Proxy

Web browser automation tools provide functions to perform the actions a user

would manually perform inside of a web browser. Beyond just automating the web

browser, writing programs to mimic the user experience sometimes requires additional

information about the result of a web request that is not always apparent based on

the elements available on the web page. Some of this information can be gathered by

using a web proxy in front of the browser.

The purpose of the web proxy is to monitor and manipulate interactions between

the browser and web server. Because of its position as a man-in-the-middle, the web

proxy can record information about the requests from the web browser and responses

39

by the web server. The standard format used to store this type of information is the

HTTP Archive (HAR) format [33], now in version 1.2.

The BrowserMob Proxy [31] is a web proxy that captures the interactions of the

web browser and the web server and reports it back to the user in the HAR format.

A separate project supplies Python language bindings for communicating with the

proxy server and starting new clients. The BrowserMob Proxy �ts in well with web

browsers being controlled by Selenium WebDriver.

The BrowserMob Proxy uses a single server to �eld requests for starting and

con�guring proxies. The server is started once and is responsible for managing the

proxies. Separate proxy instances, referred to as clients, are started for each browser.

Web requests are made by the browser and funneled through the proxy client to the

web server.

The BrowserMob Proxy server provides a RESTful [34] API that allows users

to programmatically control the server and proxy clients via simple HTTP requests.

Since all of the server commands are HTTP requests, they can be made using a

program like curl [35], a command line utility for transferring data with URL syntax.

The Python language bindings [36], which were developed by a third party, provide

similar functionality. Listing 5.13 demonstrates how to start the proxy and attach it

to a Selenium WebDriver controlled web browser.

40

Listing 5.13: Starting the BrowserMob Proxy server and client

1 from selenium import webdriver

2 import browsermobproxy

3

4 bmp_path = ’/usr/local/bin/browsermob-proxy’

5

6 proxy_server = browsermobproxy.Server(bmp_path,{’port’:9090})

7 proxy_server.start()

8

9 # start up a proxy client

10 proxy_client = proxy_server.create_proxy()

11

12 # block any requests to facebook

13 proxy_client.blacklist(’http(s)?://.*facebook\\.com/?.*’,200)

14

15 # launch a browser, setting the proxy, load a web page

16 browser = webdriver.Firefox(proxy=proxy_client)

17 browser.get(’https://hubzero.org’)

18

19 # get the har of the last request from the browser

20 har = proxy_client.har

21

22 # close down the proxy server and client

23 proxy_client.close()

24 proxy_server.stop()

5.3 Paramiko

Paramiko [32] is a Python based implementation of the SSH version 2 protocol for

making secure connections between machines. Using Paramiko, users can program-

matically open secure channels for access to services on remote machines including

shells and SFTP.

41

Listing 5.14: Starting a SSH and SFTP connection using the Paramiko library.

1 import paramiko

2

3 # setup the SSH client and authenticate

4 client = paramiko.SSHClient()

5 client.set_missing_host_key_policy(paramiko.AutoAddPolicy())

6 client.load_system_host_keys()

7 client.connect(

8 hostname=’hubzero.org’,

9 port=22,

10 username=’user1’,

11 password=’user1password’)

12

13 # execute a single command

14 stdin, stdout, stderr = client.exec_command(’ls’)

15

16 # invoke a new shell and execute multiple commands

17 channel = client.invoke_shell(width=1000,height=1000)

18

19 # start up an SFTP channel

20 transport = client.get_transport()

21 sftp = paramiko.SFTPClient.from_transport(transport)

42

6. HUBCHECK

6.1 What is HUBcheck?

HUBcheck is a Python based library that allows users to build and run automation

tools that involve HUBzero software. While the most obvious use of the HUBcheck

library is for testing the hub website and tool session containers, the software is

designed for the more general purposes of automating tasks that involve a web browser

or an SSH shell. In the past, the HUBcheck library has been used to enroll students

into courses on the hub, submitting support tickets, and performing hub maintenance

tasks.

The goal of the HUBcheck library is to provide interfaces that interact with

HUBzero products in the same way a user would. In essence, HUBcheck mimics

a user's experience, either on the command line, or in the web browser. Using the

HUBcheck library, automation tasks can be written at a higher level, abstracting away

many of the di�erences between the hubs hosted by the HUBzero Team, whether they

are site design di�erences or HUBzero software version di�erences.

Fig. 6.1.: The HUBcheck library builds on top of the Selenium and Paramiko libraries.

The HUBcheck library uses pseudo terminals and web browsers to perform tasks.

Pseudo terminal communication is managed by the subprocess and paramiko

modules from the Python programming language, while web browser control is routed

43

through Selenium WebDriver's Python bindings. The hubcheck package provides

web modules and shell modules to perform many of the redundant tasks required to

setup the resources needed to perform automated tasks.

6.2 HUBcheck Web Modules

Fig. 6.2.: The HUBcheck library web module can be used to launch browsers and
interact with web pages.

HUBcheck relies upon the web browser automation of Selenium WebDriver to

manage tasks being performed on hub websites. Selenium WebDriver provides an

abstract way of controlling a number of di�erent web browsers including Firefox,

Chrome, IE, Safari, and Opera. The most recent releases of HUBcheck support

instantiating a Firefox web browser using the Firefox class. Once a web browser

has been launched, users can begin to interact with web pages using HUBcheck's page

objects, which provide common functionality for pieces of web pages.

Consider the use case where an automation script needs to login to the hub website

as a user. In order to complete this task, the script must �rst launch a web browser

that can be automated. Next the script needs to tell the web browser to navigate to

the hub's login page. Once on the login page, the script has to �ll in the username and

password �elds, and press the login button. Finally, the script should check that the

login was successful. Listing 5.7 laid out a fragile way to do this with hard coded web

element locators that were embedded inside of the automation script. This made the

44

script hard to read and di�cult to update. An alternative way to solve the problem,

using the HUBcheck library, is shown in Listing 6.1.

Listing 6.1: Login to the hubzero.org website using the HUBcheck library

1 import hubcheck

2

3 username = ’user1’

4 password = ’pass1’

5

6 hc = hubcheck.Hubcheck(hostname=’hubzero.org’,

7 locators=’hubzero’,

8 browsertype=’Firefox’)

9

10 # setup a web browser

11 hc.browser.get(’https://hubzero.org’)

12

13 # login to the website

14 po = hc.catalog.load_pageobject(’LoginPage’)

15 po.goto_page()

16 po.login_as(username,password)

17

18 # check that the user is logged in

19 po = hc.catalog.load_pageobject(’GenericPage’)

20 assert po.is_logged_in() is True

Listing 6.1 contains no web element locators directly in the automation script.

Instead, it takes advantage of the page objects that are a part of the HUBcheck

library, which makes for a simpli�ed script that is easy to read and understand.

Listing 6.1 starts, on line 6, by creating a Hubcheck object. The Hubcheck object

manages both the web browser and the page objects used in the script. Next, on line

11, the script uses the Hubcheck object to launch the web browser and navigate it

to the hub's website. To get to the hub's login page, we load the LoginPage page

object on line 14 and use its goto_page() method to handle the navigation. Once

on the login page, we employ the page object's login_as() method to perform

the login service of �lling in the username and password �elds, and clicking the login

button. Lastly, the script checks that the user was properly logged in by calling the

is_logged_in() method available in all HUBcheck page objects.

45

The sections below describe the details of opening a web browser, navigating the

hub, and using the services available through HUBcheck page objects.

6.2.1 Con�guring HUBcheck

HUBcheck supports multiple versions of the HUBzero software, so it is important

that HUBcheck is con�gured properly before starting the web automation. The most

basic con�guration tells HUBcheck the type of web element locators to use and the

URL of the hub where automation will occur. These two pieces of information can

be fed into the Hubcheck object as parameters during initialization.

Listing 6.2: Con�guring a Hubcheck object

1 hc = hubcheck.Hubcheck(hostname=’hubzero.org’,

2 locators=’hubzero’,

3 browsertype=’Firefox’)

Listing 6.2 demonstrates how to create and con�gure a Hubcheck object. The

object allows developers to con�gure the hostname of the hub under automation,

the page objects that should be used during automation, and the web browser to

automate. The HUBcheck library has page objects and web element locators from 19

of the hubs managed by the HUBzero Team, as well as a few of the latest open source

releases. Popular locators to use include hubzero, for the hubzero.org website, and

osr_1_3_0, for the open source release available at the time of writing.

The Hubcheck object is a thin layer over three much more powerful objects, the

browser object, the catalog object and the utils object. The next few sections discuss

how these three objects are used while building HUBcheck based web automation

tools.

46

6.2.2 Launching a Browser With the Browser Object

HUBcheck provides classes, representing each of the supported web browsers, to

make launching a web browser simple and fast. The browser classes build upon Sele-

nium WebDriver browser objects, setting up preferences, loading browser extensions

helpful for debugging, and attaching the browser to a proxy for HTTP response in-

spection. When a Hubcheck object is created, it includes a browser object that can

be used to launch a web browser by calling the get() method.

Listing 6.3: Launching a Firefox web browser using the Hubcheck object

1 hc.browser.get(’https://hubzero.org’)

The type of browser launched is controlled by the browsertype argument of

the Hubcheck object's initialization. If no browsertype is set, the object defaults to

launching a Firefox web browser.

Behind the scenes, the Hubcheck object is calling HUBcheck's Firefox class.

The Firefox class is responsible for setting up the browser pro�le, attaching the

browser to a web proxy, and launching the browser. The same class could be called,

directly by the developer, to get a stand-alone browser object as shown in Listing 6.4.

Listing 6.4: Launching a stand-alone Firefox web browser using HUBcheck's
Firefox class

1 browser = hubcheck.browser.Firefox()

2 browser.get(’https://hubzero.org’)

6.2.3 Navigating the Hub With the Catalog Object

The HUBcheck library provides page objects that express the services available on

hub web pages. Automation developers can use these page objects to ease navigation

through the hub website, perform tasks on hub web pages, or to build new page

objects using HUBcheck's widgets.

47

The HUBcheck library's page objects are contained within Python modules. Addi-

tionally, each hub has a module de�ning which page objects work with the hub. These

modules are accessible through the hubcheck object's catalog attribute, which is

an instance of the PageObjectCatalog class. Through the catalog attribute's

load_pageobject() method, users instantiate new page objects appropriate for

the hub being automated.

Listing 6.5: Loading a HUBcheck page object for hub navigation

1 # load the LoginPage page object

2 po = hc.catalog.load_pageobject(’LoginPage’)

3 po.goto_page()

4 po.login_as(’testuser’,’pass123’)

Listing 6.5 shows an example of loading the LoginPage page object, for the login

web page, and assigning it to the variable po in line 2. The script goes on to call

the page object's goto_page() method, which is a general page object service for

navigation, and the login_as() method, which represent a service available on the

login web page. The login web page o�ers several other services like navigating to the

username remind page, navigating to the password reset page, navigating to the hub

registration page, and submitting a support ticket. All of these services are available

through methods of the LoginPage page object.

6.2.4 Performing Common Tasks With the Utils Object

Automation scripts often contain repeated bits of code that perform common tasks

like logging into a website or uploading a resource. Many times the code required to

perform these tasks is copied between scripts. For large tasks, copying code between

scripts reduces code maintainability. The HUBcheck library provides developers with

the utils object which holds functions for commonly performed tasks related to

user accounts, support tickets, and tool resource contribution.

48

Listing 6.6: Common hub tasks are made easier using the methods from the utils
object

1 import hubcheck

2

3 username = ’user1’

4 password = ’pass1’

5

6 hc = hubcheck.Hubcheck(hostname=’hubzero.org’,

7 locators=’hubzero’,

8 browsertype=’Firefox’)

9

10 # setup a web browser

11 hc.browser.get(’https://hubzero.org’)

12

13 # login to the website

14 hc.utils.account.login_as(username,password)

15

16 # check that the user is logged in

17 po = hc.catalog.load_pageobject(’GenericPage’)

18 assert po.is_logged_in() is True

Previously, Listing 6.1 demonstrated using the LoginPage page object and its

login_as() method to �ll in and submit the hub login form. Logging into a

hub website is such a frequently performed task, it was included as a part of the

utils class. In Listing 6.6, the code that used to load the LoginPage page object,

navigate to the login web page, and �ll in the login form has been replaced with a

call to hc.utils.account.login_as().

6.3 HUBcheck Shell Modules

The HUBcheck library also supports automation of shell utilities that run over

Secure SHell Version 2 (SSHv2), the protocol used to create encrypted channels to

services hosted on remote machines. The HUBcheck library allows developers to

quickly open interactive shells and sftp sessions for accessing remote hosts, including

the tool session container on the hub.

49

Fig. 6.3.: The HUBcheck library shell module can be used to SSH into systems and
interact through the command line.

6.3.1 Starting a Remote SSH Session

The hubcheck.SSHClient class can be used to start an SSH session. The class

allows for two ways to login to the remote host, either by providing a username and

password or by providing a username and key �lename, where the key �lename is a

�le, or list of �lenames, of private keys for SSH authentication.

Listing 6.7: Connecting to a remote host over SSH

1 import hubcheck

2

3 sh = hubcheck.SSHClient(host=’hubzero.org’,

4 username=’testuser’,

5 password=’pass123’)

Upon successful authentication, an SSHShell object is returned. The SSHShell

object can be used to interact with the shell in a manner similar to Expect by using

calls to send() and expect() methods. The send() method is used to run

commands over the remote channel. It accepts a single parameter, the command to

be run. The expect() method is used to retrieve output from the remote channel's

bu�er. It accepts a list of patterns and tries to match each pattern to the data in

the channel's bu�er. If it �nds a match, the matching data is stored and the method

returns the index of the pattern that matched the data. Listing 6.8 shows examples

of using the send() and expect() methods.

50

Listing 6.8: Using the Expect like interface of SSHShell

1 sh.send(’echo hi’)

2 r = sh.expect(’hi’)

3 # r == 0, the index of the matched pattern ’hi’

4

5 sh.send(’echo hi’)

6 r = sh.expect([’tie’,’hi’,’bye’,sh.TIMEOUT])

7 # r == 1, the index of the matched pattern ’hi’

8

9 sh.send(’echo hi’)

10 r = sh.expect([’cry’,sh.TIMEOUT])

11 # r == -1, no patterns matched, expect() timed out

The expect() method uses Python's regular expression module, re, and can

accept complicated regular expressions as patterns. If the pattern argument contains

a regular expression that is matched to data in the channel's bu�er, the resulting

re.match object is stored in the SSHShell object's match attribute, where the

developer can query it further for the exact text and groupings that were matched.

