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ABSTRACT

Zhang, Zhengui Ph.D., Purdue University, May 2015. Structure-Thermal Coupling
in Viscoelastic Material in Rubber Bushing of Vehicle System. Major Professor:
Haiyan H. Zhang.

The objective of this research is to utilize the frequency-dependent

viscoelastic material model and characterize the dynamic response of rubber

bushing under external excitation. Furthermore, with appropriate modeling, two

heat generation mechanisms of rubber bushing are explored and their thermal fields

are investigated. Due to the nonlinear force-deflection relationship of the

viscoelastic material, finding satisfactory mechanical properties of rubber

components still poses a great challenge. However, industry nowadays is in urgent

demand for precise finite element analysis(FEA) modeling of rubber components.

For example, a proper constitutive relationship of rubber components is critical to

providing a reliable and trustable simulation of vehicle suspension systems. As for

current FEA commercial software, the frequency-dependent modulus of viscoelastic

material hasn′t been well presented and they have failed to provide satisfactory

results. Therefore, two approaches, FEA and the multi-body dynamic analysis have

been selected together to give a more comprehensive and credible prediction of

suspension system′s performance in different working conditions. The FEA

approach evaluated the stability of rubber bushing in view of the dynamic response

and temperature distribution under high frequency excitation. With these results,

the life prediction of rubber bushing becomes more feasible. The multi-body

dynamic analysis explores the structure instability of rubber bushing when exposed

to extremely high frequency and estimates the dissipation energy in the rubber core.
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The key innovations of this paper can be classified into four aspects. The

first one is the application of multi-body dynamics in the dynamic analysis of

rubber bushing. Based on experimental modal analysis, the sandwich cylindrical

rubber bushing is treated as multi-body. With the multi-body model, the transfer

function of the rubber bushing is calculated in order to estimate the dynamic

response. The second innovation comes from the development of the FORTRAN

program to solve the system transfer function of the structure made of viscoelastic

material. Since the geometry and boundary conditions are amenable in FEA

compared with the experimental modal testing, this approach is not just applicable

in rubber bushing dynamic analysis, but also useful in dynamic analysis of different

rubber components. The third innovative contribution of this research is connecting

the multi-body analysis with continuum mechanics to evaluate the mechanical

properties of rubber bushing. The last innovation is the structure-thermal coupling

of rubber bushing to predict its temperature distribution based on the heat source

calculated from the FEA simulation. The finite volume method (FVM) is applied

using MATLAB in the simulation of temperature distribution. In this research, the

classical standard linear model is applied in the FEA program to characterize the

variation of viscoelastic material in the frequency domain. The three parameters of

this model have been identified with the batch data measurement using dynamic

mechanical analysis equipment (DMA). Specially, two heat generation mechanisms

are explored to emphasize the friction-induced hysteresis damping except for the

commonly discussed viscous damping. As complementation of FORTRAN program

simulation in the frequency domain, the multi-physics commercial software

COMSOL is employed to estimate the dynamic response of rubber bushing and

temperature distribution in the time domain. To verify the results of FEA and

multi-body dynamic approach in the dynamic and thermal analysis of rubber

bushing, dynamic tests have been carried out using torsion and tensile testing

machines. The experimental temperature distribution is in good agreement with the

simulation results, which indicated the feasibility of the FEA method.
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However, due to the limited experience and complicated constitutive

relationship of the viscoelastic material, the standard linear viscoelastic model is

chosen to simulate the heat dissipation mechanism of rubber core. The

high-frequency or high-temperature dynamic testing are almost impossible because

of the experiment equipments′ range of service. As the first step of predicting the

dissipation energy density and temperature distribution of rubber components, the

initial explorations are significant and provide a proper guidance for further

predictions about life expectation.
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CHAPTER 1. INTRODUCTION

This chapter begins with the motivation of this research by presenting the

current demands and challenges in the simulation of vehicle′ dynamic performance,

especially given that the current commercial software is not sufficient to predict

precise heat generation rate and temperature distribution of rubber bushing. To

start, the background and research interests about rubber bushing are thoroughly

assessed and summarized. With a thorough understanding of this material, the

assumption, limitation and objectives of this research are stated.

1.1 Motivation of the Research

Rubber bushings/mountings are widely installed on vehicle systems and they

can reduce the vibration, noise in the vehicles and also absorb shocks from the

environment. Generally speaking, rubber bushing with longer lift time is one of the

advantages of vehicle systems in the globally competitive market. However, to reach

this goal, several technical challenges should be solved. This research is also inspired

by this goal and the motivation is the quantitative description of rubber

bushings/mountings dynamic characterization and its modeling for elastomeric

cylindrical bushing. Viable elastomeric measurement methodology for modeling and

analysis of elastomeric cylindrical bushing used in the chassis structure is needed.

Rubber has higher yield strain and lower Young′s modulus compared with

other metal materials used in the vehicles. It is indispensible material in view of its

flexibility, extensibility, resiliency and durability, especially, the non permanent

deformation or fracture is still permissible at larger strain(Harper, 2006). However,

the nonlinear stress and strain relationship leads to the accumulation of dissipation

energy inside the rubber component. The mechanical properties of rubber material
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are sensitive to the change of temperature. Beside of this, the strain rate of rubber

also affects it viscoelastic behaviors. Because of the complexity, the proper

constitutive model to represent viscoelastic material is still a great challenge

compared with other engineering materials (Whibley, Cutts, Phillip, & Pearce,

2005).

Although the FEA is a fairly difficult task for the viscoelastic material,

should proper analytical methods be adopted, the numerical estimation errors can

be less than 10%. The input to the viscoelastic bushings/mountings structure

produces four types of variables, which are the instantaneous strain, the

instantaneous mass motions, viscous damping dissipation, and hysteretic energy

accumulation. The relationship of these four variables can be used to derive/ form

an index for elastomeric cylindrical bushing durability. It can also be used to obtain

the design specifications.

Currently, constitutive models of viscoelastic material in FEA commercial

software couldn′t provide satisfactory and effective simulation models for elastic

response of rubber components at low strains (i.e. in 1-20% range). Vehicle

handling and ride quality are most probably related to this low strain level, which

still displays nonlinearity. Unfortunately, that is not captured in existing

commercial material models (i.e. in Abaqus FEA). In sum, the biggest roadblocks

to reaching more effective and widespread rubber computer-aided engineering

(CAE) are two aspects; 1) obtain more reliable and proper material data to

populate or optimize the existing material models and 2) gain ability to predict

serving life of rubber components.

1.2 Background of Rubber Bushing

Most of current researched rubber bushings/mountings are installed on the

suspension system of the vehicle system. For more widely-spread applications of

current work in the vehicle industry, similar rubber components are used in the
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following investigation. The literature review about rubber bushing is presented in

three parts: the structure and working principle of rubber bushing, the heat

generation and its accumulation mechanism, and the existing challenges in the

research about rubber bushing.

1.2.1 Structure and Mechanical Behavior of Rubber Bushing

Rubber bushing is an isolator to reduce the vibration or noise because of the

intermediate damping through the energy transmission to the chassis of the vehicle.

Besides of this, the rubber bushings installed on the suspension systems separates

metal parts on the vehicle and allows certain movement. Those small parts of the

vehicle, such as tie bar and lower arm can be connected using the rubber bushing.

It is the viscoelastic material minimizing the transmission of vibration and noise

across the connecting components (Kadlowec, Wineman, & Hulbert, 2003).

Figure 1.1.: Bushings used for vehicles.

The commonly used rubber bushing is composed of three parts, a hollow

rubber core and two cylindrical steel sleeves encompassing the rubber core, that

structure possesses high damping capacity and durability(Fujiwara, Tanuma, &

Yoda, 1992). The metallic cylindrical envelope made of steel can distribute the

external load on the rubber component. Figure 1.1 provides some examples of

common commercial rubber bushing.
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The cylindrical rubber core is inserted between the two layers of metal shell,

which are kept concentric with the rubber layer. The method most commonly used

to combine rubber and metallic or non-metallic components is the use of adhesive

cements. Prior to the use of these special adhesives, the surface of the insert must

be clean and free of contamination (Blaurock, 1955) and (Harold, 1933). Besides

of clearness of surface of the steel sleeves before the chemically vulcanized bonding,

special preparation like degreasing, blasting, and/or a suitable chemical treatment

are needed. The expected adhesion of bonding is obtained by vulcanizing the

rubber core to the steel sleeve and the cure of rubber happens during the

vulcanization. Radial compressive stress is introduced after pushing the two metal

shells to each other and the good assembly should make sure the uniformly

distributed stresses. As the request of the product design or application scope,

adhesion measurement is commonly done to guarantee the bond strength of molds

after vulcanized bonding, that testing methods or instructions can be referenced

from the ASTM testing standard D429.

Rubber bushings installed on the automotive suspension system play a more

and more important and critical role because of its elasticity and inherent damping,

especially, engineering rubbers with fillers (e.t, many kinds of carbon black). The

roadblock of proper prediction about the frequency and amplitude dependent of the

dynamic behaviors of rubber components is the complex properties of this

material(Garćıa Tárrago, Kari, Vinolas, & Gil-Negrete, 2007). The nonlinear stress

and strain relationship of rubber attracted many researchers. The interactions

between the filler and the polymer matrix and also the interactions within the fillers

lead to a lager shear modulus magnitude even at small amplitude. The mechanism

of frictional behavior, breaking of filler structure and loss factor have been

investigated intensively (Medalia, 1978), and (Kraus, 1978). Dynamic

measurements and finite element simulation are also carried out by some researchers

while the non-homogeneous strain state inside the rubber bushing causes the
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trouble to estimate dynamic stiffness using the existing material model (Austrell,

Olsson, & Jonsson, 2001), and (Olsson & Austrell, 2003).

During normal service, the automotive suspension system is under radial,

torsional and combined radial-torsional loading (Figure 1.2). Radial mode is the

translation movement of one sleeve relative to the other sleeve while the torsional

mode is the rotation of one to the other about the centerline. Besides of the

complicated coupling of the two different modes of deformation the responses of

displacements and rotations to forces and moments are nonlinear and

time-dependent. Attribute to those characters, reliable finite element analysis is

facing great challenge. The bushing research has attracted lots of attention in

recent, however, the material parameters is still empirical and experimental

dependent, such as tension, compression, equibiaxial tension or pure shear tests.

Test procedures, range of deformation and deformation histories are quite complex

and affect the response of rubber bushing. To achieve desired objectives of isolators,

a comprehensive understanding of viscoelastic material is necessary. As the primary

material working as automotive vibration isolators, rubber have several special

attributes (Lewitzke & Lee, 2001). Rubber has good resilience and high energy

storage capability, and good recovery ability even from large deformation under

cycle loading. In extreme working condition, elongation up to 1000% is possible to

happen on rubber and the required stress is low because of the rather low modulus

of this material.
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Figure 1.2.: Rubber bushing under combined loading.

The mechanism of carbon black working as reinforcement fillers in elastomers

is discussed for hundred years (Kraus, 1971). The inclusion of carbon black in

rubber can greatly improve abrasion resistance, tear and tensile strength but some

undesirable effects can accompany, such as relaxation rates and hysteresis. With the

increasing pronounced reinforcing ability of filler, the hysteresis heat built up in

rubber attracts more attention. Hysteresis is usually measured at low-amplitude

oscillations test to record the out of phase between input load and output

displacement. The tangent of loss angle (tan δ) is usually measured as a better

indicator of the capability of hysteresis. The loss modulus and tan δ may increase

along with the increase of carbon black fraction. Crystallization and network

structure reorganization are two dominate reasons for hysteresis in filled rubbers

(A. Payne & Whittaker, 1971). The presence of filler may increase the

viscoelasticity and correspondingly increase of the hysteresis. It is still debatable

about filler′s effect, since in the highly restrained mobility of occluded rubber, fillers

may be not able to develop hysteresis that much.
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Dynamic properties of rubber mean respond to transient or steady loading

without leading to permanent deformation or damage, especially, the deformation

under usually under 25%. The mechanical properties of rubber covered in this

article are important in designing rubber components to be used under dynamic

conditions, such as tires, power transmission belts, vibration isolation mountings,

etc. To help readers get familiar with the rubber, a certain amount of background is

given in the following. The first step begins with the definition of those terms used

in describing dynamic properties. The nature of carbon black is reviewed and later,

those methods and instruments used to measure the physical and mechanical

properties are described briefly. Finally, some classical models are given, together

with the dynamic behavior of typical models, as a preface to the review of more

recent work in this field.

In filled rubber, several mechanisms result in dissipation energy accumulated

in rubber components. Low strain hysteresis mechanisms include filler-induced, rate

independent hysteresis and viscoelasticity of rubber. Hysteresis is small at low

strain and displays primarily at high strain levels. Mullins effect and

strain-crystallization are two reasons accounting for the high strain hysteresis

mechanisms. A brief description of each mechanism follows.

The Mullins effect describes initial transient softening of rubber shown in the

stress-strain curve and mainly presents in the fillers polymers(Diani, Fayolle, &

Gilormini, 2009), (Mullins, 1969), and (Roland, 1989). The stiffness displayed in

the first loading is much higher than the following equal or lesser loading and the

subsequent loadings presents a steady state and nonlinear behavior. Fatigue

properties improvement in filled, non strain crystallizing rubber compared with

unfilled, non strain crystallizing rubber. This is attributed to dissipative

mechanism, which is discussed later.

Compared with Mullins effect, crystallization takes place at higher strain as

to elastomers, as a result, the phenomenon of strain crystallization contributes to

another mechanism of hysteresis at higher strain (Mars & Fatemi, 2004). Without
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deformation, the polymer network chains in the rubber are in disorder and form an

amorphous state. With the increase of strain, those chains are stretched straightly,

become highly ordered and turn to crystalline state. This time dependent phase

change is reversible since the crystallized state can disappear after release of strain.

Furthermore, the increased stiffness and hysteresis induced by strain crystallization

will not be affected by the further cycle loading. Besides of the influence on the

hysteresis, strain crystallization also assists in preventing the crack growth, which

exhibits better fatigue properties if the strain merely increases at small range.

The crystallization induced hysteresis is time dependent, while another also

commonly observed hysteresis is rate independent hysteresis, especially when the

strain is in small range. Many researchers have recently developed models to

characterize the behaviors of rate-independent behavior since the traditional linear

viscoelasticity models couldn′t approximate the properties concisely. Compared

with the hysteresis loss contributed by Mullins effects and crystallization, the

proportion caused by rate-independent hysteresis is much smaller. Further research

indicates that the hysteresis is dependent on strain amplitude, strain temperature

and average strain range (Luchini, Peters, & Arthur, 1994).

The crystallization induced hysteresis is time dependent, while another also

commonly observed hysteresis is rate independent hysteresis, especially when the

strain is in small range. Many researchers have recently developed models to

characterize the behaviors of rate-independent behavior since the traditional linear

viscoelasticity models couldn′t approximate the properties concisely. Compared

with the hysteresis loss contributed by Mullins effects and crystallization, the

proportion caused by rate-independent hysteresis is much smaller. Further research

indicates that the hysteresis is dependent on strain amplitude, strain temperature

and average strain range (Luchini et al., 1994).
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1.2.2 General Constitutive Models of Rubber

For rubber materials, the stress and strain are nonlinear, which makes the

often used linear elastic not appropriate to characterize the mechanical relationship

of rubber. To study the behavior of large deformation in rubber with the finite

element method, the proper constitutive relationship of rubber is necessary (Ali,

Hosseini, & Sahari, 2010). Many models are developed to embody the nonlinear,

isotropic, incompressible and nearly rate-independent viscoelastic materials. Rubber

materials usually are associated to the elastomers, while the later shows almost

elastic response. Those types of elastic behaviors of elastomers are usually

represented with hyperelastic behaviors. Rubber materials′ mechanical properties

are temperature dependent, which illustrates softening with the rising temperature.

The coexisting of elastic and viscous properties is generally approximated with

viscoelastic constitutive models.

1.2.2.1. Hyperelastic Model

(a) Phenomenological Theories

Rubber can be approximated as linearly elastic materials at low load or small

strain, however, the traditional elastic theory applied for most engineering materials

is not applicable. As hyper-elastic materials, rubber can be described using stored

energy function. Commonly, simple mechanical tests, like uniaxial, biaxial and shear

test data are applied to identify those parameters in constitutive models.

Constitutive models of rubber and rubber-like materials has been characterized by

many researchers. Strain energy function is the starting point to start modeling of

rubber material. Hyper-elastic orthotropic mechanical behavior focusing on entropy

change and strain energy change are derived from deformation of constitute

macromolecules and representative orthotropic unit cell (Bischoff, Arruda, & Grosh,

2002). Rivlin′s phenomenological theories are developed to define the isotropic

elastic behavior of elastomers (Barenblatt & Joseph, 1997). This method imports
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continuum mechanics and provides a mathematical framework to describe rubber.

Three strain invariants I1, I2 and I3 are introduced to represent strain energy

function,

W = f(I1, I2, I3) (1.1)

Where W is strain energy function or stored energy function per unit volume, and

I1, I2 and I3 are invariants of the green strain tensor derived from principle

extension rations λ1, λ2 and λ3, which are defined as,

I1 = λ1
2 + λ2

2 + λ3
2 (1.2)

I2 = λ1
2λ2

2 + λ2
2λ3

2 + λ3
2λ1

2 (1.3)

I3 = λ1
2λ2

2λ3
2 (1.4)

Then, strain energy, W can be rewritten as,

W =
∞∑

i+j+k=1

Cij(I1 − 3)i(I2 − 3)j(I3 − 1)k (1.5)

As to incompressible materials, I3 = 1 is assumed. Then,W in Equation (1.5) can

be simplified again,

W =
∞∑

i+j=1

Cijk(I1 − 3)i(I2 − 3)j (1.6)

A considerable amount of models are published to describe the hyperelastic, and the

correct representation of those models should follow several provisions: 1) The

response of rubbers can be exactly reproduced; 2) Model can be applied at various

deformation modes; 3) Small number of fitting material parameters to simplify

measurements; 4) Simple and easy operation to derive the mathematical

formulation (Chagnon, Marckmann, & Verron, 2004). Several acceptable and

practicable models used in commercial finite element software are presented in the

following. Polynomial model in the compressible form is introduced to represent the

stress-strain behavior of filled elastomers (Forni, Martelli, & Dusi, 1999),

W =
∞∑

i+j=1

Cijk(Ī1 − 3)i(Ī2 − 3)j +
N∑
i=1

1

Di

(Jel − 1)2i (1.7)
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Where W is strain energy density or potential energy per unit volume. Ī1 and Ī2 are

1st and 2nd invariants of the deviatoric Cauchy-Green tensor. Jel is the elastic

volume ratio. Cij and Di are material constants. Cij stands for the shear behavior.

Di is related with compressibility, which is zero for totally incompressible materials.

A more commonly used and computationally intensive model is Ogden′s energy

function, which is more accurate in fitting experiment tests compared with

polynomial model(Ogden, 1972),

W =
N∑
i=1

2µi
αi2

(λ̄1
αi + λ̄2

αi + λ̄3
αi − 3) +

N∑
i=1

1

Di

(Jel − 1)2i (1.8)

Where λ̄1 = J−
1
3λi. J = λ1λ2λ3 and J is the Jacobean determinant. The constant

µi and λi are introduced here to describe the rubbers shear behavior. Another most

favorite constitutive model is Mooney-Rivlin models (Mooney, 2004), and

(R. Rivlin, 1948),

W =
N∑
i=1

Cij(Ī1 − 3)i + (Ī2 − 3)j) +
N∑
i=1

1

Di

(Jel − 1)2i (1.9)

When the C00 is 0 and then the first order of incompressible materials is simplified

as,

W = C10(Ī1 − 3) + C01(Ī2 − 3) (1.10)

This equation can be rewritten by setting N = 0, α1 = 0, α2 = −2, C10 = µ1
2

and

C01 = −µ2
2

to get,

W =
µ1

2
(λ̄1

2
+ λ̄2

2
+ λ̄3

2 − 3)− µ2

2
(λ̄1
−2

+ λ̄2
−2

+ λ̄3
−2 − 3) (1.11)

There is another model Neo-Hookean, which has been pre-programmed into

Abaqus FEA package. Defining N = 1 in the reduced polynomial model, the

Neo-Hookean model is given as,

w = C10(Ī1 − 3) +
1

D1

(Jel − 1)2 (1.12)

Similarly, the Neo-Hookean model can be offered by setting N = 1, α1 = 2 in the

Ogden model,

W =
µ1

2
(λ̄1

2
+ λ̄2

2
+ λ̄3

2 − 3) = C10(I1 − 3) (1.13)
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This model is recommended because it includes the statistical theory of rubber

elasticity,

W =
1

2
NKT (I1 − 3) (1.14)

Where, N is the number of network per unit volume. K is the Boltzmann constant

and T is the absolute temperature. When N = 3 in the polynomial model, it

becomes more applicable for wider range of deformation and be able to predict

different deformation modes from a simple data test. The new model is named as

Yeoh model(Peeters & Kussner, 1999),

w =
3∑
i=1

Ci0( ¯I1 − 3)i +
3∑
i=1

1

Di

(Jel − 1)2i (1.15)

Where µ0 = 2C10 and K0 = 2
D1

are initial shear modulus and bulk modulus. Besides

of those discussed models, there are some other important models, such as Van der

Waals models. Because of the limited space of this dissertation, detailed

introduction of those models will not be listed here.

(b) Statistical Mechanics Treatments

Besides of those model derived from phenomenological theories, another

important branch targeting at accurate distribution of rubber elasticity is statistical

mechanical treatments (Boyce & Arruda, 2000), and (Treloar, 1975). The basic

structure of rubber is defined as randomly oriented long molecular chains. The end

to end length r of chain′s distribution is obtained from Gaussian treatment,

p(r) = 4π(
3

2πnl2
)
3
2 r2exp(− 3r2

2nl2
) (1.16)

Where l is the length of each link and n is the number of links in a chain. The

average initial chain length is given by,

L0 = (r̄2)
1
2 = (nl2)

1
2 =
√
nl (1.17)

The elastic strain energy function W can be obtained by considering the

configurational entropy change when the chain structure is stretched or compressed.

The energy is represented as,

w =
1

2
NKθ(λ1

2 + λ2
2 + λ3

2 − 3) (1.18)
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Where k is Boltzmann constant and θ is of absolute temperature. While this is

applicable only when the deformation is limited, and chain is not fully extended. In

the case of lager deformation, for example, r/nl approaching to 0.4, non-Guassian

nature should be taken into account to describe the chain stretch model. Kuhn and

Grun (Kuhn & Grün, 1946) have the non-Gaussian force elongation for a chain and

inverse Langevin function as,

f =
kθ

l
L−1(

r

nl
) =

kθ

l
L−1(

λ√
n

) (1.19)

r

nl
= coth(β)− 1

beta
= L(β) (1.20)

β = L−1(
r

nl
) (1.21)

To figure out the connection between stretches of individual chains to the

deformation of the material, some representative network structures are proposed.

Arruda and Boyce (Arruda & Boyce, 1993) presented a 8-chain model to derive the

strain energy function. The stretch of each chain is characterized as,

λchain = (1
3
(λ1

2 + λ2
2 + λ3

2))
1
2 , and the strain energy function is formulated as,

W8ch = NKθ
√
n[βchainλchain +

√
nln(

βchain
sinh(βchain)

)] (1.22)

Where βchain = L−1(λchain√
n

). The 8-chains model can capture the complicated

network respond in a simple way and can predict the biaxial data than the full

network model. However, the 8-chians model does not assure affine deformation.

1.2.2.2. Viscoelastic Model

(a) Three Classical Models

Before the discussion about the standard three parameters model, it is better

to introduce two basic and classic viscoelastic material models. The first one is the

Maxwell model, which is proposed by James Clerk Maxwell in 1867 to describe the

elasticity and viscoelastic of those viscoelastic materials (Roylance, 2001). In the

Maxwell model, the material is simulated with a spring and a dashpot in series
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connection (Figure 1.3(a)), which indicates that the two elements are under same

stress and the total strain comes from the total contribution.

Figure 1.3.: (a) Maxwell model; (b) Voigt model; (c) the standard linear model.

The derivative of strain over time is composed of two parts, spring element

and dashpot, that give the time dependent strain as,

dε

dt
=
dεη
dt

+
dεs
dt

=
σ

η
+

1

k

dσ

dt
and ε(0) =

σ(0)

k
(1.23)

Where η is the coefficient of viscosity and k is the stiffness of the spring element.

Voigt model or Kelvin-Voigt model is similar to the Maxwell model but the two

elements are in parallel connection (Figure 1.3(b)). That combination indicates the

two elements sharing the external load and displaying the same strain (Meyers &

Chawla, 1991). The time dependent stress and strain relationship is given as,

σ(t) = kε(t) + η
dε(t)

dt
and ε̇(0) = 0 (1.24)

Where σ(t) and ε(t) are stress and strain at time t. The three parameters model is

also named as standard linear solid model, which is similar to a combination of

Maxwell and Voigt model (Figure 1.3(c)). Since Maxwell model doesn′t give

satisfactory description of creep or recovery and Kelvin-Voigt model doesn′t give

satisfying stress relaxation, the superposition of the two models in the standard
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model can reproduce the comprehensive mechanical properties in the most

satisfaction. The physical relations of this model in Figure 1.3(c) are more

complicated than the other two models, which are written as,

σ = σ1 + σ2 and ε = ε1 = ε2 (1.25)

The time derivative of the three parameters model can be formulated as,

dε

dt
=
k2

η

1

k1 + k2

(
η

k2

dσ

dt
+ σ − k1ε) =

1

τ

1

k1 + k2

(
1

τ

dσ

dt
+ σ − k1ε) (1.26)

Where η
k2

= τ defines the relaxation time.

(b) Generalized Maxwell Model

The generalized Maxwell model is composed of several Maxwell models and

one spring element. Those Maxwell models are connected in parallel (Rosen, 1982).

This model is shown in Figure 1.4,

Figure 1.4.: General Maxwell model.

The time-dependent stress and strain relationship of this model is given as,

E(t) =
σ(t)

ε0
=

∞∫
0

E(τ)exp(− t
τ

)dλ (1.27)
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Where ε0 is the initial imposed strain and the continuous distribution E(τ) is a

function of relaxation time, which is also determined by the specific elements of the

generalized Maxwell model. The generalized Maxwell model is mostly employed in

the commercial software to simulate the mechanical properties of viscoelastic

material such as Abaqus FEA.

(c) Berg′s Model

Figure 1.5 shows a nonlinear, dynamic rubber spring model, which is

composed of elastic force(spring components), friction force( non linear behavior)

and viscous force(energy loss mechanism) (Berg, 1998). The friction force is

included to represent the rate-independent hysteresis and increased stiffness at small

displacement amplitudes. With this model, detailed expression of steady state force

amplitude and energy loss at each cycle can be estimated(Berg, 1997). This model

provides a reasonable tool simulating the dynamic analysis of rail vehicle. Friction

hysteresis is affected by fillers characteristic, rubber′s dimension and excitation

direction. Specially, hysteresis in rolling rubber may be more distinguished because

of the additional sliding friction. In this model, viscous force is represented by a

linear viscous damper and a linear spring.

Figure 1.5.: Berg′s model.

In Berg′s model, the force applied on the rubber components is share by

three parts. Besides of the friction, this elastic part is presented as Fe = Kex, and

the viscous force model comes from the Maxwell model. The main contribution of
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this model lies in the inclusion and skillfully calculation about the friction forces,

which is highly credited by later researchers. In this model, energy loss caused by

the friction force are determined by the external force at the maximum deformation

and the location when the friction force reaches to half of the maximum deformation

Fmax, that definition gives the energy loss and damping as,

Ef = 2Ffmax

(
2x0 − x0(1 + a0)2ln

x2(1 + a0) + 2x0

x2(1 + a0)

)
(1.28)

Df =
Ef
Ff0x0

=
2Ffmax
a0x0

(
2x0 − x0(1 + a0)2ln

x2(1 + a0) + 2x0

x2(1 + a0)

)
(1.29)

Similar to Berg′s model, Stawomir (Dzierzek, 2000) proposed a model based on

experiment to describe the typical cylindrical rubber bushing. This model is

decomposed into five parts to analysis the hysteresis curve obtained from tests. The

restoring force element is emulated as a tangent spring, Fg = kt
2dt
π

tan πx
2dt

, where x is

linear displacement in axial or radial direction, Kt is stiffness coefficient, coming

from the inclination of curve at X = 0 position, dt is the characteristic thickness of

the bushing. Because dt approximates to zero in radial test and is infinite in the

axial test according to the physical limits of rubber bushing. The restoring force in

axial direction can be derived as dt = Ktx. The remaining model standing for

dissipative force includes elastic springs, viscous dampers and frictional dampers.

The frictional element is kind of intricate as shown in Equation 1.30,

Ff =

[
c3(

2dt
π

tan
πx

2dt
− ktx)(c4) + c5

]
ẋ√

|ẋ2 − xẍ|
(1.30)

Where C3 and C4 are dimensionless coefficients of friction. Exponential friction

damping affects the radial tests, especially the non-linear hysteresis curve. Further,

deformation speed profile also affects frictional damping. That explains the

complicated description of non linear friction element (Ff ). Parameter identification

prefers affordable amount of measurement and simple computation is enable to be

handled using MATLAB.
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1.2.3 Heat Generation and Accumulation

1.2.3.1. Influence of Thermal on Properties of Rubber

Compared with many other metal material used in the vehicle systems, the energy

storage capacity of rubber is much higher. The static friction between components

can be minimized through rubber components to improve the riding comfort by

reducing the harshness. Compression, tension and shear are three major loading

deformations experienced by rubber bushing (Heldt, 1948). As the main

component installed on the suspension system, the rubber bushing is expected to be

stiff enough to support certain loading, and have high hysteresis to absorb vibration

and noise. While lower heat generation is pursued for rubber components, which

conflicts with expectation about high hysteresis. Rubber fatigue is one of the basic

disadvantages of rubber components, which leads to unsatisfactory service life. The

force-displacement curve of rubber components plots hysteretic loop after cycle

loading because of the nonlinear behavior of this material. The area inside the loop

is the dissipation energy attributed to the heat accumulation in the rubber

components (Johnson & Chen, 2005). This dissipation energy is converted to heat

and accounts for the rubber fatigue. The temperature of rubber also increases under

cycle loading as the dissipation energy and the much slower heat transfer

conductivity of rubber. The initial step to estimate the dissipation energy and heat

accumulation in the rubber components is to obtain the proper constitutive model

to characterize the material. That step is complicated as composition of rubber

affects its mechanical behaviors, for example, the stress and strain curve is

associated with the change of carbon black fillers supplies or percentage(Ebbott,

Hohman, Jeusette, & Kerchman, 1999). Furthermore, the strain rate, interaction

between carbon black and polymer, and environment temperature affect the

dissipation energy in rubber(Park, Hong, Kim, & Kim, 2000). The influence of

composition isn′t covered in this research, which is dedicated to the mechanism of
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dissipation energy. In sum, the heat built-up in rubber deteriorated the physical,

chemical and mechanical properties, especially the aging process is promoted and

life expectation is shorted(Woo & Park, 2011).

It is desirable to improve the life expectation by reducing the accumulated

heat in rubber. Thus, to explore the lifetime of rubber considering the heat

generation, many researchers have investigated the influence of mechanical

properties on the thermal mechanism and service life. FEA is one of the powerful

and widely-used approaches to analysis the structure and heat transfer of rubber

components in recent decades.

The heat generation rate is prerequisite of heat transfer analysis in prediction

of temperature rising. In this research, loading frequency of rubber bushing

installed on the suspension system of the vehicles can be approximated with the

rotation frequency of tires, which is depended on the driving speed of vehicles and

radius of tires. The general frequency of excitation derived from the driving speed is

f = Vc/Lr = Vc/(2πRr), where Vc is the speed, and Lr and Rr are the rolling tire′

circumferential length and radius(Y.-J. Lin & Hwang, 2004). The heat generation

rate HG can be estimated with HG = (loss used)× f = (loss used)/(unit time),

where unit time is the time need for one cycle of tire rolling. With the heat source

calculated from the heat generation rate, the steady state or transient heat transfer

analysis of rubber bushing can be simulated. Then, the prediction about

temperature distribution and rising rate becomes possible.

Relationship between hysteresis and rubber fatigue has been investigated by

many researchers. Sudden fracture can occurs in a material without hysteresis since

the crack growth rate is associated with the hysteresis behaviors (Mars & Fatemi,

2004). The rubber′nucleation life of crack and growth rate of fatigue crack are

affected by rising temperature, and the temperature dependence is slightly related

with the percentage of fillers. Furthermore, the change of chemical properties or

aging at higher temperature may lead to continued vulcanization. As a result, the
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lift expectation of rubber components is shortened even more at elevated

temperature.

