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ABSTRACT 

Koester, Matthew R M.S., Purdue University, May 2015. A Nearly Autonomous, 

Platform-Independent Mobile App for Manure Application Records. Major Professor: 

Dennis Buckmaster. 

 

 

A major part of modern manure management is accurate application records; a 

key to their creation and maintenance is ease. This project involved the integration of 

existing technologies (smartphones, Bluetooth tags) in mobile web and native Android 

applications (apps) which enable the autogenic creation and upkeep of manure hauling 

records. This approach greatly improves the efficiency of the recording process which 

should help to improve the management of applied nutrients. Features of the app include: 

computation of a suggested travel speed to ensure target nutrient application (based on 

desired application rate and spreading width); minimized keystrokes/screen taps to 

accurately capture data for source, date, time, spreader, operator, georeferenced spread 

path, and field ; and data export for later aggregation and analysis. Autonomous operation 

was facilitated with a Bluetooth capable sensor tag which can automatically detect the 

spreader identity and spreading status (via accelerometer readings). The GPS capability 

of mobile devices facilitated the automatic detection of field and the creation of the 

georeferenced spread path.  

The app was developed in stages and initially developed as a web app; Apache 

Cordova was then used to convert the code into a native app which can operate in the 

Start text 2” below 

top margin 
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background, giving near autonomous operation. This app approach could be readily 

adapted to other field operations in agriculture and related industries. 
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CHAPTER 1. INTRODUCTION 

1.1 Background 

Livestock operations are widely varying in size with some being very large 

(thousands, even tens of thousands of animals); this increases the need for management 

efficiency – including the management of the manure. Manure, when properly managed 

is a resource that can be of great value to cropping enterprises. A major part of manure 

management is the need for accurate and complete manure hauling records – to increase 

the efficient hauling and proper nutrient application and to ensure regulatory compliance. 

This can be a stressful and time consuming task for workers in a livestock operation. 

There are devices and technologies (e.g., smartphones, Bluetooth tags, and CAN bus 

messages) that can help workers and managers with autogenic (autogenic means created 

with semantic meaning without the need for manual human input; Welte, et al., 2014) 

data collection. Recently developed mobile technologies are capable of complex 

applications which automate work orders and other record keeping tasks. By using 

mobile applications capable of running on multiple mobile platforms and synchronized 

with cloud storage of records, the goal of automatically creating and maintaining accurate 

manure application records is within reach. Furthermore, a successful approach with 

automatic records could be applied to many other operations in agriculture, e.g., tillage, 

planting, tiling, harvest, spraying, etc. Accurate creation and upkeep of these manure 
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hauling records will help operations minimize human error, increase labor efficiency, 

decrease tedium, and likely contribute to better crop utilization of the nutrients provided. 

It is normal for operators to forget (or simply choose not) to write things down (generate 

records), for one reason or another; even if it is done, it may not be done in a timely 

manner nor correctly. Apps with autogenic capabilities will not forget nor procrastinate. 

Livestock manure, being a key macronutrient source, should be applied according 

to a nutrient management plan; this logically leads to a certain application speed which is 

related to application rate, load size, and unloading time, and spread width.  

Unfortunately, many livestock operations spread manure at a rate which conveniently fits 

the spreader capacity to a multiple of the length of the field in which application is 

occurring. Application of the proper amount of nutrient to a specific area of land is 

important for the utilization of materials that benefit the yield of crops; but additionally, 

is important for insuring the amount applied is utilized and does not migrate off of the 

land due to run-off when a rain event occurs. Runoff concerns pertaining to the over 

application of nitrates and phosphates can lead to immense environmental effects such as 

the eutrophication of both coastal waters and freshwater sources (Massey and Gedikoglu, 

2011). This can be reduced by imposing nutrient limitations at the operation level.  An 

application which uses N, P, and K nutrient data for a specific manure source to calculate 

the proper rate for the desired nutrient limitation on a current field would be extremely 

helpful and likely contribute to an improved nutrient distribution. 
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1.2 Research Objectives 

This project bridges livestock and crop production systems and will meet a critical 

need for record keeping and decision making. The goal of this research was to develop a 

mobile application (the “Manure App”) with autogenic capabilities. The project proves 

and demonstrates the concept of autogenic applications which can improve data 

collection efficiency data quality, and therefore agricultural systems management. The 

specific objectives of this work were to: 

1. Create a functioning Manure App version 1.0 capable of :   

● Recording a manure application event’s date, time and operator. 

● Recording load and field information. 

● Exporting usable data in the form of a comma separated values (CSV) file. 

 

2. Refine the Manure App version  into version 2.0 which will include all aspects of 

version 1.0 and additionally: 

● Improve the user interface (UI). 

● Use device’s GPS sensor to track load spread path. 

● Utilize the Google Maps application program interface (API) to draw field 

boundaries and show spread path and field completion. 

● Convert the web app into a native app using Apache Cordova open source 

software. 

3. Implement autogenic capabilities into version 3.0 including basic structure and 

polished UI in versions 1.0 and 2.0 with additional optional features of: 

● Minimized user input through reduced tap events on the device required 

for data generation and collection.  

● Utilize web-based database for multiple device syncing. 

● Implement device geolocation to auto generate data based on location 

speed and geo-fencing of field boundaries. 
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● Enable Bluetooth connection to tags installed on spreader to derive 

spreading status, and additionally, quick data gathering of implement 

characteristics.  

4. Evaluate the data collection process and overall management potential : 

● Utilize the app during simulated hauling events to assess functionality.   
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CHAPTER 2. LITERATURE REVIEW 

2.1 Value of Manure 

Manure was considered a valuable commodity long before the use of commercial 

fertilizers (Lemmermann and Hehrens, 1935; Haynes and Naidu 1998). Farmers spread 

manure over their fields to replace consumed nutrients and increase the organic matter 

level in the soil. Using manure for soil nutrient replenishment has sustained agriculture 

for centuries. By the 20th century, some concentrated animal operations in certain regions 

sometimes dealt with manure as a waste material (Nowak, et al., 2005). Manure, when 

managed properly, can be considered a valuable byproduct of livestock operations even 

when compared to the efficiency of additional commercial fertilizers.  

The work of Massey and Gedikoglu (2011) explored the economic impact of 

spreading manure according to three different nutrient limiting practices. First (N-

limiting), investigating the practice of applying manure based on available N in the 

manure and the amount of N that can be utilized by the crop in the next growing year; 

second (P-limiting), applying manure by limiting the amount of available phosphorus that 

the crop can utilize in the next growing year; and third (P-banking), applying manure at a 

rate that allows a buildup of phosphorus to a level that can be utilized by the subsequent 

crops raised on a given piece of land before the next application event occurs. For 

example, using N as the limiting nutrient for application on maize would mean that one 
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would apply manure at the rate that the crop will use for the desired yield. Using P as the 

limiting nutrient is generally more restrictive which requires more land. As a 

consequence, P-limiting requires more labor and machine time due to further travel and 

more time in the field spreading manure.  P-banking is similar however, it takes into 

account the phosphorus utilized by the subsequent years crop. P-banking is a logical 

approach when considering a maize/soybean rotation. Manure application would occur 

before the planting of maize, the growing season would take place and then harvest of the 

maize would take place. Soybeans would then be planted and harvested. P-banking would 

allow the manure to be applied at the rate of N utilized by the maize and then the 

remaining P would be utilized by the soybeans. Application rates would be based upon 

the amount of N utilized by the coming crop but allowing P to build up for the next 

growing season. Their (Massey and Gedikoglu, 2011) work found that P banking was the 

most profitable and that manure can have an economic benefit which offsets the expense 

of the purchase of artificial fertilizers. Manure was applied to 1600 acres of land using 

the P-banking method of limiting nutrients with a net economic advantage of $2,178. 

This value was purely due to the savings incurred from applying manure rather than 

buying commercial fertilizer. This value does not reflect any other benefits that manure 

has on the soil profile such as: improved microbial activity and increased amount of soil 

organic matter.  

  Utilizing manure’s true value (as well as properly determining application rates) 

requires testing the nutrient content since nutrient content varies due to the livestock 

feeding regimen, and storage and application handling practices. Manure type, storage 

system and application practices can be used to get an estimate of nutrient content for 
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proper application (Moore and Gamroth, 1993), but sampling and testing are 

recommended. The following tables show the estimated amount of manure and contained 

nutrients created by various animals each day and the percentage of remaining nutrient 

levels based on manure storage and application practices (Moore and Gamroth, 1993). 

Table 1: Estimates of total production and contained nutrients in manure from various 

animals (Moore and Gamroth, 1993). 
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Table 2. Percentage of original manure nutrients remaining for crop utilization with 

various storage types (Moore and Gamroth, 1993). 

 

 

There are other tools available on the Web that use specific material data to calculate the 

net worth of manure nutrients (University of Michigan Extension, 2013; UNL Water, 

2014; Ohio State University Extension, 2009).  

Manure application has been shown to increase the organic matter (OM) in soils.  

Haynes and Naidu (1998) showed, in arable soils with OM content beginning at 

approximately 26 Mg ha-1, that regular application of farmyard manure at a rate of 35 Mg 

ha-1 (15.6 tons acre-1) for a period of 140 years saw an exponential increase in organic 

matter. This plot had in excess of three times the amount of OM in the soil profile than 

plots that had no manure applied on them over this period of time. The manure applied 

plot had reached over 75 Mg ha-1 (33.45 tons acre-1) OM in that time period. Comparing 

OM content with another plot that had manure applied for 19 years (from the years 1852 

to 1871) with no more manure applied from 1871 to 1986, the soil OM reduced but at a 

slow rate. After 104 years with no manure application, the OM in this plot was still 

significantly higher than in plots that had no manure applied during the 140 years.   
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 Nitrogen alone can have a beneficial impact on soil’s creation and maintenance of 

soil OM. By applying nitrogen to soil with a high level of plant residue enables soil 

microbes to utilize the added nitrogen to assist in the breakdown of plant residue with 

high carbon to nitrogen ratio. Gillespie, et al. (2014) determined effects of N source on 

soil OM in soils growing maize; the soils with manure applied had significantly more soil 

OM. The soil samples were taken from a long-term test plot initiated in 1992 with 

continuous implementation of five treatments, including: 

●  Maize with no N applied 

● Maize with N applied at 200 kg ha-1 as ammonium nitrate (NH4NO3) 

● Maize with manure applied at 100 Mg ha-1 of wet weight composted dairy manure 

● Maize and soybean on a two year rotation with no added N 

● Land left in fallow with no fertilizer applied.  

Soil samples were taken in 2009 and found that the treatments with the highest levels of 

soil OM were the: maize with commercial fertilizer applied N having an soil OM of 18.4 

g kg-1, and soils with applied organic manure had a soil OM level of 54.0 g kg-1. Manure 

applied soils had the greatest measure of OM (Gillespie et al., 2014). 

2.2 Manure Plans and Records 

 In recent years, there has been a rise in concern with the over application of 

manure, as well as fertilizers and other chemicals on tillable land. Over application of 

manure has been found to lead to negative environmental effects from large amounts of 

nutrients migrating off of the land. Over application of manure can also result in 

inefficient use of the manure’s nutrients. When manure is over applied, there is also an 

opportunity cost; those nutrients could have been properly utilized by other crops had the 
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manure been applied over a greater area. The practice of applying nutrients from manure 

and other sources at rates matching uptake will reduce environmental damage and 

improve profitability of cropping operations.  

2.2.1 Existing Manure Management Tools 

In order to document the amount of nutrient applied during manure application, 

keeping accurate manure application records are needed. Purdue University’s Agronomy 

department has developed a Windows-based computer program called the Manure 

Management Planner (MMP) (MMP, 2014). This program allows the farmer to input 

information about the animal type, storage practices, field data for the planned 

application location, and information about the coming crop that will be utilizing the 

applied nutrients. The MMP uses the input data to determine if land area can 

accommodate the amount of manure generated, seasonal land availability, and manure 

storage capacity. It also checks the sufficiency of manure application equipment to apply 

the type and amount of manure generated by the operation.  

 The University of Nebraska has developed a manure management mobile app 

capable of calculating the value of manure nutrients applied. The app has three steps that 

the user can work through to gain the most accuracy in the calculation process (UNL 

Water, 2014). First, calculate the amount of material spread by inputting the specific 

implement characteristics. Second, calculate the amount of agronomic nutrient contained 

within the manure by looking up the book value or using manure test values. Third, 

calculate the economic value of the manure. The app keeps a history of past manure 

entries and uses email to export one entry or the entire list of entries. The Manure 
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Calculator is available on iTunes and Google Play store for a fee of $0.99 (UNL Water, 

2014). 

