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for aliquots of rurBcin Table 1. Gray 27% (30 min), red 56% (60 min);pe 70% (90
min), and black 94% (180 MIN). ...cceuuiiiiiiaiaeer it e e e e e e e eeeeeeeeeesenanneeeeanne 127
Figure 7-3. Model I: Simulation results based on Data se&).Mlonomer consumption;
conditions from Table 1: red 1, magenta 2, blacki3dlack circles 3c, blue 4, green 5.
Fits are solid lines. (b) MWDs for aliquots of r8a gray 27% (30 min), black 94% (180
min). Data: solid, fitS: dashed. ... 130
Figure 7-4. Model II: Simulation results based on Data s€é&).Monomer consumption;
conditions from Table 1: red 1, magenta 2, bladk Béack circles 3c, blue 4, and green 5.
Fits are solid lines. (b) MWDs for aliquots frornr8¢: gray 27% (30 min), black 94%
(180 min). Data: solid, fits: dashed. ... 132
Figure 7-5. Model Ill: Simulation results based on Data s€&).Monomer consumption;
conditions from Table 1: red 1, magenta 2, blackd3®lack circles 3d, blue 4, and green
5. Fits are solid lines. (b) MWDs for ri@d: gray 27% (30 min), gray 27% (30 min), red

56% (60 min), purple 70% (90 min), and black 94%0(Inin). Data: solid, fits: dashed.

Figure 7-6.Model IlI: Simulation results based on Data sefd) Monomer consumption:
circles: data set | (ruBc), squares: data set Il (r@&al), dashed line: simulation 8t, solid

line: simulation of3d. (b) MWDs for run3d in Table 1. Gray 24% (10 min), yellow 32%
(20 min), green 56% (30 min), red 76% (60 min)ckl@8% (120 min). Data: solid, fits:

[0 = 1] g 1= o RO PRPR 137
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Figure 7-7. Simulated concentrations of growing zwitterions(2olid line) and cyclized
chains G (dashed line) for run 3 based on Model Ill. Thenmmer conversion (green
dotted line) is also plotted with a different y-8Xi...........oouvuviiiiiiniin e 139
Figure 7-8. Monomer addition experiment using NFClnitial conditions: [Mp= 0.5 M,
[NHC]o= 0.01 M in toluene. A second charge of monomen = 0.5 M) is added into
the reaction att= 90 min (~ 80% conversion). (a) GPC traces a88 min, blue (1), 79%
conversion, M= 55 kDa, M/M, = 1.801 (PS) and t = 120min ft 30min), green (2), M
= 70 kDa, Mi/Mn = 2.029 (PS). (b) [M])/[M] for monomer addition experimeng; £ 90
min. (c) Comparison of normalized [M]/[MJor run 3d [M}p = 1.0 M, black squares, and
for monomer addition experiment at time 190 min[M] o0 = 0.5 M, open triangles. .. 140
Figure 7-9. GPC traces for the polymer addition experimenhgisNHC 2. Initial
conditions: [Mp= 0.5 M, [NHCh=0.01 M in 1. 8 mL toluene, Trace 1 (blue), t =&,
84% conv, M = 61 kDa, M/M, = 1.74. Att =90 min, 0.10 g of cyclic PCL (cP@tded
(grey), My = 146 kDa, M/M, = 2.58), was added in 3.0 mL of toluene. Afterrstg for
60 min, the resulting polymer isolated (t = 150 yarepresented in trace 2, 101 kDa,
MWV = 2.83). oottt eeeeeee et ee et en et en e, 142
Figure 8-1.DFT-optimized structures of the complexes usezhtaysts for the conversion
of chlorite to chlorine dioxide. (a) [MA(O)(N4Py)F" and (b) [MA’(O)(Bn-TPEN)F*. (c)