1.2.3.2. Time-Temperature Effect of Rubber

Besides of the time and frequency-dependence of viscoelastic mechanical properties,

the dependence of mechanical properties on the temperature and pressure has been

thoroughly investigated by many researchers (Ferry, 1980). For the rubber bushing

installed on the suspension system of the vehicle, the effect of pressure is negligible

but the influence of temperature is tremendous in changing the viscoelastic

properties of rubber components. Especially, the sensitive temperature range is

merely a little bit higher than the room temperature. Another temperature related

research is the glass transformation temperature, which has explicit research

publications. Compared with that one, the investigation about the temperature

effect on viscoelastic properties deserves more attention, even though it can be

observed from the qualitatively viscoelastic mechanical analysis, such as creep and

relaxations. The previous review has mentioned the change of rubber′s states from

glass to viscoelastic, rubber and then rheological behavior. The relaxation and creep

modulus are highly time dependent at viscoelastic state. For certain viscoelastic

materials, the molecular constitution and structure are critical to determine those

parameters characterizing the temperature effect. With the comprehensive

understanding of temperature and time effect, the relaxation modulus at lower

temperature can extrapolate the modulus at higher temperature. A shift factor is

introduced to describe the shift of relaxation curve versus the temperature. An

empirical equation to format the temperature dependence was constructed by

Williams, Landel and Ferry (WLF) Equation (Gabbott, 2008). Figure 1.6 is the

example of temperature effect on the elastic relaxation modulus, T0 is the reference

temperature and the remaining temperatures are higher than T0.
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Figure 1.6.: Temperature dependence of elastic relaxation modulus.

Williams-Landell-Ferry (WLF) Equation is built on the basis of Dolittle

equation and the universal form is given as,

log(αT ) =
−C1(T − T0)

C2 + (T − T0)
(1.31)

Where α is a shift factor or superposition parameter, T is selected temperature and

T0 is the reference temperature or glass transition temperature. The constant C1

implicates the free volume and the constant C2 is related with the thermal

expansion during the glass transition (Ferry, 1980). The reduced variables method

or time-temperature superposition method is applied here to extrapolate the two

constants. The reduced variables approach is widely applied in many fields, such as

mechanical, magnetic and dielectric with time-dependent relaxation. The

time-temperature superposition is similar to the extrapolate approach, which

predicts the unknown properties from the known data. With the extracted

constants from experiential testing, the shift curve representing the variation of shift

factor on the temperature spectrum is constructed. This master curve facilities the

prediction of temperature shift factor at other temperature. One of the drawbacks

of this WFL equation is that its application temperature range should be higher

than the reference temperature. Prediction at lower temperature may cause some
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exceptions and is not reliable (Sullivan, 1990), while the WFL equation will regress

to the Arrhenius law.

1.2.3.3. Heat Transfer Principles in the Solid

(a) The First Law of Thermal Dynamics

Taking ∆U as the change of internal energy in a infinitesimal element in

continuous, at quasi static, it is written as,

∆U = Q−W (1.32)

Where Q is quantity of heat supplied to the element by its surroundings and W is

external work done to the system. The law of conservation of energy is listed as,

δW + δQ = dE + dK (1.33)

In that closed system, external work and heat equal to inner energy and kinetic

energy. Do derivative over time of Equation 1.33 and get,

Ẇ + Q̇ = Ė + K̇ (1.34)

Where Ė = ρė, e is the internal energy in unit mass, K̇ = ρνν̇ and Q̇ = −∇.h+ ργ,

then, the external work becomes,

Ẇ = ∇.(σ.ν) + ρν.f (1.35)

And the Equation 1.34 can be rewritten as,

ρė− σij ˙εij + hij − ργ = 0 (1.36)

This is energy equilibrium of a closed system.

(b) Constitutive Equation of Isotropic Thermo-Elastic Material

Define lame constant λ and µ, coefficient of thermal expansion α and

temperature change ∆θ. The stress and strain relationship considering the thermal

effect can be given as,

σij = Cijkl(εkl − α∆θδkl) (1.37)
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This is the linear elastic isotropic constitutive equation. The Cijkl is the elastic

modulus tensor and often expressed as,

Cijkl = λδijδkl + µ(δikδjl + δijδjk); and Cijklεkl = λεkkδij + 2µεik (1.38)

With those constitutive equations, it is easy to derive the temperature dependent

stress,

σij = λ(εkk − 3α∆θ)δij + 2µ(εij − α∆θδij) (1.39)

As to the thermal viscoelasticity materials, the constitutive equation is dependent

on the history of strain and temperature, which is generally represented as, σ(t) = σ(εt(S), T t(S))

η(t) = η(εt(S), T t(S))
(1.40)

Where η is the entropy of unit mass, t is the current time, S is the symbolic of

Laplace transformation. The Equation (1.40) is applicable at small strain range and

small temperature variation. The stress merely relays on the reference temperature

and time. For more rigorous discussion, the materials′ mechanical properties are

also affected by the bias of real time temperature to the reference temperature. The

new coupling relationship includes the influence of temperature and time, which

introduce stress based on the current and history function,

σ(t) = σ(ε(t− s), T (t− s), ε(t), T (t)) (1.41)

Where s is the time gap from current to the past and define τ = t− s. To solve the

equation, the WFL equation is servable, which is expedient to estimate the

relaxation function τ = t− s of any temperature from the reference temperature

using the shift factor. The one dimensional stress and strain relationship of

thermal-viscoelastic materials is rewritten as,

σ(t) =

t∫
−∞

Y (T, ξ1 − ξ2)
∂(ε− α(T (τ)))

∂τ
dτ (1.42)

The deformation and energy loss of incompressible viscoelastic materials coming

from the torsional deformation have been researched for many decades. Specifically,
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most of those studied models are cylindrical components, which give us appropriate

insights. Batra and Yu analyzed the response of isotropic viscoelastic materials

upon the torsional dynamic deformations with the developed material constitutive

relationships considering the second Piola-Kirchhoff stress tensor and deviatoric

Cauchy stress tensor (Batra & Yu, 2000), and (Batra & Yu, 1999). Feng coupled

the torsion with extension and gave the theoretical solution with the experiment

verification. That research was more realistic to predict the deformation of

cylindrical components made with viscoelastic materials (Feng, Hung, & Chang,

1992). Similarly, the coupling of tension and torque has been studied by Mackenna

and Zapas to emphasis the response of poly tubes to the variation of time and

deformation (McKenna & Zapas, 1979). Extension or compression is usually

accompanying with torsion in the theoretical analysis of cylindrical rubber, that is

attributed to the impossible torsion alone deformation and surface tractions needed

to keep the position of free ends (R. S. Rivlin, 2004). On the basis of three

parameters model, Hausler developed a theory about the constitutive relations and

experimentally tested it on the simple torsion loaded cylindrical component

(Hausler & Sayir, 1995).

Many researchers investigated the temperature distribution in the rubber

components with heat flow governing equations. Clark proposed a one dimensional

model to build a temperature rising model and solved the required thermal

equilibrium time (S. K. Clark, 1976). Yeow developed a three dimensional model

and used the finite difference method to calculate the temperature distribution of

rubber components on the influence of various parameters (Yeow, El-Sherbiny, &

Newcomb, 1978). Becher built a generalized model combining the viscous Maxwell

elements and plastic Prandtl elements simulating the hysteresis behavior and giving

a dissipation and temperature distribution of the rubber components (Becker,

Dorsch, Kaliske, & Rothert, 1998). To estimate the temperature distribution of the

rubber component in the dynamic situation, bi-directional iteration was proposed by

Whicker to include the effect of structure deformation to the temperature and again
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the effect of temperature to the structure deformation (Whicker, Browne, Segalman,

& Wickliffe, 1981), (Whicker, Browne, & Segalman, 1981), and (Whicker, Browne,

Segalman, Whicker, & Rohde, 1981). That strategy to solve the temperature filed

of rubber components has been widely accepted by many researchers. Then, the

heat transfer model was employed to predict the temperature distribution by taking

the dissipated energy as the heat source of rubber bushing. In sum, the mechanisms

of heat generation in the viscoelastic material were discussed in many publications,

and so as to the static external excitation induced hysteresis damping (Jones, 2001).

(c) Heat transfer coefficients

The temperature distribution plotted from the analytical solution of heat

transfer indicates thermal equilibrium of rubber components, and after this period,

the heat generated from the damping can completely diffuse to the ambient. With

this assumption, Schuring (Schuring, 1980) derived a thermal equilibrium equation

to describe the equal power between rolling resistance and heat transferred to the

environment. Furthermore, the loading is proportional with the rolling resistance,

then, the convection heat transfer of tire is dependent on the driving speed of tire

and written in an empirical formula as h = C.V 0.52, where the constant C is

experiment determined. It is important to point out that the coefficient is an

equilibrium value describing the entire surface rather than filed function. Some

researchers take the coefficient as radial distribution considering the geometry of

tire, while in current research, the profile of rubber bushing is commonly cylindrical

and the coefficient about tire in radius direction is not appropriate (Mc Allen,

Cuitino, & Sernas, 1996) and (Popiel & Bogus lawski, 1975). More depth research

founds the coefficient is both radius and curvature-dependent. Besides of this, the

heat transfer coefficient is inversed from the surface temperature of rolling tire, the

inverse method is more close to the analysis results of tire distribution (Ebbott et

al., 1999) and (Mc Allen et al., 1996). However, inverse method isn′t economical

efficient considering the design optimization of rubber elements.
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Smooth convex of revolving curved surface about the convection heat

transfer coefficient in air or flow is an important topic, which has been discussed for

hundreds of years and grabs many attentions. The heat transfer characteristics are

considerable complicated since they are determined by many factors, such as

centrifugal force, coriolis force. There are three typical models to specify the

coefficient. The earliest model deduced the surface heat transfer coefficient (HTC)

with the rotating disk (Popiel & Bogus lawski, 1975). Later, more researchers have

been carried out on the rotating corns (Tien & Campbell, 1963). Most of those

researchers started from setting up experiment and then analysis the relationship

between temperature and thermal transfer. For the rotating disk and corn model

about heat transfer, the effect of surface curvature was weakened. To pursue more

representative expression, Kreith (Kreith, 1968) summarized the convection heat

transfer in various rotating geometry and medium. Considering the high speed of

driving vehicles, air flow was commonly taken as turbulence rather than laminar

flow. Kreith presented the heat transfer of turbulence flow through the smooth

convex rotating system surface as,

Nux = B2.Rex
0.8 (1.43)

Where B2 is constant, Nux = h(x).x
kair

, Rex = ωrx
Vair

are local Nusselt number and

Reynolds number of the smooth convex rotating surface. h(x) is the local heat

transfer coefficient, r is the radius and x is the curvilinear coordinates, Kair is the

heat conductivity of air, Vair is the kinematic viscosity, ω is the rotating angular

velocity. Since the smooth convex rotating surface can embody the effect of

curvature on the convection heat transfer, furthermore, the cylindrical rubber

bushing is of rotating system, thus, the third model is the most representative and

most applicable to current case.

For the contact flat surface of the random nominally roughness, the

profilometer traces of all flat surface shows the same statistical variations and gives
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the same pattern (Cooper, Mikic, & Yovanovich, 1969), and (Mikić, 1974). Mikic

derived an equation to estimate the contact resistance of such nominally flat surface,

hc = 1.55
k̄ tan θ

σ
(
p̄
√

2

Ē tan θ
)0.94 (1.44)

Where 1/k̄ = 0.5(1/k1 + 1/k2) and Ē = E1E2/(E1(1− v1
2) + E2(1− v2

2)). p̄ is the

mean contact pressure, tan θ and σ are parameters charactering the roughness of

contact surface, Ē and k̄ are equivalent elastic modulus and equivalent heat

conductivity separately.

The Reynolds of air flow for the driving truck is available with the abundant

experiment data in publications, which are around 2× 105. With the Reynolds

coefficient, the heat transfer convection coefficient can be givens as,

ha(x) = B2
kairr

0.8ωc
0.8

V 0.8
air

(1.45)

Where r is the radius coordinates and x is the curvilinear coordinates from the

outer surface. K is the contact heat conductivity. Rubber bushing is installed on

the stabilizing bar and gap may exist between the two surfaces during the driving.

But the air flow existing in the gap is poor to conduct the heat transfer, which leads

to extra thermal resistance. The temperature jump will happen at the two materials

because the thermal resistance. In current case, if the temperature of stabilizing bar

is room temperature, then, the surface of the inner surface maybe a little bit higher

than room temperature. The heat flux rate can be given as,

q =
T1 − T2

Rc

= hc(T1 − T2) (1.46)

When radial load applies on the rubber bushing, the top and bottom part of the

rubber bushing experience different stress, furthermore, the contact pressure affects

the contact thermal conductivity.

All in all, the heat transfer coefficients are estimated mainly from the

experiment measurements. The following are some procedures suggested. Firstly,

measure the equilibrium temperature of the outer sleeves and set it as the known
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temperature. Secondly, set the initial value of the heat transfer coefficients. Thirdly,

calculate the equilibrium temperature distribution with analytical solution or

numerical solutions. Fourthly, compare the experimental measured temperature

with the estimated temperature to adjust the initial value. Thermal infrared imager

is commonly applied in experiment to measure the surface temperature of rubber

components. Calibration and initial value of heat generation rate should be set

before the testing. The heat generation rate of rubber core is

temperature-dependent. It is important to notice that rubber components are

commonly composed of steel and rubber and the heat transfer rate of steel is higher

than that of rubber. In their measurement, the thermal infrared imager is fixed the

in front of the rubber products and test twice for the outer surface and end surface

of rubber components. Temperature over time is record until the stable temperature

distribution is reached.

1.2.4 Challenge of Rubber Bushing Research

In order to predict performance of vehicle under a wide variety of driving

conditions, one of the key components is the constitutive relationship of rubber. It

is significant to the simulation of suspension system. However, the modeling of

rubber components still faces great technical challenges and the following parts

describe that challenges.

• The first one is the nonlinearity of mechanical properties of rubber, even

though at relatively small strain. Especially, those rubbers contain particulate

fillers.

• The dynamic application of bushing as the loading histories is complex,

including both step/impulse transient loading and multi-frequency sinusoidal

loading. Thus, it is difficult to predict the effect of complex loading histories

on the nonlinear, time-dependent material.



29

• One of the commonly underestimated characters of elastomers is hysteresis

upon loading and consequently generated heat upon deformation. Viscoelastic

response of elastomers can be affected because the heat will raise the

temperature of bushing.

• Time-dependent behavior of rubber bushing is complex, which embodies in

both shear and volumetric deformation.

• Complex mixtures of an elastomer base resin, particulate fillers like carbon

black and/or fumed silica, etc, as well as the part of manufacturing process

affects the performance of the engineering rubber. Slight change of rubber

supply, formulations may affect the performance of rubber, while those

changes may not attract the attention of suppliers

The temperature gradient of rubber is much larger than steel due to the much lower

heat transfer rate. The effect of temperature has very limited effect on the variation

of conductivity and specific heat of rubber. Thus, in current research, those

parameters are defined as constant and applied for the entire time range (Ebbott et

al., 1999),and (Oh, Kim, Kim, Moon, & Park, 1995).

Approximated estimation of heat transfer coefficients is important. Actually,

the heat transfer coefficient is a function of composition and velocity of air flow.

That means the increase of driving speed of vehicles is corresponding to higher heat

transfer coefficient (S. K. Clark, 1976). Usually, it is three to four hours for a truck

tire to reach temperature equilibrium. For the rubber components, the barrier to

quickly reach the balance is the much slower thermal conductivity of rubber

compared with steel. Even though, the speed affects the heat transfer coefficient,

but the influence is not so primary. Thus, in order to control the temperature rising

time without changing other parameters of rubber bushing, the geometry of rubber

should be critical to reach the achievement.
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1.3 Objectives

Fatigue of rubber components used in vehicle application is highly related to

the Mullin effect, which is known as softening effect, especially during the initial

loading cycles (Chagnon et al., 2004). Thus, in order to evaluate the life of rubber

components, it is necessary to consider Mullins effect. With the development of the

powerful calculation ability of computer, simulation using commercial software

becomes more and more predominant nowadays. In view of the important role of

suspension system in the vehicle simulation, the transmission of external force and

torque through suspension system demands precise formulation. Thus, the first

critical problem is the rubber bushing′s dynamic mechanical behaviors when the

external force and torque induce translations and rotations of rubber components.

The second problem is the rubber′s constitutive equation and its corresponding

models to credibly describe the dynamic response of rubber, which can be used in

the FEA simulation. Besides, the damping of rubber should be thoroughly analyzed

to include the hysteresis and viscous damping, in return, the heat generation

mechanism can be derived. Possibility, the life expectation can be estimated

considering the aging speed up due to the higher temperature of the rubber

components subjected to external harmonic excitation. FEM analysis should be

carried out to simulate the heat generation and estimate the dissipation energy

distribution. With this higher temperature indication, the possible strategy to

reduce the heat accumulation at lower temperature can be proposed, which may

bring great business benefit if the life expectation of rubber bushing can be

elongated.

1.4 Outline of Dissertation

The layout of the dissertation is given as follows. Chapter one initializes the

motivation of this research, which is followed by the background and interest points

of rubber bushing. A brief description of rubber bushing has been presented to
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point out the service condition of rubber bushing and its function in the suspension

system of the vehicle. Then, the complex properties of rubber materials are

elaborated to present those challenges expected in the current rubber bushing

research. Chapter one explains the necessity and difficulties of this research and

emphasizes the significant to solve those problems in this research. The following

work can be clearly presented in Figure 1.7.

Figure 1.7.: Flowchart of research.

Chapter two begins with the definition and application of multi-body

dynamic mechanism, which is commonly used in the dynamic analysis of vehicle.

This method is employed to investigate the dynamic behaviors of rubber bushings

installed on the suspension system. Hammer impact modal testing is carried out to

get transfer function of the rubber bushing system, which is simplified as

multi-body later. The energy dissipation of the rubber bushing system is also

estimated with the fitted transfer function on the basis of multi-body analysis.

To achieve reliable simulation of the transmission of rubber bushing, the

constitutive equation of rubber bushing is required and presented in Chapter three.

The complicated mechanical properties of rubber indicate the importance to build a

reliable rubber bushing model while without bringing in too much calculation
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burden. This chapter gives a detailed comparison about those classical constitutive

viscoelastic models in time domain and frequency domain and then determines the

standard linear model as the simplest credible material model to describe the

mechanical behaviors of rubber. Spectrum analysis is employed to deal with the

problem in time domain, especially the problem with arbitrary loading history. Two

factors contributing to the heat generation in the viscoelastic material under

dynamic loading are considered. Hysteresis effect is characterized with a three-linear

model to describe the friction between molecular chains and carbon black particles.

Constitutive equation presenting the viscoelastic properties has been derived on the

basis of Laplace transformation. MTS and DMA tests are carried out to obtain

enough data to identify the parameters for further analysis in FEA.

Multivariable-constrained optimization method is applied to estimate the

parameters in the standard liner viscoelastic model using MATLAB with the

massive data from the DMA test.

Chapter four begins with the preprocessing and post-processing of

force-frequency FORTRAN program. The static simulation results are contrasted

with the frequency scan analysis to evaluate the programming with complex

variables. To verify the reliability and demonstrate the capability of the program,

the testing on elastic structure with damping and viscoelastic structure are carried

out separately. The calculated results from the FORTRAN program include

displacement, strain, stress and energy dissipation of each cycle at different

excitation frequency. Besides, the response of blast loading on viscoelastic beam is

investigated to examine the application of spectrum analysis and FEA on the

problem in time domain. More important, the approaches to develop the dissipation

energy using FEA and the density of dissipation energy in the rubber core are

presented in this part.

Chapter five measures the density and thermal properties of rubber material

and specifies the boundary conditions of the rubber bushing. Analytical solution is

approached to explore the steady and transient temperature distribution assuming
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the constant hear source. MATLAB is employed to develop the FVM procedures to

simulate the heat transfer in the three layered structure of rubber bushing. The

temperature distribution of rubber core at different loading frequency and amplitude

is accomplished based on the heat source generated from the FORTRAN program.

Finally, in chapter six, using the commercial software multi-physics

COMSOL, the heat generation and temperature distribution of rubber bushing

under the external harmonic excitation are calculated. In this simulation, the Prony

series coefficients are applied in the COMSOL to represent the viscoelastic material

mechanical properties. The MTS dynamic torsion and radial tests are carried out at

quasi-static and higher frequency range. The temperature distribution at different

frequency and amplitude range is recorded with thermal imager. The temperature

rising rate and distribution obtained from the simulation and experiment are

compared, that result confirms the success of force-frequency and heat transfer

program.
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CHAPTER 2. MULTI-BODY DYNAMIC ANALYSIS OF RUBBER BUSHING

There are still great demands to decrease repeating errors occurred decades

in vehicle dynamic design and many areas are eager to be improved even though the

mathematical tool and computing capability have greatly accelerated the

development of technologies (Blundell, Harty, et al., 2004). Isolation and control

are two major factors affecting the dynamic performance of vehicle. Isolation

concerns about avoiding those disturbances, which are caused by the operation of

the vehicles. These types of disturbances partially come from the working vehicle,

such as vibration and noise. Besides of this, the external environment also imposes

certain disturbances. Control is about the response of vehicle subjected to the

demands of driver. The skill and capability of drives are important to control the

performance of the vehicle while that work load at critical times may be beyond the

controllable scope and failure to be operated properly. To keep the risk at lowest

probability, more optimized dynamic design of vehicle system may give a

controllable behavior of vehicles. Extended displacement and nonlinearly in space

commonly occur to those parts in the complicated vehicle systems. Heavy algebra

and calculus are expected to construct the kinematic or dynamic equation of vehicle

system, as a result, the closed form analytical solutions maybe unreachable since the

nonlinearity and complexity. Facing this critical challenge, multi-body dynamic

analysis is developed to analysis the complicated suspension system of vehicle and

the corresponding kinematic and dynamic behaviors.

Kinematics and Compliance (K&C) of suspension system are constantly

investigated by researchers in the field of vehicle. The proper designed rubber

bushings used in the suspension system contribute to achieve desirable properties,

such as efficiently isolate high frequency vibration from the environment. To

evaluate the behavior of suspension, K&C test or characteristics are good
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indicators, which can reflect the design and characteristics of many important parts

and overall structure. As a widely and commonly used part in the suspension,

bushings behaviors are critical to the performance of K&C under nearly cycle

loading, especially the influence on compliance is pretty obvious. During rolling or

traveling, force equilibrium on the suspension system will be rebuilt, which will lead

to corresponding redistribution of force and change of deformation on rubber

bushing. There are many bushings installed on the suspension system, which are

different in the installation locations and positions, and then stiffness of bushings is

different according to its purpose. The higher force applied on the axis direction of

the bushing can cause larger deformation, and the bushings′ stiffness in this

direction is decisive in determining the compliance of suspension and wheel attitude,

even the vehicle driving performance (Song, Chen, Lin, & Ma, 2012). Considering

the important role of bushing playing in the suspension system, even the full

vehicle, lots of researches strive to explore the effect of bushings′ characteristics on

the performance of suspension system. Bushing usually plays dominate role merely

in one direction according to its specific installation location and orientations, while

in this chapter, the initial exploration using multi-body analysis begins with

translation movements. There are many approaches to develop the multi-body

analysis. In the early research, Newton-Euler has been commonly used in satellites

dynamic analysis and on the basis of that principle, many methods are developed

(Andrews & Kesavan, 1978), and (Hooker & Margulies, 1965). Lagrange equation

is another approach widely used in the multi-body dynamics analysis, and computer

program ADAMS and DADS are developed to proceed the dynamic calculation and

produce many representative work (Chace, 1984), (Haug, 1984), and (Haug,

1989). The symbolical theory is employed by Roberson and Wittenbury to describe

the characteristics of multi-body and they also develop the computer program

MESA VERDE (Roberson & Wittenburg, 1966), and (Wittenburg & Schmidt,

1990). On the basis of multiple degree of freedom and discrete system, Kane

method is introduced to characterize the dynamic behaviors using the
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pseudo-velocity as dependent variant (Kane & Levinson, 1985), and (Kane, Likins,

& Levinson, 1983). In the current research, for the clear description with tree

structure, Wittenbury method is employed to characterize the dynamic behaviors of

rubber bushing installed on the suspension system of vehicle.

2.1 Mathematic Notation

Vector, tensor and matrices are the carriers of multi-body mechanics. The

following discussion will briefly describe the mathematic notations used in the

dynamic analysis on the basis of right handed Cartesian coordinates (Wittenburg,

2007). Vector v is composed of three unit base vectors e1, e2 and e3, which are

orthogonal to each other and satisfy the right handedness conditions,

V = v1e1 + v2e2 + v3e3

ei · ej = δij(i, j = 1, 2, 3)

e1 · e2 × e3 = + 1

(2.1)

where v1 , v2 and v3 are scalar quantities of coordinates in vector v. Define

e1
i(i = 1, 2, 3) as the base vectors of base 1 and e2

i(i = 1, 2, 3) as the base vectors of

base 2. e2
i can be represented in e1

i using the scalars α21
ij, which is the cosine angle

of the two base vectors. That transformation can be written in matrix with the

direction cosine matrix, e2 = A21e1. Furthermore, the scalar product of any two

rows or columns elements in the cosine matrix is equal to the Kronecker delta,

e2
i =

3∑
j=1

αij
21e1

j(i = 1, 2, 3) (2.2)

3∑
k=1

αik
21α21

jk =
3∑

k=1

αki
21α21

kj = δi,j(i, j = 1, 2, 3) (2.3)

The Equation (2.2) describes the relationship of vector coordinates with respect to

different bases, which is important to connect the independent coordinate system

with the general coordinate systems in multi-body analysis. The tensor D is

another very important notation used in multi-body dynamic analysis. It is defined
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as the summation of two vectors′ dyadic products. Swapping the two vectors in the

dyadic product will give a conjugate of D,

D = a1b1 + a2b2 + a3b3 + ... (2.4)

D̄ = b1a! + b2a2 + b3a3 + ... (2.5)

where the tensor D is commonly expressed in matrix after decomposing the vectors

on the base ei and regrouping it on coordinate scalars Dij. Similarly, if the tensor D

is decomposed on another base ej, the coordinate matrices D1 and D2 of the two

bases can transform with each other,

D =
3∑
i=3

3∑
j=1

Dijeiej = eTDe

D = e2TD2e2 = e1TD1e1

D2 = A21D2A12

(2.6)

Vector cross product is used to describe the tenors with skew-symmetric coordinate

matrix, thus, it is important to get familiar with the cross product of vectors,

a× b× v = ba · v − ab · v = ba− ab · v (2.7)

Where the tensor (ba− ab) can be decomposed in a specified base, which displays in

a skew-symmetric coordinate matrix in Equation 2.8. Ci(i = 1, 2, 3) are the

coordinates of C. The symbol c̃ is introduced to simplify those equations from

vectors to scalars,

(ba− ab) = c̃ =


0 −c3 c2

c3 0 −c1

−c2 c1 0

 (2.8)

c =
n∑
i=1

n∑
j=1

aiDijbj = aTDb (2.9)

Equation 2.9 shows the transformation from tensor scalar by left multiplication with

ai and right multiplication with bj when numerical calculation is more convenient

than matrix expression.
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2.2 Kinematic and Dynamic Analysis of Rubber Bushing

This part talks about the development of kinematic and dynamic analysis of

rubber bushing using the Wittenbury approach. For the dynamic analysis, the

kinematic relationship of kinematic is discussed in front of the dynamic analysis as

the later is analyzed on the basis of the former. A single rigid body is set as

example in the first step to introduce the concepts and methods used in the

multi-body analysis. The second step is the kinematic relationship of rubber

bushing after building the tree structure to describe the connections between bodies.

The third step is the dynamic analysis on the basis of kinematic results.

2.2.1 Kinematic Analysis of Single Rigid Body

Symbolic graph and tree structure are employed here to describe the

connection of multi-body. Figure 2.1 gives a simple example of rigid body.

Assuming the external force Fi and torque Mi are applied on a rigid body Si, and

the external force Fi is applied on the mass center Ci. The internal force Xc
a and

internal torque Ya apply on the joint ua, where c refers to the constraining anti-force.

An incidence matrix Sia is introduced here to describe the tree structure consisting

of arc and vertices. Matrix Sia(i = 0, ..., n; a = 1, ...,m) are defined according to the

following rules: Sia = 1 if the arc a is the joint of body i and pointing away from the

body i; Sia = −1 if the arc a is of the joint i and pointing toward the body i;

Sia = 0 if none the two cases is satisfied. With the definition of locations and

loadings, the force and moment equilibrium equation can be written as,

mir
′′
i = Fi +

n∑
a=1

SiaXa
c, (i = 1, ..., n) (2.10)

Where, ri is the radius vector from the inertial space to the mass center Ci. Define

the arm of internal force from joints as Cib and Cic, then, the coupling moment on

the mass center Ci can be represented as,

(cib ×Xb
c + Yb)− (cic ×Xc

c + Yc) (2.11)
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The moment of momentum is,

L′i = Mi +
n∑
a=1

Sia(cia ×Xa
c + Ya), (i = 1, ..., n)

or in matrix [L′] = [M ] + [C][Xc] + [S][Y ]

(2.12)

Figure 2.1.: Sketch of two joints connected on the rigid body.

As to the mechanic behavior of entire system, the internal force Xa
c is

merely intermediate variable and can be derived by pre-multiply [T ] with force

equilibrium in Equation 2.10. After elimination of variable Xa
c, the moment of

momentum can be rewritten as,

[L′]− [C][T ]× ([m][r′′]− [F ]) = [M ] + [S][Y ] (2.13)

[Xc] = [T ]([m][r′′]− [F ]) (2.14)

Where m, S and [T ] are scalars. In the current expression, moment of momentum is

given in local coordinates, in the next step, radius vector ri in general coordinates

will be introduced. Figure 2.2 displays the radius vector of three rigid bodies.

Setting the C0 is located at the joint ui and the vector C01 = 0. C0 is not incident

with other vertices, thus, it is reasonable to define c0a = 0(a = 1, . . . , n). The radius

vectors of B1 and B2 in the Figure 2.2 can be described as,

ri + c11 = r2 + c12 (2.15)
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For the tree structure described rigid bodies, the radius vector can be represented

using the time-dependent r0(t) and incident matrix as,

r0[S0]T + [S]T [r] + [C]T [1n] = 0 (2.16)

Where, C = Siacia. Left multiply the equation and using the relationship between

[T ] and [S] to get,

[r] = r0[1n]− ([C][T ])T [1n] (2.17)

Where, dij = ([C][T ])ij =
n∑
a=1

TajSiacia, i, j = 1, . . . , n. Now, the equation of motion

in generalized coordinates can be rewritten as,

[L′]− [C][T ]× [m]([C ′′][T ])T [1n]− ([C][T ])× (r0
′′[m][1n]− [F ]) = [M ] + [S][Y ] (2.18)

Figure 2.2.: Radius vectors of bodies.

As to current tree structure of rubber bushing, [C], [T ], [S],[m] and [r′′0] are

known, the equation can be properly simplified with dij. From the definition, the dij

of bodies in rubber bushing are shown in Figure 2.3. The path vector dij can be
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obtained from the radius vectors using ri = r0 −
n∑
j=1

dij, which are represented in the

following,

r1 = r0 − d11 = r0 − c01 = r0 (2.19)

r2 = r0 − d12 − d22 = r0 − (c01 + c11)− c12 (2.20)

r3 = r0 − d13 − d23 − d33 = r0 − (c01 + c11)− (c12 + c22)− c33 (2.21)

Figure 2.3.: Path vector dij arc.

Finally, the velocity of radius vector can be obtained by doing derivation of

ri = r0 −
n∑
j=1

dij and get the velocity in generalized coordinates,

ṙi = ṙ0 =
n∑
j=1

ωj × dij (2.22)
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2.2.2 Model and Tree Structure of Rubber Bushing

Cylindrical rubber bushing is composed of three parts, internal steel sleeve,

rubber core and outer steel sleeve. The external excitation from the suspension

system of the vehicle is applied on the steel sleeves. Rubber bushing in current

research is modeled as three bodies to facilitate kinetic and dynamic analysis. The

steel sleeves and rubber components are combined by vulcanization bonding, which

is relative thinner. The inner force between rigid bodies is represented using the

spring-dashpot as in the multi-body analysis. Figure 2.4 is the sketch of the

multi-body rubber bushing model.

Figure 2.4.: Sketch of multi-body rubber bushing model.