Listing 6.9 shows how to access matches found by the expect() method.

Listing 6.9: Using a regular expression as a pattern in the expect() method

1 # grab the prompt and escape it for use in a regular expression

2 import re

3 prompt = re.escape(sh.get_prompt())

4

5 # match any string

6 sh.send(’echo hi’)

7 sh.expect([’(.*){0}’.format(prompt)])

8 # the matching text is stored in a re.match object, available through sh.match

9 result = sh.match.groups()[0]

10 # result == ’hi\r\n’

6.3.2 Accessing a Hub's Tool Session Container Using SSH

Tool session containers on the hub can be accessed via an SSH connection, but

SSH'ing into one can be a little tricky due to the hub con�guration. All connections to

51

the hub are routed through the the hub's web server, including connections destined

for the web server and connections destined for tool session containers. For example,

on the imaginary hub named myhub.org, a developer, with elevated permissions to

login directly on the web server, would use the command shown in Listing 6.10 to

login to the hub's web server.

Listing 6.10: SSH'ing into a hub's webserver

1 ssh user@myhub.org

In order to SSH into a tool session container hosted on the hub, the developer needs

to use the hub's VirtualSSH proxy interface provided by the session command, as

shown in Listing 6.11.

Listing 6.11: SSH'ing into a hub's tool session container

1 ssh -t -X user@myhub.org session

Normal users, without the elevated permissions needed to login on the web server,

could use either command to connect to the hub, but in the case of Listing 6.10, the

request would be automatically forwarded into a tool session container.

HUBcheck provides the ToolSession class to help developers connect to tool

session containers through the hub's VirtualSSH proxy. The ToolSession class

o�ers methods analogous to commands of the VirtualSSH proxy including the ability

to start, stop, access, and list available tool session containers for a user with a

password. Table 6.1 outlines the equivalent ToolSession methods for each of the

Virtual SSH commands.

Starting a Tool Session Container With HUBcheck

VirtualSSH provides two ways to start a tool session container, using the session

create or session start subcommands. The session create subcommand initiates

the creation of a tool session container, allowing the developer to name the container

52

Table 6.1: HUBcheck's ToolSession class gives developers easy access to the hub's
Virtual SSH Commands.

ssh [�ags] [user@]hostname [command] ts = ToolSession(
host,port,username,password)

Virtual SSH Commands ToolSession Object Methods

session create [session_title] create(title=None)

session start start()

session [session_number] [command] access(snum=None,command=None)

session list list()

session stop session_number stop(session_number)

session help help()

53

by setting the session_title parameter. After calling the session create sub-

command, the user is returned to their local shell with a session number they can

connect to. Similarly, the session start subcommand also initiates the creation of a

tool session container, but goes the extra step of placing the user into the container

where they can run shell commands on the remote host.

Listing 6.12: Starting a hub tool session container using VirtualSSH

1 ssh user@myhub.org session create

2 # 40023, a session number is returned to the user

3

4 ssh user@myhub.org session create mytitle

5 # 40023, a session number is returned to the user

6

7 ssh user@myhub.org session start

8 # user is placed into the tool session container

HUBcheck's ToolSession class provides access to these subcommands through

the create() and start() methods. Just like VirtualSSH's session create sub-

command, the create() method accepts an optional session title, but it returns

three Paramiko ChannelFile objects that can be treated like Python �le objects.

One of the ChannelFile objects, stdout, holds the session number of the newly

created session. The ToolSession class's start() method accepts no arguments

and returns a ToolSessionShell object, which is derived from the SSHShell

class introduced in Section 6.3.1. Listing 6.13 shows how to create and start tool

session containers using HUBcheck's ToolSession class.

54

Listing 6.13: Starting a hub tool session container using the ToolSession class

1 import hubcheck

2

3 ts = hubcheck.ToolSession(hostname,

4 username = username,

5 password = password)

6

7 (stdin,stdout,stderr) = ts.create()

8 # stdout.read() provides the session number

9

10 (stdin,stdout,stderr) = ts.create(’mytitle’)

11 # stdout.read() provides the session number

12

13 shell = ts.start()

14 # shell is a ToolSessionShell, a type of SSHShell

Accessing a Tool Session Container With HUBcheck

The default behavior of VirtualSSH's session command is to place the user into a

tool session container. If the developer has multiple tool session containers running,

they can choose which one to enter by providing the session command with an in-

teger argument representing the session number, a unique integer identi�er for a tool

session container. The session command also accepts an optional command argu-

ment. When the command argument is provided, session will execute the command

in the tool session container and return the user to the local shell along with the

stdout and stderr streams from the command. Listing 6.14 shows how VirtualSSH's

session command can be used to get into a tool session container with no arguments,

with a session number, and with a command.

55

Listing 6.14: Accessing a hub tool session container using VirtualSSH

1 ssh user@myhub.org session

2 # user is placed into an open tool session container

3

4 ssh user@myhub.org session 40023

5 # user is placed into tool session container with session number 40023

6

7 ssh user@myhub.org session "echo hi"

8 # the command "echo hi" is run in a tool session container.

9 # "hi" is returned to stdout, user is returned to local shell

10

11 ssh user@myhub.org session 40023 "echo hi"

12 # the command "echo hi" is run in the tool

13 # session container with session number 40023

14 # "hi" is returned to stdout, user is returned to local shell

The ToolSession class provides tool session container access through the access()

method. The access() method accepts two parameters, representing the session

number and the command to run in the tool session container, just like VirtualSSH's

session command. Example use of the access() method is shown in Listing 6.15.

56

Listing 6.15: Accessing a hub tool session container using the ToolSession class

1 shell = ts.access()

2 # places user into a tool session container and returns

3 # a ToolSessionShell object to control the container.

4

5 shell = ts.access(session_number=40023)

6 # places user into tool session container with

7 # session number 40023, and returns a ToolSessionShell

8 # object to control the container.

9

10 (stdin,stdout,stderr) = ts.access(command=’echo hi’)

11 # runs the command ’echo hi’ in a tool session container

12 # returns stdin, stdout, and stderr to the user.

13

14 (stdin,stdout,stderr) = ts.access(40023,’echo hi’)

15 # runs the command ’echo hi’ in tool session container

16 # with session number 40023. returns stdin, stdout, and

17 # stderr to the user.

Listing Available Tool Session Containers With HUBcheck

VirtualSSH's session list subcommand can be used to get a list of available tool

session containers for a user. For each open tool session container, the command

returns the session number, session name, and session title. The session name is the

name of the tool that started the session. This is usually a workspace, but could

be any of the installed tools on the hub since they all run in tool session containers.

The session list subcommand also denotes the default tool session container for SSH

connections by using a * in the output column named Default. Listing 6.16 shows

example output from VirtualSSH's session list subcommand.

57

Listing 6.16: Listing available hub tool session containers using VirtualSSH

1 ssh user@myhub.org session list

2 # Number Default Name Title

3 # 8374 * workspace_r1 Workspace (6:57 pm)

4 # 8584 workspace_r1 Workspace

5 # Connection to myhub.org closed.

6 # user is placed back in their local shell

This same information can be retrieved programmatically by using the list()

method in the ToolSession class. Similar to running a command in a tool session

container, the list() method returns its output as a 3-tuple whose elements rep-

resent the stdin, stdout, and stderr channels as Python �le-like objects. Listing 6.17

shows an example of using the ToolSession class's list() method.

Listing 6.17: Listing available hub tool session containers using the ToolSession
class

1 (stdin,stdout,stderr) = ts.list()

2 # returns the list of open sessions to the stdout variable

3

4 stdout.read()

5 # Number Default Name Title

6 # 8374 * workspace_r1 Workspace (6:57 pm)

7 # 8584 workspace_r1 Workspace

To make accessing the information easier, the ToolSession class also provides

the get_open_session_detail() method, which returns the same information

as an iterable Python dictionary, with row numbers as keys and row data as values.

58

Listing 6.18: Iterating through tool session container details

1 import pprint

2

3 details = ts.get_open_session_detail()

4 # returns a dictionary of open session data

5

6 pprint.pprint(details)

7 #{0: {’default’: True,

8 # ’name’: ’workspace_r1’,

9 # ’session_number’: ’8374’,

10 # ’title’: ’Workspace (6:57 pm)’},

11 # 1: {’default’: False,

12 # ’name’: ’workspace_r1’,

13 # ’session_number’: ’8584’,

14 # ’title’: ’Workspace’}}

15

16 for row in details.values():

17 if row[’session_number’] == ’8584’:

18 title = row[’title’]

19

20 print title

21 # Workspace

Stopping Tool Session Containers With HUBcheck

VirtualSSH allows users to stop a tool session container using the session stop

subcommand. The command accepts an integer argument that speci�es the session

number that should be stopped.

Listing 6.19: Stopping a hub tool session container using VirtualSSH

1 ssh user@myhub.org session stop 40023

2 # stopping session 40023

3 # Connection to myhub.org closed.

4 # user is placed back in their local shell

59

To stop tool session containers using the ToolSession class, use the stop()

method. The stop() method accepts a single parameter, an integer session number

specifying the tool session container to stop.

Listing 6.20: Stopping a hub tool session containers using the ToolSession class

1 (stdin,stdout,stderr) = ts.stop(40023)

6.3.3 Managing Tool Session Containers

When writing automated scripts and tests, keeping track of all of the tool session

containers being opened and closed can be a hassle. HUBcheck tries address this by

o�ering the ContainerManager class, which promotes the e�cient reuse of tool

session containers when possible. The ContainerManager class is a singleton that can

be used to create, access, and stop tool session containers for multiple users.

Consider the case where several test cases need access to a tool session container to

perform a test. The simple solution would be to have each test case start, access, and

stop a new tool session container to perform its test. This approach provides isolation

between each test, helping ensure another resource doesn't accidentally close the tool

session container while a test case is using it. It is, however, terribly ine�cient.

Starting up a tool session container takes a few seconds and using it for a single, non-

destructive test would be wasteful. Often, an execution of HUBcheck runs hundreds

of tests, the majority of which only query resources in the tool session container,

leaving it in good condition for further use. The approach taken by many HUBcheck

based tools is to reuse tool session containers whenever possible.

The ContainerManager class helps implement a tool session container reuse ap-

proach. Accessing tool session containers is similar to using the ToolSession class

directly, but removes most of the rarely used features. The ContainerManager

class provides an access() method developers can use to enter a tool session con-

tainer. The access() method takes three parameters, the hostname of the hub

60

hosting the tool session container, the username and the password of the user open-

ing the tool session container. Given this information, the ContainerManager

class looks in its internal dictionary to see if it already has a tool session container

open for the hostname and username combination. If it does, a new shell for that

container is opened and returned to the user as a ToolSessionShell object. If

not, a new tool session container is created and a ToolSessionShell object is

returned.

Listing 6.21: Accessing a tool session container using the ContainerManager class

1 import hubcheck

2

3 cm = hubcheck.ContainerManager()

4

5 ws1 = cm.access(hostname,username,password)

6 # ws1 is a ToolSessionShell object

7

8 session_number1 = ws1.execute(’echo $SESSION’)

9 # ’40023’

The ContainerManager can track multiple open tool session containers, by

multiple users, on multiple hubs. Calling the access() method a second, or a

third, time with the same hostname and username results in additional shells being

opened in the same tool session container.

Listing 6.22: Multiple accesses to a tool session container using the Container-
Manager class

1 ws2 = cm.access(hostname,username,password)

2 # ws2 is another ToolSessionShell object

3

4 session_number2 = ws2.execute(’echo $SESSION’)

5 # ’40023’

Calling the access() method with a di�erent hostname or username results in

a new tool session container being created.

61

Listing 6.23: ContainerManager can handle multiple users' tool session containers

1 ws3 = cm.access(hostname,username2,password2)

2 # ws3 is another ToolSessionShell object

3

4 session_number3 = ws3.execute(’echo $SESSION’)

5 # ’40024’

In many HUBcheck based tools, there is little advantage to closing a tool ses-

sion container before the program ends, but for the times when this is needed, the

ContainerManager class provides the stop() and stop_all() methods. The

stop() method uses its parameters, a hostname, username, and session number,

to determine which tool session container to stop. The stop_all() method loops

through all tool session containers managed by the ContainerMananger object

and stops them.

Listing 6.24: Stopping a tool session container using the ContainerManager class

1 cm.stop(hostname,username,session_number)

2 # stop username’s tool session container on host hostname

3 # with session number session_number

4

5 cm.stop_all()

6 # stop all tool session containers managed by the cm object.

6.3.4 Interacting With the Tool Session Container

A ToolSessionShell object is returned for many of the methods that ac-

cess a tool session container. The ToolSessionShell class is derived from the

SSHShell class and provides the send() and expect() methods described in

Section 6.3.1. It also provides the SSHShell's execute() method, which com-

bines both the send() and expect() methods into one function call that checks

the exit status of the executed command. If a command returns a non-zero exit

status, an ExitCodeError exception is raised, and command execution stops. In

62

this respect, the execute() method acts like a shell with the -e �ag set, where a

script will exit immediately upon error. A successful call to the execute() method

returns the output of the command and the exit status of executing the command.

Listing 6.25: Interacting with the tool session container using the ToolSessionShell
class

1 import hubcheck

2

3 cm = hubcheck.ContainerManager()

4

5 ws = cm.access(hostname,username,password)

6 # ws is a ToolSessionShell object

7

8 out,es = ws.execute(’echo hi’)

9

10 print out

11 # ’hi’

The ToolSessionShell class provides features speci�c to working in the shell

of a tool session container. It provides the importfile() method to transfer �les

from the user's desktop into the tool session container, the exportfile() method

to transfer �les from the tool session container to the user's desktop, and a few

functions to simplify parsing tool session container resource �les.

6.3.5 Transferring Files Between The User Desktop and the Hub

The hub supports three methods of transporting �les between the user desktop

and the user's hub account, including webDAV, filexfer, and sftp. HUBcheck

provides ways to use filexfer and sftp, while the Python module webdavlib

[37] provides a reliable client-side interface for the webDAV [38] protocol.

