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ABSTRACT 

Ding, Yue. M.S., Purdue University, May 2014. Estimating Truncated Hotel Demand: A 

Comparison of Low Computational Cost Forecasting Methods. Major Professor: Hugo 

Tang. 

The aim of this thesis is to evaluate the effectiveness of six selected low computational 

cost hotel demand forecasting methods (SA, SMA, EMA, DEMA, BP and PU) in terms 

of restoring truncated demand data, and then identify a low-cost and easy to follow 

demand forecasting method that can be used by U.S. independent hotels. 

Obtaining revenue gains by applying demand forecasting techniques have been proved by 

many studies in hospitality and other related industries. However, few studies have 

focused on low computational forecasting methods’ comparison in hospitality field. For 

this reason, the author decided to test the performance of six selected demand forecasting 

techniques, with the aim of identifying an effective method for hotels operators 

constrained by financial resources and expertise. 

This thesis first simulates leisure and business real demand booking curves under a pre-

decided increasing rate in each of three leisure/business ratio scenarios (1:3, 1:1, and 3:1). 

In the second stage, true demands are truncated in three cases. They are 1) capacity 



x 

truncation, 2) 50% truncation of total business demand, and 3) 25% truncation of total 

business demand. And then, six selected forecasting methods are applied to the truncated 

demand. Finally, the forecasting accuracy for each method is evaluated in both statistical 

and economical models. 

The results of the experiment indicate that PU method outperform all the other selected 

methods and was proved to be the most effective forecasting method for U.S. 

independent hotels. Other new findings include that the data restoration accuracy ranged 

from a negative relationship with the business demand proportion of total bookings, and 

the higher the percentage the business bookings were truncated, the smaller the 

detruncation error occurs. The results also shows that the less the business booking was 

truncated; the more variable the forecasting error occurs. An interesting finding of this 

thesis is that in some specific circumstances, the results of statistical evaluation do not 

completely in accordance with economical evaluation results. 
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CHAPTER 1. INTRODUCTION 

1.1 The Role of Demand Forecasting in Revenue Management 

1.1.1 Definition of Revenue Management 

Every product or service seller faces a certain number of elementary decision issues. For 

instance, a vendor selling hot dogs on the street in Washington, DC, has to decide on 

which day to have a sale, how much to ask for each hot dog, and when to drop (or raise) 

the price as the day rolls on. Businesses face even more complicated selling decisions, for 

example, how to segment customers by providing different conditions and terms of trade, 

how to profitably exploit customers’ different buying behaviors or willingness to pay, 

and so on. 

Revenue management (RM), or yield management, is concerned with such demand-

management decisions and the methodology and systems required to make the decision 

(Talluri & Van Ryzin, 2005). The application of revenue management enables hot dog 

vendors and business companies to get the right methods to sell the right products to the 

right customers at the right time for the right price, thus maximizing revenue from their 

products or services (Cross, Higbie, & Cross, 2009).
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1.1.2 Introduction of Demand Forecasting 

Pricing, inventory, marketing, and channels are the four primary levers of revenue 

management (Phillips, 2005). Among them, inventory control is defined as the science-

based art of controlling the amount of inventory (or stock) held within an organization to 

meet the demand placed upon that business economically (Dong, Kouvelis, & Tian, 

2009). To control the amount of inventory, it is necessary to forecast the level of future 

demand, which makes demand forecasting an important element in revenue management 

decision making. 

Demand forecasts are necessary because the basic operations process, moving from the 

suppliers’ raw materials to finished goods to the consumers’ hands, takes time, 

particularly in the current global economy. Most companies can no longer simply wait for 

demand to occur and then react to it with the right product in the right place at the right 

time because they need to sense demand information ahead of time and shape demand in 

anticipation of future customer behavior so that they can react immediately to customer 

orders. Demand forecasting is not only critical to driving out inefficiencies in the supply 

chain in the retail industry but also affects all facets of the company on an enterprise-

wide basis for most service industries. Predicting future demand determines the quantities 

of raw materials, amount of finished goods inventory, number of products that need to be 

shipped, number of people to hire, number of plants to build, right down to the number of 

office supplies that should be purchased. 
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In most cases for the retail industry, manufacturers make to stock rather than make to 

order. They plan ahead and then deploy inventories of finished goods in distribution 

centers (DCs) to support demand at the source to more efficiently restock customers. This 

way, once a customer order materializes, it can be fulfilled immediately, as most 

customers are not willing to wait as long as it would take to actually make the product 

and ship it. Given the long lead times to acquire raw materials from multiple sources 

globally, it makes sense for companies to maintain finished goods inventories in 

designated markets at DCs in order to provide faster order cycle times. Even companies 

that claim to make to order, when in fact they are really packaging to order, need to rely 

on more accurate demand forecasts to order raw materials and common subassemblies. 

This is especially true in the electronics industry, and PC manufacturers in particular that 

take customer orders over the Internet. As a result, virtually all retail companies need to 

rely on a forecast of future demand, and the ability to accurately forecast demand 

provides a means for retail companies to improve supply chain efficiencies through a 

reduction in costs, not to mention improve their customer service. 

In most service industries, customer demand forecasting is also an important step in many 

business revenue management settings. Suppose two types of consumers purchase a 

product. The first type values the product highly and thus is willing to pay much more 

than the other type. This first type also values superior product characteristics and will 

pay more for them. Any sensible businessperson would try to segment the two, offer the 
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appropriate level of services, and charge accordingly. By estimating the quantity of the 

product or service that the customer will purchase using informal methods (i.e., educated 

guesses) and quantitative methods (i.e., the use of historical or current sales data from test 

markets), an enormous amount of data would be made available to decision makers. In 

addition, applying intelligent systems for balancing supply and demand and improving 

profits would not be a difficult task for revenue managers to achieve. 

1.1.3 Demand Forecasting in the Hotel Industry 

Hotel demand forecasting is defined as the activity of estimating the number of room 

nights or services that consumers will purchase (Frechtling, 2012). The most important 

problem in managing hotel revenue is forecasting customer demand by different market 

segments. For example, if customers all make reservations at the same time, the only task 

for the hotel revenue manager is to identify whether a customer was high value or not and 

then charge accordingly. However, passengers do not book at once. Usually, a chain hotel 

room’s booking process is open up to a year ahead of time, and independent hotels’ 

processes open up to half a year ahead of arrival day. Generally, a hotel’s best rate can 

appear and disappear, on and off, at almost any time, and particularly at 90-, 60-, 30-, 

14/15-, and 7-day periods before the arrival day. Thus, to follow this timeline, customers 

usually book rooms between 100 and 0 days ahead of their stay (Thyberg, 2008). In this 

case, a worrisome problem is created: If high-value customers arrive late and low-value 

customers arrive early, how do we ensure that enough rooms are saved for later-arriving 
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customers without unnecessarily turning away low-value early arrivals? Decision makers 

have to determine how many hotel rooms (flight seats or rental cars) to allow low-fare 

customers to book when the possibility of future high-fare demand exists from 

forecasting. 

However, in a hotel-specific case, demand is censored when bookings-in-hand reach 

booking limits, and no more requests will be taken unless a cancellation occurs. 

Therefore, when the true request is above the booking limit, only the observed maximum 

number of room restrictions will be carried out as true demand by hotels. With censored 

data, hotels are likely to underestimate the demand. Up to 3% of potential revenue may 

be lost if the forecast used by a revenue management system (RMS) has a negative bias 

(L. R. Weatherford, 1997). 

Therefore, to solve customer demand forecasting issues, demand forecasting and 

detruncation methods are applied in the hotel industry. Detruncating, also called 

unconstraining or uncensoring, refers generically to the process of estimating the 

parameters of a distribution based on truncated or incomplete data (L. R. Weatherford, 

1997). 

1.2 Challenges for Independent Hotels in Applying RM 

Independent hotels, as a special hotel classification, face special difficulties in applying 

revenue management in operations. 
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First, independent hotels are individual properties that not affiliated with a chain or a 

parent company or specific brand (U.S. Hotel Operating Statistics Study·Report for the 

year 2011, 2012). They typically have independent ownership and may have multiple 

investors. Different from chain hotels, independent hotels do not share in a widely 

recognized brand name, chain code, and various management resources, such as revenue 

management systems (Hutchison, 2011). 

Second, in the past several decades, many studies and articles have promoted the use of 

demand forecasting and detruncation techniques in the hospitality industry (Queenan, 

Ferguson, Higbie, & Kapoor, 2007b; Larry R. Weatherford, 2013; Larry R. Weatherford 

& Pölt, 2002); however, not all methods are applicable for all types of hotels. The fact is, 

a number of forecasting and detruncation methods are based on complex statistical 

procedures and are often too difficult for independent hotel operators to understand and 

use. Unlike large chain hotels, independent hotels with fewer shared resources may not 

have sufficient fiscal expenditure plans to purchase commercial revenue management 

system, largely due to the price (Hutchison, 2011).  

1.3 Why Independent Hotels 

According to Smith Travel Research’s 2012 report, the affiliation of a single hotel is 

classified into three types: corporate, franchise, or independent. A corporate hotel is a 

chain hotel owned/managed by the chain/parent company, while a franchise hotel is a 

chain hotel run by a third party where the chain receives some sort of franchise fee. 
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Different from corporate and franchise hotels, an independent hotel is not affiliated with a 

chain or a parent company or a specific brand.  

In the last 50 years, the percentage of chains versus independents in the United States has 

changed dramatically. In the mid-1900s, the percentages in the U.S. were similar to the 

current percentages outside the U.S. (40% vs. 60%, or 30% to 70%). However, in 2012, 

the percentage changed to 70% vs. 30%. Figure 1.1 presents the current percentage of 

chain hotels versus independents in and outside the United States (U.S. Hotel Operating 

Statistics Study·Report for the year 2011, 2012).  

Although chain hotels have gradually taken the leading position from independents and 

make up a larger proportion of the U.S. hotel market, independent hotels still occupy a 

certain proportion of the U.S. hospitality industry. Until 2012, there were nearly 22,000 

independent hotels in the U.S., which consist of nearly 1.5 million rooms. There were 

nearly 92,000 independent hotels in the world with more than 6.7 million rooms. Table 

1.1 shows the number of U.S. properties and hotel rooms in three hotel affiliations in 

2012. 
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Figure 1.1 Chain hotels versus independents in U.S. and Non-U.S. (Non-U.S. percentage 

(40/60) is based on hotels in the STR database, much harder to find Non-U.S. 

independents, probably closer to 30/70 or 20/80 (U.S. Hotel Operating Statistics 

Study·Report for the year 2011, 2012)) 

 

Table 1.1 Number of properties and rooms in the U.S. of hotels in three hotel affiliations 

(U.S. Hotel Operating Statistics Study·Report for the year 2011, 2012) 

Operation U.S. Properties U.S. Rooms 

Chain- Corporate 4,541 896,550 

Chain- Franchise 25,520 2,469,127 

Independent 21,893 1,494,662 

 

In addition, in the past 30 years, thanks to the fast growth of revenue management as a 

branch in operations research (OR), many demand detruncation methods have been 

designed specifically aimed at hotel and hotel-related industries. However, very few, if 

any, academic studies have explored the feasibility of demand forecasting or detruncation 

methods for independent hotels. Therefore, the gap regarding independent hotels in the 
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literature needs to be filled, and industry practitioners’ attention needs to be brought to 

which demand detruncation algorithm is the most effective for small non-chained hotels 

with different customer segment ratios. 

1.4 Objectives of the Study 

The goal of this study is to evaluate the performance of selected hotel demand forecasting 

and detruncation methods and then identify a low-cost, easy-to-follow detruncation 

method that can be used by hotel operators constrained by financial resources and 

expertise. 

As discussed in the previous section, demand forecasting is a crucial step in the hotel 

revenue management process. In practice, however, the observable demand is not 

necessarily the true demand because true demand data are often truncated due to various 

constraints such as capacity limitation and booking restrictions. To overcome this 

problem, detruncation methods are used to extrapolate true demand from the observed 

demand (i.e., booking record). By comparing the performance of six selected forecasting 

methods (i.e., simple average [SA], simple moving average [SMA], exponential moving 

average [EMA], double exponential moving average [DEMA], booking profile [BP], and 

Pick-Up [PU]) with two robust statistical detruncation methods (i.e., expectation 

maximization [EM] and projection detruncation [PD]), this paper aims to 1) evaluate the 

effectiveness of simple hotel demand forecasting techniques in restoring the demand data 

and 2) analyze the eight methods’ practical feasibilities and point out the advantages and 
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disadvantages of selected forecasting and statistical detruncation approaches in different 

target market mix scenarios. 

1.5 Benefit of the Study 

Industry operators and academic researchers will benefit from the uniqueness of this 

study. The special contribution of the research can be summarized in two aspects. 

The first contribution of this study lies in the study objectives. This research targets U.S. 

independent hotels and analyzes the effectiveness of the selected forecasting and 

statistical detruncation methods for these hotels in a revenue dimension and then tests 

whether our selected forecasting methods are sufficient in providing reasonable demand 

estimations for U.S. independent hotels. As explained in section 1.2.2, 1) independent 

hotels occupy a certain proportion of the hospitality industry; 2) some quick, inexpensive, 

simple, and short-term detruncation tools are necessary for independent hotels for actual 

demand estimation; and 3) only a handful of existing studies in hotel demand forecasting 

consider independent hotels, this specific hotel category. 

Apart from the study objectives, another unique contribution of this study is that this 

research considers three customer segment ratios (i.e., the demand of leisure/business 

customer ratio equals 1:1, 1:3, and 3:1) when testing different detruncation techniques. In 

many hotels, most business travelers prefer to stay on weekdays while weekend stays are 

more popular for leisure travelers. Very little hospitality academic research has explored 

the implications of demand forecasting and detruncation methods for various customer 
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segment ratios, let alone independent hotels. It is crucial for hotel practitioners to know if 

a difference exists in applying detruncation techniques to independent hotels for different 

guest constitution ratios. 

 

1.6 Definition of Terms 

 True demand 

True demand, or real demand, for a hotel is defined as the total number of rooms 

demanded by customers. This includes booking (requests that are met) and rejections 

(requests that are not met) records. 

 Truncated demand (data) 

Demands are considered truncated (or constrained or censored) if the booking limit in a 

given type of room at a specified review point in the history of the service product is less 

than or equal to the number of bookings present at that time. 

 Demand detruncation 

Method by which hotels whose room bookings reached capacity are adjusted to gain a 

prediction of demand that has no capacity restriction. 

 Detruncated (unconstrained) demand 

Unconstrained demand is defined as the number of reservations that would be accepted if 

restrictions or capacity constraints were not in place. 
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CHAPTER 2. LITERATURE REVIEW 

2.1 Revenue Management and Its Application in the Hospitality Industry 

2.1.1 The Development of Revenue Management 

Cleophas and Frank (2011) stated that the very basic example of revenue management is 

experienced firsthand at the farmer’s market in the retailing industry 30–40 years ago. At 

that time, fruits, vegetables, and bread in the market were priced in accordance with the 

customer’s arrival time. For example, early customers paid full price for fresh goods, but 

at the end of the day, vendors dropped the price for goods that are not fresh. However, 

Cross et al., (2009) demonstrated that revenue management was created by the airline 

industry. They illustrated that in the early 1980s, yield management began to be used in 

the airline industry as a crucial way to provide and control differentially priced, time-

sensitive products in various market segments and therefore increase returns. At this 

point, the bulk of academic research on RM has been published on the airline industry 

(McGill & Van Ryzin, 1999). 