This system includes four bodies, B0 is a moving carrier body in the inertial

space and the moving base e0 is represented to prescribe its time-dependent

movement. B1 is the inner steel sleeve, B2 is rubber core and B3 is outer steel

sleeve, which are interconnected with each other using springs and dashpots. B1 is

connected with B0 by joint H1, which is also written as H01 and H11 separately for
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the joints ending with B0 or B1. The generalized coordinates of B1 is defined as

q = [x1, z1, φ1]T considering the three DOF. The mass center of B1 is the origin of

coordinates for base e1 and e11, which are fixed on the body. From Figure 2.4, it is

found that base e1
2 is parallel to the base e0

2, which indicates that the direction

cosine matrix A0(1) is identity matrix. Again, the base e1
2 is always parallel with

e11
2, which represents another identity matrix A0(11). Similarly, the base e2 and e22

are located at the mass center of body B2. The corresponding joint attached with

B1 is H12 and the one attached with B2 is H22. There are three DOF for B2, which

is given in the generalized coordinates q = [x2, z2, φ2]T to describe its translation.

The vector e11
2 and e2

2 are always parallel, as a result, the direction cosine matrix

A11(2) is identity matrix. Similarly, the base e22
2 is always parallel with e2

2, which

gives another identity matrix A2(22). Again, the mass center of B3 is the location for

the base e3 and e33. The three DOF of B3 defines the generalized coordinates as

q = [x3, z3, φ3]T . The joint between B2 and B3 have H32 and H33. It is easy to found

that the vector base e22
2 is parallel to e3

2 and e3
2 is again parallel to e33

2. That

shows two identity matrices A22(3) and A3(33). In sum, the rubber bushing system

can be treated as a 9 DOF of tress structure coupling with a carrier body, which

gives the dependent generalized coordinates as,

q = [x1, z1, φ1, x2, z2, φ2, x3, z3, φ3]T (2.23)

The generalized velocity and acceleration can be obtained from derivative of

Equation 2.23,

V = [δx1, δz1, δφ1, δx2, δz2, δφ2, δx3, δz3, δφ3]T (2.24)

a = [δδx1, δδz1, δδφ1, δδx2, δδz2, δδφ2, δδx3, δδz3, δδφ3]T (2.25)

For convenience, define cos(qi) as Ci and sin(qi) as Si, then the direction cosine

matrix between bodies B0 and B1 can be expressed as,

A01 = A01A1(11) =


C3 0 −S3

0 1 0

S3 0 C3

 (2.26)
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It is easy to found that the transpose of direction cosine matrix is equal to its

inverse, which gives (A0(1))T = (A0(1))−1. Similarly, the direction cosine matrix

between bodies B0 and B2 can be derived from,

A02 = A01A1(11)A11(2)A2(22) =


C3C6 − S3S6 0 −C3S6 − C6S3

0 1 0

S3C6 + C3S6 0 −S3S6 + C3C6

 (2.27)

The direction cosine matrix between bodies B0 and B3 can be obtained by multiply

the A02 with the direction cosine matrix between bodies B2 and B3,

A03 = A01A1(11)A11(2)A2(22)A22(3)A3(33) =
C3C6C9 − S3S6S9 − C3S6S9 − S3C6S9 0 −C3C6S9 + S3S6S9 − C3S6C6 − C6S3C6

0 1 0

S3C6C9 + C3S6C9 − S3S6S9 + C3C6S9 0 −S3C6S9 − C3S6S9 − S3S6C9 + C3C6C9


(2.28)

The tree structure of the rubber bushing model for dynamic analysis is described

here with the vertices and arc, which represent the bodies and joints (Figure 2.5).

The bodies Bi(i = 0, 1, . . . , n) are represented as Si(i = 0, 1, . . . , n) in the tree

structure. The connections or joints are symbolized as ua(a = 1, . . . , n).

Figure 2.5.: Tree structure of the rubber bushing.

Figure 2.5 displays that each arc ua begins with a vertex i+(a) and

terminates with a vertex i−(a) . Including the carrier body, there are four vertexes

and three arc in current tree, that structure gives a connection relationship of arc ua

between vertex i+(a) and i−(a) as shown in Table 2.1.
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Table 2.1: Connection arc of ua

a 1 2 3 4

i−(a) 0 1 2 3

i+(a) 1 2 3 4

Similar to the discussion about single rigid body, an incidence matrix Sia is

listed here to describe the relationship between arc and joints in the tree structure

of rubber bushing, which gives the incident matrix as,

S0 =

[
1 0 0 0

]
(2.29)

S =



−1 1 0 0

0 −1 1 0

0 0 −1 1

0 0 0 −1


(2.30)

Where the row i in the incident matrix stands for the number of vertex and the

column a stands for the number of arc. Since vertex is numbered from 0, it is better

to separate the incident matrix into the row matrix S0 and (m×m) matrix S.

Another introduced matrix is path matrix T , which is defined to describe the path

from the carrier body to other bodies in the tree structure. In order to reach vertex

I, if arc a is on the way and pointing to vertex i, set Tai = −1; if arc a is on the way

but pointing to vertex 0, then set Tai = −1; if none of two cases is satisfied, set
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Tai = 0. With this definition, the path matrix T of rubber bushing can be displayed

as,

T =



−1 −1 −1 −1

0 −1 −1 −1

0 0 −1 −1

0 0 0 −1


(2.31)

Since the matrix S and T are applicable to the same tree structure, and both are

unique to describe the relationship between vertices and arc, there must be a

relationship to connect the two matrices. Actually, the incident matrix and path

matrix can transfer to each other with,

T TS0
T = −1n and TS = ST = En (2.32)

With those characteristics about the tree structure of the rubber bushing, the

kinematic and dynamic analysis of the directed tree structure is able to process. In

current tree structure, spherical joints and plane movement are coexisting to control

the movement of three-body.

2.2.3 Kinematic Equation of Model

To obtain the velocity in term radius in the general coordinates, vector ωj

should be derived. To solve this problem, the movement of rubber bushing in the

inertia space is investigated. Two bodies shown in Figure 2.6 are good example to

describe the relative movements between bodies. From previous discussion, it is easy

to connect the two bodies of independent base. The connection can be described as

e(1) = A01e0, e(2) = A02e0 and e(3) = A03e0 using the direction cosine matrix. The

relative orientations of vector bases have already presented in the tree structure

modeling with A01 = A02G2 and A02 = A03G3, where G2, and G3 are orthogonality

matrixes. The bases are also connected with e0 = e1G1 and e1 = A01e0, then

(e1)−1(A01)−1e1 = G1 or (e0)−1(A01)−1e0 = G1. For bodies in Figure 2.6, the relative
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location and orientation can be determined with G2, c12 and c22, which are

expressed in generalized coordination, c22 = c22(q4, q5, q6) and G2 = G2(q4, q5, q6).

Figure 2.6.: Relative movement of rigid bodies in the inertia space.

Now, the relative angular velocity of B2 to B1 can be presented with the

generalized coordination,

Ωa =
na∑
l=1

Pal ˙qal, (a = 1, . . . , n) (2.33)

Where pal is the unit vector of the joint rotation and it is not easy to read from the

tree structure, thus, the Ωal is commonly calculated from the direction matrix. Here

G2 is known, the Ω2 is given as,
0 −Ω23 Ω22

Ω23 0 −Ω21

−Ω22 Ω21 0

 = −Ġ2G2
T (2.34)

As pro-mentioned, the total DOF of the tree is q = [x1, z1, φ1, x2, z2, φ2, x3, z3, φ3]T

to include six translation movements and three rotations. Because the translation
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movement does introduce joint rotation component, the rotation matrix element

relative to translation movement is 0. That gives the rotation matrix pT as,

pT =


0 0 p11 0 0 0 0 0 0

0 0 0 0 0 p22 0 0 0

0 0 0 0 0 0 0 0 p33

 (2.35)

Where the Ωa, q and pT are set in the generalized coordinates. Define na as the

DOF of every joint and the relative acceleration of Bi−(a) to Bi+(a) can be

formulated as,

Ω̇ =
na∑
l=1

palq̈al + ωa =
na∑
l=1

palq̈al +
na∑
l=1

na∑
l=1

∂pal
∂qal

˙qal ˙qar = P T q̈ + ω(a = 1, .., n) (2.36)

Now, with the obtained relative acceleration of Bi−(a) to Bi+(a), introducing the

path matrix, the absolute angular velocity of Bi to B0 can be derived. First, look at

the relative angular velocity rewritten in the path matrix,

ω = −TΩ + ω01n = −(pT )T q̇ + ω01n (2.37)

Do derivative of Equation (2.37) and substitute ωa
∗ = ωi−(a) × Ωa to obtain the

absolute angular acceleration of bodies as,

ω̇ = −(pT )T q̈ − T T (ω + ω∗) + ω̇01n (2.38)

Now, still use the Figure 2.6 as example to investigate the relative velocity and

acceleration of joint pointing to the bodies. Do derivative of c22 in the base e(1),

˙c12 =
3∑
l=1

∂c12

∂q2l

˙q2l and ˙c22 =
3∑
l=1

∂c22

∂q2l

˙q2l (2.39)

And do derivation again to obtain the relative acceleration of joint 2 to the bodies 1

and 2,

c̈12 =
3∑
l=1

∂c12

∂q2l

q̈2l +
3∑
l=1

3∑
r=1

∂2c12

∂q2l∂q2r

˙q2l ˙q2r (2.40)

c̈22 =
3∑
l=1

∂c22

∂q2l

q̈2l +
3∑
l=1

3∑
r=1

∂2c22

∂q2l∂q2r

˙q2l ˙q2r (2.41)
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With the introduce of path matrix, the absolute location vector is rewritten as,

ri =
n∑
a=1

Tai(ci+(a) − ci−(a)) + r0(i = 1, 2, . . . , n) (2.42)

Do derivative of Equation 2.42 and the absolute velocity of the mass center is given

as,

ṙi =
n∑
a=1

Tai( ˙ci+(a) − ˙ci−(a)) + ṙ0(i = 1, 2, . . . , n) (2.43)

˙cia =


˙cia + ωi × cia =

n∑
l=1

kal ˙qal − cia × ωi (i = i+(a))

ωi × cia = −cia × ωi (i = i−(a))

Where C = Siacia, kal =
∂Ci+(a)a

∂qal
is only applicable to the translation movement. For

the tree structure of rubber bushing, kT is given as,

kT =


k11 k11 0 0 0 0 0 0 0

0 0 0 k21 k22 0 0 0 0

0 0 0 0 0 0 k31 k32 0

 (2.44)

After the introduce of path matrix, incident matrix, the absolute angular velocity

and absolute angular acceleration of the mass center of Bi can easily be obtained

from derivative of radius ri once and twice,

ṙ = (pT × CT − kT )T q̇ + (CT )T × ω01n + ṙ01n + ω0 × c011n (2.45)

r̈i = −
n∑
a=1

Tai( ¨ci+(a) − ¨ci−(a)) + r̈0 (2.46)

Where r̈0 = r̈+ ω̇0 × c01 + ω0 × (ω0 × c01) + 2ω0 × ˙c01. The acceleration of ci±(a)a can

be represented using the path matrix and incident matrix, then the absolute angular

velocity can be rewritten as,

ṙ = (pT × CT − kT )T q̈ + (CT )T × v − T T (g + h) + r̈01n (2.47)

ha =
na∑
l=1

na∑
r=1

∂2ci+(a)a

∂qal∂qar
˙qal ˙qar + 2ωi+(a) × ˙ci+(a)a (2.48)
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ga = ωi+(a) × (ωi+(a) × ci+(a)a)− ωi−(a) × (ωi−(a) × ci−(a)a)(a = 1, 2, 3) (2.49)

This is the kinetic equation of tree structure rubber bushing, which includes the

description about angular velocity, variation of radius vector and angular

acceleration in the generalized coordinates.

2.2.4 Dynamic Equation of Model

Similarly, the derivation of dynamic equation of rubber bushing still begins

with the example of two bodies as shown in Figure 2.7. ρ12 and ρ22 are vectors on

the two bodies. To any point on the bodies, the radius vector can be written as,

r = rp + ρ; r̈ = r̈p + ρ̈; δr = δrp + δρ = δrp + δπ × ρ (2.50)

Figure 2.7.: Translation movement elements between B2 and B1.

Apply the virtual work principle to the Equation 2.50 and get,

n∑
i=1

[δri(Fi −mir̈i) + δπi(Li − Jiω̇i − ωi × Jiωi)] + δW = 0 (2.51)



51

Where mi and Ji is the mass of Bi and inertial tensor to mass center, Fi and Li are

force and torque applied on the mass center of Bi. The previous kinematic equation

has already solved all the variants in that equation except for the virtual work W

done by the spring and dashpot. As to the rubber bushing system, the virtual work

of spring and dashpot in the generalized coordination is given as,

δW = δqTQ (2.52)

Where Q = [Q11, Q12, Q13, Q21, Q22, Q23, Q31, Q32, Q33]T in current 9 DOF tree

structure. There are two translation movements and one rotation movement for

every rigid body. Starting from the translation movement, the expression of the

relative distance of the two vectors should be written as,

z2 = (r2 + ρ2)− (r1 + ρ1) (2.53)

Derivative the relative distance to get the relative velocity of the two bodies,

ż2 = (ṙ2 + ω × ρ2)− (ṙ1 + ω1 × ρ1). With the introduction of the incidence matrix,

the relative velocity between bodies can be represented as,

ża = −
n∑
i=1

(S(ia)ṙi+ωi×Siaρia) or ż = −(ST ṙ− (Sρ)T ×ω) (a = 1, 2, 3) (2.54)

To continue the application of virtual work principle, variation of relative distance is

analyzed and given as δz = (STα− P T × β)δq, where Pia = Siaρia. Define the

internal force applied on Bi as +Xi and the force applied on B2 as −X2, then, the

flat power elements have the virtual work as,

δW1 =
n∑
a=1

δzaXa = −δzTX = δqT (αTS + βT × P )X (2.55)

Where β = −(pT )T and α = (pT ×CT − kT )T . Now, the virtual work of translation

movement are obtained.

To further the current calculation, the definition of augmented body is

introduced. Define the vector from the mass center of the augmented body to the

augmented bodies as Bi. The mass center of the sleeves and rubber are at the center
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of cylindrical and r = 0 for all bodies. Thus, the mass center of the augmented

bodies B1, B2 and B3 also locate at the center of cylindrical, which means the mass

center of the original body and the augmented body are overlapped. The augment

body vectors of body B1 is b11 = 0; b10 = c11 and b12 = b13 = c12. As to rigid body

B2, the mass center of B1 and B0 is the cylindrical center. Again, the mass center of

augment body is r = 0, then, b22 = 0; b20 = b21 = c12 and b23 = c23. Similarly, for

rigid body B3, the augmented center is the center of cylindrical. Then, b33 = 0,

b30 = b31 = b32 = c33 and the inertia tensor of the three rigid body is given as,

J1 =
1

2
m1(r1

2 + r0
2); J2 =

1

2
m2(r2

2 + r1
2); J3 =

1

2
m3(r2

2 + r3
2) (2.56)

The excitation of the rubber bushing is caused by the external load from the

stabilizing bar, which is taken as B0 in this analysis. The active force and active

torque applied on the rigid bodies are set as zero matrix. The inner metal sleeve is

vulcanization bonding with the rubber bushing, and then the outer metal sleeve is

compressed to assemble the bonded two layers. As to the vulcanization bonding B1

and B2, the force is relative smaller than the compressed assembly layers B2 and B3.

For the inner force at the joint, the force applied on the B1 is −X2 and B2 is +X2.

The force applied on the B2 is −X3 and on the B3 is +X3. Define the inner force at

the joint 1 as zero. About the rotation torque applied on the system, since there

isn′t any rotation torque, it is easy to define rotation torque as

Y = [Y1 Y2 Y3]T = [0 0 0]T for the three joints.

The next step deals with the application of virtual work on the rotation

elements. As to the angular velocity given as Ω = P T q, the variation is δχ = P T δq.

Then, that definition provides the expression of virtual work, δW11 = −δqTPY ,

where Y = [Y1, Y2, Y3]T is the moment of the internal force. Similarly, define the

internal moment applied on B1 as +Y2 and the internal moment applied on B2 as

−Y2, then, the total virtual work given by the combination of translation and

rotation movement elements is,

δW = δW1 + δW11 = δqT [(αTS + βT × P )X − pY ] (2.57)
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From the previous work, the kinematic equation of the rubber bushing tree

structure is given as,

δr = αδq; r̈ = αq̈ + u; δπ = βδq and ω̇ = βq̈ + v (2.58)

Where α = (pT × CT − kT )T , β = −(pT )T and u = (CT )T × v − T T (g + h) + r̈01ln,

Substitute the Equation 2.58 into the total virtual work principle to get,

δqT (−Aq̈ +B) = 0 (2.59)

Where A = αTmα + βTJβ and B = αT (F −mu) + βT (L− Jv − V ) +Q. Since the

variation is independent, thus, the basic dynamic equation of current system is,

Aq̈ = B (2.60)

Now, substitute α = (pT × CT −KT )T , u = (CT )T × v − T T (g + h) + r̈01ln and

β = −(pT )T into expression A to get,

A = (pT × CT )m(pT × CT )T + (pT )J(pT )T − [pT ×G(TmT T )kT ]

− [pT ×G(TmT T )kT ]T + k(TmT T )kT
(2.61)

Substitute the first item in Equation 2.61 into the virtual principle

δqT (−Aq̈ +B) = 0 and simplify A to get,

A = (pT )K(pT )T − [pT ×G(TmT T )kT ]

− [pT ×G(TmT T )kT ]T + k(TmT T )kT
(2.62)

Similarly, substitute α, u and β into B to get,

B = (pT × CT − kT ){F −m[(CT )T × v − T T (g + h) + r011n]}

− [pT × (L− Jv − V ) +Q
(2.63)

B can be simplified further with the following two equations,

−(pT )× (CT )m(CT )Tv + (pT )Jv = (pT )kv (2.64)

(pT )× (CT )m(CT )Tg + (pT )V = (pT )G (2.65)
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Finally, the expression of B can be represented as,

B = (pT )[Kv +G− L+ (CT )× (F +mT Th−mr̈011n)]

− (kT )[F +m[T T (g + h)−m(CT )T × v −mr̈011n]] +Q
(2.66)

Now, the dynamic equation of rubber bushing tree structure in the generalized

coordination is derived.

2.3 Modal Analysis of Rubber Bushing

Using the symbolical graph and tree structure, the kinetic and dynamic

analysis of rubber bushing are finished. As discussed before, the rubber bushing is

decomposed into three bodies, which are joined by spring and damper considering

the large deformation and viscoelastic of rubber core. The following work continues

to estimate the parameters of spring and dashpot through the hammer impact

modal testing method. The first step is to detect the proper arrangement of

multi-body pieces to represent the rubber core. The second step will optimize the

parameters for each rigid body, spring and dashpots according to the measured

frequency response function (FRF). Using the experimentally estimated stiffness

and damping coefficient, the dynamic response of rubber bushing can be predicted

utilizing the dynamic equation of multi-body. Furthermore, with the measured

FRF, the working ranges of the rubber bushing can be identified to explore the

structure stability.

2.3.1 Experiment Approach and Results

The sketch of the rubber bushing used in this research is given in

Figure 2.8.For some of the model simulated using finite element method, certain

simplification is applied in preprocessing, such as neglecting slight detail of

sophisticated parts or using approximated material model. Especially, for the parts

made of viscoelastic material, the current widely used material model is empirical

and experimental. Therefore, it is highly recommended to verify or compensate the
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FEA model with the conclusion derived from the experiment measurement and

analysis. In view of the frequency-dependent modulus of viscoelastic material, the

modal analysis is critical to identify the modal shape and corresponding energy

dissipation. Hammer impact modal testing is a typical approach to process the

structure dynamic problems (Halvorsen & Brown, 1977). One of the most applied

and easiest testing measurements is the impulse technique by giving a known

impulse force to collect the response of the tested structure.

Figure 2.8.: Sketch of rubber bushing used for modal testing.

To guarantee the reliable date to acquire the appropriate FRF in fitting the

rubber bushing, correct mechanical support is of great concern. The support

applied in this test is clamped to simulate the rubber bushing as cantilever beam.

Piezoelectric transducers is set for impulse and acceleration monitor. The purpose

of current experimental modal analysis is trying to identify a theoretical model to

represent the approximate dynamic behavior of the tested structure. Dual channel

analysis is chosen in processing signal, which is shown in following flow chart

Figure 2.9.
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Figure 2.9.: Flowchart of frequency response function analyzer.

The power spectral density (PSD) of auto-spectrum and cross-spectrum

(CPSD) are calculated with Fourier transferred instantaneous spectrum using,

Pxx(f) = E[fft(x) • fft∗(x)] = E[|x|2(f)] (2.67)

Pyy(f) = E[fft(y) • fft∗(y)] = E[|y|2(f)] (2.68)

Pxy(f) = E[fft∗(x) • fft(x)] = E[|x(f)||y(f)|.ei(φy(f)−φx(f)] (2.69)

Where the E is the expected value and φ is the phase of the signal. Since the auto

PSD is a function of amplitude of signal, the phase of the cross spectrum is also

that of the total system. The application of cross spectrum is to reduce the

interference of noise while the phase angle induced by the noise spectrum are

summed up and averaged into zero.

The experiment sample and equipment are displayed in Figure 2.10. A softer

impact hammer is chosen in this test considering the lower frequency of loading

spectrum in the field test. The hammer is applied in axial and radius with similar

amplitude to avoid the interference coming from the amplitude effect. The

accelerometers are glued on the rubber busing to detect the dynamic response,

which is used to estimate the FRF of the structure.
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Figure 2.10.: (a) The accelerometer attached on the rubber bushing; (b) hammer

and dynamic signal analyzer.

The experimental platform is depicted in Figure 2.11, the inner steel sleeve is

tightly secured to a thick steel column. The steel column is fixed on the ground.

Figure 2.11.: Illustration of experiment platform setup.

Roving hammer impact test (20 averages) is employed in this study to

minimize the error caused by the background noise. The impact force and output

response collected with the acceleration monitor are shown in Figure 2.12. The

general attenuate model of the radial and axial signal can be expressed in
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exponential Xe−ξωt. X is the initial amplitude of the signal and ξ is the damping

ratio. The two unknown parameters are estimated with the fitting tool in

MATLAB, which show the overall ξ=0.08 in radial direction.

Figure 2.12.: Illustration of the impulse force and output (a) The impulse force

given by each hammer impact; (b) the response caused by each hammer impact.

2.3.2 Parameter Identification of Transfer Function

Figure 2.13 are the results of single sided amplitude spectrum of acceleration.

With this, the damped natural frequency of rubber bushing can be identified. The

FFT result of radial response indicates that the important frequency are 51Hz,

132Hz, 310Hz, 337Hz, 355Hz, 397Hz, 413Hz, and 460Hz. The coherence indicates

the reliability of radial signal in the frequency range 100∼300 is acceptable.

With the previous multi-body and modal analysis results, it is applicable to

split the rubber core into multiple layers as sketched in the Figure 2.14.
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Figure 2.13.: (a) FFT of acceleration response in radial impact; (b) coherence

estimate via Welch in radial direction.

Figure 2.14.: Partition the rubber core.

To clarify the details of partition, the following procedures are calculated to

characterize the transfer function of rubber bushing including the inner and outer

sleeves. The mass of inner sleeves is taken as infinite as the inner surface of sleeves
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is clamped with the land to analogize the cantilever beam. The DOF of rubber

bushing is shown in Figure 2.15.

Figure 2.15.: DOF of rubber bushing.

The DOF and equilibrium of this system are represented in state space

model as X = (x1 v1 x2 v2 x3 v3 x4 v4)T1×8, where the xi(i = 1, 2, 3, 4) and

vi(i = 1, 2, 3, 4) are displacement and velocity of each lumped mass. The force

equilibrium of each mass can be presented as,

ẋ1 = v1; mexv̇1 = Fex(t) = kex(x1 − x2);

ẋ2 = v2; m1v̇2 = kex(x1 − x2)− k1(x2 − x3)− η1(v2 − v3);

ẋ3 = v3; m2v̇3 = k1(x2 − x3) + η1(v2 − v3)− k2(x3 − x4)− η2(v3 − v4);

ẋ4 = v4; m3v̇4 = k2(x3 − x4) + η2(v3 − v4)− k3x4 − η3v4;

(2.70)

Now, assemble the force equilibrium of the system into matrix A,

A8×8 =



0 1 0 0 0 0 0 0

− kex
mex

0 kex
mex

0 0 0 0 0

0 0 0 1 0 0 0 0

kex
m1

0 −kex+k1
m1

−−η1
m1

k1
m1

η1
m1

0 0

0 0 0 0 0 1 0 0

0 0 k1
m2

η1
m2

−k1+k2
m2

−η1+η2
m2

k2
m2

η2
m2

0 0 0 0 0 0 0 1

0 0 0 0 k2
m3

η2
m3

−k2+k3
m3

−η2+η3
m3



(2.71)
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The B, C, D matrix are given seperately as,

B = [0
1

mex

0 0 0 0 0 0]T1×8 (2.72)

C = [− kex
mex

0
kex
mex

0 0 0 0 0]1×8 (2.73)

D = [
1

mex

] (2.74)

The response of rubber bushing subjected to the hammer impact can be represented

using the four matrixes with the relationship, Ẋ = AX +Bu and y = CX +Du,

where y is the measured acceleration obtained at the outer surface of the steel

sleeves. The hammer impact can be described using impulse function

u = Fex(t) = Fexδ(t), which is,

δ(t) =

 inf if t = 0

0 if t 6= 0
(2.75)

After Fourier transformation, the above two equations turn into,

SX(S) = AX(S) +Bu(S)

y(S) = cX(S) +Du(S)
(2.76)

And then, the transfer function is formulated as,

G(S) =
y(S)

u(S)
= C(SI − A)−1B (2.77)

In order to estimate the mass, stiffness and damping coefficient in the proposed

transfer function of rubber bushing, fit the transfer function with the experimental

Bode plot, which is shown in Figure 2.16. Fitting 1 is a simple fitting with three

curves, which indicates three modal are appropriate to present the Bode plot of

rubber bushing. It is necessary to point out that acceleration Bode plot is drew here

because the accelerometer is much more precise than the displacement measurement

for such micro vibration test. Fitting 2 is sketched on the basis of transfer function

expressed in Equation (2.77). The fitting is suitable for amplitude but not that

satisfactory for the phase degree as the disturbance of noise.
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Figure 2.16.: Fitting of Bode plot against the experimental Bode plot (a) log scale;

(b) linear scale.

For given parameters of stiffness, mass and damping coefficient kex, k1, k2,

k3, mex, m1, m2, m3, b1, b2 and b3, the transfer function in polynomial can be

written as,

TF =
p8S

8 + p7S
7 + p6S

6 + p5S
5 + p4S

4 + p3S
3 + p2S

2 + p1S
1 + p0

q8S8 + q7S7 + q6S6 + q5S5 + q4S4 + q3S3 + q2S2 + q1S1 + q0

(2.78)

where, the coefficients in the transfer function are,

q0 = m2
ex ∗ (k1k2k3kex)

q1 = m2
ex ∗ (b1k2k3kex + k1b2k3kex + k1k2b3kex)

q2 =

m2
ex ∗ (b1b2k3kex + b1k2b3kex + k1b2b3kex + k1k2m1kex + k1k2m2kex + k1m1k3kex +

k1k2k3mex+k1k2m3kex+k1m2k3kex+m1k2k3kex+k1k2mexkex+k1mexk3kex+k2mexk3kex

q3 = m2
ex ∗ (b1b2b3kex + b1k2m1kex + k1b2m1kex + b1k2m2kex + b1k3m1kex +

k1m2b2kex + k1m1b3mex + b1k2k3mex + b1m3k2kex +m2b1k3kex + k1k3mexb2 +

k1m3b2kex + b2m1k3kex + b3k1k2mex + b3k1m2kex + b3m1k2kex + b1mexk2kex+

b2k1mexkex + b1mexk3kex + b3mexk1kex + b2mexk3kex + b3mexkexk2)

q4 = m2
ex ∗ (b1b2m1kex + b1b2m2kex + b1b3m1kex + b1b2k3mex+ b1b2m3kex +

b1k2b3mex + b1m2b3kex + k1b2b3mex +m1b3b2kex + b2b1mexkex + b1b3mexkex +

b3mexb2kex + k2m1k1mex +m2k1k2mex + k3k1m1kex +m3m1k1kex +m1k2m2kex +
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k2k1m3mex +m2mexk3k1 +m2m3k1kex + k2mexk3m1 +m1m3kexk2 +m1m2kexk3 +

mexm3kexk1 +m2mexkexk2 +mexm3kexk2 +m2mexkexk3)

q5 = m2
ex ∗ (b1b2b3mex + b1k2m1mex + b1b2m1mex + b1k2m2mex + b1k3m1mex +

b1kexm3m1 + k1b2m2mex +m1b2m2mex +m1b2k1mex + k2b1m3kex + b1k3mexm2 +

b1m3m2kex + b2m3k1mex + b2m1k3mex + b2m3m1kex + b3m2k1kex +m1k2b3kex +

m2m1b3kex +mexkexm3b1 +m2b2mexkex + b2mexm3kex +mexb3kexm2)

q6 = m2
ex ∗ (b1b2m1mex + b1b2m2mex + b1b3m1mex + b1b2m3mex + b1b3m2mex +

b2mexb3m1 + k1m3m1mex +m1k2m2mex +m2m3k1mex + k2m1m3mex +

m1k3mexm2 +m1m3m2kex + b2m3kexmex)

q7 = m2
ex∗(b1m3m1mex+m1b2m2mex+b1m3m2mex+m1b2m3mex+m1b3m2mex)

q8 = m2
ex ∗ (m1m2m3mex)

p0 = 2mex ∗ (k1k2k3kex + k1k2kexkex + k1kexk3kex + kexk2k3kex)

p1 = 2mex ∗ (b1k2k3kex + k1b2k3kex + k1k2b3kex + kex
2k2b1 + 2kex

2b2k1 +

kex
2b1k3 + kex

2k1b3 + kex
2b2k3 + kex

2k2b3)

p2 = mex ∗ (2b1b2k3kex + 2b1k2b3kex + 2k1b2b3kex + 2k1k2m1kex + 2k1k2kex +

2k1m1k3kex + k1k2k3mex + 2k1k2m3kex + 2k1m2k3kex + 2m1k2k3kex + k1k2mexkex +

k1mexk3kex + k2mexk3kex + 2kex
2b2b1 + 2kex

2b3b1 + 2kex
2b2b3 + 2k1m3kex

2 +

2m2k2kex
2 + 2m3k2kex

2 + 2m2k3kex
2)

p3 = mex ∗ (2b1b2b3kex + 2b1k2m1kex + 2k1b1m1kex + 2b1k2m2kex +

2b1k3m1kex + 2k1m2b2kex + 2k1m1b3mex + b1k2k3mex + 2b1m3k2kex + 2m2b1k3kex +

k1k3mexb2 + 2k1m3b2kex + 2b2m1k3kex + b3k1k2mex + 2b3k1m2kex+ 2b3m1k2kex +

b1mexk2kex + b2k1mexkex + b1mexk3kex + b3mexk1kex + b2mexk3kex + b3mexkexk2 +

2m3b1kex
2 + 2m2b2kex

2 + 2m3b2kex
2 + 2m2b3kex

2)

p4 = mex ∗ (2b1b2m1kex + 2b1b2m2kex + 2b1b3m1kex + b1b2k3mex +

2b1b2m3kex + b1k2b3mex + 2b1m2b3kex + k1b2b3mex + 2m1b3b2kex + b2b1mexkex +

b1b3mexkex + b3mexb2kex + k2m1k1mex +m2k1k2mex + k3k1m1kex + 2m3m1k1kex +

m1k2m2kex + k2k1m3mex +m2mexk3k1 +m2m3k1kex + k2mexk3m1 +m1m3kexk2 +

m1m2kexk3 +mexm3kexk1 +m2mexkexk2 +mexm3kexk2 +m2mexkexk3 +

kexk1m1m2 + kexm2k1m3 + kexk2m1m3 + kexk2m1m3 + kexm1m2k3 + 2kexm3m2kex)
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p5 = mex ∗ (b1b2b3mex + b1k2m1mex + b1b2m1mex + b1k2m2,ex +b1k3m1mex +

2b1kexm3m1 + k1b2m2mex + 2m1b2m2mex +m1b3k1mex + k2b1m3kex + b1k3mexm2 +

2b1m3m2kex + b2m3k1mex + b2m1k3mex + 2b2m3m1kex + b3m2k1kex +m1k2b3kex +

2m2m1b3kex +mexkexm3b1 +m2b2mexkex + b2mexm3kex +mexb3kexm2)

p6 = mex ∗ (b1b2m1mex + b1b2m2mex + b1b3m1mex + b1b2m3mex + b1b3m2mex +

b2mexb3m1 + k1m3m1mex +m1k2m2mex +m2m3k1mex + k2m1m3mex +

m1k3mexm2 + 2m1m3m2kex + b2m3kexmex)

p7 = mex
2 ∗ (b1m3m1 +m1b2m2 + b1m3m2 +m1b2m3 +m1b3m2)

p8 = mex
2 ∗ (m1m2m3mex)

In order to have the optimized transfer function, those parameters are

identified from the curve fitting optimization, which give k1 = 1.7979106,

k2 = 9.018106, k3 = 1.688675107, m1 = 0.0699kg, m2 = 0.0293kg, m3 = 0.0485kg,

mex = 0.2556, b1 = 136.7233, b2 = 264.1990, b3 = 175.1113, and kex = 1.25107.