The hub's filexfer protocol consists of two commands, import�le and ex-

port�le. Filexfer transfers start on the command line of a tool session container's

X terminal, by issuing the the import�le command to transfer �les from the user's

desktop into their hub account, or the export�le command to transfer �les from

63

the user's hub account into their desktop. The filexfer commands use the tool

session container's clientaction program to initiate a popup window in the user's

web browser. When importing a �le, the user populates the popup window with the

text or �lename they would like transferred into their hub account. After submitting

the form in the popup window, the data is then saved in the hub account. When

exporting a �le, the popup window contains the data of the �le from the user's hub

account.

To implement simple �le transfers, the ToolSessionShell class provides the

importfile() and exportfile() methods. Both methods take two arguments

representing a local �lename from inside of the workspace and a remote �lename

from the user's desktop. The direction of transfer is determined by the method

being called. Under the hood, these two functions approximate the actions being

performed by the hub's filexfer commands, by using the sftp protocol to transfer

the �les. It is possible to use HUBcheck's web module in coordination with the

ToolSessionShell class to more closely imitate what users would really do on

the hub, but the goal of the implementation is to transfer �les and, on the command

line, using sftp is more e�cient.

64

Listing 6.26: Transferring �les using ToolSessionShell's import�le and export�le
methods

1 import hubcheck

2

3 cm = hubcheck.ContainerManager()

4

5 ws = cm.access(hostname,username,password)

6 # ws is a ToolSessionShell object

7

8 # importing a file from the desktop to the hub account

9 ws.importfile(’desktop_file.txt’, ’hub_file.txt’)

10

11 # importing data from the desktop to a file in the hub account

12 file_data = ’transferring is easy’

13 fsize = ws.importfile(file_data, ’hub_file.txt’, is_data=True)

14 assert fsize == len(file_data)

15

16 # exporting a file from the hub account to the desktop

17 ws.exportfile(’hub_file.txt’, ’desktop_file.txt’)

For more control over how �les are transferred, the HUBcheck library also provides

access to Paramiko's SFTPClient class. HUBcheck's SFTPClient class is a small

wrapper class around the Paramiko SFTPClient class, which can be used to access

a user's hub account through the sftp protocol. With this method, users have full

access to sftp functions like get, put, remove, chmod, open, chdir, and more.

65

Listing 6.27: Transferring �les using the SFTPClient class

1 import hubcheck

2

3 sftp = hubcheck.SFTPClient(hostname,username=username,password=password)

4 # sftp is a Paramiko SFTPClient object

5

6 # transfer file from the hub account to the desktop

7 sftp.get(’hub_file.txt’,’desktop_file.txt’)

8

9 # transfer file from the desktop to the hub account

10 sftp.put(’desktop_file.txt’,’hub_file.txt’)

11

12 # close the sftp connection

13 sftp.close()

6.4 Building Applications Backed by the HUBcheck Library

Fig. 6.4.: Command line utilities can be built on top of the HUBcheck library by
using the hubcheck.Tool class.

The HUBcheck library includes several programs that build upon the web and

shell modules. While each program has a di�erent goal, there are features common

to all of them, like con�guration options and environment setup, that are tedious to

write for one program and ine�cient to copy for multiple programs. For this reason,

HUBcheck includes the hubcheck.Tool class, which can be subclassed to get a

common set of command line and con�guration �le options with an intuitive parser,

automatic logging setup, a virtual display for running web browser based automation,

66

and a web proxy to help monitor, block and analyze communications between a web

browser and a web site.

Below, we explore the features of hubcheck.Tool based programs by building

an example tool that performs a user login through the hub's web and SSH interfaces.

6.4.1 Building a Tool

hubcheck.Tool is a base class for command line tools that use the HUBcheck

library. The class provides many of the boilerplate features that are repeated in

HUBcheck based programs. By subclassing hubcheck.Tool, users can quickly

create a feature rich command line tool for automating web and shell access on the

hub.

Listing 6.28: HUBcheck based tools follow this general template

1 import hubcheck

2

3 class LoginTool(hubcheck.Tool):

4 def __init__(self,logfile=’hcutils.log’,loglevel=’INFO’):

5 super(LoginTool,self).__init__(logfile,loglevel)

6 # introduce new command line and configuration options

7

8 # parse command line / config file options, start logging

9 self.parse_options()

10 self.start_logging()

11

12 def command(self):

13 # add code that does the work

14

15 if __name__==’__main__’:

16 tool = LoginTool()

17 tool.run()

There are three steps to creating a new HUBcheck based tool:

1. Subclass hubcheck.Tool to create a new tool class.

2. Populate the tool's __init__() and command() methods.

67

3. Call the run() method of an instance of the tool's class.

Listing 6.28 shows the general template for HUBcheck based tools. The template

starts by subclassing hubcheck.Tool into a class named LoginTool, the name

of the tool we are creating. hubcheck.Tool's __init__() method takes care of

setting up command line and con�guration �le option parsing, so it is important that

it is called early in the object creation process. In Listing 6.28, this happens in line

5. hubcheck.Tool's __init__() method sets up �ve variables that can be used

by the LoginTool class:

1. self.command_parser

2. self.config_parser

3. self.options

4. self.logger

5. self.testdata

The �rst two, self.command_parser and self.config_parser, are parsers

for options set on the command line or in an INI-style con�guration �le. You can

manipulate these variables inside of __init__(), using their add_argument()

and add_option() methods respectively, to add new options that the parsers will

recognize.

68

Listing 6.29: Use the add_argument() method to de�ne new command line
�ags for the tool

1 def __init__(self,logfile=’hcutils.log’,loglevel=’INFO’):

2 ...

3 # introduce new command line and configuration options

4 self.command_parser.add_argument(

5 ’--video-filename’,

6 help=’name of the video file’,

7 action="store",

8 dest="videofn",

9 default=’password_change.mp4’,

10 type=str)

11 ...

The hubcheck.Tool class includes functionality to record the virtual display

where the web browser window is running, but does not expose the ability to name

the �le that the recording is saved to. Adding a --video-filename �ag to a tool

allows the user to specify the name of the �le where video recordings should be saved.

Listing 6.29 shows an example of adding the new --video-filename �ag to the

command line parser. With the new �ag in place, the program can be invoked as

shown in Listing 6.30.

Listing 6.30: Invoking a HUBcheck based tool with a new command line option

1 ./logintool --config hub.conf --video-filename myvideo.mp4 testuser2

The self.parse_options() method is called to perform the command line

and con�guration �le option parsing. It resolves con�icts and stores the collected op-

tions in the variable named self.options. In Listing 6.29, line 8 de�nes the value

obtained from the --video-filename command line argument to be stored in

the variable self.options.videofn. Before exiting initialization, __init__()

starts a logger, another bene�t of subclassing the hubcheck.Tool class. From within

the tool, the logger is accessible through the self.logger variable.

The command() method is responsible for performing the main tasks of the

program. The method is called indirectly when the object's run() method is exe-

69

cuted. In the template shown in Listing 6.28, this is done at the end of the script

on line 17. The run() method takes care of much of the setup and teardown of the

environment from which the automation takes place. It is responsible for loading

the HUBcheck con�guration data, setting up directories for browser screenshots and

videos, starting a virtual display for the browser to run in, and launching a web proxy

for the web browser. The run() method prepares the environment so the tasks in

the command() method can launch a browser with minimal additional system con-

�guration. After setting up the environment, run() calls the tool's command()

method.

A HUBcheck tool's command() method holds the objectives of the tool. Gener-

ally, the command() method starts by evaluating the command line and con�gura-

tion �le options, setting local variables based on the parsed options.

Listing 6.31: The command() method of a HUBcheck based tool

1 def command(self):

2 # set variables based on parsed options

3 username = self.options.remainder[0]

4 videofn = self.options.videofn

5

6 # retrieve account information

7 userpass = self.testdata.find_account_password(username)

8

9 # grab hub configuration from the testdata file

10 locators = self.testdata.get_locators()

11 hostname = self.testdata.find_url_for(’https’)

12 url = "https://%s" % (hostname)

13

14 # create a hubcheck object

15 hc = hubcheck.Hubcheck(hostname=hostname,locators=locators)

16

17 # initialize recording

18 self.start_recording_xvfb(videofn)

19 ...

In the command() method for our example logintool program, shown in List-

ing 6.31, lines 9 - 11 introduce the use of the self.testdata variable, which is

70

setup by the hubcheck.Tool class. self.testdata is an instance of HUBcheck's

TestData class, which provides helper methods for querying information from a

HUBcheck con�guration �le. self.testdata gives developers access to informa-

tion about which HUBcheck web element locators, test user account information, and

hub URLs to use. With hub speci�c information acquired, the program creates a

HUBcheck browser object in line 15 and starts recording the virtual display in line

18.

The next step is to login to the hub through the web interface. Listing 6.32 uses

the hc object's browser and utils attributes to open a web browser, login to the

web site, logout of the web site, and close the browser.

Listing 6.32: Login through the web interface

1 def command(self):

2 ...

3 # start up a selenium webdriver based browser

4 hc.browser.get(url)

5

6 # login to the hub using the web interface

7 hc.utils.account.login_as(username,userpass)

8

9 # navigate to the dashboard and logout

10 hc.utils.account.logout()

11

12 # close the browser and cleanup

13 hc.browser.close()

14 self.stop_recording_xvfb()

15 ...

Similarly, Listing 6.33 uses a ToolSession object to login to a tool session container

through the SSH interface.

71

Listing 6.33: Login through the Virtual SSH interface

1 def command(self):

2 ...

3 # login to the hub using the Virtual SSH interface

4 ts = hubcheck.ToolSession(

5 hc.hostname, username=username, password=userpass)

6

7 # SSH into a tool container and run the ’echo hi’ command

8 stdin,stdout,stderr = ts.access(command=’echo hi’)

9

10 # check stdout for the output of the command, ’hi’

11 output = stdout.read(1024)

12 assert output == ’hi\n’, \

13 "error ssh’ing into tool container: %s" % (output)

After the command() method exits, control is returned to the run() method,

which stops the web proxy, shuts down the virtual display, and performs cleanup

actions in the environment.

6.4.2 Example Tools

The command() method for the logintool program is pretty elementary, but any

task can be substituted in. Nearly all of the tools in the HUBcheck library use this

subclassing and command() method design pattern as a foundation for the tool's

operation. Listed below are a few tools built upon the HUBcheck library.

Nightly Rappture Builds

The Rappture Toolkit [39] is a library that helps people build and deploy simula-

tion tools with graphical user interfaces. The library includes a set of Tcl/Tk based

graphical user interface widgets and language bindings for communicating with the

GUI in C/C++, Fortran, Ruby, Matlab/Octave, Java, Perl, and Python. One part

of Rappture testing includes building and exercising the library inside of a hub tool

session container. To perform these actions, the HUBcheck library is used to get into

72

a hub's tool session container, build the Rappture Toolkit, and run a number of test

suites on the build. This is the job of the HUBcheck Nightly Rappture Build script,

hcnrb. Once completed, the nightly builds are transferred to the rappture.org

website where users can download precompiled or source versions of the library on a

nightly basis.

Test User Tools

HUBcheck relies on a number of test user accounts setup with di�erent con�g-

urations. Currently, these test accounts are managed in the same way regular user

accounts are managed, through the hub's website interface. To help manage these ac-

counts' properties, a number of HUBcheck based programs have been written includ-

ing an account registration tool, password updating tool, and a pro�le management

tool.

register_account is a program built to �ll out the account registration web page.

It is generally used shortly after a new hub installation, to register HUBcheck's test

user accounts. Account registration is a two step process and the register_account

program can be applied to the �rst step, �lling out the new account registration form.

Most hub registration forms incorporate a CAPTCHA to keep robots from registering

accounts. register_account does not attempt to interpret the CAPTCHA. Instead,

it leaves time for a human to solve the CAPTCHA. After �lling out the new account

registration form, the hub sends a con�rmation email to the user, and the user re-

sponds by clicking the link in the email. This feature is not available in the current

version of the register_account program, but could show up in a future version.

The register_account script uses the HUBcheck library's page objects to manage

web page navigation and to populate the account registration web form.

After test accounts have been created, the focus shifts to maintaining the ac-

counts. Account maintenance is important in helping reduce the number of false

positives when running tests and to ensure programs can gain the access they need

73

to accomplish their automated tasks. One of the essential tasks for managing test

accounts is to keep them secure, which includes frequently changing their passwords.

The hub provides a web form for users to change their passwords and HUBcheck has

a page object to automate its use. The hcpwc program uses the HUBcheck library's

page objects to help automate the generation and updating of test account passwords

on the hub.

Managing the user pro�le is an account maintenance task that needs to be per-

formed at least once in the life of the account. The hub user pro�le holds information

that is usually collected for the purposes of identifying types of users to the hub's

funding agencies, e.g. the National Science Foundation. Sometimes this information

is collected during the account registration process. Including the information on the

new account registration form could deter people from signing up. As a result the in-

formation could be requested later, when a user wants to use what may be considered

a premium service on the hub. When testing hub components, having account pro�le

update requests popup unpredictably on a web page may contribute to having false

positives in test results. A solution to this problem is to fully populate the user pro�le

for all test accounts just after registering the accounts. This is what the hcuserpro-

�le program does. The components of the hub user pro�le are a con�gurable, yet

�nite set. hcuserpro�le uses HUBcheck's page objects to navigate to the user pro�le

web page and query the page for a hard coded list of components that are typically

included in hub user pro�les. When a component is found, hcuserpro�le attempts

to provide a reasonable response for the component.

Test Runner

One of the original motivations for writing HUBcheck was to test the hub. While

HUBcheck has become more than just testing, the test runner is still one of the most

heavily used tools in the library. HUBcheck's test runner tool, hctestrunner, is a

wrapper around pytest, a mature full-featured Python testing library. hctestrunner

74

uses the hubcheck.Tool class to manage the environment in which test cases are

run. The program can be executed from the command line and requires a HUBcheck

con�guration �le to work.

Listing 6.34: hctestrunner accepts hubcheck.Tool �ags and pytest �ags

1 hctestrunner --config ./hubzero.conf -m nightly --collect-only

The hctestrunner program accepts the normal set of command line �ags inher-

ited from the hubcheck.Tool class, and also accepts command line �ags for pytest.

Listing 6.34 shows how to retrieve a list of tests that are marked with the tag �nightly�

and would run on hubzero.org. To accomplish this, we provide the hubzero.conf

con�guration �le through hubcheck.Tool's --config �ag, specify the nightly

mark through pytest's -m �ag, and ask pytest to only collect tests (not run them)

with the --collect-only �ag. hctestrunner parses all of the �ags, but passes

any �ags it does not recognize on to pytest. After setting up the web proxy, virtual

display and evaluating command line and con�guration options, hctestrunner calls

on pytest to manage searching for and running test cases.