N4Py (left) and BN-TPEN (Fght). ....cooiiiieeee e 159
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Figure 8-2. UV-vis spectroscopy and ESI-MS evidence for themftion of chlorine
dioxide gas during catalysis. a) UV-vis spectranfauthentic sample of CiGn diethyl
ether (solid red), an extraction of Cl@om the catalytic reaction (dotted blue), diffiece
spectrum/hypochlorite (dashed green), chlorite tspet (dotted pink). b) ESI-MS of
extracted Cl@from catalysis using 10yM [Mn"(N4Py)F* and 8.00 mM CI®@ (solid red)
and chlorite (dashed pink) in diethyl ether. ... 160
Figure 8-3. Examination of product inhibition by reacting Cl@ith the manganese
catalysts, [MA(N4Py)F* andMn"(Bn-TPEN)F*. The dashed red spectrum is the starting
catalyst. UV-vis scans at 2, 7, 12, 180 and 36#) 3he reaction of [MH(N4Py)F* (500
uM) and chlorine dioxide (1.15 mM) results in th@ichdisappearance of Ci@nd the
appearance of a Mi{OH) species (see inset). b) The reaction of [{Bn-TPEN)F* (500
uM) and chlorine dioxide (1.15 mM) results in a sewdisappearance of Ci@nd the
appearance of a Mi{OH) Species (SE€ INSEL). .......cc.cocureveeiieeicie e 162
Figure 8-4. Kinetics of CIQ formation using [MA(N4Py)F* as a catalyst. a) UV-vis
spectral changes of the reaction over 40 min.dihdatalyst (dashed), first and last scan
(solid), others gray. Conditions: [M{N4Py)] = 10.0uM; [CIO2] = 4.05 mM. b) Changes
in concentration of Cleversus time. Solid lines represent kinetic modgfits. Conditions:

[Mn"(N4Py)} = 10.0uM; [CIO2]o = 9.85, 7.37, 6.00, 4.14, 1.95 mM (top to bottah6B
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Figure 8-5.Kinetics of CIQ formation using [M#(Bn-TPEN)F* as a catalyst. a) UV-vis
spectral changes of the reaction for 1 h. Initehtyst (dashed), first and last scan (solid),
others gray. Conditions: [M(Bn-TPEN)] = 50.0uM; [CIO2] = 4.00 mM. b) Change in
concentration of Cl@versus time. Solid lines represent kinetic modgfits. Conditions:

[Mn"(Bn-TPEN)} = 50.0uM; [CIO2]o = 9.99, 7.93, 5.99, 4.02, 2.09 mM (top to bottom).

Figure 8-6. Further conversion to Ckupon multiple additions of chlorite for manganese
catalysts, [MH(N4PyF* and [Mr'(Bn-TPEN)F*. Concentration of Cl@versus time for
multiple additions of [CI@] = 4.00 mM upon purging the reaction mixture oOlFirst
addition (squares), second addition (circles)gdthudition (diamonds). a) [MN4Py)] =
10.0puM. b) [MN"(BN-TPEN)] = 50.0UM. ....oveeeee e eemees e 165
Figure 8-7.Time-dependent concentrations of chlorine comagsipecies during catalysis.
ClOz (squares), Cldiamonds), CI@ (circles), and Cl@(triangles). Solid lines represent
kinetic modeling fits. a) Reaction using [MiN4Py)F* as catalyst. Conditions:
[Mn"(N4Py)] = 10.0uM; [CIOz]o = 4.00 mM. b) Reaction using [M(Bn-TPEN)Ff* as
catalyst. Conditions: [M(Bn-TPEN)] = 50.QuM; [ClO2]o = 4.00 MM. .........c.......... 166
Figure 8-8. Formation of a MH(u-O)Mn"“ dinuclear species confirmed by EPR
spectroscopy when the manganese catalyst' (NWPy)F* is reacted with chlorite and
chlorine dioxide. Conditions: [M1{N4Py)] = 500uM reacted with [CI@] = 4.00 mM or
[CIO;Z] = 1.15 mM. b) Expanded region of signals assigioea Mn'' (ui-O)Mn" dinuclear
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Figure 8-9. Predicted time-dependent concentrations of praposanganese oxidation
states versus reaction time. @H.) (solid red), MH'(OH) (dashed blue), MO)
(dashed green). a) Using [MiN4Py)F* as catalyst. Conditions: [M({N4Py)] = 10.0uM;
[ClOZ] = 4.00 mM. b) Using [MA(Bn-TPEN)F* as catalyst. Conditions: [MBn-TPEN)]
= 50.0uM; [ClO2] = 4.00 MM. ..ottt et nee e e a6
Appendix Figure
Figure B-SI1. Modeling fits of the active site counts using tipper bound (dashed lines)
and the lower bound (dotted lines) sets of the cainstants given in Table SI2. The
primary site counts are shown as black symbols tlh@dorresponding fits are shown as
black lines. The secondary site counts are showsugssymbols, and the corresponding
fits are shown as blue lines. iG] 3.0 MM, [Mp=0.60 M. .......ouvuriiiiiiiiiiiieeeieieeen. 184
Figure B-SI2. Modeling Fits of (A) monomer consumption, (B) MWIBing the upper
bound (dashed lines) and the lower bound (dottesb)isets of the rate constants given in
Table SI3. [CJ= 3.0 MM, [MP = 0.60 M. ....cuvereeeeeeeeeeeeeeeeee oo, 185
Figure B-SI3. Modeling using Mechanism I; data (A) monomer canption (circles), (B)
MWD (bold solid line); fits (dashed lines); ratenstants: k= ko = 1.7 M* st. [C]o = 3.0
MM, [M]0 = 080 M. ..ot ee et ee et eeee e e 186
Figure B-Sl4. Modeling using Mechanism IlI; data (A) monomer agngtion data
(circles), (B) MWD (bold solid line); fits (red aralue solid lines); rate constants: red: k
= 0.0045 M s, k, = 4.5 M? s?; blue: k=k, = 4.5 M! s?, active catalyst = 37%. [6F