Figure 2.17 shows the root locus and Nyquist diagram of the estimated

transfer function based on acceleration Bode plot. At low frequency, the zeros and

poles are near each other and then form open loop dipole. The effect of the zeros

and poles pairs on the stability of the system is trivial as cancellation occurs. The

more zeros in the transfer function, the root locus will shift to left even more, which

can greatly benefit the stability of the system. Furthermore, since the zeros are

located at imaginary axis, the influence becomes more important. And in this case,

the zeros are more close to the imaginary axis than the poles. The dipole near the

original or coordinates can enhance the static stability of the system.
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Figure 2.17.: Acceleration based transfer function of the clamped rubber bushing

(a) Root Locus; (b) Nyquist diagram.

The zero/pole/gain of the acceleration response based transfer function with

the identified parameters are given as,

3.91s2(s2 + 1038s+ 1.77e8)(s2 + 6320s+ 2.36e8)(s2 + 1.73e4 + 6.738)

(s2 + 232.4s+ 3.95e6)(s2 + 1901s+ 2.17e8)(s2 + 5220s+ 2.348)(s2 + 1.73e4 + 6.73e8)
(2.79)

To have stability analysis, the root locus of the system on the basis of displacement

Figure 2.18.: Displacement based transfer function of the clamped rubber bushing

(a) Original; (b) enlarged.

is plotted in Figure 2.18. That plot shows the critical frequency of structure stability
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at 937.4Hz or 5890rad/s. In general, the working environment of vehicles is around

10Hz, which is much lower than the critical frequency. Thus, the possible failure

mechanism of the rubber bushing can be viewed in the aspect of thermal damage.

2.3.3 Energy Dissipation Mechanism and Stability Evaluation

Under the harmonical external excitation, the energy dissipation of the

rubber bushing system in a cycle period T can be calculated using,

T∫
0

m ¨x(t) ˙x(t)dt+

T∫
0

c ˙(t) ˙x(t)dt+

T∫
0

kx(t) ˙x(t)dt =

T∫
0

F0cos(ωt) ˙x(t)dt (2.80)

Where, F0cos(ωt) is the sinusoidal force representing the real working environment

of the rubber bushing. The three terms at the left side of the equation are kinetic

energy, dissipation energy or damping and strain energy of the system. Kinetic and

strain energy are conservative energy and the accumulated energy in one cycle are

zeros. Thus, the work done by the external force will be equal to the dissipation

energy inside of the rubber bushing.

Figure 2.19 plots the dissipation energy generated in the three parts of the

rubber bushing at excitation frequency 100Hz. As to the three parts, the stiffness of

part1 is lower than that of part 2 and part 3. As a result, the displacement is larger

than that of the other two. The work(N.m) done by the force is calculated using

Newton integration method, and the calculated loop area is higher in part 1.

The structure made with higher modulus material will have the resonance at

higher frequency than that made from lower modulus material. Thus, with the

inner and outer steel sleeves, the first mode of the clamped rubber bushing will

happen at higher frequency, which is much higher than the actual loading frequency

of moving vehicle. The natural frequency of the clamped structure can be taken as

310Hz or 2000rad/s according to the Bode plot of rubber bushing. In the real

driving situation and in the following discussion, the external excitation frequency is

pretty low, and the dissipation energy loop formed by force/displacement or the
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Figure 2.19.: Force against displacement of three parts of the rubber core and the

accumulated work at 100Hz excitation.

loop formed by stress/strain is also pretty small. Before reach to the natural

frequency, the more close of the excitation frequency to the natural frequency, the
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Figure 2.20.: Force against displacement of three parts of the rubber core and the

accumulated work at 200Hz excitation.

larger the enclosed area of the loop. Again, the enclosed area is just the energy

dissipation per cycle, at high frequency, more cycles′ dissipation energy are



69

accumulated in unit time, which accounts for the accumulated energy at high

frequency. When the excitation frequency is pretty high, which may approximate to

the second or third natural frequency, even though the displacement is smaller at

that time, but the cycles in unit time is also pretty higher. As to the complicated

modal shape at higher order modal, strain energy needed to launch that

deformation is also pretty large. All in all, the two factors contribute the

dramatically accumulation of the dissipation energy at higher frequency, which

turns to the heat source inside the rubber components. Besides of the extremely

high frequency loading leading to the structure instability, the failure mechanism of

the rubber bushing can be attributed to the thermal aging at higher temperature.

As comparison, the dissipation energy of the three parts of the rubber core

accumulated at the excitation frequency 200Hz are given in Figure 2.20. At

frequency 100Hz or 200Hz, the stiffness of the structure is almost independent of the

excitation frequency. The higher generation rate of dissipation energy at 200Hz is

expected from the higher displacements at that frequency. Since the 200Hz is more

close to the first natural frequency of the clamped rubber bushing, the resonance

effect can properly explain the higher displacements and corresponding higher

dissipation energy.

Using the multi-body analysis, the energy dissipation of each part of the

rubber core is estimated. With the preset loading amplitude and frequency, the

displacement of each piece can be calculated using the transfer function. Since

stiffness of each part is higher than the whole piece of rubber core, the corresponding

displacement of each part is lower than the whole piece. The dissipation energy of

each piece of the rubber core is calculated individually with the loop formed by

force and displacement of each lumped mass. That approach is similar to the

principle used in the FEA while the later usually estimates dissipation energy with

loop area form by stress and strain. Especially, in order to predict the temperature

distribution of the rubber bushing, the rubber core has better to split into as many
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pieces as possible. Each piece is a unique element with lumped mass and distinct

dissipation energy calculated from the displacement of each node in each element.

In sum, the FEA approach and multi-dynamic analysis are interlinked in

estimating the dissipation density of rubber core from the displacement of each

individual element. In the multi-body analysis, each element is determined by the

modal testing of the structure, while the element number in FEA is determined

through the convergence curve of the mesh. The summing up displacement of the

three pieces equals to the total displacement of the rubber core. Corresponding, the

cumulative displacement of each element in the FEA turns to the overall

displacement of the rubber core. Either in the multi-body analysis or in the FEA, it

is the addition of the stiffness reciprocal of each piece or element to represent the

stiffness of the rubber component. Thus, the individual stiffness of each piece or

element is much higher and the corresponding displacement is much lower compared

with the whole structure. The advantage of the multi-body approach is its

feasibility and accuracy as long as limited assumptions. It is pretty useful for the

multi-body analysis of suspension system or whole vehicle, which requires proper

stiffness and damping coefficient to simulate the dynamic response of suspension

system. However, modal shapes depend on structure and boundary condition, the

current transfer function is not applicable to predict the rubber bushing dynamic

response at tensile testing. Furthermore, the heat generation of the three pieces

clamped rubber core is not uniform, thus, it is not comprehensive to represent the

distribution of dissipation energy density merely using the three lumped heat

source. To have more proper heat source, a more detailed distribution on the basis

of many elements is more credible. Therefore, in the following work, the

temperature distribution of rubber core using the distributed heat source from each

element is explored.
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2.4 Conclusion

In this work, the multi-body dynamic principle and it application on rubber

bushing to predict the dynamic behaviors are discussed. The multi-body approach is

commonly used in the suspension system or the whole vehicle simulation to estimate

the response of vehicle upon various loading on the road. In current analysis, the

symbolical graph initiated by Wittenburg is employed to format the kinetic and

dynamic equation of rubber bushing. The method proves to be pretty concise and

representative to illustrate the translation movement and rotation movement of each

piece of the multi-body system. The dynamic equation is evaluated by introducing

the driver from the suspension system and then predicting the response of the outer

steel sleeves of the rubber bushing. This approach to calculate the dynamic

transmission properties of suspension system is widely applied in automobile

industry. While to continue the dynamic analysis of rubber bushing to simulate

suspension system, the proper parameters identifications for mass of each body,

spring and dashpot coefficients representing the connection force are carried out.

To get the spring stiffness and damping coefficient of the rubber core to

facilitate the multi-body analysis, modal hammer testing is carried out. With the

FFT of the acceleration response of rubber bushing upon the hammer impact, three

pieces of lumped mass to represent rubber core is proposed. The parameter of mass,

spring and dashpot are identified with the curve fitting optimization method on the

basis of Bode plot. The structure instability of rubber bushing is predicted using

Bode plot of displacement transfer function with the zero initial value assumption.

Since the general driving frequency of vehicle is much lower than the critical

frequency leading to the structure instability, the dominate failure mechanism can

be attributed to the thermal aging of rubber core. Furthermore, the dissipation

energy accumulated in each part of the body is estimated, which shows energy

dissipation over each loading cycle at different frequency. The lumped dissipation

energy density gives the motivation to explore the more detailed energy dissipation

density and temperature distribution of rubber bushing over time.
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CHAPTER 3. SPECTRAL ANALYSIS AND PARAMETER IDENTIFICATION

OF CONSTITUTIVE MODEL

3.1 Constitutive Model and Spectral Analysis

There are many analogous models suggested to model rubber components′

mechanical properties using lumped or discrete elements in order to meet the

reproduction accuracy (Stein, Zhang, & König, 1992), and (Stein, Zhang, & Huang,

1993). Berg′s three branches model encompassed the elasticity, viscosity and friction

effect in rubber with fillers, which model provided a proper model to characterize

the amplitude dependent hysteresis damping under quasi-static loading conditions.

In Berg′s model (Figure 1.5), discrete elements with specific characteristics forming

three branches to present the overall model structure of rubber components are

applied in this dissertation. The total applied uniaxial load is shared by the three

branches and each branch has the same individual strain. A short description of

different elements in this rubber model is characterized in following.

Branch 1 is a spring element with modulus E2 to represent the overall elastic

behavior of rubber, branch 2 are connected spring element E1 and dashpot element

C1, and the branch 3 is the friction element Ff to characterize the static friction

between carbon black and molecular chain. The second and third branch can

describe the amplitude and frequency-dependence of rubber separately. This

construction gives a nonlinear reproduction of the parameter-dependence of

hysteresis damping and viscoelastic damping in a large range of frequency and

amplitude.
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3.1.1 Static Friction (Hysteresis Damping)

In Berg′s model, the turning point of the hysteresis loop formed by the

displacement and force are identified to develop mathematic relationship and

characterize the dissipation (Berg, 1997). Because of the hysteresis harshness, the

stiffness of the rubber displays obvious increase after the higher turning point. One

disadvantage of the mathematic approach in approximate the stiffness dependence is

the lack of universality. Especially, this approach couldnt cover the random

excitation and didnt give a comprehensive estimation of stiffness for each stage of

the deformation.

Figure 3.1.: Typical hysteresis curve of rubber under quasi-static harmonic

excitation.

In Berg′s model, to describe frequency-independent hysteresis stiffness,

maximum force and turning displacement point is needed to develop half of the

maximum force. Similarly, the modified model about friction element also requires

the measurement of the position of turning points, which split the loading and

unloading curves into three pieces. The auxiliary stiffness of hysteresis damping

coming from static friction effect is represented with spring K2 and K5, which are
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located between turning points and much more hardened than the remaining

springs. Due to the different stiffness at each stage in the hysteresis loop, a tri-linear

model with multiple springs Ki is suggested, where i = 1, 2, 3, 4, 5, and 6. Stresses

of different piece of the hysteresis loop therefore should be written as: stage 1 for

strain ranging from 0 to ε1; stage 2 for strain ranging from ε1 to ε2 and stage 3 for

strain ranging from ε2 to ε3. In order to balance the model complexity and

computation efficiency, the six springs′ stiffness can be simplified by setting

K2 = K5, K1 = K4 and K3 = K6 according to the acknowledged profile of hysteresis

curve. The total energy lost (Ef ) per cycle caused by hysteretic damping can be

produced from loop area calculation,

Ef =
K1ε1

2

2
+
K2(ε2

2 − ε1
2)

2
+
K3(ε3

2 − ε2
2)

2

− K4(ε3
2 − ε4

2)

2
− K5(ε4

2 − ε5
2)

2
− K6ε5

2

2

+ b2(ε2 − ε1) + +b3(ε3 − ε2)− b4(ε3 − ε4)− b5(ε4 − ε5)

(3.1)

The micro-level damage insider the rubber caused the stiffness decrease at larger

strain, which is characterized as Mullins effect (Mullins, 1969). The

rate-independent response hysteresis damping is related with the internal friction

force under static excitation. In the subject of static or quasi-static conditions,

time-independent and amplitude-dependent hysteresis loops are reported in plenty

of literatures, even a change of magnitude of deformation rate couldn′t lead to

significantly variation of the hysteresis loops. This conclusion indicates that the

widely applied model about viscoelastic model is insufficient to character the

quasi-static force-deflection response of rubber bushing. The tri-linear model of

springs represents the response of rubber component due to the fact that the

stiffness relaxation, hardening and relaxation occur with the ramping of strain.

The interaction between molecular chain in polymer and fillers is a primary

cause of stiffness hardening and softening of rubber. Besides of the stiffness, the

commonly added carbon black fillers also enhance the damping and abrasion

resistance of polymer. Agglomerates of carbon black particles are linked together by
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Figure 3.2.: Microstructure of a carbon black filled polymer network.

those molecular chains of polymer, which are of different lengths. Irreversible

slipping process between polymer molecule chains and fillers can happen when the

critical deformation of chain is reached. From the force-deflection test, the reduction

of stiffness happens in a large range of strain, which is dependent on characters of

different chain lengths. For molecular chain of different length, slipping process

starts at different critical stretch force. With the increase of strain, the elastic limits

of fillers were surpassed and that stimulated the relative slipping among

agglomerates of fillers(Kaliske & Rothert, 1998), and (Dannenberg, 1975). The

hardening and softening under cycle loading is also attributed to the recoverable

stretched and rupture of molecule chains. Those molecule chains are of different

length and elastic limits, thus, part of the molecule chains can be in relaxation and

part of them are stretched tightly.

Figure 3.2 displays the microstructure of carbon black filled rubber and the

connection between fillers and polymer chains. However, those connection can be

broken if higher external excitation is applied. It is acceptable that the carbon black

fillers can change its position relative to molecular chains cluster as a response upon

increasing load. The stiffness of rubber at small strain is lower as the most of
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molecular chains cluster are in relaxation. When carbon black particles shift from a

position to another to coordinate the deformation, the stiffness of rubber increases

obviously since more and more molecular chains clusters are stretched and starts to

undertake load. Further increase of loading or lager strain pushes the carbon black

particle shift to further position, as a response, molecular chains cluster will start to

break once the elastic limit is reached. The turning points of hardening and

softening are imprecise as the hardening and softening appears in a strain range

because of the different strain limits of molecules chains. The straightening and

breakage of molecular chains are partially reversible during unloading. As a result,

the reversible deformation of molecule chains and the friction cause noticeable static

hysteresis damping.

3.1.2 Viscous Damping and Frequency Domain Behaviors

Amplitude and phase behavior are used to characterize the dynamic systems

and the complex notation is introduced to deal with the phase behavior. The

damping of system in the time domain is displayed using the phase behavior of

input and output variables. In terms of viscoelastic material, the constitutive model

is time differential equation, which shows phase behavior in plots of stress against

strain or force against displacement. There are multiple approaches to integrate the

differential equation, while the primary approach of dealing with this type of

differential equation is to introduce complex quantities. As a consequence, input

loading history and output response history become function of eiωt and the

corresponding transfer functions are complex quantities. Apply σ = σ0e
i(ωt+δ) and

ε = ε0e
iωt in time differential equation of standard linear model and then cancel eiωt

to get the simplified dynamic modulus of viscoelastic material(Meyers & Chawla,

1991). Since all oscillating quantities in the standard linear model are defined as
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complex quantities, the derived complex modulus E∗ is composed of the storage

modulus and loss modulus,

E∗ = E ′ + iE ′′ = k2 + k1
ω2τ 2

1 + ω2τ 2
+ ik1

ωτ

1 + ω2τ 2
(3.2)

Where, E∗ =
(
σ0
ε

)
eiδ and tanδ = E′′

E′ . The real part is the storage modulus E ′ and

the imaginary part is the loss modulus E ′′ . With this linear representation of

modulus, the dynamic stiffness and damping coefficients are given as,

Edyn = |E∗| =
√
E ′2 + E ′′2; C(ω) =

E ′′√
E ′2 + E ′′2

(3.3)

The relaxation modulus is significant index to evaluate the reliability of the

constitutive model and that modulus is directly related with the storage modulus

and loss modulus. Considering the Heaviside function to simulate the strain,

ε (t) = ε0H (t) ; H(n) =

 1 t≥0

0 t<0
(3.4)

Substitute the Heaviside function into constitutive equation and have, ¯ε (t) = ε0/S

and
¯̇
ε (t) = ε. Define σ(∞) = ε0E(∞) at the equilibrium and σ0 = ε0(k1 + k2) at the

beginning. The relaxation modulus can be obtained after reverse Laplace transfrom,

σ = k2ε0

(
1− exp(− t

τ
)

)
+ σ0exp

(
− t
τ

)
(3.5)

With the relaxation modulus Y (t) = σ(t)/ε0 derived from above equation, the creep

compliance can be obtained from the relationship ¯Y (t) ¯J(t) = S−2. That gives the

creep compliance as,

ε =
σ0

k2

[
1− (1− k2

k1 + k2

)exp(1− k2t

(k1 + k2)τ
)

]
(3.6)

According to the Boltzmann superposition principle, the viscoelastic integral

relaxation constitutive can be written as,

σ(t) = Y0ε(t) +

t∫
0+

ε(ξ)
dY (t− ξ)

dt− ξ)
dξ (3.7)
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The next step is to derive the modulus in frequency domain to characterize the

influence of frequency. In the following discussion, two approaches are discussed to

illustrate the steps to develop the modulus. In the first method, with the known

integral relaxation constitutive model and Laplace transform, the relationship

¯σ(t) = Sε(s) ¯Y (s) can be applied. After the Laplace transform, define S = α + iω

and set α = 0. Since the dynamic relaxation modulus is given as σ(t) = ε(t)Y ∗(iω),

it is easy to get the connection between relaxation modulus and complex modulus,

Y ∗(iω) = iω ¯Y (iω). In sum, do the Laplace transforms on the relaxation modulus

and then replace S with iω to get ¯Y (iω) = k2/(iω) + k1τ/(τiω + 1). Multiply this

with iω, finally, the complex modulus from the relaxation modulus can be

represented, which tally with the complex modulus derived in Equation 3.2.

The second approach to get the complex modulus is to set σ(t) = σ0e
iωt

and ε(t) = ε∗eiωt. Substitute the two equations into standard constitutive

equations, then, the complex relaxation modulus can be obtained from the

relationship Y (iω) = σ0/ε
∗. With the modulus and strain in frequency domain, the

stress and strain relationship can be characterized as,

σ(t) = E(iω)ε0e
iωt = E(iω)ε(t) (3.8)

In the previous discussion, the advantage of standard linear model is

generally motioned. To have comprehensive understanding about the construction

principle of those constitutive models and give strong evidence to support the

selection of proper material models for future analysis, the frequency domain and

time domain testing are carried out on those models to have a thorough comparison.

In the following discussion, the Maxwell model is termed as fluid model and the

Voigt model is termed as solid model.

Apply σ = σ0e
i(ωt+δ) and ε = ε0e

iωt in time differential equation of fluid

model, the loss modulus, storage modulus and dynamic modulus are,

E ′′ =
ωηk2

k2 + ω2η2
; E ′ =

ω2η2k

k2 + ω2η2
; E∗ = E ′ + iE ′′ (3.9)
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Similarly, the loss modulus, storage modulus and dynamic modulus of solid model

are,

E ′′ = ωη; E ′ = k; E∗ = E ′ + iE ′′ (3.10)

Figure 3.3.: Frequency dependent modulus of (a) Standard model; (b) fluid model;

(c) solid model.

Setting the k1 as 0.8× 106MPa, k2 as 1.07× 106MPa, and η as

0.00323× 106MPa.s, the modulus of the three models are plotted in Figure 3.3.

With the comparison in Figure 3.3, the standard solid model is more appropriate to

represent the modulus of viscoelastic material than the solid model and fluid model.

In the solid model, the dynamic modulus and storage modulus start from zero in

the frequency range, which indicates the static modulus as zero at 0Hz excitation

and conflicts with the real property of rubber. While in the solid model, the

dynamic modulus and storage modulus show linear increase with the excitation

frequency but without maximum limitation. That behavior also disagrees with the
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real situation in the rubber, which is independent with the frequency after the

maximum modulus is reached. In sum, the standard solid model is the simplest

proper model to represent the variation of modulus in frequency domain.

Actually, the current standard linear model (Figure 3.4(a)) is based on the

fluid model, and there is analogous model shown in Figure 3.4(b). For clarification,

in the following discussion, the previous discussed standard linear model is termed

as model 1 and the later is termed as model 2.

Figure 3.4.: Two standard linear models (a) Model 1; (b) model 2.

As to the model 1, the modulus at lower frequency and higher frequency are

ˆE(0) = E1 and ˆE(∞) = E1 + E2 respectively. The corresponding constitutive

relationship of the first model is,

ηdσ

E2dt
+ σ =

E1 + E2

E2

η
dε

dt
+ E1ε (3.11)

As to the model 2, the modulus at lower and higher frequency are ˆE ′(0) =
E′

1E
′
2

E′
1+E′

2

and ˆE ′(∞) = E ′1 respectively. The corresponding constitutive relationship of the

second model is,

ηdσ

(E ′1 + E ′2)dt
+ σ =

E ′1ηdε

(E ′1 + E ′2)dt
+

E ′1E
′
2ε

E ′1 + E ′2
(3.12)

Even though the two time differential equations are of different coefficients,

with proper assignments of parameters for spring and dashpot elements, the two

constitutive equations can represent the same material. Comparing the coefficients

for each variable, three necessary conditions should be satisfied,

η

E2

=
η′

E ′1 + E ′2
;

E1 + E2

E2

η =
E ′1η

′

E ′1 + E ′2
;

E1 + E2

E2

=
E ′1

E ′1 + E ′2
(3.13)
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Similarly, to represent the same material, the constitutive relationships in the

frequency domain should overlap with each other. To satisfy the requirements in

time domain and frequency domain, the following equations are posted,

E1 =
E ′1E

′
2

E ′1 + E ′2]
; E1 + E2 = E ′1; η′ = η

E ′1 + E ′2
E2

(3.14)

In the previous discussion, the parameters of the first model are set as E1=1.07MPa

and E2=0.8MPa. To represent the same material with the second model, then, the

corresponding parameters should be E ′1=1.87MPa, E ′2=2.50MPa and η′=5.46η on

the basis of the Equation (3.14).

Figure 3.5.: Comparison of two standard models (a) Loss modulus; (b) storage

modulus; (c) dynamic modulus.

With the proper selection of parameters for the two standard models, the

frequency dependent modulus are compared in Figure 3.5. Even though the

expressions of the constitutive equations are different and the coefficients of spring
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and dashpot elements are different too, the loss modulus, storage modulus and

dynamic modulus of the first standard model overlap with those in the second

standard model. Those results indicate that both of the two standard models are

appropriate to represent the mechanical behaviors of viscoelastic materials and are

equivalent in describing the same material. However, the first standard model is

used more frequent than the second one since it is easier to rearrange the first

standard model to get the generalized Maxwell model.

Figure 3.6.: Influence of damping coefficient on the modulus: (a) Loss modulus (b)

storage modulus (c) dynamic modulus.

The damping ability of the rubber is critical in determining the performance

of rubber component as it greatly affects the modulus at lower frequency range. To

elaborate the effect of damping on the modulus, Figure 3.6 plots the frequency

dependence of loss modulus, storage modulus and dynamic modulus.
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With the introduction of complex quantities, each variable has real and

imaginary parts and is function of eiωt. The complex stress and strain expressions

under single frequency excitation in the time domain are given in the following,

ε = [εR + iεI ]e
iωt = [εR cos(ωt)− εI sin(ωt)] + i[εR sin(ωt) + εI cos(ωt)] (3.15)

σ = [σR + iσI ]e
iωt = [σR cos(ωt)− σI sin(ωt)] + i[σR sin(ωt) + σI cos(ωt)] (3.16)

Where the subscript I means real part of the variable and subscript R means

imaginary part of the variable. To reconstruct the response of single frequency

excitation in time domain, the real parts of the stress and strain are extracted. The

real part is characterized on the basis of two time functions, one is sinusoidal

function and another one is cosine function. Because of the existence of two time

functions, the elapse of strain over stress is presented after the reconstruction of

single frequency excitation in time domain. Whereas the single frequency excitation

is the extreme case and the general loading history can be treated as superposition

of multiple frequency excitations. To deal with the more complicated loading

history, the spectral analysis can be introduced later to elaborate its application in

the time domain analysis.

3.1.3 Application of Spectral Analysis and Reconstruction

In the time domain, the constitutive relationships of the three classical

models representing viscoelastic materials are differential equations, which post a lot

of challenges to integrate them in order to get the response in the time domain.

From the definition of transfer function and the hereditary of viscoelastic material,

the displacement history of the structure with viscoelastic material is represented as,

U(t) =

t∫
0

G(t− t∗)P (t∗)dt∗ (3.17)

Where t∗ is the elapsed time, P (t∗) is the loading at time t∗ and G(t− t∗) is the

transfer function, which is time dependent. In order to have the response at time t,
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it is necessary to do the integral over all elapsed time. Similarly, the response at

t+ dt needs to sum up the product of G(t− t∗)P (t∗) from the beginning at time

zero to the current time. That means the response at any time needs to calculate

the integral over all past time. That integral is redundant and time consuming.

Viscoelasticity has the same meaning with hereditary in current case as the

integral is required to calculate the current response. The kernel of the integral is

the time dependent transfer function G. If discrete the Equation 3.17 in time

domain and do the summation in a window with a thousand points, a thousand

times integral should be completed in order to get the whole response in the time

domain. That approach is very complicated and inefficient since it introduces a lot

of calculation. Alternately, there are actually many more powerful skills to solve the

integral, one of the most efficient approach is the spectral analysis using the FFT

algorithm.

The fundamental method to solve the convolution is to do the Laplace

transform, which transforms the integral into frequency domain and then do the

product. The transformation from time domain to frequency domain implements

the FFT and IFFT algorithm, which is very efficient. This approach saves a lot of

steps since no summation is needed expect for the product in frequency domain. The

response of each point in the time domain can be obtained after the inverse FFT .

It is easier to work in the frequency domain when the structure is made of

viscoelastic materials. There are some problems which begin in frequency domain

and end in the frequency domain, such as sinusoidal vibration. It is convenient to

understand the frequency response in single or frequency scan. While some of the

problems begin in the time domain and end in the time domain, such as the creep

behavior of different viscoelastic material models. As to the problem in time

domain, the periodic and single frequency excitation is extreme loading case,

whereas spectral analysis is applied to deal with the vibration problem under

general loading types. With the Fourier analysis, any signal in time domain can

represent as multiple harmonic signals at different frequency. Then, the loading and
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displacement in the governing equation can be connected using the transfer function

at each frequency components,

P (t) =
∑
n

P̂ne
iωnt, u(t) =

∑
n

ûne
iωnt (3.18)

The general flowchart in Figure 3.7 shows the process to tackle the vibration

problem in time domain.

Figure 3.7.: Flowchart of using spectral analysis in general time domain problem.

The work in the flowchart includes three steps. The first step is to transform

the loading history of the structure from time domain into frequency domain using

the FFT algorithm. Then, the second is to include the constitutive relationship of

the material model. All viscoelastic material models are frequency dependent, even

though the constitutive relationships of those models are expressed as differential

equation in time domain. Actually, frequency dependent modulus contributes to

understand the material properties of the rubber and facilities the dynamic analysis

in the frequency domain, especially the linear dynamic analysis. In the step two, a

frequency loop is developed to calculate the response of the structure at each

frequency (Doyle, 1989),

ûn = Ĝ(ωn)P̂n (3.19)
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ˆG(ωn) is the transfer function of the system in frequency domain. The third step is

to get the response in time domain after reconstruction using IFFT algorithm.

3.1.4 Time Domain Behaviors of Constitutive Models

Figure 3.8.: (a) Short time domain; (b) long time domain; (c) wrap around effect;

(d) zero frequency effect.

One of the standard problems in time domain is creep behavior of

viscoelastic materials and the following discussion illustrates the capability of

spectral analysis to predict the behavior. First of all, a loading history of stress

should be specified as the input loading applied on the model. The loading history

in time domain is discrete in frequency domain but an infinite content in the

frequency domain is impossible. In order to avoid the jump up in the time domain
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in case the infinite in frequency content, proper specifications about rising time and

drop time are needed. A larger drop time or larger time domain is desired to avoid

the periodicity of response since longer time window is preferred. That extra long

time window is necessary to draw the loading in time domain but the long tail of

loading information does not used for the reconstruction analysis.

Because of the periodicity, the beginning and ending value in the time

domain are same to keep the continuity. While when the time window is short, the

response of the loading is still nonzero at the end of window, as a result, the

beginning value of the response in the time window is nonzero(Figure 3.8(a)). That

is not acceptable since the response before the loading should be zero. One of the

effective approaches to make sure the zero beginning value of the response is to have

a longer time window as shown in Figure 3.8(b). Another problem encountered after

reconstruction is the nonzero response before the start of the loading, which is

termed as wrap around effect. When the input and output signal are of different

differential level, the phenomenon becomes more obvious. Enlarged the time

window size is helpful but not enough to remove the effect. The constant used in

the integral over time domain is the primary reason for the initial nonzero signal of

response. Fit the nonzero signal with a straight line and then subtract it from the

reconstructed signal can minimize the wrap around effect. Figure 3.8(c) shows the

comparison of original response obtained from spectral analysis and the corrected

response after subtracting a fitted straight line. Another important drawback of the

reconstruction attributes to the zero frequency components, which is uncertain and

shows arbitrariness. The original reconstructed signal in Figure 3.8(d) is nonzero

almost in the entire window. However, the signal can be corrected with the proper

specification of zero frequency component as û0 = −
N−1∑

1

ûn.

Generally speaking, in order to avoid the warp around effect and zero

frequency effect, a larger FFT number N and small time step dt are preferred. The

practice of parameters in Figure 3.9 indicts that higher N and lager dt are effective

and preferred to reconstruct the correct response signal.
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Figure 3.9.: (a)wrap around effect when dt=0.01; (b) Increase dt to get rid of wrap

around; (c)increase the N to 2048.

In the current test, N is set as 8192 and time step dt is set as 0.1 to balance

the accuracy and burden of computation. Here, the stress and strain relationship is

applied to test the creep behavior, that governing equation can be represented as

σ̂ = Ĥε̂, where Ĥ is the frequency response function in those viscoelastic material

model. While in the Simplex program, Ĥ is the finite cube under deformation. It is

necessary to keep the frequency content nonzero in the interested frequency range.

In order to test the factors affecting the creep behavior, different loading histories

are tested. The first group assumes the same rising time and drop time of the

loading stress, but the duration of stress are set as 2s, 20s and 200s. To have better

testing results, some parameters are defined, which is different from the date

obtained from experimental testing. Those parameters are E2=6MPa, E1=4MPa

and η=32.3MPa.s.
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As to the solid model, the stress and strain relationship and the

corresponding frequency response function in complex are given as,

σ̂ = Êε̂+ iωηε; Ĥ1 =
1

Ê + iωη
(3.20)

The governing equation of the fluid model and the frequency response function

between the stress and strain rate in complex are given as,

σ̂

Ê
+

σ

iωη
= ε̂; Ĥ2 =

iω

Ê
+

1

η
(3.21)

For the standard model 1 and 2, the transfer function are,

Ĥ3 =
E1 + iωη

E1E2 + E1E2iωη
; Ĥ4 =

iωη + E1E2

iωE1η + E1E2

(3.22)

From the discussion in last section, with proper chosen parameters, the modulus

behavior of the standard model 1 and model 2 are identical in the frequency

domain, thus, in the following discussion, merely the creep behavior of standard

model 1 will be discussed.