 Larry Theller (Larry Theller, Purdue Agricultural & Biological Engineering, 

personal communication, 10 April 2015) is currently developing INFertMapper, a mobile 

app that enables farmers to visualize regulation defined setbacks for clear indication of 

where fertilizer should not be applied. The app is supposed to help operations understand 

and comply with Indiana regulations on fertilizer application near sensitive 

environmental areas (public water supply, surface waters, sink holes, water wells, 

drainage inlets, property lines, and public roads). INFertMapper also calculates the total 

area of application surface and creates a suggested application rate. The project includes 

the development of a related web app for added functionality of tasks using a PC while 

keeping the mobile app version simple and easy to use.  

 A web tool was created by the University of Minnesota that calculates the value 

of manure on a given operation based upon their livestock, manure storage practices, type 

of bedding used, and application practices. The tool is in spreadsheet format and 

compares the cost of fertilizers purchased for an operation with and without the 

application of manure (University of Michigan Extension, 2013). 

A spreadsheet tool for calculating manure value has been developed by the 

University of Nebraska-Lincoln and is available for free download (UNL Water, 2014). 

The tool accepts user input data based on the available nutrients in the manure and 

additionally, the soil nutrient content in the fields that are planned for manure application.  

Ohio State University Extension has developed and made available a spreadsheet 

tool that calculates the desired manure application rates and the value of the manure 
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contained nutrients based on user input (Ohio State University Extension, 2009). The tool 

requires input of crop, expected yield for calculating the application rate. Manure nutrient 

data is calculated based upon input source nutrient values. 

Using existing manure planning and rate calculation tools enable the creation of 

accurate manure application rates and records. Keeping accurate and up-to-date manure 

application records benefit the operation in documenting the total nutrient application to 

each field, improving nutrient utilization, and reporting for maintaining regulatory 

compliance.  

2.3 Regulatory compliance 

Regulatory compliance is one of the main motivations for keeping accurate manure 

hauling records. There are both federal, and state regulations with which livestock 

operations must comply or fines can be imposed up to $27,500 per day for willful or 

negligent violations (Meyer and Mullinax, 1999), and criminal fines range from $5,000 to 

$50,000 per day and up to three years in prison (Ess, et al., 1996). Keeping complete and 

accurate manure hauling records are key for maintaining regulatory compliance and is 

required under law (Code, 2012a). The completion of a manure management plan is part 

of gaining approval for the construction of a Confined Animal Feeding Operation 

(CAFO). CAFOs in Indiana are defined by the numbers threshold of (IDEM, 2015): 

● 700 mature dairy cows 

● 1,000 veal calves 

● 1,000 cattle other than mature dairy cows 

● 2,500 swine above 55 pounds 
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● 10,000 swine less than 55 pounds 

● 500 horses 

● 10,000 sheep or lambs 

● 55,000 turkeys 

● 30,000 laying hens or broilers with a liquid manure handling system 

● 125,000 broilers with a solid manure handling system 

● 82,000 laying hens with a solid manure handling system 

● 30,000 ducks with a solid manure handling system 

● 5,000 ducks with a liquid manure handling system 

In order to gain approval for the construction or expansion of a CAFO, the owner must 

submit a complete manure management plan. The manure management plan must consist 

of: manure nutrient test data, planned area application soil fertility test data, soil test 

frequency (minimum of every four years), manure test frequency (minimum of every 

year), and any other practices conducted for the proper management of facility created 

manure (Code, 2012a). The manure management plan includes the keeping of accurate 

manure application records. The application records must contain specific information 

and are required to be kept and maintained by the owner/operator of the CAFO. 

Information that must be documented for in manure application records include (Code, 

2012b):  

 Expected Crop yields. 

 The date of manure application occurred to each field. 
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 Precipitation events at the time of application and 24 hours preceding and 

following application. 

 Test method used to analyze manure nutrients and soil fertility. 

 Results from manure and soil testing. 

 Explanation of the basis of determining manure rates to be applied. 

 Calculations used for determining application rates. 

 Total amounts of nitrogen and phosphorus applied to each field, including 

documentation and calculations used to determine totals. 

 Method of application. 

 Dates of equipment inspections. 

 USDA soil survey maps of land application sites. 

 Type of manure applied. 

 Written conservation plan explaining the practices used completed prior to 

application to on if applying manure to highly erodible land. 

The required record data is extensive and must be completed and documented in the 

operation’s maintained manure application records. There are multiple manure record 

documents available from IDEM (see Appendix B) that can be used for the input of the 

specified data (IDEM, 2015). It appears that manure application records, aggregated by 

“load” will suffice and therefore, that is the aggregation level target of this work   
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2.4 Manure Spreading Calibration 

 Calibration is necessary to ensure the proper application rate of manure with a 

spreading implement. Knowing the rate at which the implement discharges the applied 

material, how much material is loaded into the spreader, and the width of the spread path 

under specific conditions are a few of the key factors that are needed for proper 

application. In order to determine the application rate (tons acre-1 or Mg ha-1), one can 

utilize common rate equations to calculate the speed of travel required to achieve the 

desired rate for a given spreading implement. By taking the equation for field capacity 

one can determine the most appropriate travel speed given the characteristics of the 

implement (Field and Solie, 2007 pp. 124 - 126). 

𝐶𝑎 =
𝑆∗𝑊

8.25
                (eq. 1) 

Where: 

Ca = area capacity (acres/hour) 

S = Average speed of travel (mph) 

W = Effective width of the implement (ft.) 

 

This equation was used to solve for recommended speed of application having known the 

desired application rate and the time required for the implement to unload the contained 

material. The edited equation is as follows: 

 

𝑆 =
(

𝐶𝑡
𝑇𝑚

)∗8.25∗60

𝑊∗𝑅𝑑
  (eq. 2) 

Where: 
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Ct = Weight capacity of the spreading implement (tons) 

Tm = Amount of time the implement needs to fully unload (minutes) 

Rd = Desired rate of application (tons/acre) 

 

Alternatively, one can derive an approximate application rate by taking a measure of the 

spread path distance, the spread width, and total amount of material applied to calculate 

the rate of application; since this requires information from an actual spreading event, this 

is most applicable after the application process has occured. The approximate capacity of 

a spreader can be found in manufacturer’s specifications; however, more accurate data 

requires (ideally) weighing or alternatively computing volume and measuring density.  

Determining the volume of the spreader is fairly straight forward using the diagram of 

Figure 1.  Additionally, in the absence of actual manure density data, the data of Beegle 

(2003) in Table 3 could be used for approximation. 
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Figure 1: Diagram showing different spreader types and the accompanying calculations 

for determining amount contained (Beegle, 2003). 
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Table 3 Common manure conversions (Beegle, 2003) 

 

 

2.5  Georeferenced Manure Application 

The concept of georeferencing manure application maps is not new. The work of 

Ess, et al. (1996) developed a system for site specific variable rate manure application. 

This was accomplished by installing a developed flow control and recording system onto 

a pull type manure set up for injection of liquid manure. The created system was able to 

generate as applied georeferenced application maps using commercial software. 

Additionally, the system used geographical information system (GIS) software for the 

creation of field boundaries. These field boundaries could then be displayed on the tractor 

monitor. As application occurred, the system constantly monitored ground speed, 

flowrate, and position. The information was combined to create as applied maps using 
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Rockwell Vision®. The system was able to create and display georeferenced application 

maps using differential GPS installed in the tractor.  

 

2.6 Sample Applications That Expand Mobile Device Functionality 

 There are multiple applications that have been developed with the purpose of 

mobile location reminders and are currently available for free or for a small fee. IPhones 

running iOS 4 and later (nominally 2012 and later) have location based location services 

with location reminder capabilities built into the operating system (Apple, 2014). These 

apps and OS enable a mobile device to remind the user of predefined task based on the 

location of the device. For example, an individual with an IPhone 5 tells Siri, the mobile 

device’s voice command interface, to remind them to pick up milk from the store when 

they drop of their children at school. Provided the device has the location of the school 

stored, once the device is within a predetermined range of the school location, the device 

will notify the user that they need to go buy milk from the store. This capability is 

included on iOS devices, but other devices can gain these capabilities on their devices by 

downloading similar apps from their respective app stores.  

Geobells is a location reminder app available on the Google play store that 

enables the customization of the device based on the location (Geobells, 2015). This app 

allows the user to see all reminders on the map as well as customize device settings like 

the silencing of the device when entering a movie theater or church. 

 Geofencer is an Android app that is very similar to the Geobells app with added 

user control for power users (Geofencer, 2015). Users can set as many locations for 

geofences as they want and accompanying notifications. Each location geofence radius 
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size can be edited by the user to change the distance to the location that will trigger the 

user-created notification. The app uses the Google Geofence API to turn a specified 

Lat/Lng point into and notification trigger once a distance from the point is specified. 

Once the user is within the specified distance, the app triggers a notification. 

 Agent is another Android app that changes the user settings of the user’s mobile 

device based upon the current activities of the user (Agent, 2015). The Agent app screens 

calls at night when it knows the user is sleeping, sets a marker on the a map when the 

user parks their car to help the user remember where they parked, responds to texts and 

reads out loud incoming messages when the user is driving, and automatically silences 

phones during predetermined meeting times created by the user.  

The Automatic App is an application that pairs the user’s mobile device to a link 

that plugs into the diagnostic port which is standard in on-road vehicles since 1996 

(Automatic Labs, 2015). This port enables the harvesting of data from the user’s vehicle 

that can then be used for driving analysis and coaching for better fuel economy 

achievement. By observing the driving style of the user and receiving data on fuel 

consumption from the vehicle’s CAN, the app provides information on the driving 

statistics and suggestions for future improvement at the end of each trip. Additionally, the 

app has a safety feature built-in with the capabilities of calling for help when an accident 

occurs. The app can also decode check engine light codes for the user, coach new drivers, 

and help users remember where they parked their car. 

The same functionality that enables many apps to remind users of tasks or change 

phone notification settings based on the user’s current location could be utilized in data 
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collecting apps; recording operational data based on the users location and operation is 

often the goal. 

 

2.7 Minimizing User Input 

The work of Welte, et al. 2013 considered the importance of UI development as 

well as the ability to have autogenic functionality in mobile applications for agriculture. 

A suite of collaborative mobile applications called the Open Ag Toolkit (Open Ag 

Toolkit, 2014) were developed for the improvement of current Farm Management 

Information Systems (FMIS) design and operation data collection. On-farm data 

collection usually consists of hand written notes that in small notepads that can easily be 

lost or damaged rustling around inside a tractor cab or on vehicle dashboards. Useful 

apps that can replace the handwritten notes of the past are fairly easy to develop with the 

added benefit of multiple device synchronization of data, and the ability to back-up data 

for safe storage. However, creating an app that farmers will use is much more difficult. 

Most people will not use mobile apps for data entry if it appears to take more work, a 

higher learning curve, and longer entry times (Welte, et al., 2013).   

 Autogenic data collection capabilities were also a focus of app development. 

Mobile apps developed with the intent to be part of a FMIS could assist in the data 

collection efficiency.  Welte, et al. (2013) suggested the use of inexpensive wireless 

Bluetooth sensors that could be installed around the tractor and implement for assisting in 

the autogenic data collection. Bluetooth is a low energy wireless communication standard 

for reliable communication up to distances of 100 meters and is used with many existing 
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apps for pairing with other devices to transfer data pertaining to voice, music, photos, and 

data (Welte, J., 2014). 

 Manure application is a fairly involved task, operators need to be focused on the 

task in order to operate the machinery to apply nutrients at the proper rate. An app with 

autogenic capabilities to minimize user input needed to generate accurate and complete 

manure application records would benefit operators, keeping their attention on the 

application task. 

 

2.8 Developmental Tools 

2.8.1 Application Program Interfaces and Libraries 

There are multiple free tools that can be utilized in the effort of developing web 

apps capable of serving complex tasks. In addition to the basic development tools of 

Hypertext Markup Language (HTML), Cascading Style Sheets (CSS), and JavaScript, the 

basic three elements of web development; there are other tools that can be utilized in the 

effort of creating more functionality while reducing the challenge of development. jQuery 

is a JavaScript library that enables developers to lessen complexity of, and write less, 

code for the development of web app functionality (jQuery, 2015). jQuery Mobile is a 

framework that utilizes jQuery and creates the ability to make web pages appear to have a 

similar appearance and functionality to native applications on iOS and Android (jQuery 

Mobile, 2015). Google maps API is another tool for the proverbial web development 

toolbox. With the Google Maps JavaScript v3 API, one or multiple Google map tools are 

available for embedding within the app. This is enables the use of drawing polygons on a 

map, calculating the area of a field, drawing georeferenced polylines on a map, viewing 
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field location, etc. (Google, 2014). Many capabilities that come with the Google maps 

API can easily be manipulated for uses in agriculture. 

New application development tools have been created to enable the creation of 

native applications using web development platforms. Apache Cordova/PhoneGap is an 

open source API framework that enable app developers to create an application one time 

using basic web development file format and logic (HTML, CSS, and JavaScript 

libraries), converting these files into native apps using the targeted platform’s (Android, 

iOS, Blackberry, and Windows) software development kits (SDK) (Cordova, 2015). 

Being open source, Cordova software is openly available to the public free of charge. 

