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ABSTRACT 

Xiao, Xiangye. Ph.D., Purdue University, May 2015. Utilization of Tall Wheatgrass 
Translocation Lines to Improve Fusarium Head Blight Resistance in Wheat. Major 
Professor: Christie Williams. 
 
 

Fusarium head blight (FHB) and leaf rust (LR) are two major fungal pathogens 

threatening the wheat crop, consequently identifying resistance genes from various 

sources is always of importance to wheat breeders. Type II FHB resistance in wheat has 

been improved by introgressing QTL from landraces and wild species. The present study 

was undertaken to (1) combine two different type II FHB resistance QTL in the 

backgrounds of six adapted wheat lines (2) improve the map resolution of Qfhs.pur-7EL.  

In the first objective, the FHB resistance gene Fhb1 originated in a Chinese wheat 

cultivar and is located on wheat chromosome 3BS, and Qfhs.pur-7EL was introgressed 

from tall wheatgrass onto wheat chromosome 7DL were combined in six adapted wheat 

lines. The effect of pyramiding resistance genes through marker-assisted selection was 

assessed by scoring plants for disease development after inoculating with a combination 

of four different local FHB isolates. The response of 6 populations of pyramided lines 

was evaluated in both greenhouse and transplant nursery. The pyramided lines as well as 

Fhb1-only lines exhibited high levels of resistance to the mixture of four FHB isolates.
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Although Fhb1 or Qfhs. pur-7EL alone is strong enough to achieve satisfactory resistance, 

pyramided lines may be more stable over time.  

In the second objective, we identified tightly linked markers for FHB-resistance 

QTL Qfhs.pur-7EL and the LR-resistance gene Lr19 using genotyping by sequencing in a 

wheat-tall wheatgrass introgression-derived recombinant inbred line (RIL) population. 

216,318 SNPs were discovered for this population. After filtering, 1700 high-confidence 

SNPs were used to conduct the linkage and QTL analysis. Qfhs.pur-7EL was mapped to a 

2.9 cM region within a 43.6 cM segment of wheatgrass chromosome 7el2 that was 

translocated onto wheat chromosome 7DL. The LR gene Lr19 from 7el1 was mapped to a 

1.21 cM region in the same area, in repulsion. Five lines were identified with the 

resistance-associated SNP alleles in coupling for Qfhs.pur-7EL and Lr19. Investigation of 

the genetic characteristics of the parental lines of this RIL population indicated that they 

are translocation lines in two different wheat cultivar genetic backgrounds instead of 7E-

7D substitution lines in Thatcher wheat background as previously reported in the 

literature. 

The wheat lines containing pyramided FHB resistance genes and pyramided FHB 

and LR resistance genes: Qfhs.pur-7EL and Lr19, developed and identified in this study, 

show potential as genetic resources for sustainable wheat production in areas affected by 

Fusarium head blight and leaf rust diseases. 
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CHAPTER 1. INTRODUCTION 

1.1 Bread wheat 

Bread wheat (Triticum aestivum) is one of the most important grain crops worldwide. 

It can be grown in a wide range of environments, accounts for 20 percent of calories 

consumed by humans, and ranks second only to rice (FAOSTAT 2012).  

Domesticated wheat (AABBDD genomes) made its first appearance about 8500 

years ago, following the hybridization and polyploidization of tetraploid durum wheat 

(Triticum turgidum, AABB genomes) and a diploid goat grass (Aeglopis tauschii, DD 

genome) (Nesbitt and Samuel 1995). The tetraploid durum wheat originated from 

hybridization and polyploidization of Triticum urartu (AA genome) and something 

similar to Aeglopis Speltoides (BB genome) about 0.4 million years ago (Liu et al. 2009; 

Matsuoka 2011). It is believed that the polyploidization provided high genome plasticity, 

which is a key factor in the success of polyploid wheat under domestication (Dubcovsky 

and Dvorak 2007).  

Sequencing of crop genomes will greatly accelerate plant breeding and crop 

improvement. Fifty five plant genomes were sequenced by 2013 (Michael and Jackson 

2013) and provide fundamentally important resources for understanding plant gene 

function and the interaction of plant genomes with the environment. A whole-genome 

shotgun sequence analysis of wheat has allocated more than 60% of the genes to the A, B
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and D genomes and identified over 132,000 SNPs that facilitate analysis of quantitative 

trait loci and association studies of traits (Brenchley et al. 2012). The draft genomes of T. 

urartu and A. tauschii, the two diploid progenitors of wheat, have also been sequenced 

recently (Jia et al. 2013; Ling et al. 2013). The progenitors’ genomes will be useful in 

finishing the wheat genome sequencing project by guiding unambiguous assignment of 

contigs or scaffolds. The goal of the International Wheat Genome Sequencing 

Consortium (IWGSC) is to obtain a high quality reference sequence using a 

chromosome-based approach. They isolated and sequenced each individual wheat 

chromosome (except 3B). This draft genome can enable researchers to target the specific 

chromosome of their interests (IWGSC 2014). 

1.2 Fusarium Head Blight 

Fusarium head blight (FHB), caused by Fusarium graminearum Schwabe 

(Teleomorph: Gibberella zeae (Schwein.) Petch), is a destructive disease of wheat and 

has significant economical impacts all around the world (Leslie and Summerell 2006; 

Trail 2009). Besides wheat, F. graminearum can also damage other cereal crops, such as 

oat, barley, wild rice, maize and sorghum (Trail 2009). FHB damage includes yield 

penalty, reduced grain quality, light kernel weight, low seed germination, seedling blight 

and poor stands (Parry et al. 1995; McMullen et al. 1997; Dexter and Nowicki 2003). The 

wheat spike becomes bleached after FHB infection. The diseased spikelets are sterile or 

contain shriveled or discolored kernels, which are commonly referred to as Fusarium-

damaged kernels (Wiese 1977). Most importantly, F. graminearum produces 

trichothecene deoxynivalenol (DON) that accumulates in the grain, and when consumed 
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threatens human and animal health because of the toxicity (Parry et al. 1995; McMullen 

et al. 1997).  

Currently, several different types of FHB resistance are under investigation. 

Schroeder and Christensen proposed two types of resistance: resistance to initial infection 

and resistance to spread within the spike, which are referred to as type I and type II 

resistance, respectively (Schroeder and Christensen 1963). Type II resistance is studied 

most extensively in wheat; it is more stable and appears less affected by environmental 

factors than type I resistance (Bai and Shaner 1994). Different inoculation techniques are 

required to distinguish these two types of resistance. Type I resistance is evaluated by 

spraying inoculum of conidia spores over the spikes when 50% of the florets in the spike 

are flowering and counting the percentage of diseased spikes 14 days after inoculation 

(Bai and Shaner 2004). Type II resistance is evaluated by injecting conidia spores into a 

single floret of a spike when 50% of the florets are flowering and counting the diseased 

spikelets per spike 20-22 days after inoculation (Bai and Shaner 2004). It may be 

challenging to differentiate these two types of resistance during a favorable flowering 

season since plants with only one type of resistance may be susceptible when the 

inoculum is abundant (Bai and Shaner 2004).  

Three other types of resistance have been proposed: a) resistance to kernel infection; 

b) resistance to DON accumulation (Miller et al. 1985); c) tolerance (Mesterhazy 1995). 

Resistance to kernel infection is measured as percentage of infected kernels, which can 

possibly be reduced by type I and type II resistance. Thus, it is difficult to measure this 

type of resistance per se (Shaner 2002). Tolerance refers to no difference in yield when 

comparing the same cultivar under healthy and diseased conditions (Mesterhazy 1995). 
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These two types of resistance were not widely accepted by the community due to 

conceptual weakness (Shaner 2002). Resistance to DON accumulation, referred to as type 

III resistance, is the low DON content in some cultivars compared to other cultivars 

under the same environment (Miller and Arnison 1986). Three mechanisms will result in 

low DON content in kernels: fungus produces a low level of DON; plant enzymes 

degrade DON during kernel development; spike tissue other than kernels has high DON 

level but failure to move the toxin into kernels during development (Bai and Shaner 

2004). Low DON content is usually associated with low FHB index due to type I and 

type II resistance (Bai et al. 2000). More evidence is needed to know whether these two 

types of resistance are controlled by the same or tightly linked QTL. 

Chinese wheat cultivar Sumai 3 and its derivatives are the most commonly used and 

reliable type II resistance sources currently available (Bai and Shaner 2004). Many QTL 

have been revealed from Sumai 3 or its derivatives (Anderson et al. 2001; Buerstmayr et 

al. 2002; Zhou et al. 2002; Yang et al. 2003). Among these QTL, Fhb1 is the strongest, 

accounting for 41.6% of the phenotypic variation in a mapping population (Anderson et 

al. 2001). Fhb1 was mapped to the short arm of wheat chromosome 3B (Cuthbert et al. 

2006; Hao et al. 2012). This QTL is associated with low DON accumulation (Zhou et al. 

2002). Lemmens et al pointed out that there is a close relationship between the resistance 

to DON accumulation and high DON-3-glucoside to DON ratio (Lemmens et al. 2005b). 

Therefore, the authors hypothesized that Fhb1 either encodes a DON-glucosyltransferase 

or regulates the expression of such an enzyme (Lemmens et al. 2005b).  

In addition to wheat sources of resistance, QTL for FHB resistance was also 

identified in a wild relative of wheat. Shen and Ohm (Shen et al. 2004; Shen and Ohm 
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2007) discovered a QTL for FHB resistance when a local isolate of F. graminearum was 

used to screen the population. This new QTL is located on chromosome 7EL of tall 

wheatgrass and was introgressed onto the long arm of the 7D chromosome of wheat. This 

QTL was named Qfhs.pur-7EL and explained 15.1%-32.5% of the phenotypic variation 

in the mapping population (Shen and Ohm 2007). 

1.3 Wild Relatives 

The use of wild relatives to improve crops has achieved great success in several 

aspects of breeding, especially in disease resistance. Other important characteristics 

include abiotic stress resistance in barley (Ellis et al. 2000), chickpea (Singh et al. 1998), 

rice (Nguyen et al. 2003) and sunflower (Mercer et al. 2007) and the introduction of 

cytoplasmic male sterility systems in sunflower (Leclercq 1969) and rice (Dalmacio et al. 

1995) to develop F1 hybrids. 

Sears started plant chromosome engineering in 1956 by transferring a leaf rust 

resistance gene from an alien chromosome to a wheat chromosome using X-ray 

irradiation and an elegant cytogenetic scheme (Sears 1956). Many additional methods 

have been adopted to transfer alien chromatin into a variety of crops for improvement. 

These methods include interploidy hybridizations, which are crosses between two 

different ploidy levels of the same or different species and interspecific or intergeneric 

crosses at the same ploidy level (Seiler 1992). Interploidy hybridization has been reported 

in relatively few crops, such as Arabidopsis (Scott et al. 1998) and maize (Pennington et 

al. 2008). In general, crosses between different ploidy levels are more recalcitrant in 

yielding plantlets than crosses carried out using parents of the same ploidy level, 

primarily due to embryo inviability. Embryo rescue has been applied to aid interploid 
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hybrid production. However, the success rate varies among different species. The 

genotype (Stewart and Hsu 1978), developmental stage of the embryo at excision 

(Matthys-Rochon et al. 1998), and composition of the embryo culture media (Stewart and 

Hsu 1978) are the three main factors affecting the success and efficiency of embryo 

rescue. Selection of parents is very important for successful interploid crosses (Jansky 

2006). As a general rule, medium composition is more critical for in vitro growth of 

immature than mature embryos, and medium complexity must be increased with 

decreasing embryo age (Matthys-Rochon et al. 1998). 

The Ph1 (pairing homoeologous) gene, located on the long arm of chromosome 5B 

in wheat, is a widely used pairing regulator factor in chromosome engineering (Sears 

1977; Giorgi 1978). Two deletions of this locus have long been known; one is ph1b in 

hexaploid wheat (Sears 1977) and the other is ph1c in tetraploid (AABB) wheat (Giorgi 

1978). In hexaploid wheat the Ph1 gene suppresses homoeologous pairing and controls 

diploid-like meiosis. Multivalent formation at meiotic metaphase I, which is the indicator 

of absence of Ph1, is observed between the homoeologous chromosomes of the related 

genomes in Ph1 deletion lines. The deletion of Ph1 affects the centromere structure 

(Aragón-Alcaide et al. 1997b), and thus the level of premeiotic association of 

homologues at their centromeres (Aragón-Alcaide et al. 1997a; Martínez-Pérez et al. 

1999). Consequently, the timing of telomere bouquet formation and of intimate 

association of homologues (Martínez-Pérez et al. 1999) during meiotic prophase 

ultimately allow recombination between homeologous chromosomes or segments 

(Dubcovsky et al. 1995; Luo et al. 1996). Suppression or partial inactivation of Ph1 leads 
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to enough homoeologous pairing and recombination to cause alien chromatin integration 

into the wheat genome.  

The ph1b mutant stock of Chinese Spring wheat was produced by radiation 

treatment (Sears 1977) causing a 70 Mb deletion (Dunford et al. 1995). In genotypes that 

are homozygous for the ph1b deletion, chromosome pairing and recombination occur 

between wheat and homoeologous alien chromosomes. This technique has been the 

method of choice for directed transfer of alien genes to wheat, especially disease-

resistance genes from wheat-grasses. 

When a useful gene is transferred from a wild relative to a cultivar by backcrossing, 

undesirable genes from the donor parent (wild relative) may be retained in the recipient 

genome due to two causes. First, genes that are independent of the gene being transferred 

(not tightly linked) may still be present by chance even after several backcrosses (Allard 

1975). Second, a segment of the donor chromosome surrounding the useful gene is likely 

to be retained due to linkage. This has been termed “linkage drag” (Brinkman and Frey 

1977a). Theoretically, repeated backcrossing could remove these two types of retained 

segments simultaneously. On average, half of the unlinked donor DNA is replaced by 

recurrent parent DNA in each generation, so that by the sixth backcross generation less 

than 1.6% of the unlinked donor genome is expected to persist (Stam and Zeven 1981). 