Then, the technique of yield management was applied in the hospitality industry by 

Marriott International in the mid-1980s (Cross, et al., 2009). This technique made sense 

to the hotel industry because the airline and hotel industries share many of the same 
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management issues, for example, perishable inventory, advance bookings, low-cost 

competition, and challenges in balancing supply and demand. After yield management 

was applied to the hotel industry, the name was changed to revenue management 

(Koestler, 2011). 

Since then, revenue management has developed in a large part thanks to the collapse of 

international travel and the industry recession caused by the 9/11 terrorist attacks 

(Hawksworth, 2010). After experiencing nearly 3 years of a dark age triggered by 9/11, 

hospitality’s revenue management started to shift from a tactics focus to a strategic focus 

(Cross, et al., 2009; Koestler, 2011). This role transition of revenue management has 

created broader responsibilities for hotel revenue managers. The front office manager no 

longer focuses only on inventory; revenue management must go beyond purely managing 

hotel room inventory to considering total revenue contributions, sales, marketing, and 

brand management (Hawksworth, 2010; Koestler, 2011). With the evolution of the hotel 

industry, the recruitment of more professional employees in this area led to more 

executive discipline in most international brand hotels (Cross, et al., 2009). 

2.1.2 Revenue Management 

 Original RM and modern RM 

In one sense, revenue management is a very old idea, both in practice and theory. In 2005, 

Peter defined RM as the science and art of enhancing firm revenues while selling 

essentially the same amount of product. However, different from the original RM, 
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modern revenue management is not demand management itself but rather how these 

decisions are made (Talluri & Ryzin, 2006). 

The conceptual change from original RM to modern RM was driven by two 

complementary forces (Talluri & Ryzin, 2006). The first one is scientific advancement in 

economics, statistics, and operation research, which makes it possible to model demand 

and economic conditions, quantify the uncertainties faced by decision makers, estimate 

and forecast market response, and compute optimal solutions to complex decision 

problems. The second complementary force is the improvement in information 

technology, which provides the capability to automate transactions, capture and store vast 

amounts of data, quickly execute complex algorithms, and then implement and manage 

highly detailed demand-management decisions. Above all, modern revenue management 

has been defined by Talluri and Van Ryzin (2006) as the process of managing demand 

decisions with science and technology implemented with disciplined processes and 

systems, and overseen by human analysts. RM can also be viewed as a sort of 

“industrialization” of the entire demand-management process. 

 Characteristics of organization for RM implementation 

In general, any time a service business has the characteristics of 1) constrained supply 2) 

high fixed costs, 3) variable demands, 4) versioning opportunities, 5) perishable 

inventory, 6) the ability to manage differential pricing, and 7) the ability to communicate 
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efforts, the business can use revenue optimization strategies and tactics in RM operations 

(Hayes & Miller, 2011).  

Taking the hotel industry as an example and assessing an organization’s ability to 

implement revenue management strategies, using the seven characteristics provided in 

the previous paragraph, the organization assessment is shown in Table 2.1. 

 

Table 2.1 Organization Assessment of the Hotel Industry 

Characteristics Organization Assessment 

1. Constrained supply Yes. Further demand requests will be denied by the hotel’s 

booking system when its booking limit is reached; 

meanwhile, the hotel’s historical data represents only 

censored demand at the restricted record. 

2. High fixed costs Yes. The incremental cost of accommodation for each 

customer is the major cost. If customers purchase food, 

beverages, or banquet services from the hotel, each 

incremental guest likely contributes additional revenue that 

exceeds his or her incremental costs. 

3. Variable demand Yes. In most cases, business customer demand is predictably 

highest on weekdays, and leisure customer demand is highest 

on weekends and selected holidays. 

4. Versioning 

opportunities 

Yes. Traditional versioning includes providing standard 

rooms. However, different room sizes, features, and amenities 

all provide grounds for creative product versioning for hotels. 

5. Perishable 

inventory 

Yes. Hotel room nights as the inventory cannot be carried 

over from one day to the next. 
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6. Ability to manage 

differential pricing 

Hotel revenue managers routinely implement differential 

pricing strategies. They charge different prices to different 

buyers for the same product or slightly different versions of 

the same product. 

7. Ability to 

communicate efforts 

Beyond traditional price advertising, this could be limited and 

thus restricted. The typical customer may visit the hotel’s web 

site or hear of it through other customers; however, call-in or 

walk-in customers are very common. External 

communications may be limited to electronic communication 

with customers who have previously stayed in the hotel or 

who have been exposed to the hotel’s advertising. As a result, 

well-designed external and internal communication programs 

are essential for an effective differential pricing program. 

 

2.1.3 Revenue Management Industry Application 

Revenue management is traditionally applied primarily in the airline, hotel, and car rental 

industries, while other service industries, such as restaurants, golf, and retail, which share 

some common characteristics with traditional industries, can improve their revenues and 

profit from an appropriate application of revenue management as well (Hayes & Miller, 

2011). However, most current studies still focus on traditional areas, and those on non-

traditional industries are in the beginning stage (Talluri & Ryzin, 2006). The 

implementation of revenue management will be discussed in the next few paragraphs. 

 Hotel industry 
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Hotels serve a wide range of customers, including individual guests as well as groups. 

The classic segmentation of individual customers is between business and leisure guests 

(Queenan, Ferguson, Higbie, & Kapoor, 2007a; Talluri & Ryzin, 2006). Those traveling 

for business purposes have strong time preferences. They thus tend to value schedule 

convenience and booking/cancellation flexibility and are considered relatively price-

insensitive, because, in most cases, their travel expenses are paid by their employers or 

charged to clients. Leisure travelers, however, tend to be more sensitive to price because 

they are paying from their own pockets (Talluri & Ryzin, 2006). However, because these 

customers are traveling for discretionary purposes, they tend to have more flexibility in 

their travel dates and can modify their schedule to find a good deal. They are also willing, 

and even prefer sometimes, to pre-commit to travel many days ahead of departure. The 

two segments also differ in travel-time preferences, with business travelers preferring to 

leave on weekdays and return by the weekend, and leisure travelers preferring to depart at 

the end of the week and stay over a weekend. Leisure travel peaks around major holidays, 

while business travel drops at these points in time. 

Other than customer types, the diversity in sales channels, types, and operations of hotels 

means RM practices in the industry also vary considerably. Hotels are categorized as 

business, extended-stay, resorts, or a mix of business and leisure and by size (large, small) 

and location (airport, urban, central business district or CBD, highway, beach). Hotels 

may be managed by independent owners, as part of a chain that is managed directly by 
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employees of a single corporation, or as part of a franchise. Some hotel companies 

manage only individual properties, while large hotel chains sometimes manage a property 

without taking ownership. In a typical large hotel, approximately 60% to 80% of the 

bookings are made directly with the hotel, either locally, through the Internet, or through 

a centralized call center. The remaining bookings come from Global Distribution Systems 

(GDSs). The Hotel Electric Distribution Network Association (HEDNA) reported that 

GDSs delivered more than 43 million bookings for hotels, with a value in excess of $12.5 

billion in 1999. 

Due to the more fragmented nature of the industry, hotel RM practices tend to exhibit 

greater variation than airline RM practices. Revenue management has been widely 

applied in the booking process, property management systems (PMSs), and capacity 

controls area in hotels (Badinelli, 2000). Cross (1997) reported that revenue management 

helped Marriott Hotels gain $100 million of additional annual revenue. Elliott (2003) 

presented how revenue management can contribute substantially to cost savings and 

revenue maximization while helping maintain quality.  

 Airline industry 

The airline industry was the earliest and largest user of revenue management. As 

mentioned in chapter 1, RM has its origins in the rise of capacity-controlled discount 

fares after the U.S. airline industry was deregulated. Before deregulation, the only service 

options offered by commercial airlines were first-class and coach-class service. Fares on 
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a route were identical for all carriers and set by the Civil Aeronautics Board (or by the 

International Air Transport Association) on international flights based on standard cost. 

The period after deregulation in the United States was characterized by successive 

innovations in creating discounted products. Today, most airlines offer discounts based 

on a relatively stable set of restrictions, such as advance purchase or round-trip travel 

requirements, etc.  

In addition to different restrictions, different prices can be set at different levels of 

itinerary, data of travel, fare product, and point of sale. Because airline products are 

itineraries on a network of flights, an itinerary can also consist of flights involving 

several airlines (or interlining). Even if all flights are on a single airline, pricing an 

itinerary is complicated by the fact that there are often many different ways to do so since 

an itinerary many involve multiple connection possibilities. Thus, an airline with 500 

flights a day may offer hundreds of thousands of possible itineraries for sale. 

Obtaining revenue gains by applying RM techniques in the airline industry has been 

proved by many studies in the past. Chairman and CEO of AMR Corporation (American 

Airlines holding company), R.L. Crandall estimated in 1992 that revenue management 

had generated $1.4 billion in incremental revenue in 1990–1992. The President of Sabre 

Decision Technologies (a provider of business solutions to clients worldwide in the travel, 

transportation, and other industries), Tom Cook, asserted in 1998 that the yield 
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management system at American Airlines created almost $1 billion in annual incremental 

revenue. 

 Car rental industry 

RM applications in the car rental industry have similarities to airline and hotel RM. 

However, there are differences worth noting. One significant feature of car rental RM is 

the nature of capacity. Capacity is much more flexible than in either airline or hotel RM. 

For example, a car rental company may operate more than one location in a city or a 

geographic area. Inventory at the locations can be pooled, allowing greater flexibility in 

adjusting capacity to meet demand. Even if there is only one location in a given area, 

capacity can usually be increased or decreased by inter-pool moves, by moving cars from 

nearby cities, and by controlling the sale of older vehicles and turn-backs to 

manufacturers. Available capacity is also affected by customers who rent at one location 

and drop off at another. This means the capacity itself is often uncertain. Thus, 

suggestions that researchers give to car rental industry in applying revenue management 

techniques are adjust prices frequently according to demand, serve high-valued fleet 

utilization with priority, and accept or reject booking requests based on length-of-rental 

controls. 

 Golf industry 

Revenue management applies well to golf course management as the RM strategy relies 

on controlling the duration of service use and basing pricing mainly on consumer demand 
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for golf (Kimes, 2000; Kimes & Chase, 1998). In 2009, Lila and Yihua analyzed golf 

course tee-time reservation practice, and presented a unique linear model that can be used 

to assign the demand to the available tee times, and thus, maximize their use and the total 

revenue (Rasekh & Li, 2011). Kimes and Wirtz (2003) also studied the perceived fairness 

of six revenue management practices in the golf industry. The researchers stated that 

fences can be physical or non-physical, and fences ensure that if customers are willing to 

pay a higher fee or price they will. 

 Casino industry 

In terms of the casino industry, RM is applicable in two areas: renting out the casino’s 

hotel rooms and managing capacity and pricing in the gaming area. According to Pinchuk 

(2006), the average daily gambling revenue from the different gamer types can range 

from $20 to $20,000, so it is understandable that the revenue from rooms is not the 

highest priority for a casino. Indeed, many casinos give rooms away free to their top, 

“high-roller” customers. The RM problem in casinos, therefore, is one of controlling 

availability based on a combination of room revenues and the amount a customer is 

expected to spend on the casino’s gambling floor. RM systems are designed to assess 

customer value through a gaming value function. The software recognizes and ranks 

repeat guests by their gambling history. Guests are ranked in tiers. High-rollers are 

identified and receive the lowest room rates, while first-time guests and non-gamblers get 

the rack room rate (Pascal, Kelly, Glusker, Nicely, & Burns, 2001). 
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 Restaurant industry 

Unlike the widespread application of revenue management method in traditional 

industries, the number and depth of studies on revenue management in the restaurant 

industry have been comparatively slim. Kimes (1999; 1998) and Kimes et al. (1999) were 

among the first to directly address the issue of restaurant revenue management. They 

stated that the crucial element in a strategy for boosting restaurant revenues is how to 

relate prices to the length of time guests spend at the table, and they built a strategic 

framework for applying RM to restaurants to increase demand, and thus revenue, by 

effective duration management and demand-based pricing. Similarly, Sill et al. (1999) 

proposed the use of capacity-management science (CMS) as a systematic method of 

assessing a restaurant’s capacity potential and process efficiency. In 1992, Vakharia et al. 

(1992) developed models and heuristics to find the best trade-off between wages and 

hour preferences to minimize the cost of employees while maintaining employee 

satisfaction. Quain et al. (1998) and Muller (1999) addressed managerial factors that may 

improve restaurant efficiency, such as realizing profit centers, dispersing demand, 

decreasing operating hours, and decreasing service time by making the restaurant 

operational procedures as efficient as possible. 

 Retail industry 

Revenue management in retailing is a relatively new but growing practice. Apparel and 

grocery retailers have to deal with highly perishable and seasonable products. High-tech 
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retailers (PCs, consumer electronics) have similar problems, as their inventory loses 

value rapidly due to technological obsolescence. These characteristics mean that tactical 

demand management is important economically for retailers. In 2001, Coulter stated that 

revenue management is appropriate in the “seasonal” retailing industry in which capacity 

(inventory) is not necessarily “perishable” but the value of the capacity may decline 

significantly after the selling season. He investigated using discount pricing to maximize 

the revenue gained from selling a “seasonal” product. Aviv and Pazgal (2005) performed 

a quantitative analysis on applying dynamic pricing to sell fashion-like goods for 

“seasonal” retailers. Attention has focused on pricing strategy, market share preservation, 

and customer loyalty when implementing RM methods for grocery retail outlets in 

studies by Hawtin (2003) and Lippman (2003). 

2.2 Demand Forecasting 

2.2.1 The Development of Demand Forecasting 

Business forecasting during the early years was largely based on the exponential 

smoothing forecasting methods developed by an industry practitioner, Robert G. (Bob) 

Brown, in the late 1950s (Chase Jr, 2013). These exponential smoothing methods still 

live on today and are often regarded as the under-the-hood statistical forecasting engines 

powering many software packages. In the last two decades, forecasting methods have 

evolved since then to include a wide variety of statistical time series methods, and the 

focus started changing toward demand-driven forecasting.  
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More sophisticated and effective techniques for estimating demand were created in the 

1990s. This decade was a period of increased consumerism, and a business forecasters’ 

job became much more difficult, especially in the United States. During this period, the 

dramatic growth in the entities that must be forecast by multinational organizations made 

demand forecasting methods and systems larger in scale. Business planning became more 

complex in terms of having to deal with the many products being sold, many with short 

life cycles, the number of countries into which the products are sold, as well as the 

number of channels sold through. In addition, technology has been evolving to keep up 

with this dramatic growth in scale. By necessity, marketing and sales organizations 

developed more sophisticated and effective ways to simulate demand for the products the 

organizations were promoting. Industry forecasters started to experiment with and use 

methods that no longer assumed that demand just magically happened and could be 

estimated only from understanding what happened in the past. Now, demand forecasting 

has become a critical function that influences companies worldwide across all industries, 

including airline, hospitality, heavy manufacturing, consumer packaged goods, retail, 

pharmaceutical, automotive, electronics, telecommunications, financial, and others. 

