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ABSTRACT 

Peterson, Donnie L. M.S., Purdue University, December 2014. Suitability of Blue Ash 
(Fraxinus quadrangulata) and Green Ash (F. pennsylvanica) to Emerald Ash Borer 
(Agrilus planipennis) and its Larval Parasitoid Tetrastichus planipennisi. Major 
Professors: Clifford Sadof and Steve Yaninek. 
 
 

Emerald ash borer (EAB) (Agrilus planipennis) is a primary pest that has killed 

tens of millions of North American ash (Fraxinus spp.) trees. The larval parasitoid 

Tetrastichus planipennisi was introduced from China as part of a classical biological 

control program for long-term EAB management. The high mortality rates of ash trees 

greatly reduce the number of EAB hosts and may make it difficult for parasitoids to 

persist. However, blue ash (F. quadrangulata) is relatively resistant and appears to be 

able to survive EAB infestation. If natural enemies can attack EAB in infested blue ash 

they may be better able to persist and protect regenerating ash trees. I compared the 

capacity of EAB larvae and its larval parasitoid to survive and develop in blue ash and 

the more susceptible green ash (F. pennsylvanica). Blue and green ash trees were infested 

with EAB eggs in the field and laboratory and their bark was peeled to determine larval 

survivorship and developmental stages. A subset of blue and green ash was exposed to T. 

planipennisi so that parasitism rates, brood sizes, sex ratios, and adult sizes could be 

determined. EAB larvae survivorship was high (>96%) and mortality due to wound 

periderm formation was low (<4%) on green and blue ash in the field. However, EAB 
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larvae developed slower in blue ash than in green ash in the field and laboratory. In 

contrast, T. planipennisi brood sizes, sex ratios, and adult female sizes had no significant 

difference between ash species suggesting that hosts have no apparent affects. In the field, 

T. planipennisi was able to attack and develop on EAB larvae in caged blue and green 

ash trees. As such, if T. planipennisi can find blue ash trees, then they should readily 

attack and survive on living EAB. When joined with higher blue ash survival, it is 

possible that this ash species could serve as refuge for EAB and its parasitoids after 

susceptible ash are killed by this pest. Thus, blue ash presence may improve the capacity 

of parasitoids to parasitize, persist, and protect more susceptible ash species in forests. 
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CHAPTER 1.  BIOLOGY, BIOLOGICAL CONTROL, AND HOST PLANT 
RESISTANCE OF EMERALD ASH BORER (AGRILUS PLANIPENNIS) 

 

1.1 Emerald ash borer, a tree killer: 

The emerald ash borer (EAB), Agrilus planipennis is a primary pest of North 

American ash trees with the potential to change North American forests. It was first 

discovered in 2002 as the cause of a massive number of tree deaths in Michigan, US and 

Ontario, Canada (Haack et al. 2002). Since its arrival in North America from China on 

infested wood packing material during the early- to  mid-1990s (Siegert et al. 2008, 2014; 

Cappaert et al. 2005), tens of millions of ash trees have died (Poland and McCullough 

2006) and potentially eight billion ash trees are threatened (Mercader et al. 2009). EAB 

has the potential to cost tens of billions of dollars for treating, removing, and replacing 

ash trees in urban areas over a 10 year period (Kovacs et al. 2010). In addition, declining 

and dead trees pose a hazard and have the potential to injure or kill people (Beering and 

Scott 2010). 

Besides the economic costs, there are also ecological costs from the loss of ash 

trees. Many vertebrates use ash trees. White-tailed deer and moose use ash trees for 

protection, browse, and thermal cover. The bark of seedlings and saplings can provide 

food for beaver, rabbits and porcupines (Heyd 2005). Ash loss could endanger 43 

monophagous native arthropods and harm an additional 30 arthropods which use ash 

trees as one of their hosts (Gandhi and Herms 2010a). The loss of ash can cause the
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 formation of canopy gaps, increase coarse woody debris, alter biogeochemical cycling, 

and many ecological interactions among organisms (Gandhi and Herms 2010b). Recent 

reports of EAB attacking the white fringetree (Chionanthus virginicus) in Ohio suggests 

that this pests host range may expand as its geographic range encompasses a wider range 

of potential host species.  

 

1.2 Life history of EAB: 

In the spring, “J-shaped larvae” become prepupae and shed their cuticles. The 

pupae develop into adults and emerge from the ash tree at 230-260 C° DD10 (Brown-

Rytlewski and Wilson 2004) by chewing through wood and leaving their diagnostic D-

shaped exit holes. Adults feed on ash tree leaves for five to seven days before mating. 

Females feed for five to seven more days after mating and lay 50-90 eggs (Poland and 

McCullough 2006). Females lay eggs in the cracks and crevices of the bark of ash trees. 

Eggs develop into larvae that emerge in two weeks. Larvae chew their way through the 

outer bark into the phloem where they feed and create S-shaped galleries. They feed and 

develop until October or November at which time EAB larvae burrow into the sapwood 

of the ash tree and overwinter (Cappaert et al. 2005). EAB develops through four instars, 

when 4th instars mature they bore into the sapwood, create a pupal chamber, and 

overwinter as “J-shaped” larvae. Individuals that do not reach the J-shape stage 

overwinter in the phloem layer and need an additional year to feed and develop to 

complete a generation. EAB development can range between one to two years. In regions 

with shorter summers, it may take EAB two years to develop to adults, while in warmer 

climates they need only one year (Wei et al. 2007). Development of EAB from eggs to 



3 
 

 

adults in resistant species of ash can also take longer due to slowed development 

(Chakraborty et al. 2014). 

 

1.3 Management of EAB: 

Soon after its detection in the US, federal and state agencies tried to contain the 

incipient Michigan and Ontario EAB infestations and eradicate early satellite populations 

(Cappaert et al. 2005, Herms et al. 2004). Eradication was stopped after this effort was 

judged to be a failure because of the discovery of new satellite populations in many new 

states. Since its accidental introduction in the early- to mid-1990s (Siegert et al. 2014) 

near Detroit, MI, EAB has spread into 24 U.S. states (Cooperative Emerald Ash Borer 

Project 2014) and two provinces in Canada (Canadian Food Inspection Agency 2013). 

Nationally, management efforts have focused on reducing the spread of EAB by 

restricting the movement of infested ash wood. EAB can fly up to 7 kilometers per day 

(Taylor et al. 2005, 2010), but can be moved hundreds or thousands of kilometers per 

year by humans. To manage for anthropomorphic spread, laws have been implemented to 

regulate the transportation and sale of ash trees and logs from quarantined counties 

(Cappaert et al. 2005). Other management efforts have focused on reducing EAB 

populations and slowing ash mortality.  

The SLow Ash Mortality (SLAM) program, a collaboration of state and federal 

agencies and universities, is designed to slow down the rate of ash decline by reducing 

EAB population growth. In the first step, sanitation, infested ash trees are removed before 

adults emerge to reduce the abundance of A. planipennis. This effort is followed by 

girdling selected ash trees that attract ovipositing females who prefer them over healthy 
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ash trees (McCullough et al. 2009a). Harvesting and destroying these trap trees before 

adult emergence, kills all overwintering EAB. Another version of trap trees, lethal trap 

trees, can also be used to kill EAB adults and larvae by treating ash trees with an 

insecticide (McCullough et al. 2009), such as emamectin benzoate, and then girdling after 

a few weeks. This method can be used best in areas that are difficult to access. The lethal 

trap tree can be left standing as long as it doesn’t threaten harm to humans or property 

(SLAM 2014). In simulations, insecticide and girdling treatments reduced radial spread 

and larval consumption of phloem (Mercader et al. 2011). 

Systemic insecticides can effectively protect ash trees from EAB in urban settings 

(Herms et al. 2014). These chemicals can be applied via soil or injections, and lower 

trunk sprays in the mid- to late spring. EAB can be when adult beetles feed on the leaves 

of treated ash trees and ingest a lethal toxin (insecticide).  Alternatively, newly hatched 

larvae that emerge from eggs can be killed when they feed on the phloem of treated trees. 

The capacity of insecticides to kill EAB in the urban landscape provides opportunities to 

develop area wide strategies that can reduce the rate of EAB spread (Mercader et al. 

2011). 

Classical biological control is being implemented to suppress EAB populations by 

re-establishing natural enemy/prey relationships found in this pest’s native range. In 2003, 

an exploratory survey was conducted in China for natural enemies where EAB 

populations were low (Liu et al. 2003). Three parasitoids were found, imported, tested for 

host range, and released in the US (Liu et al. 2003, Bauer and Liu 2007, Gould et al. 2007, 

2013). A fourth larval parasitoid, Spathius galinae has recently been found 

(Belokobylskij et al. 2012) and is under study for release (Yang et al. 2012).  
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1.4 Fraxinus resistance to EAB: 

In China, native Asian ash appear to be less likely to be infested by EAB 

compared to North American ash trees because recent outbreaks of EAB have been on 

North American ash (Liu et al. 2003). For example, Manchurian ash (Fraxinus 

mandshurica) and Oriental ash (F. rhynchophylla), both Asian ash trees, have lower 

levels of infestations of beetles in Eastern Russia in comparison to North America’s 

green ash (F. pennsylvanica) (Duan et al. 2012b). Specifically in the Khabarovsk area of 

Russia, green ash had higher mean densities of EAB than artificially stressed Manchurian 

ash, 11.3-76.7 and 2.2 /m2 respectively. In the Valdivostok area of Russia, green ash also 

had higher densities of EAB than Oriental ash, 77-245 EAB/m2 and 10-59 EAB/m2 

respectively. In a second study, Korean ash (F. chinensis var. rhynchophylla), a native to 

Asia, appears to be more resistant to EAB because it was not infested, but 95% of green 

ash trees found nearby were  infested (Liu et al. 2007).  