However, many generations are required to remove donor segments linked to the target 

gene (Stam and Zeven 1981). In reality, the retained region could be larger or smaller 

than expected values due to large variance and breeder selection among progenies. If the 

region flanking the target gene was introgressed from a different species than the 
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recipient, then lack of recombination may prevent the removal of undesirable linked 

genes (Stam and Zeven 1981). 

Selection for markers tightly linked to the gene of interest and against more distant 

markers could be used to shorten the alien chromatin introgressed into the cultivar. As a 

result, individuals that have retained the target gene and its tightly linked flanking 

markers, yet have a crossover event that removed the more distant markers would harbor 

shorter segments of alien chromatin, and could be identified rapidly (Young and 

Tanksley 1989a).  

1.1 Micosatellites 

DNA simple sequence repeats (SSR) or microsatellites are ubiquitously spread 

throughout the genomes of all species (Zietkiewicz et al. 1994). SSRs are short DNA 

sequences with one- to six-base tandem repeats. It was shown that the repeat number 

among individuals can be different (Jeffreys et al. 1985). These differences enable SSR 

detection as a versatile genetic marker with the advent of the polymerase chain reaction 

(PCR) technology. SSR markers can be used in various studies, such as kinship and 

population analysis (Lu et al. 2005), detection of gene duplications or deletions (Rocha 

2003) and marker-assisted selection (Zhou et al. 2003).  

The frequency and distribution pattern of these tandem repeats is quite variable 

among different genomes (Lawson and Zhang 2006). Among crop species, the most 

abundant dinucleotide repeats (AC)n and (GA)n have been extensively studied (Temnykh 

et al. 2001). For instance, wheat contains about 23,000 (AC)n repeats and 36,000 (GA)n 

repeats, with an average distance of 704 Kb and 440 Kb, respectively, between 

consecutive SSRs (Röder et al. 1995). However in rice, the estimated total number of 
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(AC)n and (GA)n are 1000 and 2000 respectively, with an average distance between 

consecutive SSRs of 450 Kb and 225 Kb (Wu and Tanksley 1993). Trinucleotide and 

tetranucleotide repeats are also present in plant genomes. The top two most frequent 

repeats are (AAG)n, and (AAT)n (Gupta et al. 1996). A more complete survey which 

covers 54 species reported that a descending order based upon the abundance of the 

sequences is (AT)n, (A)n, (AG)n, (AAT)n, (AAC)n, (AGC)n, (AAG)n, (AATT)n, (AAAT)n 

and (AC)n (Wang et al. 1994).  

In general, DNA SSR polymorphisms can be revealed by three approaches: 

hybridization-based, PCR-based and a combination of hybridization- and PCR-based 

approaches (Gupta and Varshney 2000). In a hybridization-based approach, fragments of 

restriction enzyme-digested DNA are separated by electrophoresis on agarose gels, 

blotted onto membrane and hybridized with radio-labeled oligonucleotide probes 

corresponding to the SSR sequence (Gupta and Varshney 2000). This approach reveals 

polymorphism due to variation in the length of the restriction fragment that carries the 

microsatellite, not the length variation of microsatellite itself (Gupta and Varshney 2000). 

In the PCR-based approach, primers flank the microsatellite site (Tautz 1989; Weber and 

May 1989) or are complementary to a microsatellite motif randomly distributed across 

the genome (Meyer et al. 1993; Wu et al. 1994; Zietkiewicz et al. 1994). This approach 

usually reveals a large amount of information and can be used in genetic mapping and 

tagging projects (Weber 1990; Morgante et al. 1994). Richardson et al. (1995) reported a 

method called random amplified microsatellite polymorphism that combined PCR using 

semispecific primers and microsatellite hybridization to produce additional polymorphic 

sites per gel. The first step of this approach is to use a single arbitrary PCR primer for 
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amplifying genomic DNA. PCR products are then separated by electrophoresis and 

stained. The dried gel or blotted membrane is hybridized to a radioactively labeled 

oligonucleotide probe complementary to the microsatellites. Lastly, autoradiography is 

used to detect the polymorphic profiles. Since this combined approach is PCR-based it is 

sensitive to carryover contaminations (Ender et al. 1996). 

1.1 Single Nucletiode Polymorphisms 

Single nucleotide polymorphisms (SNPs), as the name indicates, have only one 

base-pair difference among individuals; usually there are two alleles per locus (Vignal et 

al. 2002). Due to their high genomic abundance and advances in sequencing technology, 

SNPs have become the primary marker system for many plant species (Chagné et al. 

2008; Ganal et al. 2009). SNPs can appear in most regions of a genome, including gene-

coding regions, thus they are a suitable marker system to choose for genome-wide studies 

(Chagné et al. 2008).  

Several approaches have been developed for SNP identification. Searching the EST 

databases in the National Center for Biotechnology Information enables the identification 

of SNPs. An advantage of this approach is the large quantity of EST sequences that can 

be used free-of-charge to develop SNPs (Batley et al. 2003). However, there are still 

some limitations in this approach. Firstly, the sequence quality of many ESTs is not high, 

which results in a high false-positive rate (Batley et al. 2003; Ganal et al. 2009). Secondly, 

differentiating orthologous and paralogous sequences is difficult and mistakes will again 

lead to false-positive SNPs (Ganal et al. 2009). 

Various sequencing technologies contribute significantly to identifying SNPs. For 

example, in an amplicon resequencing approach, PCR primers for single-copy genes are 
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designed to amplify the products in several representative lines. PCR products are fully 

sequenced to identify SNPs among these lines. This approach provides very reliable 

identification with a low false-discovery rate (Ganal et al. 2009). If the PCR fragment is 

very long, haplotype can also be detected (Ganal et al. 2009). The disadvantage of this 

approach is it takes a significant amount of effort to investigate multiple genes. Next 

generation sequencing technology increases the SNP identification throughput 

tremendously. For example, transcritpome resequencing targeting the variation within the 

gene offers rapid and affordable SNP discovery. This approach has been successfully 

applied in crops including maize (Barbazuk et al. 2007), wheat (Lai et al. 2012) and 

canola (Trick et al. 2009).  

Although identifying SNPs in the gene region is attractive, QTL are often located 

within regulatory regions that may be distant from the gene regions that they control 

(Dean 2006). Therefore, the power of transcriptome and exon sequencing to identify 

SNPs is limited. It is important to employ a method to reduce the complexity of the 

genome and also avoid repetitive regions of the genome in order to explore the regulatory 

regions in the genome (Mammadov et al. 2012). Restriction Site-Associated DNA 

sequencing (Baird et al. 2008) and Genotyping by Sequencing (GBS) (Elshire et al. 2011) 

are two examples of the reduced genome complexity concept. 

Although multiple approaches can be used for SNP identification, identifying SNPs 

in complex polyploid genomes is still a great challenge. Because most crops are not 

simple diploids it is very often difficult to find useful polymorphism within a single 

genotype since it is a challenge to resolve the paralogous sequences of the duplicated 

regions in the genome or the presence of the homoeologous loci from other subgenomes 
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which lead to false-positive SNPs (Ganal et al. 2009; Mammadov et al. 2012). All these 

issues mentioned above require sophisticated statistical and bioinformatics tools to 

resolve.  

1.1 Genotyping by Sequencing 

GBS is a SNP development and genotyping approach applying the next generation 

sequencing technology. Because crop genomes are too large to sequence in entirety for 

SNP discovery and mapping projects, the GBS technique provides reduced representation 

libraries of short barcoded amplicons that can be multiplexed for efficient sequencing 

(Elshire et al. 2011). Traditionally the use of SNPs requires two steps: identifying 

polymorphic loci and assaying these polymorphic markers across a full set of plant 

materials such as a mapping population (Poland and Rife 2012). The beauty of GBS is 

that it integrates these two steps into one step. This approach has been robustly applied to 

many crops such as maize (Elshire et al. 2011), wheat (Poland et al. 2012a), barley 

(Elshire et al. 2011; Poland et al. 2012a) and switchgrass (Lu et al. 2013) to produce tens 

of thousands of markers per species. The original GBS protocol utilized a one-enzyme 

cutting process in library construction but later was modified to use two enzymes (Elshire 

et al. 2011; Poland et al. 2012a). No matter how many enzymes are used when 

constructing the multiplexing library, the basic procedure is similar. The quantified and 

normalized genomic DNA is digested by the selected enzyme(s), followed by adding the 

barcoded adapter into the reaction system. The barcoded fragments are amplified by PCR. 

The PCR products are purified and the size and quality of the library are before 

sequencing (Elshire et al. 2011; Poland et al. 2012a).  
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GBS gives lower genome coverage than does RAD sequencing (Baird et al. 2008; 

Davey et al. 2011). The idea of GBS is to sequence as many targets as possible and use 

imputation techniques to infer the SNP alleles in plants with missing data. (Davey et al. 

2011). The TASSEL software pipeline can be used to analyze GBS data to generate SNP 

calls for every individual in a mapping population, thus producing the HapMap (Glaubitz 

et al. 2014). Although the GBS approach does not require prior information about the 

genome, a reference genome of the species, which is a representative assembly of a 

species’ set of genes, does speed up and ease the analysis process (Edward Buckler, 

personal communication). Another part of the TASSEL pipeline, named UNEAK, will 

facilitate GBS analysis if a reference genome is not available (Lu et al. 2013). In this 

pipeline, the author used a network-based filter strategy to remove tag pairs (two tags or 

SNPs with only one base pair difference) with sequencing error and leave the true tag 

pair for each SNP call; tag pairs with sequencing error can be detected because of their 

low abundance compared to tag pairs being sequenced correctly. There are still some 

unsolved challenges for this pipeline, including the universal issue for the polyploid 

species; it is difficult to differentiate paralogous and orthologous sequences from true 

polymorphisms at one locus. Thus, the pipeline may give a high rate of false positive 

SNP calls and hence require more stringent filtering strategies for downstream use. GBS 

has been used in various plant genetics and breeding studies, such as linkage mapping 

(Poland et al. 2012a), association mapping (Brachi et al. 2011; Elshire et al. 2011), 

genomic selection (Poland et al. 2012b) and evolution studies (Lu et al. 2013).  
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1.2 Marker-Assisted Selection 

Marker-assisted selection (MAS) is a powerful tool that uses association between 

the genetic marker and target traits to indirectly select for traits that are difficult or 

expensive to phenotype in a short timeframe, such as before production of the next 

generation. MAS speeds up the conventional plant breeding cycle and facilitates the 

improvement of traits that cannot be enhanced easily by conventional methods (Ribaut 

and Hoisington 1998). In general, there are four situations in which MAS is a better 

approach than conventional breeding. First, when traits are difficult to select directly 

through phenotype, such as if they are expensive or time-consuming to measure, or have 

complex inheritance. Second, MAS can be applied under any environment for traits 

whose expression depends on specific environments or developmental stages. Third, 

MAS can be used to speed up backcross breeding or to maintain recessive alleles during 

backcrossing. And last, MAS can be adopted when pyramiding multiple monogenic traits 

or multiple QTL for the same target trait with complex inheritance (Xu 2002; Xu 2003; 

Koebner 2005; Xu et al. 2005).  

The prerequisite of MAS is to identify markers that are tightly linked to the gene of 

interest (Kumar 1999). Therefore, the markers identified in preliminary mapping studies 

may not be suitable to use directly in the MAS program without further testing since the 

markers may be too far away from the gene of interest, which allows crossovers between 

the marker and the gene to break the linkage. Selection for distant markers produces a 

high percentage of false-positive and negatives in the screening process because of 

recombination between marker and gene of interest (Mohan et al. 1997; Collard et al. 

2005).  
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In general, constructing a high density linkage map and precision phenotyping to 

accurately map the gene or QTL of interest is the first step in a MAS program (Collard et 

al. 2005). The population size is a key issue in this step since a large population will 

resolve recombination better. A high degree of polymorphism and marker density are 

essential to map the gene of interest in a relatively narrow region (Darvasi et al. 1993). 

The second step is maker validation. The markers identified in the first step should be 

tested for their effectiveness in predicting the desired phenotype in other independent 

populations and different genetic backgrounds to ensure broad application across 

different breeding programs (Sharp et al. 2001; Cakir et al. 2003; Collins et al. 2003). 

This step will determine whether the marker can be used routinely in MAS screening 

(Ogbonnaya et al. 2001; Sharp et al. 2001). Directly assuming the QTL-marker 

association in other genetic backgrounds without validating the result may lead to false 

results, especially for inheritance of complex traits such as yield (Reyna and Sneller 

2001). The most useful markers for MAS should be polymorphic in divergent 

populations derived from a wide range of parental lines (Langridge et al. 2001). 

Therefore, a maker developed for a gene in one cross may not be useful in other crosses 

even though the same gene may be segregating in the second cross, unless the marker is 

from within the gene itself (Mohan et al. 1997). 