2.2.2 The Role of Demand Forecasting in Revenue Management 

Forecasting is defined as the use of systematic procedures (e.g., judgment, a “rule of 

thumb,” or mathematical technique) and historical data to predict how demand will be 

realized in the future. Demand forecast is the single most crucial piece of data revenue 
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managers will review and evaluate when seeking to maximize room revenue (Larry R. 

Weatherford & Kimes, 2003). In the hospitality industry, an accurate demand forecast 

can help hotel revenue managers to evaluate whether the room demand is robust (or frail) 

enough to dictate significant changes in the pricing strategies, which is designed to assist 

hotels in terms of decision making, planning, and then achieving their market goals 

(Larry R. Weatherford & Kimes, 2003). 

Obtaining revenue gains by applying RM techniques have been proved by many studies 

in hospitality and other related industries (Klophaus & Pölt, 2007; S. Lee, Garrow, 

Higbie, Keskinocak, & Koushik, 2011; Thompson & Killam, 2008; Larry R. Weatherford 

& Pölt, 2002). Revenue gain occurred at Ford Motor Co. From 1995 to 1999, revenue 

rose 25%, and pretax profits soared 250%, from $3 billion to $7.5 billion. Of that $4.5 

billion growth, Ford’s Lloyd Hansen, controller for global marketing and sales, estimated 

in 2000 that about $3 billion came from a series of revenue management initiatives (Olive, 

2005). For an airline company, the impact of underestimating demand by 12.5% can hurt 

revenue by 1–3% on high-demand flights (Larry R. Weatherford & Pölt, 2002). Pölt 

(2000) estimated that a 20% improvement in forecasting error translates into a 1% 

increase in revenue generated from the revenue management system. In terms of hotel 

food and beverage outlets, forecast accuracy improved by more than 11% on average 

when occupancy data are used (Thompson & Killam, 2008). 
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Forecasting is particularly important in hotel revenue management because of the direct 

influence demand forecasts have on the booking limits that determine hotel profits (Guo, 

Xiao, & Li, 2012). Many researchers have stated that accurate demand forecast for each 

market segment is a significant step in a successful revenue management process for 

hotels (A. O. Lee, 1990). For instance, Lee (1990) estimated that a small improvement of 

10% in forecasting accuracy contributed to a 0.5–3% increase in expected revenue in a 

hotel. If no active and accurate forecasting program is in place, hotel revenue managers 

consistently make misinformed decisions and continually lead their hotels in directions 

that are detrimental to the property and customers, causing unexpected consequences for 

hotel organizations (Hayes & Miller, 2011). Table 2.2 provides the uses of demand 

forecasts and the consequences of poor forecasting in the hotel industry (Hayes & Miller, 

2011). 

Table 2.2 Uses of demand forecast and corresponding consequences of poor forecasting 

(Hayes & Miller, 2011) 

Uses of demand forecasts Consequences of poor forecasting 

Setting marketing goals Over-or under-budgeting for marketing 

Exploring potential markets Marketing to the wrong segments, ignoring 

the right ones 

Simulating impacts on demand Incorrect marketing mix, e.g., setting prices 

too high 

Determining operational requirements Excess labor, or customer unhappiness with 

limited service 

Examining the feasibility of a major 

investment in plant or equipment 

Wasted financial resources, difficult in 

financing interest payments 
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Predicting economic, social, and 

environmental consequences 

Environmental and social/cultural 

degradation; inflation or unemployment 

Assessing potential impact of 

regulatory policies 

Business losses, unemployment, price 

inflation 

Projecting public revenue Budget deficits 

Planning for adequate capacity and 

infrastructure 

Traffic congestion, delays, and accidents 

2.3 Independent Hotels 

In the United States, independent hotels constitute a certain proportion of the hospitality 

industry. According to Rick Swig (2000), independent hotels have lost ground in market 

coverage to the brand sector. Although the percentage of U.S. independent hotel rooms 

versus total supply slipped from 38.9% in 1990 to 30.3% in 1999 due to significant 

growth in the economy and mid-scale chain sectors, the actual inventory has barely 

decreased. Today, approximately 1.5 million independent hotel guest rooms are available 

daily versus 1.25 million average daily rooms in 1990 (U.S. Hotel Operating Statistics 

Study·Report for the year 2011, 2012). 

Tables 2.3 through 2.5 are drill-down tables of U.S. independent hotels. Table 2.3 

provides the number of properties in each independent hotel class, while Tables 2.4 and 

2.5 drill down independent hotels in the U.S. by location and room size, respectively. To 

sum up: there is a high percentage of independent hotels in economy scale, small town 

location, and in 50 rooms or less size group. 
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Table 2.3 Independent Hotels in the U.S.: Drill Down by Price Level 

Class (Price Level) Properties 

Economy 13,901 

Midscale 2,781 

Upper Midscale 1,834 

Upscale 1,589 

Upper Upscale 1,259 

Luxury 780 

Table 2.4 Independent Hotels in the U.S.: Drill Down by Location 

Location Properties 

Urban 2,190 

Suburban 5,083 

Airport 404 

Resort 2,525 

Interstate 2,290 

Small Town 9,652 

Table 2.5 Independent Hotels in the U.S.: Drill Down by Room Size 

Number of Rooms Properties 

25 or fewer 6,158 

26–50 8,090 

51–75 3,021 

76–100 1,622 

101–125 988 

126–150 625 

151–175 375 

176–200 297 

201–250 320 

251–300 171 

301–400 200 

401–800 176 

More than 800 101 
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Table 2.6 and Figure 2.1 provide the average Occupancy, ADR, Property, and Rooms 

Size for the seven hotel scales (i.e., Luxury Chains, Upper Upscale, Upscale Chains, 

Upper Midscale, Midscale Chains, Economy Chains, and Independents). The average 

ADR for Independents ranks between Upscale Chains and Upper Midscale Chains, while 

the number of properties and rooms of Independents ranks the top among all the hotel 

scales. 

 

Table 2.6 Occupancy, ADR, number of Properties and Rooms in each hotel scale (U.S. 

Hotel Operating Statistics Study·Report for the year 2011, 2012) 

U.S. Scales 

Scale Occupancy ADR Properties Rooms 

Luxury Chains 66.5% $243.62 378 124,185 

Upper Upscale 67.4% $142.54 1,494 547,641 

Upscale Chains 66.8% $107.81 3,652 565,703 

Upper Midscale 58.4% $91.42 7,674 766,494 

Midscale Chains 51.7% $73.68 6,374 563,582 

Economy Chains 51.6% $49.31 10,271 781,825 

Independents 54.7% $95.83 20,919 1,438,525 
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Figure 2.1 Scale Overview: Percent of Properties, Rooms, and Revenue by Scale, Counts 

as of July 2012 (Copyright 2012 Smith Travel Research) 

 

2.4 Censored Data Forecasting 

Censored data detruncation is a major step in the demand forecasting procedure of the 

revenue management system, especially when a hotel is always fully booked (Larry R. 

Weatherford, 2013). Further demand requests will be denied by the hotel booking system 

when its booking limit is reached. Hotels’ historical data represent only censored demand 

at the restricted record. Since hotels have records only of actual bookings, hotels must 

estimate the true demands that would have been received without any constraint on the 

products. The forecasting accuracy can be improved by 2–12% if hotels use appropriate 

detruncation methods (Wickham, 1995). 

In general, a hotel has five real demand forecasting options when the hotel’s true 

demands are truncated. The options are 1) observe directly, 2) ignore the censored data, 3) 
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discard the censored data and use uncensored data only, 4) impute, and 5) statistically 

detruncate (Guo, et al., 2012). These five detruncation method categories will be 

described in the following paragraphs. 

The first three categories originated in the early years of revenue management. They are 

the simplest methods for estimating detruncation demand from censored data (Pölt, 2000):  

1) Observe directly. This refers to direct observation and record of potential demand. 

Historical records that must be observed include requests that are met and not met. 

This method, however, is not an ideal demand detruncation option for most 

industries because it is susceptible to observer bias and can lead to erroneous demand 

forecasting results. Thus, many issues should be considered when using it. For 

example, only a small part of booking is controlled directly by the company.  

2) Ignore the censored data. This means ignore censorship and accomplish estimates 

as though the censoring never happened. When this method is used, unexpected 

consequences such as underestimated or overestimated future demand can easily 

happen.  

3) Discard the censored data and use uncensored data only. This can be viewed as a 

complete data method of dealing with incomplete data. It performs well only when 

the data are censored completely at random, and the missing data are fairly minimal. 

However, if there are some correlations between censored data and variables in the 

study, discarding them is potentially harmful. 
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These approaches yield biased estimates of future demand, and none provides acceptable 

results. The other two detruncation categories were generated after demand forecasting 

issues were intensively studied in the airline industry (Pölt, 2000). 

4) Time-Series forecasting. Time-Series forecasting methods are based on well-

specified classes of models that describe the underlying time series of data. Although 

these models have relatively simple mathematical structures, the model classes are 

rich enough to represent a wide range of data characteristics (Talluri & Ryzin, 2006). 

Techniques that based on simple time series theory include average and smoothing 

methods. Among them, DES, which usually been used in the hotel industry, is based 

on simple time-series theory (Talluri & Ryzin, 2006). 

5) Deterministic detruncation. An algorithm is said to be deterministic if at any point 

of execution there is, at most, one possible way to proceed, i.e., if the next 

consecutive is uniquely determined (Ueberhuber, 1997). Formally, deterministic 

detruncation methods will always produce a particular value as output for any given 

input. Among the selected deterministic detruncation techniques, BP and PU are two 

of the most frequently use in practice (Zeni, 2001). 

6) Statistically detruncate. As the name implies, this kind of detruncation is usually 

built on a foundation of complicated statistics theories. For example, the projection 

detruncation approach is based on the maximum likelihood theory; Gibbs Sampling 

is part of a broader set of methods called Markov-chain Monte Carlo (MCMC) 
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methods, they have found application in price-based RM. In this study, we chose the 

two top robust statistical detruncation methods, PD and EM, as the benchmark for 

comparison (L. R. Weatherford, 2000; Larry R. Weatherford & Pölt, 2002; Zeni, 

2001; Zeni & Lawrence, 2004). 

2.5 Comparison of Forecasting Methods 

Several studies were reviewed to see how comparisons of the different categories of 

forecasting methods had been previously addressed. No study provided a clear guide 

regarding whether our selected forecasting or the statistical detruncation technique leads 

to more accurate forecasting.  

Zeni (2001) and Weatherford and Pölt (2002) compared six forecasting and detruncation 

techniques, three naïve average methods, one deterministic detruncation method (i.e. BP) 

and two statistical detruncation methods (i.e. PD and EM) by simulating data in the 

environment of a single carrier in the airline industry. In terms of revenue impact, the 

results showed that the two statistical techniques were stronger than the other selected 

approaches with a 2.9% revenue improvement in business markets and an 11.6% 

improvement in leisure markets with strong demand. In addition, within the two 

statistical detruncation methods, EM was more robust than PD, peculiarly when 10% of 

the data were uncensored. 

However, 11 years later, different results showed in Weatherford’s (2013) research. This 

study focused on examining the statistical detruncation methods (EM and PD), as well as 
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two deterministic detruncation techniques (PU and BP) in the airline industry. By using 

the sophisticated passenger origin-destination simulator (PODS) simulator and 

considering the impact of spill, upgrades, and recapture, the author concluded that in 

some situations, airline companies should switch from simple detruncation techniques 

and in other cases should not. A 2–25% revenue difference would be generated between 

switching and not switching. 

Similarly, Queenan et al. (2007a) compared double exponential smoothing (Holt’s 

method) with EM and found that Holt’s approach has the edge only when all the demand 

sets were censored. Otherwise, EM was more robust. 

In accordance with the review of the literature, Weatherford and Kimes (2001) used real-

world data in the hotel industry to study the accuracy of various forecasting methods and 

found that PU methods and SES produced the most accurate results. 

2.6 Review of Selected Forecasting Methods 

From what has been discussed above, first, for deterministic detruncation method, based 

on Zeni’s (2001) conclusion that BP and PU are two of the frequently used deterministic 

detruncation methods in practice, we selected BP and PU in our study. In addition, 

following Weatherford and Kimes’s (2001) statement that PU and Simple Exponential 

Moving Average are the most accurate methods, smoothing methods are included in this 

study. SMA, EMA, and DEMA are all smoothing methods with different levels of power 

for weak data noise. Thus, we selected these three smoothing methods in the comparison 
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and found the best smoothing method in demand detruncation. In addition, we chose SA 

as a non-smoothing method. In terms of statistical detruncation methods, we selected the 

two most robust performers (EM and PD) for comparison (Lawrence R. Weatherford, et 

al., 2001; Larry R. Weatherford & Pölt, 2002; Zeni, 2001; Zeni & Lawrence, 2004). 

To sum up, we selected SA, SMA, EMA, DEMA, BP, and PU as the selected methods 

for comparison in this study. We included two robust statistical detruncation approaches 

for comparison: EM and PD. The eight methods are listed in Table 2.7. 

 

Table 2.7  Summary of Selected Methods 

Model # Classification Method 

1 Time-Series Simple Average (SA) 

2 Time-Series Simple Moving Average (SMA) 

3 Time-Series Exponential Moving Average (EMA) 

4 Time-Series Double Exponential Moving Average (DEMA) 

5 
Deterministic 

Forecasting 
Booking Profile (BP) 

6 
Deterministic 

Forecasting 
Pick-Up (PU) 

7 
Statistical 

Detruncation 
Expectation-Maximization (EM) 

8 
Statistical 

Detruncation 
Projection Detruncation (PD) 
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2.6.1 Simple Average 

Averaging methods generate forecasts based on an average of past observations. Simple 

average is one of the simplest kinds of averaging methods. It uses the mean of all the 

relevant historical observations as the forecast for the next period (Hanke, Reitsch, & 

Wichern, 1998). 

First, a decision is made to use the first   data point as the initialization part (i.e., the not 

constrained part) and the rest as a test part (i.e., the constrained period). Next, the 

following equation is used to average the initialization part of the data and to forecast the 

next period: 

Ŷt+1 =
1

t
∑ Yi
t
i=1   , (2.1) 

When a new observation becomes available, the forecast for the next period, Ŷt+ , is the 

average or the mean computed using Equation 2.5. 