6.5 Writing Tests Using the HUBcheck Library

Fig. 6.5.: One of HUBcheck's most used features is its test runner and its ability to
be embedded within tests.

HUBcheck provides the hctestrunner tool to manage the collection and execution

of test cases. Under the hood, hctestrunner depends on pytest, a �exible Python

75

based test case management library that can handle test cases written in a number

of formats including unittest [40], nose [41], and doctest [42]. Section 6.4

explored writing programs using the HUBcheck library, and while test cases can also

be written in the same way, this approach can lead to an excess of code and resource

repetition between test cases. In the following sections, we describe ways to write

robust, easy to understand test cases using the HUBcheck library.

6.5.1 Test Fixtures

One of the strengths of the pytest library is its �exibility. Many test case man-

agement libraries include a feature often referred to as a test �xture [43]. Test �xtures

are functions, or bits of code, that place the software under test in a �xed state as a

baseline for running tests.

Traditionally, x-unit [44] based testing libraries have provided two types of �xtures:

setup �xtures run before a test case, and teardown �xtures run after the test case.

pytest provides a number of di�erent �xture options which can call upon each other

or be reused within the class, module, or project scopes.

6.5.2 The TestCase2 Class

HUBcheck provides the TestCase2 class whose purpose is similar to that of the

Tool class mentioned in Section 6.4.1. The TestCase2 class provides much of the

environment setup and teardown code needed to run a test and document its behavior

in a more detailed manner than just pass or fail. The TestCase2 class is responsible

for setting up the �lename for browser screenshots, recording individual test cases to

separate video �les, setting up test case testdata in local variables, and managing the

page object catalog. The class also initializes a local web browser object for each test

case. The TestCase2 class provides each test case with the following local variables:

1. self.browser

76

2. self.catalog

3. self.utils

4. self.testdata

5. self.locators

6. self.https_uri

7. self.https_authority

8. self.http_authority

TestCase2 hooks into pytest's setup_method() and teardown_method()

test �xtures to provide features similar to that of HUBcheck based tools.

6.5.3 Building a Test Case

Consider rewriting the hub website login example, from Listing 6.6, as a test case.

Listing 6.35 demonstrates how to setup a TestCase2 based test case. Just like

the Tool class, to use the TestCase2 class the user �rst subclasses it. All classes

derived from TestCase2 have setup_method() and teardown_method() �x-

tures, even if it is not explicitly stated in the derived class as is the case for the

TestHubLogin class from Listing 6.35. These two �xtures allow TestCase2

to perform its variable, browser, page object catalog, and utility setup before the

test case is run, and teardown after the test case has completed. In accordance

with pytest's test case naming conventions, all methods of the derived class with

names pre�xed by test_ are considered test cases. In Listing 6.35, this includes the

test_website_login() method. The test case performs four tasks. First, it

grabs a username and password from the testdata �le in line 4. Next, it navigates

the web browser to the hub's homepage in line 8. In Line 10, it submits a populated

hub login form. Lastly, in line 14, it checks that the login was successful.

77

Listing 6.35: Hub website login using HUBcheck's TestCase2 class

1 class TestHubLogin(hubcheck.TestCase2):

2 def test_website_login(self):

3 """ try to login to the hub website """

4 self.username,self.userpass = \

5 self.testdata.find_account_for(’registeredworkspace’)

6

7 # setup a web browser

8 self.browser.get(self.https_authority)

9

10 self.utils.account.login_as(self.username,self.userpass)

11

12 # verify you have successfully logged in

13 po = self.catalog.load_pageobject(’GenericPage’)

14 assert po.header.is_logged_in(),’Login Failed’

It is interesting to note how clean and easy to read the test_website_login()

test case is when compared to the login script in Listing 6.1 or even the original

login script in Listing 5.7. Part of the test case's simplicity is due to its use of the

TestCase2 class, which wraps up most of the standard code needed to setup and

teardown the web browser, browser recording, testdata, page object catalog, and

utilities. Test cases that are easy to read are often easy to understand and maintain.

The TestCase2 class helps keep test cases short and to the point.

Adding more test cases to the TestHubLogin class is also easy and helps demon-

strate the power of pytest's �xtures. A complementary test to logging into the web-

site is logging out. As you might have suspected, there is a bit of code overlap between

the login and logout tests. For example, in order to test login and logout, both tests

need to login. This common code can be placed in the setup_method() �xture. In

Listing 6.36, the code to retrieve the test user credentials, navigate the browser to the

hub's homepage, and login has been abstracted out of the test_website_login()

test case, and placed in the TestHubLogin class's setup_method() �xture. This

�xture and TestCase2's setup_method() �xture don't collide as they would in a

normal inheritance situation. Instead, through the magic of metaclasses, TestCase2

78

recognizes the existence of TestHubLogin's setup_method() method, and em-

beds the method inside of its setup_method() �xture. By the time TestHubLogin's

setup_method() is called, TestCase2 has already completed setting up the

environment and variables for the test case. This same embedding happens with

TestHubLogin's teardown_method(), but in reverse. TestCase2 recognizes

TestHubLogin's teardown_method() method, calls the method, and then pro-

ceeds to calling its own teardown_method() �xture.

Listing 6.36: Using pytest �xtures while subclassing the TestCase2 class

1 class TestHubLogin(hubcheck.TestCase2):

2 def setup_method(self,method):

3 self.username,self.userpass = \

4 self.testdata.find_account_for(’registeredworkspace’)

5

6 # setup a web browser

7 self.browser.get(self.https_authority)

8

9 # login to the hub website

10 self.utils.account.login_as(self.username,self.userpass)

With the setup_method() �xture in place, the new test_website_login()

test case is even more compact and to the point. After the setup_method() �xture

runs and logs the user into the hub website, the test_website_login() test case

just checks to see if the user has successfully logged in. Listing 6.37 shows the new

test_website_login() test case.

Listing 6.37: New website login test case, using the setup_method() �xture

1 class TestHubLogin(hubcheck.TestCase2):

2 ...

3 def test_website_login(self):

4 """ try to login to the hub website """

5 # verify you have successfully logged in

6 po = self.catalog.load_pageobject(’GenericPage’)

7 assert po.header.is_logged_in(),’Login Failed’

79

Similarly, the new test_website_logout() test case, in Listing 6.38, veri�es

that the login was successful, then attempts to logout of the website. Finally, it checks

that logging out of the website was successful.

Listing 6.38: New website logout test case, using the setup_method() �xture

1 class TestHubLogin(hubcheck.TestCase2):

2 ...

3 def test_website_logout(self):

4 """ try to logout of the hub website """

5 # verify you have successfully logged in

6 po = self.catalog.load_pageobject(’GenericPage’)

7 assert po.header.is_logged_in(),’Login Failed’

8

9 # logout of the website

10 po.header.goto_logout()

11 assert not po.header.is_logged_in(),’Logout Failed’

Writing test cases using the HUBcheck library is an extension of writing programs

that use the library. Many features are analogous, including setting up the environ-

ment, starting the web browser, starting a web proxy, setting up a recordable virtual

framebu�er, and loading testdata. Much of the boilerplate code for setup and tear-

down is taken care of by the hctestrunner tool and the TestCase2 class. When

used together, developers are able to quickly write easy to read, robust test cases.

6.5.4 HUBcheck's Test Suites

Test cases can be grouped into test suites by using a feature from pytest called

marks. pytest marks are a way of tagging or marking tests. pytest provides an easy

way to collect all tests with a speci�c mark or a logical combination of marks using

the -m �ag. Tests that come with the HUBcheck library are tagged with at least one

of several popular marks that denote when the test should be run including nightly,

weekly, upgrade, prod_safe_upgrade, reboot, and hcunit.

80

7. BUILDING PAGE OBJECTS FOR HUBCHECK

The Page Object design pattern is the cornerstone in creating compact easy to read

automation scripts, and it is key in combating brittle test cases. The pattern uses

object methods to represent the services o�ered on a web page. By doing this, the

pattern encourages automation developers to move the low level details of how a task

is completed out of automation scripts and into libraries. This leaves the automation

script with abstract generalizations of what should happen and calls to the library

that make those generalizations happen.

In this chapter, we brie�y review why the Page Object design pattern is important,

dive into how to use HUBcheck's page objects, and learn how to build new page

objects that work with the HUBcheck library. We'll also investigate three new design

patterns that are helpful when building page objects for HUBcheck.

7.1 Review of the Page Object Design Pattern

Listing 7.1: Login automation script for hubzero.org

1 from selenium import webdriver

2

3 # start the browser and navigate to the login page

4 browser = webdriver.Firefox()

5 browser.get(’https://hubzero.org/login’)

6

7 # perform the login action

8 browser.find_element_by_css_selector("#username").clear()

9 browser.find_element_by_css_selector("#username").send_keys("testuser")

10 browser.find_element_by_css_selector("#passwd").clear()

11 browser.find_element_by_css_selector("#passwd").send_keys("abc123")

12 browser.find_element_by_css_selector("[name=’Submit’]").click()

81

In Section 5.1.6, we �rst introduced an automation script that performed a user

login on a hub, noting a few undesirable patterns within the script. First we identi�ed

repetition in searching for the username and password �elds. Second we noted the

pattern of clearing the �eld before sending data to it. While it isn't always necessary

to clear an input before sending data to it, this tends to be good practice that helps

remove previously set values from �elds. One pattern we didn't note has to do with

the login action on a larger scale. The action as a whole takes about �ve lines of

code to populate the username �eld, populate the password �eld, and click the login

button. The problem arises when the login service is used in multiple scripts. Writing

these �ve lines of code over and over is costly and is prone to variation. Furthermore,

it adds to the brittleness of all of the automation scripts.

Consider the case where the developer would like to use a set of automation scripts,

with these �ve lines of login code, on another hub website, like nanohub.org. The

developer may �nd that while the scripts worked on hubzero.org, things are a little

di�erent on nanohub.org. In particular, the element locators for the password input

�eld and login button on hubzero.org don't match the ones on nanohub.org. On

hubzero.org, the password input �eld is identi�ed by the css selector #passwd, while

on nanohub.org, the same �eld is identi�ed by the css selector #password. Similarly,

on hubzero the login button is identi�ed by the css selector [name=‘Submit’],

while on nanohub.org it is identi�ed by the css selector #login-submit.

With every new hub the automation script is taken to, there is the opportunity

for either of the previous element locator sets to be used, or even a new set. Keeping

separate automation scripts for each hub is a good way to encourage divergence of

the source. Instead the script should be written in a way where the di�erences are

abstracted away. This is one of the goals of the Page Object design pattern.

82

(a) hubzero.org login form. (b) nanohub.org login form.

Fig. 7.1.: The variation in locators used on the hub login page causes an additional
level of complexity when trying to develop automation scripts generic enough to work
across the hubs managed by the HUBzero team.

Listing 7.2: Page object for the hub /login page

1 # pageobjects.py

2 locdict = {

3 ’hubzero’ : {

4 ’username’ : ’#username’,

5 ’password’ : ’#passwd’,

6 ’login_b’ : "[name=’Submit’]"

7 },

8 ’nanohub’ : {

9 ’username’ : ’#username’,

10 ’password’ : ’#password’,

11 ’login_b’ : ’#login-submit’

12 }

13 }

14

15 class LoginPage(object):

16 def __init__(self,browser,hub):

17 self.username = \

18 browser.find_element_by_css_selector(locdict[hub][’username’])

19 self.password = \

20 browser.find_element_by_css_selector(locdict[hub][’password’])

21 self.login_b = \

22 browser.find_element_by_css_selector(locdict[hub][’login_b’])

23

24 def login_as(self,username,password):

25 self.username.clear().send_keys(username)

26 self.password.clear().send_keys(password)

27 self.login_b.click()

83

Listing 7.2 shows an example page object for the hub login page that can be

con�gured to work with hubzero.org or nanohub.org. The locdict variable holds

dictionaries of locators that are used by the LoginPage class. The user speci�es

which hub locators they want to use in the LoginPage constructor.

Listing 7.3: Login automation script for hubzero.org, using page objects

1 from selenium import webdriver

2 from pageobjects import LoginPage

3

4 # start the browser and navigate to the login page

5 browser = webdriver.Firefox()

6 browser.get(’https://hubzero.org/login’)

7

8 # perform the login action

9 po = LoginPage(browser,hub=’hubzero’)

10 po.login_as(username="testuser",password="abc123")

In line 9 of Listing 7.3, the page object is created and con�gured to use the

hubzero locators. Next, the automation script calls the page object's login_as()

method to perform the login service on the page.

The page object solution is �exible and robust, allowing the developer to update

the page object to handle more hubs by adding locators to the locdict variable.

The new automation script can easily be con�gured to work on nanohub.org, or any

other hub recognized by the page object. Additionally, all of the code to perform

the login action is in one place, the login_as() method. If there is a change to

how the login service works, an update to the login_as() method updates all of

the scripts that use the method. The HUBcheck library provides classes for popular

HTML elements to help developers quickly build page objects. Let's explore how to

rebuild the LoginPage page object by using the HUBcheck library.

84

7.2 Rebuilding the Login Page Object With HUBcheck

Before representing a web page as a page object, the developer must understand

the purpose of the web page. Web pages provide services. When a user navigates

to a web page, they are either receiving information from the system or providing

information to the system. On the hub, the login web page provides four services. The

most recognized service is providing user authentication for accessing personalized and

restricted material on the hub. The other services provided by the page are to guide

users to the registration page, the username reminder page, and the password reset

page.

Fig. 7.2.: The part of the web page represented by the Login widget is outlined in
red.

The login web page can be split into three sections. The header section is the top

portion of the page available on all hub web pages. This includes site navigation links

and banners. The footer section is the bottom portion of the page, also available

on all hub web pages. This section includes copyright, contact, and site ownership

information. The rest of the page can be considered the Login widget, and is shown in

85

Figure 7.2. The Login widget is a mega widget, a widget made up of smaller widgets

or elements, like links, text boxes, checkboxes, and buttons. Each of these elements

are widgets in their own right, and the classes that represent them provide a few

specialized services.