Figure 3.10.: Amplitude of frequency content at different duration(a) 2s and 20s;(b)

20s and 200s.

To have clear elaboration about the influence of stress duration on the creep,

the FFT spectrum of the three loading histories are shown in Figure 3.10 on the

basis of standard linear model. FFT results indicate the frequency amplitude is
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nonzero in the low frequency range and the long stress duration produces high

amplitude at the zero frequency component. The longer the stress duration, the

higher is the amplitude of the lower frequency zone. In this test, the creep behavior

is connected with the content of lower frequency components. In this group of

comparison, the amplitude of zero frequency component are 4, 22, and 180, which

are proportional to the stress duration.

Figure 3.11.: Creep at different loading period(a)2s; (b)20s; (c)200s and Creep at

different rising time.

Figure 3.11 shows the strain histories of the three cases of loading. The

common phenomena in the three strain histories are the straight lines at the initial

rising and drop stage, which present the immediate response of the material to the

external stress. The initial part is purely elastic behavior, while the strain slowly

increases nonlinearly for a certain period after this stage. With the assumed

material parameters used in this test, the ongoing increasing strain or the creep
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period happens in the initial 20s, after that stage, the strain keeps constant until

the unloading. The further elongation of the stress duration couldn′t bring higher

strain over time.

The next group of test is to investigate the influence of rising time on the

creep behavior. The different rising time 0.1s, 1s and 5s are chosen but stress

duration 20s is kept for the three cases of loading. The rising time affects the

amplitude of the high frequency components. The influence of rising time on the

creep is plotted in Figure 3.11(d). When the rising time is pretty long, the strain

increases gradually with the stress. As to loading history with short rising time, the

initial strain can follow the stress immediately, which attributes to the elastic spring

element in the standard linear model. This result indicates that the rising time

affects the magnitude of high frequency components, which are instant elastic

behavior area. However, the stress duration length is more critical to determine the

final strain of the structure than the length of rising or fall time.

Figure 3.12.: FFT spectrum of the three loading with different rising time, 0.1s, 1s

and 5s (a) Normal; (b) enlarged.

The FFT in Figure 3.12 shows the amplitude of the high frequency content

for the 0.1s rising time is much higher than that of the two other cases. Generally

speaking, the shorter the rising time, the amplitude of high frequency components is

higher.
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Figure 3.13.: Dissipation energy at different loading history (a) 2s; (b) 20s; (c)200s.

Figure 3.13 plots the strain against stress to present the energy dissipation

during the loading history. From the previous analysis, the stress duration 20s is

enough to present the creep behavior, as there is no obvious increase of strain after

20s. Thus, when the stress duration is set as 200s, the dissipation loop formed from

the stress and strain history is similar to the loop formed from stress duration 20s.

With current specified parameters, the energy dissipation of this model happens in

20s as no further strain accumulates in the remaining loading period. While loading

history with the stress duration 2s has merely demonstrated the creep behavior and

the dissipation energy is much lower than that in the other two loading cases.

The plot indicates that initial strains of the three cases of loading history are

similar. The dissipation energy is determined by the time scale of creep behavior.

As to the solid model, the dashpot has the properties, ε̇ ∝ σ and ε =
∫
ε̇dt. At the
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Figure 3.14.: Factors affect creep behavior of solid model (a) Stress duration; (b)

rising time and (c) the dissipation.

very beginning stage of loading, the strain rate is nonzero but the strain is zero.

The zero strain also confines the deformation in the spring element, thus, the strain

of whole system is zero. During the constant stress period, the strain rate keeps

constant. Since strain is obtained from the integral of strain rate over time, the

strain constantly increases with time and reach a maximum value. Because the two

branches of the solid model keep the same strain all the time, the deformation in

the spring element also increases gradually. Since the external stress keep constant,

the strain should have a maximum value. Initially, the dashpot and spring

undertake the strain together, but later the spring bears the stress individually, as a

result, the stress in the dashpot turns to zero and no further strain increase over

time. From time 20s to 200s, nothing new happens. After unloading, the external

stress turns to zero, the spring starts to recovery, however, the strain in the dashpot
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resists the deformation. The free body analysis indicates the spring is in tension and

the dashpot is in compression. This force applied on the dashpot is opposite to

previous direction, so as the sign of the strain rate, then, the piston will push the

dashpot to reduce the deformation. Now, the strain in the spring becomes smaller

and smaller, so as the stress. Thus, the strain rate gradually close to zero and the

deformation in the spring and dashpot turns to zero at same time.

Figure 3.15.: Factors affect creep behavior of fluid model (a) Stress duration; (b)

rising time and (c) the dissipation.

Figure 3.15 shows the creep behavior of fluid model and the factors affecting

the performance. Similarly, the dashpot still embodies the relationship ε̇ ∝ σ and

ε =
∫
ε̇dt. In this system, the spring and dashpot undertake the same external stress

all the time. The deformation of the spring happens immediately with the external

force, thus, the initially linear increase of the displacement is attributed to the
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spring element. The dashpot is also under the same external force, that means the

strain rate is kept as constant all the time. As the strain is the integral of strain

rate over time, the initial strain is zero and later, the strain increases linearly with

time. Because in this model, the deformation of spring and dashpot are

independently, it is a linear increase. Now, the deformation of dashpot is

independent on the spring, as a result, the deformation in the strain can continue to

increase with time until the unloading. After unloading, the deformation caused by

the spring turns to zero immediately. Since there is no external force and strain rate

of dashpot turns to zero too. No further strain happens on dashpot anymore but

the already happened strain is kept.

In the previous analysis about wrap around effect, the beginning value and

ending value are zero because of the enforced periodicity. When apply IFFT to

reconstruct the response in time domain, the last point in the time window is forced

to zero. While in the fluid model, the final strain is kept as a nonzero constant,

which is contrary to the requirement in reconstruction. Furthermore, for current

case, no matter how large of the window size, the reconstructed strain using IFFT is

not zero and the IFFT approach is not feasible. However, the strain rate of fluid

model displays the beginning and ending value as zero, which is proper for the IFFT

reconstruction. In that case, Fourier transform should apply on the strain rate

rather than strain to get the reconstruction of strain rate. With the obtained strain

rate, strain can be calculated from the integral over time using trapezoidal rule,

which multiples each value of strain rate by dt and add it to the previous one.

As to the solid model, even the initial part of the deformation is not purely

elastic. The three loading cases with different stress durations present three

different behaviors. The longer stress duration shows creep behavior but the short

stress duration doesnt display creep behavior. In the testing, the maximum value of

stress is set as 1MPa, and the maximum strain is about 0.16. Figure 3.14(a)

presents exponential increase and drop of strain after reconstruction with IFFT.

During the fast application of the stress, there is no elastic behavior, which is not
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true in reality. The rising time has very little influence on the shape of strain in the

solid model. The Figure 3.14(c) plots the strain against stress of different loading

history. Similarly, there is no linear increase and linear fall of strain in this plot.

Those figures indicate that the solid model is a bad model to simulate the

mechanical properties of rubber.

With the analysis, it can tell that the simplest model is the standard solid

model since it can show the elastic deformation even from the 2s stress duration and

also has limitation about the final strain. The plot of stress against strain gives even

more direct information about the elastic deformation at the beginning of loading.

From the turning point location of strain, the response can be divided into three

time scales. In this standard linear model, the stress is set as 1MPa, E1 is set as

4MPa and E2 is set as 6MPa. In the loading case 2s, the strain is about 0.11, which

gives the plot of elastic part as 9MPa. Consider the combination of two spring

elements, if they are in series connection, the equivalent modulus of the system is

E1E2

E1+E2
. As to the current in parallel series, the equivalent modulus is E1 + E2.

Because in the very beginning, the dashpot undertakes very limited stress, there are

almost two springs in parallel series and giving a modulus close to 10MPa. Next,

look at the strain when the stress duration is 20s. At this case, the strain is about

0.16, and the modulus of the system about 6.25MPa. That number is equivalent to

the modulus of the two springs in series connection. It is important to point out

that that rising and fall part of the strain are identical as the rising and fall time in

the stress history are identical.

Figure 3.16 shows the corresponding response of the viscoelastic materials

charactering in three different models. In the Figure 3.16(a), the abrupt step stress

leads to the direct strain of the spring immediately and the gradually increase of

strain later. In the Figure 3.16(b), the abrupt applied loading couldn′t lead to

immediately elongation of spring since the dashpot is in parallel with the spring and

prevents the spring to extend immediately. The strain of the Voigt model happens

gradually while the spring starts to afford more and more loading. In the
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Figure 3.16.: Comparison of three models at different stress duration (a) 2s; (b) 20s;

(c) 200s

Figure 3.16(c), it displays an immediately elongation at the initial time since there

is a spring element existing in one branch, later, the spring in the branch including

the in series connected spring and dashpot starts to elongated. Unload the unit step

force at t = t1, the strain response of every model can be treated as the reversal

procedure of loading. Generally speaking, the elastic deformation will disappear

immediately while there is some remaining deformation existed in the material and

the remaining strain will decrease exponentially.

The standard linear model and fluid model present the linear elastic behavior

at the beginning of stress rising and fall. The ultimate strain in the standard linear

model and solid model will reach a steady state, which is dependent on the

coefficient of the spring only branch in those models. As to the generally mechanical

behaviors of rubber material, the initial elastic period appears before the creep and
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there is a limitation over the final strain. As a result, the standard linear model is

recommended as the simplest model to represent the viscoelastic of rubber materials.

In sum, the Maxwell model can display relaxation better but not good at

creep modeling, on the contrary, Kelvin-Voigt model can display the creep better

but not good at relaxation representation. Furthermore, the relaxation and creep

are function of time, which illustrate pretty obvious time dependent behavior, while

the real viscoelastic materials present pretty slow rheological behavior. Thus, more

elements composed model to approximate the viscoelastic materials is proposed in

recent decades. But in reality, the accuracy should balance with the redundant

computation and experimental tests when more elements are introduced in one

model.

3.2 Experiment Research for Material Characterization

Three unknown parameters has to be identified with the typical rubber

coupons prepared from the vehicle bushing′s rubber core. A series experiment test

procedures are laid out to obtain more and comprehensive physical, thermal and

mechanical properties of the researched rubber material. As to linear viscous elastic

materials, there are three approaches to characterize its mechanical properties. The

most direct representation is based on the creep and relaxation behaviors, which can

be obtained using the creep or relaxation experiment under quasi-static conditions.

The corresponding results are represented with constitutive equation in integral

formals. The second method studies the strain rate-dependent of the viscoelasticity

and then represents the constitutive equation in differential formats. The third one

measures the periodic dynamic response using the dynamic mechanics analysis

equipments and that result will be represented in complex. The third one is the

most popular one and mostly applied in the viscoelastic materials research because

it is more convenient to explore to nonlinear viscoelastic properties from the current

linear characterization. During the rolling of drive, the vehicle, especially the tire
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will experience sustainable periodic dynamic loading, as a response, the rubber

bushing in current case also under the same external excitation. It is important to

clarify the difference of non linear mechanical properties of rubber and linear

complex representation. Actually, the dynamic mechanic testing at small train still

produces almost sinusoidal signal rather than the expected harmonic. The obvious

harmonic phenomenon appears at higher amplitudes, then, the linear storage and

loss modulus would be inappropriate to describe material behaviors, this feature is

terms as harmonic paradox (Heinrich & Klüppel, 2002).

3.2.1 Testing Conditions and Experiment Results of MTS

Figure 3.17 shows the instrument of MTS tensile machine and rubber

sample, which is prepared according to the ASTM standard test methods for rubber

property-compression set (D 395). The test is performed to find the Mooney-Rivlin

constants for dynamic rolling simulation. The Mooney-Rivlin material model is used

to describe the super elastic properties of rubber. Compression test is designed to

test the elasticity of materials, especially the ability to retain elastic properties

under the larger compression or deformation. In this test, the force and applied

deformation rate is set up to get the corresponding displacement. Tests are carried

at room temperature to detect the static mechanical properties of rubber. The test

specimen is a cylindrical disk, which is cut from the bulk rubber bushing specimen.

The dimensions of the specimens are 6.0±0.2mm in thickness and 13.0±0.2mm in

diameter.

To have the elastic stiffness variation with the strain and deformation rate,

large batch of tests have been done to get the comprehensive conclusion. All of the

samples are tested in three groups, the first group test has same deformation rate

0.01mm/s, but ramping the total strain from 5% to 40%, specifically, 5%, 10%, 15%,

20%, 25%, 30%, 35%, and 40%. The second group of samples experience the total

strain 20% but the deformation rate ranges from 0.01mm/s to 0.8mm/s, specifically,
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Figure 3.17.: MTS and rubber coupon used for the compression test.

0.01mm/s, 0.02mm/s, 0.04mm/s, 0.06mm/s, 0.08mm/s, 0.1mm/s, 0.2mm/s,

0.4mm/s, and 0.8mm/s. The third groups of samples varies in velocity, which

changes from 0.01 to 0.8mm/s as the second group, but the strain of this group is

set at 50%.

The compression test results of rubber sample are plotted in the Figure 3.18.

The compression strain and stress curves display non-linear relationship. The

influence of total strain percentage isn′t that significant in determining the shape of

curves, but it can be deduced that the slopes of those curves increase over all.

Figure 3.18(a) shows the behaviors of group 2 specimens, which is fixed at

strain rate 20%. As a comparison, Figure 3.18(b) gives the behaviors of specimens

when the strain rate is 50%. At relative low strain, the strain and stress curves are

almost proportional straight line. Even though the rate =0.8mm/s is 80 times

higher than the rate=0.01mm/s, the shape of the two curves shows slight difference.
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(a) Fixed strain at 20% (b) Fixed strain at 50%

(c) rate=0.01mm/s (d) Stiffness at fixed strain 50%

Figure 3.18.: Effect of the total strain and deformation.

That means the elastic stiffness is not totally deformation rate-independent, even

though the effect is not that significant.

It is interesting to found in Figure 3.18(a) and Figure 3.18(b) that the

highest two deformation rates and lowest two deformation rates have their stress

and strain curves at higher position than the remaining curves. The tensile rate is

fixed and the strain changes in Figure 3.18(c). It is easy to found the deformation

rate and strain range will affect the stress-strain relationship. The stiffness of rubber

sample increases gradually with strain when the strain rate is pretty low, thus it is

reasonable to attribute this phenomenon as static friction effect. With the increase
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of strain, more and more molecular chains clusters have been straighten, that leads

to the increase of stiffness at higher strain. From this viewpoint, the positions

should be higher when the total strain is set larger. While, the plastic deformation

happens when the critical elastic or elastic-viscous point is reached, which is shown

in Figure 3.18(d). The rubber starts to yield when the strain reaches to 50 %.

(a) Neo-Hookean model (b) Mooney-Rivlin model

Figure 3.19.: Fitting of super-elastic model.

Figure 3.19 shows the fitting results of super-elastic with two classical

models. Both present good approximation to predict the static mechanical

properties of rubber. However, in the following FEA analysis, viscoelastic model is

taken to represent the frequency-dependent modulus, thus, super-elastic properties

of rubber is out of the discussion.

3.2.2 Testing Conditions and Experiment Results of DMA

The dynamic mechanical analysis test is operated on the DMA of TA

instructions Figure 3.20(Willett, 1973). This instrument is designed to measure the

mechanical properties of polymers upon the temperature, frequency and amplitude,

especially to properly describe the influence on the viscoelastic behaviors. The

stress or strains signal are applied in sinusoidal, which are convenient to express the
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complex modulus. Due the physical properties of viscoelastic materials, there is a

phase delay occurring on the strain compared with stress.

Figure 3.20.: DMA test instrument Q800 (a) Compression test clamp; (b) full view

of the DMA.

Submersion compression clamp is chosen in current measurement, the sample

size is 25mm in diameter and the thickness is up to 10mm following the TA

instruments brochure about DMA. The sample in the submersible configuration can

keep the environment at specified temperature if liquid is set and heated up. The

sinusoidal stress is applied using an oscillating plate while another flat surface

holding the sample is fixed. The selected output values from this DMA are

temperature(◦C), storage modulus (MPa), loss modulus (MPa), stiffness(N/m),

damping(N/m), tan delta (δ), frequency(Hz), stress(MPa), strain(%),

amplitude(µm), force(N) and displacement (µm).

The experimental results of rubber components subjected to static load and

harmonic excitation are obtained to identify parameters of each element in the

Berg′s rubber model. All of the data measurements are finished using equipment

DMA, which records the influence of frequency, time and temperature on materials′
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mechanical properties. Harmonic excitation operated using this instrument is

supposed to run over a wide frequency range, from 0.001Hz to 200Hz. However, the

tests at frequency lower than 0.01Hz and higher than 100Hz are failed to apply the

load in this measurement because the limitation of the instrument.

Parameterization is complicated and time consuming, furthermore, based on the

characterization of viscoelastic model, it is common to separate the test into two

steps, quasi-static load and high frequency harmonic excitation.

3.2.2.1. Parameter Identification for Friction Damping

In the case of static load, loading at lower velocity and excitation frequency is

appropriated approximation to simulate the quasi-static loading condition due to

impractical static loading. The quasi-static frequency is collected in the range from

0.01Hz to 0.1Hz. The quite low frequency is required to make sure that the

contribution of viscous damping is of negligible proportion. The stress is selected in

the range of 0.001MPa to 0.05MPa for the amplitude-dependency research. The

corresponding real-time reports about stiffness, damping, tan delta and amplitude is

outputted automatically as long as the pre-set working condition is reached and

cycle loading becomes stable. Figure 3.21 shows the variation of amplitude under

quasi-static low frequency excitation.

Figure 3.21(a)is the Payne effect describing the amplitude-dependence of

stiffness With the increase of loading amplitude, the stiffness of rubber decreases.

This phenomenal is associated with the weak van der Waals bonds existing in the

filler agglomerates (A. Payne & Whittaker, 1971). The break of physical bonds at

higher amplitudes or high strain explains the reduction of stiffness in macro level.

For the very small amplitude of stress, friction plays dominate role to increase

stiffness. The rupture of molecular chains in micro level presents as the friction

release. In order to describe the hysteresis loop formed at quasi-static and the

amplitude dependence of stiffness, a tri-linear model is proposed. The coefficients of
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(a) Modulus variation (b) Spring fitting

Figure 3.21.: Amplitude-dependence of modulus under quasi-static excitation and

its influence on stiffness fitting of K1, K2 and K3.

those coefficients in the model are identified with multivariable constrained

approach. The equation formulated for parameterising the hysteresis loop is based

on the ratio of energy dissipation over total storage energy,

min
∑[

|(S′

S
− tan δ)|
tan δ

]
(3.23)

Where S ′ is the area in side of hysteresis loop, and S is the storage energy during

loading. tan δ for each loading condition and the corresponding strain can be

collected from the DMA report. The area S ′ and S can be estimated using the

tri-linear model. There are three stiffness values in the hysteresis model need to be

identified, which means at least two groups of data under the same or close

excitation frequency required to implement the parameter identification. Stiffness

before and after the hysteresis harness during quasi-static measurement are set as

the initial value for K1 and K2. Note that K1, K2 and K3 slightly decrease with

increasing amplitude and K3 is much lower than K1, which also agrees well with the

previous description about molecular chains. It is also reasonable to inference that

the fracture of molecular chains causes even more reduction of stiffness than the

chains′ relaxation. It is important to point out that the characterization of Payne
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effect is confirmed in the small strain range, usually 0.001 to 0.15. Outside the

range of strain, the storage or loss modulus will not change over strain amplitude

(Heinrich & Klüppel, 2002).

3.2.2.2. Parameter Identification for Viscoelastic Damping

For the dynamic stiffness except the hysteresis damping, the model is a

combination of advanced Maxwell system and spring element, which means three

parameters k1, k2 and c1 required to determine the frequency response of dynamic

behaviors, see Equation 3.2. The rubber coupon prepared for the DMA

measurement is about 5mm in thickness and 10mm in diameter. The testing range

of stress is less than 0.1MPa to avoid the inaccuracy of data and the measured

displacement is rather low. The loading frequency of vehicle is commonly at the

frequency about 20Hz. Thus, low frequency force-deflection relations should be

discussed here to seeking after stability and passenger comfort for vehicle system

(Knothe & Grassie, 1993). In current research, the harmonica excitation is applied

in the range from 1Hz to 100 Hz with step 10Hz to balance the representativeness of

data and redundancy of calculation. The stress of each frequency is applied from

0.01MPa to 0.1MPa to investigate the amplitude-dependence of viscous damping.

Beyond the testing range of frequency and stress, the data collected from the

equipment is not reliable and inaccurate.

The overall variation of dynamic stiffness and damping over amplitude and

frequency are plotted in Figure 3.22. With the increase of frequency and amplitude,

the dynamic stiffness keeps decreasing. As a comparison, the damping presents a

peak when the excitation frequency is about f = 30Hz no matter the variation of

amplitude. Before more depth discussion, the storage modulus, stiffness and other

relevant output are sketched to complement the previous results.
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(a) Dynamic stiffness(N/m) (b) Tan delta

Figure 3.22.: Response of harmonic excitation versus amplitude and frequency.

(a) Storage modulus(MPa) (b) Storage modulus(MPa)

(c) Dynamic stiffness(N/m) (d) Dynamic stiffness(N/m)

Figure 3.23.: Illustration of variation upon frequency and amplitude.
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Figure 3.23 shows that both the storage modulus and dynamic stiffness

increase almost linearly with frequency and amplitude, which clearly illustrates the

amplitude and frequency-dependence of dynamic behaviors. Storage modulus

monotonously increases with the input stress and frequency.

Tan delta shown in Figure 3.21is not linearly increase with frequency or

amplitude. Loss modulus, damping and tan delta display a peak value around

frequency 30Hz, especially at higher strain amplitude (Figure 3.24(a)).The increase

of strain is slight under the low frequency range and the increase of frequency also

has little effect on the locations of those lines in Figure 3.23. Considering the slight

variation of tan delta in the low frequency loading range, the variation of tan delta

over the frequency is fitted with a straight horizontal line just as the treatment

applied on the quasi-static harmonic excitation at 0.01Hz. The slop of the fitting

curve of tan delta is 2.12× 10−4 under quasi-static loading, which indicates the

much lower amplitude dependent hysteresis damping compared with the storage

energy. Before explore the viscoelastic damping, the dissipation attributed by the

hysteresis has to excluded for further parameter identification in Equation 3.2.

As to damping, it increases with frequency gradually at the very beginning

and abruptly reaches to maximum at frequency around 30Hz. The damping declines

to zero after the peak value with the increasing frequency and this character is more

apparent at higher strain amplitude. Base on the mechanism, the performance of

damping includes three steps. The rubber at low frequency behaviors close to elastic

material with low damping as molecular chains of rubber can almost simultaneously

follow excitation. Similarly, the small out of phase between input and output

appears at very high excitation loading, such the 10Hz loading in current test. After

this frequency, the rubber performs as glass, which is of low damping. Thus, the

most complicated damping behaviors displays around 30Hz in Figure 3.24(c), which

is a typical for excitation at medium range frequency. Under that loading, most of

those molecular chains are failed to catch up with the macro deformation of rubber,

which leads to large phase lag between force and deflection and higher damping.
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(a) loss-modulus (b) damping (c) tan-delta

Figure 3.24.: Variations on frequency and amplitude.

Three parameters k1, k2 and c1 should be identified to model the frequency

dependent of stiffness and damping of rubber. The parameter identification

guarantees the optimization of stiffness and tan delta in the frequency range and the

multivariable equation is given in Equation 3.24,

min
∑[

|
√
E ′2 + E ′′2 − σ0

ε0
|

σ0
ε0

+
|E′′

E′ − tan δ|
tan δ

]
(3.24)

Dynamics stiffness is defined as Edyn =
√
E ′2 + E ′′2 = E ′[1 + (tan δ)2]1/2. Tan delta

is less than 0.2 in almost all testing condition, therefore, Edyn is approximated to E ′

with the error less than 2%. Furthermore, it could be shown from Equation 3.24

that E ′ is close to k2 as long as the excitation frequency is pretty low, finally,

dynamic stiffness Edyn is selected as the initial value of k2. Considering the friction

effect of rubber upon the quasi-static deformation and its contribution to the

hysteresis stiffness, the data used for the dynamic behavior′s parameter

identification should reduce the quasi-static stiffness and tan delta. The influence of

hysteresis stiffness reduction becomes non-significant if the amplitude of dynamic

excitation is set as pretty large since the reduction from the rupture of physical

bond between carbon black particles is only confined in a certain range of strain.

The static stiffness variation upon amplitude is usually described in exponential

form or hyperbola decreasing model. The static stiffness plus the auxiliary from

friction is simply treated as constant under the excitation in the high range of
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frequency. The initial value of k1 usually starts from 0.7 Edyn to accelerate the

optimization calculation in current procedures. Damping coefficient is relative low

and 1000 MPa.s should be a good initial point.

Figure 3.25 and Figure 3.26 show the comparison of experiment curve against

predicted curve plotted with the parameters obtained from optimization. The stress

of this group of data is ramping from 0.01MPa to 0.08MPa. It can be seen easily

that dynamic stiffness increases with frequency and there is a damping peak with

the increasing of frequency. As discussed from previous amplitude-stiffness analysis,

the dynamic stiffness and damping are generally amplitude-dependence.
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Figure 3.25.: Experiment measurements against predicted dynamic modulus at

different stresses (a)=0.01 MPa; (b) =0.02 MPa; (c) =0.03 MPa; (d) =0.04 MPa;

(e) =0.05 MPa; (f) =0.06 MPa; (g) =0.07 MPa; (h) =0.08 MPa.
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Figure 3.26.: Experiment measurements against predicted tan delta at different

stresses (a) =0.01 MPa; (b) =0.02 MPa; (c) =0.03 MPa; (d) =0.04 MPa; (e) =0.05

MPa; (f) =0.06 MPa; (g) =0.07 MPa; (h) =0.08 MPa.
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The error analysis is illustrated in Figure 3.27 and the results indicate that

optimization with experimental data at lower stresses is poor compared with that

from medium or higher stress excitation. This may attribute to the error of

hysteresis stiffness estimated for quasi-static condition, which highly affects dynamic

output at lower frequency excitation. As to the medium frequency excitation,

dynamic stiffness and damping reach almost maximum value, then, relative error of

dynamics stiffness is minimized due to the absolute increment of stiffness. Tan delta

is barely affected by frequency or amplitude in quasi-static excitation, therefore,

there is no obvious increment of relative error varying with dynamic excitation

testing conditions. Higher stress and higher frequency excitation condition is kind of

out of the service scope of DMA testing equipment, hence, the slightly narrowed

error at highest stress 0.1MPa may partly due to the much less data collected for

the optimization calculation.

(a) Error of dynamic modulus (b) Error of tan delta

Figure 3.27.: Erroneous analysis of dynamic modulus and Tan delta upon with the

variation of amplitudes and frequencies.

The error analysis of amplitude and frequency dependency of stiffness and

tan delta are plotted in on the Figure 3.27to choose the best stress range to identify

the parameter for frequency dependent model. That figure indicates the medium

amplitude loading gives the minimum error in fitting the viscoelastic model.
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Similarly, if frequency range is needed to confirm to characterize the amplitude

dependent model of rubber, the medium frequency is also a better selection as

depicted in Figure 3.27. In view of the three dimensional error analyses at different

amplitude and frequency, the excitation at 0.05MPa is employed to identify

parameter for the standard linear model of viscoelastic model. The calculated

stiffness of rubber coupon is pretty close the dynamic stiffness at 1Hz, that result

endorses the initial value assumption for the optimization procedure. The error

analysis presents higher error value in fitting tan delta compared with that in fitting

dynamic stiffness. Actually, the phenomena was discussed in some publication,

within which deviation existing in the loss modulus fitting is much higher than the

storage modulus fitting (Ulmer, 1996). To minimized the error in tan delta fitting,

a modification about loss modulus expression is given as,

tan δ = k1
ωτ

1 + ω2τ 2
/

(
k2 + k1

ω2τ 2

1 + ω2τ 2

)
+ a exp(−(ω/10− 3)2/b) (3.25)

where the parameter a and b are merely used to improve the precise of fitting and

without practical meaning. The parameter identification results give k1=0.8MPa,

k2= 1.009MPa and C=0.028MPa.s at stress 0.5MPa finally. In the modified model,

two parameters without practical significance are introduced on the basis of fitting

experience to minimize the fitting error in the loss modulus related terms. While,

this correction merely pays attention to the variation of frequency, for more concise

expression, the correction term considering the effect of temperature and static

amplitude should be included.

3.3 Conclusion

This chapter presents a detailed review about the current researched models

to characterize the rubber materials, which include the hyperelastic and viscoelastic

models. The principles to build a hyperelastic model are classified into two theories,

one is the strain energy density and the other one is the statistic mechanical method.

While in current research, viscoelastic models are applied to further the exploration
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about the hysteresis and viscous damping. Commonly used viscoelastic models are

also elaborated and their merits and shortcomings are analyzed with the comparison

of creep and relaxation function. Because the mechanical properties of rubber are

time, frequency and temperature-dependent, the thermal properties of rubber and

the structure-thermal coupling is illustrated in the following part of the dissertation.

This chapter includes two major contributions. The first part is the

experiment measurement to collect data of dynamic behaviors needed to proceed

the parameter identification. With the derived the kinetic equations of three

parameters model, the optimized parameters are identified. This part presents the

approach to have proper parameter identification to reproduce the rubber′s

viscoelastic properties. More important, with the current model and parameters,

the FEA simulation in next chapter becomes achievable.
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CHAPTER 4. FINITE ELEMENT ANALYSIS WITH FORTRAN PROGRAM

The finite element analysis (FEA) includes three parts, preprocessing,

numerical solution and post processing. To have completed FORTRAN program to

compile the three processes for the non-linear FEA, it is far beyond the time and

energy allowed for a PhD student. Prof Jame.S. Doyle developed coding

development environment of FEA program for more than 20 years, which products

implement the preprocessing and post processing(Doyle, 2009). The FEA coding

environment is named as Simplex and includes static, dynamic, stability, nonlinear

analysis modules and so on to specify different types of problems. On the basis of

existing source code of Simplex, the subroutine force-frequency is developed to

describe the frequency-dependence of viscoelastic material. QED is a user friendly

interface incorporating the mesh generation and plot and simulation result views. In

the following research, the developed force-frequency module is termed as Simplex

in order to differentiate with the already completed modules in QED. The structural

date file is generated using QED and Fast Fourier transform (FFT) algorithm is

implied for the feasibility of frequency scan. Hex20 finite element and 27 point

integration method are used in the preprocessing and post processing separately.

4.1 Preprocessing and Postprocessing of FEA

The development of force-frequency module is initialized from the governing

equation of dynamic vibration. In the following section, the feasibility to create the

nonlinear module for viscoelastic material on the basis of the principle of the elastic

module is elaborated, and then, the characterization of Hex20 element is described.
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4.1.1 Forming of the Governing Equation

In reality, damping or energy dissipation can be found in all system in

motion. The governing equation of motion or the force equilibrium of a system is,

Mü+ Cu̇+Ku = P (t) (4.1)

Where Mü is the inertia force, Cu̇ is the damping force, Ku is the elastic force and

P (t) is the applied loading force. From the field test simulating the external

excitation applied on the rubber bushing installed on the exhaust piping system, the

vibration in large time window can be approximated using single frequency

excitation after the spectral analysis. In that extreme case, the particular loading

can be characterized as sinusoidal or cosine function. Under harmonic excitation,

the force equilibrium of the damped system can be written as,

[K]v + [C]v̇ + [M ]v̈ = P cos(ωt) (4.2)

The complementary force equilibrium of the system is,

[K]w + [C]ẇ + [M ]ẅ = P sin(ωt) (4.3)

All those variables in the two equations are real and the only difference is the

loading phase. Combine the two linear systems with the definition of complex

displacement, u = v + iw, then, the new created governing equation turns to,

[K]u+ [C]u̇+ [M ]ü = Peiωt (4.4)

The complex displacement can also be written as u = ûeiωt. The system of the

equation is taken as pseudo-static as the loading is periodical. In the damped

system, it is tedious to solve the equation in the function of sinusoidal, cosine or

exponential. Especially, for a system with time differential governing equation, the

introduction of complex quantities can greatly simplify the solving process. After

remove the exponential term at two sides, the equation turns to frequency

dependent, which explains the variation of response at different excitation frequency,

|[K] + iω[C]− ω2[M ]|û = P (4.5)
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The left term in the bracket is the dynamic stiffness matrix [K̂D]. In the Simplex

program, the structure damping of elastic material is generally characterized using

the damping coefficient C. As to a system constructed using Rayleigh damping, the

damping matrix is proportional to the structural stiffness and mass matrices,

[C] = α[M ] + β[K] (4.6)

Where, the α and β are constants. And the corresponding dynamic stiffness is given

as,

K̂(ω) = [K]− ω2[M ] + iω(α[M ] + β[K]) (4.7)

Nevertheless, as to the viscoelastic structure, the damping inherited in the material

overwhelms the structure damping, and thus, the latter is negligible in the following

programming. As to the homogenous material in one model, each element has the

same material tag. The frequency dependent modulus of the viscoelastic structure

can be simulated by multiplying φ(ω) with the assembled dynamic stiffness matrix

[K̂D]. With the identified parameters in the constitutive equation of standard linear

model, the stiffness matrix can be represented as,

K̂(ω) =
iωη(E1

E2
+ 1) + E1

E1 + iωη
[K] = φ(ω)[K] (4.8)

In the case of the complicated structure, for example, the sandwich cylindrical

bushing composed of two materials, the boundary nodes belong to two materials

and the K matrix is assembled based on the modulus of two materials, it is not

recommended to time the unique φ(ω) with the [K̂D]. In that case, the coefficient

φ1(ω) and φ2(ω) should be multiplied separately with the two materials before the

assembly.