When forecasting a large number of series simultaneously, only the most recent forecast 

and the most recent observation need to be stored as time moves forward, as shown in the 

following equation: 

Ŷt+ =
tŶt+1+Yt+1

t+1
  , (2.2) 

This method is an appropriate technique when the forces generating the series to be 

forecast have stabilized, and the environment in which the series exists is generally 

unchanging. 
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2.6.2 Simple Moving Average 

A moving average of order   is the mean value of   consecutive observations. This 

method is appropriate to use by analysts who are more concerned with recent 

observations. Equation 2.3 gives the simple moving average model. A moving average of 

order   is computed by 

Ŷt+1 =
(yt+yt−1+yt−2+⋯+yt−k+1)

k
  , (2.3) 

Where 

Ŷt+1 = forecast value for the next period, 

Yt = actual value at period t, 

 = number of terms in the moving average. 

2.6.3 Exponential moving average 

Exponential moving average is a procedure for continually revising a forecast in light of 

more recent experience. Different from the method of moving averages, this technique 

method not only considers the most recent observations but also provides an 

exponentially weighted moving average of all previously observed values. The model is 

often appropriate for data with no predictable upward or downward trend. The formulae 

are presented in Equations 2.4 and 2.5: 

 ̂ =     ,  (2.4) 

 ̂ =      1  (   ) ̂  1 (         )  , (2.5) 

Where 
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Ŷt = forecast value for the current period, 

Ŷt 1 = forecast value for the previous period, 

Yt 1 = actual value at previous period t, 

 = moving factor (exponential weight). 

2.6.4 Double Exponential Moving Average 

The DEMA was created by Patrick Mulloy and first published in 1994. Similar to the 

exponential moving average, the DEMA applies more weight to the most recent data in 

an attempt to smooth out noise while remaining highly reactive to changes in the data. 

The calculation steps are provided in the following equations. 

1) The first two steps are the same as in Equations 2.4 and 2.5 in the exponential moving 

average. 

2) The formula for the third step is presented in Equation 2.6: 

 ̂ =    ̂   ̂ （ ̂ )  , (2.6) 

Where 

Ŷt = forecast value for the exponential moving average curve, 

 ̂t = forecast value for the current period. 

2.6.5 Booking Profile 

Wickham (1995) developed a deterministic method called booking profile detruncation. 

By acquiring the average booking curves for flights with booking closures from those 
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that have never been closed, the author estimates true demand with either additive or 

multiplicative techniques.  

The algorithm for the detruncation process is the following: 

First, identify the arrivals (n) in each market that are not constrained over the entire 

booking profile for the arrival. 

Second, for these n arrivals, calculate the average bookings at each interval to produce a 

single representative detruncation booking profile, given by: 

Ŷt =
1

n
∑ Ytnotdetruncated
n
k=1   , (2.7) 

Third, calculate the percentage of the bookings at day   relative to the bookings in the 

previous period: 

∏ =t t 7  
Ŷt

Ŷt−7
  , (2.8) 

Fourth, for an arrival, in a given market, with a booking profile constrained at day    , 

calculate the unconstrained bookings at day     : 

Yt 7unconstrained = 
Yt

∏t t 7
  , (2.9) 

Finally, repeat the previous step for the bookings on days      , even if they are not 

constrained, as all data subsequent to the constrained booking at day     are considered 

corrupted. 

Where 

Ŷt = estimated value at period  , 

Yt = actual value at period  . 



40 

 

 

  

In this thesis, a cumulative data set is used instead of incremental data sets to prevent the 

situation that zero exists in the divisor in a division operation. To illustrate this method’s 

detruncation process, as shown in Table 2.8, assume we have non-truncated demand 

information from 6 to 0 days before arrival. To forecast the true demand from 2 to 0 days 

before arrival for another truncated demand data set, using the booking profile method, 

first we calculate the corresponding percentage of the bookings at day 2 relative to the 

bookings at day 3     =      of the non-truncated demand. The detruncation booking 

for day 2 of truncated demand becomes   ̂ =        =    (
11

 
)    . The real 

demand for day 1 and day 0 is calculated the same way. 

 

Table 2.8 Booking Profile Detruncation 

Days before arrival 6 5 4 3 2 1 0 

Non-truncated 

demand 

2 5 6 8 11 12 15 

Truncated demand 3 7 9 13 13 13 13 

Detruncated demand 3 7 9 13 18 20 25 

 

2.6.6 Pick-Up 

The pickup detruncation method was developed by Skwarek (1996). He wanted to obtain 

the total true demand by adding the simple average of pickup from the closure on 

unclosed flights to bookings already received. 
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In contrast to the projection technique, pickup detruncation assumes that the absolute 

increase in bookings from the closure interval to the arrival interval on the historical data 

base observation is the best indicator of the average increase in bookings between the 

time periods on unclosed bookings. 

Formally, as shown in Equation 2.10, the k-day ahead forecast of customers to come is 

given by  

Ŷ(   ) = ∑  ̂[ ](   )
 
 =   ,  (2.10) 

Where 

 = the number of days ahead of arrival, 

 ̂[ ]( ) = the incremental bookings forecast   days before the time of service. 

To explain the Pick-Up detruncation process, consider the following example of a 

booking truncated at day 2 before arrival. The data set in Table 2.9 is incremental 

demands. First, we calculate the average absolute increase from day 3 to day 2 of the 

non-truncated demand data = (3+2)/2=2.5. Thus, the detruncated demand of day 2 equals 

2.5. Calculating the same way, the real incremental demand of day 1 and day 0 is 2.5 and 

2, respectively. 
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Table 2.9  Pick-Up Detruncation 

Days before arrival 6 5 4 3 2 1 0 

Non-truncated demand1 2 3 1 2 3 1 3 

Non-truncated demand2 2 2 3 1 2 4 1 

Truncated demand 3 4 2 4 0 0 0 

Detruncated demand 3 4 2 4 2.5 2.5 2 

 

2.6.7 Expectation Maximization 

After Salch looked at EM in the airline context and applied the algorithm to 

unconstrained censored data, this method became the most widely used method for 

correcting for constrained data in quantity-bases RM (Talluri & Ryzin, 2006). The EM 

was given by Dempster et al. (1997) in their pioneering paper. The method has been 

successfully used in circumstances where there are censored observations, missing data, 

and truncated distributions (McKercher & Tony, 2012).  

The EM method uses the complete-data likelihood function in an iterative algorithm with 

an alternating E-step and M-step (thus the name). The E-step replaces the censored data 

with estimates of the uncensored values using the current estimates of the mean and the 

standard deviation. The M-step then maximizes the complete-data log-likelihood function 

based on these updated data to obtain new estimates of the mean and the standard 

deviation. 
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2.6.8 Projection Detruncation 

The PD method is similar to the EM algorithm, because the PD calculation process also 

includes an E (expectation) step and an M (maximization) step. However, the conditional 

median replaces the conditional mean in the expected value calculation part. Compared 

with EM, there is an additional parameter that affects the aggressiveness of the 

detruncation (Zeni, 2001). It has been used in the PODS simulations for quantity-based 

RM, and its origin is credited to Hopperstad in 1995 (Talluri & Ryzin, 2006).
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CHAPTER 3. METHODOLOGY 

To evaluate the effectiveness of demand forecasting techniques in terms of restoring 

truncated demand data, and thus test how these methods affect hotel revenue, we 

compared six selected forecasting algorithms with two robust data detruncation methods. 

In Table 3.1, the eight models are summarized.  

 

Table 3.1 Summary of Selected Models 

Model # Classification Method 

1 Time-Series Simple Average (SA) 

2 Time-Series Simple Moving Average (SMA) 

3 Time-Series Exponential Moving Average (EMA) 

4 Time-Series Double Exponential Moving Average (DEMA) 

5 
Deterministic 

Detruncation 
Booking Profile (BP) 

6 
Deterministic 

Detruncation 
Pick-Up (PU) 

7 
Statistical 

Detruncation 
Expectation-Maximization (EM) 

8 
Statistical 

Detruncation 
Projection Detruncation (PD) 
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The premise behind the procedure for this study involves simulating a short-term 

forecasting environment and reviewing the performance of the selected forecasting 

methods in this environment. Therefore, the fundamental component of this study is the 

methods to the same simulated data set. The forecasting environment involved three total 

leisure/business customer demand ratio (L/B ratio) scenarios: 1:3, 1:1, and 3:1. All 

selected methods were applied to the simulated data set under each scenario. The 

structure of the revenue management models for testing the forecasting and detruncation 

methods under each scenario is provided in Figure 3.1. The revenue management models 

were applied to our simulated data set. 



 

 

4
6
 

 

Figure 3.1 Summary of Revenue Management Models for Each L/B Ratio Scenario 
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3.1 Real Demand Simulation 

To compare the performance of our selected forecasting and detruncation methods, first, 

under each, we simulated leisure and business real demand booking curves under a pre-

decided increasing rate. The simulation method has been selected in this study because 1) 

it is the most widely used method for real demand generating in past studies; and 2) hotel 

real demand is hard to observe from historical booking data while hotel booking curve 

shape is not hard to summarize. In each booking curve, we simulated the data set for a 

61-day period (from 60 days before arrival to the arrival date). The arrivals are created 

based on a Poisson distribution. Afterward, a total true demand curve is generated by 

summing up the leisure and business demands. By applying the Monte Carlo 

Randomized Method (Hammersley & Handscomb, 1964), this simulation step is run 100 

times to generate 100 random real demand samplings. 

By observing the real booking curves’ shapes for the four given customer segment 

arrivals illustrated in Queenan et al.’s (2007a) study, the booking curve for fare class 1 in 

Figure 3.2 is the sample for the leisure segment in this research, and the reservation shape 

for fare class 3 is the sample for the deciding business segment. Figure 3.2 provides 

cumulative hotel/casino reservations for four separate fare classes in Queenan et al.’s 

(2007a) article.  
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Figure 3.2 Cumulative Hotel/Casino Reservations for Four Fare Classes (Queenan et al., 

2007) 

 

To create the actual demand curves, we assumed that the arrivals on a given day are 

randomly drawn from a Poisson distribution. This assumption has been widely illustrated 

in the hotel- and airline-related literature and matches closely with actual hotel industry 

data (Badinelli, 2000; Bitran & Gilbert, 1996; Bitran & Mondschein, 1995; Liu, Smith, 

Orkin, & Carey, 2002; Queenan, et al., 2007a; Rothstein, 1974).  

As shown in Table 1.1 in Chapter 1, more than 85% of U.S. independent hotels are in the 

size range of 100 or fewer rooms. However, hotels with a limited number of rooms (i.e., 

Bed & Breakfasts) do not benefit from revenue management because they have very 

specific target markets and may not be able to further segment the already narrowly-

defined market. Independent hotels that attract diverse market segments benefit most 

from revenue management. These hotels usually have more rooms than those targeting a 
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specific market (i.e., Bed & Breakfasts; (Hayes & Miller, 2011)). Therefore, we initiate 

the hotel capacity at 100. 

The amount of total real demand is set at 160 (60% more than capacity) for two reasons:1) 

To take into account the diversity of the simulated data set, the total true demand must be 

a number that when the leisure/business ratio equals 3:1, business demand is smaller than 

the capacity (i.e., 100), and when the leisure/business ratio equals 1:3, business demand is 

larger than the capacity. 2) With the precondition of a diversity simulation, this number 

(i.e., 160) is initiated as a matter of convenience. When total demand equals 160, the 

leisure and business demand is a whole number in all L/B ratio scenarios. 

We assume the demand for each market segment is independent, and there are no 

cancellations or no-shows. For the leisure demand curve, we maintain constant demand 

increases in declining rates, from high to low, over 60–51, 50–31, and 31–0 days before 

the arrival time periods. For the business demand curve, we increase the arrival in rising 

rates on 60–51, 50–31, 30–11, and 10–0 days before the arrival time periods. The aim for 

the rate settings is to make sure that the simulated leisure booking curves are concave and 

the business ones are convex and guarantee their shapes are as close as the samples in 

Queenan et al.’s (2007a) booking curve plot. Figures 3.3 through 3.5 provide the 

simulated cumulative demand plot for the three scenarios. The numbers in the plot are the 

averages of the 100 runs. 
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Figure 3.3 Simulated Real Cumulative Demand Curve (L/B Ratio=1:1) 

 

Figure 3.4 Simulated Real Cumulative Demand Curve (L/B Ratio=1:3) 
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Figure 3.5 Simulated Real Cumulative Demand Curve (L/B Ratio=3:1) 

 

3.2 Demand Truncation 

Based on the revenue management models in Figure 3.1, true demand will be truncated in 

three cases: 1) capacity truncation (for No RM and Perfect RM Models), 2) 50% 

truncation of total business demand, and 3) 25% truncation of total business demand. 

Case 1, using hotel capacity (i.e., 100) for the limitation setting, is a naïve situation. 

Meanwhile, the aim of doing cases 2 and 3, truncating total business demand in two 

different proportions, is to evaluate each forecasting method’s performance under 

different data truncation percentages. Since in overbooking environments, the number of 

hotel business (full-price) customers can bring more profit for independent hotels than 
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leisure customers (discount price), hotel revenue managers care more about how to 

protect the number of business bookings than leisure bookings. Therefore, booking limits 

were set only for the business demand curves in this study. 

3.2.1 Case 1: Capacity Truncation 

For capacity truncation, we first set the hotel capacity at 100 and then calculate the first 

date that total demand arrives at 100. After that date, we close the leisure and business 

booking classes. Figures 3.6 through 3.8 present the capacity truncation plot over all three 

leisure/business demand ratios. 

 

Figure 3.6 Observed Cumulative Demand Curve (L/B Ratio=1:1) 
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Figure 3.7 Observed Cumulative Demand Curve (L/B Ratio=1:3) 

 

Figure 3.8 Observed Cumulative Demand Curve (L/B Ratio=3:1) 
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3.2.2 Case 2: 50% Business Demand Truncated 

In this case, we calculate the first date while demand in business class arrives at 50% of 

the real total demand (for example, if the total real business demand is 100, we calculate 

the first date that business arrivals arrive at 50). After that day, we stop receiving 

bookings in business class, but reservations in the leisure market are still open. Bookings 

in the leisure market will close when the total demand reaches the hotel capacity (i.e., 

100). Plots of case 2 for each leisure/business class ratio are shown in Figures 3.9 through 

3.11. 

 

Figure 3.9 Observed Cumulative Demand Curve (L/B Ratio=1:1) 
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Figure 3.10 Observed Cumulative Demand Curve (L/B Ratio=1:3) 

 

Figure 3.11 Observed Cumulative Demand Curve (L/B Ratio=3:1) 
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3.2.3 Case 3: 25% Business Demand Truncated 

In Case 3, similar to Case 2, bookings received in business class will be stopped when the 

total business demand reaches 75% of our simulated total real business demand. At the 

same time, the leisure market will not open until the total bookings reach the hotel’s 

capacity. Plots in Figures 3.12 through 3.14 provide specific booking curves in this case 

under the three ratios. 

 

Figure 3.12 Observed Cumulative Demand Curve (L/B Ratio=1:1) 
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Figure 3.13 Observed Cumulative Demand Curve (L/B Ratio=1:3) 

 

Figure 3.14 Observed Cumulative Demand Curve (L/B Ratio=3:1) 
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3.3 Demand Forecasting 

This is the step to apply the forecasting and detruncation methods to the truncated 

demand created in the previous steps. The goal is to restore truncated demand to the true 

demand. We call the demand derived from the forecasting and detruncation methods 

detruncated demand. This is the forecasted demand in most revenue management systems. 