7.2.1 Matching Web Page Widgets to HUBcheck Page Object Classes

On the login page, each element can be represented by a HUBcheck page object

class. Links are represented by the Link class, input text boxes are represented by

the Text class, checkboxes are represented by the Checkbox class, and buttons

are represented by the Button class. Listing 7.4 starts to build a new Login page

object by identifying the widgets that are available on the web page and match-

ing them up with comparable HUBcheck classes. In the code, the username and

password text boxes are represented by Text objects. The username reminder, pass-

word reset, and register links are represented by Link objects. The remember me

checkbox is represented by a Checkbox object and the form submission button is

represented by a Button object. HUBcheck includes nine classes that represent pop-

ular HTML elements including Button, Checkbox, Link, Radio, Select, Text,

TextReadOnly, TextAC, TextArea, and Upload.

Listing 7.4: The Login class is a composition of other classes representing the
elements on the web page.

1 class Login(BasePageWidget):

2 def __init__(self):

3 ...

4 self.username = Text(self,{’base’:’username’})

5 self.password = Text(self,{’base’:’password’})

6 self.remember = Checkbox(self,{’base’:’remember’})

7 self.remind = Link(self,{’base’:’remind’})

8 self.reset = Link(self,{’base’:’reset’})

9 self.register = Link(self,{’base’:’register’})

10 self.submit = Button(self,{’base’:’submit’})

11 ...

86

(a) Text box widgets

(b) Link widgets

(c) Checkbox and Button widgets

Fig. 7.3.: The login web page is made up of several types of widgets.

87

The Login page object has methods that mirror the services o�ered by the login

web page. These methods abstract away the steps required to perform the service

and reduce the service to a single call to the page object's API. Listing 7.5 declares

four methods that correspond to the services provided by the login page, including

login_as(), goto_remind(), goto_reset(), and goto_register().

Listing 7.5: The Login object's methods match the services provided by the
widget.

1 class Login(BasePageWidget):

2 ...

3 def login_as(self,username,password):

4 self.username.value = username

5 self.password.value = password

6 self.submit.click()

7 def goto_remind(self):

8 self.remind.click()

9 def goto_reset(self):

10 self.reset.click()

11 def goto_register(self):

12 self.register.click()

Inside the methods, page object data members representing the web page ele-

ments take over to do the real work of typing values into the login form's �elds,

clicking links or buttons, and toggling checkboxes. For the login_as() method,

the self.username and self.password objects are responsible for updating the

username and password �elds on the web page by using the method's arguments as in-

puts. self.username and self.password are both instances of the Text class,

with a value property which acts as an accessor, allowing users to query or set the

current value of the �eld on the web page. In line 4 of Listing 7.5, self.username's

value property is assigned a new value. This assignment causes a Selenium Web-

Driver handle for the text input �eld to be retrieved from the web page's HTML DOM.

The text input �eld is cleared of any previous value, and the new value is written to

the �eld on the web page. This happens again, in line 5, for the self.password

object. Lines 9 - 12 of Listing 7.6 show the sequence of events in more detail.

88

Listing 7.6: The Text object manages �nding and writing to the Selenium Web-
Driver object handle.

1 class Text(BasePageWidget):

2 @property

3 def value(self):

4 e = self.owner.find_element_in_owner(self.locator)

5 return e.get_attribute(’value’)

6

7 @value.setter

8 def value(self, val):

9 e = self.owner.find_element_in_owner(self.locator)

10 e.click()

11 e.send_keys(Keys.CONTROL,’a’)

12 e.send_keys(val)

7.2.2 Specifying Element Locators for Page Object Classes

The Login page object is almost complete. In Listing 7.4, we speci�ed the

elements available on the login web page. In Listing 7.5 we added functions to ful�ll

all of the services o�ered by the web page. The next step is to specify the locators

for the web page elements.

HUBcheck page object classes have a complementary set of locator classes that

specify sets of element locators. Listing 7.7 shows two example locator classes for the

hubzero.org and nanohub.org login pages discussed in Section 7.1.

89

Listing 7.7: Locators for the Login page object

1 class Login_Locators_Base_1(object):

2 locators = {

3 ’username’ : "css=#username",

4 ’password’ : "css=#passwd",

5 ’submit’ : "css=[name=’Submit’]",

6 ...

7 }

8

9 class Login_Locators_Base_2(object):

10 locators = {

11 ’username’ : "css=#username",

12 ’password’ : "css=#password",

13 ’submit’ : "css=#login-submit",

14 ...

15 }

Each locator class holds a dictionary of locators that is dynamically loaded by

the page object class during initialization and is used to override the locators of its

data members. In Listing 7.4, the self.submit data member is instantiated with

the dictionary {‘base’: ‘submit’} as one of the arguments. This is a locator

override, which maps the ‘base’ locator inside of the self.submit object to

the value of the ‘submit’ locator of the Login page object. The value of the

‘submit’ locators is dynamic because it depends upon which locator class is loaded

by the page object, Login_Locators_Base_1 or Login_Locators_Base_2.

The pattern of separating locators from the page object allows HUBcheck page

objects to be used across multiple hubs. When new hubs are created new locators can

be added to the system, if needed, leaving the page object classes untouched. More

often then not, new hubs use locators that have already been added to the HUBcheck

library. When new versions of the HUBzero software are released, the locators also

can be added to the HUBcheck library without modifying the existing page objects.

In the next section, we dive deeper into patterns that can be used to build page

objects. While these patterns can be found throughout the HUBcheck library, they

include ideas that are best practices for building all kinds of page objects.

90

7.3 Incorporating Classic Design Patterns into Page Objects

The social aspect of the hub website encourages members to contribute content

and organize in communities. To do this, the user must interact with hub web pages

containing web forms, evaluate search results represented as lists or tables, and upload

content. These three forms of interaction often show up in the web components built

for the hub, and by extension, in the page objects built to interface with those web

components.

For most web pages, identifying the widgets and services for the page is straight

forward. For other web pages, the widgets are not so obvious and ine�cient solutions

can lead to bad interfaces that add work for developers instead of reducing work.

Three types of interactions found on the hub fall into this latter group of web pages:

using web forms, reading lists of data, and interacting with items in iframes.

In this section, we'll introduce three patterns, the WebForm pattern, the ItemList

pattern, and the IframeWrap pattern, that can be used to quickly produce page

objects that work with components that ask the user to interact through web forms,

lists of items, or through an iframe.

7.3.1 WebForm Pattern

Web forms are ubiquitous across the web. They are the best way to collect in-

formation from the user, so there is no wonder why they are a part of many hub

web components. On the hub, users experience them as a part of larger processes

to create, update, or delete content. Interacting with most web forms takes place

in two phases, population and submission. The �rst phase, populating the form, in-

volves searching for �elds in the form and assigning them values. The second phase,

submitting the form, simply involves clicking the submit button on the form.

Many of the harder to test aspects of a hub's web site involve working through

multi-step processes that often include web forms. The novice approach to creating

page objects for these web forms can lead to unintuitive interfaces. The hub login

91

page and new support ticket page are classic examples of web forms. When evaluated

separately, the interfaces may seem very di�erent. Certainly the services provided

by the pages are di�erent and so are the �elds that need to be populated, but these

things can be considered con�guration steps for a class that tackles the larger problem

of form population and submission.

Fig. 7.4.: Testing the hubzero.org support ticket form.

Listing 7.8: The typical interface for a web form requires the automation devel-
oper to call page object accessors to populate the form.

1 po = TroubleReportForm()

2

3 po.set_name(’testuser’)

4 po.set_email(’tu@hubzero.org’)

5 po.set_problem(’test problem’)

6 po.set_upload(’myscreen.png’)

7

8 po.submit.click()

The typical page object interface for a web form requires the automation developer

to call page object accessor methods to populate each �eld of a form. Using accessor

methods provides a clean interface for the populate phase. An alternative approach

is to pass the form inputs to a single method, and allow the method to perform the

92

form population. Similarly, for submitting a web form, a single method can be used

to populate and submit the form. This is the idea behind the WebForm pattern.

Listing 7.9 shows an example of the interface.

Listing 7.9: An example interface for a web form utilizing two methods, popu-
late_form() to handle �lling in the form inputs, and submit_form() to handle
form submission.

1 po = TroubleReportForm()

2

3 data = {

4 ’name’ : ’testuser’,

5 ’email’ : ’tu@hubzero.org’,

6 ’problem’ : ’test problem’,

7 ’upload’ : ’myscreen.png’

8 }

9

10 po.populate_form(data)

11

12 po.submit_form()

The purpose of the WebForm pattern is to help standardize the interface for �lling

out web forms. The usual interface makes the script writer work hard to remember

the accessor methods for the inputs on the form. The WebForm pattern encourages

the automation developer to organize the inputs for the form and send the inputs to

a standard page service, the populate_form() method. Later the user can submit

the form using another standard service, the submit_form() method. These two

services are supported for all forms.

Implementing the WebForm pattern requires a page object that represents a web

form to be derived from an abstract base class that provides the populate_form()

and submit_form() methods. Listing 7.10 shows an example of such a class.

93

Listing 7.10: FormBase is an example base class for web forms

1 class FormBase(BasePageWidget):

2 def __init__(self, owner, locatordict={}):

3 ...

4 self.submit = Button(self,{’base’:’submit’})

5

6 def populate_form(self, data):

7 for (k,v) in data:

8 widget = getattr(self,k) # find the widget

9 widget.value = v # set its value

10

11 def submit_form(self,data=[]):

12 self.populate_form(data)

13 return self.submit.click()

In Listing 7.10, the FormBase class provides a submit button object in the con-

structor, and relies on the derived class to supply the �elds of the form as data

members. The two services of the web form, populating the form and submitting

the form, are performed by the class's populate_form() and submit_form()

methods.

Fig. 7.5.: In the WebForm pattern, the FormBase base class provides the two services
essential to all web forms, populating the form and submitting the form.

94

The FormBase class can be applied to the hub login page example from Sec-

tion 7.2 just as easily as it can be applied to the new support ticket page from

Figure 7.4, they are both web forms after all. To build a new page object for the

login page, the �rst step is to subclass FormBase and add the form's �elds to the

new class's constructor. Listing 7.11 shows what the new page object class would

look like.

Listing 7.11: An example page object for the hub login page, using FormBase

1 class LoginPage(FormBase):

2 def __init__(self, owner, locatordict={}):

3 super(LoginPage,self).__init__(owner,locatordict)

4 ...

5 self.username = Text(self,{’base’:’username’})

6 self.password = Text(self,{’base’:’password’})

7 self.remember = Checkbox(self,{’base’:’remember’})

The new LoginPage class is derived from the FormBase class. In the LoginPage

constructor, we add data members for the �elds of the login page's form, the username

�eld, the password �eld, and the remember checkbox. That's it! Users can interact

with the LoginPage page object by supplying the values for the �elds as a dictionary

or a list of tuples to either of the inherited service methods, populate_form() or

submit_form(), and the service methods take care of inspecting the LoginPage

object for the widgets.

Listing 7.12: Interacting with the new LoginPage page object

1 form_data = {’username’ : ’testuser’,

2 ’password’ : ’abc123’,

3 ’remember’ : False}

4 po = LoginPage()

5 po.populate_form(form_data.items())

6 po.submit_form()

Using the WebForm pattern simpli�es building web form page objects to a single

step of declaring the �elds of the form. There are several variations of the FormBase

class, including those that �ll out forms in a speci�ed order, validate inputs, or

95

have extra HTML buttons like cancel or preview. These variations can usually be

accommodated by adjusting the derived class or the data structures being passed to

the base class's service methods.

7.3.2 ItemList Pattern

Lists of items on web pages are often built dynamically, pulling information from

databases to present the user with up-to-date information. The amorphous nature

of a web page with a dynamically generated list makes it hard to build a static page

object to represent it. Since the number of items in the list may �uctuate, it cannot

be hard coded into the page object. Even if it could, creating individual page objects

for each row/item in the list at once may be memory and time intensive.

Lists of items are an area where the traditional approach to building page objects

is hard to apply. Without knowing ahead of time the number of items in the list,

static page objects cannot be built with an object representing each item. Instead

of manually creating an object for each item in the list, it is better to step back

and evaluate the ways lists are used. Lists are a quick, organized way of presenting

enumerable pieces of data back to the user. Many lists hold items that provide an

overview of the available data by using text �elds or links to web pages with more

details. Other types of lists contain items that exhibit all available data in a single

text �eld. Regardless of the way the data is displayed, the information in each item

depends upon the type of list being presented. Users may interact with a single list

item at a time or they may interact with the list as a whole, accessing list properties

like the item count and searching for speci�c items.

The ItemList design pattern de�nes a way to dynamically instantiate a page object

that represents a single, speci�c item from an arbitrarily sized list of items. Page

objects built using this pattern can be used to access the properties of the single

item it was instantiated for and can be quickly updated to reference another item in

the list. The pattern uses elements of the Iterator pattern [45] and Factory Method

96

pattern [45], and introduces the concept of the locator template, a template that has

a value substituted into it, to create a new web page element locator.

Fig. 7.6.: The hub Tool Pipeline table is a dynamically created list of items. Each
row in the table provides links and information regarding a speci�c simulation tool
registered on the hub.

In the hub's tool contribution process, the Tool Pipeline, shown in Figure 7.6, is

an HTML table that shows all tools that have been registered on a hub. Each row

of the table shows the tool's title, alias, status, time since the tool was registered,

time since the last status change, and links leading to the tool's resource, status, and

communications history web pages. The Tool Pipeline web page also allows users to

search for speci�c tools by alias.

Building a page object for a dynamic web page like this is hard because the

information in the table is pulled from a database and may change over time. While

97

a human user can look at each item quickly to �nd the item they are interested in,

an automated system must iteratively scan all items until matching criteria is found.

This pattern of listing information from databases is not unique to the Tool Pipeline

page. On the hub, it is also found in the Tags component when displaying all available

tags, in the Support component when listing support tickets, the Groups component,

Questions and Answers, Projects, Wish List and more.

(a) Container class coverage (b) Item class coverage

Fig. 7.7.: The Container and Item classes are the foundation of the ItemList pattern.

The ItemList pattern provides a standard way to describe and traverse items in

a list or table on a web page. The main participants of the pattern are two base

classes, Container and Item. The container class represents the meta-data of the

list. Automation developers can ask the container questions regarding properties of

the list, like how many items are in the list? The container cannot answer questions

about speci�c items in the list, but can provide access to the list elements, either

sequentially or through a limited search capability. The item class represents a single

item in the list. Automation developers can query this class for information about

the item it represents in the list. Additionally, the item class can be updated on the

�y to point to another item from the list. The container and item classes provide

interfaces that, when implemented, can be used to represent lists, tables, and other

data structures that appear on the web page as a collection of items.