Since EABs introduction to the US, numerous studies provide evidence that North 

American ash trees are highly susceptible to EAB (Anulewicz et al. 2006, 2007, 

Pureswaran and Poland 2009, Chen and Poland 2010, Rebek et al. 2008). For example, 

both green ash (92%-100%) and white ash (F. americana) (75%) had high rates of 

mortality from EAB compared to Manchurian ash (F. mandschurica) (<20%) in a 

common garden study (Rebek et al. 2008). There appears to be a hierarchy of EAB 

oviposition and feeding preference of native ash trees with green ash>white ash>black 

ash (F. nigra)>blue ash (F. quadrangulata) (Anulewicz et al. 2006, 2007, Pureswaran 

and Poland 2009, Chen and Poland 2010, Tanis and McCullough 2012, Carson 2013, 
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Rigsby et al. 2014). Mechanisms of resistance are not well understood and are the subject 

of ongoing research.  

Even among susceptible North American ash species, e.g. F. pennsylvanica, about 

10-17% of EAB die during larval development (Duan et al 2010). Most research has 

focused on defenses within the phloem, particularly on phenolics and defensive proteins 

(Eyles et al. 2007, Cipollini et al. 2011, Whitehill et al. 2011, 2012, Chakraborty et al. 

2014). Eyles et al. (2007) and Cipollini et al. (2011) have compared Manchurian ash 

phloem chemistry to green and white ash trees and found several unique or higher 

concentrations of phenolic components that may contribute to its higher level of 

resistance. Interestingly, blue ash has been demonstrated to have a unique secondary 

metabolite profile (Whitehill et al. 2012). These studies investigated constitutive defenses. 

When induced defenses were analyzed in trees artificially infested with EAB, 

Manchurian and black ash had an increase in defensive compounds (Chakraborty et al. 

2014). Specifically, Manchurian ash had much higher levels of the phenolics, pinoresinol 

A and B compared to black ash. Chakraborty et al. (2014) hypothesized that these 

phenolics may contribute to the higher levels of resistance in Manchurian ash. In general, 

it has been demonstrated that Asian ash are more resistant than North American ash; 

however, one North American ash tree appears to have some resistance to EAB - blue ash. 

Blue ash appears to be the most resistant and least preferred North American ash 

as a host for EAB (Anulewicz et al. 2007, 2008, Pureswaran and Poland 2009, Tanis and 

McCullough 2012). Blue ash is an uncommon species with square twigs that typically 

grows in limestone outcrops (Sibley 2009). Phylogenetically, blue ash is distantly related 

to other North American ash species that EAB has encountered in the US (Wallander 
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2008). Specifically, blue ash is in the Dipetalae clade with its closest relatives which also 

have square stems, but these ash trees occur in the SW US. In comparison, most US ash 

trees are within the Melioides clade and appear quite susceptible to EAB. In a mixed ash 

forest in Michigan, up to 71% of the blue ash survived EAB infestations (Tanis and 

McCullough 2012). In contrast, all white ash trees were dead except for 29 saplings that 

were too small to be infested at the time of the tree census. Eighty percent of the 

remaining blue ash had signs of infestation which suggests that these trees survived the 

invasion of EAB (Tanis and McCullough 2012). Similar observations have been made in 

Canada (Carson 2013), where 82% of blue ash were alive with crowns that had >90% of 

their foliage. In contrast, all but 6.5% of the green ash in the survey died (n=31). This 

resistance of blue ash to EAB may be due to its unique secondary metabolite profile and 

being distantly related to other native ash species.  

 

1.5 Biological control of EAB: 

Biological control is a management tactic that can contribute to pest suppression 

using ecological principles and co-evolved relationships. Classical, augmentative, and 

conservation controls are three types of biological control (Eilenberg et al. 2001). 

Classical biological control is the intentional introduction of an exotic biological control 

agent for establishment, persistence, and long-term pest management. In comparison, 

inoculation or augmentative biological control is the release of a biological control agent 

with the expectation that it will multiply and control the pest for a limited period. 

Generally, augmentative releases are conducted in greenhouses, orchards, or other highly 

managed ecosystems. A third biological control, conservation control, focuses on 
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modification of the environment to protect and enhance the capacity of native natural 

enemies to reduce pests. Often, this control can involve providing alternate hosts, floral 

resources, or harborage from other natural enemies or pesticides (Nomikou et al. 2002, 

Rebek et al. 2006, Schmidt 2014). By improving habitats, refuges can provide natural 

enemies sites for reproduction and harborage. 

For EAB management, classical biological control was adopted as a long-term 

strategy after eradication attempts failed (Herms and McCullough 2014, GAO 2006). The 

search for natural enemies of EAB began in 2002 in the US, and 2003 in China (Liu et al. 

2003). Initially, two species of larval parasitoid wasps were found in China, Spathius 

agrili (Hymenoptera: Braconidae) Yang and Tetrastichus planipennisi (Hymenoptera: 

Eulophidae) Yang (Liu et al. 2003, Yang et al. 2005, 2006). Later, Oobius agrili 

(Hymenoptera: Encyrtidae) Zhang and Huang, an egg parasitoid, was discovered in 2004 

and described by Zhang et al. (2005).  

Oobius agrili is parthenogenic and has a female to male sex ratio of 14.5:1 (Bauer 

and Liu 2007). In China, O. agrili was found to complete two generations per year in the 

field and parasitize >60% of EAB eggs (Liu et al. 2007).  

Spathius agrili is a gregarious ectoparasitoid with up to four generations a year 

(Yang et al. 2005). As an idiobiont, this parasitoid does not permit its host (EAB larvae) 

to develop beyond the stage that was attacked (Alphen and Jervis 1996). Spathius agrili 

appears to be effective at reducing beetles with up to 90% parasitism in the field (Yang et 

al. 2005). Typically, an average of 8.4 larvae emerges per host (range of 1-18) with a 

reported sex ratio of 3:1 (females to male) (Yang et al. 2005). 
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Tetrastichus planipennisi is a gregarious larval endoparasitoid that has up to four 

generations a year (Liu et al. 2007).  Tetrastichus planipennisi is a koinobiont, a 

parasitoid that allows its host to feed and develop after being parasitized (Alphen and 

Jervis 1996). Tetrastichus planipennisi find hosts from EAB larval feeding vibrations 

(Ulyshen et al. 2010). On average, this wasp parasitized 22.4% of EAB larvae in the field 

with rates as high as 40.4% (Liu et al. 2007). Tetrastichus planipennisi was reported to 

reduce EAB densities by 73.6% in the 2005 field season in China (Liu et al. 2007). This 

wasp has a high reproductive capacity with an average fecundity of 35 T. planipennisi 

progeny per EAB larvae (Liu et al. 2007) and a sex ratio of 3:1 (females to male) (Duan 

et al. 2012c).  

These three parasitoids have been imported, quarantined, screened, and released 

to suppress EAB in the United States (Gould et al. 2007, 2013, Liu and Bauer 2007, 

Bauer and Liu 2007). Oobius agrili has successfully established in Michigan and Indiana 

(Duan et al. 2011, 2012a, Mapbiocontrol 2014). In Michigan, O. agrili was able to 

parasitize up to 48% of the EAB eggs in the field (Duan et al. 2012a). Spathius agrili has 

been less successful and to date, has not established in any of the US release sites north of 

the 40th parallel. Consequently, S. agrili currently is only being released south of the 40th 

parallel (Gould et al. 2013). Tetrastichus planipennisi has successfully established in 

Michigan, Maryland, Minnesota, and Indiana (Mapbiocontrol 2014, Duan et al. 2013, 

Jennings et al. 2013). EAB parasitism rates have been reported as high as 28.6% by T. 

planipennisi in the field (Duan et al. 2013).  Tetrastichus planipennisi has been observed 

to have parasitized EAB larvae in small regenerating ash trees years after the death of the 

original ash forest (Duan et al. 2013, per. comm.). Although this observation occurred in 
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Michigan, follow-up surveys at Huntington, IN in 2013 and 2014 failed to recover T. 

planipennisi from green ash saplings (Mapbiocontrol 2014), even though it had been 

recovered previously in 2011 (Mapbiocontrol 2014). Tetrastichus planipennisi released in 

2009 and 2010 persisted in green ash saplings at several Indiana sites (Huntington, 

Orleans, and Ritchey Woods; Mapbiocontrol 2014); however, these saplings may be 

insufficient to support EAB and its parasitoids.  

 

1.6 Blue ash, America’s Manchurian ash: 

In Asia, EAB remains a secondary pest through a coevolved relationship with 

host plants and natural enemy suppression. Biological control by woodpeckers and 

parasitoids contribute to decreasing EAB populations (Wang et al. 2010, Duan et al. 

2012b, Liu et al. 2007, Yang et al. 2005). The addition of host plant resistance can slow 

larval development (Chakraborty et al. 2014) and lead to EAB being more prone to 

natural enemy attack. This relationship demonstrates the combined effects of host plant 

resistance and biological control to decreasing pest populations.  

In North American, EAB is a primary pest of ash trees because most native trees 

are highly susceptible and there are no specialist natural enemies to suppress populations. 

Tetrastichus planipennisi has successfully established in the US and blue ash is able to 

survive EAB infestation (Tanis and McCullough 2012, Carson 2013). Therefore, blue ash 

may be able to serve as a refuge for EAB and its larval parasitoid, T. planipennisi. If 

introduced parasitoids, such as T. planipennisi, are able to persist in EAB larvae on blue 

ash, then they have the potential to protect more susceptible regenerating ash trees. A 
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study on the suitability of blue ash to serve as host for EAB and its natural enemies 

would contribute to determining whether this tree species could be used as a refuge.  