As the sequencing technology advances, the quality and quantity of markers needed 

for high-resolution mapping studies is no longer a limiting factor. However, the quality of 

the phenotyping is a factor that affects the accuracy of genetic mapping studies and thus 

is a limiting factor for the downstream MAS, especially for complex traits (Xu and 
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Crouch 2008). Therefore to optimize the efficiency of large scale MAS, establishing a 

high throughout phenotyping platform is the key to success (Xu and Crouch 2008). 
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CHAPTER 2. PYRAMIDING TWO DIFFERENT QTL FOR TYPE II FUSARIUM 
HEAD BLIGHT RESISTANCE IN ADAPTED WHEAT LINES 

2.1 Abstract 

Resistance to Fusarium head blight (FHB) is an important goal of wheat breeding 

programs in humid and semi-humid regions of the world. Type II FHB resistance in 

wheat has been improved by introgressing QTL from landraces and wild species. The 

present study was undertaken to combine two different type II FHB resistance QTL in the 

backgrounds of six adapted wheat lines. The FHB resistance gene Fhb1 originated in a 

Chinese wheat cultivar and is located on wheat chromosome 3BS, and Qfhs.pur-7EL was 

introgressed from tall wheatgrass onto wheat chromosome 7DL. The effect of pyramiding 

resistance genes through marker-assisted selection was assessed by scoring plants for 

disease development after inoculating with a combination of four different local FHB 

isolates. The response of 6 populations of pyramided lines was evaluated in both 

greenhouse and transplant nursery. The pyramided lines as well as Fhb1-only lines 

exhibited high levels of resistance to the mixture of four FHB isolates. Although Fhb1 or 

Qfhs.pur-7EL alone is strong enough to achieve satisfactory resistance, pyramided lines 

may be more stable over time. The adapted wheat lines containing pyramided FHB 

resistance genes, developed in this study, show potential as genetic resources for 

sustainable wheat production in areas affected by Fusarium head blight disease 
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2.2 Introduction 

Fusarium head blight (FHB) or scab, caused by Fusarium graminearum is a 

destructive fungal disease of wheat and other small-grain cereals (Mesterhazy 1995). The 

disease causes yield loss and grain quality reduction. More importantly, the pathogen 

produces deoxynivalenol (DON) during development, which is a toxin when consume by 

humans and animals (McMullen et al. 1997). Although five types of resistance to FHB 

have been described (Schroeder and Christensen 1963; Miller et al. 1985; Mesterhazy 

1995), type II resistance, which limits the severity or spread of the disease from initial 

point of infection to other florets on a spike, is the most effective and best understood.  

QTL providing type II resistance to FHB have been identified from wheat line 

Sumai 3 or its derivatives (Anderson et al. 2001; Buerstmayr et al. 2002; Zhou et al. 2002; 

Yang et al. 2003). Among these QTL, Fhb1 is the strongest, accounting for 41.6% of the 

phenotypic variation in a mapping population (Anderson et al. 2001). Fhb1 was mapped 

to the short arm of wheat chromosome 3B (Cuthbert et al. 2006; Hao et al. 2012). This 

QTL is associated with low DON accumulation (Zhou et al. 2002). Lemmens et al. 

(2005a) reported a correlation between the resistance to DON accumulation and high 

ratio of DON-3-glucoside to DON. Therefore, the authors hypothesized that Fhb1 either 

encodes a DON-glucosyltransferase or regulates the expression of such an enzyme. In 

addition to wheat sources of resistance, a QTL for FHB resistance was also identified in a 

wild relative of wheat (Shen et al. 2004; Shen and Ohm 2007), located on chromosome 

7el2 of tall wheatgrass, Thinopyrum ponticum. This QTL, Qfhs.pur-7EL, was introgressed 

onto the long arm of the 7D chromosome of wheat and explained 15.1%-32.5% of the 

phenotypic variation in their mapping population (Shen and Ohm 2007) 
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Gene pyramiding is commonly used to construct superior lines with resistance to 

multiple diseases or to augment the strength or durability of resistance to one disease 

(Cao et al. 2002; Chan et al. 2005). However, not all pyramided resistance genes show an 

additive effect; pyramiding two genes for brown plant hopper, Bph1 and Bph2, resulted 

in a similar level of resistance as found in the stronger of the two individual gene source 

lines (Sharma et al. 2004).  

The goal of this project was to combine two different sources of FHB type II 

resistance in adapted wheat backgrounds for future cultivar development. Our hypothesis 

was that, due to phenotypic and marker-assisted selection to pyramid resistance loci, the 

level of FHB resistance would increase through line advancement while plant height, 

straw diameter and seed yield would remain at acceptable levels.  

2.3 Materials and methods 

2.3.1 Populations for pyramiding two FHB resistance genes 

Lines “07469” and “07117” (H. Ohm, unpublished data; pedigrees 07469=992059A1-

11/INW0315//981358C1-4-2-13/97462A1-21-1-5-1-15/5/0128A1-36/3/Chinese 

Spr.ph1b/KS24-2(275-4)//Chinese Spr./4/0128A1-36 and 07117=INW0411/3/Chinese 

Spr ph1b/KS24-2-2(275-4)//Chinese Spr/4/0128A1-36/INW0411/5/99840C4-8-4-11 ) 

were segregating for a translocation (Kim et al. 1993) harboring a tall wheatgrass 

(Thinopyrum ponticum) type II FHB resistance gene, Qfhs.pur-7EL (also called 

FhbLop;(Zhang et al. 2011), that is within a 15 cM region flanked by SSR markers 

Xcfa2240 and Xbf145935 (Shen and Ohm 2007) on wheat chromosome 7DL. 07469 may 

carry a second 7EL-7DL translocation from intermediate wheatgrass (Th. intermedium) 

harboring the barley yellow dwarf virus resistance gene, Bdv3. Wheat line “Wheatear ” 
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carries a 7EL-7DL translocation from tall wheatgrass harboring a resistance linkage 

block Lr19/Sr25 (Sharma and Knott 1966). Thus, three different 7EL-7DL were 

segregating in the material used for this study. The wheat line “Patterson” was used as the 

FHB susceptible control. 

Wheatear and 07469 (populations 1 to 5) plus Wheatear and 07117 (population 6) 

were crossed in November of 2009. In March 2010, the F1 plants were crossed (Figure 

2.1 and Figure 2.2; generation 2) with 6 different adapted winter wheat lines (Table 2.1) 

derived from many generations of crosses and selection, in the Purdue wheat-breeding 

program, to combine agronomically important traits: large spikes, moderate height and 

strong straw (Table 2.1). All these lines have included type II FHB resistance gene Fhb1 

and some lines may have included uncharacterized QTL for type I or type II resistance to 

FHB. Progeny from the 6 crosses with adapted lines were planted in July 2010 

(generation 3) and allowed to self-pollinate to produce 6 populations. As these lines were 

advanced through four generations of self-crosses (to generation 7; Figure 2.2) in both 

transplant nursery and greenhouse, pedigree breeding ensured that the lineage of each 

plant could be traced.  

2.3.2  Plant growth 

Seeds for greenhouse generations were sown in flats containing soil (Sunshine Redi-

earth, Sun Gro Horticulture, Seba Beach, Canada). The flats were transferred to a cold 

room (2.22°C, with 12 hours light) for one week to break dormancy and returned to the 

greenhouse for germination. When the seedlings reached the one-leaf stage, the flats were 

again transferred to the cold room for vernalization. Sixty-five days later, each seedling 

was transplanted into a separate 3-inch pot and grown to maturity. For the transplant 
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nurseries, plants were started in flats during the winter as described above and 

transplanted into field plots in the spring. Plots were three feet long and one foot wide, 

each planted with sibling seedlings from a single spike.   

2.3.3 FHB inoculation and scoring 

F. graminearum cultures were provided by Dr. Kiersten Wise (Purdue University) 

following the procedures of Bai and Shaner (1996). Four F. graminearum isolates were 

combined to produce the inoculum. FG1, FG2, and FG2-23 were collected from 

undesignated locations in Indiana in 2009, and 10INSWF P5-2 was collected from 

Vincennes, IN in 2010 (Nolan Anderson, personal communication). The inoculum was 

prepared one month prior to use and cultured in mung bean medium (Desjardins et al. 

1996). 

Point inoculation of florets in wheat spikes (Bai and Shaner 2004) was used in all 

greenhouse and transplant nursery trials in the evaluation of type II FHB resistance. Ten 

µl of inoculum with a concentration 50,000 spores/ml were injected into the left floret of 

the second or third spikelet from the tip of each spike at anthesis. The inoculated spikes 

were covered with plastic bags for three days to maintain high humidity. The disease 

symptoms were scored 21 days after inoculation. The total number of discolored spikelets 

from the inoculation point and below was recorded as the FHB score. 

2.3.4 Agronomic trait scoring and plant selection 

In early generations, agronomic traits were evaluated by observation. At generation 7, 

plant height, straw diameter and seed weight per plant were measured to evaluate the 

agronomic performance. Height was measured from soil level to the tip of the spike. 

Straw diameter was measured with a caliper at the base of the spike on the main tiller. All 
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the spikes from each plant were harvested, threshed and the seeds were weighted. When 

selecting plants for advancement, low FHB score (0.5 and 1) was the first criterion but 

resistance to other diseases seen in the field and the measured agronomic traits were also 

considered. The general rule for selection was pyramiding as many good features (low 

FHB score, good agronomic traits, resistance to other diseases) as possible.  

2.3.5 DNA extraction and marker assay 

Two cm of seedling leaf tissue was collected into liquid nitrogen from each plant in 

the greenhouse or field and stored at -80°C until use. The extraction method was 

described by Ata-ur-Rehman et al. (2007) as modified in Liu et al. (2013).  

Each DNA sample was screened with three fluorescence-tagged SSR markers: 

Xumn10 for Fhb1, Xcfa2240 and Xbf145935 for Qfhs.pur-7EL. Forward primers (Table 

2.2) were labeled with one of the following three fluorescines: 6-FAMTM, NEDTM or 

VIC® (Applied Biosystems, Foster City, CA).  

SSRs were amplified in a 10 µL reaction volume consisting of 1 unit Taq DNA 

polymerase (#M0267, New England Biolabs, Ipswich, MA), 80 ng genomic DNA, 1µl of 

10X buffer (100 mM Tris-HCl [pH 9.0], 500 mM KCl, 1% TritonX100), 1.5 mM MgCl2, 

200 µM of each dNTP, 0.15 µM florescence-labeled 6-FAM, VIC or NED forward and 

0.15 µM unlabeled reverse primer. PCR was performed in a MyCycler thermal cycler 

(BioRad, Hercules, CA) with the following program: initial denaturation of 95°C for 3 

min; 35 cycles of denaturation at 94°C for 30 s, annealing at 50°C for 45 s, extension at 

72°C for 1 min; and a final extension at 72°C for 7 min, with short-term storage at 4°C.   
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Following amplification, 3 µL of product were mixed with 9 µL of Hi-Di Formamide 

(Applied Biosystems) and 0.01 µL of GeneScan-500 LIZ size standard (Applied 

Biosystems), denatured at 95°C for 5 min and placed on ice. Amplicons were separated 

by capillary electrophoresis on an ABI 3700 DNA Analyzer (Applied Biosystems) at the 

Purdue University Genomics Core Facility. The output files were processed using 

GeneMarker® v1.91 (SoftGenetics, State College, PA). SSR allele sizes for the markers 

were as follows: Xumn10 was 241 bp in Fhb1-positive wheat DNA, Xcfa2204 was 280 

bp in wheat DNA and 239 bp in tall wheatgrass DNA, and Xbf145935 was 202 bp in 

wheat and 196 bp in tall wheatgrass. Both wheatgrass alleles of flanking markers need to 

present for the plant to be scored as Qfhs.pur-7EL-present.  

2.3.6 Statistical analysis 

The 6 populations of plants were separated into four genotype groups: Fhb1 only, 

Qfhs.pur-7EL only, both Fhb1 and Qfhs.pur-7EL and neither for analysis of QTL effect. 

Analyses were performed using SAS Version 9.2 (SAS Institute, Inc., Cary, NC, 2008). 

The analysis of variance (ANOVA) model was applied in the “PROC ANOVA” 

procedure to assess the significance of population and genotype effects. Differences in 

mean were considered significant at a p-value of 0.05. 

2.4 Results 

2.4.1 Progress in FHB resistance through selection  

To assess improvement in resistance due to selection as the populations were 

advanced to generation 7, type II FHB severity scores were compared. In the 2011 

transplant nursery test (generation 4; Figure 2.2) when plants from all 6 populations were 

combined, 71.4% received an FHB severity score between 0.5 and 1. FHB severity scores 
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for the 2011 fall greenhouse test (generation 5) were similar, with 65.3% of the plants 

receiving a score between 0.5 and 1. In the 2012 transplant nursery test (generation 6), 

selection resulted in a higher proportion of plants, 87.4%, with FHB severity scores 

between 0.5 and 1. And in the 2012 fall greenhouse test (generation 7), 85.6% of the 

plants had scores between 0.5 and 1. However, transgressive segregation resulted in a few 

plants from every generation being more susceptible to FHB than the control plants. 

A comparison of the six populations for decreased FHB severity (Table 2.1) showed 

that the scores were lower under transplant nursery conditions than in the controlled 

environment of the greenhouse tests, which was more conducive to FHB spread within 

the spike. Nevertheless, it is evident that selection resulted in considerable decreases in 

FHB severity scores when comparing the 2011 versus 2012 transplant nursery except 

population 2 and the 2011 versus 2012 fall greenhouse scores except population 4. 

Among these comparisons, the greatest gain in selecting for decreased FHB severity 

occurred in populations 3 and 5 and the least progress was seen with populations 2 and 4 

even with slight increase of the FHB severity. On average, the susceptible control, 

Patterson, received an FHB score between 7 and 10 in all tests, indicating effectiveness of 

the inoculum and consistency in scoring in the different environments and years.  

Through the process of selection, the proportion of highly resistant plants containing 

all three SSR markers, suggesting the presence of both Fhb1 and Qfhs.pur-7EL resistance 

loci, increased from 21.4% in the 2011 transplant nursery to 53.1% in the 2012 transplant 

nursery (Figure 2.3). Because the 2011 transplant nursery test sample size was small, no 

significant correlation was observed in comparisons of FHB resistance with any of the 6 

populations. By generation 4 in the 2011 transplant nursery and generation 6 in the 2012 



25 

 

25 

transplant nursery significant differences in FHB severity were evident among plants 

with different combinations of SSR markers (Table 2.3). Plants containing neither of 

three SSR markers, genotype 1, exhibited the lowest levels of FHB resistance and 

performed significantly worse than plants in the genotype 4 (Table 2.3). However, even 

genotype 1 plants (no SSR markers present) exhibited moderate FHB severity scores, 

indicating prevalence of FHB-resistance QTL in the six adapted lines.  