98

Fig. 7.8.: The ItemList pattern uses a container class to represent the list and provide
access to list meta-data while providing access to elements of the list through an item
class. It incorporates the Iterator and FactoryMethod patterns.

We can further explore the ItemList pattern by building example page objects

to represent the Tool Pipeline table found in the Tools component on the hub and

shown in Figure 7.6. As mentioned earlier, the Tool Pipeline is an HTML table where

each row holds the details and links of a tool resource that has been registered on the

hub. A single page object class that represents the whole table would be di�cult to

manage due to the dynamic nature of the information being displayed. Alternatively,

the table can be easily represented by two smaller classes, a container class named

ToolsList and an item class named ToolsItem.

The ToolsItem class represents an item in the Tool Pipeline table, as shown

in Figure 7.7b. It is an Item class, and as such, allows the automation developer

to query details about the speci�c item it represents such as the tool's title, alias,

and status, and provides access to the web page links that host more information

about the tool. It also provides a way to update which item the object represents in

the list. In the ToolsItem class, these features are provided by the value() and

update_item_number() methods.

99

Listing 7.13: The Item class interface, implemented by the ToolsItem class.

1 class Item(BasePageWidget):

2 def __init__(self, owner, locatordict, item_number):

3 ...

4

5 def value(self):

6 ...

7

8 def update_item_number(self,item_number):

9 ...

The ToolsItem class's constructor, outlined in Listing 7.13, accepts a dictionary

of web element locator templates in the locatordict parameter. Locator templates

[46] are di�erent from regular locators, previously discussed in Section 7.2.2, in that

they can have values substituted into them.

Listing 7.14: Locator templates allow values to be substituted into them.

1 locators = {

2 ’title’ : "css=tr:nth-of-type({item_num}) .title",

3 ’details’ : "css=tr:nth-of-type({item_num}) .details",

4 ’alias’ : "css=tr:nth-of-type({item_num}) .alias",

5 ’status’ : "css=tr:nth-of-type({item_num}) .status",

6 ’time’ : "css=tr:nth-of-type({item_num}) .time",

7 ’resource’ : "css=tr:nth-of-type({item_num}) .page",

8 ’history’ : "css=tr:nth-of-type({item_num}) .history",

9 ’wiki’ : "css=tr:nth-of-type({item_num}) .wiki",

10 }

Listing 7.14 shows an example dictionary of locator templates for the ToolsItem

class. The templates contain a item_num placeholder, which is substituted with a

real value, the item_number parameter from the ToolsItem constructor, when the

ToolsItem object is instantiated. The value substituted into the template can also be

changed by calling the object's update_item_number() method which changes

the value substituted into the template locators and requests children page objects

to update their locators, propagating the change through the page object hierarchy.

100

Listing 7.15: The update_item_number() method updates the item being
referenced in the list

1 def update_item_number(self,item_number):

2 self._item_number = item_number

3 # format all locator templates

4 for k,v in self.locators.items():

5 self.locators[k] = v.format(item_num=self._item_number)

6 # update this object’s children

7 self.update_locators_in_widgets()

Listing 7.16: The ToolsItem class's __init__() method describes the com-
ponents of a single item, the widgets in the item the automation developer would
want to interact with.

1 class ToolsItem(Item) :

2 ...

3 def __init__(self, owner, locatordict, item_number):

4 ...

5 self._item_number = item_number

6 self.title = Link(self,{’base’:’title’})

7 self.details = TextReadOnly(self,{’base’:’details’})

8 self.alias = Link(self,{’base’:’alias’})

9 self.status = Link(self,{’base’:’status’})

10 self.time = TextReadOnly(self,{’base’:’time’})

11 self.resource = Link(self,{’base’:’resource’})

12 self.history = Link(self,{’base’:’history’})

13 self.wiki = Link(self,{’base’:’wiki’})

14 ...

The items of the Tool Pipeline table have eight components, �ve of which can

be considered properties, including title, register details, alias, status, and time since

status change. The other three components, resource link, history link, and wiki link,

are links to web pages about the resource. The value of the item can be described

as a collection of the item's properties. The value() method provides access to the

item's properties, through the dictionary it returns.

101

Listing 7.17: The ToolsItem class's value() method returns a dictionary of
property values

1 class ToolsItem(Item) :

2 ...

3 def value(self):

4 """return a dictionary of properties for this item"""

5

6 properties = {

7 ’title’ : self.title.text(),

8 ’details’ : self.details.value,

9 ’alias’ : self.alias.text(),

10 ’status’ : self.status.text(),

11 ’time’ : self.time.value,

12 }

13

14 return properties

The ToolsList class represents the Tool Pipeline table as a container of items as

shown in Figure 7.7a. As a Container class, ToolsList provides the automation

developer with the ability to interact with the features of the table that are indepen-

dent of speci�c items, like retrieving the counts from the table's caption, getting the

number of tools displayed, searching for tools by name, and iterating over all of the

displayed tools. Listing 7.18 shows an outline of the Container class, the basis for

ToolsList.

102

Listing 7.18: The Container class interface, implemented by the ToolsList
class, providing automation developers with access to the Tool Pipeline table
meta-data and items

1 class Container(BasePageWidget):

2 def __init__(self, owner, locatordict):

3 ...

4 def __iter__(self):

5 ...

6 def next(self):

7 ...

8 def get_item_by_position(self,item_number):

9 ...

10 def get_item_by_property(self,prop,val,compare=None):

11 ...

12 def num_items(self):

13 ...

14 def header_counts(self):

15 ...

The ToolsList class provides sequential access to the items of the container

through an iterator by implementing the Iterator pattern. The goal of the Iterator

pattern is to allow users to sequentially access elements of the collection without

knowing anything about the underlying structure of the elements or the collection.

The pattern is usually associated with collections containing elements of di�erent

types, but works equally well when the elements are homogeneous. Essentially, the

pattern allows the automation developer to keep asking for the next element and the

container keeps returning new elements from the collection until there are no new

elements to return.

Python helps us create iterator objects by providing an Iterator protocol. In

Python, classes that de�ne the __iter__() method can return an iterator object.

The iterator object needs to de�ne the next() method, which provides the caller an

element from the collection being iterated over. The Container class, ToolsList,

can act as an iterator by de�ning the __iter__() and next() methods. The only

103

Fig. 7.9.: Containers implement the Iterator pattern to allow sequential access to
items.

extra bit it needs to do is to keep track of the current item, which it does through

the __current_item variable, shown in Listing 7.19.

Listing 7.19: The Container class implements the Iterator pattern to provide
sequential access to items.

1 def Container(BasePageWidget):

2 ...

3 def __iter__(self):

4 self.__current_item = 0

5 return self

6

7 def next(self):

8 ...

9 self.__current_item += 1

10

11 if self.__current_item >= self__num_items:

12 # reset our counter, stop iterating

13 self.__current_item = 0

14 raise StopIteration

15

16 return self.get_item_by_position(self.__current_item)

The last task of a Container class is to provide a way to search the list for

items that match some criteria. Two popular ways to access items from the container

104

are by position and by property. The type of item returned by the search methods

is tied to the container returning it. For example, a container designed to represent

a HUBzero support ticket list will return support ticket list items and a container

designed to represent a HUBzero group list will return group list items.

To keep the Container class generic, it implements the Factory Method pattern,

allowing subclasses to de�ne which Item class to instantiate.

The Factory Method Pattern is used when we want to de�ne an interface for

creating an object, but don't know which class to instantiate. Instead of always

instantiating the same class, we delegate the responsibility to a subclass.

Fig. 7.10.: Containers use the Factory Method pattern to allow derived classes deter-
mine the type of Item class to return from searches.

In the case of the Container class and the Tool Pipeline example, to be able

to return ToolsItem objects from searches the ToolsList object must know how

to create them. The Item class and parameters to create an object are saved by the

derived container, and then used by the search methods to instantiate the correct

Item objects for the container.

105

Listing 7.20: The ToolsList class manages which type of Item object to return
from searches. In this case ToolsItem objects.

1 class Container(BasePageWidget):

2 def __init__(self, owner, locatordict):

3 self.item_class = None

4 self.item_class_args = None

5

6 class ToolsList(Container):

7 def __init__(self, owner, locatordict):

8 ...

9 self.item_class = ToolsItem

10 self.item_class_args = [{...}]

The ToolsList class provides two methods for searching through a list of items.

The �rst method, get_item_by_position(), allows automation developers to

search for an item in the list by position. For example, developers can ask for the

�fth item in the list. Listing 7.21 shows an implementation of this method that accepts

a counting parameter, item_number, representing the n-th item in the list. The

method uses the Container object's Item class variable, __item_class, to con-

struct the Item object for the n-th item in the list. __item_class uses the Item

class parameters, stored in __item_class_args, and the method's item_number

parameter to con�gure the new page object representing the speci�c item.

Listing 7.21: The Container class can retrieve Items by position

1 def get_item_by_position(self,item_number):

2 result = self.__item_class(

3 self.owner,

4 *self.__item_class_args,

5 item_number=item_number)

6 result.detach_from_owner()

7 return result

The second method, get_item_by_property(), allows the developer to search

for the �rst item in the list that matches a property constraint. The method accepts

two required parameters, the name of the property and the value it should match.

106

Listing 7.22: The Container class can retrieve Items by property

1 def get_item_by_property(self,prop,val):

2 result = None

3

4 # create a default item object, using the first item

5 r = self.__item_class(self.owner,*self.__item_class_args,item_number=1)

6 r.detach_from_owner()

7

8 for item_number in xrange(1,len(items)+1):

9

10 # update the default item object to point to the current item

11 r.update_item_number(item_number)

12

13 # check if our current item matches the property constraint

14 if r.value()[prop] == val:

15 result = r

16 break

17

18 # if no items matched, clean up our default item object

19 if result is None:

20 del r

21

22 return result

The get_item_by_property() method also uses the __item_class vari-

able, representing the Item class, to construct a new page object that represents

a single item in the list. Similar to the get_item_by_position() method, the

get_item_by_property() method passes the __item_class's constructor a

list of arguments to con�gure the new page object, including a dictionary of locator

templates.

The get_item_by_property() method uses an Item object to iterate over

the items in the list, searching for the �rst item that satis�es the property constraint.

It takes advantage of the Item object's update_item_number() method and

template locators to update the locators of the object without instantiating a new

page object for each item it encounters in the list. In Listing 7.22, you can see the

107

Item object being updated inside of the for loop in line 11, and the comparison

between the item's property and the requested value in line 14.

The ItemList pattern focuses on the interactions of two classes, the Container

class and the Item class. In the Tool Pipeline table example the Container class,

ToolsList, was responsible for all of the services provided by the table that were

not related to a speci�c item or item in the table. The Item class, ToolsItem

was responsible for services associated with a speci�c item or item in the table. This

separation of services, along with the use of web element locator templates, allowed

the Container class to dynamically create page objects for speci�c items in the

table and update the item being referenced without needing to destroy and create a

new object.

7.3.3 IframeWrap Pattern

Iframes are another area where using the wrong design can make page objects

di�cult to build and ine�cient to use and maintain. When hub users upload re-

sources to a HUBzero website, they are asked to respond to several questions on a

web form, one of which involves describing the resource they are contributing. In

previous incarnations, the resource contribution form's description �eld was a sim-

ple HTML <textarea> element. The �eld handled both plain text descriptions, but

also allowed users to enter a wiki-like markup language that produced rich text de-

scriptions. Building a page object with a <textarea> is pretty rudimentary, and in

HUBcheck is represented by the TextArea class.

Fig. 7.11.: HTML <textarea> based editor.

108

Listing 7.23: HTML of the textarea based editor.

1 <label for="field-fulltxt">

2 Abstract/Description:

3 <textarea id="field-fulltxt">This is abstract / description text</textarea>

4 </label>

Around the release of version 1.2.0 of the HUBzero software, the web developers

started incorporating a new editor for the description �eld. Shown in Figure 7.12, the

new editor incorporated better controls for handling rich text. Instead of writing out

the wiki syntax to make words bold, for example, the hub user would press the bold

button in the editor and type the text they wanted to be bold. This was a great step

forward for usability. The updated editor meant an update was needed for the page

objects that interacted with the previously available <textarea> based editor. Such

a drastic widget change like this usually results in a new page object being created.

Fig. 7.12.: HTML iframe based editor.

109

Listing 7.24: HTML of the iframe based editor, where writing to the <body>
tag is just like writing to the <textarea> tag after the automation script enters
the iframe.

1 <iframe class="cke_wysiwg_frame">

2 <html>

3 <body class="ckeditor-body">

4 <p>This is abstract / description text </p>

5 </body>

6 </html>

7 </iframe>

Investigating the new web page, one could see that the previous <textarea> ele-

ment was replaced with an iframe and embedded web page. Playing around with the

iframe element revealed that once the automation script entered the iframe, writing

text to the <body> element was just like writing text to the <textarea> element.

This raised the question:

Do I need to write a new page object class for an element embedded in

an iframe, if a class for that element already exists and works with the

exception of entering and exiting the iframe?

Fig. 7.13.: Text input �elds embedded in di�erent levels of iframes.

110

Before approaching this question, let's �rst investigate how iframes work. Fig-

ure 7.13 shows an example web page with some input �elds embedded in di�erent

levels of iframes.

Fig. 7.14.: Text input i0 exists in the default context.

Listing 7.25: In the default context, iframe frame1 references inner_page.html.

1 <html>

2 <body>

3 <label for="frame1">frame1: </label>

4 <iframe id="frame1" src="inner_page.html"></iframe>

5

6 <label for="i0">i0: </label>

7 <input type="text" id="i0" value="text input"></input>

8 </body>

9 </html>

The �rst input �eld, i0, is located in the default context. This is the level of the

web page we generally work in when iframes are not involved. Along with the input

�eld i0, this web page also has an iframe, frame1. In the HTML, iframes hold the

location of another web page to be embedded in the frame. In this example, frame1

is going to load up the web page inner_page.html.

111

Fig. 7.15.: Text input i1 exists in the frame1 context.

Listing 7.26: inner_page.html - frame2 references another_page.html.