   

1.7 Research Objectives: 

The main goal of this study was to determine the extent to which blue ash has the 

potential to serve as a refuge for T. planipennisi. This goal was broken down into two 

main objectives with the following sub-objectives:  

1) Determine the extent to which green and blue ash are able to support EAB 

larvae (Chapter 2). 

a. Do EAB larvae survive at the same rate on blue and green ash? 

b. Do EAB differ in size during or after larval development on blue and 

green ash? 

2) Determine the extent to which EAB larvae in green and blue ash can support T. 

planipennisi (Chapter 3). 

a. Can T. planipennisi attack EAB larvae on green and blue ash? 

b. Do parasitism rates by T. planipennisi differ between blue and green 

ash? 

c. Do the sex ratios, brood size, or adult female size of T. planipennisi 

differ between green and blue ash? 

This work will quantify the relative suitability of blue and green ash trees to 

support larval stages of EAB, and serve as hosts for T. planipennisi. This work will also 

contribute to determining the extent to which blue ash could serve as a refuge for EAB 
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and parasitoids that can protect more susceptible North American ash. Additionally, if 

this blue ash refuge concept can work for T. planipennisi, it has the potential to work for 

other larval parasitoids which could further contribute to the suppression of EAB 

populations.  
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CHAPTER 2.  EMERALD ASH BORER (AGRILUS PLANIPENNIS) 
DEVELOPMENT IN BLUE ASH (FRAXINUS QUADRANGULATA) AND GREEN 

ASH (F. PENNSYLVANICA):  FIELD AND LAB EXPERIMENTS 
 

2.1 Abstract 

Emerald ash borer (EAB) (Agrilus planipennis) is a primary pest that has killed 

tens of millions of North American ash (Fraxinus spp.) trees. Although all native ash 

species are susceptible to EAB, blue ash (F. quadrangulata) is relatively resistant and 

appears to be able to survive EAB infestation. I compared the capacity of EAB larvae to 

survive and develop in blue ash and the more susceptible green ash (F. pennsylvanica). 

Blue and green ash trees were infested with EAB eggs in the field and laboratory, bark 

was peeled to extract larvae, and larval developmental stages were determined. EAB 

larvae reared in field and laboratory studies in both ash species had similar survivorship 

(>96%), while larval mortality in both ash species due to encapsulation by wound 

periderm was low (<4%). Larvae reared in field grown blue ash were significantly 

smaller with fewer overwintering (15%) as J-shape (prepupae) than those in green ash. 

Similarly, larvae reared in blue ash in the laboratory were significantly smaller and 

developed slower than in green ash. The consistent finding in both field and laboratory 

data suggests that blue ash slows the larval development rate. Therefore, more EAB 

larvae have a two year life cycle in blue ash than green ash. Longer development time 

also increases EAB exposure to larval mortality factors and could help explain why blue 

ash survive infestation at a higher rate than green and white ash in forests.
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2.2 Introduction 

The emerald ash borer (EAB), Agrilus planipennis is a primary pest of North 

American ash trees with the potential to dynamically impact North American forests. It 

was first discovered in 2002 as the cause of extensive ash tree mortality in Michigan, US 

and Ontario, Canada (Haack et al. 2002). Since its arrival in North America in infested 

wood packing material from China during the early to mid-1990s (Siegert et al. 2008, 

2014; Cappaert et al. 2005a), it has killed tens of millions of ash trees (Poland and 

McCullough 2006). This pest has the potential to kill eight billion North American ash 

trees (Mercader et al. 2009) and cost tens of billions for treating, removing, and replacing 

37.9 million ash trees on developed land over 10 years (Kovacs et al. 2010). In addition, 

declining and dead trees pose a hazard and have the potential to injure or kill people 

(Beering and Scott 2010).  

In the spring, EAB pupae develop into adults and emerge from the ash tree at 230-

260 C° DD10 (Brown-Rytlewski and Wilson 2004) by chewing through wood and 

forming diagnostic D-shaped exit holes. Adults feed on ash tree leaves and look for mates. 

After mating, females feed to mature their eggs and lay 50-90 eggs individually in bark 

cracks or crevices (Poland and McCullough 2006). Eggs develop and larvae emerge 

within two weeks. Larvae feed and develop in the phloem layer until October or 

November when they overwinter (Cappaert et al. 2005a). During their fourth instar, 

larvae will bore into the host’s sapwood to overwinter as a pre-pupae called “J-shaped 

larvae”. EAB can take one to two years (univoltine and semivoltine, respectively) to 

develop depending on temperature and host plant health (Wei et al. 2007, Cappaert et al. 

2005a, Tluczek et al. 2011).  



25 
 

 

In China, EAB occurs at low densities (Liu et al. 2003), which likely results from 

a combination of host tree resistance and suppression by natural enemies. EAB outbreaks 

in China were rare until after the North American white ash and velvet ash were 

introduced (Liu et al. 2003). North American green ash (F. pennsylvanica) is attacked 

more frequently and with higher infestation densities of EAB than Asian congeners in 

China (Duan et al. 2012a, Liu et al. 2007).   

Most North American ash species are far more susceptible to EAB than Asian 

species like Manchurian ash (F. mandshurica) (Anulewicz et al. 2007, Rebek et al. 2008, 

Pureswaran and Poland 2009, Tanis and McCullough 2012). In a common garden study, 

Manchurian ash suffered 20% mortality from EAB compared to 92-100% for green ash, 

and 75% for white ash (Rebek et al. 2008). There is a hierarchy of EAB oviposition and 

feeding preference among North American ash species with green ash>white ash>black 

ash (F. nigra)>blue ash (F. quadrangulata) (Anulewicz et al. 2006, 2007, Pureswaran 

and Poland 2009, Chen and Poland 2010, Tanis and McCullough 2012, Carson 2013).  

Mechanisms of resistance to EAB are not well understood. Current research has 

focused on antixenosis (Groot et al. 2008, Pureswaran and Poland 2009, Rigsby et al. 

2014) and antibiosis resistance (Eyles et al. 2007, Cipollini et al. 2011, Whitehill et al. 

2011, 2012, Chakraborty et al. 2014), and their respective potential roles in host plant 

preference and secondary metabolites that may affect the EAB biology. 

Electroantennograms (EAGs) of emerald ash borer adults show strong responses to green 

leaf volatiles (GLV) (Groot et al. 2008). Pureswaran and Poland (2009) found EAB 

preference for green ash over Manchurian ash may be from differences in volatile 

concentration and composition. And more recently, Rigsby et al. (2014) demonstrated 
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that ovipositing female EAB prefer North American ash trees (e.g. black, green, and 

white ash).  

Whitehill et al. (2012) examined the phenolic and lignin levels of the phloem 

across one resistant and several susceptible Fraxinus species. They found Manchurian 

ash has unique lignans and lignan derivatives that may contribute to its higher resistance, 

while blue ash also had a unique secondary metabolite profile that included coumarins, 

esculetins, lignans, and secoiridoids. Additionally, the phloem of blue ash also contains 

several coumarins that were present in significantly higher levels than other ash species. 

Whitehill et al. (2012) postulated that these secondary metabolites may contribute to the 

allopatric resistance in blue ash.  

Blue ash is an uncommon species of ash that tends to grow in limestone 

outcroppings and has square twigs (Sibley 2009). Phylogenetically, it is distantly related 

to other North American ash species. Blue ash appears to be the most resistant and the 

least preferred North American ash host for EAB (Anulewicz et al. 2007, 2008, 

Pureswaran and Poland 2009, Tanis and McCullough 2012). Recent work conducted by 

Tanis and McCullough (2012) in Michigan demonstrated that blue ash is able to survive 

EAB infestation. In a mixed ash forest, up to 71% of the blue ash survived EAB 

infestations (Tanis and McCullough 2012). In contrast, 100% of the white ash were dead 

except for 29 saplings, which were too small to be infested at the time of the tree census. 

Of the surviving blue ash, 80% had signs of infestation suggesting that these trees were 

able to survive an EAB attack (Tanis and McCullough 2012). Similar results have been 

demonstrated in mixed forests in Canada (Carson 2013), where 82% of blue ash crowns 
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had >90% of their foliage after the initial wave of EAB mortality. In contrast, all but 6.5% 

of the green ash in the survey had died. 

There have been no studies to explain how blue ash survives after successfully 

being attacked by EAB. So, I examined the potential for antibiosis by evaluating the 

relative suitability of blue and green ash logs for the development and survivorship of 

EAB larvae. 

 

2.3 Materials and Methods 

2.3.1 Description of field sites and selection of experimental ash trees 

In the April 2013, field sites with existing stands of green ash in Celery Bog, 

West Lafayette, Indiana, and blue ash in the Mississinewa reservoir, Peru, Indiana were 

selected as a source of host material for EAB larval development studies. All ash trees 

used in this study had a diameter at breast height (DBH) between 8-12 cm. Selected trees 

had no obvious symptoms of EAB, such as vertical bark splits, epicormic shoots, D-

shaped exit holes, canopy dieback, and woodpecker holes. 

2.3.2 Field: infestation of standing ash trees with EAB eggs 

Experimental trees in each field site were infested with EAB eggs acquired from 

the USDA Forest Service at Michigan State University, East Lansing, Michigan. Eggs 

laid onto coffee filter paper by gravid EAB females, as described in Abell et al. (2012), 

were incubated at 24°C, 75% humidity, and 16:8 h (L:D) photoperiod until they were 13 

days old, three days before expected eclosion. Eggs were attached to trees in the field 

using a modified version of Abell et al. (2012) (Appendix 1) at 54 eggs/m2 between 28 

May-6 June 2013 along a 1.5 m main stem length 0.3 m above the soil surface. Leftover 
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eggs were maintained in incubated conditions for two weeks and used to determine hatch 

rates by monitoring for exit holes by neonates. The hatch rate was used to estimate the 

number of viable eggs transferred to ash trees. 