In the force-frequency subroutine, all input and output variables are in

frequency domain. The time domain loading history is implemented in the Simplex

after FFT and the response at time domain can be reconstructed with IFFT from

frequency domain. The Simplex FEA program deals with the displacement, strain,

stress and energy dissipation in frequency domain for single frequency or frequency
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scan. Corresponding, all outputs have imaginary part accompanying with real part

as the modulus of the material is complex variable.

4.1.2 Hex 20 Element

In the Simplex program, the 3-D solid is recommended to model with Hex20

element, which has 20 nodes and 60 DOF for elasticity applications. The solid

structure is formed with an assembly of discrete elements representing homogenous

or non-homogeneous properties. The advantage of the finite element method is the

ability to simulate the complicated structure without being simplified to classical

simple model as the approaches used in analysis solution. That makes the FEA

more powerful and applicable than the approximated mathematical analysis in the

theoretical analysis. Especially, with the development of computer calculation

capability, the DOF of the model is almost exponentially increased and that makes

the solution even more concisely elaborated.

Figure 4.1.: Sketch of Hex20 element in isoperimetric coordinates.
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Hex20 element is better than the tetrahedron element since the latter

requires quite robust meshing routine. Furthermore, Hex20 has better performance

in dealing with rubber or other incompressible material and plastic material

compared with tetrahedral element. Figure 4.1 gives the sketch of Hex20 element in

the isoperimetric coordinates after mapping from the physical coordinates. The

three DOF of each node are listed in the following(Doyle, 2014),

x0 =
20∑
i=1

hi(s, r, t)xi
0; y0 =

20∑
i=1

hi(s, r, , t)yi
0; z0 =

20∑
i=1

hi(s, r, , t)zi
0 (4.9)

Where the interpolation function h(r, s, t) in the isoperimetric coordinates are,

i = 1− 8 : hi = 1
8
(1 + rir)(1 + sis)(1 + tit)(rir + sis+ tit− 2)

i = 9, 11, 17, 19 : hi = 1
4
(1− r2)(1 + sis)(1 + tit)

i = 10, 12, 18, 20 : hi = 1
4
(1 + rir)(1− s2)(1 + tit)

i = 13, 14, 15, 16 : hi = 1
4
(1 + rir)(1− sis)(1− t2)

(4.10)

And the isoperimetric nodal coordinates of the Hex20 element are given in

Table 4.1,

Table 4.1: Isoperimetric nodal coordinates ri, si, ti

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

r1 -1+1+1-1 -1+1+1-1 0+1 0-1 -1+1+1-1 0 +1 0 -1

si -1-1+1+1 -1-1+1+1 -1 0+1 0 -1-1+1+1 -1 0+1 0

ti -1-1-1-1 +1+1+1+1 -1-1-1-1 0 0 0 0 +1+1+1+1
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The derivative of the isoperimetric coordinates is connected with the global

coordinates through the inverse matrix of Jacobian operator, { ∂
∂xo
} = [Je

−1]{ ∂
∂r
}.

The matrix form of the [Je] for the Hex20 element is expressed as,

[Je] =


h1,r, h2,r, h3,r, h4,r, . . . , h20,r

h1,s, h2,s, h3,s, h4,s, . . . , h20,s

h1,t, h2,t, h3,t, h4,t, . . . , h20,t





x0
1 y0

1 z0
1

x0
1 y0

1 z0
1

...
...

...

x0
20 y0

20 z0
20


(4.11)

4.1.3 Stress and Strain with Gauss Integration Method

With the solution about displacements at each node, the stress and strain

can be calculated using the quadratic hexahedral interpolations. Figure 4.2 gives

the sketch of the 27 integration points used in the Simplex program.

Figure 4.2.: Integration points inside the Hex20 element.

Gauss Lagrange quadrature is chosen to approximate the integrated stress

and strain at each node. The sampling location of each integration points and
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weights are ri = si = ti = [−
√

0.6 0
√

0.6] and Wi = [−5/9 8/9 5/9]. In this

approach, the best fitting straight line using least squared algorithm intersects the

parabola at exactly the three points.

Define xyz as the corresponding original coordinates of the 20 nodes per

element. uuc is a 60× 1 array, which records the x, y, z displacement of nodes for

each element, uuc = [u1, v1, w1, u2 v2, . . . , w20]T , the stress at each integration

point can be calculates using ε = [BL]uuc. Each term is presented as,

[BL] =



Ax 0 0

0 Ay 0

0 0 Az

Ay Ax 0

0 Az Ay

0 0 Ax


,


·, x0

·, y0

·, z0

 ≡

Ax

Ay

Az


I=1,N

, and ε =



ε11

ε22

ε33

γ23

γ13

γ12



(4.12)

The stress is associated with strain through Hooke′s law σ = [D][BL]u, where,

[D] =
E

(1 + ν)(1− 2ν)



1− ν ν ν 0 0 0

ν 1− ν ν 0 0 0

ν ν 1− ν 0 0 0

0 0 0 (1− 2ν)/2 0 0

0 0 0 0 (1− 2ν)/2 0

0 0 0 0 0 (1− 2ν)/2


(4.13)

Now, the strain and stress of the 27 integration points are obtained, with that, the

post processing can be initialized to get the strain and stress at each node. Let the

(r, s) be coordinates for the integration point, and then define r = 1 when ξ =
√

0.6

and s = 1 when η =
√

0.6. That gives r = ξ/
√

0.6, s = η/
√

0.6 and t = ζ/
√

0.6. The

strain and stress at each node can be extrapolated using the 27 interpolation points,
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εi =
27∑
p=1

Np(r, s, t)εp and σi =
27∑
p=1

Np(r, s, t)σp (4.14)

With current program, the stress and stress of the 20 nodes can be calculated for

each element. However, if a node is shared by two or more elements, then, the stress

and strain at this node have multiply values. To solve this problem, nodal strain

and stress are smoothed after this process to get unique value.

4.2 Application of FEA on Elastic Structure with Damping

Figure 4.3 shows the mesh of a beam clamped at two ends and the marked

nodes ranging from left to right are nodes 36, 37, 38, 39, 40, 41 and 42. The elastic

material is set as steel and the damping matrix of the structure is proportional to

the stiffness and mass matrix. Frequency scan is carried out to identify the natural

frequency of the structure. The harmonic loading is applied on the central line of

the upper surface of the beam and the displacements of those marked nodes are

collected.

Figure 4.3.: Mesh of elastic beam with damping.

Vertical displacements of nodes at different excitation frequency are plotted

in Figure 4.4. Because of the relative low damping in structure made of steel, the

imaginary part of the displacement is much lower than the real part and the

magnitude of the displacement is dominated by the real parts. The two plots
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indicate the first natural frequency of the beam is 3182Hz and the second natural

frequency is 11822Hz. The displacement in node 39 is higher than that at node 37,

which is closer to the fixed boundary and movement constrained.

Figure 4.4.: Frequency scan in Y direction (a) Node 37; (b) node 39.

Figure 4.5.: The displacement in Y direction (a) The first modal shape; (b) the

second modal shape.

Figure 4.5 presents the vertical displacement of the beam under the

excitation of first two natural frequencies. The distribution of vertical displacement

is symmetric over the central line of the beam. As to the first modal shape, the

displacement is gradually decreasing from the central to the fixed ends of the beam.
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While the second modal shape is more complicated, the node 37 has slightly higher

displacement than node 39 because of the resonance.

To elaborate the application of FEA and spectral analysis on the structure

analysis, the more complicated cylindrical structure made of two materials has been

practiced. The inner shaft is made of higher modulus material-steel, which is

bonded with the lower modulus material-rubber. In this test, the structure made of

steel and rubber is defined as elastic structure with damping, which is characterized

using Rayleigh damping. The outer steel sleeve confines the movement of the

external surface of the rubber and imposes zero DOF on those nodes considering the

extremely large modulus difference between steel and rubber. The mesh of the steel

shaft and rubber is plotted in Figure 4.6, where the outer blue sketch is rubber and

the inner yellow sketch is steel shaft. The vertical harmonic excitations at different

frequencies are applied on the steel shaft to simulation the working environment on

the suspension system of vehicles.

Figure 4.6.: Mesh of cylindrical structure (a) Radial distribution of nodes; (b) axial

distribution of nodes.

The nodes in radial direction shown in Figure 4.6(a) are 21, 42, 77, 108, 124,

174, and 213 ranging from bottom to the top and their vertical displacements are
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collected and compared. The nodes in axial direction shown in Figure 4.6(b) are

124, 262, 427, 562, 724,862, 1025, 1162, and 1327 from left to the right. Before the

frequency scan, the Eigen value vibration analysis has been carried out to identify

the modal shape and natural frequency of the structure using QED.

Figure 4.7.: (a) Modal shape 1; (b) Modal shape 2; (c) Modal shape 3; (d) Modal

shape 4.

Figure 4.7 shows the initial four modal shapes of this cylindrical structure

composed of two materials. The first modal shape shows the deformation in axial

direction, the second modal shape shows the rotation, and the third and fourth

modal shapes show the rocking. In the Simplex, the loading is applied on the steel

shaft in the vertical direction and the expected modal shape displaying the vertical

movement of the steel shaft. Since the stiffness in the radial direction is much
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higher than that in the axial direction, the expected modal shape happens at higher

natural frequency.

Figure 4.8.: Displacement of nodes under frequency scan (a) and (b) node 42; (c)

and (d) node 124.

The frequency scan analysis is displayed in Figure 4.8. The frequency effect

indicates that the resonance in the radial deformation happens around 402.7Hz.

Because of the low damping defined in the elastic structure, the real part of the

displacement overwhelms the imaginary part of that and dominates the modal

shape of the cylindrical structure. The black lines are the undamped natural

frequencies calculated from the QED, the resonance of the first three black lines are

not excited as only the vertical loading is applied in this frequency scan.

Figure 4.8(c) and (d) show the damped natural frequency is slightly higher than the
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undamped natural frequency. The displacement at node 42 is larger than that at

node 124 since node 124 is closer to the fixed external surface of rubber.

Figure 4.9.: Displacement distribution at Radial direction (a)1Hz; (b)60Hz;

(c)100Hz; (d) axial direction.

To have more clear demonstration of the displacement in radial direction,

Figure 4.9 plots the displacement of those nodes marked in Figure 4.6. The vertical

displacements of those nodes show nearly proportional decreasing when the nodes

are away from the steel shaft. With the increase of excitation frequency, the

displacements of nodes in radial direction increase slowly. However, since the modal

shape in radial direction happens at natural frequency 402.7Hz, the frequency effect

is not so significant to vertical displacement in the frequency range 0Hz to 100Hz.

Axial distribution of the displacement under the first natural frequency is plotted in

Figure 4.9(d), which is collected from the nodes marked in Figure 4.6(b). The
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displacements at the two ends increase dramatically because of the free boundary

condition applied on the two sides.

The circumference distribution of displacement under the first natural

frequency is also collected to have the comprehensive understanding of the

deformation of rubber core. Because of symmetry of the structure, only half of the

nodes in circumference are analyzed. The nodes marked in Figure 4.10(a) are

121,122,124,126,145,146,143,147,149,152 and 153 ranging from left to right and their

displacement is plotted in Figure 4.10(b). Nodes locate at horizontal line and

vertical lines have the maximum displacements compared with other nodes at other

positions.

Figure 4.10.: Displacement at first natural frequency (a) Nodes collected in

circumference; (b) the circumference distribution.

The stress distribution in radial, axial and circumference directions are also

plotted against the static stress distribution calculated from QED in Figure 4.11.

As to the radial and axial direction, the stresses of loading direction are attractive

while the shear stress in circumference direction is more significant. The elastic

structure implemented in the QED is of no damping and the structure in Simplex is

elastic with damping, thus, the Simplex generates complex stress and a scale is

multiplied to match the QED results. Figure 4.11(a) and (b) compares the stress σyy
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distribution at 1Hz and 100Hz. The overlap of real part stress and static calculation

indicates the reliability of Simplex in dealing with complex variables. Figure 4.11(c)

and (d) compares the stress σyy distribution in axial direction at frequency 1Hz and

100Hz. While as to the circumference direction, the shear stress σxy shown in

Figure 4.11(e) and (f) is attractive and compared. The three groups of comparison

indicate that with the increase of external excitation frequency, the magnitude of

the stress increases slightly as the frequency effect on the displacement.
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Figure 4.11.: Stress distribution (a) and (b) Radial; (c) and (d) axial; (e) and (f)

circumference.
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4.3 Spectral Analysis and Dissipation Energy

4.3.1 Approach to Estimate the Modal Shape and Dissipation Energy

To elaborate the model shape and dissipation energy developed in FEA, a

rod segment with two elements is shown in Figure 4.12.

Figure 4.12.: Rod segment.

The displacements of the three nodes are u1, u2 and u3, where u2 and u3 are

unknown. Assuming the rod as homogenous material with constant cross area and

same element length, the mass matrix of the structure after assembling the two

elements of the rob segment is,

[M ] =
ρAL

12


2 1 0

1 4 1

0 1 2

 (4.15)

With the introduction of the frequency dependent modulus, the stiffness matrix of

the system becomes,

[K] =
iωη(E1

E2
+ 1) + E1

E1 + iωη

E2A

L


1 −1 0

−1 2 −1

0 −1 1

− ω2ρAL

12


2 1 0

1 4 1

0 1 2

 (4.16)

Essential boundary condition of this system is u1=0 and the natural boundary

condition is f2=0, and f3 = 1eiωt, where f2 and f3 are the loadings applied on node
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2 and node 3. With those boundary conditions, the solution of the unknown

displacements and counter force are,

û2

û3

 =

φ(ω)
E2A

L

 2 −1

−1 1

− ω2ρAL

12

4 1

1 1

−1  0

1eiωt

 (4.17)

f̂1 = −φ(ω)
E2A

L
û2 + ω2ρAL

12
û2 (4.18)

That solution indicates the displacements of nodes are frequency dependent.

Figure 4.13 plots the displacement against frequency at node 2 and node 3. With

the identified parameter from DMA test, the resonance of the rod can happen at

60Hz and 216 Hz.

Figure 4.13.: Excitation frequency-dependent displacement (a) Node 2; (b) node 3.

The amplitude is pretty high at resonance since spring and mass elements of

the system store the vibration energy (kinetic energy). The number of natural

frequency is the same as the total DOF, for a rod segment with only two DOF,

there are only two resonance frequencies.

In the structure made of elastic material, the strain energy is related to the

displacement square or strain square. For the simple spring and mass system, the

strain energy can be easily estimated through 1/2Ku2. Nevertheless, in a structure
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with viscoelastic material, square of the displacement doesn′t mean the magnitude

of the response because the displacement is complex. Thus, the true response of the

structure depends on the real part of the governing equation. In this testing,

displacement of node 2 at harmonic excitation is applied as example to explore the

response in time domain. The complex displacement of node 2 in the rod segment is

reconstructed as,

u2 = [uR2 + iuI2]eiωt = [uR2 cos(ωt)−uI2 sin(ωt)]+ i[uR2 sin(ωt)+uI2 cos(ωt)] (4.19)

Figure 4.14.: (a) and (b) Phase shift and dissipation at 50Hz; (c) and (d) phase shift

and dissipation at 216Hz.

Figure 4.14(a) and (c) show the phase lag between output and input in the

time domain at the excitation frequency 50Hz and 216Hz. Because the magnitude
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of loading is higher than that of response, a scale 0.001 is multiplied with loading to

facilitate the comparison. Figure 4.14(b) and (d) plot the force against displacement

in one cycle to present the energy dissipation of the node. For the rod segment with

two elements, the total dissipation energy of the system is the sum of dissipation at

node 2 and node 3.

Figure 4.15.: The first modal shape at loading types(a)The first ; (b) the second; (c)

the third.

With the calculated displacement, the modal shapes of the structure are

plotted. To have comprehensive understanding of the influence of loading type on

the modal shape, three type of loading are tested in the following. Node one is fixed

and the loading applies on node two f2 and three f3. The first loading model is

[f2, f3] = [0, 1], the second loading type is [f2, f3] = [1, 0] and the third loading
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model is [f2, f3] = [1,−1]. The first modal shapes of the three loading cases are

given in Figure 4.15.

With the solution about displacement at each node, the following post

processing of FEA discusses the interpolation function to get stress and strain. For

the two element rod segment, the strain and tress of each element e in this rod

segment can be obtained using the linear interpolation,

ε̂e =
1

L
[−1 1]

ûe1
ûe2

 ; σ̂e = Êε̂e (4.20)

Assume the applied force is P cos(ωt), and the real part of displacement at node 2

can be rewritten as A cos(ωt+ φ). Figure 4.14 plots the displacement against the

force and forms loop representing the dissipation energy in one period. While the

summation of the dissipation energy calculated from the displacement and force can

merely display the total dissipation energy of the whole structure. In order to get

the dissipation energy distribution density over the whole structure, it is necessary

to calculate that in each element.

The complex stress and strain expression of the structure with damping have

been derived in the spectral analysis. In the post-processing, plotting the strain

against stress forms the energy dissipation at each interpolation point. The stress

and strain at each interpolation point is given as,

ε(t) = [ε̂R cos(ωt)− ε̂I sin(ωt)], σ(t) = [σ̂R cos(ωt)− σ̂I sin(ωt)] (4.21)

Similarly, the strain ε(t) against stress σ(t) shows the existence of phase delay. The

loop area of each integration point can be calculated from,

Diss =

t=1/2πf∫
t=0

σ(t)dε(t) (4.22)

While for the whole structure, the energy equilibrium of the structure is given as,

W − U − τ = D (4.23)
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Where W is the work done by the external force, U is the strain energy stored in

the system, τ is the kinetic energy stored in the system and D is the dissipation

energy obtained from sum of all elements. To have the energy conservation, the

work done by the external work is totally transferred to the dissipation energy

caused by the out of phase between strain and stress. In each cycle, the kinetic

energy and strain energy are conservative and do not lead to energy accumulation or

dissipation. In the Simplex program, in order to estimate the external work, firstly,

record the loading of each node as Fi, and then record the complex displacement at

each node as ui. The summation of loop area calculated from each pair of the load

and displacement is the external work. For the rod segment, the total strain energy

is calculated after summing up strain energy from each node,

U =
1

2
ku2 =

EA

2L

u1

u1

T  1 −1

−1 1

u1

u2

 =
1

2
Eε2dv (4.24)

The first step is to calculate the real part of the displacement of each node

and its strain. The second step is to calculate the complex stress by multiplying the

strain with the complex modulus and then get the real part of the stress. The third

step is to calculate the loop area from the strain and stress of the each node. The

summation over nodes gives the total strain energy of the system. The approach to

get the kinetic energy elaborated using the rod segment is,

τ =
1

2
Mv2 =

ρAL

12

v1

v2

T2 1

1 2

v1

v2

 (4.25)

The first step is to get the lumped mass of each node. The second step is to use the

square of the real part of the velocity to multiply half of the mass. The third step is

to have the summation over node to get the kinetic energy of the total system. The

real part velocity of each node is given as,

v = −ωuR sin(ωt)− uIω cos(ωt) (4.26)

The P (t) at each node is known and the u(t) is solved, then, the increment of

displacement at each time step can get from du(t) = u(t)− u(t− 1). The work done
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by the external force at each node can calculated from the integral over p(t)du(t) in

the time domain. After one cycle, the accumulation of strain energy and kinetic

energy is zero, thus, the work done by the external force turns to the dissipation

energy.

Figure 4.16.: Energy in time domain (a) Phase shift; (b) dissipation; (c)external

work and (d) strain and kinetic energy.

Figure 4.16 plots the variation of external work and energy in on cycle when

the first load model is applied at excitation frequency 30Hz. In the Figure 4.16(c),

pp is loading, u is displacement, du is displacement increment and p ∗ du is the work

done at each time step. In order to compare the four variables in one figure,

different scales are applied for each variable. The four curves in this Figure 4.16(d)

show the accumulation of work, strain energy, kinetic energy of node 3. After one

cycle, the strain energy and kinetic energy turns back to the original value while the
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summation of work shows a positive value. In view of the conversation of energy,

the work done by the external force turns to dissipation energy. This plot shows the

perfect explanation of energy dissipation in structure with damping.

Before apply the Simplex program to the complicated cylindrical rubber

bushing, a clamped beam is developed in this chapter to test the reliability of the

FORTRAN program. In view the research topic about FEA dealing with

viscoelastic materials in literatures, the modal and natural frequency are calculated

and compared. Furthermore, for more widely application, the response of the

viscoelastic beam to the blast load is estimated. As long as those tests give effective

simulation, the more complicated rubber bushing can be modeled for further

analysis. It is worth noting that the dynamic response and dissipation energy

estimation are just a portion of the Simplex program, the successful modeling of the

program makes it possible to deal with even more complicated problem, such as

wave propagation in large and complicated structure.

Figure 4.17 shows the comparison between Simplex calculated modulus with

the theoretical calculation. The overlap of those curves indicates that the modulus

expression used in the simplex is correct and can be used for further application. In

the comparison of natural frequency, the modulus is set as 1.87 in Simplex and

QED. The first two natural frequencies in the direction Y are 42.6 and 141.9Hz.

When the damping coefficient of the material model used in the Simplex is set as

zero, the displacement under the frequency scan show the resonance happening at

the same frequency, which verifies the calculation in the Simplex.

4.3.2 Dissipation Energy Distribution in Viscoelastic Beam

The coefficient in this example is merely 0.1η to have more obvious modal

shape in case the response is over damped. In theoretic, Poisson ratios(υ) 0.5 or

0.495 should be assigned to this nearly incompressible material, however, 0.5 or

close to 0.5 causes trouble in the data processing of the binary encoding. To avoid
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Figure 4.17.: Verification of modulus (a) Loss modulus; (b) storage modulus; (c)

dynamic modulus and (d) natural frequency.

the problem, Poisson ratio (υ) is set as 0.475 in the Simplex. According to the

definition of Poisson ratio (υ), and the properties of uniaxial strain, the strain and

stress in X and Y directions follow the relationship, υ = − εy
εx

= 0.475. The load is

applied at the central of the clamped beam as shown in Figure 4.18 for excitation

frequency at 1Hz and first natural frequency 29.4Hz.The geometry of the beam is

set as 0.2m, 0.04m and 0.04m for length, width and height. The beam meshing

includes 24 elements with six in length, two in width and two in height.
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Figure 4.18.: Sketch of excitation at 1Hz and 29.5Hz.

Figure 4.22 shows real and imaginary part of the strain at 1Hz to verify the

uniaxial strain properties of the program. The X-axis gives the total length of the

beam in the example. The strain curve in X direction multiplying the Poisson

ration matches well with the strain curve in the Y direction. The frequency

dependent modulus of rubber indicates that the structure is nearly elastic when the

external excitation is applied at extremely low frequency. Thus, the imaginary of

the displacement, strain and stress are lower than the real part of that in three

order of the magnitude.

Figure 4.19.: Verification of uniaxial strain (a) Real part; (b) imaginary part.

At lower frequency, the real part of the displacement plays the dominate role

while the imaginary part is nearly negligible. Since the influence of imaginary part

of the modulus is pretty insignificant, it is reasonable to take it as static

deformation. The displacement calculated from Simplex nearly tallies with the QED
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at 1Hz excitation. The maximum strain appears at the central part of the clamped

beam and the strain is symmetrical over the central part. Figure 4.20 confirms the

accuracy of the Simplex program through the comparison of the static strain from

QED with the quasi-static strain at 1Hz from Simplex.

Figure 4.20.: Comparison of strain from QED with that from Simplex at 1Hz

(a)X-direction; (b) Y-direction.

Figure 4.21.: Eigen frequency analysis (a) The first natural frequency; (b) the first

modal shape.

From the response of the beam under frequency scan, it is convenient to get

the damped natural frequency. Figure 4.21(a) shows the first natural frequency as
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29.5Hz and the modulus at this frequency is 1.08MPa. Figure 4.21(b) shows the

first modal shape, which also indicates that the imaginary part of the displacement

overwhelms the real part of the displacement. Since the QED gives the static

deformation while the Simplex presents the resonance deformation, a scale is

applied to plot the comparison. Nevertheless, the perfect match of the Simplex

model shape with that from the QED verifies the effectiveness of the Simplex in

dealing with the viscoelastic structure.

The modulus is affected by the excitation frequency, as a result, the

displacement of the clamped beam is affected by the frequency. The two black lines

Figure 4.22.: Influence of damping coeffience on displacement at the central part of

the beam (a) Real; (b) imag; (c) magnitude and (d)displacement of whole beam

are the first natural frequency of the purely elastic structure calculated from QED.

When the modulus in the QED is set as E = E2 =1.07MPa, the first natural
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frequency is 32.02Hz. When the modulus in the QED is set as

E = E1 + E2 =1.87MPa, the first natural frequency is 42.4Hz. Figure 4.22 indicates

that higher η increases the dynamic modulus and shifts the location of the peak to

right. No matter the real part or imaginary part, at the beginning, the magnitude

decreases with the increasing η. But later, the increasing of η leads to higher

displacement. In the frequency range 30-40Hz, the imaginary displacement

dominates the magnitude, thus, the displacement plotted from the magnitude is

similar to the displacement calculated from the imaginary part.

From the initial simulation, the second modal shape is anti-symmetrical over

the central part of the clamped beam. Since the more complicated the modal shape,

the lower the amplitude considering the strain energy needed in the structure.

Thus, in order to exaggerate the second modal shape over the first modal shape, an

anti-symmetrical load is applied at about one fourth and third fourth position of the

beam in opposite direction. The sketch of the anti-symmetrical load is given in

Figure 4.23.

Figure 4.23.: Sketch of excitation at 66Hz.

Figure 4.24(b) shows the displacement of the node in the frequency range

60-90Hz, which locates the second damped natural frequency of the viscoelastic

beam. Near the frequency 66Hz, the real part of the displacement is negligible and

the imaginary part of the displacement reaches maximum in this range. That

indicates the second damped natural frequency is 66Hz and corresponding modulus

of rubber at this frequency is 1.10MPa. Figure 4.24(b) is the sketch of the second
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modal shape of the beam, which matches well with the static deformation obtained

from QED. Similarly, the imaginary part of the displacement dominates the modal

shape over the real part.

Figure 4.24.: Eigen frequency analysis (a) The second natural frequency; (b) the

second modal shape.

The third damped natural frequency is detected in the frequency range

100-125Hz. Figure 4.26(a) shows that the resonance happens at 108Hz and the

modulus at that frequency is 1.14MPa. The third modal shape in the transverse

direction is symmetrical over the central part of the clamped beam again. Similarly,

in order to emphasis the third modal shape, the load shown in Figure 4.25 is applied

in Simplex and QED. Figure 4.26(b) indicates that the static response from the

QED tallies with the modal shape given by the imaginary part of the displacement.

Figure 4.25.: Sketch of excitation at 108Hz.
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Figure 4.26.: Eigen frequency analysis (a) The third natural frequency; (b) the third

modal shape.

Figure 4.27.: Stress distribution at X and Y direction at frequency 1Hz.

In the previous discussion, the uniaxial strain properties at quasi-static 1Hz

have been verified. In this section, the stress at quasi-static is compared with QED

to encourage the following work. The same clamped beam is used in this part as

demonstration and the load is applied at top surface of the central part. The

comparison between quasi-static 1Hz Simplex response and the static QED results is

plotted in Figure 4.27. The stress of the real part is much larger than the imaginary

part since the imaginary modulus is three orders lower than the real modulus in
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that excitation frequency. About the stress in the transverse direction, it is lower

than the axial stress because the beam is not constrained in the Y direction.

The last section states the dissipation energy of viscoelastic material is

attributed to the out of phase between force and displacement. The multi body

analysis has shown the effect of frequency on the energy dissipation rate. Similarly,

excitation at 1Hz, 45Hz and 90Hz are compared in the Simplex to explore the

frequency effect on dissipation energy.

Figure 4.28.: Frequency effect on dissipation energy(a) Out of phase at 45Hz; (b)

out of phase at 90Hz; (c) dissipation loop at 45Hz; (d) dissipation loop at 90Hz.

Figure 4.28(a) and (b) show the out of phase between force and displacement

at 45Hz and 90Hz, which indicates the phase of displacement lagging behind more

at 90Hz than that at 45Hz. To have more vivid observation about the frequency

effect, the dissipation loop formed by plotting force against displacement at 45Hz
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and 90Hz are compared in Figure 4.28(c) and (d). The higher dissipation energy

can be deduced from three aspects. Firstly, in this model, unit load is applied on

the nodes of the top line, while the displacement at 90Hz has larger displacement

than the displacement at 45Hz. Secondly, the ellipse loop formed at 90Hz is much

closer to a full circle than that formed at 45Hz. The simple mathematic equation

calculating the area of ellipse can prove the larger enclosed area at 90Hz. Thirdly,

the higher the excitation frequency, the accumulation rate of the dissipation will be

higher. In sum, the 90Hz excitation generates more dissipation energy than that at

the 45Hz in unit time.

In order to verify the programming of the Simplex in energy dissipation

estimation, the energy equilibrium of the entire system is calculated in the time

domain. Set Poisson ration ν as 0.475 and damping η as 0.000323MPa.s. The

element number of the viscoelastic beam is 40 and the damped natural frequency of

the current model is 33.5Hz. The strain and stress of the 27 integration points in

each element can be obtained from the displacement of the 20 nodes in each

element. For each element, the total energy dissipation is generated with the

summation of the 27 integration points. The general expression of the strain energy

in each element is given as,

U =
1

2

∫
V 0

uT [BL]T [D][BL]udV 0 (4.27)

While it is not convenient to calculate the dV0 since the mesh is not uniform for

some complicated structure, thus, the isoparametric volume is recommended to

replace dV0 as dV0 = |Je|drdsdt = |Je|dVc, where the J is the Jacobian matrix.

Therefore, the strain energy of the element turns to,

U =
1

2
uT
∫
V0

[BL]T [D][BL][Je]dVcu (4.28)

As to the Hex20 element, the complex strain ε of the 27 interpolation points are

derived using u ∗BL and the complex stress σ of the 27 interpolation points are

derived using u ∗BL ∗D. Extract the real parts of the complex strain and stress at
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each interpolation point and plot the real strain against real stress to form the

dissipation energy. Integrate the product of stress and strain in time domain to

calculate the loop area and then sum up over the 27 interpolation points, which

gives the dissipation energy of a Hex20 element.

The next step is the calculation of potential energy in each element, which is

given as,

U =
1

2
uT [K]u (4.29)

The stiffness matrix [K] of each element can be written as,

[K] =

∫
V

[BL]T [D][BL]|Je|dVc (4.30)

To calculate the potential energy using the Simplex, the real part of the

displacement of each node in the Hex20 element is extracted. The time dependent

strain of the 27 interpolation points are obtained by multiplying with matrix BL.

Then, the time dependent stress of the 27 interpolation points are obtained by

multiplying strain with matrix D. It is important to point out that the

displacement, strain and stress in this step are real components since only the real

part of the displacement is extracted at the very beginning of the calculation. Then,

sum up the products of stress and strain at the 27 interpolation points to have the

total potential energy in each element.

The mass matrix of Hex 20 element is needed to calculate the kinetic energy,

which is formed as,

mIJ =

∫
Vc

ρhI(r, s, t)hJ(r, s, t)|Je|dVc (4.31)

With the Simplex program, the external work done on the clamped beam, potential

energy, kinetic energy and dissipation energy (strain energy) at different excitation

frequency are calculated to verify the application of FEA in viscoelastic structure.