1 <html>

2 <body>

3 <label for="frame2">frame2: </label>

4 <iframe id="frame2" src="another_page.html"></iframe>

5

6 <label for="i1">i1: </label>

7 <input type="text" id="i1" value="my text input"></input>

8 </body>

9 </html>

Figure 7.15 and Listing 7.26 show the HTML for inner_page.html. It makes up

what is referred to as the Frame1 Context. The Frame1 context has an input �eld

i1, and another iframe, frame2. Again, the iframe frame2 holds the location of a web

page, and in this case it points to another_page.html.

Fig. 7.16.: Text input i2 exists in the frame2 context.

112

Listing 7.27: another_page.html - in frame2 context, only input i2 exists.

1 <html>

2 <body>

3 <label for="i2">i2: </label>

4 <input type="text" id="i2" value="my other text input"></input>

5 </body>

6 </html>

Listing 7.27 shows the HTML for the �le another_page.html that makes up the

Frame2 Context. It contains an input �eld i2 that resides within the Frame2 context.

Listing 7.28: Page object class for i0 text input �eld.

1 class Text(BasePageWidget):

2 ...

3 # setter

4 def value(self, text):

5 e = self.find_element(self.locator)

6 e.clear()

7 e.send_keys(text)

8 ...

A page object for the i0 input �eld that resides in the Default Context would

probably include a getter method to retrieve the value of the input, a setter method

to set the value of the input, and maybe an append method to assist with appending

text to whatever was already in the �eld. Since the i0 �eld resides in the default

context, there is no need to do anything special; the methods will �nd the i0 input

element in the HTML DOM, and perform actions on it.

113

Listing 7.29: Page object class for i1 text <input> �eld.

1 class Text1Frame(BasePageWidget):

2 ...

3 # setter

4 def value(self, text):

5 frame = self.find_element(’#frame1’)

6 self._browser.switch_to_frame(frame)

7 e = self.find_element(self.locator)

8 e.clear()

9 e.send_keys(text)

10 self._browser.switch_to_default_content()

11 ...

Building a page object for the i1 input �eld involves a little more work. The page

object is almost the same as the one for the i0 input �eld, but because i1 is located

inside of the Frame1 context the web browser needs to be instructed to traverse the

frame1 iframe before performing any getter, setter, or append actions. So inside each

of the page object's methods a few lines of code need to be added for entering and

exiting the iframe. After the web browser has entered the Frame1 context it can

search for the element in the HTML DOM and perform actions on the element. In

Listing 7.29, the extra code for entering and exiting the Frame1 context shows up in

lines 5-6 and line 10. Lines 7-9 make up the core action of the widget and are the

same as what is found in the page object for text input i0, in Listing 7.28.

114

Listing 7.30: Page object class for i2 text input �eld.

1 class Text2Frame(BasePageWidget):

2 ...

3 # setter

4 def value(self, text):

5 frame1 = self.find_element(’#frame1’)

6 self._browser.switch_to_frame(frame1)

7 frame2 = self.find_element(’#frame2’)

8 self._browser.switch_to_frame(frame2)

9 e = self.find_element(self.locator)

10 e.clear()

11 e.send_keys(text)

12 self._browser.switch_to_default_content()

13 ...

Building a page object for the i2 input �eld adds another layer of iframe context

traversal. Remember, i2 is located inside of the Frame2 context, which is located

inside of the Frame1 context. The methods for the i2 page object have the same core

actions as those of the i0 and i1 page objects, but include code to traverse two iframe

contexts. This can be seen in Listing 7.30, where the setter method �rst moves from

the Default context to the Frame1 context in lines 5-6, then moves from the Frame1

to the Frame2 context in lines 7-8. The setter method next performs the method's

core action in lines 9-11 and �nally returns back to the default context in line 12.

To review, building page objects for the i0, i1 and i2 input �elds involves tracking

the current frame level and possibly traversing frame levels to be in the correct context

for interacting with an element. In the example from Figure 7.13, all of the page

objects started o� with the same code, but for input i1, additional lines were added to

account for entering and exiting the Frame1 context. Similarly, for input i2, additional

lines of code were added to account for entering and exiting the Frame1 and Frame2

contexts. But the question remains:

Is there a way to handle the entering and exiting of iframes outside of the

page object so we can reuse our original page object that represents a Text

<input> �eld on a web page?

115

In essence, a solution would provide a way to write the core methods of a page

object once and if the page object was found inside of an iframe, the methods could be

wrapped with code to enter and exit the iframe. If the page object was found inside

of two, or three, or more iframes, the methods would just keep getting wrapped with

code to enter and exit iframe contexts.

Fig. 7.17.: IframeWrap pattern wraps the core of methods with code to traverse
iframe contexts.

This is the idea behind the IframeWrap pattern. It uses the Decorator pattern

to decorate or wrap the attributes of a page object with code to enter an iframe

context, call the original page object method, and then exit the iframe context. It

supports both page objects from the default context as well as previously wrapped

page objects.

Fig. 7.18.: Decorator pattern

The purpose of the Decorator pattern is to extend functionality of an object

without necessarily changing the interface. It is most often used when a speci�c

116

object needs to be changed at runtime without a�ecting other objects of the class. It

does this by wrapping the original functionality of the object's attributes with code

to do extra work.

Consider the example object a shown in Figure 7.18, which is an instance of the

class A, with a method f. Additional responsibilities can be added to a's method f

by �rst pointing a.f to a wrapper method and then directing the wrapper method

to perform the extra work and call the method that a.f used to point to.

Fig. 7.19.: Decorator pattern applied to text input �eld i1 in Frame1 context

The same idea can be applied to the Text page object, from Listing 7.28, to create

a page object for the i1 input in the Frame1 context. The page object's value()

method performs the core actions for setting or getting the value of the underlying

HTML element. In Python, value() is an attribute that points to a function object,

which can be decorated to add the enter and exit iframe commands. After decorating

the function object, the value attribute will point to a wrapper function that enters

the correct iframe context, calls the original function object, and returns back to the

default context.

Listing 7.31: Page object class for web page with multiple text input �eld em-
bedded in frames.

1 class FramedInputs(BasePageObject):

2 def __init__(self):

3 self.i0 = Text(’#i0’)

4 self.i1 = IframeWrap(Text(’#i1’), [’#frame1’])

5 self.i2 = IframeWrap(Text(’#i2’), [’#frame2’, ’#frame1’])

A page object class that represents the web page shown in Figure 7.13 can be built

by instantiating and decorating the Text class from Listing 7.28. In Listing 7.31,

117

the variable self.i0 instantiates a Text object to represent the text input �eld in the

default context. The variables self.i1 and self.i2 also instantiate Text objects, but

immediately passes them to the IframeWrap() function. The IframeWrap()

function accepts a page object and a list of locators for frames that must be traversed

to access the element represented by the page object. For example, the i1 text input

�eld resides within a frame with a locator #frame1, so the IframeWrap() function

is sent the single element list [’#frame1’]. Similarly, the i2 text input �eld resides

in a frame with a locator #frame2, which itself resides in a frame with a locator

#frame1, so the IframeWrap() function is sent a two element list containing both

locators.

Listing 7.32: IframeTracker objects manage wrapping object methods and
attributes

1 class IframeTracker(object):

2 ...

3 def wrap_callable_attributes(self,o):

4 for attr, item in o.__class__.__dict__.items():

5 if callable(item):

6 item = getattr(o,attr)

7 setattr(o,attr,self.wrap_attribute(item))

8

9 def wrap_attribute(self,item):

10 def wrapper(*args, **kwargs):

11 ...

12 switched = self._switch_to_iframe_context(final_framelevel)

13 result = item(*args, **kwargs)

14 self._switch_to_iframe_context(initial_framelevel)

15 return result

16 return wrapper

Internally, the IframeWrap() function creates an IframeTracker object and

associates it with the page object that is to be decorated. The IframeTracker

object is responsible for tracking frame levels and wrapping the object's attributes.

The most interesting part of the IframeTracker object is when the page object gets

decorated, which is shown in Listing 7.32. First the IframeWrap() method calls

the wrap_callable_attributes() method, which identi�es callable attributes

118

from the object, including methods. Within the page object, the callable attribute

is replaced with a call to the wrapper() method, which is a closure that stores the

function object it replaces. Just as shown in Figure 7.18, the wrapper() method

takes care of entering the correct frame context, calling the original method it replaces

that performs the core actions, and returning back to the original frame context.

Listing 7.33: IframeWrap'd page objects work just like non-wrapped page objects.

1 class FramedInputs(BasePageObject):

2 def __init__(self):

3 self.i0 = Text(’#i0’)

4 self.i1 = IframeWrap(Text(’#i1’), [’#frame1’])

5 self.i2 = IframeWrap(Text(’#i2’), [’#frame2’, ’#frame1’])

6

7

8 po = FramedInputs()

9

10 # print out the current text in the widgets

11 print "i0.value = %s" % (po.i0.value)

12 print "i1.value = %s" % (po.i1.value)

13 print "i2.value = %s" % (po.i2.value)

14

15 # update the text in the widgets

16 po.i0.value = ’i0 text’

17 po.i1.value = ’new i1 text’

18 po.i2.value = ’new i2 text too’

With the page object attribute wrapping process complete, the newly IframeWrap'd

page object is ready for use. Inside of automation scripts, the decorated page objects

work just like the non-decorated page objects. The automation developer doesn't

need to do anything special to access or interact with the wrapped page objects. In

Listing 7.33, the variables i0, i1, and i2 are all accessed from the page object po in the

same way. The responsibility for managing the frame traversal has been embedded

within the page object. The di�erence between text input �eld page objects is only

exposed in how the page objects are instantiated.

When implementing the IframeWrap pattern in Python there are a few gotchas.

Not all page object attributes need to be wrapped. Some attributes do not try to

119

interact with the web element the page object represents. Keeping a list of these

attributes is handy so the wrapping of these attributes can be skipped. Additionally

wrapping Python object properties can be tricky because properties are a part of the

class, not the object. It requires creating a new class object from the page object's

class, decorating the properties of the new class object, and associating the page

object with the new class.

7.4 Summary of Page Object Based Design Patterns

The Page Object design pattern provides developers with an object-oriented way

to think about dissecting web pages. Its framework for creating reusable pieces of

code to represent parts of web pages can simplify the process of building robust web

automation software, but sometimes taking a naive approach can lead to an ine�cient

page object design. In this chapter, we saw three situations where implementing a

naive page object design could lead to ine�cient programs. Instead, more robust

designs were o�ered as solutions which helped increase code reuse.

The �rst situation involved the frequent situation of building page objects for

web forms. Due to similarities in the design and goals of web forms, we were able to

reduce their use to answering questions, �lling the answers into �elds on the web page,

and pressing the submit or cancel button. This generalization of goals allowed us to

recognize that with the exception of the speci�c �elds that needed to be populated, a

large portion of building page objects for web forms could be abstracted into a generic

Form superclass. Fields could then be speci�ed in a derived subclass.

In the second case we investigated building page objects for lists of items on a

web page where there is no a priori knowledge of the number of items displayed. The

ItemList Pattern encourages users to build a single page object to represent an item

in a list, and update which item in the list the page object points to instead of trying

to build a separate class for each item in the list.

120

Lastly, we considered building page objects for web page elements that exist in

di�erent iframe levels. While it may be tempting to manually create a new page

object class for an element that exists in an iframe, this approach discourages code

reuse. Instead, the IframeWrap pattern decorates a page object's attributes with

additional code to enter and exit the proper iframe context without changing the

original object's interface.

121

8. HUBCHECK AS A SOLUTION

In February of 2014, the HUBzero team deployed a Jenkins [47] continuous integration

server to help manage automated tests being run by HUBcheck and to make test

results more accessible to members of the team. Since then, automated test results

have been tracked for runs against the weekly and nightly test suites, two of the most

frequently run test suites o�ered by HUBcheck. Through the use of the weekly and

nightly test suites, the HUBzero team was able to track the health of hubs and resolve

di�erences in their setup as they receive website and tool session container upgrades.

The HUBzero team has tracked the long term results of two of HUBcheck's test

suites. The nightly suite contains 11 test cases that focus on tool session container

access and job submission through the submit command. The weekly suite contains

over 150 test cases and dives deeper into the setup and workings of the tool session

container, including some of the most tedious tasks to check, which involve interaction

between the user's website and tool session container. As their names suggest, the

nightly and weekly suites run on a nightly and weekly basis respectively.

The health of a hub can be categorized as either Turbulent, Upgraded, or New.

Below, we look at each categorization and use the HUBcheck's weekly and nightly

test suites to help identify opportunities for improvement in the roll out, maintenance,

and upgrade of hubs.

8.1 Turbulent Hubs

Turbulent hubs are typically older hubs that have gone through a number of

software upgrades in the past, when the upgrade process was more relaxed and testing

was less of a priority. Over the monitoring period, the HUBcheck test suites were

critical in helping the HUBzero team identify and document problems on hubs as

122

Fig. 8.1.: HUBcheck was used to track the health of hub A, a Turbulent hub, as
website and tool session container software were upgraded through 2014. ntests
represents the number of tests in the HUBcheck test suite that ran and completed
with either a pass or fail status. nerrors represents the number of HUBcheck tests
that partially ran and exited due to an exception being raised. In a small number of
cases, the exception is related to an error in the HUBcheck library. An overwhelming
amount of the time, these errors signal a problem on the hub that prevented the test
from being properly setup. nfailures represents the number of tests that completed
and failed due to an assertion.

software was upgraded and machines were rebooted. The history of one particularly

turbulent hub, hub A, can be seen in Figure 8.1.

For hub A, tracking began on February 03, 2014 where, at that time, 15 of the

108 tests in the weekly test suite were failing. The testing and failures were focused

123

on the tool session container con�guration. This was an area of active concern for the

team because hub A was in the middle of transitioning the simulation tools running

in containers using the Debian 6 operating system to containers using the Debian 7

operating system. Between March 2014 and June 2014, the weekly suite continued

to identify 15 test failures.

A number of events occurred on hub A that contributed to its �uctuating status.