Converting a web application into a native app enables the program to run on the device 

without an internet connection and gives the app greater access to sensors integrated into 

the mobile device (i.e., GPS based location, accelerometer, Bluetooth communication, 

etc.) Additionally, native apps can run in the background allowing the app to run without 

interruption in the event that the mobile device is used for another function (make calls, 

use of other apps, and internet browsing, etc.). Utilizing this development strategy can 

streamline production of apps across platforms because they can be created one time and 

then “converted” or packaged to alternative mobile platforms. Traditionally, apps were 

developed separately for each platform requiring multiple developers for completion. 

Using Apache Cordova to convert a web application to native apps gives the app 

increased functionality and drastically reduces development time.  

The use of Bluetooth connectivity is popular with app development due to its 

ability to connect a mobile device to multiple other sensors for expanding the capabilities 

and usefulness of the device. Evothings Studio is a tool that that helps developers create 
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apps for the Internet of Things (IoT) quickly with example files for quickly copying code 

for connecting to sensors and manipulating data (Evothings Studio, 2015). Additionally 

Evothings Studio incorporates a workbench for quickly connecting the app under 

development for debugging and diagnostics. Example apps are available for quickly 

developing apps in HTML, CSS, and JavaScript for conversion into native applications 

using Apache Cordova. 

2.8.2 Hardware 

 The Texas Instruments CC2541 sensor tag (Figure 2) is a Bluetooth low-energy 

(BLE) tag that is capable of connecting to a mobile device with the purpose of 

transmitting contained sensor data for extending application functionality (Texas 

Instruments, 2015). The sensor tag includes six sensors inside a rubber shock resistant 

case. The sensor tag contains an IR temperature sensor, a humidity sensor, a pressure 

sensor, a 3-axis accelerometer, a 3-axis gyroscope, and a magnetometer. Having these 

sensors built into a device capable of Bluetooth communication with mobile smart 

devices creates many opportunities for innovative tasks to be accomplished using this 

technology. The Texas Instruments CC2541 sensor tag comes as part of a development 

kit available for the purpose of creating applications that use the tag for seamless 

integration of the sensor’s output with a mobile smart device. Texas Instruments has 

made libraries available with source code for iOS and Android development.  
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Figure 2: Texas Instruments CC 2541 Sensor Tag (approximately actual size). 

 

The ISOBlue project is an open source project that began at Purdue University out 

of the growing necessity to access machinery data the CAN bus on agricultural 

equipment (ISOBlue, 2013). Access to “raw” data gives farmers more control over their 

data and increases opportunities and flexibility to use the data within aggregating and 

analytical tools of their choice. As systems exist currently, use of the data for decision 

making and record keeping is constrained by software compatibility. The ISOBlue 

hardware (Figure 3) attaches to the tractor’s controller area network bus (CAN Bus) via a 

diagnostic port and logs the parameter group number (PGN) as well as the data. The PGN 

identifies the message content (e.g., start power-take-off (PTO) shaft, activate hydraulic 

channel one, increase engine RPM, etc.) 

The ISOBlue unit can then connect to a user’s mobile android device via 

Bluetooth connection, and can then transfer this data to the device and/or cloud storage 

for later use (see Figure 3).  
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Figure 3: Implementation of ISOBlue with a Tractor's CAN Bus (ISOBlue, 2014) 
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CHAPTER 3. METHODS 

3.1 Functional Specification and Interface Design 

 The development of the Manure App was conducted in three stages (versions 1.0, 

2.0, and 3.0) in order to be more efficient in the creation of the app and to make room for 

improvement of the app along the way. It was logical to expect changes in the direction 

of the app as new techniques were made known and new tools become available. 

Versions 1.0 and 2.0 were not created with the intent of them becoming publicly 

available tools; they were created for the purpose of achieving each tier of the 

development process and reassessing the next version’s developmental goals. Version 1.0 

would be developed purely as a web app hosted on a web server only accessible in a 

mobile device’s browser, while Version 2.0 would be converted into a native application.  

Version 3.0 was developed to be a publicly distributed product also shared as an open 

source project. Following this step-by-step development procedure allowed the 

development to be continuously focused on one outcome making for a more efficient and 

productive developmental process. 

Before the development process began, a functional specification was created. A 

functional specification helps with the project focus; it identifies specifically what the 

tool should do for those who will be using it (Spolsky, J., 2000a). A clear definition of 

the targeted user group(s) ensures that the end product accomplishes the original goal and 
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functions in a way that the user group(s) find useful. User stories were developed to 

create different scenarios in which the users will be using the app; this tightens the focus 

onto individuals that will be using it in their everyday operations. The functional 

specification also includes a clear definition of the applications objectives for each 

version developed, keeping the development focused on multiple tiers of development 

(see Appendix A). 

With specific use cases laid out in story form as the functional specification leads 

logically to mockups which help visualize the usage of the working app. The visuals of 

the proposed UI aid the development process by enabling the approval of UI before any 

code has been written. This practice reduces the headaches that occur late in the 

development process when (sometimes huge amounts of) code would need to be edited in 

order to change the UI (Spolsky, J., 2000b). Mockups were created using Balsamiq, an 

online UI mockup generator (Balsamiq Mockups, 2013). 

Using Balsamiq, mockups were created displaying a proposed UI. A key aspect of 

the Manure App design is the “Dashboard” – a main screen of the app that would impart 

the most important information to the user at a glance (Figure 4). Based on the field 

(which includes a desired spread rate) and spreader chosen, the dashboard displays a 

suggested speed of application.  From this view, the user can commence data recording 

by tapping the start spreading icon. The dashboard provides valuable information on the 

current progress of the spreading task: cumulative number of loads applied to current 

field, cumulative number of loads removed from source, current fill level of the load 

being spread, and speed. Keeping the more input heavy tasks required for the 
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functionality of the app on other pages helps keep the dashboard less cluttered; this helps 

the operator to stay focused on the task of manure application.  

 

Figure 4: Approved UI Design of the Manure App Main Page/Dashboard.  

Additional UI mockups were created to display the task of adding in data objects 

that will be used for generating manure application records. The Manure App contains 

multiple pages, each containing a list of objects under each category: field, spreader, 

source, and operator. Each page will display as many of the elements as the user has 

created. Figure 5 shows the desired layout of the spreader list and the navigation to 

adding or editing a spreader object. The mockup shows the ability to add or edit a 

spreading implement for use in application events. Mockups were not created to display 

every function of the app, but the ability to add an edit manure sources and operators will 

be the similar in structure and function. 
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Figure 5: Showing Spreader selection (a), spreader chosen for editing (b), and editing 

spreader description data (c.). 

 

 Later versions of development (versions 2.0 and 3.0), will have the ability to 

include field boundaries. Mockups were created showing how the user could navigate to 

the add field boundary tool in the manure app (see Figure 6). 

 

Figure 6:  Field selection (a.) and drawing a field boundary (b.).  

a. b. c. 

b. a. 
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 The stored and selected objects will be combined to create the manure application 

record. Each time the user applies a load of manure the Manure App will combine all 

information from each spreader being used, the field in which application is occurring, 

source manure nutrient information, and operator conducting the operation. The app will 

display each manure application in a table displayed on a separate manure record page in 

a table format. The record page of the app is the location where the user will be able to 

export their manure records in a CSV format (see Figure 7).  

 

Figure 7: Draft of generated manure record data. 
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3.2 Brief Introduction to Web Development 

 This project uses basic web development techniques. For the sake of being 

thorough, a brief overview and example code was created for the reader to understand the 

basic requirements of developing a web application. The overview will cover the 

different file types that are used and how they are combined to create a web application. 

3.2.1 Hyper Text Markup Language (HTML) 

The HTML code contains the main foundation of the app’s UI in the form of 

HTML tags (HTML, 2015). These tags are specific elements wrapped inside less than 

and greater than signs : <tag element> which tell the browser the contents of the web 

page: 

<html> 

 Contents of the web page/app. 

</html> 

 

All elements contained within the opening and closing html tags are what the browser 

sees and generates into a web page/web app.  

The body tag (<body>) is the portion of the HTML file that will all become the 

UI of the app being developed. At the end of the HTML file when the UI has been 

completely created, the body tag must be closed : </body>. Each portion of the UI is split 

up into divs, indicated by an HTML tag (<div>); these are divisions (divs) that enable 

elements to be displayed in specific locations on the screen (HTML, 2015). 

Divs are given an id for later referencing to JavaScript or jQuery functions for UI 

updating. Within each div, other HTML tags are placed depending on what the divs’ 

purpose will be in the UI. For example, the div containing the icons for “start spreading” 

and “stop spreading” would look like: 
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<html> 

<body> 

<div id="unload_div"> 

<input id=”rateInput” type = “text” id="rate" Pause</button> 

<button id="start " onclick="loadComplete()"></button> 

</div> 

</body> 

</html> 

 

The above div is placed within the body tag of the html file and has an id of 

“unload_div”. The div contains two html elements with ids of “rateInput”, and “start”. 

The input tag needs an accompanying type specified because there are multiple types of 

defined inputs in HTML. The input type is “text” creating a text box for user input. The 

button tag tells the browser that it is a button element and contains an “onclick” event. An 

onclick event gives the button functionality by calling the specified JavaScript function 

(startUnload) each time the button is pressed. 

3.2.2 JavaScript 

 JavaScript is a popular web development programming language which can 

modify HTML pages, execute code on events (mouse clicks movements, and keyboard 

inputs), and send requests to servers without reloading HTML pages (JavaScript, 2015). 

Since jQuery is a JavaScript library, an example will only cover the use of JavaScript 

functions due to their similarity. JavaScript, implemented with HTML, gives a web app 

or web page functionality. The example HTML contains a button that calls a specified 

JavaScript function. For the sake of this example, the function is related to what the 

Manure App will do when the “Start Unloading” button is pressed. The JavaScript 

functions can be created in the HTML file as long as the code is wrapped within HTML 
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tags and is identified as script tags (<script>JavaScript Code</script>). An example 

JavaScript function created in an HTML file would look like this: 

<script> 

 function startUnload () { 

  gathers user data 

  records gps location 

  places all data in browser storage for later queries 

 }; 

</script> 

 

The example code is created by first stating that it is a function, the following variable 

(startUnload) is the name of the function followed immediately by an opening and 

closing parenthesis: (). This has created a function that can be called in whatever manner 

that the developer desires. Directly after the creation of the function, there are opening 

and closing braces: {contained code}, any JavaScript code contained within these braces 

will be returned when the function is called. 

JavaScript arrays are another key aspect of web development. Arrays allow web 

browser to order variables inside brackets that can be added to other arrays or queried for 

specific data. JavaScript Arrays are created by defining a variable and setting it equal to a 

set of open and closing brackets. 

var array = []; 

JavaScript objects that have been created using user input data can be stored inside arrays 

for use in the apps functionality or stored in the browser’s local storage. An example of 

an array storing specific spreader data in the Manure App would be created in this 

manner: 

var spreaders = [{“Name”: Kuhn1, “Capacity”: 20, “Unit”: tons, “SpreadWidth”: 30}]  
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The spreaders array contains an object of user created spreader data. Formatting the data 

in this manner helps keep the data in order and simplifies access.  If the user added 

another spreader to the Manure App, the the array would then contain two objects. 

var spreaders = [{“Name”: Kuhn1, “Capacity”: 20, “Unit”: tons, “SpreadWidth”: 30}, 

{“Name”: Balzer, “Capacity”: 4800, “Unit”: gallons, “SpreadWidth”: 30}]  

 

To return a specific value from the array and the order of which the values have been 

added is known, the returned value of “Kuhn 1” could be returned by the following code: 

var first spreader = spreaders[0].Name; 

spreaders[0].Name refers to the first object in the array (count starting at 0) and is 

followed by the variable of interest (Name) to identify the object to be returned. If the 

order of the array is not known, a “for loop” must be used. For loops are used in 

JavaScript to query through arrays to return an object containing a value. For example, if 

an entire JavaScript value needs to be returned for adding to the records array and the 

only value that is known is the name of the object (Kuhn1), the array can be queried 

using a for loop 

for (var i = 0; i < spreaders.length; i++) { 

 if (spreaders[i].name === “Kuhn 1”){ 

var returned spreader = spreaders[i]; 

  break; 

}; 

}; 

   

The above code returns the entire object that contains “Kuhn 1” referred to in the array by 

“Name”. The returned object would look like: 

{“Name”: Kuhn1, “Capacity”: 20, “Unit”: tons, “SpreadWidth”: 30} 
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This overview illustrates the JavaScript functions and variables used in development; the 

JavaScript adds functionality to web development projects.  

3.2.3 Cascading Style Sheets (CSS) 

 CSS is a language that enables the editing of the UI appearance that has been laid 

out in the HTML file (CSS, 2015). CSS gives the developer the ability to: select the color 

of the web page/web app and all contained elements within the HTML file, change the 

aspects of the layout, and enhance the style and size of text font. There are many ways 

that CSS can be used to customize specific elements of the UI. CSS consists of selectors, 

properties and values.  