2.4.2 Interactions between population and genotype 

To investigate the contributions of the adapted lines to FHB resistance, interactions 

between the six populations and four genotypes were examined in generation 6 in the 

2012 transplant nursery. FHB severity scores varied for different populations within one 

genotype group, indicating differences in background effect of the adapted lines (Figure 

2.4). Because population 6 had a similar low FHB severity score (0.5) in genotype groups 

1 (lacking any markers) and 4 (all markers present), the adapted line “Roane” appeared to 

carry other factors for FHB resistance. Population 6 mean FHB severity scores were 

stable and low across all 4 genotype groups and thus independent of marker presence for 

both Qfhs.pur-7EL and Fhb1.  

2.4.3 Agronomic performance  

Since the Qfhs.pur-7EL resistance locus, originating in the wild relative Th. ponticum, 

was introgressed into the six populations, linkage drag was assessed by measuring three 

important agronomic traits that were subjected to selection throughout the experiment. 

Plant height, straw diameter and seed weight per plant were measured on FHB inoculated 

plants in the 2012 fall greenhouse (generation 7). The average plant height of the six 

populations combined was 70.14 cm, which was 6.51 cm taller than the susceptible 
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control, Patterson (Figure 2.5a). The six populations combined performed better than 

Patterson for average straw diameter (2.26 mm verses 1.92 mm) and seed weight per 

plant (2.25 grams versus 0.98 grams) (Figure 2.5b and c). Patterson was very susceptible 

to FHB and thus the seed weight per plant when challenged with FHB was very low 

compared to its performance when FHB inoculation was absent. These data showed that 

the six populations performed as well as the Paterson control for these three agronomic 

traits, even though one of the source genes, Qfhs.pur-7EL, resides on a genomic segment 

from a wild species (Table 2.4).  

2.5 Discussion 

We reached our goal of combining type II FHB resistance gene Fhb1 with Qfhs.pur-

7EL in different adapted winter wheat backgrounds (populations 1, 5 and 6, Figure 2.4). 

Because of selection and the presence of unmarked FHB resistance loci in the adapted 

lines, a majority of the lines showed moderate (1 to 3 infected spikelets per spike) to high 

(0.5 and 1 infected spikelets per spike) levels of type II FHB resistance, even if none of 

the three markers were present in the genome (Table 2.3). The adapted lines underwent 

many generations of FHB phenotypic selection during the development process to 

increase the presence of uncharacterized QTL besides Fhb1. These uncharacterized FHB 

QTL appear to contribute to the moderate FHB resistance in plants with none of the three 

markers and thus support our hypothesis in that selection increased resistance. However, 

further analysis must include quantification of DON in the highly resistant plants before 

they can be considered for cultivar development. Recent work comparing DON levels in 

resistant wheat lines demonstrated lack of significant correlation between resistance and 

DON accumulation (Ji et al. 2015). 
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Plants with the Xumn10 marker only, linked to Fhb1, or plants with both flanking 

markers for Qfhs.pur-7EL showed similar FHB resistance to lines with all three markers 

(Table 2.3; genotype 2 and 3 versus 4). This result confirmed that Fhb1 and Qfhs.pur-

7EL are very strong QTL for FHB resistance (Anderson et al. 2001; Shen and Ohm 2007). 

When a large effect QTL is present in the genome, additional resistance effect might not 

be detected if pyramiding another QTL. However, the durability of the pyramided lines 

might be improved compared to the individual source lines. In 2012 genotyping result, 

we observed the recombinant genotype of two flanking markers for Qfhs.pur-7EL. Due to 

ambiguity about the presence of Qfhs.pur-7EL in plants where the flanking markers had 

recombined, those genotypes were eliminated from further analysis. The presence of the 

second wheatgrass 7E/7D translocation conferring Bdv3 and the third wheatgrass 7E/7D 

translocation conferring Lr19/Sr25 in the pedigree of some plants may have allowed 

recombination between the two markers.  

Linkage drag is often a problem that makes incorporating alien chromatin in 

breeding lines less favorable (Young and Tanksley 1989b). Molecular markers can 

greatly speed up the selection of progenies with desired gene combinations while 

removing linkage drag, thus efficiently reducing the time and effort in a traditional 

breeding program (Young and Tanksley 1989b). In this study, pyramiding of Fhb1 and 

Qfhs.pur-7EL resulted in a higher or similar level of FHB resistance compared to other 

types of marker combination. However, we did not detect inferior agronomic 

performance in this study with regarding plant height, straw diameter and seed weight per 

plant although yield reduction due to alien chromatin was reported in previous research 

(Dyck and Friebe 1993). Therefore, we can conclude that undesirable traits can be 
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reduced to an undetectable level with intensive phenotypic and marker-assisted selection 

as long as no highly deleterious traits are encoded inside the translocated alien segment. 

Thus these results supported our hypothesis that, due to phenotypic and marker-assisted 

selection to pyramid resistance loci, the level of FHB resistance would increase through 

line advancement while plant height, straw diameter and seed yield would remain at 

acceptable levels.  

In this experiment, we used multiple crosses with the same crossing objective. This 

experiment design enabled us to study the interaction of genetic background of adapted 

lines and the genotype groups and also detect the best populations for later studies or 

breeding. Population 6, from the adapted line Roane, was by far the best in terms of the 

FHB score and overall agronomic traits. Although the seed weight per plant of the plants 

in population 6 is lower than other populations, the yield components (number of plants 

per area, number of spiketlets per spike and thousand kernel weight) of this population in 

the 2012 transplant nursery performs better than other population (data not shown). One 

of derivatives of this cross was advanced into the yield trial program in 2013 and ranked 

first in the preliminary yield test (data not shown). All populations may also show leaf 

rust and stem rust resistance because of the presence of Lr19/Sr25 in one of the parental 

lines, Wheatear. Beside Lr19/Sr25, there is also a yield bonus QTL in the translocation 

segment (Monneveux et al. 2003). This QTL might contribute to the high performance of 

the yield in the six populations.  

We tested the hypothesis that pyramiding two FHB QTL can provide better FHB 

resistance than the single QTL lines without penalty of agronomic performance, 

especially yield. However with our current data we cannot detect improvement of FHB 
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resistance due to the pyramiding. We also identified population 6 with high FHB 

resistance and good agronomic traits. Therefore, we can conclude that pyramiding gene 

sources from landraces and wild relatives is a valid strategy in FHB resistance breeding 

in wheat that can be achieved without agronomical penalty. Further testing will determine 

whether the durability of the plants with pyramided FHB resistance genes is improved 

over plants with only single resistance genes. 
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Table 2.1 Decreased FHB severity due to selection within populations 

Population 

 
Parental
adapted 

line 

11 TN  
(Generation 4) 

11 FGH  
(Generation 5) 

12 TN  
(Generation 6) 

12 FGH  
(Generation 7) 

N 1 Mean±SE 2 N  Mean±SE  N  Mean±SE 2 N  Mean±SE  

1 1026A 13 1.19±0.22 B 201 2.02±0.22 CD 196 0.89±0.1 D 264 1.22±0.11 D 
2 1065RA 8 1.06±0.15 B 112 4.16±0.45 B 35 3.33±0.69 B 35 3.63±0.86 C 
3 P25R62 3 2.00±0.58 B 25 3.10±1.12 BC 41 0.69±0.05 D 118 1.13±0.12 D 
4 1070RA 7 2.86±1.53 B 50 3.95±0.76 B 35 1.60±0.26 C 36 5.00±0.81 B 
5 106A 2 1.50±0.50 B 61 2.59±0.43 CD 26 0.92±0.14 D 19 1.00±0.12 D 
6 Roane 9 0.83±0.20 B 127 1.53±0.17 D 57 0.76±0.09 D 221 0.88±0.06 D 

Patterson  3 8.50±0.86 A 10 9.70±0.91 A 5 8.6±1.88 A 10 7.38±2.07 A 

 
1 Number of plants in this population at each generation. 
2 Populations with different letters within the same generation are significantly different from each other at the p=0.05 level according 

to the mean FHB score. 
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Table 2.2 Primer sequences for the SSR markers 

Marker Forward primer Reverse primer 

Xumn10 5'- CGT GGT TCC ACG TCT TCT TA -3' 5'- TGA AGT TCA TGC CAC GCA TA -3' 

Xcfa2240 5'- TGC AGC ATG CAT TTT AGC TT-3' 5'- TGC CGC ACT TAT TTG TTC AC -3' 
Xbf145935 5'- CTT CAC CTC CAA GGA GTT CCA C -3' 5'-GCG TAC CTG ATC ACC ACC TTG AAG G -3' 
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Table 2.3 FHB severity at generations 4 and 6 due to selection within genotype groups 

Genotype 

Fhb 1-  
linked 
marker  

Qfhs.pur-7EL- 
linked markers 11 TN 12 TN 

Xumn10 Xcfa2240 Xbf145935 N 1 Mean±SE 2 N  Mean±SE  
1 - -3 - 5 3.10±2.24 A 43 2.88±0.59 A 
2 - +3 + 3 1.00±0.58 AB 118 1.08±0.11 B 
3 + - - 23 1.26±0.17 AB 9 1.17±0.33 B 
4 + + + 11 1.18±0.12 B 220 0.82±0.08 B 

 
1 Number of plants in this group  
2 Populations with different letters within the same generation are significantly different from each other at p-value of 0.05 level 
according to the transformed FHB score  
3 Tall wheatgrass alleles are designated “+” and wheat alleles “-” in Xcfa2240 and Xbf145935. 
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Table 2.4 Population agronomic trait assessments1 at the end of selection (generation 7) 
 

 

 
 

 
 

 
 

1 Mean values with SEs are given for height (cm), straw diameter (mm) and seed weight 
per plant (g). All plants measured were infested with FHB. 
2 Values with different letters within the same trait column are significantly different 
from each other at p-value of 0.05 level. 

 

 

Population Height  
(cm) 2 

Straw diameter 
(mm) 

Seed weight per plant 
(g) 

1    63.91±0.38 A 2.18±0.02 B 2.76±0.05 E 
2 77.32±1.30 C 2.49±0.24 C 2.27±0.16 D 
3 69.50±0.76 B 2.27±0.02 B 2.25±0.07 D 
4 69.01±1.63 B 2.02±0.04 A 2.25±0.12D 
5 68.91±1.65 B 2.36±0.07 B 2.12±0.23 C 
6 72.16±0.76 B 2.26±0.15 B 1.82±0.11 B 

Patterson 63.63±0.87 A 1.92±0.09 A 0.98±0.18 A 
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Figure 2.1 Crossing scheme 
The three parents of the populations had different translocation segments for 
chromosome 7D/7E (marked by different colors in the figure), each carrying different 
resistance QTL. F1 plants were crossed with five (populations 1-5) or one (population 6) 
different adapted wheat lines. 
 

 



35 
 

 

35 

 

Figure 2.2 Population construction 

Six populations were constructed by crossing the F1 plants (resulting from Wheatear 
crosses to 07469 and 07117 which both contain FHB resistance QTL Qfhs.pur-7EL), to 
six adapted lines (containing Fhb1) and then self-crossing until generation 7.  “A” 
indicates the materials were genotyped, “B” indicates the materials were phenotyped and 
“C” indicates the materials were both genotyped and phenotyped. TN = Transplant 
nursery, FGH = Fall greenhouse, SGH = Spring greenhouse. 
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b. 
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c. 

 
d. 

 
Figure 2.3 FHB score frequency distribution in four different FHB tests 
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The X-axis represents type II FHB severity scores and the Y-axis represents the 
percentage of plants from all six populations combined. The low severity bars in panels 
“a” and “c” are divided to display data by genotype: black indicates lines (3 in a and 26 in 
c) with none of three marker (Xumn10, Xcfa2240, and Xbf145935; genotype 1); stripe 
indicates lines (2 in a and 101 in c) with two flanking markers of Qfhs.pur-7EL 
(Xcfa2240, and Xbf145935; genotypes 2); grey indicates lines (16 in a and 7 in c) with 
only the Xumn10 marker (genotype 3); and white indicates the lines with all three 
markers (9 in a and 207 in c; genotype 4).  
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Figure 2.4 Interaction plot of genotype and population effect 

The bars within each genotype group show the mean FHB severity score ± SE for all six 
populations. When a population is not represented for a genotype, there were no 
individual plants that had that genotype. Genotype 1 has none of the three markers, 
Xumn10, Xcfa2240 and Xbf145935. Genotype 2 has both Xcfa2240 and Xbf145935 
markers linked to Qfhs.pur-7EL, genotype 3 has the Xumn10 marker linked to Fhb1, and 
genotype 4 has both markers linked to Qfhs.pur-7EL and the marker for Fhb1. 
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Figure 2.5 Distribution of plant height, straw diameter and seed weight per plant.  

The Y-axis represents the percentage of plants from all six populations combined. 
Arrows indicate the combined mean for the six populations and for Patterson. All plants 
measured were infested with FHB. 
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CHAPTER 3. MAPPING QTL FOR TYPE II FHB AND LEAF RUST RESISTANCE 
IN A WHEAT-TALL WHEATGRASS INTROGRESSION RIL POPULATION 

3.1 Abstract 

Fusarium head blight (FHB) and leaf rust (LR) are two major fungal pathogens 

threatening the wheat crop, consequently identifying resistance genes from various 

sources is always of importance to wheat breeders. We identified tightly linked markers 

for FHB-resistance QTL Qfhs.pur-7EL and the LR-resistance gene Lr19 using 

genotyping by sequencing in a wheat-tall wheatgrass introgression-derived recombinant 

inbred line (RIL) population. 216,318 SNPs were discovered for this population. After 

filtering, 1700 high-confidence SNPs were used to conduct the linkage and QTL analysis. 