In this step, only business curves are detruncated to compare forecasting and detruncation 

methods.  

Except for the BP method, in each scenario, all the other forecasting and detruncation 

methods (SA, SMA, EMA, DEMA, PU, EM, and PD) are applied for incremental 

truncated business demand data. In terms of BP, because this method sets observed 

incremental booking as the denominator in the formula, zeros exist in our truncated 

incremental business demand. Thus, the divisor in a division operation could be zero. 

This could limit the detruncated value of business demand to be defined eventually. 

Therefore, to avoid this situation, we use cumulative truncated business booking values in 

forecasting with the BP method. 

In addition, for the BP, PU, EM, and PD methods, detruncation demand must be 

calculated from the bookings of the unclosed demand curves. Thus, we simulate the non-

truncated business booking curves, and assume these curves follow the same increasing 

rate with real business demand. The number of total reservations for these curves is 

initiated as their correspondent business booking limit in each scenario. 
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3.4 Statistical Evaluation 

This is the step to evaluate forecasting accuracy for each forecasting and detruncation 

method statistically. We use statistical error tests to see which forecasting method 

produces the best result. In this study, errors are defined as the differences between the 

real and detruncated business booking curves for each scenario. Data used in the error 

calculations are incremental business bookings. Errors are calculated only between 

intervals from the day true demand begins to be truncated until the arrival day. 

Detruncated booking data for closed intervals are derived from the bookings of the non-

truncated booking intervals; therefore, the business demand from non-truncated booking 

intervals is known information. There is no need to compare the mean square error of 

detruncated business bookings versus the actual booking demand distribution within 

these intervals. 

To measure the forecasting performance of each method, several metrics have been used 

in previous academic studies (Wickham, 1995), where   and  ̂ are the real and 

detruncated incremental demand, respectively, generated from n observations:  

 The Mean Absolute Deviation (MAD) indicates the average of the absolute values 

of the detruncated errors. This is the simplest statistical measure of forecast errors, 

defined mathematically as: 

   =
1

 
∑    ( ̂   ) 
 =1   , (3.1) 
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The mean absolute deviation is particularly useful when the cost of the forecasting 

errors is proportional to the absolute size of the error. 

 The Mean Percent Error (MPE) is simply the average of the percentage deviations. 

The MPE is defined mathematically as: 

   =
1

 
∑

( ̂  )

 

 
 =1       , (3.2) 

 The Mean Absolute Percent Error (MAPE) is the average of the absolute values 

of the percentage errors. The mathematical formula for computing the MAPE is: 

    =
1

 
∑    [

 ̂  

 
]      

 =1   , (3.3) 

One advantage of this measure is that it is dimensionless. However, a particular 

drawback is that the MAPE is not defined when the real number of bookings is equal 

to zero, which is also true for the MPE. 

 The Root Mean Square Error (RMSE) is the square root of the squared forecasting 

errors, defined as: 

    = √
1

 
∑ ( ̂   )  
 =1   , (3.4) 

Where n is the number of observations generated for the particular model. This 

measure weighs large forecast errors much more heavily than smaller errors to the 

extent that it is considered biased against large errors. Nevertheless, this measure is 

valuable because of the independence issue. 

 The Mean Square Error (MSE) measures the average of the squares of the 

forecasting errors. The mathematical formula for computing the MSE is: 
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   =
1

 
∑ ( ̂   )  
 =1   , (3.5) 

MSE has been chosen for testing errors in this study because it avoids most drawbacks of 

the previous error measurement metrics. In addition, it is one of the most widely used 

loss functions in statistics to qualify the difference between values implied by an 

estimator and the true values of the quantity being estimated (Lehmann & Casella, 1998). 

The standard deviation (SD) of every MSE is also calculated to evaluate how much 

variation from the average MSE exists. 

3.5 Economic Evaluation 

The aim of this step is to economically compare the performance of each technique. 

Revenues are generated under three RM models: No RM, Perfect RM, and RM under 

Demand Detruncation. 1) The No RM model calculates the revenue a hotel would receive 

if it simply accepts the reservation whenever it arrives (calculated under the capacity 

truncation cases). 2) The Perfect RM model computes the revenue the hotel could have 

received if it knew the true demand ahead of time. 3) The RM with Demand Detruncation 

presents the revenue the hotel would have generated if it had applied detruncation 

methods to get a sense of the true demand and reserved rooms for the full-rate market. In 

this study, revenues are calculated under 50% and 25% business demand truncation 

levels.  

In this step, revenue calculations for all the three models must obey the capacity 

limitation of 100 rooms. In the RM with Demand Detruncation model, business bookings 
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are identified first with the detruncation demand, and then the remaining capacity is given 

to leisure customers. Any business bookings beyond the capacity will be counted as 100, 

and the corresponding leisure demand will become zero. 

Since traditional industry overbooking statistics, such as over-sales and spoilage, are 

influenced by external factors (Smith, Leimkuhler, & Darrow, 1992), the revenue 

effectiveness of each method is measured with the overbooking revenue opportunity 

model (OROM). The OROM was originally developed by American Airlines (Phillips, 

2005). This model measures the revenue impact of overbooking by comparing the actual 

net revenue, which equals total revenue minus any over-sale costs, to the maximum net 

revenue that could have been achieved with perfect overbooking controls. This method is 

referred to as measuring the revenue opportunity (Smith, et al., 1992).  

To be specific, if the hotel is full, the revenue achieved under any actual revenue 

management control will generally lie between two extremes: better than the No RM 

program but never better than Perfect RM. Thus, the difference between the revenue 

achieved from Perfect RM and the revenue achieved from No RM is called the total 

revenue opportunity. The revenue obtained from applying revenue control minus revenue 

obtained from No RM is called the realized revenue opportunity. Then the revenue 

opportunity metric (ROM) is the revenue actually achieved from that hotel room/night 

minus the revenue that would have been achieved under No RM expressed as a 
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percentage of the total revenue opportunity (Phillips, 2005). For example, in this study, 

the ROM of the 50% truncation scenario is: 

   = 
                                                

                                            
   . 

According to the room rate we observed online among different independent hotels, the 

price ratio of the business and leisure market is created to be 2:1. Theoretically speaking, 

the higher the value of the ROM, the better the method’s revenue effectiveness will be.
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CHAPTER 4. RESULTS 

As shown in Table 3.1 in Chapter 3, eight demand forecasting and detruncation methods 

were examined in this study, where models 1–6 use selected forecasting methods, while 

the data in models 7 and 8 are detruncated by statistical detruncation methods. We 

discuss the results, presented in the order of the forecasting methods, beginning with 

selected forecasting methods and then the statistical detruncation methods. Comparisons 

of three leisure/business demand ratios are presented. Method effectiveness differences 

between 50% and 25% of the total business demand truncation levels are summarized as 

well. Finally, the revenue impacts are discussed. 

4.1 Statistical Evaluation of Selected Models 

To facilitate the presentation of results, a summary of the set of selected methods is given 

in Table 4.1. Methods 1 through 6 are selected forecasting methods to be compared, 

while methods 7 and 8 are the two statistical detruncation methods.  

Table 4.1 summarizes the statistical error testing outcomes for the chosen methods over 

all three scenarios. Errors are presented with the MSE and the SD. 

  



 

 

6
5
 

Table 4.1 Mean Square Error (MSE) and Standard Deviation (SD) for Each Scenario 

Mean Square Error (MSE) and Standard Deviation (SD) for Each Scenario 
__  Smallest number in the column 

   Largest number in the column 

Total leisure/Business demand ratio 1/1 1/3 3/1 

Percentage of total business demand been 

truncated 

50 25 50 25 50 25 

  MSE SD MSE SD MSE SD MSE SD MSE SD MSE SD 

Simple Average (SA) 9.39 4.31 21.67 10.42 19.04 7.15 34.63 15.26 2.91 1.62 2.65 1.95 

Simple Moving Average (SMA) 9.26 4.26 16.61 10.16 18.73 7.03 34.46 15.26 2.88 1.60 4.63 2.93 

Exponential Moving Average (EMA) 9.51 4.32 16.79 10.17 19.29 7.17 34.88 15.30 2.94 1.63 4.68 2.94 

Double Exponential Moving Average (DEMA) 11.24 4.3 13.59 9.12 23.36 7.19 27.67 12.84 3.36 1.6 3.9 2.57 

Pick-Up (PU) 5.42 2.95 5.60 4.97 9.72 4.55 9.05 6.34 2.10 1.30 2.49 2.19 

Booking Profile (BP) 12.14 4.89 19.07 8.62 25.1 8.36 40.31 14.15 3.74 1.85 5.45 3.22 

Expectation Maximization (EM) 11.13 4.85 18.00 10.00 22.11 8.23 36.47 15.02 2.36 2.57 5.63 3.35 

Projection Detruncation (PD) 11.45 4.93 18.94 10.35 22.89 8.35 38.55 15.55 2.40 2.60 5.83 3.41 
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4.1.1 Comparison among Leisure/Business Demand Ratios 

The proportion of the business demand attributed to total bookings gradually diminished 

as the leisure/business ratios increased from 1:3 to1:1 to 3:1. The MSE correlations for 

each method with the different L/B ratios are shown in Table 4.1. Overall, the error for 

each forecasting and detruncation method decreased from L/B ratio 1:3 to 1:1 and then to 

3:1. In L/B ratio 1:3, the MSE for all methods falls clearly in the range [9.05, 40.31]; 

while in L/B ratio 1:1, this range decreases to [5.42, 21.67]. When the L/B ratio becomes 

3:1, the MSE values drop again to [2.1, 5.83]. We can conclude that the data restoration 

accuracy ranged from a negative relationship with the business demand proportion. 

4.1.2 Comparison between Demand Truncation Levels 

Observing Table 4.1 longitudinally, for all three total leisure/business demand ratio 

categories, the values of the MSEs for most methods decreased when the 50% of the total 

business demand was truncated compared to the values for the 25% truncation. This 

outcome indicates that the more the business bookings are truncated, the smaller the error 

becomes, thus the closer the detruncated demands to true demands. However, PU and SA 

forecasting methods showed opposite results under L/B ratio 1:3 and 3:1 respectively. In 

ratio 1:3, when 50% of the total business demand is truncated, the MSE of PU was 9.72 

with a standard deviation of 4.55, while under the 25% truncation level, the MSE 

surprisingly decreased to 9.05 with a standard deviation of 6.34. At the same time, in 
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ratio 3:1, when truncation level decrease from 50% to 25%, the MSE for SA drop from 

2.92 to 2.65. 

Aside from the MSE values, the errors’ standard deviations also showed an increase 

changing trend from the 50% to 25% business truncating percentage over all three L/B 

ratios. This can be interpreted as the less the business bookings are truncated, the more 

variable the error becomes. 

Another interesting result is that in each L/B ratio scenario, for both business truncation 

levels, PU was the best performer among all the selected methods with the smallest MSE. 

However, the least accurate method kept changing in 50% and 25% truncation level 

categories. In 50% truncation category, BP was the weakest over three L/B ratio 

scenarios with MSE values of 12.14, 25.10, and 3.74. While in 25% truncation category, 

for ratio 1:3, BP remained at the bottom. For ratio 1:1 and 3:1, SA and PD replaced BP 

and become the least accurate methods. Surprisingly, in category that ratio equals 3:1 

percentage equals 25, BP was not even the second worst choice. Its performance even 

surpassed EM, and was the third worst method. 

4.1.3 Comparison between Selected Methods 

Figure 4.1 presents the strongest and weakest statistical performers in each L/B ratio and 

truncation level scenario based on the MSE values provided in Table 4.1. Plots displayed 

in the coordinate system are cumulative bookings. In each plot, the black, green, red, and 

blue lines represent the strongest method’s detruncation bookings, the weakest method’s 
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detruncation bookings, real bookings and truncated bookings, respectively. Business 

bookings we compared in this study were incremental rather than cumulative. Errors 

were calculated only in intervals from the day true demand began to be truncated until the 

arrival day. The reasons we show cumulative plots instead of incremental plots here are 1) 

cumulative plots ensure easy observation for readers and 2) they are inconsistent with the 

cumulative plots we inserted in the previous chapter. The detruncation plots of other 

methods are in the appendix. 

As shown in Table 4.1 and Figure 4.1, PU, with the smallest MSE and SD values, was the 

strongest performer among all selected forecasting and detruncation methods. 

Surprisingly, following PU, the MSE values for the EM and PD methods did not rank 

second and third smallest compared with the other methods. Thus, we can conclude that 

statistical detruncation methods (i.e., EM and PD) do not always outperform other 

selected forecasting methods (SA, SMA, EMA, DEMA, and BP) over all L/B ratio 

scenarios and business truncation percentage cases. However, the rankings of these two 

statistical detruncation methods remained the same over all scenarios. That is to say, EM 

and PD performed with great consistency in this study. 
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Figure 4.1 Strongest and Weakest Statistical Performer in Each Scenario 
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4.1.3.1 Selected forecasting method 

Among the selected forecasting methods, PU outperformed all methods over the L/B 

ratio scenarios data set because the error remained under 10 for all levels on business 

demand truncation. PU and BP are forecasting methods that restore truncated values from 

unclosed booking data. The MSE difference between these two methods is substantial. 

BP underperformed on this test because it used the proportion in each interval of non-

truncated curves to estimate data, while PU uses the absolute increase. Thus, one 

advantage of PU method is that it fully uses all available reservation information. 

Moreover, as partial bookings are recent bookings, using these data can make the 

estimation more responsive to shifts in demand. Even though the method looks simple 

and heuristic, PU can be better used in quantity-based revenue management. 

In terms of the simple average method, it outperformed most of other selected forecasting 

method with the 50% business demand truncation cases, but did not do a good job when 

the business truncation level was 25%. Since SA uses the means of all known observed 

data to estimate true demand, SA is an appropriate method when the forces generating the 

truncated demand to be restored have a stabilized and unchanging environment. In our 

study, the business demand curve’s increasing rate rose progressively at first but 

suddenly was truncated to zero when it got to the given limitation. Therefore, the less 

business demand truncated, the more erratic the known data could be, and then the less 

accurate the SA method becomes. 
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Compared with the simple average method, the moving average forecasting methods are 

more concerned with recent booking observations. A constant number of data points can 

be specified at the outset and the mean computed for the most recent observations. The 

new mean is calculated through adding the newest value and dropping the oldest when 

each new booking becomes available. The first two moving averages in this study, SMA 

and EMA, outperformed most of the other techniques SMA seemed a litter stronger than 

EMA, but not much more, whereas DEMA’s performances kept changing in 25% and 50% 

truncation levels. It was evident that DEMA worked way better in 25% truncation 

categories than in 50%’s. One possibility is that booking truncation made the later part of 

our known incremental observation go to zero. Thus, the average bookings the methods 

computed from the latest part of observations went to zero as well. 