Selectors point to a specific element in the HTML file. By using the selector of a 

specific div, like the one created in the HTML file example; CSS can be used to 

customize the div. Immediately following the selector is an opening and closing braces 

(similar to a JavaScript function) that contains the styling properties to be imposed on the 

selected HTML element (see CSS Example). Each property is given a value as a measure 

of what level or selection of the desired outcome of each property. There are many 

properties that can be used for customizing HTML with CSS. For the sake of brevity, an 

example was created but the only a few methods of customization were included. 

   #unload_div{ 

    width: 100px; 

    height: 100px; 

    background-color: red; 

    margin: 10px; 

} 

 

The CSS code in this example shows that the selected element to be customized is the 

unload_div (created in the HTML example). The properties that will be customized are 
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the width of the div, the height of the div, the background color, and a margin 

surrounding the div (dimensions are pixels).  

 There are many more HTML, Javascript, and CSS code types and functions 

involved with web pages and applications, but these examples provide an introduction to 

the purpose of each file and language type which combine to accomplish the desired 

outcome in web and app development. The final version of the code developed for this 

project is available for download at: https://github.com/OpenATK. 

3.3 Development of version 1.0 

The goals for version 1.0 of the manure app was to create a functioning web 

application capable of recording manure hauling events with the user tapping the 

start/stop status of the manure app to begin the data recording process and the specific 

data that goes along with each load applied including: time and date, amount applied, and 

operator conducting the operation. Since this version is a web application, the goal for 

data exporting was to enable the app to download the stored data files as a CSV file 

directly into the user’s device download folder. Records acquired this way can be 

exported easily by email or connecting the device to a computer for spreadsheet viewing 

and utilization.  

The Manure App was developed using the most common web development 

techniques including: HTML5, CSS3, and JavaScript as outlined in previous sections. 

Additionally, jQuery was used to help minimize total code required for complete 

functionality of the app. jQuery Mobile has built in styling for the rapid creation of 

functioning web applications; its use greatly reduced the complexity and duration of 
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development because it can quickly generate an app like UI. Any changes needed for the 

forms, inputs, and buttons, were edited after the fact in the CSS file of the project folder. 

The app was hosted on GitHub pages (GitHub, 2015). GitHub is a code 

development collaboration tool that allows teams of developers to place code in one 

location while the developers edit the project. Additionally, GitHub allows users to host a 

project as a webpage.   

3.3.1 UI Development 

The UI of the main screen or Dashboard was created by setting up divs with 

specific sizes and location to be generated, displaying data fashioned after the mockups 

created prior to development. jQuery Mobile was used to create a web page with 

appearance and functionality of a mobile app. Once jQuery mobile was loaded into the 

HTML file, the inputs and buttons took on the styling created by the jQuery mobile 

framework. This sped up the development process and reduced the workload required for 

the styling of the web app.  

The Dashboard was created by placing button elements in the previously created 

and customized divs (see Figure 8 a.). The Dashboard is split in two horizontally, making 

the selecting of the spreading objects in the top half of the Dashboard; and buttons 

controlling the spreading action located at the bottom. Within the object selection div, 

button elements were created with the ability to navigate to other pages. When tapping 

the spreader icon, the app will take the user to the spreader page where the user can select 

the spreader in use, create a spreader implement, and edit existing spreaders. The same 

process will occur for the other user selected data (field, source, and operator).  
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The bottom of the Dashboard is the location of the icons that the user will press to 

begin and end the manure application data collection process, creating a manure 

application record. The icon was created by inserting a button tag in the HTML file 

calling the JavaScript function, startUnloading. Once the startUnloading function has 

been called, the button is updated to become the ‘Load Complete” button. By tapping the 

“Load Complete’ button, the data of all currently selected object data is stored into a 

JavaScript object becoming a new manure application record accessible from the records 

array. The JavaScript that handles the collection and placement of user input will be 

discussed further in the next section.  

There are key pieces of data (input) required for the Manure app to create 

complete and informative manure hauling records: spreader characteristics, field name 

and description, manure source, and operator name (see Figure 8 b.). Each object must be 

defined and specific data must be stored in the app for later calculations. Adding a 

spreading implement, for example, requires the user to first add specific data defining the 

following characteristics: capacity, spread width, and type (right, left, rear discharge, or 

injection). These pieces of information are an important aspect of a spreading operation 

that should be stored in the record space; but also important for accurate calculations for 

proper application rates. 

 Separate pages were generated in the app by creating multiple divs containing text 

and numerical input elements for collecting data pertaining to specific user defined 

objects. Once again, using the spreader input as an example, an HTML div was created in 

the HTML file containing the following input tags: 

<div id = “SpreaderInput”> 
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<input id =”sprName” type = “text” /> 

<input id = “sprCap” type = “number” /> 

<input id = “sprWidth” type = “number” /> 

<input id = “sprUlTime” type = “number”> 

<button id = ”sprSave” onclick = “saveSpread()”>Save Spreader</button> 

</div> 

 

The div containing the inputs are generated in the spreader list page where the user can 

input the data pertaining to their spreading implement. In addition to the text input 

elements, a button element with an id of “sprSave” was created to handle the calling of 

the JavaScript function for saving the data input of the user; this is explained in further 

detail later.  

Similar to adding a spreader, adding a field and its characteristics is required for 

the functionality of the app. Information required for later use in the app would be: field 

name, field boundary, field area, and desired application rate for the specified field. For 

version 1.0 of the Manure App, the field information used is limited to field name and 

desired application rate. The field list in the Manure app is a separate page where the 

added fields will be located in a tap-selectable table. This shows the field characteristics 

of each field and allows the user to edit, add, and delete fields from this listing. 

The source listing of the Manure App is a separate page of the app that allows the 

user to add, delete, and edit manure sources. The source information collected includes: 

the source name and the nitrogen, phosphorus, and potassium levels in manure from that 

source. This information is necessary for the calculation of total nutrients applied to the 

field for regulatory compliance and proper nutrient management. This information is 

most accurately derived from testing, but, as noted earlier, can be can be estimated using 
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benchmark values (Moore and Gamroth, 1993). With the source information, the total 

amount of nutrients applied can be calculated on a per-load basis. 

The operator information stored is limited to the operator’s name only, and is 

stored for the purpose of keeping management records of who completed each task for 

the operation. 

Once the data pertaining to each selectable object (spreader, field, source, and 

operator) has been created, the app displays the information so the user can select by 

tapping the object that is being used. HTML tables were used to display the data for 

selecting by the user with one object per row (see Figure 8 c.). In order to select an object 

in use, the user can tap the applicable table row. In order to alleviate confusion as to 

whether or not the desired object is selected, the table row that is currently selected 

changes color to indicate the object currently selected. 

 

Figure 8: Version 1.0 functioning UI showing dashboard (a.), add spreader form (b.), and 

generated spreader table (c.). 

a. b. c. 
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Once all required selections have occurred, users can generate manure hauling 

records by tapping the “Start Unloading” followed by “Load Complete” to generate a 

new manure hauling record. Similar to the development of the object lists, a record page 

was created for displaying the manure hauling records, and additionally, an export icon 

for exporting the data from the mobile device (see Figure 9). 

 

 

Figure 9: The record page of the manure app displaying records in a table format (total 

record data not shown) 

By pressing the Export CSV button on the record page of the manure app, the user 

creates a copy of their records from the app’s stored data, converts this data into a CSV 

file, and saves it into the device’s download folder.  
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3.3.2 Implementation of UI functionality 

Once the text and numerical elements have been filled in by the user, JavaScript 

functions must be written for the handling and storage formatting of the user data. 

JavaScript arrays were created for the storage and querying of object data input by the 

user. A total of five arrays were created to hold each type of created object: spreader, 

field, source, operator, and records. This was done in order to save all objects created by 

the user and for the sake of querying this data when the user creates another manure 

application record. The save button created in the div (spreader input div example code), 

calls a JavaScript function that takes the values of user input data and stores these values 

into specific arrays for later use. 

The arrays holding the user input making up the specific selectable objects were 

displayed in HTML tables for viewing and selecting by the user. One table row was 

created for each object in the array. A click listener was implemented into the table 

enabling the use of tap events for selecting specific objects being used in spreading 

operations. For example, the user wants to select the Kuhn 1 for today’s manure hauling 

operations. The click listener returns the number pertaining to the row of the table being 

selected. Additional code was created that would return the value of the first cell of the 

table (the name of the spreading implement). Once the name of the spreader was defined, 

a “for loop” was used to return an object in the spreader array with the name “Kuhn 1”. 

Similar code was created for generating the tables to display selectable objects on their 

respective page. 

The final step in the process of creating manure application records is the ability 

to export the data for use in the operation and reporting. A button was placed in the div 
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creating the page for displaying manure records. A JavaScript function was created for 

looping through the records array creating a CSV file. The function queried through the 

records array for specific data that will be displayed in the CSV file. A shortened version 

of the information taken is shown below as a JavaScript object. 

 

var csvArray = { "Date":record.date, "Time":record.Time,"Operator":  

record.operator,"SourceName":source.name,"N":source.N,"P":source.P,"K": 

source.K,"Nutrient Measure":source.nutrientUnit,"Spreader": spread.name, 

"Spreader Capacity":spread.capacity, "Load Fill Level":spread.fillLevel, 

 "Field": field.name, "Rate": record.field.rate }; 

 

Once the data has been extracted from the record array, it is converted into a CSV array 

by taking each value in the array and separating one from another with a comma. A 

download function is then called, downloading the data into the download folder of the 

device and can then be exported or edited in whatever manner the user desires. 

A storage service was needed in order to store data that has been input into the 

app. Without the use a storage service, each time the web app was closed or the page was 

refreshed, the previously input data would be eliminated. This would be unacceptable to 

require fresh inputs each time the app was opened. To alleviate this occurrence, browser 

local storage was used to store the data created by the user, then queried each time the 

app is loaded to load all the data that had previously input by the user. Every time an 

array was updated with additional information, the array was converted to a JavaScript 

object and written into the browser’s local storage. The browser local storage is only 

accessible by the web page that created it. The data is not accessible or stored in 

accessible files within the user’s device, in order to access the data created by the app and 

stored in the browser, a download function must be called. 
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3.4 Development of Version 2.0 

The goals of the version 2.0 of the Manure App was to improve the UI, enable the 

use of the mobile device’s GPS for location and speed data, implement the Google Maps 

API for placing maps within the app for creating field boundaries and displaying 

recorded GPS points making up the application path, and convert the Manure App into a 

native app using Cordova/PhoneGap. Version 2.0 uses the same data structure for each 

recorded load data that was developed in Version 1.0, but adds the recorded GPS path to 

each load record for later drawing on the Google map. The stored data location in the 

browser local storage contains each load record as a JavaScript object in an array. The 

Google Maps API can then query through each load object, finding and displaying each 

polyline as a georeferenced representation of the load application path. 

3.4.1 User Interface Improvement 

Development for version 2.0 began with the same capabilities that had been 

developed in Manure App version 1.0 with the additional improvements of the UI and the 

insertion of Google Maps Web API v 3.0 for enabling the use of Google maps within the 

Manure App. The UI improvements were small edits to streamline user interactions and 

data input. The changes made to the UI only involved the relocation of data entry forms 

from one page to another and editing the size of divs to better fit the screen.  

 The dashboard of the app was shortened to eliminate the need for scrolling (see 

Figure 10). This was accomplished in CSS by passing a value to the height parameter 

creating the UI of the dashboard. The ability to adjust the desired rate of application was 

removed from the dashboard and placed in the field edit page; this seemed most fitting 

since nutrient management plans are generally made by field and this also improved the 
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look of the dashboard. This was done by removing the HTML input tag from the div in 

the UI to the div containing the field input tags. The dashboard and other navigation 

buttons were enlarged for better use of the screen area and improved ease of use when 

operating machinery. Once again, the use of CSS was implemented for the customization 

of the button size. The height parameter was given a larger value in the CSS selecting the 

specific button ids that a larger height was desired. 

 

Figure 10: Version 1.0 dashboard (a.) and version 2.0 dashboard (b.). 

 

Tables generated for tap selection of desired field, operator, source, and spreading 

implement were modified for making tap selection of these objects more intuitive (see 

Figure 11). When a user would see the table displaying selectable objects for the first 

time in version 1.0, it would not be clear that tapping on a row of the table would select 

0.00 MPH 1.39 MPH 0.00 MPH 1.39 MPH

a. b. 
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that specific object (spreader, field, source, or operator). To accomplish this, the 

JavaScript function that created the table was edited, setting the vertical cell boundaries 

to zero in the app’s JavaScript file (code is available at: https://github.com/OpenATK). 

This removed the vertical cells of the table making each object appear to be a selectable 

object rather than a table to display information. 

 

Figure 11: Updated UI tables for selecting the spreading implement Version 1.0 (a.) and 

Version 2.0 (b.). 