2.3.3 Field: harvest and dissection of ash tree logs 

 On 4 December 2013 and 11 April 2014, five and then six green and blue ash 

trees were felled and cut into 2 m sections, and then transported to our lab at Purdue 

University. The logs were stored in a walk-in cooler set at 5.5°C until they were removed 

for dissection. At which time, the diameter and bark thickness were recorded for both the 

top and bottom end of each log. The bark and phloem were moved from each log using a 

draw knife until EAB galleries were revealed, at which point a chisel was used to 

carefully remove any remaining bark covering individual larva. EAB larvae were 

removed with soft forceps and placed into 24 cell well plates. EAB gallery width and 

prothoracic width were recorded. Collected EAB larvae were categorized as healthy (H) 

or dead (D). Healthy individuals were white in color, while dead individuals were 

discolored (e.g. black), covered with fungal fruiting bodies, or engulfed in callus tissue 

formed by the tree. Additionally, I noted whether individuals were larvae or J-shaped 

larvae (prepupae) defined as being folded in a “J-shape” in a pupal chamber in the xylem. 

Weight was also recorded for EAB larvae from trees that were peeled in April 2014.  

2.3.4 Field: statistical analysis 

Chi-squared tests were used to compare the proportion of overwintering J-shaped 

larvae in green and blue ash, proportion of EAB larvae recovered from viable transferred 

eggs, and survival of larvae recovered from harvests. A mixed model PROC GLIMMIX 

(SAS® 9.4 Institute Inc., Cary, NC) was used to determine if ash species affected weights 
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of J-shaped larvae collected during the April harvest of EAB, and prothoracic width and 

gallery width of larvae from December and April EAB harvests. 

2.3.5 Lab: infesting ash bolts with emerald ash borer  

I conducted a laboratory experiment to determine the relative suitability of blue 

and green ash as hosts for EAB. On 19 February 2014, EAB eggs between 8 and 12 days 

old were obtained from the USDA laboratory mentioned previously. Eggs younger than 

12 days old were allowed to develop at 24°C until they reached 12 days of development 

at which point all eggs were stored at 10°C. On 24 February, 4 blue and 4 green ash trees 

between 3.0 - 6.0 cm in diameter were felled at Mississinewa and Celery Bog, 

respectively, and the main stems were transported back to Purdue University. These trees 

were cut into 84 ash bolts 25 cm in length. Following the standard operating procedure 

for laboratory rearing of EAB (Duan et al. 2011), I soaked green ash and blue ash bolts in 

a 10% sodium hypochlorite (bleach) solution for 30 minutes to kill pathogens on 25 and 

26 February. Bolts were then rinsed with water to remove bleach. Eggs were individually 

cut out from clutches laid on coffee filters. I attached 13 eggs individually or in pairs 

using strips of parafilm wrapped around each bolt to secure the eggs. Each ash bolt 

contained eggs from at least 3 different cohorts of eggs. Leftover eggs were incubated in 

the laboratory and used to determine hatch rate. Eggs were monitored for exit holes by 

neonates for two weeks. The hatch rate was used to determine the number of viable eggs 

transferred to ash trees. 

Eighty-four blue and green ash bolts were maintained in growth chambers for up 

to six weeks to determine EAB development. To keep bolts moist, they were inserted 3.8 

cm into water soaked floral foam (Oasis floral foam deluxe, Smithers-Oasis Company, 
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Kent, OH) after eggs were transferred. Three bolts were inserted into each floral block 

and kept in 5.7 liter clear plastic bins. Floral blocks were kept moist by watering to the 

top of each block on Monday, Wednesday, and Friday of each week. Ash bolts were kept 

inside growth chambers at 27°C 16:8 (light: dark) cycle with 70% humidity.  

Ten green and blue ash bolts were removed at days 23, 30, and 37 (24, 31 March 

and 7 April 2014, respectively) to harvest EAB larvae using the peeling method 

previously described. Twelve green and blue ash bolts were peeled on day 33 and 34 (3-4 

April), referenced as day 33.5. EAB length, prothoracic width, weight (g), and gallery 

width were recorded. EAB were recorded as alive or dead, and as larvae or J-shaped 

larvae as previously described. Larvae were then stored in 24 cell well plates.  

2.3.6 Lab:  statistical analysis 

A Chi-squared test was used to compare the proportion of EAB larvae recovered 

from viable transferred eggs. PROC GLIMMIX for Generalized Linear Mixed Models 

was used in order to determine the extent to which ash species affected the prothoracic 

width, gallery width, and weight of developing EAB. EAB weights were square root 

transformed to correct for non-normality based on the shape of residual plots. 

 

 

2.4 Results 

2.4.1 Field study 

 Out of 550 eggs transferred to trees, 86.7% were estimated to be viable. In total, 

272 EAB larvae were recovered from the 477 viable eggs placed on blue and green ash 

trees. There was no significant difference between the percentage of viable EAB eggs 
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recovered as larvae in green ash (52.99%) and blue ash (61.5%) (χ2= 3.52; df = 1; p = 

0.061; Table 2.1) in December and April. Similarly, there was no difference between the 

percentage of healthy EAB larvae that were recovered from green and blue ash in 

December (χ2= 0.05; df = 1; p = 0.830; Table 2.1) and April harvests, (χ2= 0.2333; df = 1; 

p = 0.629; Table 2.1). In December, 3.17% and 3.85% of the EAB larvae recovered from 

green ash and blue ash, respectively, died encased in callus tissue. In April only 1.37% 

and 1.54% of the recovered EAB larvae died in this manner in green and blue ash, 

respectively. Significantly more J-shaped larvae overwintered in green ash (82.93%) 

compared to blue ash (67.63%) (χ2= 8.11; df = 1; p = 0.004; Table 2.1). EAB gallery 

width was significantly larger in green ash (F = 24.52; df = 1, 18; p = <0.001; Table 2.2; 

Figure 2.1); however, harvest time (Dec. and April) (F = 1.34; df = 1, 18; p = 0.263) and 

the interaction of time and species (F = 0.15; df = 1, 18; p = 0.705) did not affect this 

measure of larval development. Prothoracic width was significantly larger in green ash 

larvae (F = 23.55; df = 1, 18; p = <0.001; Table 2.2; Figure 2.2) and different between 

sampling times (F = 18.30; df = 1, 18; p = 0.001) with no significant interaction between 

time and ash species (F = 0.23; df = 1, 18; p = 0.638). Weights of overwintering J-shaped 

larvae reared were larger greater in green ash (67.9 mg) than blue ash (61.9 mg), but the 

differences were not significant (F = 4.07; df = 1, 10; p = 0.071; Table 2.2). 

2.4.2 Laboratory study 

 Out of 1,097 eggs placed on ash bolts, 445 EAB larvae were recovered over the 

four sampling periods that covered 1st instars up to J-shaped larval development. There 

were no significant differences in the proportion of larvae recovered from the estimated 

91.9% viable eggs in green ash (45.62%) and blue ash (43.03%) (χ2 = 0.68; df = 1; p = 
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0.409; Table 2.3). EAB larvae had significantly larger prothoracic widths in green ash 

than blue ash (F = 12.12; df = 1, 76; p = 0.001; Figure 2.3). Prothoracic widths increased 

significantly across sample days (F = 57.55; df = 3, 76; p = <0.001). There was no 

significant interaction between ash species and time (F = 0.28; df = 3, 76; p = 0.842). 

EAB larvae had consistently larger gallery widths in green ash (F = 19.43; df = 1, 76; p = 

<0.001; Figure 2.4). Larval galleries increased in both species over time (F = 42.69; df = 

3, 76; p = <0.001), but there was no interaction between species and time (F = 42.69; df = 

3, 76; p = <0.001). After a square root transformation to normalize data, green ash were 

found to have significantly heavier larvae (F = 10.99; df = 1, 76; p = 0.001; Figure 2.5). 

All larvae increased their weights over time (F = 60.66; df = 3, 76; p = <0.001), and there 

was no significant interaction between species and time (F = 2.13; df = 3, 76; p = 0.103). 

 

2.5 Discussion 

In my study, EAB larvae survive at the same rate in blue ash when compared to 

green ash, suggesting that these plant hosts do not affect survivorship. In both the field 

and laboratory experiments, the percentage of EAB larvae recovered from viable eggs 

was similar in blue and green ash hosts. Over 96% of larvae recovered from both species 

of ash in the field and laboratory studies were healthy. This survival rate is similar to that 

reported by Hietala (2013) who examined remnant green and white ash trees at the tail 

end of an EAB invasion in several parks. A subgroup of these ash trees were also 

artificially infested with EAB. Most larvae extracted from apparently tolerant and 

intolerant ash trees were healthy and were able to develop up to the J-shape stage. In the 

2013-14 winter (December through February), Northern Indiana experienced the sixth 
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coldest winter with an average daily temperature -6.5°C compared to the normal average 

of -2.8°C (NOAA 2014). EABs appear unaffected by these extreme cold temperatures 

because I observed the same percentage of live larvae (Table 2.1) before (December 

harvest) and after (April harvest) the winter season.  

Few larvae (< 4%) were killed by encapsulation in either ash species. In contrast, 

this phenomenon is a common response of North American birch species (Betula spp.) to 

the native Agrilus anxius, the bronze birch borer, (Muilenberg and Herms 2012). Paper 

birch (B. papyrifera) is relatively resistant to the bronze birch borer, which is 

hypothesized to come from defenses that slow bronze birch borer larval feeding in order 

for wound periderm to encapsulate larvae (Muilenburg and Herms 2012). Although I 

found wound periderm to form callus tissue in green and blue ash, this response was 

unable to kill significant numbers of larvae suggesting that wound periderm may not 

contribute to the observed capacity of blue ash to tolerate EAB attack in the forest 

(Anulewicz et al. 2007, 2008, Pureswaran and Poland 2009, Tanis and McCullough 

2012). 