3.0 MM, [M]0 = 0.80 M. oveeeeeeeseeeeeeeeeeeeeee e eeeseeseseeeeeseeseeeeeeseeseeseeseeseeeseeseereneens 187
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Figure B-SI5. Modeling using Mechanism lll; data (A) monomer somption data
(circles), (B) MWD (bold solid line); fits (red arfalue solid lines); rate constants: red: k
= Kp = Keeinit = 1.7 Mt s1, ket = 0.0038 3; blue: k =k, = 1.7 M* s?, ket = 0.003 &, Keeinit
=0.01 Mst [Clo=3.0mM, [Mh=10.60 M....cccevrrrriieirreieeieereeceeeeee et 188
Figure B-SI6. Modeling using Mechanism 1V; data (A) monomer agngtion data
(circles), (B) MWD (bold solid line), (C) vinyl teminated group counts (circles); fits
(dashed lines); rate constants=K¢ = keinit = 6 M* s%, ket = 0.0038 3, active catalyst =
27%. [Ch=3.0 MM, [MP = 0.60 M. ..o eeee e 189
Figure B-SI7. Modeling using Mechanism V; data (A) monomer conption data
(circles), (B) MWD (bold solid line), (C) activetsi counts (black circles: primary site
count, blue circles: secondary site counts); fitashed lines; fit of primary site count is
shown in black; fit of secondary site count is shawblue); constants; k k, = 7 M s?,
Kmis = krec = 0.05 M! s, active catalyst = 43%. [€F 3.0 mM, [Mp = 0.60 M. .......... 191
Figure B-SI18. Three repeats of NMR scale polymerizations {[€]L.5 mM, [Mp = 0.30
M). (A) Monomer consumption. Modeling using MeclamiVI; Symbols are data, lines
are fits. (B) MWDs of the polymer resulting frometheactions shown in (A). Bold lines
are data, normal lines are fits. Modeled activalgat percentage: 65% for green (pluses
in monomer consumption, solid line in MWD), 47% folue (triangles in monomer
consumption, dashed line in MWD), 41% for red (datsnonomer consumption, dotted

line in MWD). [Clo = 3.0 MM, [Mp = 0.60 M. ...ccooiiiiiiiiiiii e 192
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Figure B-SI9. Modeling using Mechanism I; data (A) monomer canption data (dots),
(B) MWD (bold solid line); fits (dashed lines); eatonstants:ik= k, = 0.42 M s, [Clo =
3.0 MM, [M]o = 0.60 M. ..ot eeee e st enaees 193
Figure B-SI110.Modeling using Mechanism II; data (A) monomer aomgtion data (dots),
(B) MWD (bold solid line); fits (red and blue solides); rate constants: red:&kky = Kreinit
=0.42 M! s?, ket = 0.002 &; blue: k=ky=0.42 M* s?, ket = 0.002 8, Kreinit = 0.042 M
1S [Clo=3.0 MM, [MP=0.60 M. ..coooiiiiiieiiicceee ettt 194
Figure B-SI11. Modeling using Mechanism llI; data (A) monomer somption data
(dots), (B) MWD ([C} = 3.0 mM, [M} = 0.60 M for bold solid line, [G]= 3.0 mM, [Mp
= 0.30 M for bold dashed line), (C) active site mtsu(black circles: primary site count,
blue circles: secondary site counts, black squamés: count; fits apply to the total count),
(D) vinyl terminated group counts (black circlesmyidene count, blue circles: vinylene
count, black squares: total count; fits apply ®@tital count); fits (red and blue solid lines);
rate constants: red; k 0.002 M* s, ky = keeinit = 0.8 M* s, ket = 0.0016 3; blue: k =k