 

An overlay and animation was added to make the user aware when spreading 

operations are occurring; this helps to reduce the probability that a user will navigate to 

other pages of the app while spreading (to de or re-select the current spreader or cause 

other errors). The overlay is a partially transparent layer that removes the ability to tap on 

a. b. 
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any button except the “Load Complete” and “Pause” buttons. The Overlay was generated 

by creating another div in the HTML file with an id of “overlay”. In the CSS file, the 

overlay div was customized to fit exactly over the top portion of the Dashboard by 

adjusting the height and width values. The div is set to be hidden until the “startUnload” 

function has been called. Additionally, the CSS parameter called the “z-index”, a 

parameter that controls the order of stacked HTML elements, was adjusted to generate 

the div in front of the Dashboard page (see Figure 12).   

 

Figure 12: Dashboard not spreading (a.) and during spreading event (b.). 

 

The Google Maps API was implemented into the app to enable use of geolocation 

tools for calculating travel distance, and area of selected boundaries. (Google, 2015). 

Two additional pages were created in the HTML file that generate two separate maps 

0.00 MPH 1.39 MPH1.39 MPH0.00 MPH

b. a. 
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using the Google Maps API, the first map was implemented giving the user the ability to 

draw, edit, or delete field boundaries (see Figure 13 a.). Figure 13 (b.) shows the second 

map created giving the user a view of the overall progress of manure application and 

displaying: all fields and their boundaries listed in the app, info windows displaying field 

information when the field polygon has been tapped, and polylines that accurately display 

the spread path of each individual load of manure hauled on the field.  

 

 

Figure 13: Created map pages: field boundary editor (a.), and operation map page (b.). 

 

a. b. 
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3.4.2 Implementation of Google Maps API  

Utilizing multiple APIs made it possible to create records from data that has been 

georeferenced to specific locations on the earth, e.g., field location, field boundary, load 

spread-path polyline, etc. Accessing the user’s mobile devices GPS data was 

accomplished by using the HTML5 geolocation API.  

The Google Maps API was implemented by loading the source file into the 

HTML file. JavaScript code was then written that handled the loading of the maps and 

the generation of the maps in specific pages created in the HTML file. Adding a field 

boundary is accomplished by navigating to the field list of the app and tapping the “Add 

New Field” button at the bottom of the list, opening a form for field data input. Once the 

user has selected the field name, desired rate, and unit of manure application (tons/acre, 

gallons/acre) the “Add field boundary” button can be tapped. This brings up a Google 

map where the new field boundary can be drawn. The Google Maps API has built in 

functionality for: placing points, drawing polylines, and drawing polygon objects by 

tapping on the map. The app use this API to enable the drawing and editing of field 

boundaries for saving in the field array for later calculations. Polygons are created by 

tapping the map, placing points with each tap.  To close a field boundary polygon, the 

user taps back to the first point of the boundary or double taps the map, closing the 

polygon and creating a new field polygon object. A “Done” button (see Figure 13 a.) was 

added to the HTML file for the purpose of navigating away from the map page when the 

new field object is ready to be saved. On the map pressing the “Done” button on the field 

boundary map, navigates back to the New Field form, where the user can save the new 

field (see Figure 14 a.). 
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When the new field has been saved, the function that creates the field list is called 

to recreate the table on the page, updating the page to show the list of fields with the 

addition of the new field that has been created. The newly added field can now be 

selected as the current field for manure application and edited (see Figure 14 b.).  

 

Figure 14: Interface of field data entry form (a.) and field list page (b.). 

 

The HTML5 geolocation API is accessible from the HTML file and can be used 

without the loading in additional resources. The API enables the use of the mobile 

device’s GPS sensor data (W3C, 2014). The API can be used for one-time requesting 

user location, as well as, continuously updating location data. The user location can be 

requested with the use of the following function (W3C, 2014). 

a. b. 
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function getUserLocation(){  

navigator.geolocation.getCurrentPosition(successCallback,errorCallback, 

{maximumAge:3000}); 

        }; 

The function makes a request to the GPS sensor for the user’s position. The function has 

a success and error callback for indicating the status of the request. The use of the 

“maximumAge” option indicates that the position is no more than three seconds old 

before requesting an updated position. By giving the web application access GPS data 

from the mobile device, the app records the position of the spreader at three second 

intervals as the operator drives through the field during manure application. The GPS 

data generated by the mobile device includes the error of the device in meters. When the 

device first begins to record GPS data, the error is, in some instances 20 meters (65.6 ft.). 

The JavaScript function that records the points was restricted to adding points to the array 

that contain an error less than 10 meters (32.8 ft) to help reduce mapping errors. The GPS 

data points are continually collected and stored in a temporary array during the spreading 

operation, then stored with the newly formed spread record when the load is complete. A 

convenient feature of mobile device technology is that GPS data can be collected without 

WIFI or data connection. The maps may not be shown properly during field operations 

without internet connection but the GPS points will be collected. The spread paths can 

then be displayed properly when the user has an internet connection. A function was 

written to query through the stored record array for spread path GPS data; this data is 

then handed to the Google Map, displaying all recorded spread paths (see Figure 13 b.). 

The length of the spread path is then calculated using a Google Maps API function. Once 

the length of the spread path is returned, the average rate of the manure application is 
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calculated based on the total material applied and the width of the spread path; it is also 

saved to the record array.  

Much of the JavaScript Code used for the implementation of the Google Maps 

and editing its use is fairly extensive, for this reason, the code used can viewed at: 

https://github.com/OpenATK.  

3.4.3 Conversion to Native applications 

 As a web app on GitHub, the app required the browser to be active (on top) 

during manure hauling events. However, if the user was to use his/her mobile device for 

any other purpose (phone calls, web surfing, playing music, taking pictures or anything 

which halted browser activity), the Manure App would cease to function. Having the app 

run in this fashion is not acceptable. Conversion to a native application using Apache 

Cordova solves these problems (Cordova, 2015). By downloading the Cordova software, 

and the targeted platforms (in this case, Android) SDK; the app’s JavaScript, CSS, and 

HTML files were passed into a created Cordova project file for assembly into a native 

running android app (see Figure 15). Having the Manure App converted to a native 

application on the Android platform enabled the app to run while offline and function 

concurrent to other activities conducted on their mobile user’s mobile device. 
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Figure 15: Showing the required files to convert into a native app using Cordova 

(PhoneGap, 2014) 

 

3.5 Development Version 3.0 

Version 3.0 was intended for public release. In early versions, the user controlled 

the spreading status by tapping the “Start Unloading” and “Load Complete” button for 

recording each manure hauling event. By using an external Bluetooth identification tag 

with integrated accelerometers, these required tap events can be eliminated. The spreader 

and spreader status (on/off) could be determined without user intervention.  Additionally, 

version 3.0 implemented the use of an online database for multi-device synchronization, 

and the use of geofencing APIs for field application selection without the need for the 

user to select the field each time application was occurring. 3.0, although autogenic, still 

allows the user to tap for certain input and status changes (select a field, start, pause, 

stop). 

3.5.1 Spreader Identification and Status 

 To truly accomplish autogenic capabilities, the Manure App must be able to 

derive the spreader characteristics of the spreading implement in use, as well as the field 

in which spreading operations are occurring. Originally the use of an ISOBlue unit which 

listens for specific PGN messages on the CAN bus was considered for monitoring PTO 

Wrap App 
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status.  To minimize cost and improve functionality by identifying which spreader is used 

as well as its operating status, the use of a TI CC 2541 sensor tag on the manure spreader 

was pursued and implemented. The Texas Instrument CC2541 sensor tag contains six 

sensors that include: IR temperature sensor, humidity sensor, pressure sensor, 

accelerometer, gyroscope, and magnetometer (Texas Instruments, 2014). The contained 

sensors that have the most relevance for this project were the accelerometer, and/or the 

gyroscope. The accelerometer and gyroscope sensors, detect and transmit directional 

acceleration and rotation on three (x, y, and z) axes. 

Connection between the sensor tag and the mobile device running the app was 

achieved using the Bluetooth connection capabilities of the mobile device and the sensor 

tag. Evothings Studio has created an extensive library of example apps (including 

example code files) ready to connect to multiple Bluetooth sensors that are currently 

available on the market (Evothings Studio, 2015). Combining a few of the example apps 

code files with some additional customization, the app was able to connect to the TI 

CC2541 sensor tag with minimal development time and read the data being transmitted 

from both sensors.  

Each sensor tag has a Bluetooth address that is unique to each tag. Manure 

spreaders that have been named within the Manure App can be referenced to each 

specific sensor tag. When the app connects to a sensor tag for the first time, it asks the 

user which created spreader it would like to be linked to. Once the user has selected the 

spreader it would like, the unique address is stored inside the selected spreader object 

contained within the stored spreader array. The next time the app connects to the sensor 

tag, the app queries through the spreader database for an address matching the address of 
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the sensor currently connected. Once the address is found, the app selects the spreading 

implement containing the Bluetooth address as the spreader being used. Multiple tags can 

now be utilized on an operation installed on each spreading implement. Once the device 

connects to one of the Bluetooth tags, the app selects the spreading implement that is 

being used by the operator. In this manner, the need for the user to select the implement 

that is being used for application can be removed. 

In order to remove the requirement of the user tapping the start and stop buttons 

in the app for each load applied, the Manure App needs to know the spreading status of 

the implement. By connecting and reading the transmitted data from the Bluetooth sensor 

tag installed on a shaft which only turns during spreading, the accelerometer and the 

gyroscope returned values will read a significant change indicating a manure application 

status change. The sensor acts as a trigger to accurately start the recording of GPS 

location when manure application is taking place and completes the record generation 

when the load is complete.  

By analyzing these acceleration patterns, algorithm development for field 

operation status can be created. Testing on the sensor is required to determine a base 

acceleration or rotational value for indicating the spreading status. Testing was conducted 

and described in full detail (see 3.6 Sensor Testing and Threshold Development). The 

gyroscope sensor on the Bluetooth tag returns the rate of rotation imposed on the tag on 

three (x, y, and z) axis. However, the gyroscope sensor is limited to 250 degrees per 

second (~41 RPM), and delivers a relatively noisy signal under vibration. There are many 

variations in manure spreader designs, but the use of either the accelerometer and/or the 

gyroscope should be sufficient for accurate spreading status communication with the 
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Manure App; in some cases, the use of both sensors may be required.  Section 3.6 covers 

this topic further. 

 

3.5.2 Multi-Device Synchronization 

 The data storage utilized in previous versions of the app were beneficial for the 

development process and worked well for single device use. However, the manure 

records “problem” requires the app to sync data across multiple devices (carried by 

different operators on a farm) when the app is implemented in an actual farming 

operations. One major change this requires is the switch from the use of browser local 

storage to using an in-browser local storage software that can sync to a web based 

database. This was accomplished using the PouchDB local storage software. PouchDB is 

an open source JavaScript local database that runs in the browser and can sync easily 

with Apache’s CouchDB compatible databases for easy synchronization across devices 

(PouchDB, 2015). CouchDB is a database that stores information in JavaScript Object 

Notation (JSON) (CouchDB, 2015). JSON data is human readable (therefore parsable) 

and easy to access and modify (JSON, 2015). CouchDB enables developers to create 

their own database that is running on a server for data storage. Using CouchDB as a 

database would not fit the capabilities of the targeted users for this project. Instead, there 

are multiple online databases that are CouchDB and PouchDB compatible that only 

require the creation of a user profile to be used. Additionally the use of these online 

databases (to the extent needed for manure records) is free. 

PouchDB works similar to the local browser storage approach used in the 

previous versions but makes the data input simpler and handles the data writing and 
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reading processes, making the functionality less code heavy. PouchDB is a document 

oriented database, meaning that each object written to the database is stored in the 

database as a document and is stored with an id and revision number. The id enables id 

based queries while the revision number helps with syncing. The revision number is 

created based on the time the document was created. Knowing when the document was 

created lets PouchDB know when revisions occur, displaying the latest version of 

document.  Additionally, PouchDB handles the occurrences of offline storage. When a 

mobile device using PouchDB is being used offline, the local database on the device 

stores the data until the device has internet access again. Once an internet connection is 

established, the local database syncs to the remote database. All devices that are 

connected to the remote database are then synced to show the updated data. 

Creating a local database is the first step in creating a syncing database. The code 

creating a local database using PouchDB is shown below. 

var spreader_db = new PouchDB('spreaders'); 

This code defines a new database called “spreaders” and can now store objects. Data is 

stored in the database by calling a function that writes a new document. Code showing a 

function writing to the database is shown below. 

function pushSpreaderToDb(){ 

    var dbSpreader = { 

        _id: new Date().toISOString(), 

        obj: newSpreader 

    }; 

    source_db.put(dbSpreader,function callback(err, response){ 

        if(!err){ 

        } 

    }); 

} 
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The code creates a variable called “dbSpreader” containing an id of the date and time that 

it was created. The object, defined by “obj”, refers to a newly created spreader object. 

The code is run and all the above information is written to the database. 