Qfhs.pur-7EL was mapped to a 2.9 cM region within a 43.6 cM segment of wheatgrass 

chromosome 7el2 that was translocated onto wheat chromosome 7DL. The LR gene Lr19 

from 7el1 was mapped to a 1.21 cM region in the same area, in repulsion. Five lines were 

identified with the resistance-associated SNP alleles in coupling for Qfhs.pur-7EL and 

Lr19. Investigation of the genetic characteristics of the parental lines of this RIL 

population indicated that they are translocation lines in two different wheat cultivar 

genetic backgrounds instead of 7E-7D substitution lines in Thatcher wheat background as 

previously reported in the literature. 
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3.2 Introduction 

Fusarium head blight (FHB) or scab, caused by Fusarium graminearum is a 

destructive fungal disease of wheat (Mesterhazy 1995). The pathogen not only affects 

wheat, but also other small grain cereals causing reduction in yield and grain quality. 

Most importantly, F. graminearum produces the toxin trichothecene deoxynivalenol that 

accumulates in the grain, and when consumed threatens human and animal health (Parry 

et al. 1995; McMullen et al. 1997). Although the commonly used type II FHB resistance 

gene Fhb1, from the wheat cultivar Sumai 3, provides strong resistance, identifying 

resistance in other cultivars, landraces or related species is essential to maintain diversity 

for FHB resistance in breeding programs. Qfhs.pur-7EL (syn. FhbLop; Zhang et al. 2011) 

is a quantitative trait locus (QTL) from tall wheatgrass (Thinopyrum ponticum) 

chromosome 7el2 conferring strong resistance to FHB (Shen and Ohm (2007). 

Leaf rust, caused by Puccinia recondite Roberge ex Desmaz. f. sp. tritici Eriks. & E. 

Henn is the most common rust disease of wheat and appears wherever wheat is grown 

(Samborski 1985). Susceptible wheat cultivars suffer a 5% - 15% yield loss, depending 

on the developmental stage at initial infection (Samborski and Peturson 1960; Samborski 

1985). Lr19, transferred from tall wheatgrass (Th. ponticum) chromosome 7el1 to wheat 

chromosome 7D (Sharma and Knott 1966), confers highly effective resistance to LR 

worldwide, regardless of reported virulence (Huerta-Espino and Singh 1994). The 

translocated Lr19 segment is homoeologous with a segment of wheat chromosome 7DL, 

however the regions cannot pair and recombine in the presence of the recombination 

inhibitor Ph1 (Knott 1980; Marais and Marais 1990). Thus, Lr19 cannot be mapped 

through approaches based on recombination frequencies in common wheat. 
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Tall wheatgrass has been an important genetic resource for improving resistance to 

biotic (Cox et al. 2002) and abiotic (Chen et al. 2004) stresses of wheat. Alien chromatin 

conferring resistance can be incorporated as a whole-chromosome addition or substitution, 

but a short translocation is preferable for wheat improvement because it minimizes 

linkage drag (Brinkman and Frey 1977b; Wang 2011). The use of wheat lines containing 

Ph1 deletions allows homoeologous recombination between wheat and alien chromatin 

for the introduction of beneficial genes (Riley 1958; Sears and Okamoto 1958). In 

addition, overlapping translocations can be used to reduce the length of an alien 

translocation or introduce another gene through recombination if tightly linked markers 

throughout the alien segments are available (Young and Tanksley 1989b). 

Accurate QTL mapping is the foundation of marker-assisted selection in a breeding 

program (Kumar 1999). However, map resolution is limited by the number of markers 

available, which affects the ability to detect and to accurately map the QTL (Beavis 

1997). Genotyping-by-sequencing (GBS) is an efficient method for discovering tens of 

thousands of single nucleotide polymorphism (SNP) markers while simultaneously 

genotyping in genetics studies (Poland and Rife 2012). GBS has been used for linkage 

mapping in wheat and barley (Poland et al. 2012a), association mapping in maize and 

barley (Brachi et al. 2011; Elshire et al. 2011), genomic selection in wheat (Poland et al. 

2012b) and evolution studies in switchgrass (Lu et al. 2013). 

The population in this study was used previously to map the FHB resistance QTL, 

Qfhs.pur-7EL, to a 15.3 cM region flanked by SSR markers (Shen and Ohm (2007). This 

same population was used with an additional year of FHB data to refine the location to a 

3.71 cM region while also mapping the LR resistance gene, Lr19 (Zhang et al. 2011). 
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Both publications reported that the parental lines contained Th. ponticum chromosomes 

7E substituting for wheat 7D in ‘Thatcher’ wheat background. With the advent of GBS, 

we were able to obtain dense coverage of the introgressed segments plus the rest of the 

genome with SNP markers, and thus more accurately characterize the germplasm for use 

in breeding. 

The goals of the present study were 1) to provide dense coverage of SNP molecular 

markers for marker-assisted breeding and 2) to identify lines with the FHB-resistance 

QTL Qfhs.pur-7EL and the LR-resistance gene Lr19 in coupling. In addition, we 

determined that the parental lines (resistance donors) differed from what was reported 

previously by (Shen and Ohm 2007; Zhang et al. 2011). 

3.3 Materials and methods 

3.3.1 Population construction 

The exact origins of parents used for constructing the mapping population are 

difficult to trace due to the lines being renamed in different publications. We assumed 

that the names given in Kim et al. (1993) and Knott et al. (1977) apply to these lines since 

those were cited in previous publications associated with construction of the mapping 

population (Shen and Ohm, 2007; Zhang et al., 2011). K2620 is a disomic substitution 

line, showing moderate resistance to stem rust races 15B and 56 and carrying FHB-

resistance QTL Qfhs.pur-7EL. K2620 has the Th. ponticum (tall wheatgrass) 

chromosome 7el2 substituting for wheat chromosome 7D (Knott et al. 1977; Kim et al. 

1993) in what we believe is a wheat background of cultivar “Marquis” rather than 

“Thatcher” as cited previously (Shen and Ohm, 2007 and Zhang et al., 2011). K11463 is 

a substitution line showing LR resistance with wheat 7D replaced by Th. ponticum 7el1 in 
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“Thatcher” wheat background (Knott 1968; Kim et al. 1993). Chromosome 7el1 and 7el2 

are able to recombine, so QTL on those chromosomes can be mapped when the lines are 

used to construct a mapping population (Dvořák 1975).  

The RIL population used here was constructed by Shen and Ohm (2007) as 

described below. The initial cross was made between K2620 and K11463 in March 2003 

in a greenhouse at Purdue University, West Lafayette, Indiana. The population was 

evaluated at the F2 generation for type II FHB resistance by point inoculation in the 

greenhouse in March 2004. After self-crossing to produce F2:3 families, ten plants per 

family were evaluated with FHB in the greenhouse in November 2004. A random plant 

from each F2:3 family was harvested to represent its family during RIL construction 

through single-seed descent. In October 2005 and March 2006 the F4:5 and F5:6 

generations, respectively, were evaluated for type II FHB resistance in the greenhouse. 

The final F5:6 population consisted of 274 lines. In addition to the current study, the FHB-

resistance QTL was mapped previously with SSR markers in this same RIL population 

by two different research groups (Shen and Ohm 2007; Zhang et al. 2011). Lr19 was also 

mapped in this same RIL population with SSR markers by Zhang et al. (2011). 

3.3.2 Plant growth and phenotyping 

The RIL population used here for mapping was scored at Purdue University for type 

II FHB resistance as described below and the disease data were published by Zhang et al. 

(2011; Figure 2 and Table 2). For scoring resistance to FHB, ten seeds from each F5 and 

six seeds from each F6 RIL were sown in flats and at the 2-leaf seedling stage were 

transplanted individually into 3-inch pots in the greenhouse. Plants were artificially point 

inoculated with F. graminearum during anthesis. Ten µl of inoculum with a 
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concentration of 50,000 spores/ml were injected into the left floret of the second or third 

spikelet from the spike tip. The inoculated spikes were covered with plastic bags for three 

days to maintain high humidity. Disease symptoms were scored 21 days after inoculation. 

The total number of discolored spikelets per spike from the inoculation point and below 

was counted and the average was calculated for the ten or six plants to represent the FHB 

score for their RIL.  

The LR evaluation, conducted at Shandong Agricultural University, Taian, China in 

2008, included 237 RILs from the F6:7 generation plus both parents, K11463 and K2620. 

When the plants were at heading stage, one of the most virulent LR isolates in southeast 

Asia, named 09-10-2, was used to infest the plants, as published in Pathan and Park 

(2006). The infection type of the plants was scored 14 days after inoculation using a score 

from 0 to 4 (Bushnell 1984). Plants with infection type scores of 0 through 2 were 

considered resistant whereas 3 and 4 were susceptible. LR data for this RIL population 

were published by Zhang et al. (2011). 

3.3.3 DNA extraction for GBS  

Young leaf tissue collected from each of the 274 RILs at the F6:7 generation, plus the 

two parental lines, K2620 and K11463, was frozen in liquid nitrogen and stored at -80 ̊C. 

DNA was extracted using the GenElute Plant Genomic DNA Miniprep kit (Sigma-

Aldrich, St. Louis , MO) according to the manufacturer’s instructions. DNA 

concentrations were quantified with Quant-iT™ PicoGreen® (Molecular 

Probes/Invitrogen, Eugene, OR) on a fluorescence-based microplate reader and diluted to 

20ng/µl. 
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3.3.4 Library construction and genotyping-by-sequencing  

 A two-enzyme PstI-MspI protocol was used (Poland et al., 2012b) and barcode 

adapters were applied to DNA during library construction. The 274 RIL plus two parental 

samples were pooled into three 96-plex libraries, PCR-amplified, and each library was 

sequenced on a lane of an Illumina HiSeq 2000 (San Diego, CA).  

3.3.5 SNP calling and location assignment 

The SNP reads were processed using the default parameters of the Universal 

Network Enabled Analysis Kit (UNEAK) pipeline (Lu et al., 2013) of the program Trait 

Analysis by aSSociation, Evolution, and Linkage (TASSEL) 4.0 (Bradbury et al., 2007).  

 The Basic Local Alignment Search Tool (BLAST; Altschul et al. 1990) was used 

to assign the 64bp tag sequence, containing each SNP, to wheat chromosomes by 

searching the wheat genome sequence published by The International Wheat Genome 

Sequence Consortium (IWGSC 2014; http://www.wheatgenome.org). The top hit of the 

BLAST results, with alignment length larger than 50bp, was used to designate the 

putative chromosome location for each SNP. 

3.3.6 Filtering, linkage analysis and QTL mapping 

During data filtering steps, a SNP was removed from the dataset if more than 20% of 

the RIL population had missing data for that sequence, if more than 5% of RILs were 

heterozygous for the SNP, or if the sequence was not polymorphic between the two 

parents. SNPs were clustered into linkage groups using JoinMap 4.0 software (Van 

Ooijen 2006) with a threshold value of 3.0 for minimum logarithm of the odds (LOD) 

score for linkage. The maximum likelihood algorithm of JoinMap was used to order the 

markers (Haley and Knott 1992). Map distance between SNP loci was estimated using 
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multipoint analyses with the regression algorithm and Kosambi mapping function, but 

using the order determined by maximum likelihood mapping (Kosambi 1943). The 

linkage group information was loaded into MapQTL 6.0 software (Van Ooijen 2009) and 

interval mapping identified the QTL. The FHB phenotypes were coded as continuous 

numeric data for QTL mapping and LR phenotypes were coded as R (resistant) or S 

(susceptible). A 1000-permutation test was used to calculate the empirical significant 

LOD threshold across the target linkage group to detect the underlying putative QTL at 

the p=0.05 level (Churchill and Doerge 1994). SNP markers closely linked to the FHB 

resistance locus within the approximate 95% confidence interval for QTL position were 

identified based on a LOD-1.5 support interval (Dupuis and Siegmund 1999).  

3.4 Results 

3.4.1 SNP identification 

The UNEAK pipeline identified 216,318 SNP sequences and BLAST analysis 

assigned 45,849, 63,772 and 32,899 to the A (21.19%), B (29.48%) and D (15.21%) 

subgenomes, respectively, with 73,798 (34.12%) remaining unassigned. After filtering to 

remove sequences missing in more than 20% of the RILs, the number dropped 

dramatically to 12,513 SNPs, which is about 5.8% of the raw calls. The second filtering 

criterion, requiring that a SNP be removed if more than 5% of the RIL plants were 

heterozygous at that site, brought the number down to 1,741 markers. Lastly, only 

sequences that were polymorphic between the parental lines were used, resulting in 1700 

SNPs, genome-wide, for the downstream analysis. After filtering, the D subgenome was 

under represented (Table 3.1).  
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3.4.2 Linkage analysis  

Linkage analysis resulted in 24 linkage groups (Table S1) and BLAST analysis 

assigned them to parts of 16 chromosomes (Table 3.1). Linkage group 9 was not included 

in summary Table 3.1 because BLAST assigned 31 and 22 markers to chromosomes 1AL 

and 7AS, respectively. Since markers from these two chromosomes were interspersed, we 

were unable to infer a location for the linkage group. Due to its small number of markers, 

linkage group 24 was not included. No linkage groups were assigned to chromosomes 1A, 

2D, 3D, 4B, 4D or 5A. Many chromosomes were represented by markers on only one 

arm. Incomplete coverage of the wheat genome by the draft sequence resulted in the 

mapping by linkage analysis not always supporting the chromosomal location assigned in 

BLAST; most linkage groups contained a mixture of SNPs assigned to homoeologous 

and non-homoeologous chromosomes. All linkage groups contained a large proportion of 

markers that BLAST could not align to any wheat sequence in the database. 

Consequently, each linkage group was placed on its chromosome based on where 

BLAST assigned the majority of its SNP sequences (Table S1 and Table 3.1). 