EAB larvae developed more slowly in blue ash compared to green ash in both the 

laboratory and field studies. In the laboratory, three measurements of EAB larval size; 

prothoracic width, gallery width, and larval weight suggested that larvae grew larger and 

more quickly in green ash. Similarly in another study, EAB larvae appear to grow more 

slowly in the relatively resistant Manchurian ash than those in the susceptible black ash 

under normal conditions (Chakraborty et al. 2014). However, it is interesting to note that 

toward the end of EAB larval development, the magnitude of this size difference is 

reduced (Figures 2.3, 2.4, and 2.5). Nevertheless, differences between larval development 
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rates were clear in green and blue ash growing in the field. EAB larvae entering the 

winter (December harvest) and the spring (April harvest) in green ash had both 

significantly wider galleries and prothoracic segments compared to blue ash. In addition, 

significantly more J-shape larvae overwintered in green ash than in blue ash. The 

overwintering J-shape larvae collected from green and blue ash weighed the same. 

Although it is not clear whether the slow growth of EAB larvae has any effect on the 

reproductive fitness or survival of adults, it may be some indication of antibiosis in blue 

ash. 

Callus tissue is not a major source of mortality in green and blue ash. However, 

the capacity of blue ash defenses to slow development in larvae may be a critical part of 

host plant resistance as suggested by the slowed EAB development observed in 

Manchurian ash (Chakraborty et al. 2014). Blue ash is known to have a unique secondary 

metabolite profile (Whitehill et al. 2012). One chemical group in particular, the 

coumarins, are known to be antifeedants in a wide variety of taxa where they can 

completely inhibit the development of an organism, slow the growth of larvae, or affect 

adult fertility (Meisner and Skatulla 1975, Mansour 1982, Fung and Herrebout 1987, 

Silva et al. 2006). Effects of these and other secondary metabolites should be investigated 

to determine if they are causing the slowed development of larval EAB in resistant ash 

species. Although EAB are able to successfully complete development in blue ash 

(Anulewicz et al. 2008), ash host effects on adult survival and fitness are unknown. 

Female EAB preferentially feed on leaves of green, black, and white ash over blue ash 

(Pureswaran and Poland 2009) and may hint at some effect of blue ash on maturation 
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feeding by females. Studies to determine the extent to which host leaves affect female 

fitness should be conducted to demonstrate these effects.  

The slower development and lower occurrence of J-shaped larvae in blue ash 

might indicate that a higher proportion of EAB have a semivoltine life history. Longer 

EAB development time in blue ash may increase attack rates from natural enemies that 

have the capacity to find concealed larvae beneath bark. For example, woodpeckers 

account for a significant source of EAB larval mortality (Lindell et al. 2008, Jennings et 

al. 2013, Cappaert et al. 2005b). Additionally, larval parasitoids both native and 

introduced can also contribute to EAB mortality (Duan et al. 2012b, Duan et al. 2013). 

Slowed growth and increased mortality from natural enemies has been demonstrated in a 

number of plant herbivore systems including both specialist and generalist defoliators 

(Haggstrom and Larsson 1995, Benrey and Denno 1997, Williams 1999, Havill and Raffa 

2000).   

In conclusion, blue ash does not appear to kill EAB larva. However, blue ash does 

slow larval development and demonstrates that blue ash is more tolerant to EAB feeding 

than green ash. The slowed development in blue ash may make larvae more susceptible 

to natural enemies that attack immature stages of EAB. Future studies are needed to 

determine the effect of slowed larval development in blue ash on adult fitness. 

Additionally, the extent to which blue and green ash leaves affect host plant choice and 

female fecundity needs to be explored.  
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Table 2.1 Survival and development of emerald ash borer eggs and larvae in caged green and blue ash trees in West Lafayette and 
Peru Indiana. 

 Combined 2013 and 2014 harvests 2013 harvest 2014 harvest 
Hosts Eggs placed Viable eggs Total larvae 

(% of viable eggs) 
J-shaped larvae1 

(% of total larvae) 
Live larvae 
(% survival) 

Live larvae 
(% survival) 

Green ash 289 251 133 (52.99)2 102 (82.93) 61 (96.83) 71 (97.26) 
Blue ash 261 226 139 (61.50) 94 (67.63) 75 (96.15) 64 (98.46) 
Effect of host χ

2
 1=  3.52 8.11 0.05 0.23 

p-value   0.061 0.004 0.830 0.629 

1 EAB larvae that were killed by callus tissue or lost during peeling were excluded because they could not be determined if they reached the J-shape 
stage. 
2 Values followed by the same letter are not significantly different according to Chi-squared test p < 0.05. 
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Table 2.2 Means (+ standard errors) of EAB larval weight, gallery width, and prothoracic width from caged green and blue ash trees in 
West Lafayette and Peru Indiana from eggs placed on trees in May/June 2013. 

    

  

 

 

Host Combined harvests 
  J-shaped larvae weight (mg)  Gallery width (mm) Prothoracic width (mm) 
Green ash 67.9+ 1.5 3.90+ 0.06       2.94+ 0.05 
Blue ash 61.9+ 1.4 3.42+ 0.08  2.62+ 0.06 
Effect of host F1,10 = 4.07 F1,18 = 24.52 F1,18 = 23.55 
p-value 0.071 <0.001 <0.001 
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Table 2.3 Survival of emerald ash borer in green and blue ash bolts under laboratory conditions. 

Host Eggs placed Viable eggs Larvae collected (% viable eggs) 
Green ash 546 502 229 (45.62) 
Blue ash  546 502 216 (43.03) 
Effect of host   χ

2
1= 0.68 

p- value   0.409 
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Figure 2.1 Means and standard errors of EAB gallery width collected from caged green 
and blue ash trees in West Lafayette and Peru, Indiana field sites during 2013 and 2014. 
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Figure 2.2 Means and standard errors of EAB prothoracic width collected from caged 
green and blue ash trees in West Lafayette and Peru, Indiana field sites during 2013 and 
2014. 
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Figure 2.3 EAB prothoracic width means and standard errors of larvae from laboratory 
green and blue ash bolts collected from West Lafayette and Peru, Indiana field sites in 

2014. 
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Figure 2.4 EAB gallery width means and standard errors of larvae from laboratory green 
and blue ash bolts collected from West Lafayette and Peru, Indiana field sites in 2014. 
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Figure 2.5 Mean EAB weight and standard errors of larvae from laboratory green and 
blue ash bolts collected from West Lafayette and Peru, Indiana field sites in 2014. 
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CHAPTER 3.  HOST SUITABILITY OF EMERALD ASH BORER (AGRILUS 
PLANIPENNIS) INFESTED IN BLUE ASH (FRAXINUS QUADRANGULATA) 

AND GREEN ASH (F. PENNSYLVANICA) FOR TETRASTICHUS 
PLANIPENNISI: A FIELD AND LABORATORY EXPERIMENT 

 

3.1 Abstract  

  The larval parasitoid Tetrastichus planipennisi was introduced into North 

America from China to suppress the exotic emerald ash borer (EAB) (Agrilus 

planipennis). Blue ash (Fraxinus quadrangulata) is the most resistant and most likely to 

survive EAB infestation in North America compared to other ash species. If natural 

enemies can successfully attack and develop on EAB in infested blue ash they may be 

better able to persist and protect regenerating ash trees. To evaluate this, I determined the 

capacity of EAB larvae to serve as hosts for T. planipennisi when reared in artificially 

infested blue and green ash (F. pennsylvanica) bolts in the field and laboratory. In the 

field, T. planipennisi was able to attack EAB larvae in both blue and green ash. In the 

laboratory, parasitism rates, parasitoid brood size, sex ratio, and female tibia lengths were 

measured to compare the relative fitness of EAB as hosts when feeding in green and blue 

ash trees. No significant differences were found between any of these fitness measures 

for larvae collected from green and blue ash trees in the laboratory studies. As such, I 

hypothesize that Tetrastichus planipennisi could establish in blue ash forests that have 

been infested with EAB. 
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3.2  Introduction 

Since its discovery in North America in 2002, the emerald ash borer (EAB), 

Agrilus planipennis, has become a primary pest of ash trees with the potential to cost 

billions of dollars in losses to urban and rural forests (Kovacs et al. 2010, Mercader et al. 

2009). After eradication attempts failed, classical biological control was adopted as a 

long-term strategy for managing EAB (Herms and McCullough 2014, GAO 2006). The 

search for natural enemies of EAB began in 2002 in the US and 2003 in China (Liu et al. 

2003). Initially, two species of larval parasitoid wasps were found in China, Spathius 

agrili (Hymenoptera: Braconidae) Yang and Tetrastichus planipennisi (Hymenoptera: 

Eulophidae) Yang (Liu et al. 2003, Yang et al. 2005, 2006). Later, Oobius agrili 

(Hymenoptera: Encyrtidae) Zhang and Huang, an egg parasitoid, was discovered and 

described by Zhang et al. (2005). 

Tetrastichus planipennisi is a gregarious larval endoparasitoid that has up to four 

generations a year (Liu et al. 2007).  This wasp is a koinobiont, allowing the EAB larva 

to feed and develop after being parasitized (Alphen and Jervis 1996). In the field in China, 

this wasp parasitized an average of 22.4% of EAB larvae with rates as high as 40.4% (Liu 

et al. 2007). This wasp has a high reproductive capacity with an average fecundity of 35 

progeny per EAB larva (Liu et al. 2007) and a sex ratio of 3:1 (females to males) (Duan 

et al. 2012).  