Figure 4.29(a) shows the accumulated work, the dissipation energy, potential energy

and kinetic energy in one cycle at 1Hz. As the pretty low frequency, the structure

experiences deformation slowly under the quasi-static excitation. First of all, the
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Figure 4.29.: Compare the energy at 1Hz and 45Hz.

kinetic energy is quite small compared with others since the velocity of the

deformation is fairly slow. Thus, a scale 1000 is applied to enlarge the variation of

kinetic in the plot. The potential and kinetic energy are energy storage components,

which display the variation of energy but finally return to initial value after one

cycle. It is well known the static excitation does not cause the energy accumulation

in the viscoelastic material. In current simulation, the accumulated work done by

the external work presents the similar tendency but the summation of energy

slightly increases at the end of one cycle. To verify the accuracy in the prediction of

the energy accumulation, the energy dissipation calculated from the product of

strain and stress in each integration point of the system is plotted in solid line. The

energy accumulations calculated through the two approaches are coincident with

each other and the totally accumulated dissipation energy is very slight at 1Hz.

Figure 4.29(b) shows the dissipation energy at 45Hz increases pretty obviously in

one cycle, even though the period is only 1/45s. Just as expected, the accumulated

external work matches well with dissipation energy calculated using the strain

energy.

Figure 4.29 elaborates the dissipation energy accumulation in cycle. The

plots shows in Figure 4.30 indicates those energy accumulation are periodic. The
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Figure 4.30.: Periodicity of the work and strain energy.

dt(work) and dt(strain) in the Figure 4.30 are obtained through differential over

the external work and strain energy in time domain. Since the dt(work) and

dt(strain) are sinusoidal wave, the accumulated work and strain energy obtained

from the integration of the sinusoidal wave are definitely periodic in time domain.

Thus, it is applicable to assume the constant heat generation rate as long as the

harmonic force field is applied.

4.4 Response of Viscoelastic Beam to the Blast Load

The response of rubber bushing to the hammer impact has been discussed in

Chapter two. The modal analysis from the acceleration of displacement can be used

to derive the transfer function of the rubber bushing. With the identified

coefficients of transfer function, the energy dissipation of the rubber bushing at

different excitation frequency can be predicted and the stability of the structure can

be analyzed. However, for a large scale structure, the response measured at different

position is different under the same impact, which means the transfer function is

also dependent on the measured location. Generally speaking, multiple

accelerometers can be set up to record the response at different location. However,

using the modal testing approach to evaluate multiple similar products is kind of



152

time consuming and redundancy. The Simplex program developed in frequency

domain enables the user to evaluate the similar products much easier and faster.

The force-frequency Simplex program is actually a transfer function ˆG(ωn) in

frequency domain. If the unit amplitude harmonic excitation is applied on the

structure, the output of any node on the structure stands for a unique transfer

function. To elaborate Simplex program in presenting the transfer function, a beam

in Figure 4.22 is applied in the following discussion. Since ˆG(ωn) is presented in

frequency domain, the blast load should be transformed into frequency domain with

FFT. FFT is used rather than the Laplace transform due to the special requirement

in coding. The calculated displacement is still in frequency domain, inverse fast

transformation (IFFT) is necessary to reconstruct the time history of the response.

Figure 4.31.: Response of viscoelastic beam to the blast load (a) Compare with the

blast; (b) effect of the measured location.

Figure 4.31(a) shows the blast load and the displacement at the central part

of the clamped beam. The blast is multiplied with a scale 0.002 to have same

magnitude as response in the plot. Because of the damping of rubber, the response

of displacement is weakened in exponential quickly. Figure 4.31(b) compares the

displacement at different locations of the clamped beam. 1/2 x is the central of

beam, which displays maximum displacement. 1/6 x and 1/3 x are the distances
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from the fixed end of the beam to the measured point. Just as expected, the closer

of the measured position to the fixed end, the lower is the peak value of the response.

As to elastic material, the response is similar to the loading history in time

domain if the transfer function of the structure is non-dissipative. However, as to

the viscoelastic material, the transfer function is definitely dissipative. Then, the

response is different from the loading history. The Figure 4.31 gives a proper

demonstration of the dissipative wave propagation.

4.5 Dissipation Energy Distribution in Rubber Bushing

In the previous testing of Simplex, a frequency function multiplying with the

dynamic stiffness of the elastic structure turns the stiffness into complex variable

and frequency dependent in order to represent the stiffness of viscoelastic structure.

Whereas the precondition is the uniform material properties in all elements, which is

inconsistent with the current rubber bushing composed of rubber and steel. To solve

this problem, an approach is implemented to minimize the influence considering the

modulus difference between rubber and steel. A group of comparison is listed in the

Figure 4.32 assuming the second material′s modulus as frequency dependent. In this

comparison, the damping coefficient is set as constant and spring coefficients are

varied to simulate the stiffer second material. Figure 4.32(b) indicates that with the

increase of the two spring coefficients, the increase of storage modulus and loss

modulus becomes slower. Especially, when the second material′s spring coefficient is

1000 times of the rubber′s, the frequency effect on modulus is almost negligible.

Since the modulus of steel is ten thousands time higher than that of rubber and the

testing frequency is in the range of 0Hz to 100Hz, that means the modulus of steel is

still constant in the testing range even though it is expressed in frequency function

in Simplex. However, Figure 4.32(c) shows that the second material′s loss modulus

increases linearly with the testing frequency. The further increase of spring

coefficients has little change on the loss modulus behavior as the three straight lines
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overlap with each other. To guarantee the applicability of the program in structure

composed of two materials, another pre-condition is the negligible dissipation energy

in the steel compared with that in the rubber.

Figure 4.32.: Frequency response of material with different spring coefficients.

Figure 4.33 compares the dissipation energy distribution in the beam when

the second material′s spring coefficients are 10, 100, 1000, 10000 and 100000 times

of the rubber′s. For more straightforward demonstration, the ratio of dissipation

energy in the two materials is compared, where E1 is the rubber and E2 is the stiffer

material. In this testing, the external excitation frequency is 30Hz and applied on

the central surface of the beam. Because the loss modulus of the second material

increases with the frequency in the testing frequency range when the modulus

difference between the two materials is not too large, the dissipation energy in the

two materials are pretty close. However, once the two spring coefficients of the

second material is extremely larger than that of rubber, for example, the steel in the
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Figure 4.33(b), the ratio of dissipation energy between steel and rubber is as high as

14000 times. Thus, the dissipation energy in the steel is negligible compared with

rubber and the Simplex program is applicable to structure composed with two

materials as long as the second material′s modulus is much higher than rubber.

Figure 4.33.: Comparison of dissipation energy distribution at 30Hz in two

materials.

Figure 4.34 displays the frequency scan of the beam composed of two

materials. For the convenience of natural frequency identification in the viscoelastic

structure, the Eigen values of the corresponding elastic structure are calculated

using the low and high modulus separately, which are plotted as black vertical lines.

With the increase of the second material′s low and high modulus, the first resonance

frequency turns to higher. In the Figure 4.34(a), both of the two layers materials

are rubber and the first natural frequency is 14.2Hz and the frequency plays

dominate role to determine the displacement of the beam in the testing range 0Hz

to 30Hz. Even though when the second material′s modulus is 100 times higher than

the rubber′s, the frequency effect is still obvious in the testing range less than

100Hz. Figure 4.34(c) gives the frequency scan result of beam composed of rubber

and steel. Because of the higher modulus of steel, the damped natural frequency

appears at 850Hz, as shown in Figure 4.34(d). However, besides of the frequency
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effect presented in the resonance, the frequency dependence of rubber materials

displays in the testing range 0Hz to 100Hz. Because of the rising dynamic modulus

of rubber, the imaginary displacement reaches to maximum value before 100Hz and

dominates the deformation of the beam.

Figure 4.34.: Frequency scan of the beam composed of two materials.

Similar, the frequency scan is applied on the cylindrical structure composed

of two materials. Figure 4.35 compares the damped natural frequency with the

natural frequency (black line) of the corresponding elastic structure, and the natural

frequency is always higher than the damped natural frequency. With the modulus

increase of the second material, the first vertical resonance frequency turns higher.

Especially, when the second material is steel, in the high frequency range, the

resonance affects the behavior of the structure, but in the low frequency range, the

viscoelastic of rubber affects the behavior of the structure. This characteristic is
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unique in structure composed with viscoelastic material since the frequency effect at

low frequency is negligible in elastics structure.

Figure 4.35.: Frequency scan of viscoelastic cylindrical structure.

The dissipation energy of the viscoelastic structure composed of two

materials is shown in Figure 4.36. Because of symmetry of the dissipation energy

distribution, only half of the elements are considered. In this testing, the vertical

loading is applied on the steel and the outer surface of the rubber is fixed. The

rubber mesh in radial includes three layers of elements, including inner layer, middle

layer and outer layer. The orientation of elements indicates the coordinate of

elements in circumference. Overall, the inner layer of elements shows higher

dissipation energy density, however, the minimum dissipation energy density

displays in the middle layer of rubber core. The frequency effect on viscoelastic

material at lower frequency is demonstrated again in the Figure 4.36(b). Because of
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the higher modulus of rubber at 60Hz than 30Hz, the displacement at 30Hz is lower

and the dissipation energy is also lower than that at 60Hz.

Figure 4.36.: Dissipation energy distribution (a) in the three layers; (b) at frequency

30Hz and 60Hz.

Figure 4.37(a) shows the nonuniform displacement of rubber core during the

tensile test. The unit load is applied at the outer surface of the rubber core to

simulate the tensile test. The inner surface of the rubber is attached with the steel

shaft and assumed as fixed in the model. The real part and magnitude of

displacements decrease from the outer surface to the inner surface of rubber core.

Figure 4.37(b) shows the frequency dependence of the displacement on top node.

Because of the high natural frequency of the viscoelastic cylindrical rubber bushing,

the frequency effect at lower frequency is dominated by the properties of viscoelastic

material rather than the resonance phenomena. The real part and magnitude of the

displacement decrease with the increase of frequency, which is attributed by the

increase of dynamic modulus.
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Figure 4.37.: Displacements of the rubber core (a) Nodes in radial rection; (b) top

node at different frequency.

Figure 4.38.: Density of dissipation ererngy in rubber core(a) Amplitude=1mm; (b)

amplitude=2mm.

The dissipation energy distribution of rubber core at excitation frequency

10Hz is displayed in Figure 4.38. The amplitude of the excitation is indicated using

the amplitude of the top node, which has the maximum displacement. The loading

area of the rubber bushing presents the highest dissipation density and that

distribution isn′t changed after double the amplitude. This dissipation energy

distribution tallies well with the displacements of nodes in radial direction. The
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higher displacements of nodes cause more energy dissipated and accumulated. The

central area of the rubber core is of low displacement and the corresponding

dissipation energy density is pretty low.

Figure 4.39.: Density of dissipation ererngy in rubber core (a) 30Hz; (b) 60Hz; (c)

90Hz.

The frequency effect on the distribution of dissipation energy is presented in

Figure 4.39. The simulation results indicate that the amplitude at higher frequency

is lower due to the hardening of rubber core. The amplitudes at 10Hz, 30Hz, 60 Hz

and 90Hz under the same excitation load are 1mm, 0.8mm, 0.688mm and 0.662mm.

The quick increase of modulus happens in the range of 10Hz to 60Hz and the

modulus approaches to constant when excitation frequency approximates to 100Hz.

From 10Hz to 30Hz, or from 30Hz to 60Hz, the stiffness of the structure changes
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significantly and leads to the almost 20% reduction of amplitude. Nevertheless,

after 60Hz, the slowly increase of modulus just slightly affects the stiffness and has

little effect on the excitation amplitude.

4.6 Conclusion

In consideration of the complicated characterization of the nonlinear

mechanical properties of the viscoelastic material and barely satisfactory simulation

in the commercial software, the finite element analysis is applied in this dissertation

to explore the dynamic response of complicated structure composed with

viscoelastic materials. Solid knowledge about the principle in FEA is elaborated at

the very beginning in order to describe the preprocessing. The FORTRAN source

code initially targeting at elastic structure is implemented to facilitate the

development of current Simplex program. The clamped beam is practiced in the

testing process to verify the reliability of the program through the comparison with

the theoretical analysis or the quasi-static simulation. Each step of the Simplex

program is scrupulously confirmed before moving to the next step. The principle

and approach to calculate the dissipation energy in each element and over the entire

system are elaborated. Similarly, simulation results of each step are attached to

have a more direct and authentic demonstration of the FEA. Furthermore, the

system transfer function developed in the frequency domain, and the response of

structure subjected to the blast load become feasible with the convenient of FFT

and IFFT algorithm. Even though research target of the dissertation is rubber

bushing, the developed Simplex program can be applied to any structure, regardless

how sophisticated and what type of loading is applied on the model. Nevertheless,

the last but not the least part of the FEA in this chapter is the dissipation energy

accumulation in each element, which provides the heat source for the following heat

transfer analysis. Again, this Simplex program can be applied for dynamic analysis

about many interesting components or structures.
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CHAPTER 5. TEMPERATURE DISTRIBUTION OF RUBBER BUSHING

USING FVM

5.1 Coupling of Structure and Thermal

It is well known that natural rubber materials lose its viscosity and turn to

more rigid after serving for a certain time. The degeneration of properties is usually

termed as aging. Actually, besides of aging, the rubber materials′ fatigue life is also

being highly shortened after certain serving life. Hysteresis loss is the main reason

to account for the aging process, which is monotonically increasing with the ambient

temperature (Choi, Kang, Jeong, Lee, & Yoon, 2005). The increase of rubber′s

temperature or environment temperature can lead to decrease of modulus at small

strain, and decrease the effect of carbon black′s percentage on the magnitudes of

modulus. The temperature, strain and carbon black concentration dependence on

the modulus become much less sensitive at the larger strain range(A. R. Payne,

1962). To the manufactured rubber components, the ambient heat from the

environment and internal heat caused by the dynamic behaviors are highly

destructive to the rubber, which make heat as the primary role in weakening the

properties of rubber (Gehman, 1967). Similarly, the aging and fatigue life of rubber

components are extremely dependent on the heat generation and temperature rising

rate (Mars & Fatemi, 2004), and (Beatty, 1964). At higher temperature, the

thermal effect has more atmospheric oxygen, which leads to more stress relaxation

or stress decay (Kalfayan, Silver, & Mazzeo, 1975). In sum, it is extremely crucial

to explore the coupling relationship of thermal and structure and determine the

better serving condition of rubber components to optimize the service life.
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The rubber bushing installed on the suspension system is exposed in the

ambient environment. The thermal accumulated in the rubber core of the bushing

partially transfers to the lower temperature ambient air. The heat transfer

coefficient of rubber is tremendously lower than that in steel sleeves. Thus, to

predict the temperature distribution of rubber bushing during the dynamic loading,

the heat transfer mechanism should be clarified besides of the heat generation

mechanism. Furthermore, those spring and dashpot elements combinations are

lumped heat source and couldn′t provide discrete dissipation density. Considering

the special property of viscoelastic material model, the FEA estimated dissipation

energy density is applied as heat source inside of the rubber core.

5.1.1 Physical and Thermal Properties of Rubber

From the previous multi-body dynamic analysis, the rubber components

experience the translation movements and rotation movement. In either way of

movements, the hysteresis damping and viscous damping should be included to

predict a comprehensive temperature distribution of rubber bushing. To start the

analysis of thermal field in MATLAB, the heat sources should be clarified and the

corresponding parameters of heat transfer should be identified. The geometry of

rubber bushing used for the heat transfer analysis is given in Table 5.1.

Table 5.1: Geometry of rubber bushing for test

Parts outter sleeve rubber core inner sleeve

Diameter(inch) 2.755 2.515 1.25

Length(inch) 2.0 2.0 2.29

Composition of rubber used for the parameter identification is carried out

using thermal gravimetric analysis (TGA). The principle of TGA is the weight loss
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of rubber during the increase of temperature. The TGA is used here to determine

the composition of rubber used for the following analysis. Being exposed in different

gas environment, the different components of rubber react differently, which process

can be monitored and give a quantified result of the compositions. Generally, the

common gas systems include inert gas (high purity nitrogen commonly) and air.

Initially, inert gas flow is on and then gas source is switched to air by hand or

automated by setting the program. The gas switching systems are critical to

quantify the components of rubber, which is composed of polymer and carbon black

mainly.

The weight range of sample in the test is highly recommended as 10-15

milligrams. The tray is delicate and couldn′t afford a heavy sample. Furthermore,

polymer combustion will release pungent gas, which requires a much better air

circulation system of TGA. Since limited sample is tested every run, multiply

measurements are necessary to acquire credible results. In current test, three

duplicate tests are run and consistent results are obtained every time. The following

are the detailed steps to have a rubber analyzed by TGA instrument. The TGA

results are displayed in Figure 5.1.

To correctly operate the instrument and collect reliable data, the procedures

and results analysis are elaborated in the following,

Step 1: Set the test program in the TGA software to have the temperature

ramping from room temperature to 900 ◦C. Turns on the inert gas and then ramps

the temperature at 10 ◦C per minute. The initial weight loss is due to the

volatization of minor components before the temperature reaches to 300 ◦C. Those

minor components include stabilizers, lubricants, plasticizers, and other small

molecules. The TGA results display a total of 6.621% weight loss in this stage.

Step 2: Majority weight loss happens in this stage ranging from 200 ◦C to

600 ◦C and the loss is taken as polymer percentage. During this temperature range,

backbone of polymer is cracked down into volatile fragments and the weight loss in

this test is 63.92%.
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Step3: Before switch the air system from inert gas to air after temperature

reaching to 600 ◦C, nitrogen is hold for a few minutes at 600 ◦C in order to make

sure all polymers has been cracked down. Later, keep the temperature at 600 ◦C for

15 minutes and switch on the air system. After exposed in the high temperature

and air, carbon black will start to combust and the weight loss in this stage can be

used to estimate the content of carbon black. The result in Figure 5.1 indicates the

weight loss is about 20.05%.

Step 4: Ramps the temperature again at 10 ◦C per minute after it dwells at

600 ◦C for almost 20 minutes. In this period, only calcium oxide should be left after

calcium carbonate presenting decarboxylates. Theoretically, calcium carbonate, the

content of CaCO3 can be obtained on the basis of weight loss in this stage. The

remaining mass after the test is of ash, some mineral materials. While in our test,

there is no obvious weight loss in this stage.

Figure 5.1.: TGA analysis of the rubber sample.

Transient plane source (TPS) method applied by the hot disk thermal

analysis instrument is used to measure the heat conductivity and other thermal

characterization of rubber (Figure 5.2).
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Figure 5.2.: TPS used to measure the thermal properties of rubber.

The specific heat and heat transfer coefficients can be estimated using the

rule of mixture assuming the compositions of rubber are carbon black and polymer

and neglecting the trivial components. The physical and thermal properties of

rubber material properties used in the simulation are given in Table 5.2.

Table 5.2: Physical properties of rubber

Properties Poisson’s ratio Heat transfer coeff Static Mdulus

Value 0.495 10(W/(m2.K)) 0.01(GPa)

Heat Capacity Thermal diffusivity Density Thermal conductivity

1611.44(J/Kg.K) 0.202(mm2/s) 952.54 (Kg/m3) 0.343(W/m.K)

There are some assumptions about the heat transformation in rubber

bushing. Firstly, heat source of rubber bushing comes from hysteresis damping and

viscous damping no matter the harmonic excitation or arbitrary loading is applied.

Secondly, the outer surface of the steel sleeves and two ends of the rubber bushing



167

are exposed to ambient air at room temperature. The heat convection is the main

approach to transfer the heat from rubber bushing to air. Thirdly, the inner steel

sleeve is installed on the balancing bar of the suspension system, which has little

space to be exposed in the ambient air. Thus, compared with the outer surface, the

heat transfor of the inner surface is relative slow and less, thus, that part can be

treated as insulated for analysis. Fourthly, the heat flows are of two directions,

which are through inner steel sleeve and outer steel sleeve, considering the

cylindrical geometry of the rubber bushing.

5.1.2 Boundary Conditions of Rubber Bushing

The following part will discuss the principle of heat transfer to build the heat

convection model of rubber bushing in the air. The energy conservation law gives

the heat transfer governing equation in rubber bushing as,

∂T

∂t
=

1

ρ
(λx

∂2T

∂x2
+ λy

∂2T

∂y2
+ λz

∂2T

∂z2
) +

q

cρ
(5.1)

λx, λy and λz are heat conduction coefficient in the direction x, y and z. q is heat

generated in unit volume, ρ is the material density, α is the coefficient of heat

transfer, c is the specific heat capacity and K is temperature unit Kelvin. From the

previous analysis, the heat generation of rubber is set as plane problem after

simplified the thermal equation of the rubber bushing system,

∂T

∂t
=

1

ρ
(λx

∂2T

∂x2
+ λy

∂2T

∂y2
) +

q

cρ
(5.2)

The above partial differential equation (PDE) of the heat conduction is dependent

on the variables of time and position. To solve this equation, initial and boundary

conditions applied to the domain or surface of the researched items are needed to be

specified. Those specifications are generally classified into three scopes (Kreith &

Black, 1980): environment temperature, surface temperature gradient condition

and airflow condition. The specified temperature or the environment temperature is

called as Dirichlet or essential boundary conditions. This type of boundary
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condition is written as T = Tgiven = T |Γ= T (x, y, z, t), which specifies the

temperature variation of certain boundary surface over time. The second specified

condition on surface is the temperature gradient or termed as heat flux at surface,

kn
∂T

∂n
| Γ = Q(x, y, z, t) (5.3)

Where kn is the normal thermal conductivity coefficient (W/mk). The third

boundary condition describes the convection and radiation with air (Browne &

Wickliffe, 1980),

Q = (hc + hr)(Ts − Ta) (5.4)

The boundary conditions of rubber bushing are shown in Figure 5.3, which shows a

rubber bushing exposed in the air. Rubber bushing is installed on the stabilizing

Figure 5.3.: Idealized cross section of rubber bushing.

bar and gap may exist between the two surfaces during the driving. But the air flow

existing in the gap is poor to conduct the heat transfer, which leads to extra

thermal resistance. The temperature jump will happen at the two materials because

the thermal resistance. In current case, if the temperature of stabilizing bar is room
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temperature, then, the surface of the inner surface maybe a little bit higher than

room temperature. The heat flux rate can be given as,

q =
T1 − T2

Rc

= hc(T1 − T2) (5.5)

Because the rubber bushing is exposed in the air and that can slow down the

temperature rising at the surface. The radial heat transfer dominates the

temperature distribution inside the rubber core. The heat generated inside of

rubber should transfer to the inner and outer steel sleeves, which may highly shape

the temperature distribution of rubber core. Thus, besides of the heat generation

mechanism of rubber under the external excitation force, the heat transfer between

rubber and sleeves are also pretty critical to estimate the possible working

performance of rubber bushings. Surface 1 and surface 2 are typical heat flux

boundary between steel sleeves and rubber, that type of boundary drives lots of

people to study the concise coefficients. The environment temperature of rubber

bushing now can be determined assuming the constant air temperature T0. At the

beginning without heat source, the initial temperature of all the surfaces are given

as,

Ts1 = Ts2 = Ts3 = T (x, y, z, t) = T0 (5.6)

While at other time, the temperature distribution should be estimated using the

second and third boundary conditions. As to the rubber bushing, the temperature

increase can be simply attributed to the heat generation over a certain time period,

T = T0 + QL
λSt

, T0 is environment temperature, T is the rubber bushing temperature,

Q is the accumulated heat per cycle, L is the thickness of rubber bushing, S is the

heat flux surface area, λ is the heat conductivity and t is time in that equation. The

temperature of rubber bushing increases with the generated heat under the external

loading. Due to the highly complicated complex coupling of thermal and dynamic

mechanics, one way coupling approach is performed by many researchers to provide

the temperature distribution of moving rubber components, so as in current

research.
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From the definition of thermal emissivity, the energy is dissipated from the

normal direction of the surface. While for the rubber bushing, especially the

cylindrical rubber bushing, the convex rotating surface indicates that the received

energy is actually lower than the generated energy. Correction is needed to take the

influence of shape.

There is a convenient way to evaluate the convection heat transfer coefficient

from the definition of the second boundary condition. With the known surface

temperature and environment temperature, the heat transfer coefficient can be

written as,

h = − k

TΓ − Tinf

∂T

∂n
| Γ (5.7)

Divide the heat transfer coefficient with the angular velocity, and then the ratio

turns to velocity-dependent. With good estimation, ratio of different velocity

overlaps with each other and tallies with the theoretical estimation.

Base on the conservation of energy, the generated heat in the rubber

components needs to keep the thermal equilibrium on the system and account for

the heat flux from rubber to the ambient air (Yavari, Tworzydlo, & Bass, 1993). As

to those models to solve the thermal mechanical problems, the heat flux

characterization has been discussed in many publications (J. Clark & Schuring,

1988). Browne constructed a platform to show the effect of sample size, surface

conditions and environments on the coefficients of convection heat transfer and

provide some significant data (Browne & Wickliffe, 1980). In that research, the flat

plate exposed to the laminar stream are presented to discuss the effect of air speed,

that theory obtained a strong connection between velocity of air speed and heat flux

coefficients. Schuring (Schuring, 1980) claimed that the rubber tire stopped to

absorb more heat energy once the heat equilibrium has been reached. That

indicated all of the generated heat dissipated to the ambient air after a certain

period. Similarly, when the rubber bushing internal thermal equilibrium has been

estimated, the generated heat due to the dynamic damping diffused to the air

through the surface of steel sleeves and two ends of the rubber bushing.
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The process of programming about the heat transfer in the cross section of

rubber bushing includes the following two parts. First step is the materials

properties collection, which include density, heat conductivity coefficient, special

heat, heat diffusion coefficient, heat generation rate. The second step is the time

difference program using finite volume method and specifications of boundary

conditions.

5.2 Temperature Distribution of Rubber Bushing

5.2.1 Analytical Solution with Constant Heat Source

Analytical solution about uniform heat generation rate has been tested

before the application of heat source calculated from the Simplex program. About

the boundary condition applied on the thermal analysis, the inner surface of the

steel sleeve is taken as insulated since it is confined on the balance bar, that heat

transfer is much slower than the air conduction at the outer surface of the steel

sleeves. All the analytical solution and numerical solution are programmed using

MATLAB to predict the temperature distribution on the cross section of the rubber

bushing. Particular attention should be given to constitutive modeling, which

includes several steps: solve the governing equation and found heat generation rate;

get clear the principle and flow chart of programming, and calculate the

temperature distribution. A main contribution of those steps is a consistent

constitutive relation and analytical solution of temperature distribution in radial

direction of rubber bushing.

Assumptions about the rubber bushing to model the heat transfer are listed

in the following,

1): The heat generation rate S0 is constant in rubber component.

2): The outer surface is exposed to ambient air of constant temperature and

the heat convection rate is high in air.
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3): The inner surface is in contact with the stabilizing bar and is insulated

from environment.

4): For symmetry, only half of the cross section of rubber bushing is

considered and no heat flow in the axial direction.

Those assumptions about boundary conditions to solve the governing

equation are,

1): The initial temperature is T0 at every location.

2): Convection of air at the outer surface x = L is the major heat loss.

3): The inner surface x=0 is insulated and there is no heat loss.

The governing equations of the heat transfer in rubber bushing and its

corresponding boundary conditions can be formulated as,

cρ
∂T

∂t
= K

∂T

∂x2
+ S0

T (x, 0) = T0

K
∂T (L, t)

∂x
+HT (L, t) = 0

K
∂T (0, t)

∂x
= 0

(5.8)

Considering the three layers structures of rubber bushing, the heat capacity is

estimated using composite mix rate ρc = 1/
3∑
1

1
cimi

, and the heat conductivity is

given as 1/K =
3∑
1

δi
λi

. The following work can be seperated into two steps, 1)

calculate the stable temperature distribution, and 2) study the thermal behavior in

a transient regime. First of all, the steady state solution for K ∂T
∂x2

+ S0 = 0 with the

given boundary conditions is,

T ∗ = −S0x
2

2K
+
S0L

2

2K
+ T0 +

S0L

H
(5.9)

Figure 5.4 draws the equilibrium temperature distribution of rubber bushing

in radial direction. This is the temperature distribution of steady state or it is can



173

Figure 5.4.: Equilibrium temperature distribution.

be treated as equilibrium solution of Equation (5.8). The transient temperature

distribution can be solved with the following boundary condition,

T = T ∗ + ω(x, t) = −S0x
2

2K
+
S0L

2

2K
+ T0 +

S0L

H
+ ω(x, t) (5.10)

Substitute this into the initial Equation (5.8) and get,

ω(x, 0) = ω0(x) =
S0x

2

2K
− S0L

2

2K
− S0L

H

k
∂2ω

∂x2
− ∂ω

∂t
= 0

∂ω(L, t)

∂x
+
H

K
ω(L, t) = 0

∂ω(0, t)

∂x
= 0

(5.11)

Where k = K/ρc = 2.7206× 10−5 is thermal diffusivity and ω0(x) is the initial

distribution of transient term at time t = 0. Separation of variables is applied to

solve the partial differential equation, ω(x) = X(x)T (t), which leads to,

X ′′

X
=
T ′′

kT
= λ = −β

2

L2
(5.12)

That equation indicates that X and T are independent with each other. The prime

indicates differentiation with respect to distance and time. With the boundary
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conditions, set X ′(0) = 0; Xn = Bncos(βnx/L); X ′(1) +X(1)H
K

= 0 and then

substitute Xn into Equation (5.12) to get βntanβn = HL
K

. From this solution, the

root for βn with the known H, L and K can be solved (Figure 5.5 ).

Figure 5.5.: (a) The first root of β=1.42; (b) the second root of β= 4.7099.

Next, get the solution for X, and solve the Tn = Ane
−ktβn2/L2

. Now, get

ωn = XnTn = Cncos(βnx/L)e(−ktβn2/L2). Then,

ω(x, t) = C0 +
inf∑
n=1

ωn = C0 +
inf∑
n=1

Cncos(βnx/L)e(−ktβn2/L2) (5.13)

And then,

ω(x, 0) = C0 +
inf∑
n=1

Cncos(βnx/L) (5.14)

Cn =
2S0L

2

Kβn
sinβn −

2S0L
2

Kβn
3 sinβn −

2S0L

βnH
sinβn (5.15)

After this, the solution of the transient temperature distribution of rubber bushing

can be given as,

T = T ∗+ω(x, t) = −S0x
2

2K
+
S0L

2

2K
+T0 +

S0L

H
+

inf∑
n=1

Cncos(βnx/L)e(−ktβn2/L2) (5.16)

With this equation, the time elapsed before the system reaching to thermal

equilibrium can be estimated. It is accepted that the first item of the Fourier series

dominates the temperature distribution (Trivisonno, 1972). Thus, the root of n = 1

is calculated here to plot the distribution of temperature in the rubber bushing.
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Figure 5.6.: Temperature distribution considering the first term in the Fourier series.

According to the conventional definition, when the exponential part is close

to 1, the temperature in the studied case turns to stable, which is expressed as,

ktβ1
2/L2 = 1 (5.17)

The obtained t = 4.5573× 103 is the time needed to keep the thermal equilibrium

inside the rubber bushing in current example.

Figure 5.7 gives the temperature distribution at equilibrium time considering

one or two terms of the Fourier series. That result indicates the approximation with

one Fourier term is enough to estimate the temperature distribution.
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Figure 5.7.: Temperature distribution at equilibrium time.

5.2.2 Numerical Solution Based on the Dissipation Energy Distribution

Before the thermal-structure analysis, the rubber bushing model is built.

Considering the geometry of the cylindrical rubber bushing and negligible heat

transfer in axial direction, just the cross section of the rubber bushing is applied in

current simulation. To keep the consistency, the mesh of the cross section should

tally with the mesh in the FEA simulation since the density of the heat source is on

the basis of each element. It is better to have fine mesh on rubber core and coarse

mesh on steel sleeve. Whereas the thickness of the steel sleeves is pretty small, fine

mesh is necessary to guarantee the convergence and reliable results.

Structure analysis is the first step to estimate the heat generation rate. The

load is applied on the outer surface of steel sleeves to simulate the external

harmonic loading on the rubber bushing. Heat generation comes from the hysteresis

damping and viscous damping inside the rubber core and the thermal properties has

been presented in the previous discussion.
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With the heat generation derived from the structure analysis, the MATLAB

thermal analysis can be lunched. It is important to notice that the heat generation

is frequency and temperature-dependent. Nonetheless, in this research, only

frequency and amplitude influence are considered because the limited experimental

data collection to verify the MATLAB program.

The grid generation of rubber bushing for the heat transfer analysis is shown

in Figure 5.8.

Figure 5.8.: Arrangement of control volumes in radial direction.