BLAST analysis yielded unexpected results for markers within the linkage group that 

defined the chromosome containing the FHB-resistance QTL Qfhs.pur-7EL and the Lr19 

resistance gene: chromosome 7E from Th. ponticum. The linkage group appeared to 

comprise two distinct regions. Within the first 13.16 cM of the linkage group (Table S2), 

which contained the two resistance loci, the marker density was lower, 2.05 SNPs per cM, 

than in the remaining 32.62 cM where the density was 4.69 SNPs per cM. Twenty-five 

out of 27 markers within the first 13.16 cM had no corresponding homoeologous locus in 

the wheat genome; however, 54 out of 153 markers within the remaining 32.62 cM had 
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high similarity to sequences in the homoeologous group 7 chromosomes of the wheat 

genome (Table S2). Within the first 13.16 cM the two markers with similarity to group 7 

of wheat had relatively large e-values of 3.00E-12 and 4.00E-15 (indicative of only 

moderate similarity to the best match in the wheat genome), whereas the average e-value 

for group 7 markers in the remaining 32.62 cM was more significant at E-25 for 7DS and 

E-20 for 7DL. The identification of these two regions of the linkage group raised 

questions as to whether the parental lines contained 7E-7D translocations rather than the 

previously reported 7E-7D whole chromosome substitutions (Zhang et al., 2011). As 

expected, the majority of the SNPs assigned to this chromosome had no match in the 

database (115 SNPs with no hits out of 187 total SNPs; Table S1 and Table S2) since Th. 

ponticum has not been sequenced and since the wheat genome assembly contains gaps 

(IWGSC 2014). Because previous research with this RIL population indicated that both 

parental lines were in a Thatcher wheat background (Zhang et al., 2011), it was 

unexpected to identify so many SNPs throughout the other chromosomes of the wheat 

genome (Table 3.1). 

3.4.3 Mapping resistance loci 

Interval mapping, using phenotypic data for both the F4:5 and F5:6 generations, placed 

FHB resistance QTL Qfhs.pur-7EL in identical locations spanning 2.9 cM near the end of 

the short arm of a group 7 chromosome (Figure 3.1). Sequences for the four SNPs located 

within the LOD-1.5 support intervals are shown in Table 3.2. The leaf rust resistance 

gene, Lr19, mapped to position 8.48 cM within a 1.21 cM region flanked by SNPs 

TP136477 and TP328971 (sequences in Table 3.2), which is 5.09 cM proximal to 

Qfhs.pur-7EL marker TP31888. 
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3.4.4 Pyramided lines with Qfhs.pur-7EL and Lr19 

RILs with all four resistance-linked SNP alleles had significantly lower FHB scores 

(higher FHB resistance) than RILs with four susceptibility-linked SNP alleles (Table 

3.3). Using that information, we identified five lines (line ID 303, 328, 346, 390 and 465) 

in the F6:7 RIL population that resulted from a recombination between the two parental Th. 

ponticum segments and thus carried all four SNPs located in the LOD-1.5 confidence 

interval for Qfhs.pur-7EL plus the two SNPs flanking Lr19. All five lines were resistant 

to leaf rust (Table 3.4). However, the FHB scores of lines 390 and 465 in the F4:5 

generation (mean FHB score 8 and mean 7, respectively) were higher than the mean FHB 

score of the 107 RILs with all four resistance-linked SNPs (mean 5.09 SD 2.88, p= 0.16 

and p= 0.25 respectively). In the F5:6 generation the lines containing all markers for both 

resistance loci, except for line 390, exhibited acceptable levels of type II FHB resistance 

(Table 3.4). Line 346 was the most resistant to FHB of the five lines with all markers, and 

it presumably carried FHB- and leaf rust-resistance in coupling.  

3.5 Discussion  

We used GBS along with QTL mapping to develop improved molecular markers for 

a RIL population used previously (Shen and Ohm 2007; Zhang et al. 2011) to map loci 

for type II FHB and LR resistance. This high-throughput approach mapped the FHB 

resistance QTL Qfhs.pur-7EL to a 2.9 cM LOD 26 interval compared to the 15.3 cM 

interval of Shen and Ohm (2007) and 3.71 cM of Zhang et al. (2011). We also improved 

the resolution of the map for Lr19 from 3.97 cM (Zhang et al. (2011) to 1.21 cM. Thus 

we achieved our first goal to provide dense coverage of SNP molecular markers for 

marker-assisted breeding. 
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Four SNPs were identified in the LOD-1.5 support interval for Qfhs.pur-7EL and 

two flanking SNPs were identified for Lr19. With these six SNPs, five lines in the RIL 

population were identified that had all of the markers. Resistance data indicated that at 

least two of the lines, 328 and 346, were highly resistant to both diseases and carried 

Qfhs.pur-7EL and Lr19 in coupling (Table 3.4). Although line 390 had all four Qfhs.pur-

7EL-linked markers plus was resistant to LR, it was not very resistant to FHB; the 

recombination that put all 6 markers in coupling may have been within the marker-

deficient proximal 1cM tail of the LOD-1.5 confidence interval and thus distal to the 

FHB resistance QTL, resulting in its loss. The pyramided lines exhibiting FHB and LR 

resistance in coupling, our second goal, show promise as resources for improving the 

resistance of wheat cultivars to two economically important diseases. 

Since Zhang et al. (2011) used the same RIL population and provided us with their 

mapping data plus the FHB and LR phenotypic data for construction of our SNP map, we 

attempted to integrate their SSR data with the SNP data from this study. However, many 

of the SSRs expanded the integrated SNP/SSR map dramatically and showed very high 

stress values in JoinMap 4.0 analysis (Table S3). Markers with high stress values (greater 

than ± 5.000) do not have a good fit in the map (Van Ooijen 2006). When we used 

JoinMap with their SSR data alone, the markers with high stress values in the integrated 

SNP/SSR map still caused map expansion. Xswes19, which is one of the flanking SSR 

markers for Qfhs.pur-7EL Zhang et al. (2011), was among these high stress value 

markers. Consequently, we were unable to integrate our SNP-based map with published 

wheat SSR markers. The SNPs that we identified did not expand the map and thus are 

considered reliable markers (Table S3). 
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Our data suggested that the parental lines contained 7E/7D translocations rather than 

full chromosome substitution lines. The parental lines of this RIL population were 

reported to contain the entire Th. ponticum chromosome 7el2 replacing wheat 7D in 

parent K2620 and chromosome 7el1 replacing wheat 7D in parent K11463 (Sharma and 

Knott 1966; Dvořák 1975; Knott et al. 1977). Both parents were reported to have 

Thatcher wheat background (Shen and Ohm 2007; Zhang et al. 2011). The presence of 7e 

chromosomes replacing 7D in the original K2620 and K11463 lines was verified through 

fluorescent in situ hybridization using markers specific to tall wheatgrass as probes (Kim 

et al. 1993). However, this understanding of the parental lines of our RIL population was 

not verified through our BLAST assignments of SNPs to wheat chromosomes.  

The 64bp sequences containing SNPs (GBS data) mapping to the target linkage 

group containing Qfhs.pur-7EL were aligned (BLAST) to the draft wheat genome to 

identify their chromosomal locations (Table S2). Using the regression linkage map, 

twenty-one of the first 34 markers of the target linkage group corresponded to sequences 

on the wheat 7DS chromosome with significant E-values lower than E-23 in the BLAST 

result. This good match to wheat chromosome 7DS sequences would not be expected if 

the parental lines contained entire 7e chromosomes substituting for the wheat 7D 

chromosomes, as reported by Shen and Ohm (2007); Zhang et al. (2011). These markers 

covered only 3 cM of the short arm of 7DS. The next 126 markers, mapping to the 

middle of the target linkage group, constituted a region where 25 markers corresponded 

to wheat 7DL sequences with the majority of them having E-values around E-20 and a 

few around E-23. This central region also contained 79 markers, interspersed with the 

others, that did not align to the wheat genome. Finally, within the 13.16 cM at the end of 
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the target linkage group, 25 of the 27 markers surrounding Qfhs.pur-7EL did not match 

wheat sequences. The other two markers corresponded to 7AL and 7DL with E-values of 

3.00E-12 and 4.00E-15, respectively, which is much less significant than the markers that 

corresponded to wheat sequences throughout the rest of the chromosome (average E-

value E-23). The unusual structure of this chromosome, 13.16 cM that appeared to not 

match wheat sequences attached to 32.62 cM that had high similarity with wheat 7DL 

and 7DS chromosome arms, suggests that the region containing resistance loci Qfhs.pur-

7EL and LR19 is a translocation rather than a chromosome substitution, as reported 

earlier (Shen and Ohm 2007; Zhang et al. 2011). 

Additional evidence that the parental lines are not as previously reported is that a 

large proportion of SNPs (1513 out of the total 1700) were assigned by BLAST to wheat 

chromosomes other than 7D/7E. This high polymorphism was unexpected since the 

parental lines were both reported to be in a Thatcher wheat background (Shen and Ohm 

2007; Zhang et al. 2011). Therefore, we speculate that the parental lines were not in the 

same genetic background. Following the production of these lines through the literature, 

it is clear that many 7E/7D translocation lines and substitution lines were generated in the 

1960s and 1970s, some in Thatcher backgrounds and some in Marquis (Sharma and 

Knott, 1966; Knott 1968; Knott et al 1977). Kim et al, 1993 appeared to use some of 

these lines but gave them different names. It seems plausible that the lines used to make 

the mapping population used by (Shen and Ohm 2007; Zhang et al. 2011) and our group 

is not what we thought it was. 

In summary, we achieved our goals to increase the map resolution of the QTL region 

and identify lines with Qfhs,pur-7EL and Lr19 combined in coupling. This germplasm is 
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a resource for future cultivar development. Currently the SNP markers flanking Qfhs,pur-

7EL and Lr19 are being redesigned to produce KASP markers (KBioscience, Hoddesdon, 

UK) which can be easily used by plant breeders. In addition, by combining the high 

throughput GBS method for generating many markers in a mapping population with the 

BLAST approach, we reevaluated the chromosome constitution of the parental lines used 

for constructing the RIL population and suggest that they are neither 7E-7D substitution 

lines nor in the same genetic background.  
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Table 3.1 Chromosome locations of SNP markers 

Chromosome 1 Mapped 
Markers 2 

Assigned 
Markers 3 

Length 
(cM) 

1B 69 45 72.9 
1DS 26 21 28.45 
2A 151 125 90.36 
2B 197 167 101.36 

3AL 48 28 29.4 
3B 115 77 114.51 
4A 71 55 75.35 

4BS 12 9 30.79 
5BL 84 66 41.16 
5DL 16 15 7.02 
6AL 40 32 39.13 
6B 123 67 57.16 

6DS 15 13 32.19 
7AL 28 20 16.65 
7BL 45 29 18.85 

7D/7E 187 47 45.78 
Total 1227 816 801.06 

Genome 
Percentage 
of markers 

mapped 

Percentage 
 of markers  

assigned 
Length 
(cM) 

Genome A 27.55 31.86 250.89 
Genome B 52.57 56.37 436.73 
Genome D 19.88 11.77 113.44 

 
1 Chromosome location was inferred by the majority of BLAST hits for markers in each 
linkage group. 
2 Number of SNPs after filtering mapped to each chromosomes by JoinMap, based on a 
minimum logarithm of the odds threshold value of 3.0. Linkage groups with fewer than 
12 markers mapping to one chromosome were not represented. 
3 Number of SNPs among the mapped markers assigned to the indicated wheat 
chromosome based on BLAST results. Some markers mapped to locations not predicted 
by BLAST, resulting in more markers placed on the chromosome map than were 
assigned by BLAST.   
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Table 3.2 Sequences of SNPs linked to Qfhs-pur.7EL and Lr19 

Location Marker Marker Sequences (R/S 1) 

Qfhs.pur-7EL 
1.61 TP83101 TGCAGCAGATGGCCTTCTTTGTTTGTTCGCCCCC(T/C)GTCCACCTCCCTACGCCGAGATCCATCTG 

2.77 TP340234 TGCAGTTTTGCAAGCGTTAGTAGTGCTCACCATGAAAAGGAAAAGAGAGTGAGGAATTA(A/G)TACA 

2.95 TP114709  TGCAGCCCCAGCGACCCTCCCCAATACAA(C/A)GCCAGCGCCGCCACCAGGTTCAGCCGAGATCGGA 

3.38 TP31888 TGCAGAGATCTGCACCTGCCGAAGTTGAAGTGTTGTCATTTGTGATTACTGACATGTATTT(A/G)TA 
Lr19  

7.93 TP136477 TGCAGCGACGACCCCACCGCGAACCGCAAAACGAATCTGTTGCCGAC(A/C)ACCGTGTGCGCGAGGT 
9.14 TP328971 TGCAGTTCGATCATGGGACAAGTTCATCGATGTACGCAG(C/A)TACCCCTCCTTCCTTCCGAGATCG 

 
1Qfhs.pur-7EL: K2620 resistant parent SNP allele/ K11463 susceptible parent SNP allele 

 Lr19: K11463 resistant parent SNP allele/ K2620 susceptible parent SNP allele  
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Table 3.3 Mean FHB scores for RILs with resistance- or susceptibility-linked SNP alleles  

Test SNPs in LOD-1.5 support interval N 1 Mean ±SD 2 TP 83101 TP340234 TP114709 TP31888 

F4:5 
+  + + + 107 5.09 ± 2.88 A 
-  - - - 116 8.47 ± 2.89 B 

F5:6 
+ + + + 107 2.94 ± 1.76 A 
- - - - 116 6.88 ± 2.50 B 

 + indicates resistance-linked SNP alleles from K2620 
- indicates susceptibility-linked SNP alleles from K11463 
1 Number of RILs with the marker combination indicated 
2 Groups within a test generation with different letters are significantly different from 
each other at p=0.05  
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Table 3.4 Mean FHB resistance score and leaf rust resistance response1 for lines with all 
the resistance-linked SNP alleles for Qfhs.pur-7EL and Lr19 

 

Line  Mean FHB Score Leaf rust 
F6:7   F4:5 F5:6 

303 5 2.8 R 
328 4 1.7 R 
346 3 1.1 R 
390 8 7.7 R 
465 7 2.2 R 

Average 2 5.09 2.94   
1 FHB scores from Shen and Ohm (2007) and leaf rust response data from Zhang et al. 
(2011) 

2 Mean FHB score of RILs with all four resistance-linked SNP alleles within the LOD-
1.5 support interval of Qfhs.pur-7EL and two flanking SNPs for LR resistance-linked 
alleles.   
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Figure 3.1 Location of resistance loci on chromosome 7DL/7EL.  