Separate databases were created for data source generated by the app: spreader, source, 

field, operator, and records. At this point the data has been saved and functions the same 

way it did in version 1.0 and 2.0 with data being stored on the local device’s browser’s 

local storage.  

Having a local database up and running is the first step toward synchronized 

records; the second step is to create and define a remote database within the app’s 

JavaScript code. IBM’s Cloudant online database was used as the remote database for 

this project due to its compatibility with PouchDB and the fact that it is free to use, 

provided that the project does not exceed the maximum data usage per month (Cloudant, 

2014). Pricing for usage is calculated in multiple ways. Total storage 

($1/gigabyte/month), number of heavy data calls ($0.015/ 100 calls/month), and number 

of light data calls ($0.015/500 calls/month). These prices combined create the monthly 

charge. If the user stays under $50 per month, there is no charge and usage of the 

database is free. Heavy data calls to the database include: data POSTS/PUTS (writing to 

the database), EDITS (editing documents), and DELETES (deleting documents). Light 

data calls are GETS (retrieving documents from the database) (Cloudant, 2014). Each 

record generated is approximately 1 kilobyte, the storage limit per month wouldn’t be 

exceeded until 50 million records were stored.  During development there were tens of 

thousands of heavy data calls to Cloudant database each week. Even then the largest bill 

achieved was $6.39. It is reasonable to believe that Cloudant is a viable database solution 
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for targeted users without ever being charged for the service. To use Cloudant as the 

remote database, a subscription must be completed. Once the subscription is completed, 

Cloudant sends an email containing the Uniform Resource Locator URL to the database 

for use in syncing. In order to enable the PouchDB to sync to the remote database, the 

remote database URL must be defined. Additionally, a sync method is passed into the 

code telling the local database to sync with the remote database. The code that defines the 

URL to remote database and method for syncing are as follows (PouchDB, 2015). 

var remoteDatabase = ‘http://url to remote database/spreaders'; 

spreader_db.sync(remoteDatabase); 

Once the PouchDB and the Cloudant databases have been set up, the Cloudant database 

URL accompanied with the username and password (created during the subscription 

process) for the Cloudant database, was written into the PouchDB database file in the 

Manure App. From this point PouchDB handles all data replication to and from the 

Cloudant database. Having the PouchDB and the Cloudant database connected in this 

manner, enables the Manure App to be used on multiple devices. The data created by the 

app is uploaded and synced with the Cloudant database, the Cloudant database then 

replicates the data back down to all other devices connected to the database in the order it 

was created.  

Using Cloudant as a remote database has additional advantages to being able to 

sync data across multiple devices while being secure. Using Cloudant enables the user to 

edit data outside of the Manure App. The user can log into Cloudant’s website (using 

credentials created during establishment of the database) and access any piece of data that 

has been stored. The data is saved to the Cloudant database in five different databases: 
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records, fields, sources, operators, and spreaders.  Separate databases for each specific 

data type were implemented to simplify data queries and to simplify the search for 

specific data for future users. Once the user is logged in to their Cloudant account, the 

Cloudant dashboard displays all of the user’s created databases (see Figure 16). The user 

can then select individual databases to view their contents.

 

Figure 16: Cloudant database UI displaying all databases created by the Manure App. 

 

 Selecting one of the databases displays all of the objects stored as editable 

documents (see Figure 17). The user can view stored objects in each database and 

modify, delete, or replicate specific pieces of data. Whole objects can be deleted from the 
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database by selecting the document and selecting the delete button (but much care is 

required since syntax is critical to database operations).  

 

 

Figure 17: Cloudant database showing the record objects contained within the records 

database. 

 

 Once the user has navigated to the desired database to view stored data, the user 

can select the edit button at the top right corner of the document to open the stored JSON 

document as a text file. Figure 18 displays the view the JSON data stored for a manure 

application record. Users are not restricted to the use of Cloudant as their remote 

database. 
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Figure 18: Cloudant database showing the selected record object’s characteristics. 

  

 It is unrealistic to assume that users will desire, or be capable of editing the source 

code for creating a connection of their local database to a web based database like 

Cloudant. For this reason, an instructional document was created with full instruction on 

the creation of a Cloudant database (see Appendix C). Additionally, a new form was 

created in the Manure App where the user can input their username and password to their 

Cloudant database (see figure 19). 



64 

 

 

6
4
 

 

Figure 19: Database credential input to enable multi-device synchronization. 

 

When the user inputs their credentials for the Cloudant database, the app saves 

this information in the local storage of the device. The information is then used to create 

the URL that syncs the mobile device’s local database to the Cloudant database. An 

operation that has multiple operators can input the same credentials to sync all devices to 

the same database. At this time, Cloudant appears to be the best option for remote 

database mobile synchronization. While it is possible to edit the source code of the app to 

use other databases, the functioning Manure App (downloaded as is) is only compatible 

with Cloudant database service. 
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3.5.3 Automatic Field Identification 

 In order for the app to be aware what field application is being conducted, the app 

used the Google Maps API. The Google Maps API was used in the app to generate and 

edit contained Google maps. The API also includes the ability to return whether or not a 

point on a map is contained within a polygon object. Since the Manure App contains field 

boundaries for each field stored within the app, the field boundaries can be queried to 

return the field matching the current location. A function was created and called when 

manure application begins that returns the location of the first GPS point of the spread 

path. The function then queries all of the field boundaries in the field database to return 

the field object containing the GPS points that surround the point of application. The field 

object that is returned is set to being the field that manure application is occurring. Once 

the Manure App knows what field manure is being applied displaying the suggested 

application travel speed, the user no longer needs to select specific fields for application; 

the app handles this task on its own. 

 

3.6 Sensor Testing and Threshold Development 

Recognizing centripetal acceleration is proportional to angular velocity squared 

times the radius (Engineering Toolbox, 2014), there certainly are combinations of 

rotational speeds and radii which will and will not work well. 

If the tag is only vibrating (not rotating on a shaft, pulley, or sprocket), then the 

average acceleration in each direction vector should remain constant (if “perfectly” 

oriented, might be 0 for x, 0 for y, and 1 g or 32.2 ft/s2 for z). If the tag is rotating at 200 

rpm at a 3” radial distance from the axis of rotation, it should experience 3.4 g (which, 
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when considering the 1 g due to gravity, would show up as an average 4.4 g resultant). 

The accelerometer data needed to be measured in order to determine a useful trigger (or 

threshold) for starting the recording process. 

A simple sensor output logging app was written using the Evothings Studio’s 

source code; this app receives transmitted data from both gyroscope and accelerometer 

sensors. The Bluetooth sensor tag transmits voltages from the current acceleration and 

gyroscope recorded from three axis X, Y, and Z. This data was transmitted at a recurring 

rate of 100 ms (every 0.1 seconds). Initially, the use of the gyroscope was anticipated to 

be the sensor of choice to detect rotation. After testing and reading through the sensor tag 

documentation, the sensor was found to be very noisy under normal operating vibrations, 

and had a rotational limitation of 250 degrees per second (~ 41 RPM). For this reason the 

accelerometer was selected for the use in communicating spreading status to the Manure 

App.  

The transmitted data was converted to gravitational acceleration as a unit of 

measure (acceleration in gs = raw data/16; Sensor Tag User Guide, 2015). The sensor 

was tested and returned plus or minus one G at rest on each of the three axis based on the 

orientation of the sensor. The sensor was attached to a lathe and recorded data for 30 

seconds under the following rotational speeds: 49, 138, 298, 567, 1000 rpm. 

The values that were transmitted for all three axis were stored in a JavaScript 

array at intervals of 200ms (every 0.2 second). Additionally, to define the resultant of the 

vector acceleration, 5 second averages of the three axis values were squared and then 

summed together using the output displayed in a spreadsheet. The returned JavaScript 

object for each sample is shown below. 
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var data = {data_x, data_y, data_z} 

The resulting data was then analyzed to find a base acceleration value that could 

not be replicated in accelerations due to other-than-manure-application tasks. By 

computing the resultant ((xavg
2+yavg

2+zavg
2)1/2) average value, the average acceleration 

imposed on the sensor can be calculated.  
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CHAPTER 4. RESULTS 

 This project consisted of the development and testing of a platform independent 

application capable of storing data specific to manure hauling events. The objective was 

to assess the viability of creating a web application, being a platform independent tool 

that would be accessible by users irrelevant of the preferred device platform. The app was 

able to conduct data collection with minimal human control input specific to the 

operation status. 

4.1 Final UI 

 The Final UI was completed and the screenshots are displayed below (see Figure 

20 through 22). The UI is split up into four main portions of the app and its functionality: 

the dashboard and the spread event functionality, the object (field, spreader, source, and 

operator) lists showing the available objects and the current object being used for data 

collection, the Bluetooth connectivity page, and the Google Maps being implemented. 

The dashboard is the page that the user will most likely view most during operation. The 

dashboard shows the current spreading implement being used, the field where application 

is occurring, the source of manure that is being applied, and the operator conducting the 

operation.  

Once all four of the above objects have been selected, the user can now press the 

start unloading button (or occur when the Bluetooth sensor triggers this action 
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if the sensor is connected and installed). When spreading is occurring, the spreading 

overlay and animation is shown. The overlay removes the option to edit objects during 

spreading. The animation is displayed to provide the user feedback that an action is 

occurring. During the unloading operation the user has the option to pause the unloading 

process for the case of turning around at the end of the field or needing to stop for any 

other reason. The Pause button triggers a pause function that stops recording GPS points 

for uploading into the storage array. 

 

Figure 20: Final dashboard design (a.), spreading overlay and animation (b.), and paused 

indication for when the user wants to pause the unloading process (c.). 

 

The object lists in the Manure App is the location where the user inputs data about 

their specific fields, spreading equipment, source, and operator name (see Figure 21). The 

object’s data stored in the app is used for recording data specific to each operation for 

conducting accurate record generation. This stored data is needed for the case of 

autogenic data recording. The app needs to have stored information about each spreader 

a. b. c. 
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and field location in order to make the correct selection of implement and field that is 

currently undergoing manure application. 

 

Figure 21: Final UI of the object lists: spreader list showing the available spreading 

implements (a.), field list showing available fields (b.), source list showing available 

sources (c.), and operator list showing available operators (d.). 

 

4.2 Map Implementation 

 The Manure App uses the Google Maps API for the implementation and use of 

two Google maps. The main map used in the app is used for an overall visualization of 

field boundaries, information about each field, and polylines that represent each load of 

manure spread on each field. The add-field-boundary map allows the user to draw a field 

boundary by tapping the map at each point of the field. The Google Map API has built in 

map editing tools that were utilized. When a user wants to add a new field they tap the 

“Add New Field” icon in the Field List page of the app. Once the field name and desired 

rate has been added, the user taps the “Add Field Boundary” navigating to the add-field-

boundary map (see Figure 13 a.). Once the user is done creating the new field boundary, 

a. b. c. d. 
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tapping the done button takes the user back to the Field List page where they can save the 

field. The new field is then displayed in the field list and can be selected for the next 

spreading action. 

 The main map page is a map where the user can view all of the saved fields, and 

all spread paths that have been created and stored during spreading events. The user can 

tap any of the fields and an information window will display the field’s name and the area 

in acres contained within the field boundary (see Figure 13 b.).  

The ability for the Manure App to connect to an external Bluetooth enabled 

accelerometer sensor enables autogenic data collection. An interface was needed for the 

user to select the connection action and the ability to select a specific Bluetooth tag to be 

referenced to each spreading implement (see Figure 22). When the app connects to a 

Bluetooth tag for the first time the app will not recognize the sensor tag’s unique address; 

when this happens, the app displays the list of spreader names that the user has input into 

the app. Once the user selects the appropriate spreader the tag has been installed upon, 

the app stores the address within the selected spreader object. The app will now associate 

the sensor tag address to a specific spreading implement. When the user connects to the 

sensor tag in the future, the app will automatically select the spreader with the same 

stored Bluetooth address as the spreading implement being used by the operator to 

conduct hauling events. 
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Figure 22: UI of connection process to the Bluetooth sensor tag. The main page not 

connected (a.), the app is scanning for a sensor tag after the start button has been pressed 

(b.), connection to the Bluetooth tag achieved (c.), reading data from the sensor tag’s 

accelerometer (d.). 

 

4.3 Test Results 

Testing was conducted on the sensor output using a lathe for rotation. Rotational 

acceleration was measured and stored using a test app created using example code from 

Evothings Studio. Values were collected from all three axis every 0.2 second while the 

sensor was secured to a rotating shaft (lathe). Five sets of data were collected; one each 

for the speeds of 49, 138, 296, 567, and 1000 RPM. Data was collected in the test app 

and then exported as a CSV file (see Figure 23). 

a. b. c. d. 
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Figure 23: Sample data from the rotation of the sensor at varying speeds. 

  

By calculating the resultant of the average value for each axis value (x, y, and z) 

and selecting a threshold value, the status of spreading operations can be known reliably. 