In the US, T. planipennisi has been successfully introduced and established in 

Michigan, Maryland, Minnesota, and Indiana (Mapbiocontrol 2014, Duan et al. 2013, 

Jennings et al. 2013). In the field, parasitism rates of EAB have been reported as high as 

28.6% by T. planipennisi (Duan et al. 2013).  Tetrastichus planipennisi is capable of 
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parasitizing EAB larvae in small regenerating ash trees years after high densities of pests 

destroyed the original forest (Duan et al. 2013, per. comm.). Although this observation 

occurred in Michigan, follow-up surveys at Huntington, IN in 2013 and 2014 failed to 

recover T. planipennisi from green ash saplings (Mapbiocontrol 2014), even though it 

had been recovered previously in 2011 (Mapbiocontrol 2014). Tetrastichus planipennisi 

released in 2009 and 2010 persisted in green ash saplings at several Indiana sites 

(Huntington, Orleans, and Ritchey Woods; Mapbiocontrol 2014); however, these saplings 

may be insufficient to support EAB and its parasitoids.  

In contrast to green ash and other North American ash, blue ash appears to be the 

most resistant and least preferred North American ash host for EAB (Anulewicz et al. 

2007, 2008, Pureswaran and Poland 2009, Tanis and McCullough 2012). Blue ash is an 

uncommon species of ash that typically grows in limestone outcrops and has square twigs 

(Sibley 2009). Phylogenetically, blue ash is distantly related to other North American ash 

species that EAB has encountered in the US (Wallander 2008). Specifically, blue ash is in 

the Dipetalae clade with its closest relatives which also have square stems, but these ash 

trees occur in the SW US. In comparison, most US ash trees are within the Melioides 

clade and appear quite susceptible to EAB. Recent work conducted by Tanis and 

McCullough (2012) in Michigan demonstrated that blue ash can survive the initial waves 

of EAB infestation. In a mixed ash forest, up to 71% of the blue ash survived EAB 

infestations (Tanis and McCullough 2012). In contrast, white ash suffered 100% 

mortality except for 29 saplings which were too small to be infested at the time of the tree 

census. Of the surviving blue ash, 80% had signs of infestation which suggests that these 

trees are able to tolerate and survive EAB attacks (Tanis and McCullough 2012). Similar 
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results have been demonstrated in mixed forests in Canada (Carson 2013), where 82% of 

blue ash crowns had >90% of their foliage after the initial wave of EAB mortality. In 

contrast, all but 6.5% of the green ash in the survey had died. 

If a resistant species like blue ash are able to maintain low levels of EAB larvae in 

the forest, more parasitoids should be sustained after the initial wave of ash destruction. 

Thus, more parasitoids would be available to protect susceptible species of ash in the 

regrowth forest. My investigation of EAB development in blue ash (Chapter 2) suggests 

that a higher proportion of larvae have a semivoltine life history. Many larval parasitoids 

of concealed hosts use feeding vibrations to locate their hosts (Meyhofer and Casas 1999). 

As such, larval parasitoids, like T. planipennisi that use feeding vibrations to find hosts, 

may have more of an opportunity to find and attack EAB in blue ash because the larval 

stage takes longer to develop than in more susceptible ash species.  This phenomenon 

would be consistent with the slow-growth-high-mortality hypothesis which predicts 

greater mortality of herbivores on plants whose resistance involves slowed larval 

development (Benrey and Denno 1997). If the larvae are suitable hosts for T. planipennisi, 

blue ash could contribute to the persistence of this parasitoid in the forest. 

It is unknown whether slowed EAB larval development affects the quality of T. 

planipennisi. Host plant resistance that suppresses larval growth has the potential to 

reduce the quality of biological control agents. For example, tree species influenced the 

relative growth, development time, and pupal weight of gypsy moth, which further 

affected Cotesia melanoscela development time and size (Kruse and Raffa 1997). 

Similarly, C. melanoscela survivorship was affected by tree species that the host gypsy 

moth (Lymantraia dispar) consumed (Werren et al. 1992). Host plant effect on 
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parasitoids could be detrimental to biocontrol agents because they would be less fit to 

attack hosts.  

Adult size can be used as a measure of parasitoid quality (Bethke et al. 1991, 

West et al. 1996). Tetrastichus planipennisi hind tibia length is correlated with overall 

size (Duan and Oppel 2012). Larger adult females have longer ovipositor length which is 

correlated with larger egg loads and a capacity for wasps to reach EAB larvae through 

thicker bark.  To determine the extent to which EAB larvae in green and blue ash can 

support T. planipennisi, I conducted a field and laboratory study to compare parasitoid 

adult attack rates and fitness parameters of progeny.   

 . 

3.3 Materials and Methods 

3.3.1 Description of field sites and selection of experimental ash trees  

In the April 2013, two field sites with existing stands of green (Celery Bog, West 

Lafayette, Indiana) and blue ash (Mississinewa, Peru, Indiana) were selected as a source 

of host material for infesting emerald ash borer and adding its natural enemy Tetrastichus 

planipennisi. All ash trees used in this study had a diameter at breast height (DBH) 

between 8-12 cm.  Trees selected for this study had no obvious symptoms or signs of 

EAB, such as vertical bark splits, epicormic shoots, D-shaped exit holes, canopy dieback, 

or woodpecker holes. 

3.3.2 Field: infestation of standing ash trees with EAB eggs 

Experimental trees in each field site were infested with EAB eggs which were 

acquired from the USDA Forest Service at Michigan State University, East Lansing, 

Michigan. The eggs had been laid onto coffee filter paper by gravid EAB females as 
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described in Abell et al. (2012).  Eggs were incubated at 24°C, 75% humidity, and 16:8 h 

(light: dark) photoperiod until they were 13 days old, three days before expected eclosion. 

Eggs were attached to experimental trees using a modified version of Abell et al. (2012) 

(see Appendix for details) at 54 eggs/m2 between 28 May to 6 June 2013 along a 1.5 m 

main stem length. Eggs taken into the field and not transferred to trees were incubated at 

24°C in the laboratory and evaluated to determine hatch rate by monitoring for exit holes 

by neonates for two weeks. The hatch rate was used to estimate the number of viable 

eggs transferred to ash trees. 

3.3.3 Field: release of Tetrastichus planipennisi 

 Tetrastichus planipennisi were released into 14 green ash cages on 5 September 

2013 and 15 blue ash cages on 21 May 2014. Although, my goal was to release 

parasitoids on same size larvae, I underestimated the development rate of EAB in blue 

ash and released wasps when most EAB were in pupae or adults. In September, the 

majority of EAB in green ash were in late instar larval stages, based on dissections of ash 

logs harvested 14 days after parasitoids were released. In May 2014, only 20.1% of the 

EAB were in the larval stage in blue ash 14 days after parasitoids were released. The 

parasitoids were reared and supplied by the USDA EAB Parasitoid Rearing Facility in 

Brighton, MI. The rearing facility sent wasps in cups containing 50 T. planipennisi adult 

females (1500 total) and at least 5 males per cup.  

Wasps were introduced to each experimental tree by placing one cup of 50 

females into previously constructed cages (see Appendix for details). Parasitoid release 

was accomplished by opening cages along a short length of the seams and streaking the 

bark of trees with a paintbrush to provide adult parasitoids with food. Cups of parasitoids 
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were inserted into the cloth opening of each cages and tapped to agitate wasps to fly onto 

the trunk. After all wasps were released, cups were removed and inspected, and seams 

were reclosed and stapled shut. All trees caged with T. planipennisi were inspected for 

living wasps at two or three days, and then seven days after release of wasps (7 and 12 

September 2013 for green ash; 24 and 28 May 2014 for blue ash). Honey was applied to 

the exterior of each cage one week after release as a food resource for T. planipennisi. 

3.3.4 Field: harvest and dissection of ash tree logs with Tetrastichus planipennisi 

 On 19 September 2013 and 5 June 2014, green and blue ash trees with T. 

planipennisi, respectively, were felled and transported to the laboratory at Purdue 

University. The logs were stored in a walk-in cooler set at 5.5°C until they were dissected 

at which time EAB gallery width, prothoracic width, length, and larval condition were 

determined (Chapter 2). In addition, pupae and adults were added as categories for EAB 

condition at the time of dissection. Parasitized larvae were recorded and recognized by a 

distinct rope-like appearance when filled with numerous parasitoid larvae or appeared as 

a cluster white pupae that had completely consumed their host. EAB larvae and 

parasitoids were removed, placed in 24 cell well plates, and covered with parafilm 

(Bemis Company, Inc., Neenah, WI, US) to reduce desiccation, limit pathogens, and 

isolate parasitoids. Well plates were monitored for parasitoids for up to seven weeks (25 

September-15 November 2013 for green ash; 7 June-26 July 2014 for blue ash). After 

adult parasitoids emerged, they were sexed, counted, frozen, and then stored in 75% 

ethanol.  
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3.3.5 Laboratory: parasitoid development in EAB infesting green and blue ash 

 A laboratory experiment was conducted to determine the relative suitability of 

EAB larvae as hosts for T. planipennisi. On 11 April 2014, four blue and four green ash 

trees were cut at Mississinewa and Celery Bog, respectively, and transported back to 

Purdue University. Ash logs 3.0 - 6.0 cm in diameter were cut into 25 cm long bolts, 13 

for green ash and 13 for blue ash. Each bolt was then artificially infested with 13 EAB 

eggs (338 total) obtained from the USDA ARS Beneficial Insects Introduction Research 

Unit (Newark, DE) on 15 April 2014 using methods outline in Duan et al. (2011a). Ash 

bolts were kept inside growth chambers at 27°C 16:8 (light: dark) cycle with 70% 

humidity.  