= Keeinit = 1 Mt s, ket = 0.002 &, active catalyst = 43%. [€F 3.0 mM, [Mp = 0.60 M.
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Figure B-SI12. Modeling using Mechanism IV; data (A) monomer agngtion data
(dots), (B) MWD ([C} = 3.0 mM, [M} = 0.60 M for bold solid line, [G]= 3.0 mM, [Mp

= 0.30 M for bold dashed line), (C) active site mtsu(black circles: primary site count,
blue circles: secondary site counts, black squ#més: count; fits apply to the total count),
(D) vinyl terminated group counts (black circlemyidene count, blue circles: vinylene
count, black squares: total count; fits apply te thtal count); fits (red and green lines);
rate constants: red; k ko = 1 M! s, ki = 0.006 M! s?, active catalyst = 43%; green: k

=kp 1.7 M1 st ket = 0.012 M! s, active catalyst = 27%. [€F 3.0 mM, [Mp = 0.60 M.

Figure B-SI13.Modeling using Mechanism |; data (A) monomer canption data (dots),
(B) MWD (bold solid line); fits (dashed lines); eatonstants:ik= k, = 0.4 M? s, [C]o =
3.0 MM, [M]0 = 0.60 M. ..ot eeee e s ee s enanes 198
Figure B-S114.Modeling using Mechanism II; data (A) monomer aomgtion data (dots),
(B) MWD (bold solid line); fits (dashed lines); eatonstants:ik= 0.001 M! s?, k, = 1.7

M?1st ky=0.00133.[Clo=3.0mMM, [Mp=0.60 M....ccceveerrrircrrecreeeeereecreereennes 199
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Figure B-SI15. Modeling using Mechanism llI; data (A) monomer somption data
(dots), (B) MWD ([C} = 3.0 mM, [M} = 0.60 M for bold solid line, [G]= 3.0 mM, [Mp
=0.30 M for bold dashed line, [ 4.0 MM, [Mp = 1.0 M for bold dotted line), (C) active
site counts (black circles: primary site count,ebliircles: secondary site counts, black
squares: total count; fits apply to the total couiid) vinyl terminated group counts (black
circles: vinylidene count, blue circles: vinylermuat, black squares: total count; fits apply
to the total count); fits (blue and red lines)grabnstants: red; k 0.001 M! s, ky = Keeinit
=3 M s?, ke =0.003 &; blue: k=0.001 M! s, ky = 3 M 2, Keeinit = 0.016 M* s, ket
=0.004 8. [Clo=3.0 MM, [Mp=0.60 M......cceciiiiiiiriiricrieieciesesee e 200
Figure B-SI16. Modeling using Mechanism IV; data (A) monomer agangtion data
(dots), (B) MWD ([C} = 3.0 mM, [M} = 0.60 M for bold solid line, [G]= 3.0 mM, [Mp
=0.30 M for bold dashed line, [F 4.0 MM, [Mp = 1.0 M for bold dotted line), (C) active
site counts (black circles: primary site count,ebliircles: secondary site counts, black
squares: total count; fits apply to the total coufid) vinyl terminated group counts (black
circles: vinylidene count, blue circles: vinylermuat, black squares: total count; fits apply
to the total count); fits (green and magenta linee constants: green:k0.001 M* s?,
ko =3 M!s?, ki =0.016 M! st; magenta: k= 0.001 M' s?, k, =3 M! st ki =0.016 M