Analyzing the data collected, the minimum, average, and maximum resultant value was 

calculated for each RPM sample (see Table 4).  
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Table 4: Results of resultant acceleration 

 

Using the data output displayed in Table 4 to define a threshold value of 3.0 for 

average resultant acceleration, enables the Manure App to assess when spreading is 

occurring. A timer function was created that calls a function every five seconds. Each 

time the function is called, it calculates the average resultant value for the data collected 

during the previous five seconds. When the average resultant value is returned, an “if 

statement” handles the starting of the manure record generation process. 

   function isSpreadingOccuring(){ 

if(resultant value >= 3){ 

begin recording data; 

}else{ 

do nothing; 

};  

   }; 

 The above function is called each time the timer function is called. The returned average 

value is then compared to the threshold value of 3.0 to determine the spreading status of 

the implement. If the resultant calculated from the five second average is greater than or 

equal to three, spreading is occurring. If the value is less than three, spreading is not 

occurring. By installing a sensor on a spinning shaft or cog on the spreading implement 

that generates the same centripetal acceleration or greater, spreading status is determined.  
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Recognizing the variability in mechanical spreader implement design, the location 

of installation for the sensor tag may vary.  For this reason, Table 5 was created to 

compare shaft rotational velocity with shaft radius to compute acceptable acceleration for 

proper communication of spreading status. 

Table 5: Acceptable acceleration calculated from speed (rpm) & radius (in) highlighted in 

green. Cells colored in red generate excessive acceleration and could lead to sensor 

unreliability. 

 

 

Using Table 5 as a guide, the user can find a suitable location on their spreading 

implement for sensor installation based on shaft speed and distance from the center of the 

shaft to generate the acceleration on the sensor to correctly define status of manure 

application.  

To assess the functionality of the Manure App with the connected Texas 

Instruments Bluetooth sensor tag, the tag was installed on a tractor (New Holland 3415) 

PTO shaft, with an approximate radius of one inch, and manure application was 

simulated. A field boundary was created around a gravel parking lot on the Purdue 

campus where simulated manure application would be occurring (see Figure 24). 
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Figure 24: Test location for simulated manure application. 

 

The Manure app was started on the mobile device (Verizon LG G3) and 

connected to the sensor tag installed on the PTO shaft. Once the tractor entered the field, 

the app correctly identified the field as it compared the current location to the field 

boundary. The PTO shaft was engaged and rotation speed was increased to an 

approximate operating speed of 350 RPM. This velocity was chosen due to the sensor 

being installed on the PTO, lacking an optional slower rotating shaft available on 

mechanical spreaders. If the PTO would have been spun up to operating RPM, the 

acceleration imposed on the sensor would have been excessive (see Table 5). The Manure 

App, running the algorithm for assessing the accelerometer data, read a value over that of 

the predetermined threshold value causing the Manure App to trigger the unloading 

function in the app collecting application data. Multiple loads of simulated manure were 

applied to the test field (parking lot) creating a polyline on the Google Map for each 
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unloading event. The map generated can be seen in Figure 25 and generated manure 

application records exported in Figure 26.  

 

Figure 25: Spread paths displayed on map from simulated spreading operations. 

 

 

Figure 26: Exported manure application records displayed as a CSV file. 

 

 Although the speed used to determine the spreading status was 350 RPM, it is not 

a “standard” speed on agricultural equipment.  The two most common speeds used on 

tractor implements are 540 and 1000 RPM (ASABE, Standards, 2004). This may create 

some challenges for selecting a proper installation location for the sensor.  However, 

most implement drivelines have several speed reductions.  The use of the external 

Record

Date Time Operator Source Name N P K Nutrient Measure Spreader Spreader Capacity Fill Level Field Rate aplied

4/15/2015 7:37 Charlie Pit2 18 14 12 lbs/ton Kuhn1 20(Tons) 100% Adm 64.69 tons/ac

4/15/2015 7:40 Charlie Pit2 18 14 12 lbs/ton Kuhn1 20(Tons) 100% Adm 61.15 tons/ac

4/15/2015 7:43 Charlie Pit2 18 14 12 lbs/ton Kuhn1 20(Tons) 100% Adm 56.78 tons/ac

4/15/2015 7:45 Charlie Pit2 18 14 12 lbs/ton Kuhn1 20(Tons) 100% Adm 54.12 tons/ac

4/15/2015 7:50 Charlie Pit2 18 14 12 lbs/ton Kuhn1 20(Tons) 100% Adm 57.49 tons/ac

4/15/2015 7:53 Charlie Pit2 18 14 12 lbs/ton Kuhn1 20(Tons) 100% Adm 55.91 tons/ac
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Bluetooth sensor served the purpose of proving the concept of autogenic data collecting 

apps. While this configuration was functional, CAN bus messaging technology may be 

more suitable for use in the future. Even so, the user could use an external Bluetooth 

sensor with the Manure App to communicate spreading status. Extreme caution, however, 

should be used anytime one is securing something to a shaft spinning at high speeds. 

These objects may come loose during operation and cause damage or injury.  
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CHAPTER 5. CONCLUSION AND RECOMMENDATIONS 

5.1 Conclusion 

 This project consisted of the development of a platform independent application 

capable of recording data pertaining to manure hauling events. Development occurred in 

three main stages leading to the final app created in version 3.0. Final app testing was 

conducted simulating manure hauling operations to create application maps of each field 

coverage. 

5.1.1 Version 1.0 

 Version 1.0 was developed creating a basic dashboard showing the number of 

loads applied to each field and the number of loads taken from each source. The load 

numbers were updated after a cycle of the user pressing “Start Unloading” and then 

“Load Complete” buttons. Separate pages were created for listing each type of object 

containing specific characteristics created by the user for each field, spreader, operator, 

and source. Each object was then stored in arrays created for each object type (spreader, 

field, source, and operator). Data taken from the current field undergoing application, 

current manure spreader in use, current source being emptied, and the operator 

conducting the task; this data combined created a new manure application record. 

Generated manure application records were then available for saving to the mobile 

device. 
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5.1.2 Version 2.0 

 Manure App version 2.0 involved an updated UI, the implementation of the 

Google Maps API, and the ability to use the mobile device’s GPS sensor for recording 

and then storing the spread path’s GPS points. Version 2.0 used the same data structure 

for each stored load data that was created in Version 1.0. During a spreading event, the 

app records the devices location as they travel through the field applying manure. The 

GPS data points are then stored within each load record for later parsing onto the Google 

map that is located inside the Manure App. The app was converted to a native app using 

Cordova to enable offline functionality.   

5.1.3 Version 3.0 

 Version 3.0, a public releasable version of the Manure App records date, time, 

source, spreader, operator, field, spread path and application rate in autogenic mode. 

Autogenic capabilities were successfully implemented for hands free starting and 

stopping of data collected during manure spreading operations. Implementing a Google 

Maps API containsLocation() functionality, enabled the app to select the field in which 

spreading was occurring when the operator enters the field. Connecting the app to the 

external sensor tag reading accelerometer measurements, when combined with the 

developed algorithm, enabled the app to know when application has been initiated, is 

occurring, and has ended. The user has the option to use that app without the added 

automatic field selector and connected Bluetooth sensor. The user can select options to 

turn off certain functionality if the desire is to manually select fields, spreader, and 

spreading status.  
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The combined capabilities of the Manure App make data collection of manure 

hauling events accurate and nearly effortless to the user. Additionally, developing the 

Manure App has served as a proof of concept for further development of autogenic data 

collecting apps in agriculture. 

  

5.2 Recommendations 

5.2.1 Future Work 

The objectives of the Manure App were achieved, yet further improvement could 

be realized through user feedback, testing, and added functionality. The next stage of 

development could commence through deployment to specific focus groups. Focus 

groups representing animal operations varying in size and type would bring valuable user 

perspective to implement and achieve desired functionality.  

A tool that assists the user in creating nutrient application records for reporting to 

regulatory bodies can be met with hesitation. The Manure App generates data that is 

stored on the user’s own account database and would not be accessible by the public. The 

data is secure, Operations may want to have the ability to quickly display their manure 

records in an easily viewed format (spreadsheet, pivot table, or PDF). They may also 

want a method for quick and easy aggregated reporting or display during an inspection. 

Focus groups are needed for further development of reporting and inspection capabilities 

that could be implemented into the app or external to the app.. 

Further testing would be beneficial to conclude the usefulness for a greater 

number of end users. Specific testing of the accuracy of the GPS location data and the 

calculation of the distance of the spread path to deduce an average rate of application on 
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various platforms should be completed to assure the approach is robust. Additionally, 

GPS accuracies vary with some devices, and could plague some users with difficulties, 

further testing would be needed to determine the variability due the users’ device. The 

app should also be deployed on iOS devices due to their prevalence among users; this 

will involve more testing and development to ensure proper functionality for users 

running iOS. 

The current app can deduce the spreading implement being used, and the field in 

which spreading operations have occurred. Implementing the ability for the user to 

specify the location of each manure source would enable later versions of the app to 

know which source is being used when the operator returns to the source’s location. The 

app would no longer need to have the user specify the source with a tap event. 

Using the Cloudant remote database, the Manure App could be further developed 

with added internal data editing capabilities. Currently, the Manure App syncs all data in 

the local database to the remote database. This can create data complications in the future 

when the user wants to change databases, because all data stored locally ends up in the 

new database. In some cases this would lead to an undesirable outcome if the user was 

wanting to start creating manure records in an empty database. Future versions of the app 

could allow the user to select which (if any) of the existing data to be synced to a new 

remote database. Data editing and exportability is important in agricultural records so 

convenience of these operations are needed. Future development could bring native/web 

apps that can export all data directly from the database outside of the Manure App. 

Additional usefulness could be realized by implementing Open Ag Data Alliance 

(OADA) compliance. OADA is a database protocol that allows data to be collected from 
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previously incompatible sources, making data useful in ways not previously possible 

while the data owner security and flexibility (OADA, 2015). This could result in the 

ability to import field boundaries from users’ field boundaries that have already been 

created in other software. This would eliminate the need for drawing field boundaries, 

which can be tedious in a mobile device. Additionally further use of manure management 

software could be populated from the OADA database being populated by the Manure 

App.  

Drawing field boundaries could also be eliminated by utilizing state owned 

Common Land Unit (CLU) data. This data layer places boundaries around historically 

accurate field and ownership boundaries. By utilizing this data layer, the user could look 

at the map already displaying field boundaries generated from property lines. The user 

would only have to tap which boundaries they would like to use. In some cases the CLU 

data layer is outdated, so the user may still need to edit the boundaries. 

Additional data layers for increasing the data collection and overall manure record 

keeping system. The addition of a weather layer could help to record the amount of rain 

24 hours preceding and 24 hours after application has occurred. This is a required piece 

of data recorded in the operation’s manure application records. Using Open Weather 

Map’s API can return current and historical rainfall events based on geographical 

location (Open Weather Map, 2015). Other data layers are available for indicating the 

location of waterways in the United States. By adding a data layer that showed all the 

locations of waterways that are near sites of manure application, it would be possible to 

develop a way to add the visualization of manure application set-backs. Available 
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elevation data could also be beneficial to aiding in sensitive areas of land that may 

require caution with the application of manure.  

Apps developed specifically for farm management could utilize the installation of 

the CC2541 sensor tag on each implement would make it possible to determine who is 

doing each activity on a farm at any given time. Installing a sensor tag on the each 

implement on an operation would create a network of production recording. The mobile 

device is able to wirelessly connect to the implement in use, retrieving user-stored 

information attributed to the implement. With this information, the app will be able to 

know what operation is being conducted, who is conducting the operation, where the 

operation is occurring, and when this operation is taking place. This information put 

together would be the basis of autogenic data collection.  

Combined with the ability to sync data over multiple devices, a farm management 

app could collect operational data without the need for user input. Management apps with 

autogenic capabilities could keep FMIS information tools in real-time with current field 

operations without the need for users to update their next task or tap an icon each time 

their task status has changed.  
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Appendix A Functional Specification 

Manure App Functional Spec 

The purpose of the Manure app is to assist livestock operations with the task of 

manure management, as well as, creating and keeping complete records of manure 

hauling events for the sake of inventory and regulatory compliance. The Manure App is 

meant to be a tool that goes with the operator who is tasked with the hauling of manure. 

The goal of the app is to turn the operator’s smartphone into a sensor/logger collecting 

data (for reporting compliance, improving management, etc.) while eliminating as much 

human input as possible; by reducing the need for manual entry, the record keeping 

process should be less tedious for the operator and farm manager and lead to more 

accurate and complete records.  

Objectives 

Management 

The Manure App focuses initially on improving manure management by tracking 

(date, time, location, source, etc.) each load of manure. By outlining the spread path 

similarly to other precision ag operations, e.g., planting, tillage, harvesting...etc., as 

applied maps, by the load, will be generated which should improve the match between 

nutrient demand and supply.   

The Manure App utilizes a database as the cloud storage. Data from each load of 

manure will be automatically uploaded and will be exportable as a comma separated 

values file for import into spreadsheet software. Most operations are very familiar with 

the use of spreadsheets and would require almost no learning curve to navigate 
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information. In this way, a manager will be able to easily track each load and know how 

many loads were applied to each field for record keeping and future manure placement.  