4.1.3.2 Statistical detruncation method 

Comparisons in previous studies showed EM outperformed PD (Weatherford & Pölt, 

2002; Zeni, 2001). We confirmed this result. Except for accuracy issues, PD has two 

more drawbacks compared with EM. First, PD takes more iteration to cover than EM 

when restoring the missing value. Second, when using PD for data detruncation, users 

need to create a weighting parameter as an opportunity for varying results.  

4.2 Revenue Impact Analysis 

The ROM result for each method is presented in Table 4.2. Most methods’ revenue 

performances show consistencies with the detruncation effectiveness within the same 
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ratio and truncation category. Although, technically speaking, the revenue percentage 

impact for each method does not need to cohere with its detruncation effectiveness 

because the deciding factor of revenue impact is the absolute increase of business 

detruncation demand curve from the day it begin to be truncated until the arrival day, the 

decisive factor of the MSE value is the distance from the detruncation curve to the real 

demand curve in each day within truncation intervals. It is possible for a method that has 

strong detruncation effectiveness and weak revenue impact at the same time. 

PU, with the largest percentage of revenue impact, was the top performer among the 

methods. Especially in the 1:3 L/B ratio, the 25% percentage level, the ROM for PU was 

1, which means the revenue effectiveness was close to the revenue achieved under the 

Perfect RM scenario. The most likely explanation is that in ratio 1:3, our simulated real 

business demand exceeded room capacity (i.e. 100), plus there is only 25% of real 

business demand has been truncated, our forecasted total business demand using PU 

method is still above the capacity. These are also the reasons why ROMs of the other 

methods in this scenario (ratio=1:3, percentage=25%) are close to 1. EM and PD did not 

show much difference between the economic evaluation and the statistical evaluation. 

The most interesting discovery is, between 25% and 50% truncation levels, ROM for 

each method does not cohere with its MSE result. Although, as we demonstrated in 4.1.2, 

the more the business bookings are truncated, the smaller the error becomes, thus the 

closer the detruncated demands to true demands, ROMs in 25% truncation level are 
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larger. That is to say all our selected forecasting methods could generate more revenue in 

25% business truncation levels, even though they subject to greater statistical errors than 

in 50% truncation levels. 

  



 

 

7
6
 

Table 4.2 Revenue Opportunity Metric for Each Scenario 

Revenue Opportunity Metric (ROM) for Each Scenario 
__  Smallest number in the column 

   Largest number in the column 
Total leisure/Business demand ratio 1/1 1/3 3/1 

Percentage of total business demand been truncated 50 25 50 25 50 25 

Simple Average (SA) 0.448 0.650 0.378 0.895 0.545 0.911 

Simple Moving Average (SMA) 0.455 0.703 0.391 0.897 0.550 0.755 

Exponential Moving Average (EMA) 0.442 0.701 0.365 0.892 0.538 0.753 

Double Exponential Moving Average (DEMA) 0.366 0.742 0.215 0.976 0.471 0.790 

Pick Up (PU) 0.629 0.893 0.763 1.000 0.689 0.918 

Booking Profile (BP) 0.320 0.693 0.112 0.877 0.441 0.759 

Expectation Maximization (EM) 0.356 0.705 0.223 0.899 0.412 0.749 

Projection Detruncation (PD) 0.341 0.696 0.191 0.880 0.407 0.741 
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4.3 Steps to Follow for Pick-Up Method Calculation 

In this study, Pick-Up detruncation method was proved to be the strongest performer 

among all the selected low computational forecasting techniques. Specific steps for 

estimating total real hotel demand through this method will be presented as follows: 

 Step one: collet historical booking data 

In this step, hotel operators need to collect two set of historical data—non-truncated and 

truncated historical demands. Suppose for the data in figure 4.1, we want to forecast the 

real total bookings for 16-January assuming cumulative bookings for this date met the 

reservation limitations when we have two days remaining, and bookings for arrival date 

8-January, 11-January and 14 January have not been constrained by hotel booking limits. 

The non-truncated historical bookings we need to collet are demand from 6 to 0 days 

before arrival for January-8, 11 and 14 (data marked in pink). The truncated reservation 

historical demands are 6-1 days ahead of arrival for 16-January (data marked in blue). 

 

Table 4.3 Incremental bookings for four arrival days of a hotel. 14-Janury is the current 

date with full historical bookings. 16-Janury has partial booking information 

Days Before Arrival Arrival 

Date 6 5 4 3 2 1 0 

2 3 1 2 3 1 3 8-Jan 

2 2 3 1 2 4 1 11-Jan 

0 1 2 4 3 2 1 14-Jan 

4 3 4 2 3   16-Jan 
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 Step two: find the average absolute increase for non-truncated data set 

Pick-Up detruncation assumes that the absolute increase in bookings from the non-

truncated interval to the arrival interval on the historical data base observation is the best 

indicator of the average increase in bookings between the time periods on truncated 

bookings. To get the average absolute increase of non-truncated demands from day 2 to 

day 1, add each incremental demand in day 1 and then divide by the number of arrival 

days. This is the average absolute increase from day 2 to day 1. In our example, average 

absolute increase for non-truncated data set equals 
1+ + 

 
=     . Thus, our estimate 1 

day before arrival bookings for arrival date 16-January is 2.33. Similarly, we can 

compute the 0 day ahead of arrival bookings for 16-January. It equals 
 +1+1

 
=     . 

 Step three: the estimate real total demand is the sum of incremental demand we get. 

This number will tell you how many reservations in total the hotel would have for arrival 

date 16-January. To get this number, we need to sum up all the incremental booking from 

6 to 0 days before arrival for 16-January. So the forecast of demand to come for 16-

January equals                    =   .
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CHAPTER 5. CONCLUSION 

By integrating demand data testing in three leisure/business demand ratios and two 

business demand truncation levels, and designing the experiment based on U.S. 

independent hotels, the presented research provided a new perspective on implications for 

hotel demand forecasting and detruncation methods. The objectives of this study were 1) 

to evaluate the performance of the selected hotel demand forecasting and detruncation 

methods and (2) to identify a low-cost, easy-to-follow forecasting method that can be 

used by independent hotels and other hotel operators constrained by financial resources 

and expertise. 

To examine the effectiveness of selected forecasting and statistical detruncation 

techniques in terms of restoring truncated demand data for U.S. independent hotels, and 

thus evaluate how those methods impact hotel revenues, six selected forecasting methods 

(SA, SMA, EMA, DEMA, BP, and PU) were compared with two strong statistical 

detruncation methods (EM and PD). Data production and analysis were operated in the R 

statistical programming system. Data forecasting environments were created with three 

total leisure/business demand ratio (i.e., 1:1, 1:3, and 3:1) scenarios. Under each scenario, 

actual booking curves for leisure and business market were simulated under a pre-decided 
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increasing rate. Truncated booking curves were created under the given situations. Eight 

selected forecasting and detruncation methods were applied to truncated business demand 

curves to generate detruncated demand. Statistical errors were tested for differences 

between real and detruncation bookings. The detruncation effectiveness of each method 

was analyzed, and the revenue impact was discussed. 

Based on the analysis, several new findings regarding the effectiveness of the selected 

methods among different leisure/business demand scenarios and business demand 

truncation percentage levels were identified. The results indicate that, for all methods, 1) 

PU was the strongest performer with the smallest detruncation error and most positive 

revenue impact; 2) the data restoration accuracy ranged from a negative relationship with 

the business demand proportion of total bookings; 3) the higher the percentage the 

business bookings were truncated, the smaller the detruncation error; and 4) the less the 

business booking was truncated, the more variable the error. For statistical detruncation 

methods, 5) EM and PD performed with great consistency; however, they are not the best 

choice in our model. 6) We confirmed the result from previous studies that PD 

underperformed EM (Weatherford & Pölt, 2002; Zeni, 2001). Finally, for selected 

forecasting models, 7) PU was identified as a low-cost, easy-to-follow forecasting 

method for U.S. independent hotels as well as hotel revenue managers limited by 

financial resources and expertise. 

5.1 Discussion 

The study examined the effectiveness of selected forecasting and statistical detruncation 

methods from the perspective of U.S. independent hotels. The results show that different 



81 

 

 

  

methods produce various outcomes for different leisure/business demand ratios and under 

different percentages of total business demand truncation levels.  

The most important result is that PU outperformed the other methods and was the most 

effective method with the smallest errors. PU is also recommended as the low-cost and 

easy-to-follow forecasting technique to U.S. independent hotels that are well in 

agreement with the simulated demand situations in this study. First, the PU method uses 

all available booking information. Second, PU’s use of recent bookings makes the 

forecasting more responsive to shifts in demand. 

Interestingly, the result suggests that the two robust statistical detruncation methods, EM 

and PD, we included in the testing were not the best performers among all the techniques. 

Possible reasons might be the extra non-truncated demand curve we simulated created a 

deviation from the true demand, and EM and PD did not detect the deviation. However, 

since their rankings in terms of the value of errors remain consistent for the scenarios, 

these methods are the most stable ones in this research.  

5.2 Implications 

5.2.1 Theoretical Implications 

First, the current study is among the first to explore the effectiveness and revenue impact 

of forecasting methods for U.S. independent hotels. Not only the data simulations step of 

this research was designed based on features of independent hotels. The forecasting 

methods selected were simple operating techniques. To sum up, the findings of the 

current study contribute to the literature on hotel demand forecasting and detruncation by 

identifying the most effective forecasting method for U.S. independent hotels.  
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Second, this thesis integrates hotel demand forecasting methods into different 

leisure/business demand ratios and various business demand truncation percentage levels. 

Although previous studies have focused on issues between demand detruncation methods’ 

effectiveness with booking curve shapes and the percentage of data set truncated 

(Queenan et al., 2007), few studies have explored the relationship between demand 

truncating performance with customer segment ratios and the truncation levels of a 

specific segment market. The findings of this thesis contribute to the literature by 

providing a new perspective on the correlation to these issues. 

Finally, particularly worth noting is that the study compared the performances between 

statistical detruncation methods with our selected forecasting method is in the field of 

airline industry (Weatherford, 2013). To that end, the current study added to the existing 

literature on forecasting and detruncation method comparisons in the hotel industry. 

5.2.2 Practical Implications 

The present research provides several important practical implications for selecting 

demand forecasting methods for U.S. independent hotels. First, the results indicate that 

the PU method was the top performer with the smallest detruncation errors and the most 

positive revenue impact. For independent hotels with financial and expertise limitations, 

more attention should be paid to the PU method when estimating real business demand. 

Second, the findings of this study also provide suggestions for hotel reservation managers 

and revenue managers. Hotel revenue managers should recognize that each method’s data 

restoration accuracy stemmed from a negative relationship with the business demand 

proportion of the total bookings. By acknowledging this accuracy tendency, revenue 

managers at independent hotels with a large proportion of business customers must pay 
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more attention to selecting a detruncation method and applying the appropriate adjusting 

parameters to the detruncated demand if necessary. Reservation agents should pay more 

attention to the leisure/business customer ratios and inform the revenue management 

department when the ratio exceeds a specific number. 

Third, the results show a negative correlation between detruncation error variations with 

the percentage level of business booking truncation. This finding has practical 

implications for revenue managers when calculating detruncation errors. The managers 

should be aware that the same error value for two different business booking truncation 

level curves does not mean the same accuracy of specific detruncation methods. 

Last but not least, this study demonstrated that in some specific circumstances, the 

statistical evaluation does not completely in accordance with economical evaluation. By 

acknowledge with this inconsistency, revenue managers at independent hotels who value 

revenue more than forecasting accuracy should put efforts on economical evaluation first, 

statistical evaluation second. 

5.3 Limitations 

Although this study contributes to the literature in the area of hotel demand estimation 

methods in several important ways, the study has limitations. The major limitation is the 

method used to generate hotel true demand. In this study, we simulated real demand by 

observing a real demand booking curve illustrated in another article rather than obtaining 

true demand data from a real hotel. Even though our simulated data present an ideal 

forecasting environment for conducting the study, some unique features of our simulated 

curve might limit the generalizability of this study to other hotels that have different 

demand forecasting environments. 
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In addition, a possible limitation of this study results from the method of truncating 

business demand. This study used static ways for booking limitation settings. For some 

big chain hotels, advanced statistical systems could make revenue managers control their 

booking limitations dynamically along as more new data become available. Therefore, 

setting the booking limit dynamically could have provided researchers with insightful 

opinions. 

5.4 Directions for Future Research 

There are other interesting avenues for future research on this topic. First, due to the 

limited generalizability of this study, future studies can simulate real demand under other 

forecasting environments or collect actual booking curves in real hotels and compare the 

differences of the effect of the detruncation methods. Second, due to the other limitation 

of the current research regarding the method for truncating business demand, future 

studies can focus on using dynamic booking controls for hotel demand detruncation. 