The �rst manifested itself at the beginning of June 2014 and was somewhat hidden by

another event. The more obvious event at the beginning of June 2014 shows up as a

spike in test failures and errors in the weekly test suite results. The spike was due to an

emergency kernel security patch that required the shutdown of a machine hosting tool

session containers for hub A. Hidden in the background of this spike was an increase

of 17 additional test failures that were associated with new parameter passing tests

that had been added to the weekly test suite that same week. The newly failing tests

showed that code to support parameter passing was not available on the hub. This is

likely due to the hub needing a website code update. In the beginning of July 2014,

a code update was performed and the next run of the weekly test suite showed 15 of

the 17 previously failing tests began to pass. The two remaining failing parameter

passing tests were identi�ed as bugs in HUBzero's core implementation and �xes for

them are being deployed on various hubs.

The second event that elevated test failures occurred at the beginning of Septem-

ber 2014, when a miscommunication lead to a change in the system that was not

immediately obvious. Symptoms of the problem caused several HUBcheck tests to

fail in the weeks that followed. In the beginning of October 2014, the problem was

identi�ed and �xed.

Since October 2014, hub A has shown a decrease in test failures, signaling a

healthier hub. When major events do arise, they have been addressed quickly due to

rigorous monitoring of HUBcheck. For example, early in January 2015, HUBcheck

test failures uncovered a con�guration change that occurred after a system reboot.

The HUBzero team was able to quickly identify and resolve the problem before hub

124

users were a�ected. With HUBcheck monitoring, hub A is on its way to becoming

like other Upgraded hubs.

Turbulent hubs are not common for the HUBzero team. Recently, hubs that

would have been classi�ed as turbulent have been taken down as opposed to being

put through the website code update process. For the Turbulent hubs that remain

in service, HUBcheck's test suites have been used to monitor their health and work

towards applying updates for website code and tool container con�gurations. To keep

hubs from falling into this state, the HUBzero team should continue to add tests to

the test suites that check hub component functionality.

8.2 Upgraded Hubs

Most hubs have a hub health signature that resembles that of an Upgraded hub,

where the HUBcheck weekly test suite results start o� with a number of test failures

that steadily decrease over time. On Upgraded hubs, increases in test failures may

be seen at predictable times, such as right after hub updates or during planned main-

tenance, making them easy to identify and explain on the nightly and weekly suite

result graphs.

Hub B was brought online at about the same time as hub A. Prior to February

2014, it would have been identi�ed as a Turbulent hub due to its use of vintage

website code and tool session container con�gurations, but today it is an example of

an Upgraded hub. The hub received a code update just before the monitoring period

began, but HUBcheck nightly and weekly suites were still instrumental in helping to

identify and �x many of the problems the hub was experiencing before the upgrade.

In February 2014, monitoring of hub B reported 23 test failures until the end of April.

Throughout April, the HUBzero team focused on reducing test failures on hub B. By

the end of April, the number of failures had dropped from 23 to 17 as new tests were

introduced into the weekly test suite. This decreasing trend is again seen near the

middle of May, when the number of test failures dropped to 4 tests. The weekly

125

Fig. 8.2.: Upgraded hubs, like hub B, have a much smoother health graph, where, as
time progresses and the number of tests increase, the number of failures decrease.

test suite results graph shows that with the exception of a few false positives, the

number of failures holds steady at 4 tests through the end of November 2014. In the

beginning of December, the software on hub B was upgraded, and HUBcheck alerted

the HUBzero team to a con�guration change that caused features on some web pages

to be rendered incorrectly.

The gradually decreasing trend of test failures seen between February and Decem-

ber 2014 is characteristic of Upgraded hubs. Generally, bugs are introduced to the

system at predictable times such as during system upgrades or machine reboots. By

126

monitoring test failures through HUBcheck, the HUBzero team is able to address old

problems over time and quickly stamp out new problems.

8.3 New Hubs

New hubs are the easiest of hubs to identify. Their nightly and weekly test suite

results start o� with nearly zero test failures and over time, new failures rarely occur.

Hubs categorized as New hubs can be reclassi�ed as Upgraded hubs after they go

through a code update cycle. Newly instantiated hubs managed by the HUBzero

team receive a code update on a set schedule of about every month. This strategy

keeps the hubs up to date with bug �xes and contributes to the reduced number of

failures seen in HUBcheck's results.

In 2014, the HUBzero team brought up �ve new hubs. After the initial setup was

complete, each hub's weekly test suite results showed that the number of test failures

was kept at a steady rate, with nearly all failures being categorized as known bugs,

planned failures, or false positives.

Hub C is was one of the �rst hubs to be launched in 2014. Since May 2014, hub

C's weekly suite results graph has consistently reported under seven failures. In June

2014, after additional tests were added to the weekly suite, the number of test failures

rose very slightly due to the identi�cation of known bugs in the HUBzero software.

Through out September 2014 and November 2014, four false positives crept up, but

for the most part, errors identi�ed by HUBcheck have stayed very low since the launch

of the hub.

New hubs start o� with the bene�t of being installed with the latest hub code and

con�gurations. Over time, new features are introduced to the HUBzero software, bugs

are �xed, and the new hubs need to be updated. Consistent updates and automated

tests performed by HUBcheck help keep new hubs working properly.

127

Fig. 8.3.: For New hubs, like hub C, once the setup has completed, the main source
of test failures is known problems in the HUBzero's core software.

128

9. FUTURE WORK

The future of HUBcheck is full of opportunities ranging from core library improve-

ments, to the manifestation of robust test environments, to evangelizing HUBcheck

to the HUBzero Team.

9.1 Library Improvements

The HUBcheck library's shell modules are based on the assumption that tests

will be performed in a tool session container over SSH, but having access to a bash

shell on the local machine could open up alternative ways of running testing cur-

rently unavailable to HUBcheck. With local shell access, HUBcheck could be in-

stalled on a hub and run as a user to perform tests without needing to navigate layers

of authentication, reducing false positives stemming from expired passwords and re-

voked SSH access. The current bash shell module template, hubcheck.bashshell,

builds upon the pexpect module, a Python implementation of Tcl's Expect. The

hubcheck.bashshell module aims to implement an interface similar to that of

the hubcheck.sshshell module, providing the usual send() and expect()

methods, but also provides an execute() method described in Section 6.3.4.

The organization of the HUBcheck library could also be improved. Currently, the

core HUBcheck library, HUBzero speci�c page objects, and tests are all kept in the

same repository and installed together. A better setup would be to install the core

library and allow the HUBzero speci�c page objects to exist in a di�erent location.

This separation would also make it easier for users to build and use their own page

objects while using the core HUBcheck library as a frame for developing automation

scripts. The tests should be installed in a separate location, making them easy to

update and add to without the need to reinstall the whole HUBcheck library.

129

A reorganization of the HUBcheck library should be performed in coordination

with a standardization of the HUBcheck install process. HUBcheck installations

should try to use system libraries whenever possible instead of shipping with its

own copies of libraries to reduce the propagation of security bugs.

9.2 Test Environments

HUBcheck is one piece of the larger testing puzzle that the HUBzero Team is

trying to solve. The placement of HUBcheck in the development cycle is a bit o�.

Right now, it runs on live hubs managed by the HUBzero Team because other available

systems that are used for testing fall short in possessing the properties of a true testing

environment that (1) represents a production environment, (2) is easily reproducible,

and (3) is reliably available. Developers need a test environment they can quickly

launch with a production compatible hub installation, update with a new feature

being developed, and run HUBcheck tests. This falls in line with the goals of the

HUBcheck project of lowering the barriers to adopting better testing practices earlier

in the development cycle.

9.3 Adoption Within the HUBzero Team

Another missing piece to the HUBcheck project is an educational component.

Using and setting up HUBcheck to run is undocumented for the most part. Future

work will include evangelizing for HUBcheck, and better testing practices in general.

HUBcheck is not the correct tool for all problems, but �ts a unique niche within the

hub environment that discouraged testing in the past and left hubs in a precarious

state. The HUBcheck project helps promote one of the core phases in the software

development process.

LIST OF REFERENCES

130

LIST OF REFERENCES

[1] A. Mesbah, A. van Deursen, and S. Lenselink, �Crawling Ajax-based web appli-
cations through dynamic analysis of user interface state changes,� ACM Trans-
actions on the Web (TWEB), vol. 6, no. 1, pp. 3:1�3:30, 2012.

[2] IBM Security AppScan, Feb. 2013 (retrieved February 09, 2015). http://
www-03.ibm.com/software/products/us/en/appscan/.

[3] S. Stewart, Selenium WebDriver, (retrieved February 09, 2015). http://
aosabook.org/en/selenium.html.

[4] Sahi - Web Automation and Test Tool, (retrieved February 09, 2015). http:
//sourceforge.net/projects/sahi/.

[5] M. McLennan and R. Kennell, �Hubzero: A platform for dissemination and
collaboration in computational science and engineering,� Computing in Science
and Engineering, vol. 12, no. 2, pp. 48�52, 2010.

[6] nanohub.org Usage: Overview, (retrieved Oct 02, 2013). https://nanohub.
org/usage.

[7] nees.org Usage: Overview, (retrieved Oct 02, 2013). https://nees.org/
usage.

[8] pharmahub.org Usage: Overview, (retrieved Oct 02, 2013). https://
pharmahub.org/usage.

[9] vhub.org Usage: Overview, (retrieved Oct 02, 2013). https://vhub.org/
usage.

[10] stemedhub.org Usage: Overview, (retrieved Oct 02, 2013). https://
stemedhub.org/usage.

[11] ccehub.org Usage: Overview, (retrieved Oct 02, 2013). https://ccehub.
org/usage.

[12] habricentral.org Usage: Overview, (retrieved Oct 02, 2013). https://
habricentral.org/usage.

[13] molecularhub.org Usage: Overview, (retrieved Oct 02, 2013). https://
molecularhub.org/usage.

[14] purr.purdue.edu Usage: Overview, (retrieved Oct 02, 2013). https://purr.
purdue.edu/usage.

[15] iemhub.org Usage: Overview, (retrieved Oct 02, 2013). https://iemhub.
org/usage.

131

[16] c3bio.org Usage: Overview, (retrieved Oct 02, 2013). https://c3bio.org/
usage.

[17] cleerhub.org Usage: Overview, (retrieved Oct 02, 2013). https://cleerhub.
org/usage.

[18] drinet.hubzero.org Usage: Overview, (retrieved Oct 02, 2013). https://
drinet.hubzero.org/usage.

[19] iashub.org Usage: Overview, (retrieved Oct 02, 2013). https://iashub.org/
usage.

[20] diagrid.org Usage: Overview, (retrieved Oct 02, 2013). https://diagrid.
org/usage.

[21] memshub.org Usage: Overview, (retrieved Oct 02, 2013). https://memshub.
org/usage.

[22] geoshareproject.org Usage: Overview, (retrieved Oct 02, 2013). https://
geoshareproject.org/usage.

[23] catalyzecare.org Usage: Overview, (retrieved Oct 02, 2013). https://
catalyzecare.org/usage.

[24] OpenVZ Linux Containers Wiki, (retrieved Feb 09, 2015). http://wiki.
openvz.org.

[25] Virtual Network Computing, (retrieved Feb 09, 2015). https://en.
wikipedia.org/wiki/Virtual_Network_Computing.

[26] P. Smith, T. Hacker, and C. Song, �Implementing an industrial-strength academic
cyberinfrastructure at purdue university,� in Parallel and Distributed Processing,
2008. IPDPS 2008. IEEE International Symposium on, pp. 1�7, April 2008.

[27] R. Pordes, D. Petravick, B. Kramer, D. Olson, M. Livny, A. Roy, P. Avery,
K. Blackburn, T. Wenaus, F. Würthwein, I. Foster, R. Gardner, M. Wilde,
A. Blatecky, J. McGee, and R. Quick, �The open science grid,� Journal of
Physics: Conference Series, vol. 78, no. 1, p. 012057, 2007.

[28] N. Wilkins-Diehr, D. Gannon, G. Klimeck, S. Oster, and S. Pamidighantam,
�Teragrid science gateways and their impact on science,� Computer, vol. 41,
pp. 32�41, Nov 2008.

[29] D. Libes, Exploring Expect: a Tcl-based toolkit for automating interactive pro-
grams. O'Reilly Media, Inc., 1995.

[30] Selenium WebDriver, (retrieved February 09, 2015). http://www.
seleniumhq.org/projects/webdriver/.

[31] P. Lightbody, BrowserMob Proxy, (retrieved February 09, 2015). http://bmp.
lightbody.net/.

[32] R. Pointer and J. Forcier, Paramiko: Python SSH module, (retrieved February
09, 2015).

132

[33] HAR 1.2 Spec, (retrieved February 09, 2015). http://www.
softwareishard.com/blog/har-12-spec/.

[34] Representational state transfer, (retrieved February 09, 2015). https://en.
wikipedia.org/wiki/Representational_state_transfer.

[35] Curl URL Request Library, (retrieved April 08, 2015). http://curl.haxx.
se/.

[36] D. Burns, Python Browsermob Proxy Library, (retrieved February 09, 2015).
http://oss.theautomatedtester.co.uk/browsermob-proxy-py/.

[37] T. Schlauch, Python client-side WebDAV Library, (retrieved February 09, 2015).
https://launchpad.net/python-webdav-lib.

[38] L. Dusseault, HTTP Extensions for Web Distributed Authoring and Versioning
(WebDAV), June 2007 (retrieved February 09, 2015). https://tools.ietf.
org/html/rfc4918.

[39] M. McLennan, The Rappture Toolkit, (retrieved February 09, 2015). http:
//rappture.org/.

[40] unittest - Unit testing framework, (retrieved Feb 09, 2015). https://docs.
python.org/2/library/unittest.html.

[41] Nose is nicer testing for python, (retrieved Feb 09, 2015). http://nose.
readthedocs.org/en/latest/.

[42] doctest - Test interactive Python examples, (retrieved Feb 09, 2015). https:
//docs.python.org/2/library/doctest.html.

[43] Test �xture, (retrieved February 09, 2015). https://en.wikipedia.org/
wiki/Test_fixture#Software.

[44] xUnit, (retrieved February 09, 2015). https://en.wikipedia.org/wiki/
XUnit.

[45] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of
Reusable Object-oriented Software. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc., 1995.

[46] A. Goucher and F. Cohen, Create Robust Selenium Tests With
PageObjects, July 2011. http://www.pushtotest.com/
create-robust-selenium-tests-with-pageobjects.

[47] Jenkins Continuous Integration, (retrieved Feb 09, 2015). http://
jenkins-ci.org/.

	Purdue University
	Purdue e-Pubs
	Spring 2015

	HUBcheck: Check the hub
	Derrick S. Kearney
	Recommended Citation

	Blank Page