1s! ka=0.001 M!S [Clo=3.0mM, [Mp=0.60 M. ..coocoviriiirirriieceeee e 202
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Figure B-SI17. Experimental data for three selected batch sesetions, quenched at
different reaction times. [GF 3.0 mM, [Mp = 0.60 M. Black: data. Colored lines represent
kinetic modeling fits. Red:ik= ko = 6.5 M* s, kmis = 0.11 M s, kiec = 0.029 M! s, Kgene
= 0.0012 M* s?, kene= 0.0008 M s?, active site fraction = 0.38; Cyan:%0.080 M* s,
Kp= 7.9 M!S, kmis = 0.12 M? s, krec = 0.024 M! 2, Kgene= 0.0035 M s, kene= 0.0012
M1 st active site fraction = 0.38; Greer: % 0.0079 3, all other rates are in Table 1. (A)
Monomer consumption data. (B) Vinyl measurementdled= symbols/solid lines:
vinylidene count; open symbols/dashed lines: vinglecount. (C) Active site
measurements. Filled symbols/solid lines: primatgy sount; open symbols/dashed lines:
secondary site count. (D) MWD data at (from leftight) 81 s, 371 s, 983 s. ............. 205
Figure B-SI18.Vinyl concentration data for three selected batzle reactions, quenched
at different reaction times. [€F 3.0 mM, [Mp = 0.60 M. Black: data. Colored lines
represent kinetic modeling fits.; Green: Monomepetelent vinylene formation:qk=
0.0079 &, all other rates are in Table 1; Blue: Monomeejpehdent vinylene formation:
ki =0.018 M s, ky = 11.9 M s, kimis = 0.20 M! s, kiec = 0.038 M! s, Kgene= 0.0018
M1 s?, kene= 0.00026 3, ky = 0.0081 8, active site fraction = 1.0. Filled symbols/solid
lines: vinylidene count; open symbols/dashed lingsylene count. ..............eevveeennnn. 206
Figure C-SI1. Modeling Fits of MWDs from three batch quenchesatalyst 1b taken at
604, 1559, 3911 s using the upper bound (dashesd)land the lower bound (dotted lines)

sets of the rate constants given in Table SI3 #G3.0 mM, [Mp = 0.60 M................ 211
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Figure C-SI2. Modeling using Mechanism I; data (A) monomer cangtion from three
batch quenches at 604, 1559, 3911 s (circles)coBesponding MWD of each quench
(bold solid lines); fits (dashed lines); rate camss: k= k, = 0.2 M! s. [C]o = 3.0 mM,
IM]0 = 0.80 V. oottt e et ee e s 212
Figure C-SI3. Modeling using Mechanism II(i); data (A) monoma&nsumption from
three batch quenches at 604, 1559, 3911 s (cirqlB¥)corresponding MWD of each
quench (bold solid lines); fits (dashed lines)erapnstants:ik= 0.002 M* s, k, = 0.45
M1SL[Clo=3.0 MM, [MP=10.60 M. ...c.ccesuiiriiriiiiieireite ettt 213
Figure C-Sl4. Modeling using Mechanism li(ii); data (A) monomasnsumption from
three batch quenches at 604, 1559, 3911 s (cirqlB¥)corresponding MWD of each
quench (bold solid lines); fits (dashed lines)grabnstants:ik= k, = 0.2 M? s, active
catalyst = 50%. [Q]= 3.0 MM, [Mp = 0.60 M. .....coiiiiiiiiiiiiiiiiiiiieeiitee s 213
Figure C-SI5. Modeling using Mechanism Ill; (A) monomer consumaptfrom three
batch quenches at 604, 1559, 3911 s (circles)a(d)(C) corresponding MWD of each
guench (bold solid lines) with different fits; fifdashed and dotted lines); rate constants:
dashed lines:ik ko = 0.2 M! s, ket = 0.0013 M s?; dotted lines: k= k, = 0.2 M s, ket
=0.004 M st [Clo=3.0mM, [Mp=0.60 M. ...cc.cecviirriirerieireeceeeie et 214
Figure C-S16. Modeling using Mechanism IV; data (A) monomer agngtion from three
batch quenches at 604, 1559, 3911 s (circles)coBesponding MWD of each quench
(bold solid lines); fits (dashed lines); rate camss: k= ko = Keeinit = 0.2 M s?, ket = 0.0008