Autogenic 

A final version of the Manure app will have the ability to continuously (and “behind the 

scenes”) take information from the operator’s environment, information like: location, 

speed, machine, and task to enable the Manure App tool to calculate: load spread 

location, coverage rate, and map the field coverage. By the Manure App into a native 

application, capable of running in the background, be able to upload information to the 

user’s cloud service. Additionally, the app will be able to take in the previously stated 

information and be able to deduce when the operator is spreading and what field the 

application is taking place enabling the app to require minimum input from the operator 

to ensure easy and complete generation of manure hauling records.  

Target Users and Use Scenarios 

Mark Smith is a fourth generation farmer from Southern Indiana. He and his two 

brothers operate a 300 head dairy farm and a grain farm totaling nearly 5000 acres. Mark 

is the primary caretaker of the cows and with that, has the responsibility of planning and 

accomplishing the manure hauling tasks. Mark is concerned about the possibilities of 

more stringent regulations of smaller dairy farms. Having only 300 Holsteins, he does not 

need a commercial permit but thinks that regulations will begin to become stricter for 

smaller dairy farms as well. Currently there has not been any efforts to keep good records 

of manure hauling events on the Smith farm. This has not been a problem so far but Mark 

feels that it is only a matter of time before inspectors will be testing the streams around 

his farm.  
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Mark feels that he needs to begin to keep thorough manure records but really doesn’t 

want to spend a lot of time and effort to write down each load and its destination; he 

doesn’t have autosteer on the tractor used to spread, so cannot multitask and write these 

records while actually spreading. For him, finding the time to spend in front of the 

computer entering the load information would be impossible. Mark needs a system that 

would reduce the amount of time required to create and maintain these records. In 

addition to the record keeping benefits, Mark also believes that when he is able to more 

accurately control the application and management of his manure, he will then be able to 

save money by accurately reducing the amount of fertilizer that will need to be 

purchased. In order to do this, he needs some way of communicating the manure records 

conveniently to his agronomist who provides the seed and fertilizer recommendations. 

 The completed Manure App has been downloaded to Mark’s mobile device and 

has been used for a couple of weeks. At first Mark didn’t mind tapping the start and stop 

icons for each load of manure applied to the field, but after forgetting to tap for a couple 

of loads and needing to go into the data to edit the applied amounts, Mark is ready for 

some autogenic capabilities. Mark decides to order the recommended Bluetooth sensor 

and installs it on one of the spinning shafts on his mechanical manure spreader. Once 

Mark has the sensor installed and in standby, Mark powers up the Manure App. The app 

is automatically scanning for the Texas Instruments CC 2541 Sensor Tag when running. 

The app connects to the Bluetooth tag without a problem. Since the app has never 

connected to a sensor tag before, it does not recognize the sensor. The app knows that 

Mark is trying to pair the app to a specific spreading implement, so it displays a list of 

spreaders that have been stored in the app. Once Mark selects the spreader he is using, the 
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app stores the sensor tag address with the spreader chosen for future connection and 

spreader selection. 

Charlie Williams owns and operates a custom harvesting and manure hauling 

business. When harvest is over Charlie gets his fleet of six tractors and spreaders, three 

semis, and manure pumps together and makes the journey across the country to all of his 

customer’s dairy and livestock operations to spread manure. Charlie is responsible for 

spreading the manure of 110 customers over nearly 12,000 acres.  Like most custom 

farming, custom manure hauling is a fast-pace business and Charlie Williams’ custom 

spreading business is no different. His crew is spreading at any moment that weather and 

conditions permit and if they are not spreading, they are travelling to the next customer’s 

location. Charlie would like to have a more stream-lined way of keeping track of his 

equipment in the field and to have a reduction of errors in the generation of the spreading 

records. In addition, He would also like for the reports to be in the simplest form possible 

so that they can be easily use these records to move into the billing information. Charlie 

likes the idea of using spreadsheets for keeping these records as this is his current 

documentation method. 

Charlie sees value in implementing the Autogenic portion of this app. Charlie 

understands that in this fast-pace industry it is very inefficient to have to go back and 

correct an error in one’s records whether it is someone forgetting to record a load of 

manure or recorded a load going to the wrong field. This becomes more of a problem 

when you multiply employees and rapid movement from one customer to another.  

Charlie feels that it is beneficial to remove human input when possible and also likes the 
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prospect of minimal man hours required to simply input information required to generate 

records, it simply takes place on its own. 

Charlie also sees potential benefit to his customers. If they can have as applied 

manure records, they can more easily optimize other nutrient inputs.  These same records 

can help Charlie with his “honest billing” philosophy.  Additionally, some of his 

spreading situations actually have two customers: the livestock farm with the manure and 

the crop farm which is getting the manure applied. As the third party service provider, 

Charlie can help both of these farmers with their records. 

 Charlie would most interested in the autogenic capabilities of the Manure App. 

Charlie would immediately purchase and install the Bluetooth sensor tag on each of his 

spreaders. Having a network of spreaders all connected to his operator’s mobile devices 

would greatly reduce the complexity of who spread each load of material and in what 

field. This would improve is book keeping as well as generating accurate as applied 

nutrient maps without the need for expensive monitors installed in the cab of each tractor. 

The Manure App is free and the sensors are $25 each. Charlie likes these numbers. 

Additionally, Charlie finds great value in the ability to keep all the operators data stored 

to the same database and synced continually during field operations. Charlie exports the 

generated data each evening after field operations have ceased. Sending the data to the 

office computer, he now has the ability to view the day’s progress and check the quality 

of application.  

Considerations for Improving Functional Specifications 

Additional information would be beneficial for the development of the Manure App. In 

addition to the basic functionality of the app, the views of the potential users on 
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regulatory requirements would be beneficial for creating a tool that can assist in the 

reporting process. Some questions that could be answered by future users could aid in 

developing desired functionality. 

 What is the size of the operation? 

 What is the level of interest for data collection and operation record generation on 

the operation? 

 At this time, are manure application records being generated on the operation?\ 

 How are the manure records generated? 

 Are you satisfied with the accuracy of those records? 

 Are there currently steps being made to improve record reporting? 

 Do manure application records need to remain confidential? 

 

 

User Interface 

Mockups designed using mybalsamiq.com 
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Figure 1 - App Dashboard showing first time opened (left) and after use (right) 

Dashboard 

The dashboard is the main screen of the app that will most likely be used the most by the 

user. For that reason it is important that all relevant information is displayed in a simple 

and well organized fashion. The dashboard should display information that the operator 

would need access quickly while being able to continue spreading without added 

distraction or the navigation of long lists within the app. The dashboard houses other 

operations of the app as well. 

 The navigation bar is at the top of the screen and serves several purposes. The 

“view” icons is where the user can view a Google map of his fields showing manure 

coverage of each field in a similar way that a yield map appears. This “List” icon is 

where the user can look up current and past spreading events in a similar format to a 

spreadsheet. Most of the spreadsheet functionality will be saved for using on a pc, but 
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having this capability will help for quick look-up needs of the user. The list navigation is 

located at the center left of the dashboard. These icons take the user to spreader list and 

field lists for the purpose of record keeping and background calculations. The “Op” icon 

will likely change, but the purpose is to have a planning tool built in so that the user will 

be able to plan manure hauling events for future times. This would help with managing 

personnel and improving logistical efficiency. Additionally, this may help with the 

complexity of the autogenic functionality of Manure App Version 3.  

The center of the dashboard will be the location of the most essential data that the 

user would need to find with no more effort than a glance. The bottom of the dashboard 

will be the location of the unloading functionality of the app (Non-Autogenic version).  

 

 

         Figure 2 - Spreader List 

Spreader list 
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The Spreader list is the portion of the app where the user can save multiple spreaders and 

select them based off of which one is being used. After pressing the spreader icon from 

the dashboard, the user can either, select an existing spreader, or add new spreader. 

 

      Figure 3 - Field list and add field function 

Field List 

The Field list is the location of the app where the user will be able to select which field 

that he is planning to spread, or add a new field. By selecting the “Add Field” icon, the 

user needs to type in the name of the field and then tap on the map to create the polygon. 

Source 

If the user has a large operation, it is highly likely that there are multiple sources of 

manure on site. If so; the Source List is the location in the manure app where the user can 

add in source data for later use. For each source added to the list, the user will be able to 

add the nutrient values for accurate tracking of each unit of N, P, K applied to their fields. 

This will make reporting much easier and accurate. It will also aid in the reduction of 



98 

 

 

9
8
 

artificial fertilizer needed for crops. All of this translating to added savings for the 

operation.    

Unload Function 

There are only two buttons in the unload portion of the app. The large button contains all 

of the unload functionality, tap it once to start, and tap again to stop. Once the operator 

has pressed the button the app will begin to track their progress across the field by 

recording Lat/Long position continually during travel. This path will then be displayed on 

a Google map showing exactly where this load of manure was hauled. 

By knowing the spread width of the machine and the capacity, the app can then calculate 

the rate of application and save this information to the Google Spreadsheet. When the app 

is unloading the unload button will change to show “Load Complete” and a “Pause” 

button is displayed. The “Pause” button is displayed so the user can pause the recording 

of GPS points when turning around at the end of the field or any other reason that would 

need the spreading operation halted. Once that spreader is empty, the user can press the 

“Load Complete” button that will trigger the upload of this load information to the web 

based database for syncing with other devices. 

Records 

The records will be generated in the app and then uploaded to the Cloud, in this case, 

Cloudant. The user will create their own database for use with the Manure App. The app 

will then be able to upload information to the user’s Cloudant database syncing and later 

export. 

Developmental Stages 

Version 1 
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● Save information about each load of manure (e.g. date, operator, spreader, field, 

and source) 

● Save the input data in browser local storage 

●  Display manure records in the app 

● Export CSV file capability 

Version 2 

● Finalize and implement user interface  

● Utilize HTML5 Geolocation API 

● Implement Google Maps API for drawing and viewing field boundaries 

● Convert Manure App from a web application to a native application for 

continuous operation on a mobile device 

Version 3 

● Implement Bluetooth connectivity to external sensor tag for communicating 

spreading status to the app 

● Utilize Google Maps API for detecting the field that the user is inside during 

operation 

● Implement web based database for multi-device use and synchronization 

Testing 

● Collect data from sensor tag during simulated manure application for analysis 

● Develop an algorithm for determining the status of application from sensor output 

● Install on implement for generating spread path and manure record 
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Appendix B Manure Records Documents 

327 IAC 19-7-5 Manure management plan 
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Manure application record (IDEM, 2015) 
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CONFINED FEEDING OPERATION (CFO) 

SELF- INSPECTION RECORDS (Required Information) 

As required by 327 IAC 19-13-1(f), the owner/operator shall inspect all waste 

management systems at least one (1) time each week.  You may use this form to 

document compliance with the rule. 

DATE 

(MM / DD / YY) 
INSPECTED BY 

COMMENTS 

[Indicate what was inspected (i.e. concrete pits, pump-out ports, 

lagoons, land application equipment, etc.). Make note of any 

problems and corrective measures] 
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Calculations for manure application from Indiana IAC 327 - 19 - 14 - 4 
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Appendix C Creating User’s Remote Database 

Step-by-step guide to creating one’s own Cloudant database for storing manure 

hauling records generated using the Manure App. 

 

Step 1 – create an account 

Navigate to Cloudant.com 

Click “Sign Up” at the top right of the page in orange 

You should see a page like this: 

 

Input your information: 

Username – this will be the name of your database and will be used for logging into your 

account. Save this information because it will be input into the Manure App for syncing. 

http://www.cloudant.com/
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Password – Used for logging into your account. This will also be input to the Manure 

App for syncing data. 

First name 

Last name 

Company - does not have to be actual company name… Purdue University was used 

during development. 

Email 

Location – This allows you to select the location that you would like to have your data 

stored. 

Click “I agree, sign me up” 

Once this is accomplished, you will get an email telling you that your account has been 

created and you can log in to see you data stored. (There will be no data until you sync 

the Manure App - next step). 

Step 2 – Syncing the app to your database 

Now that you have a web based database, you can sync you data generated with the 

Manure App for safe storage and multiple device syncing of records. (See below figures 

for visuals for adding database id and password). 

Open up the Manure App on your device. 

From the Dashboard, tap “options” in the top right corner of the screen. This navigates to 

the options page of the app. 

Tap “Add database info” (this screen will display the name of the database once the app 

is synced) 
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Tap “Add new database”  
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Add in the Id and password created when you completed the creation of your account 

(see step one). 

Tap “save” 

 

 

Once you have saved the information, the app will call your database to sync. This can 

take a couple of moments depending on your internet connection. 

Once you have synced the database to the app, you can now generate data in the app and 

it will be synced to your Cloudant database. Additional devices can be added to the 

database by following the above steps. Data will be synced to the database and other 

connected devices at is generated.  
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