Type II FHB-resistance data were combined with GBS SNP data to detect the Qfhs.pur-
7EL QTL. Separate LOD scans were calculated for the F4:5 (lower scan, dotted line) and 
F5:6 (upper scan, solid line) generations of the RIL population using interval mapping. 
The map positions of the LOD-1.5 support interval (an approximate representation of the 
95% confidence interval) for Qfhs.pur-7EL are defined by the heavy bars above each 
scan. The end points for the F4:5  LOD-1.5 support interval are 1.4 and 4.3 cM and for F5:6 
are 1.4 and 4.3 cM. The position of the leaf rust resistance gene, Lr19, is indicated along 
with its flanking markers. Exact marker positions are designated in table 3.3. 
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APPENDICES 

Table S 1 BLAST assignment of markers and linkage groups to chromosomal locations 

Linkage Group Chr. Number of 
hits 

1 

4AL 44 
no_hit 10 
3AL 1 
4DL 1 
2DL 1 

2 

3B 64 
no_hit 16 
4BS 1 
5BS 1 
4BL 1 
3DL 1 
4AS 1 
2AS 1 

3 

5BL 66 
no_hit 12 
5DL 2 
4BS 1 

4 

2BL 84 
2BS 73 

no_hit 18 
4BS 4 
2AL 1 
2AS 1 
6BL 1 
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Table S1 continued 
 Linkage Group Chr. Number of hits 

4 cont. 
6BS 1 
6AL 1 
2DL 1 

5 
1BS 11 

no_hit 4 

6 

2AL 78 
2AS 47 

no_hit 18 
2BL 2 
4AS 1 
2DS 1 
3AS 1 
2DL 1 
3AL 1 
4DS 1 

7 
2BL 10 
2AL 1 

no_hit 1 

8 Target linkage group 

no_hit 115 
7DL 26 
7DS 21 
7AL 5 
2DL 3 
7BL 3 
1AL 2 
4AL 2 
7AS 2 
1DL 1 
2BL 1 
3AL 1 
3AS 1 
4DS 1 
5BL 1 
5DL 1 
6AS 1 



76 
 

 

76 

Table S1 continued 
 Linkage Group Chr. Number of hits 

8 Target 
7DS 

7DS, 7AS, 7BS	   21, 1, 0  
no hit 11 
Other 1 

8 Target 
7DL proximal 

7DL,7AL, 7BL 27, 3, 5  
no hit 77 
Other 12 

8 Target 
7E distal 

no hit 27 
7AL 1 
7DL 1 

9 

1AL 31 
7AS 22 

no_hit 20 
1AS 4 
1BL 2 
5AS 1 
4AS 1 
5BL 1 
2BS 1 

10 

6BS 48 
no_hit 38 
6BL 19 
6DS 4 
6AL 3 
6AS 2 
6DL 2 
5BL 1 
2DL 1 
3AL 1 
4BS 1 
3DL 1 
3B 1 

1AS 1 

11 
7BL 29 

no_hit 12 
4BS 2 
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Table S1 continued 
 Linkage Group Chr. Number of hits 

11 cont. 
7DL 1 
7AL 1 

12 

3AL 22 
no_hit 9 

3B 1 
7BS 1 
1AL 1 

13 

6AL 24 
no_hit 3 
6DL 2 
6AS 1 

14 
4AS 11 

no_hit 3 

15 
4BS 9 

no_hit 3 

16 

1BL 34 
no_hit 12 
1AL 3 
5BL 2 
1DL 2 
4AL 1 

17 

3B 13 
7BL 8 

no_hit 6 
7AL 1 
2DS 1 

18 

7AL 20 
no_hit 5 
5DL 1 
7DL 1 
5AS 1 

19 

3AL 6 
no_hit 5 

3B 2 
3DL 1 
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Table S1 continued 
 Linkage Group Chr. Number of hits 

20 
6AL 8 

no_hit 2 

21 
1DS 21 

no_hit 5 

22 
5DL 15 

no_hit 1 

23 
6DS 13 

no_hit 2 

24 

no_hit 3 
5BL 2 
1BL 2 
1AL 1 
4BS 1 
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Table S 2 BLAST result for the target linkage group 

Table S2 continued  
 

Locus Position Hit Percent 
Identity 

Alignment 
Length 

Mismatch 
Count 

Gap 
Count 

Query 
Start 

Query 
End E Value 

TP239787 0 no_hit        
TP264927 0.922 no_hit        
TP83101 1.612 no_hit        
TP340234 2.77 no_hit        
TP114709 2.955 no_hit        
TP31888 3.387 no_hit        
TP278365 6.967 no_hit        
TP205843 7.389 no_hit        
TP136477 7.93 no_hit        
TP328971 9.141 no_hit        
TP84579 9.467 no_hit        
TP186207 10.365 7AL 90.16 61 3 1 7 64 3.00E-12 
TP293818 11.054 no_hit        
TP147138 11.225 no_hit        
TP211581 11.502 7DL 90.62 64 6 0 1 64 4.00E-15 
TP313803 11.87 no_hit        
TP288979 12.113 no_hit        
TP17639 12.335 no_hit        
TP182704 12.429 no_hit        
TP185861 12.551 no_hit        
TP7601 12.618 no_hit        
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Table S2 continued  
 

Locus Position Hit Percent 
Identity 

Alignment 
Length 

Mismatch 
Count 

Gap 
Count 

Query 
Start 

Query 
End E Value 

TP319409 12.619 no_hit        
TP145389 12.762 no_hit        
TP330245 12.843 no_hit        
TP133139 12.937 no_hit        
TP115666 13.017 no_hit        
TP268527 13.162 no_hit        
TP338664 13.235 7DL 95.31 64 3 0 1 64 4.00E-20 
TP291695 13.314 1AL 91.8 61 5 0 4 64 4.00E-15 
TP252436 13.38 no_hit        
TP251777 13.46 no_hit        
TP268397 13.604 7AL 96.83 63 1 1 1 62 1.00E-20 
TP60637 13.654 no_hit        
TP145604 13.725 7DL 98.44 64 1 0 1 64 2.00E-23 
TP210900 13.797 7DL 96.23 53 2 0 4 56 1.00E-15 
TP232288 13.819 no_hit        
TP177370 13.849 2DL 92.98 57 4 0 5 61 2.00E-14 
TP135154 13.889 no_hit        
TP310222 13.933 no_hit        
TP280931 14 7DL 95.31 64 3 0 1 64 4.00E-20 
TP151239 14.03 no_hit        
TP60307 14.102 no_hit        
TP339660 14.156 no_hit        
TP196676 14.218 no_hit        
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Table S2 continued  
 

Locus Position Hit Percent 
Identity 

Alignment 
Length 

Mismatch 
Count 

Gap 
Count 

Query 
Start 

Query 
End E Value 

TP249577 14.243 no_hit        
TP72228 14.334 no_hit        
TP5622 14.395 3AL 98.39 62 1 0 3 64 3.00E-22 

TP313326 14.442 no_hit        
TP658 14.486 no_hit        

TP255814 14.57 7DL 95.31 64 3 0 1 64 4.00E-20 
TP2610 14.687 no_hit        

TP116092 14.896 1DL 96.72 61 2 0 4 64 4.00E-20 
TP318032 15.069 no_hit        
TP33095 15.405 no_hit        
TP119639 15.651 2DL 93.75 64 4 0 1 64 2.00E-18 
TP283828 15.879 7DL 95.31 64 3 0 1 64 4.00E-20 
TP163999 16.308 no_hit        
TP93108 17.198 no_hit        
TP47168 17.379 no_hit        
TP247164 17.671 no_hit        
TP125166 17.835 no_hit        
TP320664 17.964 no_hit        
TP111804 18.104 no_hit        
TP163716 18.49 7DL 100 56 0 0 3 58 1.00E-20 
TP219203 18.586 no_hit        
TP251801 18.73 7AL 96.88 64 2 0 1 64 9.00E-22 
TP111331 18.849 5DL 92.73 55 3 1 4 57 7.00E-13 
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Table S2 continued  
 

Locus Position Hit Percent 
Identity 

Alignment 
Length 

Mismatch 
Count 

Gap 
Count 

Query 
Start 

Query 
End E Value 

TP328695 19.016 no_hit        
TP281652 19.291 7DL 94.23 52 3 0 1 52 2.00E-13 
TP134745 19.423 no_hit        
TP312519 19.744 no_hit        
TP273225 19.83 no_hit        
TP295741 19.946 no_hit        
TP22357 20.343 no_hit        
TP216898 20.589 7DL 96.83 63 2 0 2 64 3.00E-21 
TP161581 20.897 no_hit        
TP8339 21.048 3AS 98.36 61 1 0 1 61 9.00E-22 

TP121404 21.207 4AL 96 50 2 0 15 64 6.00E-14 
TP122889 21.326 no_hit        
TP57748 21.794 no_hit        
TP151956 22.062 no_hit        
TP73370 22.341 no_hit        
TP290192 22.51 7DL 95 60 3 0 5 64 7.00E-18 
TP81034 23.442 no_hit        
TP2377 23.92 7DL 100 63 0 0 2 64 2.00E-24 

TP280158 24.308 no_hit        
TP318687 24.504 no_hit        
TP324357 24.623 no_hit        
TP7439 24.854 7DL 98.39 62 1 0 3 64 3.00E-22 
TP84593 25.163 7BL 96.83 63 2 0 1 63 3.00E-21 
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Table S2 continued  
 

Locus Position Hit Percent 
Identity 

Alignment 
Length 

Mismatch 
Count 

Gap 
Count 

Query 
Start 

Query 
End E Value 

TP328841 25.614 no_hit        
TP264551 25.769 7AL 95.31 64 3 0 1 64 4.00E-20 
TP38108 26.074 no_hit        
TP114817 26.521 no_hit        
TP283528 26.566 7DL 93.75 64 2 1 1 62 7.00E-18 
TP203526 26.728 no_hit        
TP131657 26.884 7DL 96.55 58 2 0 7 64 2.00E-18 
TP125259 27.251 2BL 96.88 64 2 0 1 64 9.00E-22 
TP74525 27.566 no_hit        
TP306891 28.015 no_hit        
TP25593 28.229 7AS 100 51 0 0 4 54 7.00E-18 
TP338371 29.716 no_hit        
TP331711 30.327 no_hit        
TP321775 30.647 no_hit        
TP227498 30.887 7DL 95.31 64 3 0 1 64 4.00E-20 
TP240326 31.306 no_hit        
TP78596 31.756 no_hit        
TP153539 31.813 6AS 91.23 57 5 0 1 57 7.00E-13 
TP138366 31.867 no_hit        
TP23242 31.966 no_hit        
TP5640 32.247 1AL 98.18 55 1 0 1 55 2.00E-18 

TP124164 32.448 4DS 95.08 61 3 0 1 61 2.00E-18 
TP136150 32.808 no_hit        
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Table S2 continued  
 

Locus Position Hit Percent 
Identity 

Alignment 
Length 

Mismatch 
Count 

Gap 
Count 

Query 
Start 

Query 
End E Value 

TP73060 33.504 no_hit        
TP119614 34.115 no_hit        
TP252591 34.655 no_hit        
TP262451 34.773 7DL 93.75 64 4 0 1 64 2.00E-18 
TP276120 34.941 7BL 93.65 63 4 0 1 63 7.00E-18 
TP262721 35.202 7DL 96.88 64 2 0 1 64 9.00E-22 
TP120282 35.366 no_hit        
TP147337 35.445 7DL 96.67 60 2 0 5 64 2.00E-19 
TP74423 35.634 no_hit        
TP146148 36.965 7DL 100 56 0 0 1 56 1.00E-20 
TP327141 37.543 no_hit        
TP198802 37.854 no_hit        
TP110973 38.813 no_hit        
TP292906 38.968 7DL 95.31 64 3 0 1 64 4.00E-20 
TP236639 39.139 no_hit        
TP177263 39.533 no_hit        
TP35306 39.868 no_hit        
TP97642 40.04 7DL 98.41 63 1 0 2 64 7.00E-23 
TP317254 40.149 no_hit        
TP170327 40.215 no_hit        
TP170546 40.415 no_hit        
TP2555 40.656 no_hit        

TP296994 40.818 7AL 93.75 64 4 0 1 64 2.00E-18 
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Table S2 continued  
 

Locus Position Hit Percent 
Identity 

Alignment 
Length 

Mismatch 
Count 

Gap 
Count 

Query 
Start 

Query 
End E Value 

TP93994 40.885 no_hit        
TP295102 41.014 no_hit        
TP82658 41.108 7BL 98.44 64 1 0 1 64 2.00E-23 
TP50674 41.148 no_hit        
TP134711 41.254 no_hit        
TP329123 41.345 no_hit        
TP35985 41.452 no_hit        
TP46958 41.604 no_hit        
TP221147 41.779 7DL 95.31 64 3 0 1 64 4.00E-20 
TP38686 41.896 7DL 98.44 64 1 0 1 64 2.00E-23 
TP326044 42.015 2DL 94.64 56 3 0 1 56 1.00E-15 
TP109708 42.53 no_hit        
TP192301 42.788 5BL 92.19 64 5 0 1 64 9.00E-17 
TP23253 43.035 7DL 100 60 0 0 2 61 7.00E-23 
TP118783 43.179 7DL 98.44 64 1 0 1 64 2.00E-23 
TP148067 43.497 no_hit        
TP32407 43.603 no_hit        
TP110608 43.726 7DS 100 64 0 0 1 64 4.00E-25 
TP155703 43.789 4AL 96.15 52 2 0 1 52 4.00E-15 
TP226361 43.871 no_hit        
TP6115 43.92 7DS 100 64 0 0 1 64 4.00E-25 