S [Clo= 3.0 MM, [MB = 0.80 M. ooeeeeeeeee oo e s e, 215
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Figure C-SI7. Modeling using Mechanism V; data (A) monomer cangtion from three
batch quenches at 604, 1559, 3911 s (circles)coBesponding MWD of each quench
(bold solid lines), (C) active site counts (bladicles: primary site counts, blue triangles:
secondary site counts), (D) vinyl terminated groapnts (black circles: vinylidene counts,
blue triangles: vinylene counts); fits (dasheddineate constants; & ko = kreinit = 0.45 M
151 ket =0.0011 €, active catalyst = 48%. [€F 3.0 mM, [Mp = 0.60 M. ................ 217
Figure C-SI8. Modeling using Mechanism VI; data (A) monomer agngtion (circles),
(B) corresponding MWD of each quench (bold soliek§), (C) black circles: primary site
counts, blue triangles: secondary site counts,lB¢k circles: vinylidene counts, blue
triangles: vinylene counts, (E) monomer consumpgtioander different initial
concentrations (symbols), (F) corresponding MW2ath NMR scale experiment (bold
solid lines); fits (dashed lines); rate constaméssdnown in Table 1, active catalyst = 48%
for black fits. Inititial conditions: black: [G]= 3.0 mM, [Mp = 0.60 M, blue: [({ = 3.0
mM, [M]o = 0.30 M, green: [G]= 3.0 mM, [M]p = 0.60 M, cyan: [GJ= 1.5 mM, [Mp =
0,60 M. Lo et e e e e et e et e e e enan e e e eeeraans 219
Figure C-SI9. Modeling using Mechanism I; data (A) monomer cangtion from three
batch quenches at 1694, 4352, 10963 s (circle});dBesponding MWD of each quench
(bold solid lines); fits (dashed lines); rate camss: k= ky, = 0.55 M* s, [C]o = 3.0 mM,

[M]0 = 0.80 M. oot eeeeeee e et e e eee e e e esees e s eeeaeeses s ereeeens 220
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Figure C-S110.Modeling using Mechanism II; data (A) monomer agngtion from three
batch quenches at 1694, 4352, 10963 s (circle});dBesponding MWD of each quench
(bold solid lines); fits (colored lines), (C) prinyaactive site concentration; circles: data;
solid lines: fit, (D) vinylidene concentration veonomer conversion; circles: data; lines:
fit. [Clo= 3.0 mM, [Mp = 0.60 M. Blue: Mechanism li(i), rate constants=k0.087 M!
s, kvinylidene = 0.0046 3. Red: Mechanism lI(ii), rate constantg:0.08 M* s, kyinyiidene
= 0.005 ML St 222
Figure C-SI11. Modeling using Mechanism l1lI; (A) monomer consuraptfrom three
batch quenches at 1694, 4352, 10963 s (circle});dBesponding MWD of each quench
(bold solid lines) with different fits; fits (dasti¢éines), (C) active site concentrations; filled
circles: primary sites, open circles: secondamlssisolid line: primary site fit; dashed line:
secondary site fit, (D) vinylidene concentrationm®nomer conversion; circles: data; line:
fit. Rate constants:i k ky = 0.14 M* s, Kiinylidene = 0.0029 3, kmis = 0.00097 M s, krec
=0.00024 M s [Clo=3.0 MM, [Mp=10.60 M. ....c..cceriirirerreieeeecteeceeeeree e 224
Figure C-SI12. Modeling using Mechanism [V; data (A) monomer aangtion from
three batch quenches at 1694, 4352, 10963 s &jr¢B) corresponding MWD of each
guench (bold solid lines); fits (colored lines)) {@imary active site concentration; circles:
data; solid lines: fit, (D) vinylidene concentratigs. monomer conversion; circles: data,
lines: fit. [Cp=3.0 mM, [Mp=0.60 M. Blue: Mechanism IV(i), rate constants=K0.27
M1 ki =0.00049 M s?, kinyiigene = 0.0057 3. Red: Mechanism IV(ii), rate constants:

kp = 0.44 M* s, ki = 0.00017 M s, Kinylidene= 0.023 MM S™. ..o 225
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Figure C-SI13.Modeling using Mechanism V; data (A) monomer congtion from three
batch quenches at 1694, 4352, 10963 s (circle});dBesponding MWD of each quench
(bold solid lines); fits (colored lines), (C) aatigite concentrations; filled circles: primary
sites, open circles: secondary sites; solid limenary site fit; dashed line: secondary site
fit, (D) vinylene concentration vs. monomer conwans open circles: data; dashed line