In the cylindrical coordination system, the governing equation of transient

heat transfer problem is given as,

ρc
∂T

∂t
=

∂

dx
(λ
∂T

∂x
) +

1

r

∂

∂r
(rλ

∂T

∂r
) + S (5.18)

In the following discussion, the heat flux density is uniform in each control volume

and the implicit scheme is employed. Integrate over the control volume in the

Figure 5.9 and over the time from t to t+ ∆t. In order to finish the integration, the

distribution of T with time can be represented using the current T and the old T ,

which are indicated as,
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t+∆t∫
t

Tdt = [fT t+∆t + (1− f)T t]∆t = [fT + (1− f)T 0]∆t (5.19)

Figure 5.9.: Grid system of cylindrical axisymmetric coordinate.

For convenience, the super script t+ ∆t is deleted and t replaced with 0. In

the following discussion, f is the weight factor. f=0, 1, and 1
2

represent the explicit,

implicit and crank-Nicolson algorithm respectively. First, integrate the transient

term,
n∫
s

e∫
w

t+∆t∫
t

ρc
∂T

∂t
drdxdt = (ρc)p × (Tp − T 0

p)∆x∆r (5.20)

Then, the diffusion term,

t+∆t∫
t

n∫
s

e∫
w

∂

∂x
(λ
∂T

∂x
)drdxdt+

t+∆t∫
t

n∫
s

e∫
w

1

r

∂

∂r
(rλ

∂T

∂r
)drdxdt

=

[
λe
TE − Tp

(δx)e
− λw

Tp − Tw
(δx)w

]
∆r∆t+

[
λn
Tn − Tp
(δr)n

− λs
Tp − Ts
(δr)s

]
∆x∆t

(5.21)
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Later, the source term,

n∫
s

e∫
w

t+∆t∫
t

Sdrdxdt = (Sc + SpTp)p∆x∆r∆t (5.22)

Reorganize the integration to get,

apTp = aETE + aWTW + aNTN + aSTS + b (5.23)

Where aE = rp∆r

(δx)e/λe
; aW = rp∆r

(δx)W /λW
; aN = rn∆x

(δx)N/λN
; and aS = rs∆x

(δx)S/λS
. Solve this

equation to get

ap = aE + aW + aN + aS + a0p− Sp∆V (5.24)

Where a0p = (ρc)p∆V

∆t
, b = Sc∆V + a0

pT
0
p and ∆V = 0.5(rn + rs)∆r∆x.

The schematic diagram about the boundary between rubber bushing and air

is displayed in Figure 5.10.

Figure 5.10.: Schematic diagram of boundary between rubber bushing and air.

This is the third type of boundary conditions. The temperature in the air is

assumed as room temperature, which is defined as constant. Additional source term

method is applied here to describe the boundary temperature.

(ap − aN)Tp = aETE + aWTW + aN(TN − Tp) + aSTS + b (5.25)
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Where aN(TN − Tp) = rn∆r(TN−Tp)

(δr)n/λn
= qB∆r, then the governing equation turns to

a′pTp = aETE + aWTW + qB∆r + asTs + b. In current case, assume the

qB = h(Tf − TN) and qB = rn(TN−Tp)

(δr)n/λn
. From the Fourier law, we have

qB =
Tf−TN

1/h
= TN−Tp

(δr)n/λnrn
=

Tf−Tp
1/h+(δr)n/λnrn

. Thus, as to this boundary, the iteration

equation can be written down as,(
a′p +

∆r

1/h+ (δr)n/λnrn

)
Tp = aETE + aWTW +

Tp
1/h+ (δr)n/λnrn

∆r + aSTs + b

(5.26)

This equation can be applied to the three materials for their inner surface nodes.

Now, consider the second type of boundary condition. When the thermal properties

of the two materials in the interface are different, there are two approaches to

approximate the properties of thermal conduction. A more directed method is

treating the step face as the interface of two control volume and later, using

harmonic mean to estimate the thermal conductivity. Generally speaking, the

second method will give more concise results. In this method, the step face is set as

a node. By doing this, the temperature gradient at the two sides of the step face is

different. First, analyze the step face between outer steel sleeves and rubber in

Figure 5.11.

Figure 5.11.: The treatment of interface nodes of different materials properties.
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That sketch shows the treatment of interface nodes when the materials

properties is changed. For steel, without heat source, the thermal equilibrium is

written as,

ap = aE + aW + aN + aS + a0p− Sp0.5(rn + r + s)∆rs∆x (5.27)

b = Sc0.5(rn + rs)∆rs∆x+ a0pT 0p (5.28)

Now, about the boundary between rubber bushing and air, the schematic

diagram is displayed in Figure 5.10. Since it is hard to estimate the heat conduction

coefficient at the interface for the heat conduction in radial direction, thus, the

harmonic method is applied here. If just consider the node in steel, the

qB = rn(TN−Tp)

(δr)n/λn
and again consider the node in rubber, the qB = rs(Tp−Ts)

(δr)s/λs
. According

to the Fourier law, the heat flux at the interface can be written as

qB = rs(TN−TS)
(δr)n/λnrn+(δr)s/λsrs

.

With the density of dissipation energy generated from the Simplex program

in Chapter four, the temperature distribution of the rubber bushing′ cross section is

presented in Figure 5.12. From the previous discussion, the excitation frequency of

driving vehicle is about 10Hz and the heat generate rate is periodical. The

accumulated dissipation energy can cause the rising of temperature over time. The

maximum temperature of rubber bushing changes from 315K, 330K, and 340K to

350K at loading time 600s, 1800s, 3600s and 7200s. At the beginning, the

temperature rise quickly and concentrates around the tensile loading zone. Because

of the low heat conductivity of rubber core, the temperature gradient inside the

rubber core is much larger than that in the steel sleeves. If the rubber bushing′s

heat conductivity is 10 times higher, the temperature distribution of rubber core

should be much more uniform from the very beginning and the heat concentration

effect could be minimized.
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Figure 5.12.: Surface temperature distribution of the rubber bushing at 10Hz;

(a)600s; (b)1800s; (c)3600s; (d) 7200s.

Figure 5.13 compares the amplitude effect on the temperature distribution of

rubber bushing under harmonic loading at 10Hz and after 120s. The maximum

temperature is about 303K when amplitude is set at 1mm. When the amplitude is

set at 2mm, the maximum temperature near the loading zone is about 315K, which

is similar to the temperature distribution at 10Hz, 1mm and after 600s. This

comparison indicates that twice the amplitude can greatly shorten the time needed

to reach the expected temperature.

Figure 5.14 compares the frequency effect on the temperature distribution of

rubber bushing at the same loading and after 120s. With the increase of frequency,

the amplitude of excitation decreases due to the frequency-dependent modulus of
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Figure 5.13.: Temperature distribution of rubber core at amplitude (a) 1mm; (b)

2mm.

rubber core. The amplitude deceases from 0.8mm, 0.688mm to 0.622mm as

excitation frequency changes from 30Hz, 60Hz to 90Hz. Since the modulus increases

quickly in the range 0 ∼ 45Hz, then grows slowly in the range of 45 ∼ 90Hz, and

finally almost reaches to constant after 90Hz, the amplitude drops much more from

30Hz to 60Hz than that from 60Hz to 90Hz. From the previous analysis, the

decrease of amplitude means the lower dissipation energy density in one cycle.

However, the higher dissipation energy in unit time at higher frequency makes the

accumulated heat source at higher frequency overwhelms that at the lower

frequency. As a result, the temperature distribution is higher at 90Hz compared

with that at 30Hz excitation. When the frequency is higher than 90Hz, the modulus

is frequency-independent and the amplitude can keep constant over the frequency

range. Then, the increase of frequency can generate more dissipation energy in unit

time and cause higher temperature distribution.
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Figure 5.14.: Temperature distribution of rubber core (a) 30Hz; (b) 60Hz; (c) 90Hz.

5.3 Conclusion

The thermal properties of rubber are reviewed and the corresponding

thermal properties are measured using TPS. On the basis of the dissipation energy

density calculated from the Simplex program at various amplitude and frequency,

the temperature distribution of the rubber bushing is estimated in this chapter. In

the initial work, the analytical solution of the temperature distribution is discussed

in the case of uniform heat source. Later, numerical solution is developed using

finite volume method to predict the temperature distribution at different amplitude

and frequency. The FVM allows different heat source at each volume, which method

gives more authentic temperature distribution. Thus, the second approach is more
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applicable in view of the nonuniform dissipation energy density of rubber core. The

simulation results indicate the influence of amplitude overwhelms the effect of

frequency at 10Hz. In the low frequency range, with the increase of frequency, the

loading should be increased to keep the expected excitation amplitude. At high

frequency, when the modulus is not frequency-dependent any more, the influence of

frequency on the temperature distribution attributes to the increasing heat

generation at per unit time.
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CHAPTER 6. COMSOL SIMULATION AND EXPERIMENTAL DYNAMIC

TESTINGS

6.1 FEA Simulation with COMSOL

Vehicle driving condition is used to refer the dynamic behaviors of rubber

bushing installed on the suspension system. For a frequently retreated truck tire,

the general service life is about 1 million Km, which means 300 ∼ 500 million cycles

considering the larger diameter of tire (LaClair & Zarak, 2005). Rubber bushing

follows the cycle rate of tire but bushings are rarely replaced compared with tire.

Considering the behaviors, the serving life of rubber bushing is much higher and its

durability is much more critically dependent on the design and material properties.

Considering the complicated condition of tire rolling, the Fourier series presenting

stress and strain are applicable, but the commonly employed linearized complex

modulus still leads to certain error, as a result, the further FEA simulation may

involve perturbations.

The dissipative properties of viscoelastic materials under harmonic excitation

can be represented in three ways, power law, tabular input and Prony series

expression with shear and bulk relaxation modules. In the current commonly used

FEA commercial software, such as COMSOL and Abaqus FEA, the implemented

viscoelastic models are mainly generalized Maxwell model, which is conveniently

represented using the Prony series.
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6.1.1 Prony Series Parameters and Thermal properties

In this research, the FEA simulation with COMSOL is carried out to

elaborate the heat generation rate and temperature distribution of rubber bushing.

The experimental identified parameters are taken to characterize the Prony series of

the standard linear model. In this part, Berg′ model is employed to include the

frequency dependent part viscous damping and the amplitude dependent hysteresis

damping to calculate the energy accumulation. Prony series are used to present the

shear stress relaxation modulus and bulk modulus. The general expression is,

G (t) = G (∞) +
N∑
i=1

Giexp
(− t

τi
)

(6.1)

Where τi is the relaxation time for each exponential components, G (∞) is the

modulus when t is approximated to infinite and G(0) is the initial modulus at

t = 0+. The Prony series is also commonly represented with the normalized

dimensionless relative modulus,

gR(t) =
GR(t)

G(0)
=
G (∞) +

∑N
i=1 Giexp

(− t
τi

)

G (∞) +
∑N

i=1Gi

= 1−
N∑
i=1

gi[1− exp(− t
τi

)
] (6.2)

Where gi(t) = Gi(t)
G(0)

and
∑N

1 gi(t) = 1. Here, the model used in current analysis is

the standard linear model, which is the simplest generalized Maxwell model. The

relaxation modulus derived in previous can be applied directly in COMSOL to

characterize stress and strain relationship of viscoelastic material.

As to the viscoelastic material, Poisson′s ratio is time dependent, µ = µ(t).

Considering the very tiny variation of Poisson′s ratio with time and the economy of

optimization, constant µ is also a reasonable selection. µ is defined as 0.475 for the

following calculations as done in the Simplex program.

The outer sleeve is exposed to the air and the proper estimation of the

convection coefficient for a high speed driving truck is also pretty troublesome.

Browne carried out parametric study to probe the factors affecting the convective

heat transfer coefficients (Browne & Wickliffe, 1980). That research indicated that

air flow velocity, tire surface size and conditions, such as surface roughness, wetness



188

and cleanliness affects the effective convective heat transfer coefficients. Per

influence was characterized qualitatively but no conclusive parameterized expression

was built to facilitate the further prediction of heat transfer coefficients with known

parameters of tire. For the limited experimental platform, the empirical value is

chosen in COMSOL for the convection coefficient in the air.

The inner steel sleeve is installed on the stabilizing bar and its heat transfer

is characterized as conductive. There are two approaches to describe the interface

between inner sleeve and stabilizing bar. One simplified method defines the

interface as adiabatic and the corresponding heat transfer coefficient is zero. This

treatment approaches to the real situation in the case of tight connection between

inner sleeve and stabilizing bar. While, in some rubber components, the gap

between stabilizing bar and inner sleeve allows the air convection, which affects heat

transfer. At to latter situation, the nonzero but much smaller heat transfer

coefficient compared with the outer sleeve is adopted by many researchers. It is

obviously to found that the inner sleeve coefficient is driving speed-dependent and a

proportional coefficient can be chosen to describe the heat transfer coefficient. In

all, precise heat transfer coefficient is extremely needed to correctly predict the

temperature distribution of rubber bushing during service. But to have credible

temperature distribution, the stress and strain of rubber bushing is prerequisites.

Because of the strain or amplitude dependence of the rubber components,

characterization of rubber materials is critical in predicting the energy dissipation

during the working conditions. The amplitude dependency of hysteresis damping

upon the quasi-static excitation shows the decreasing modulus at high amplitude.

Furthermore, the viscoelastic behaviors of rubber elements are temperature

dependent, which implies the thermal-structure coupling analysis in the next FEA

discussion. Frequency affects the storage and loss modulus, but has little effect on

tan delta. Based on the linear complex modulus model, the strain under harmonic

excitation can be calculated easily. Generally speaking, the out of phase stress and

strain under harmonic excitation can be specified to facilitate the further analysis
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(Mark, Erman, & Roland, 2013). Ebbott proposed the linearized viscoelasticity to

describe the hysteresis loops and estimate the energy dissipation by taking the mid

line as a straight line because the linear complex modulus of the viscoelastic

materials was on the basis of small deformation and linear viscoelastic theory

(Ebbott et al., 1999). The rheological generalized model, such as generalized

Maxwell model or the developed models was investigated by many researchers. Lin

proposed to build instantaneous stress response using the material time derivative of

the Kirchhoff stress and logarithmic strain (R. Lin, 2001). In the following

discussion, the thermal-structure FEA analysis is based on the standard linear

model and the harmonic excitation assumption.

6.1.2 Stress and Thermal Results With COMSOL

Some assumptions and simplifications are made for the simulation.

1): Owing to the geometric symmetry, half of the rubber bushing is modeled.

2): The rubber bushing is composed of three layers, rubber, inner and outer

steel sleeves. The two steel sleeves are of the same material properties and the outer

steel sleeve is exposed in the air.

3): Rubber core is assumed to be isotropic, homogeneous, and incompressible

and displays viscoelastic properties during the working temperature range.

4): The harmonic excitation is applied vertically on the external surface of

the outer steel sleeve and the inner steel sleeve is fixed.

The linear viscoelastic properties are expressed in Prony series on the basis

of the standard linear model. The Mooney-Rivlin constant is calculated using the

Yeoh model to characterize the large strain or lager deformation which is

non-monotone and nonlinear (Yeoh, 1993). With the data obtained from the MTS,

the three coefficients Ci0 are indentified for the Mooney-Rivlin model. The structure

and thermal coupling analysis is separated in two steps. The first step is the

dynamic structure analysis by applying external harmonic excitation on rubber
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bushing. Due the damping effect, part of the input energy is saved as dissipation

energy and accumulated in the rubber core. The second step is the time dependent

thermal analysis by setting the generated dissipation energy as the heat source. The

other end of the rubber bushing is fixed and thermal insulated, that means zero

displacement and room temperature all the time. The simulation results are shown

in Figure 6.1. After 20s, the two surfaces of rubber core present the maximum

displacement and higher temperature.

(a) mesh (b) stress

(c) displacement (d) temperature

Figure 6.1.: COMSOL simulation results.
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6.2 Dynamic Radial Test and Temperature Distribution

The Mullins effect can be avoided after loading and unloading several times

before running the specified testing. The stress softening in the first deformation at

high strain disappears after the pre-loading. Sometimes, the static strain is applied

before the dynamic loading, for example, the pre-deformation of rubber maybe 30%.

Generally, the influence of frequency on modulus is pretty trivial at the static strain.

Considering the pre-deformation of rubber bushing, if the dynamic behavior is

affected by the static strain, then, the dynamic behaviors should be the reconsider.

(a) Rubber bushing (b) Tension/compression (c) Torsion

Figure 6.2.: Fixture for MTS dynamic test.

The FEA simulation with Simplex program and COMSOL has shown the

temperature rising over time under the dynamic loading. The temperature rising of

the rubber core under the single frequency excitation attributes to the aging speed

up or failure of rubber bushing. Dynamic radial testing and torsion testing have

been carried out to verify the temperature distribution of rubber bushing. The

dynamic test instruments have restricted requirements about the sample

dimensions. The fixtures made for the radial and torsion dynamic testing are

designed and machined in MDL lab to fit the clamps of MTS. Figure 6.2(a) shows

the original geometry of the rubber bushing, and Figure 6.2(b) and (c) are samples

with fixture for radial and torsion testing separately.
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6.2.1 Dynamic Radial Testing Parameters and Results

The test components should be mechanically conditioned before starting the

test program to eliminate the Mullin′s effect. One method to eliminate the effect is

setting the maximum displacement or load and then applying 10 cycles on the

previously unstrained rubber components. The servo-hydraulic test instrument with

upper and lower rigid cross head for the dynamic radial testing is shown in

Figure 6.3. The thermal imager is fixed on the platform with two magnetic

indicator holders to record the temperature variation during the dynamic test. In

order to guarantee the accuracy of the measured displacement, rubber cushion is

installed between the instrument and the table to minimize the transmission of

vibration from the test instrument to platform.

Figure 6.3.: Dynamic radial testing equipment.

6.2.1.1. Quasi-static Test

The quasi-static deformation usually performs at larger displacement and lower

frequency, such as 1Hz and 1mm displacement. The rate of quasi-static test for

current component should be less than 0.05mm/s. At least three cycles are recorded
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to obtain reliable data. The recommended frequency and amplitude are represented

in Table 6.1.

Table 6.1: Quasi-static radial test parameters

TestNo. 1 2 3 4 5 6

Amplitude(mm) 0.01 0.05 0.1 0.01 0.05 0.1

Frequency(Hz) 1 0.2 0.1 0.05 0.03 0.01

Figure 6.4.: Quasi-static test (a) Out of phase at 0.01Hz and amplitude 0.1mm; (b)

the amplitude dependence of the stiffness at 0.03Hz.

Figure 6.4(a) shows the out of phase between force and displacement at

excitation frequency 0.01Hz. Since the frequency is very low, the two curves are

almost in sync except for slightly lagging behind after 100s. The stiffness of rubber

bushing at different sinusoidal amplitude is compared in the Figure 6.4(b).The

dynamic frequency is set as 0.03Hz to have the quasi-static deformation. Linear

fitting generated stiffness of the curve at amplitude 0.01mm is 6149.48(N/mm) and

the curve at amplitude 0.05mm is 5414.21(N/mm). With the increase of amplitude,

the stiffness of the rubber bushing is decreasing during quasi-static testing.
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6.2.1.2. Dynamic Radial Test

Stepped sine displacements is set up to excite the rubber bushing from initial

frequency 1Hz and ramping to maximum 100Hz, with frequency step 10Hz and

amplitude 0.1mm. The data collecting time for loading condition can be set as 10s.

Figure 6.5.: Dynamic test (a) Out of phase at 10Hz and amplitude 1mm; (b) the

amplitude dependence of the stiffness at 10Hz.

In order to record the temperature rising, the thermal imager is used during

the dynamic test. The amplitude of the dynamic test should be at least 1mm with

current test sample. However, the test range of the instrument on campus is failed

when the amplitude is set as 2mm. Again, when the excitation frequency is set as

30 or 60Hz, the amplitude will drop to about 0.1mm automatically. Finally, only

excitation at 10Hz and 1mm amplitude is successful to record the temperature

rising of rubber bushing. The stiffness of amplitude-dependence of rubber bushing

at 10Hz is plotted in Figure 6.5.

Compared with Figure 6.4, out-of-phase at 10Hz is more obvious than that

at 0.01Hz. Figure 6.4(b) plots the dissipation loop at frequency 10Hz of different

amplitude. Compared the loop area form by the excitation at amplitude 1.5mm, the

loop area of the excitation at amplitude 0.2mm is negligible. Again, similar to

amplitude dependence at quasi-static excitation, the stiffness softening of rubber

bushing at dynamic excitation happens as the amplitude increases.
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6.2.2 Temperature Distribution under Radial Testing

Figure 6.6.: Temperature distribution on the surface of rubber core (a) Digit

camera; (b) thermal; (c) numerical simulation.

Figure 6.6 shows the temperature distribution on the surface of the rubber

bushing. The room temperature is about 298K. The thermal picture shows the

rising temperature of rubber core under 10Hz excitation. Six points from the top of

the rubber core to the bottom of the rubber core are collected and the temperatures

are given in Table 6.2. The temperature decreases from the loading area to the

central area of the rubber core and then increases gradually near the bottom loading

area. Especially, the point 4 and 5 are of the same temperature because they are

almost symmetrical over the central horizontal line. Due to the special design of the

fixture to fit for the radial test, a majority part of the rubber core has been

occluded. The bottom part temperature of the rubber bushing is not detectable,
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however, the symmetrical temperature distribution is expected from the current

measurement. To compare with the FEA and MATLAB simulation, the

temperature distribution at 10Hz, 120s is shown here again. The heat concentration

and temperature rising over the 120s obtained from radial testing matches well with

the Simplex simulation. Those results confirm the reliability of Simplex to estimate

the dissipation energy density and MATLAB to conduct the heat transfer.

Table 6.2: Temperature distribution on the surface of rubber bushing

Points No. 1 2 3 4 5 6

Temp(K) 303.0 302.5 300.8 300.7 300.7 300.9

The pattern of the eight photos in Figure 6.7 is organized from left to right

and from top to bottom. For each photo, temperature at three points are collected

and plotted in Figure 6.7. With the thermal imager, the temperature rising of the

rubber bushing core in 120s has been recorded and shown in Figure 6.8. Point sp3 is

near the loading area of the clamp, which has the maximum temperature rising in

120s. Point sp1 is near the central symmetric line and shows the minimum

temperature rising in 120s. From previous discussion, it is clear that the

temperature of rubber core decreases from the axial loading zone to the central

part. The short time recording indicates the more and more larger temperature

gradient inside of the rubber core. That loading zone accumulates dissipation

energy faster and higher than its surrounding area. Nevertheless, the heat

conductivity is relatively slow compared with the fast heat generation rate, thus, the

failure of the rubber core may happen at the loading zone.



197

Figure 6.7.: Temperature distribution on the surface of rubber core(a) t=4s; (b)

t=15s; (b) t=31s; (b) t=45s; (b) t=58s; (b) t=72s; (b) t=84s; (b) t=99s.
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Figure 6.8.: Rubber bushing surface temperature rising over time.

6.3 Dynamic Torsion Testing and Temperature Distribution

Torsion testing is carried out with thermal imager recoding to have more

comprehensive analysis about the temperature rising of rubber core under the

dynamic harmonica excitation. The multi-axial loading of the rubber bushing

implies the mechanic properties and temperature distribution of that state is very

significant. Furthermore, compared with the servo-hydraulic radial instrument, the

equipment (Figure 6.9) used for torsion test has wider testing range and provides

more information for thermal mechanism exploration.
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Figure 6.9.: Dynamic torsion testing equipment.

6.3.1 Dynamic Torsion Testing Parameters

To compensate the limited test range of radial testing, the torsion testing is

planned in more groups. The detailed test group of different frequency and

amplitude are laid out in Table 6.3 and Table 6.4.

Table 6.3: Parameters of quasi-static torsion testing

Degree(o) 5 5 5 5 5 5

Frequency(Hz) 1 0.2 0.1 0.05 0.03 0.01
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Table 6.4: Parameters of dynamic torsion testing

Degree(o) 5 5 5 5 5 10 5 5

Frequency(Hz) 10 15 20 25 10 10 5 5

The dissipation energy accumulation caused by the out of phase between

torque and displacement are shown in Figure 6.10. Figure 6.10(a) compares the

torque and amplitude angle at 1Hz, which slightly lags behind of amplitude angle

even though the excitation frequency is 1Hz. With the increase of frequency, the

phase angle between torque and amplitude angle becomes more obvious.

Figure 6.10(b) and (c) show the dissipation energy loop by plotting the torque

against amplitude angle. The frequency 0.01, 0.1 and 1Hz are pretty low and can be

treated as quasi-static deformation and almost frequency independent, thus the

stiffness of the rubber material decreases with the rising of amplitude. Furthermore,

when the frequency changes from 0.01Hz to 0.1Hz, the variation of modulus is

negligible. The amplitude angle determines the stiffness and dissipation density per

cycle.

6.3.2 Temperature Distribution under Torsion Test

Table 6.5: Temperature distribution at torsional angle 5o and 10Hz

Points No. 1 2 3 4 5 6 7

Temp(K) 303.2 304.8 306.4 309.1 311.4 309.0 307.5

The temperature gradient in radial is given in Table 6.5. In the radial

testing, the heat source is concentrated around the loading zone where displays
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Figure 6.10.: (a)Out of phase ; (b)amplitude dependence at low frequency;

(c)amplitude dependence at high frequency.

higher temperature than other area. While in the torsion test, the deformation of

rubber core is uniform in circumference and nonuniform in the radial direction.

Figure 6.11.: Temperature distribution of rubber bushing at torsional amplitude 5o

and excitation frequency 10Hz (a) Digit camera; (b) thermal.
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A group of points are selected in the radial direction (Figure 6.11) to show

the variation of temperature. Because the inner surface and outer surface of the

rubber core are attached on the steel sleeves and very limited deformation is

allowed, the high deformation and higher temperature appear in the middle of the

rubber core.

Figure 6.12 records the temperature of rubber bushing over time at

amplitude angle 10o and 10Hz torsional excitation. The maximum temperature

shows in the central part of the rubber core, thus, the maximum temperature of the

picture also indicates the maximum temperature of rubber bushing. The maximum

temperature rises from 326.4 to 331.1K in 48 seconds. While the maximum

temperature increases 3K in 120s at 1Hz, which indicates the amplitude angle 10o is

very critical.
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Figure 6.12.: Temperature distribution on the surface of rubber core(a) t=0s; (b)

t=8s; (c) t=15s;(d) t=21s;(e) t=27s; (f) t=33s; (g) t=41s; and (h) t=48s.
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Figure 6.13.: Temperature distribution in the radial direction (a) Four points; (b)

temperature rising.

The previous discussion shows different temperature at radial direction as

the deformation is confined by the boundary condition of the rubber core.

Figure 6.13 shows the temperature rising in the radial direction because of the

different dissipation energy density and slow heat conductivity of rubber core. That

result indicates that the high temperature zone also has higher temperature rising

rate. Generally speaking, the area close to the inner steel sleeves displays heat

concentration under the tension loading and becomes the most possible failure area.

Upon the radial testing, the temperature distribution is frequency and

amplitude-dependent. Similarly, the torsional testing also shows the similar

tendency. Figure 6.14(a) shows the higher temperature rising at amplitude 10o

when the frequency is set as 10Hz. That can be attributed to the higher dissipation

energy density per cycle at higher amplitude. The higher frequency 25Hz shows

more rising temperature than that at 10Hz when the amplitude angle is set as 5o.

That can be attributed to the higher dissipation energy density per unit time at

higher frequency. Figure 6.14(b) shows the temperature rising at different frequency.

When the amplitude angle is fixed at 5o, the torque needed to excite the expected

amplitude is different. As the modulus increases with frequency, the torque needed

at higher excitation frequency is also higher.
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Figure 6.14.: Temperature distribution of rubber bushing (a) The dependence of

amplitude degree; (b) the dependence of excitation frequency, amplitude degree 5o.

During the torsional test, the temperature of rubber busing is affected by the

attached driver, which causes the overall temperature rising of rubber bushing. At

that time, the heat transfer from the rubber bushing to the surrounding air affects

the heat transfer inside the rubber bushing. Thus, the temperature rising at 25Hz,

30Hz and 35Hz are close to each other.

6.4 Conclusion

In this chapter, the FEA using the commercial software is simulation to

present the dissipation energy under the harmonic excitation. Prony series to

express the mechanical properties of viscoelastic material in time domain is used in

current multi-physics software COMSOL. While in order to guarantee the

convergence in FEA, the time step is usually small, that means time consuming in

order to have long hours temperature distribution. Thus, the self-developed Simplex

program to estimate the energy dissipation in frequency domain is still preferred.

To verify the accuracy and applicability of the Simplex program and following

MATLAB coding, dynamic experimental testing is carried out. That result

indicates that the simulated temperature matches well with the measured. In order
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to get clearer about the dissipation energy density and temperature distribution, the

torsional testing is carried out. The radial testing indicates that the higher

temperature appears around the loading zone while the higher temperature at

torsional testing happens at the central but close to the inner surface of the steel

sleeves. Those results show that those loading areas are tended to be damaged and

need special attention. The frequency and amplitude-dependence of the two tests

show the combination of higher frequency and higher amplitude can cause higher

temperature distribution. Thus, if the loading is specified, the excitation frequency

should be limited not only to avoid the resonance but also to avoid the thermal

failure of rubber components.
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CHAPTER 7. CONCLUSION AND FUTURE WORK

In this dissertation, the rubber bushing used on the suspension system of the

vehicle is researched to investigate its heat generation mechanism and temperature

distribution during service. The results indicate the developed FORTRAN and

MATLAB program can satisfactorily approximate the thermal field of the rubber

bushing. There are several aspects of the innovations in the research.

First, it is the application of multi-body dynamics analysis to describe the

possible kinetic and dynamic conditions of rubber bushing. There are large amount

of publications about the dynamic conditions of full vehicle by investigating the

rolling tire. Similarly, in view of the rolling tire behaviors, the response of

suspension system and rubber bushing can be extrapolated using the multi-body

dynamic method. Based on the multi-body analysis, the rubber core can be split

into pieces jointed with springs and dashpots. To make clear how many rigid bodies

are appropriate to represent the rubber core, modal hammer testing is carried out

and the acceleration of the response is measured. The spring stiffness and damping

coefficients are identified with the Bode plot of the clamped rubber bushing. By

doing this, the transfer function of the rubber bushing can be derived to explore the

stability of the structure at high frequency range and the energy dissipation

mechanism.

The second contribution is the connection between multi-body dynamic and

continuum mechanism in the analysis of rubber bushing. With the modal testing

results, the rubber core can be treated as several pieces of bodies and the

dissipation energy can be analyzed individually for each piece with its loading and

displacement. Similarly, the continuum mechanics treats each element as individual

part with unique strain and stress, with which the dissipation energy of each

element can be estimated. As to the multi-body dynamic analysis for suspension
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system or whole vehicle, the proper identification of the stiffness and damping

coefficient of rubber bushing can simplify the overall simulation. As for the

temperature distribution of rubber bushing, it is more appropriate to turn to FEA

on the basis of continuum mechanics to have more pieces or elements to represent

the dissipation energy density.

The third point is the development of Simplex program using FORTRAN on

the basis of the source code. Frequency domain transfer function and FFT

algorithm are implemented to develop the subroutine. In the current commercial

software, the modulus is represented in Prony series, which is the time domain

expression. With the FFT algorithm, the input of the loading can be easily

analyzed in the frequency domain and then transferred back to the time domain.

With this approach, the accumulated dissipation energy becomes more applicable to

estimate. Except for the dissipation energy estimation, the developed Simplex is

applicable at various tests, such as blast loading, creep and even in wave

propagation for larger structures. Furthermore, even though the Simplex is

developed to solve the rubber bushing of simple geometry, actually, this work can

also be applied to deal with those very complicated structures.

The fourth is the prediction of temperature distribution of the rubber core,

which is critical to explore the failure mechanism. With the known dissipation

energy density, the rubber core can have the similar mesh and each element is given

specialized heat source. The commonly used finite volume method in heat transfer

analysis is implemented here to calculate the temperature distribution in time

domain.

However, this is just initial work of rubber bushing thermal analysis, for

more thorough and comprehensive research, more work needs to be done. First, the

fatigue analysis is critical to predict the serving life of rubber, thus, proper fatigue

test and creep tests are beneficial to analyze the fatigue properties. Secondly, the

coupling of thermal-structure analysis can include the temperature effect, then, the

current one way coupling can be transformed to two way coupling. Thirdly, the
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current Simplex program can add more subroutine to include more models of

viscoelastic material to widen its application. Fourthly, the rheological properties of

the rubber should be identified to give proper prediction of the rubber bushing′s

serving life.
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