TP171315 43.947 7DS 100 64 0 0 1 64 4.00E-25 
TP50965 43.976 no_hit        
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Table S2 continued  
 

Locus Position Hit Percent 
Identity 

Alignment 
Length 

Mismatch 
Count 

Gap 
Count 

Query 
Start 

Query 
End E Value 

TP130287 44.023 no_hit        
TP312927 44.076 no_hit        
TP222642 44.115 7AS 98.41 63 1 0 2 64 7.00E-23 
TP219350 44.158 7DS 100 64 0 0 1 64 4.00E-25 
TP249831 44.187 no_hit        

TP420 44.206 7DS 100 64 0 0 1 64 4.00E-25 
TP166912 44.25 7DS 100 64 0 0 1 64 4.00E-25 
TP98007 44.287 7DS 98.44 64 1 0 1 64 2.00E-23 
TP119730 44.309 7DS 98.44 64 1 0 1 64 2.00E-23 
TP248306 44.353 no_hit        
TP151065 44.416 no_hit        
TP331763 44.472 7DS 98.39 62 1 0 1 62 3.00E-22 
TP97562 44.508 7DS 100 53 0 0 1 53 6.00E-19 
TP90083 44.555 7DS 98.44 64 1 0 1 64 2.00E-23 
TP259621 44.592 7DS 100 64 0 0 1 64 4.00E-25 
TP110682 44.682 no_hit        
TP49064 44.742 7DS 100 64 0 0 1 64 4.00E-25 
TP325924 44.771 7DS 100 64 0 0 1 64 4.00E-25 
TP229909 44.852 no_hit        
TP245850 44.899 7DS 100 64 0 0 1 64 4.00E-25 
TP85166 44.943 7DS 98.44 64 1 0 1 64 2.00E-23 
TP267695 45.035 no_hit        
TP3117 45.088 7DS 100 64 0 0 1 64 4.00E-25 
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Table S2 continued  
 

Locus Position Hit Percent 
Identity 

Alignment 
Length 

Mismatch 
Count 

Gap 
Count 

Query 
Start 

Query 
End E Value 

TP282522 45.217 7DS 98.44 64 1 0 1 64 2.00E-23 
TP329756 45.266 7DS 100 64 0 0 1 64 4.00E-25 
TP262498 45.379 no_hit        
TP31664 45.481 7DS 100 64 0 0 1 64 4.00E-25 
TP212624 45.778 7DS 98.44 64 1 0 1 64 2.00E-23 
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Table S 3 Integrated SNP/SSR markers for target linkage group 8 

Table S 3 continued 
 

Locus1 Position 
N. N. 
Stress 
(cM) 

*Xcfd25 0 0 
TP181613 3.941 0.501 
TP89880 4.885 0.877 
TP35361 6.726 1.531 
TP49076 8.052 -0.001 
TP310455 8.063 -0.002 
TP243263 10.664 0.223 
TP204795 11.39 0.886 
TP304797 12.886 1.548 
TP250622 15.208 -0.19 
TP277136 16.676 -0.026 
TP331898 16.963 0.287 
TP11772 17.479 0.715 
*gwm111 41.265 -34.969 
TP5640 60.865 1.615 

*Xswes354 62.987 2.469 
TP73060 65.982 3.188 
TP240326 69.16 0.158 
TP338371 70.345 -0.29 
TP74525 74.176 0.286 
TP306891 74.466 -0.021 
TP25593 75.652 0.584 
TP131657 76.244 -0.021 
TP283528 76.811 -0.001 
TP114817 76.828 0.011 
TP203526 77.204 -0.028 
TP125259 78.405 -0.286 
TP227498 83.146 0.287 
TP321775 83.432 0.287 

*BE406148 84.756 0.295 
TP331711 85.295 0.734 
*Xpsp3123 90.996 9.963 
TP78596 96.631 -0.053 
TP138366 96.773 -0.001 
TP153539 96.773 -0.001 
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Table S 3 continued 
 

Locus1 Position 
N. N. 
Stress 
(cM) 

TP23242 96.916 0.29 
TP124164 97.642 0.271 
TP136150 98.519 0.22 
TP119614 101.258 0.441 
TP252591 103.301 0.944 
TP276120 103.994 -0.004 
TP262451 104.228 0.07 
TP262721 104.753 0.447 
TP74423 105.027 0 
TP147337 105.04 0 
TP120282 105.182 0.299 
TP146148 106.948 -0.07 
TP198802 107.882 0.075 
TP327141 108.169 0.287 
TP236639 110.127 -0.032 
TP110973 110.414 0.578 
TP292906 110.992 -0.052 
TP177263 112.454 -0.07 
TP35306 113.361 0.397 
TP97642 113.939 0.289 
TP170327 114.082 0 
TP317254 114.093 -0.001 
TP295102 115.106 0.287 
TP82658 115.393 -0.002 
TP50674 115.535 -0.004 
TP296994 116.024 0.293 
TP93994 116.263 0.07 
TP170546 117.303 0.922 
TP221147 118.325 0.284 
TP134711 119.083 0.411 
TP329123 119.515 0.227 

*BG607393 125.969 1.672 
*BE496854 138.102 -4.503 
*Xcfa2174 159.994 25.325 
*Xswes130 186.207 7.429 
*Xwmc809 205.434 14.389 
*Xgwm44 224.459 0.784 
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Table S 3 continued 
 

Locus1 Position 
N. N. 
Stress 
(cM) 

*Xgwm635 246.263 22.528 
*Xmag2931 266.295 4.853 
*Xwmc653 282.974 12.855 
*BE399084 295.803 2.381 
*Xksum052 303.353 3.282 
*Xcfe202 309.486 3.242 
*Xcfd14 319.142 6.209 

*Xcfa2049 324.991 0.577 
*Xgwm295 335.842 11.675 
*Xxfd66- 342.496 1.026 

*Xbarc214 348.97 7.573 
*Xswes22 354.139 1.245 
*Xcfd21 358.677 6.057 

*Xbarc154 364.744 1.973 
*Xgwm473 369.256 6.241 
*Xcfa214 377.907 8.688 
*Xcfe100 384.41 2.604 
*Xbarc70 390.115 5.808 
*Xcfd31 396.888 5.84 

*Xgwm350 402.604 3.752 
*Xedm154 406.912 2.052 
TP110682 409.516 0.235 
TP90083 410.161 0.59 
TP110608 410.831 0.453 
TP155703 411.409 0.578 
TP171315 411.873 -0.008 
TP151065 412.159 0.526 
TP331763 413.136 0.871 
TP212624 414.651 2.114 
TP119730 416.278 0.303 
TP97562 416.443 -0.003 
TP229909 416.73 0.586 
TP85166 417.746 0.602 
TP3117 418.71 0.428 
TP32407 419.558 0.5 
TP312927 420.287 0.578 
TP130287 420.868 0.284 
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Table S 3 continued 
 

Locus1 Position 
N. N. 
Stress 
(cM) 

TP50965 421.299 0.438 
TP6115 421.87 0.29 

TP226361 422.467 0.581 
TP166912 422.994 -0.004 
TP325924 423.308 0.051 
TP219350 423.769 0.21 
TP259621 424.076 0.287 
TP222642 424.345 -0.005 
TP248306 424.631 0.404 
TP249831 424.901 -0.006 

TP420 425.251 0.267 
*Xcfe19 431.255 1.688 
*cfa2106 447.725 0.998 
*wmc606 451.691 4.256 

*Xswes157 471.682 4.596 
TP245850 478.128 0.549 
TP262498 479.118 0.965 
TP148067 480.143 0.566 
TP329756 481.171 0.277 
TP267695 481.728 0.24 
TP31664 482.624 0.076 
TP49064 483.019 0.005 
TP282522 483.684 0.663 
TP98007 484.785 0.283 
TP118783 485.144 -0.006 
TP23253 485.43 0.287 
TP192301 486.467 0.731 
TP109708 487.584 1.343 
TP326044 489.002 0.556 
TP38686 490.009 0.561 
TP35985 491.375 0.267 
TP2555 492.107 0.271 
TP46958 493.323 -0.373 

*Xgwm333 498.084 3.864 
*Xswes376 505.915 6.598 
*Xswes375 519.14 12.824 
*Xwmc121 538.266 16.876 
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Table S 3 continued 
 

Locus1 Position 
N. N. 
Stress 
(cM) 

*Xmag2934 555.661 -4.518 
*psr129 587.952 -6.276 

TP216898 597.65 0.378 
TP161581 598.555 0.283 
TP8339 598.943 0.284 

TP121404 599.577 0.389 
TP122889 600.082 0.599 
TP57748 601.237 -0.025 
TP151956 601.677 0.545 
TP73370 602.567 -0.009 
TP290192 602.727 0.299 
TP81034 604.602 0.287 
TP2377 604.921 0.288 

TP280158 605.949 0.236 
TP324357 606.091 -0.002 
TP318687 606.381 0.286 
TP84593 607.6 0.877 
TP7439 608.346 0.506 

TP264551 609.145 0 
TP38108 609.393 0.286 
TP328841 609.538 -0.069 
TP22357 616.531 -0.425 
TP273225 617.418 0.286 
TP312519 617.71 -0.003 
TP295741 617.856 0.292 
TP134745 618.742 0.007 
TP281652 619.776 0.671 
TP111331 621.834 2.687 

*BE605194 626.302 5.691 
TP328695 629.672 -0.101 
TP251801 630.221 -0.016 
TP219203 630.69 0.478 
TP320664 631.411 0.77 
TP247164 632.1 -0.015 
TP111804 632.678 0.447 
TP163716 633.855 0.882 
TP125166 634.286 -0.017 
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Table S 3 continued 
 

Locus1 Position 
N. N. 
Stress 
(cM) 

TP93108 634.938 0.022 
TP47168 635.059 -0.002 
TP283828 636.979 0.05 
TP163999 637.835 0.586 
TP119639 638.304 -0.02 
TP33095 638.304 -0.02 
TP318032 639.098 0.178 
TP145604 640.509 0.04 
TP268527 641.038 -0.481 
*Xpsp3003 658.551 28.179 

*XL3 677.197 -1.509 
*BE604744 681.443 1.419 

*HX29 683.853 1.005 
*BF483039 689.437 2.244 
*BE445506 692.18 -0.31 
TP211581 694.087 0.706 
TP330245 694.727 -0.028 
TP182704 695.453 0.581 
TP7601 695.74 0.092 

TP319409 695.74 0.092 
TP288979 695.973 0.293 
TP133139 696.476 0 
TP17639 696.482 0 
TP185861 696.666 -0.015 
TP313803 697.997 0.351 
TP147138 698.646 0.405 
TP293818 699.483 -0.018 
TP186207 700.762 0.454 

*BG607810 704.964 0.249 
*Xpsr121 707.734 0.981 

*BE445653 710.899 4.696 
*BF145935 715.806 0.866 

TP84579 719.459 -0.074 
TP328971 719.775 -0.051 
TP278365 722.359 0.574 
TP205843 723.132 0.575 
TP136477 723.935 0.511 
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Table S 3 continued 
 

Locus1 Position 
N. N. 
Stress 
(cM) 

TP340234 729.397 -0.081 
TP31888 729.731 -0.003 
TP114709 729.877 0.307 
TP83101 731.822 0.117 
TP239787 733.925 2.12 
TP264927 735.034 0.073 
*Xcfa2240 739.537 6.15 

*Xmag1932 774.423 18.453 
TP60637 786.989 -0.37 
TP291695 787.543 0.08 
TP252436 788.038 0.598 
TP72228 789.049 0.292 
TP60307 789.49 0.287 
TP268397 789.779 -0.008 
TP151239 790.222 0.577 
TP135154 790.66 -0.004 
TP210900 790.808 -0.003 
TP232288 790.808 -0.003 

TP658 791.188 0.004 
TP196676 791.25 0.054 
TP116092 791.92 -0.068 
TP115666 793.616 -0.029 
TP145389 793.919 -0.01 
*Xbarc76 800.54 10.46 

*Lr19 809.443 5.75 
*Xwmc273 817.359 5.312 
*BE637476 821.681 0.908 
*BM137749 824.216 2.017 

TP2610 827.459 0.025 
TP5622 827.952 0.001 

TP249577 828.106 0 
TP339660 828.149 -0.001 
TP313326 828.563 0.245 
TP338664 828.967 -0.005 
TP177370 829.166 0.098 
TP310222 829.481 0.047 
TP255814 829.794 -0.008 
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Table S 3 continued 
 

Locus1 Position 
N. N. 
Stress 
(cM) 

TP280931 830.221 0.315 
TP251777 830.993 -0.264 
*Xswes19 847.928 0 

 
1 Asterisks indicate SSR markers and markers starting with “TP” are SNPs.



13 

 

96 

 

VITA 

 

 

 

 

 

 

 



96 

 

96 

VITA 

Xiangye Xiao graduated from Northwest A&F University in Yangling, China and 

received her Bachelor of Science in Agriculture in June 2008. She started her Ph.D. in 

wheat genetics and breeding in August 2009 at Purdue University. Her research focus 

was to improve wheat disease performance through utilization of wheat wild relatives. 

While in her Ph.D., she was active in innovative activities. She was one of four people 

team in Purdue Corn and Soybean innovation competition in 2012. Their team proposed 

to use corn starch to produce a special padding insert in football helmet to reduce the 

concussion and ranked second in corn division in the annual competition.  

She presented her research in several national conferences, including Fursarium 

Head Blight Forum and Plant and Animal genome conference. 

 


	Purdue University
	Purdue e-Pubs
	Spring 2015

	Utilization of tall wheatgrass translocation lines to improve fusarium head blight resistance in wheat
	Xiangye Xiao
	Recommended Citation


	after copy2 fix border
	after copy2 fix border.2
	after copy2 fix border.3
	after copy2 fix border.4
	after copy2 fix border.5
	after copy2 fix border.6
	after copy2 fix border.7
	Blank Page