Each bolt was covered with a two liter plastic bottle to contain released 

parasitoids. Bottles had two holes (~5 cm in diameter) cut into the side wall that were 

covered with organdy cloth and sealed with hot glue on the edges to facilitate air 

circulation. The top two inches of each bottle were removed so they could be flipped 

upside down and inserted in floral blocks to surround ash bolts (Figure 3.1). In order to 

minimize variability in the sex ratio, brood size, and tibia length (Duan and Oppel 2012), 

parasitoid to host ratio was controlled by releasing ten T. planipennisi females (260 total) 

and two males per 2L bottle on 21 May based on the estimate of 10 EAB per ash bolt. 

Parasitoids were received from the USDA APHIS Brighton Rearing Facility (Brighton, 

MI). Bottles were then held down on the floral blocks with a strip of duct tape to prevent 

parasitoid escape. Additionally, honey was added to the organdy cloth holes as food for 

parasitoids. 
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Bottles were checked daily for the presence of live females. After two weeks, on 4 

June, ash bolts had their bark peeled off with a hand chisel. Female parasitoids (parents) 

that could be found were removed and put into vials with ethanol (75%). EAB length, 

prothoracic width, weight, and gallery width were recorded. EAB larvae and parasitoid 

(progeny) larvae and pupae were then placed in 24 cell well plates. Parasitoids developed 

to adults in well plates at which point the sex ratio, parasitism rate, and individuals per 

brood were recorded. First generation (parents) females and recovered brood females (up 

to five per brood) had their left hind tibia length measured and recorded as previously 

described. 

3.3.6 Data analysis 

Field and laboratory data were analyzed using SAS (SAS® 9.4 Institute Inc., Cary, 

NC).  A Chi-squared tests were used to compare the amount of EAB in the larval stage 

(field only) and the proportion of parasitism by T. planipennisi in green and blue ash 

(field and laboratory). Sex ratio, brood size and female tibia lengths of parasitoids were 

compared in a mixed model analysis of variance using a PROC GLIMMIX to determine 

if these parameters were affected by ash species. A mixed model of analysis of variance 

using PROC GLIMMIX was also used to determine if the brood size of T. planipennisi 

was affected by ash species and the larval instar of its EAB hosts. 

 

3.4 Results  

3.4.1 Field study 

 When green ash logs were harvested in September 2013, 100% of the EAB were 

in the larval stage (Table 3.1). In contrast, there were significantly less EAB in the larval 



61 
 

 

stage (20.1%) in blue ash logs (χ2= 223.45; df= 1; p= <0.001; Table 3.1) in June 2014. 

On average, the brood size was 68.6 T. planipennisi per EAB host with an average sex 

ratio of 4.8:1.0 (female: male). No parasitism was observed on a green ash log with a 

bark diameter of 3.4 mm or greater. Only one parasitized EAB larva was found in blue 

ash.  

3.4.2 Laboratory study 

 There was no significant difference in EAB parasitism rates in larvae in blue and 

green ash (χ2= 0.46; df= 1; p= 0.498; Table 3.2). From the PROC GLIMMIX, there was 

no significant difference in average parasitoid brood size (F= 0.39; df = 1, 17; p= 0.541), 

average parasitoid sex ratio (F = 0.07; df = 1, 17; p= 0.799), and parasitoid tibia lengths 

(F = 0.62; df = 1, 197; p = 0.433; Table 3.2) in green and blue ash. Brood size of 

parasitoids was not significantly affected by ash species (F= 0.07; df= 1, 17; p= 0.795) or 

the interaction between ash species and EAB larval stage (F= 0.04; df= 1, 6; p= 0.848).  

However, brood size of parasitoids was significantly greater on the 4th instars when 

compared to those in the 3rd instar (F= 6.30; df= 1, 6; p= 0.046). 

 

3.5 Discussion 

  This study demonstrates that EAB larvae can be attacked by T. planipennisi in 

both green and blue ash in the field and laboratory conditions and is the first and only 

documentation of parasitism of EAB larvae by this wasp in blue ash trees. In the field, 

EAB larval parasitism was low at 11.3% in green ash, but similar to the 13% rate 

observed for T. planipennisi in field collected EAB larvae from green ash (Duan et al. 

2011b).  Under laboratory conditions, T. planipennisi parasitized EAB larvae at the same 



62 
 

 

rate in both green ash (48.39%) and blue ash (54.72%). A similar laboratory study 

conducted with green and tropical ash (F. uhdei) also failed to find tree host to affect the 

rate at which EAB larvae were attacked by T. planipennisi (Duan and Oppel 2012) 

suggesting that some host plant species may not affect parasitism rates in the laboratory. 

Parasitism rates observed here were under no-choice conditions and may be artificially 

high. Parasitism by T. planipennisi should be further explored in the field to determine 

the extent to which host plant choice affects oviposition behavior. 

In the field study only one EAB larva was parasitized by Tetrastichus 

planipennisi in blue ash. This low incidence could reflect the low proportion of feeding 

EAB larvae (20.1%) available when T. planipennisi was released compared to 100% in 

green ash.  The low incidence of feeding larvae is important because T. planipennisi only 

attack feeding larvae (Ulyshen et al. 2010). Nevertheless the many observations in the 

laboratory and single observation of EAB parasitism in the field in blue ash indicates that 

parasitism can occur in the field. In the laboratory, EAB larvae were at susceptible stages 

of development when parasitoids were released on each ash host.  As such, these findings 

better represent the capacity of T. planipennisi to parasitize hosts in green and blue ash 

logs than the field study. 

Smaller EAB instars produced smaller broods of parasitoids in the lab (Table 3.3). 

Additionally, the mean brood size of T. planipennisi were similar across EAB third and 

fourth instars from blue and green ash (Table 3.3). Tetrastichus planipennisi brood size 

from EAB larvae in green ash was similar to a study by Ulyshen et al. (2010).  

In the laboratory, there was no significant difference in sex ratios or tibia lengths 

between parasitoids emerging from EAB larvae reared in either ash species. The sex 
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ratios observed in my study are similar to those observed from green ash in other studies 

(Liu and Bauer 2007, Duan et al. 2011b, Duan et al. 2012) suggesting that blue and green 

ash do not influence the quality of EAB larvae as hosts for T. planipennisi. More studies 

are needed to directly measure the effects of ash host on the fitness of this parasitoid.  

Although I observed a parasitoid to host ratio of 2.1:1 in green ash and 2.5:1 in 

blue ash, it is unlikely that the difference between numbers of available hosts could have 

affected my results because both ratios are similar to the 2:1 ratio in green ash in studies 

conducted by Duan and Oppel (2012) where, the average sex ratios, brood sizes, and tibia 

lengths of T. planipennisi in my study were similar to those reported in green ash trees. 

In conclusion, there was no host effect on T. planipennisi fitness parameters 

reared from green and blue ash. This parasitoid has similar sex ratios, brood sizes, and 

female tibia lengths when emerging from EAB larvae in blue and green ash hosts. Similar 

parasitoid fitness parameters suggest that in blue ash, EAB could be more susceptible to 

larval parasitoids since they take more time to develop to adults (Chapter 2).  As such, 

parasitoid deployment strategies for EAB parasitoids should take into account rates of 

larval development in surviving host ash species and the composition of blue ash in the 

local ash community.  
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Table 3.1 EAB larval parasitism rates by Tetrastichus planipennisi in green ash and blue ash as well as mean (+standard errors) brood 
size and sex ratio in the field. 

Host Number of EAB recovered 

(Larvae-adult stages) 

Number of EAB larvae 

recovered (% larvae) 

Larvae parasitized (% 

parasitized) 

Parasitoid 

brood size 

Sex ratio 

(F:M) 

Green ash 
(Sept. 2013) 

151 151 (100%) 17 (11.3%) 68.6+12.9 4.8:1 +1.4 

Blue ash  
(May 2014) 

210 43 (20.5%) 1 (2.3%) No data1 No data 

Effect of host 
χ

2
1= 

 223.45    

p value  <0.001    

1T. planipennisi desiccated before fully developing. 
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Table 3.2 EAB larval parasitism rates by Tetrastichus planipennisi in green and blue ash bolts as well as mean (+standard errors) tibia 
lengths, brood sizes, and sex ratio in a laboratory study in 2014. 

Host  Larvae recovered Larvae parasitized 

(% parasitized) 

Tibia length (mm) Parasitoid brood 

size 

Sex ratio (F:M) 

Green ash 62 30 (48.39)a1 0.614+ 0.0077a 36.62+ 4.52a 3.04+ 0.74a 
Blue ash 53 29 (54.72)a  0.603+ 0.0086a 33.04+ 3.52a 2.81+ 0.49a 

Effect of host  χ
2=  0.4583 F1, 197=  0.62 F1, 17= 0.39 F1, 17= 0.07 

p values  0.498 0.433 0.541 0.799 

1Means followed by the same letter are not significantly different, p <0.05. 
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Table 3.3 Mean (+ standard errors) of Tetrastichus planipennisi brood size emerging from second, third, and fourth EAB larval instars 
in a laboratory study in 2014. 

Hosts Second  Instar (n) ` Third Instar (n) Fourth Instar (n) 
Green Ash No data (0) 22.20+3.80 (5)  40.84+ 5.73 (19) 
Blue Ash 12.5+ 0.50 (2) 22.83+2.85 (6)  38.72+ 4.35 (18) 
Effect of host  F1, 17= 0.07 
p value  0.7946 
Interaction of host and instar  F1, 6 = 0.04  
p value   0.848 
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Figure 3.1 Ash bolts in floral foam with two liter bottles in the laboratory 2014. 
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CHAPTER 4.  SUMMARY 
 

Emerald ash borer developed more slowly in blue ash than in green ash (Chapter 2). 