Finally, more forecasting detruncation methods can be used in the study for comparison; 

thus, more patterns of differences among those methods can be concluded. 
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Appendix A Detruncation Plots 
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Figure A.1 Detruncation Plot (L/B Ratio=1:1, Truncation Percentage Level=50%) 
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Appendix B Calculation Code in R 

set.seed(333) #####  Leisure/Business Customer Ratio=1:1  #### 

 

####### BEGIN: Model Constant Parameters ###### 

M <- 100 # number of replicates (of simulated data) 

N <- 61 # number of days before arrival (for each simulated data) 

 

## Parameters for ***LEASURE*** data ## 

# Phase 1: from day 0 to 10 

L_LEN_1 <- 11 # number of days in phase 1 

L_alpha_1 <- 1.386294 # initial value of demand for phase 1 (in log scale) 

L_rate_1 <- -0.0449 # rate of demand increase 

 

# Phase 2: from day 11 to 30 

L_LEN_2 <- 20 # number of days in phase 2 

L_alpha_2 <- 0.8923943 # initial value of demand for phase 2 (in log scale) 

L_rate_2 <- -0.03575 # rate of demand increase (phase 2: from day 11 to 30) 

 

# Phase 3: from day 31 to 60 

L_LEN_3 <- 30 # number of days in phase 3 

L_alpha_3 <- 0.1773944 # initial value of demand for phase 3 (in log scale) 

L_rate_3 <- -0.14 # rate of demand increase (phase 3:from day 31 to 60) 

 

## Parameters for ***BUSINESS*** data ## 

# Phase 1: from day 0 to 10 

B_LEN_1 <- 11 # number of days in phase 1 

B_alpha_1 <- -0.3573992 # initial value of demand for phase 1 (in log scale) 

B_rate_1 <- -0.2528 # rate of demand increase 

 

# Phase 2: from day 11 to 30 

B_LEN_2 <- 20 # number of days in phase 2 

B_alpha_2 <- 0.005290978 # initial value of demand for phase 2 (in log scale) 

B_rate_2 <- -0.0811 # rate of demand increase (phase 2: from day 11 to 30) 

 

# Phase 3: from day 31 to 50 

B_LEN_3 <- 20 # number of days in phase 3 

B_alpha_3 <- 0.4757595# initial value of demand for phase 3 (in log scale) 

B_rate_3 <- -0.1052 # rate of demand increase 

 

# Phase 4: from day 51 to 60 

B_LEN_4 <- 10 # number of days in phase 3 

B_alpha_4 <- 1.791759 # initial value of demand for phase 3 (in log scale) 
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B_rate_4 <- -0.1316 # rate of demand increase  

 

## Parameters for ***NON-CONSTRAINED BUSINESS*** data ## 

# 1:1 50% # 

 

# Phase 1: from day 0 to 10 

NB_LEN_1 <- 11 # number of days in phase 1 

NB_alpha_1 <- -1.050547 # initial value of demand for phase 1 (in log scale) 

NB_rate_1 <- -0.2528 # rate of demand increase 

 

# Phase 2: from day 11 to 30 

NB_LEN_2 <- 20 # number of days in phase 2 

NB_alpha_2 <- -0.6878564 # initial value of demand for phase 2 (in log scale) 

NB_rate_2 <- -0.0811 # rate of demand increase (phase 2: from day 11 to 30) 

 

# Phase 3: from day 31 to 50 

NB_LEN_3 <- 20 # number of days in phase 3 

NB_alpha_3 <- -0.2173878# initial value of demand for phase 3 (in log scale) 

NB_rate_3 <- -0.1052 # rate of demand increase 

 

# Phase 4: from day 51 to 60 

NB_LEN_4 <- 10 # number of days in phase 3 

NB_alpha_4 <- 1.098612 # initial value of demand for phase 3 (in log scale) 

NB_rate_4 <- -0.1316 # rate of demand increase   

 

 

########## END: Model Constant Parameters ########### 

 

########## BEGIN: Initialize Model Variables ########## 

Leasure_Simulated = c() # simulated data for leasure customers 

Business_Simulated = c() # simulated data for business customers 

########## END: Initialize Model Variables ############ 

 

########## BEGIN: DATA Simulation ########### 

### Simulate for **LEASURE_DEMAND** Data ### 

L_1 <- matrix(rpois(M*L_LEN_1, exp(L_alpha_1 + L_rate_1*seq(0,L_LEN_1-1))), 

nrow=M, ncol=L_LEN_1, byrow=T) # simulated data for phase 1 

L_2 <- matrix(rpois(M*L_LEN_2, exp(L_alpha_2 + L_rate_2*seq(0,L_LEN_2-1))), 

nrow=M, ncol=L_LEN_2, byrow=T) # simulated data for phase 2 

L_3 <- matrix(rpois(M*L_LEN_3, exp(L_alpha_3 + L_rate_3*seq(0,L_LEN_3-1))), 

nrow=M, ncol=L_LEN_3, byrow=T) # simulated data for phase 3 

L <- cbind(L_1,L_2,L_3) 

 

### Simulate for **BUSINESS_DEMAND** Data ### 
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B_1 <- matrix(rpois(M*B_LEN_1, exp(B_alpha_1 + B_rate_1*sqrt(seq(B_LEN_1-

1,0)))), nrow=M, ncol=B_LEN_1, byrow=T) # simulated data for phase 1 

B_2 <- matrix(rpois(M*B_LEN_2, exp(B_alpha_2 + B_rate_2*sqrt(seq(B_LEN_2-

1,0)))), nrow=M, ncol=B_LEN_2, byrow=T) # simulated data for phase 2 

B_3 <- matrix(rpois(M*B_LEN_3, exp(B_alpha_3 + B_rate_3*sqrt(seq(B_LEN_3-

1,0)))), nrow=M, ncol=B_LEN_3, byrow=T) # simulated data for phase 3 

B_4 <- matrix(rpois(M*B_LEN_4, exp(B_alpha_4 + B_rate_4*seq(B_LEN_4-1,0))), 

nrow=M, ncol=B_LEN_4, byrow=T) # simulated data for phase 4 

B <- cbind(B_1,B_2,B_3,B_4) 

 

### Simulate for **NON-CONSTRAINED BUSINESS_DEMAND** Data ### 

NB_1 <- matrix(rpois(M*NB_LEN_1, exp(NB_alpha_1 + 

NB_rate_1*sqrt(seq(NB_LEN_1-1,0)))), nrow=M, ncol=NB_LEN_1, byrow=T) # 

simulated data for phase 1 

NB_2 <- matrix(rpois(M*NB_LEN_2, exp(NB_alpha_2 + 

NB_rate_2*sqrt(seq(NB_LEN_2-1,0)))), nrow=M, ncol=NB_LEN_2, byrow=T) # 

simulated data for phase 2 

NB_3 <- matrix(rpois(M*NB_LEN_3, exp(NB_alpha_3 + 

NB_rate_3*sqrt(seq(NB_LEN_3-1,0)))), nrow=M, ncol=NB_LEN_3, byrow=T) # 

simulated data for phase 3 

NB_4 <- matrix(rpois(M*NB_LEN_4, exp(NB_alpha_4 + NB_rate_4*seq(NB_LEN_4-

1,0))), nrow=M, ncol=NB_LEN_4, byrow=T) # simulated data for phase 4 

NB <- cbind(NB_1,NB_2,NB_3,NB_4) 

############# END: DATA Simulation ############# 

 

############ BEGIN: MODEL Simulation ########## 

T <- L+B # cap demand 

cumL <- t(apply(L, 1, cumsum)) # cumulative sums of L (leasure data set) 

cumB <- t(apply(B, 1, cumsum)) # cumulative sums of B (buisness data set) 

cumNB <- t(apply(NB, 1, cumsum)) # cumulative sums of NB (NON-CONSTRAINED 

buisness data set) 

cumT <- cumL + cumB # cumulative cap sums 

 

## Generate metrix for days before arrival ## 

day <- matrix(rep(seq(from=1,to=61),100),nrow=100,byrow=T)# days before arriaval 

(two demension matrix) 

 

X11() # Open a new window 

# Plot Real CUMULATIVE demand curve for leisure, business and cap customers 

plot(rev(colMeans(day)),colMeans(cumL),xlim=c(60,0),ylim=c(min(colMeans(cumB)),

max(colMeans(cumT))),type='l',xlab='Days Before Arrival',ylab='Demand') 

points(rev(colMeans(day)),colMeans(cumB),type='l',col='red') 

points(rev(colMeans(day)),colMeans(cumT),type='l',col='blue') 

legend("topleft", legend=c("Leisure","Business","Total"), 

       lty=c(1,1,1), 
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       col = c("black","red","blue")) 

 

##### BEGIN: CONSTRAIN 50 PERCENT OF TOTAL BUSINESS DEMAND ##### 

oldL <- L 

oldB <- B 

oldT <- T 

cumOldL <- cumL 

cumOldB <- cumB 

cumOldT <- cumT 

 

S50B <- matrix(rep(0,6100),nrow=100) 

dim(S50B) 

rho <- 0.5 #PERCENTATE OF BUSINESS DEMAND NEED TO BE CONSTRAINED 

 

for (i in 1:100) 

 

{ 

 for (j in 1:61)   

   {  

  if (cumB[i,j] <= ceiling(cumB[i,61]*rho))  

   S50B[i,j] <- cumB[i,j]  

  else  

   S50B[i,j] <- ceiling(cumB[i,61]*rho) 

   } 

} 

 

S50L <- matrix(rep(0,6100),nrow=100) 

cap <- 100 

for (i in 1:100) 

 

{ 

 for (j in 1:61)   

   {  

  if (cumL[i,j] <= (cap-S50B[i,61]))  

   S50L[i,j] <- cumL[i,j]  

  else  

   S50L[i,j] <- (cap-S50B[i,61]) 

   } 

} 

 

S50T <- matrix(rep(0,6100),nrow=100) 

 

S50T <- S50B+S50L 

 

X11() # Open a new window 
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# Plot 50 PERCENT BUSINESS DEMAND TRUNCATED CUMULATIVE demand 

curve for leisure, business and cap customers 

plot(rev(colMeans(day)),colMeans(S50L),xlim=c(60,0),ylim=c(min(colMeans(S50B)),m

ax(colMeans(S50T))),type='l',xlab='Days Before Arrival',ylab='Demand') 

points(rev(colMeans(day)),colMeans(S50B),type='l',col='red') 

points(rev(colMeans(day)),colMeans(S50T),type='l',col='blue') 

legend("topleft", legend=c("Leisure","Business","Total"), 

       lty=c(1,1,1), 

       col = c("black","red","blue")) 

 

##### END: CONSTRAIN 50 PERCENT OF TOTAL BUSINESS DEMAND ##### 

 

##  BEGIN: GENERATE INCREMENTAL CAPACITY TRUNCATED DEMAND ## 

 

LF <- matrix(nrow=100, ncol=61) 

BF <- matrix(nrow=100, ncol=61) 

TF <- matrix(nrow=100, ncol=61) 

 

for (i in 1:100) 

{ 

 

 for (j in 1:61) 

 { 

 if (j==1) 

   { 

  LF[i,1] <- S50L[i,1] 

  BF[i,1] <- S50B[i,1] 

  TF[i,1] <- S50T[i,1] 

 

   } 

 else 

   { 

  LF[i,j] <- S50L[i,j]-S50L[i,(j-1)] 

  BF[i,j] <- S50B[i,j]-S50B[i,(j-1)] 

  TF[i,j] <- S50T[i,j]-S50T[i,(j-1)] 

   } 

 } 

 

} 

 

 

### END: GENERATE INCREMENTAL CAPACITY TRUNCATED DEMAND ### 

 

 

#### BEGIN: APPLY DETRUNCATION METHOD TO TRUNCATED DATA #### 
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# 1. SA - Simple average # 

 

#n <-7 

rd1.sa_index <- rep(0,100) 

rd1.sa_mse <- rep(0,100) 

rd1.sa <- matrix(nrow=100,ncol=61) 

rd1.sa_0 <- matrix(nrow=100,ncol=61) 

 

for (i in 1:100) 

{ 

 rd1.sa_index[i]<-which(S50B[i,]==ceiling(cumB[i,61]*rho))[1] # find out the fist 

day biz begin to be truncated 

 rd1.sa[i,] <- BF[i,] # predicted demand 

 rd1.sa_0[i,] <- BF[i,] # Copy observed business demand to metrix rd1.sa_0 

 rd1.sa[i,1:rd1.sa_index[i]] <- rd1.sa_0[i,1:rd1.sa_index[i]] 

 rd1.sa[i,rd1.sa_index[i]+1] <- mean(rd1.sa_0[i,1:rd1.sa_index[i]]) 

 

 for (a in rd1.sa_index[i]:59) 

  { 

   rd1.sa[i,a+2] <- (rd1.sa[i,a+1]*a+ rd1.sa_0[i,a+1])/(a+1) 

  } 

 rd1.sa_mse[i] <- (norm(as.matrix((oldB[i,]-

rd1.sa[i,])[rd1.sa_index[i]:61]),"F"))^2/(61-rd1.sa_index[i]+1) 

  

} 

 

cum_rd1.sa <- rd1.sa 

 

for (i in 1:100) 

{ 

  for (j in 2:61) 

  { 

  cum_rd1.sa[i,j] <- cum_rd1.sa[i,j-1]+rd1.sa[i,j] 

  } 

  

} 

 

# MSE Calculation 

rd1.sa_error <- sum(rd1.sa_mse)/100 # average MSE 

rd1.sa_error 

sd(rd1.sa_mse) # standard deviation 

 

# Cumulative plot 
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plot(rev(colMeans(day)),colMeans(cum_rd1.sa),xlim=c(60,0),ylim=c(min(colMeans(cu

mB)),max(colMeans(cumB))),type='l',xlab='Days Before Arrival',ylab='Demand') 

points(rev(colMeans(day)),colMeans(cumB),type='l',col='red') 

points(rev(colMeans(day)),colMeans(S50B),type='l',col='blue') 

legend("topleft", legend=c("Detruncated","Real","Truncated"), 

       lty=c(1,1,1), 

       col = c("black","red","blue")) 

 

 

# 2. SMA - SIMPLE MOVING AVERAGE # 

library(TTR) 

 

rd1.sma_index <- rep(0,100) 

rd1.sma_mse <- rep(0,100) 

rd1.sma <- matrix(nrow=100,ncol=61) 

rd1.sma_0 <- matrix(nrow=100,ncol=61) 

 

for (i in 1:100) 

{ 

 rd1.sma_index[i]<-which(S50B[i,]==ceiling(cumB[i,61]*rho))[1] # find out the 

fist day biz begin to be truncated 

 rd1.sma_0[i,] <- BF[i,] # Copy observed business demand to metrix rd1.sma_0 

 rd1.sma[i,] <- SMA(BF[i,], n=rd1.sma_index[i]) # Calculates the arithmetic mean 

of the series over the past rd1.sma_index[i] observations in BF  

 rd1.sma[i,1:rd1.sma_index[i]] <- rd1.sma_0[i,1:rd1.sma_index[i]] 

 rd1.sma_mse[i] <- (norm(as.matrix((oldB[i,]-

rd1.sma[i,])[rd1.sma_index[i]:61]),"F"))^2/(61-rd1.sma_index[i]+1) 

} 

 

cum_rd1.sma <- rd1.sma 

 

for (i in 1:100) 

{ 

  for (j in 2:61) 

  { 

  cum_rd1.sma[i,j] <- cum_rd1.sma[i,j-1]+rd1.sma[i,j] 

  } 

  

} 

 

rd1.sma_error <- sum(rd1.sma_mse)/100 # average MSE 

rd1.sma_error 

sd(rd1.sma_mse) # standard deviation 

 

# Cumulative plot 
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X11() 

plot(rev(colMeans(day)),colMeans(cum_rd1.sma),xlim=c(60,0),ylim=c(min(colMeans(c

umB)),max(colMeans(cumB))),type='l',xlab='Days Before 

Arrival',ylab='Demand',main='Simple Moving Average') 

points(rev(colMeans(day)),colMeans(cumB),type='l',col='red') 

points(rev(colMeans(day)),colMeans(S50B),type='l',col='blue') 

legend("topleft", legend=c("Detruncated","Real","Truncated"), 

       lty=c(1,1,1), 

       col = c("black","red","blue")) 

 

# 3. EMA - EXPONENTIAL MOVING AVERAGE # 

library(TTR) 

 

rd1.ema_index <- rep(0,100) 

rd1.ema_mse <- rep(0,100) 

rd1.ema <- matrix(nrow=100,ncol=61) 

rd1.ema_0 <- matrix(nrow=100,ncol=61) 

 

for (i in 1:100) 

{ 

 rd1.ema_index[i]<-which(S50B[i,]==ceiling(cumB[i,61]*rho))[1]  

 rd1.ema_0[i,] <- BF[i,] # Copy observed business demand to metrix rd1.ema_0  

 rd1.ema[i,] <- EMA(BF[i,], n=rd1.ema_index[i], wilder=TRUE) # calculates an 

exponentially-weighted mean giving more weight to recent observations  

 rd1.ema[i,1:rd1.ema_index[i]] <- rd1.ema_0[i,1:rd1.ema_index[i]] 

 rd1.ema_mse[i] <- (norm(as.matrix((oldB[i,]-

rd1.ema[i,])[rd1.ema_index[i]:61]),"F"))^2/(61-rd1.ema_index[i]+1) 

} 

 

cum_rd1.ema <- rd1.ema 

 

for (i in 1:100) 

{ 

  for (j in 2:61) 

  { 

  cum_rd1.ema[i,j] <- cum_rd1.ema[i,j-1]+rd1.ema[i,j] 

  } 

  

} 

 

rd1.ema_error <- sum(rd1.ema_mse)/100 # average MSE 

rd1.ema_error 

sd(rd1.ema_mse) # standard deviation 

 

# Cumulative plot 
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plot(rev(colMeans(day)),colMeans(cum_rd1.ema),xlim=c(60,0),ylim=c(min(colMeans(c

umB)),max(colMeans(cumB))),type='l',xlab='Days Before 

Arrival',ylab='Demand',main='Exponential Moving Average') 

points(rev(colMeans(day)),colMeans(cumB),type='l',col='red') 

points(rev(colMeans(day)),colMeans(S50B),type='l',col='blue') 

legend("topleft", legend=c("Detruncated","Real","Truncated"), 

       lty=c(1,1,1), 

       col = c("black","red","blue")) 

 

#For EMA, wilder=FALSE (the default) uses an exponential smoothing ratio of 2/(n+1), 

while wilder=TRUE uses Welles Wilder's exponential smoothing ratio of 1/n. 

 

# 4. DEMA - DOUBLE EXPOENTIAL MOVING AVERAGE # 

library(TTR) 

 

rd1.dema_index <- rep(0,100) 

rd1.dema_mse <- rep(0,100) 

rd1.dema <- matrix(nrow=100,ncol=61) 

rd1.dema_0 <- matrix(nrow=100,ncol=61) 

 

for (i in 1:100) 

{ 

 rd1.dema_index[i]<-which(S50B[i,]==ceiling(cumB[i,61]*rho))[1]  

 rd1.dema[i,] <- DEMA(BF[i,], n=rd1.dema_index[i]-rd1.dema_index[i]/2) 

 rd1.dema[i,1:rd1.dema_index[i]] <- BF[i,1:rd1.dema_index[i]] 

 rd1.dema_mse[i] <- (norm(as.matrix((oldB[i,]-

rd1.dema[i,])[rd1.dema_index[i]:61]),"F"))^2/(61-rd1.dema_index[i]+1) 

} 

 

cum_rd1.dema <- rd1.dema 

 

for (i in 1:100) 

{ 

  for (j in 2:61) 

  { 

  cum_rd1.dema[i,j] <- cum_rd1.dema[i,j-1]+rd1.dema[i,j] 

  } 

  

} 

 

rd1.dema_error <- sum(rd1.dema_mse)/100 # average MSE 

rd1.dema_error 

sd(rd1.dema_mse) # standard deviation 

 

# Cumulative plot 
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plot(rev(colMeans(day)),colMeans(cum_rd1.dema),xlim=c(60,0),ylim=c(min(colMeans(

cumB)),max(colMeans(cumB))),type='l',xlab='Days Before 

Arrival',ylab='Demand',main='Double Exponential Moving Average') 

points(rev(colMeans(day)),colMeans(cumB),type='l',col='red') 

points(rev(colMeans(day)),colMeans(cum_rd1.dema),type='l',col='purple') 

points(rev(colMeans(day)),colMeans(S50B),type='l',col='blue') 

legend("topleft", legend=c("Detruncated","Real","Truncated"), 

       lty=c(1,1,1), 

       col = c("black","red","blue")) 

 

#DEMA is calculated as: 

#DEMA = (1 + v) * EMA(x,n) - EMA(EMA(x,n),n) * v(with the cor-responding wilder 

and ratio arguments). 

# 6. BP - Booking Profile # 

 

rd1.bp_index <- rep(0,100) 

rd1.bp_mse <- rep(0,100) 

rd1.bp_0 <- rep(0,61) 

rho.bp <- rep(0,61) 

rd1.bp <- matrix(nrow=100,ncol=61) 

 

# Using cumulative data 

cum_rd1.bp <- S50B 

 

for (i in 1:100) 

{ 

 rd1.bp_index[i]<-which(S50B[i,]==ceiling(cumB[i,61]*rho))[1] 

 

 rd1.bp_0 <- colMeans(cumNB) 

 for(j in rd1.bp_index[i]:61) 

 { 

  rho.bp[j] <- rd1.bp_0[j]/rd1.bp_0[j-1] 

  cum_rd1.bp[i,j] <- S50B[i,j-1]*rho.bp[j]   

 } 

 for (j in 1:61) 

 { 

   if (j==1) 

    { 

    rd1.bp[i,1] <- cum_rd1.bp[i,1] 

   } 

   else 

   { 

  rd1.bp[i,j] <- cum_rd1.bp[i,j]-cum_rd1.bp[i,(j-1)] 

   } 

 } 
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 rd1.bp_mse[i] <- (norm(as.matrix((oldB[i,]-

rd1.bp[i,])[rd1.bp_index[i]:61]),"F"))^2/(61-rd1.bp_index[i]+1) 

 

} 

 

 

rd1.bp_error <- sum(rd1.bp_mse)/100 # average MSE 

rd1.bp_error 

sd(rd1.bp_mse) # standard deviation 

 

# Cumulative plot 

plot(rev(colMeans(day)),colMeans(cum_rd1.bp),xlim=c(60,0),ylim=c(min(colMeans(cu

mB)),max(colMeans(cumB))),type='l',xlab='Days Before 

Arrival',ylab='Demand',main='Booking Profile') 

points(rev(colMeans(day)),colMeans(cumB),type='l',col='red') 

points(rev(colMeans(day)),colMeans(S50B),type='l',col='blue') 

legend("topleft", legend=c("Detruncated","Real","Truncated"), 

       lty=c(1,1,1), 

       col = c("black","red","blue")) 

 

 

# 7. PU - Pick Up # 

 

rd1.pu_index <- rep(0,100) 

rd1.pu_mse <- rep(0,100) 

cum_rd1.pu <- S50B 

inc_rd1.pu <- matrix(nrow=100,ncol=61) 

 

for(i in 1:100) 

{ 

 rd1.pu_index[i]<-which(S50B[i,]==ceiling(cumB[i,61]*rho))[1] 

 for(j in (rd1.pu_index[i]:61)) 

 { 

   cum_rd1.pu[i,j] <- S50B[i,(rd1.pu_index[i]-

1)]+(sum(NB[,rd1.pu_index[i]:j])/100)    

 } 

 for (j in 1:61) 

 { 

   if (j==1) 

    { 

    inc_rd1.pu[i,1] <- cum_rd1.pu[i,1] 

   } 

   else 

   { 
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  inc_rd1.pu[i,j] <- cum_rd1.pu[i,j]-cum_rd1.pu[i,(j-1)] 

   } 

 } 

 rd1.pu_mse[i] <- (norm(as.matrix((oldB[i,]-

inc_rd1.pu[i,])[rd1.pu_index[i]:61]),"F"))^2/(61-rd1.pu_index[i]+1) 

 

 

} 

 

rd1.pu_error <- sum(rd1.pu_mse)/100 # average MSE 

rd1.pu_error 

sd(rd1.pu_mse) # standard deviation 

 

# Cumulative plot 

plot(rev(colMeans(day)),colMeans(cum_rd1.pu),xlim=c(60,0),ylim=c(min(colMeans(cu

mB)),max(colMeans(cumB))),type='l',xlab='Days Before 

Arrival',ylab='Demand',main='L/B Ratio=1/1, Truncation Level=50%') 

points(rev(colMeans(day)),colMeans(cum_rd1.bp),type='l',col='green') 

points(rev(colMeans(day)),colMeans(cumB),type='l',col='red') 

points(rev(colMeans(day)),colMeans(S50B),type='l',col='blue') 

legend("topleft", legend=c("PU","BP","Real","Truncated"), 

       lty=c(1,1,1,1), 

       col = c("black","green","red","blue")) 

abline(v=(61-min(rd1.dema_index)),col=4,lty=2) 

text(40, 35, "Historical Demand", 

     cex = 1.2) 

text(10, 20, "Forecast Period", 

     cex = 1.2) 

 

# 8. EM - Expectation Maximization # 

library(RM2) 

 

rd1.em_index <- rep(0,100) 

rd1.em_mse <- rep(0,100) 

rd1.em <- rep(0,61) 

 

for(i in 1:100) 

{ 

 rd1.em_index[i]<-which(S50B[i,]==ceiling(cumB[i,61]*rho))[1] 

 

 # GENERATE REAL DEMAND 

 rdemand <- NB[i,] 

 # GENERATE BOOKING LIMITS 

 bl <- BF[i,] 

 # GENERATE OBSERVED DEMAND 
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 demand <- rdemand * (rdemand <= bl) + bl * (rdemand > bl) 

 # IDENTIFIED PERIODS WITH CONSTRAINED DEMAND: 1 - 

CONSTRAINED DEMAND 

 names(demand) <- as.character(as.numeric(rdemand>bl)) 

 # UNTRUNCATE DEMAND 

 rd1.em_0 <- EM(demand,eps=0.005) 

 

 rd1.em <- rd1.em + rd1.em_0$demand; 

 

 rd1.em_mse[i] <- (norm(as.matrix((oldB[i,]-

rd1.em_0$demand)[rd1.em_index[i]:61]),"F"))^2/(61-rd1.em_index[i]+1) 

 

 

} 

 

rd1.em_result<- rd1.em/100 

 

cum_rd1.em <- rd1.em_result 

 

for (i in 2:61) 

{ 

   

  cum_rd1.em[i] <- cum_rd1.em[i-1]+rd1.em_result[i] 

   

  

} 

 

rd1.bp_error <- sum(rd1.em_mse)/100 # average MSE 

rd1.bp_error 

sd(rd1.em_mse) # standard deviation 

 

# Cumulative plot 

plot(rev(colMeans(day)),cum_rd1.em,xlim=c(60,0),ylim=c(min(colMeans(cumB)),max(c

olMeans(cumB))),type='l',xlab='Days Before Arrival',ylab='Demand',main='Expectation 

Maximization') 

points(rev(colMeans(day)),colMeans(cumB),type='l',col='red') 

points(rev(colMeans(day)),colMeans(S50B),type='l',col='blue') 

legend("topleft", legend=c("Detruncated","Real","Truncated"), 

       lty=c(1,1,1), 

       col = c("black","red","blue")) 

 

 

# 9. PD - Projection Detruncation # 

library(RM2) 
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rd1.pd_index <- rep(0,100) 

rd1.pd_mse <- rep(0,100) 

rd1.pd <- rep(0,61) 

 

for(i in 1:100) 

{ 

 rd1.pd_index[i]<-which(S50B[i,]==ceiling(cumB[i,61]*rho))[1] 

 

 # GENERATE REAL DEMAND 

 rdemand <- NB[i,] 

 # GENERATE BOOKING LIMITS 

 bl <- BF[i,] 

 # GENERATE OBSERVED DEMAND 

 demand <- rdemand * (rdemand <= bl) + bl * (rdemand > bl) 

 # IDENTIFIED PERIODS WITH CONSTRAINED DEMAND: 1 - 

CONSTRAINED DEMAND 

 names(demand) <- as.character(as.numeric(rdemand>bl)) 

 # UNTRUNCATE DEMAND 

 rd1.pd_0 <- PD(demand,eps=0.005) 

 

 rd1.pd <- rd1.pd + rd1.pd_0$demand; 

 

 rd1.pd_mse[i] <- (norm(as.matrix((oldB[i,]-

rd1.pd_0$demand)[rd1.pd_index[i]:61]),"F"))^2/(61-rd1.pd_index[i]+1) 

 

} 

 

rd1.pd_result<- rd1.pd/100 

 

cum_rd1.pd <- rd1.pd_result 

 

for (i in 2:61) 

{ 

   

  cum_rd1.pd[i] <- cum_rd1.pd[i-1]+rd1.pd_result[i] 

   

  

} 

 

rd1.bp_error <- sum(rd1.pd_mse)/100 # average MSE 

rd1.bp_error 

sd(rd1.pd_mse) # standard deviation 

 

# Cumulative plot 
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plot(rev(colMeans(day)),cum_rd1.pd,xlim=c(60,0),ylim=c(min(colMeans(cumB)),max(c

olMeans(cumB))),type='l',xlab='Days Before Arrival',ylab='Demand',main='Projection 

Detruncation') 

points(rev(colMeans(day)),colMeans(cumB),type='l',col='red') 

points(rev(colMeans(day)),colMeans(S50B),type='l',col='blue') 

legend("topleft", legend=c("Detruncated","Real","Truncated"), 

       lty=c(1,1,1), 

       col = c("black","red","blue")) 

 

 

###### END: APPLY DETRUNCATION METHOD TO TRUNCATED DATA ###### 

 

############## BEGIN: CALCULATE ROM ############## 

 

index <- rep(0,100) 

 

# absolute increase # 

 

sum.sa <- rep(0,100)  

sum.sma <- rep(0,100) 

sum.ema <- rep(0,100) 

sum.dema <- rep(0,100) 

sum.bp <- rep(0,100) 

sum.pu <- rep(0,100) 

sum.em <- rep(0,100) 

sum.pd <- rep(0,100) 

 

 

for (i in 1:100) 

{ 

 index[i]<-which(S50B[i,]==ceiling(cumB[i,61]*rho))[1] 

  

 sum.sa[i]   <- cum_rd1.sa[i,61]-cum_rd1.sa[i,index[i]] 

 sum.ema[i]  <- cum_rd1.ema[i,61]-cum_rd1.ema[i,index[i]] 

 sum.sma[i]  <- cum_rd1.sma[i,61]-cum_rd1.sma[i,index[i]] 

 sum.ema[i]  <- cum_rd1.ema[i,61]-cum_rd1.ema[i,index[i]] 

 sum.dema[i] <- cum_rd1.dema[i,61]-cum_rd1.dema[i,index[i]] 

 sum.bp[i]   <- cum_rd1.bp[i,61]-cum_rd1.bp[i,index[i]] 

 sum.pu[i]   <- cum_rd1.pu[i,61]-cum_rd1.pu[i,index[i]] 

 sum.em[i]   <- cum_rd1.em[61]-cum_rd1.em[index[i]] 

 sum.pd[i]   <- cum_rd1.pd[61]-cum_rd1.pd[index[i]] 

  

} 

 

# Average absolute increase # 
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rev.sa <- mean(sum.sa) 

rev.sa 

 

rev.sma <- mean(sum.sma) 

rev.sma 

 

rev.ema <- mean(sum.ema) 

rev.ema 

 

rev.dema <- mean(sum.dema) 

rev.dema 

 

rev.bp <- mean(sum.bp) 

rev.bp 

 

rev.pu <- mean(sum.pu) 

rev.pu 

 

rev.em <- mean(sum.em) 

rev.em 

 

rev.pd <- mean(sum.pd) 

rev.pd 

  

 

############## END: CALCULATE ROM ############## 
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