The mechanism of slowed development is unclear, but literature suggests it may be due 

to nutritional differences within the host phloem layer. Nitrogen limitation in the phloem 

layer is not likely to be involved because a majority of amino acids and total percentage 

of nitrogen were demonstrated to be the same in susceptible black ash and resistant 

Manchurian ash (Hill et al. 2012). In contrast, secondary metabolites, like phenolics and 

lignans, are more likely to affect EAB development because there is interspecific 

variation among resistant and susceptible ash species (Eyles et al. 2007, Cipollini et al. 

2011, Whitehill et al. 2011, 2012, Chakraborty et al. 2014). Several coumarins have been 

found to be distinct or at significantly higher levels in blue ash compared to other ash 

species (Whitehill et al. 2012). Coumarins can inhibit the development or affect adult 

fertility in a number of insect taxa (Meisner and Skatulla 1975, Mansour 1981, Fung and 

Herrebout 1987, Silva et al. 2006). Thus, I would hypothesize that differences in the 

secondary metabolite profile contributes to the slowed EAB development observed in 

blue ash.   

The slowed development of  EAB larvae increases the risk of being attacked by 

natural enemies that specialize on larvae such as woodpeckers (Jennings et al. 2013); the 

native parasitoids Atanycolus spp. and Phasgnophora sulcata, (Duan et al. 2012); and the 

introduced parasitoids T. planipennisi and Spathius agrili (Gould et al. 2013).  
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Tetrastichus planipennisi, in particular, should be better able to find and attack 

EAB because they only attack feeding larvae (Ulyshen et al. 2010), and it is suspected 

that movement and feeding vibrations are cues used to detect hosts (Ulyshen et al. 2011).  

In contrast to EAB larvae, T. planipennisi was apparently unaffected by blue ash 

(Chapter 3) as supported by similar rates of parasitism, brood sizes, sex ratios, and tibia 

lengths. This phenomenon has also been observed in another plant insect system.  For 

example, Pieris brassicae (Lepidoptera: Pieridae) was shown to develop slower and have 

lower pupal mass when reared on the host plant Sinapis arvensis compared to Brassica 

nigra (Gols et al. 2008). The gregarious koinobiont endoparasitoid Cotesia glomerata 

(Hymenoptera: Braconidae) had the same brood size, parasitism, sex ratio, and parasitoid 

mass when reared from P. brassicae larvae feeding on different host plants. However in 

other plant insect systems, host plants that have affected herbivores also affect their 

parasitoids. For example, gypsy moth (Lymantraia dispar) relative growth, development 

time and pupal weight were influenced by tree species (Kruse and Raffa 1997). Tree 

species also influenced the development time, size, and survivorship of the parasitoid C. 

melanosela (Kruse and Raffa 1997, Werren et al. 1992). Similarly, Manduca sexta had 

slowed development and consequently its larval parasitoid C. congregata had increased 

mortality on tobacco plants compared to tomato plants (pers. comm. Mike Garvey). 

These findings suggest host plant effects on parasitoids can be difficult to predict. Thus, 

more studies are needed to determine the extent to which host plants can affect the fitness 

of T. planipennisi and other larval parasitoids of EAB.  

Efficacy of a classical biological control program may also benefit from slowed 

EAB larval development in blue ash. Nearly 100% of ash trees that EAB encounters are 
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killed in Eastern North American (Klooster et al. 2014). Biological control may be 

threatened because it will be more difficult for parasitoids to persist with such high ash 

tree mortality. Blue ash is the only native species that is able to survive EAB infestation 

(Tanis and McCullough 2012, Carson 2013) to date. Thus, blue ash resistance could 

complement biological control of EAB by serving as a refuge for parasitoids. This is 

supported by T. planipennisi ability to parasitize and completely develop on EAB larvae 

in blue ash with no apparent fitness loss (Chapter 3) when compared to green ash. 

Tetrastichus planipennisi could persist on blue ash when other ash species are in decline. 

When susceptible ash trees begin to reestablish in our forests, T. planipennisi, and 

possibly other larval biological control agents, would be readily available to protect 

susceptible ash trees by suppressing EAB populations.  

Tetrastichus planipennisi capacity to protect ash trees is limited by its ovipositor 

length.  This wasp can only parasitize larvae that are beneath bark <3.2 mm or in 

branches with diameters up to 11.2 cm (Abell et al. 2012). The ovipositor limitation was 

also observed in my study in green ash from the field (Chapter 3). However, if approved 

for release, Spathius galinae may contribute to the protection of larger ash trees because 

this larval parasitoid has three times the body size and twice the ovipositor length as T. 

planipennisi (Yang et al. 2006, Belokobylskij et al. 2012, Yang et al. 2012). Benefits of 

blue ash are limited to its range in Midwestern North America (Figure 4.1, NPGS 2014). 

In spite of this, blue ash and other EAB resistant trees, such as Manchurian ash, could be 

planted to benefit EAB parasitoids in urban and rural forests.  

 In conclusion, blue ash appears not to affect T. planipennisi, but does slow the 

development of EAB larvae. The slowed EAB development provides a longer 
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opportunity for natural enemies to attack larvae in blue ash which would be consistent 

with the slow-growth-high-mortality hypothesis (Benrey and Denno 1997), but this needs 

be further investigated. Blue ash may also be able to serve as a refuge for released 

parasitoids which would complement the biological control program for EAB.  Blue ash 

may affect other fitness parameters of T. planipennisi such as development time or 

fecundity and they should be further explored.  

.  
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Figure 4.1 Distribution of blue ash (Fraxinus quadrangulata) in North America 
(USDA 2014). 
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APPENDIX 

 

Field: infestation of standing ash trees with EAB eggs 

Two egg cohorts 3-6 and 4-7 days old were received 23 and 31 May 2013, 

respectively from the USDA Forest Service at Michigan State University, East Lansing, 

Michigan. After incubation of eggs to maturity, they were taken to field sites and attached 

to eleven blue ash and eleven green ash. The first egg cohort was transferred to ash trees 

between 28-30 May, while the second cohort was transferred to ash trees from 5-6 June 

following a modified procedure described by Abell et al. (2012). The same number of 

blue and green ash trees were infested with eggs on alternate days during the set up. The 

target egg density transferred on all trees was 54 EAB/m2 on a 1.5 m main stem length 

(cage area) beginning 0.3 m above the soil line (Table Appendix I). Densities were 

achieved by grafting a set number of eggs on each main stem based on the surface area 

(diameter at breast height (DBH) and 1.5 m main stem length). 

Beginning at 0.30 m above soil line, four eggs were transferred, one in each 

cardinal direction, onto ash trees at 0.19-0.30 m (Table Appendix II) above the bottom of 

the cage area, which created an egg band. Cotton balls and tree warp (Jobe’s Tree Wrap, 

Easy Gardener Products Inc., Waco, TX) were used to snuggly hold individual eggs 

against tree bark and protect eggs from predation (Abell et al. 2012). Tree wrap was 
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attached to trees with staples. Individual ash trees had at least five egg bands per tree 

(Table Appendix II) dependent on diameter at breast height (DBH). The last egg band 

varied in the egg quantity between 1-4 eggs based on amount of eggs per tree (Table 

Appendix II).   

Field: building cages around trunks of trees 

 On 8-12 July 2013, tree wrap, coffee filter paper, and EAB eggs were removed 

from study trees four weeks after eggs were transferred to ash trees (Figure I). Egg 

location on ash stems was marked with paint. Recovered EAB eggs were inspected for 

emergence holes underneath a dissecting scope at our lab in order to estimate an egg 

hatch rate. Cages were then constructed around ash trees to prevent natural enemies 

(woodpeckers, parasitoids, etc.) from consuming or parasitizing EAB larvae. A band of 

silicone was applied around the circumference of trees and a strip of foam was used to 

cover the silicone 0.3 m below the lowest band and above the highest egg band (Figure 

Appendix I). The silicone and foam filled in cracks and crevices in bark and firmly secure 

cages to trees (Abell et al. 2012). Six, 12.5 gauge galvanized bailing wire were cut into 

0.45 m lengths and bent into D-shapes for each tree. The three pairs of D-rings were 

divided, spread, and stapled evenly between the foam strips to provide a frame for cages. 

Organdy cloth was stapled around the trunk of trees and duct taped down to foam strips 

(Figure Appendix II). Additionally, the duct tape was stapled to the tree to prevent tape 

from peeling off. Cloth ends were folded onto themselves and stapled along the seam to 

enclose cages.  
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Table Appendix I Number of eggs and bands per tree based on tree diameter and area of 
1.5 m section for green and blue ash infestation May and June 2013. 

Tree Diameter (DBH) (cm) Area of 1.5 m section 

(m2)* 

EAB  

Eggs** 

Bands*** 

8 0.377 20 5 

9 0.424 23 6 

10 0.471 25 7 

11 0.518 28 7 

12 0.564 30 8 

*= (Diameter/100)*3.14*1.5 m, **=Area*54 EAB/m2, ***= EAB Eggs per tree/4 (eggs per band) 
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Table Appendix II Distance between egg bands and band height (m) starting at 0.3 m on 
green and blue ash for egg infestation May and June 2013. 

Number of 

Bands 

Distance 

between bands 

(m) 

1 2 3 4 5 6 7 8 

5 0.30 0.60 0.90 1.20 1.50 1.80 - - - 

6 0.25 0.55 0.80 1.05 1.30 1.55 1.80 - - 

7 0.21 0.51 0.72 0.93 1.14 1.35 1.56 1.77 - 

8 0.19 0.49 0.68 0.87 1.06 1.25 1.44 1.63 1.82 
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Figure 4.2 Figure Appendix I Silicone and foam 
addition and egg band removal on a green ash tree at 

Celery bog, July 2013. 
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Figure 4.3 Figure Appendix II Completed cage on a 
green ash tree at Celery bog, July 2013. 
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