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ABSTRACT 

Wu, Qiong. Ph.D., Purdue University, December 2014. Integrative High Throughput 

Study of Arsenic Hyper-accumulation in Pteris vittata. Major Professor: Michael 

Gribskov. 

 

Arsenic is a natural contaminant in the soil and ground water, which raises considerable 

concerns in food safety and human health worldwide. The fern Pteris vittata (Chinese 

brake fern) is the first identified arsenic hyperaccumulator[1]. It and its close relatives 

have un-paralleled ability to tolerant arsenic and feature unique arsenic metabolism. The 

focus of the research presented in this thesis is to elucidate the fundamentals of arsenic 

tolerance and hyper-accumulation in Pteris vittata through high throughput technology 

and bioinformatics tools. The transcriptome of the P. vittata gametophyte under arsenate 

stress was determined using RNA-Seq technology and Trinity de novo assembly. 

Functional annotation of the transcriptome was performed in terms of blast search, Gene 

Ontology term assignment, Eukaryotic Orthologous Groups (KOG) classification, and 

pathway analysis. Differentially expressed genes induced by arsenic stress were 

identified, which revealed several key players in arsenic hyper-accumulation. As part of 

the efforts to annotate differentially expressed genes, the literature of plant arsenic 

tolerance was collected and built into a searchable database using the Textpresso text-

mining tool, which greatly facilitates the retrieval of biological facts involving arsenic 

related genes. In addition, an SVM-based named-entity recognition system was 

constructed to identify new references to genes in literature. The results provide excellent 

sequence resources for arsenic tolerance study in P.vittata, and establish a platform for 

integrative study using multiple types of data.  
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CHAPTER 1. INTRODUCTION 

Arsenic is a natural metalloid that is ubiquitously present as an environmental 

contaminant. It is ranked as the 52
nd

 most abundant element in the earth’s crust and 26
th

 

in the ocean [2]. Arsenic is often found to associate with sulfur and metals in the forms of 

MAsS and MAsS2, where M stands for Fe, Ni or Co [3]. Release of arsenic into the 

environment is through both natural phenomena such as weathering and volcanic 

emissions, and anthropogenic activities such as ore mining, smelting operations, and 

burning fossil fuels. Moreover, indiscriminate use of arsenical pesticides, herbicides, food 

additives and wood preservatives until the mid-90s has led to extensive contamination of 

agricultural and industrial land worldwide [4]. 

Arsenic contamination of soil and drinking water affects many regions of the 

world including the US, which raises global concerns about environmental health and 

food safety. Arsenic, especially its inorganic forms, is extremely toxic to most organisms, 

even at very low concentration. As is a Group 1 human carcinogen; human exposure to 

As is mainly through consumption of contaminated drinking water and plant-based food. 

Chronic exposure to As is associated with elevated dose-dependent risk of cancers, 

particularly skin, lung, and bladder cancers [reviewed in [5]]. Other reported long-term
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 effects of arsenic ingestion include skin lesions, neurotoxicity, cardiovascular diseases, 

abnormal glucose metabolism, and diabetes. 

The increasing awareness of the deleterious effects of arsenic exposure on human 

health has led to a lowering of the guidelines for the amount of As in drinking water. The 

U.S. Environmental Protection Agency (EPA) has lowered the maximum As contaminant 

level in drinking water from 50 μg/L to 10 μg/L beginning January 23, 2006, and 

proposed a new standard value of 5 μg/L. The Word Health Organization (WHO) has 

also reviewed As guidelines in drinking water and established a provisional guideline of 

10 μg/L to promote worldwide regulatory enforcement of higher standards for safe 

drinking water [6]. 

 

1.1 Arsenic in plants 

Besides As contamination in drinking water, dietary arsenic intake is another 

major contributor to arsenic exposure to humans. Rice is of particular concern regarding 

the entry of As into food chain due to the massive scale of its consumption and its 

efficient assimilation from the edible portion. Rice is the staple food for billions of people 

worldwide, and the intake of As though rice ingestion can be substantial. The issue was 

first been recognized in regions with geographically-elevated arsenic concentration in 

groundwater such as Bangladesh, West Bengal (India), China, and Thailand [7, 8], where 

As-contaminated groundwater is also widely used for crop irrigation. In Bangladesh, one 

of the worst affected countries, cooked rice accounts for ~56% of the daily arsenic intake 

[9]. World market surveys have also revealed that rice grains contain considerable higher 

levels of inorganic As than other sources of food [10], and the total arsenic content was 
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even higher in samples from the U.S. and France, than those from India [11]. Given the 

significant consequences of arsenic exposure for human health, there is an urgent need to 

study the mechanisms of As assimilation and metabolism in plant, in order to develop 

agricultural and genetic techniques to minimize the uptake and translocation of As to the 

edible parts.  

Moreover, understanding how plants take up and metabolize arsenic has 

important implications for phytoremediation of arsenic contaminated soils. 

Phytoremediation is the use of plants to eliminate or mitigate pollutants from the 

environment, which involves the combination of extraction, filtration, transformation, 

stabilization, and volatilization of the contaminants by plants. Traditional physical and 

chemical technologies for As remediation have not been very successful and cannot be 

applied to large areas [12]. On the other hand, much interest has developed in 

phytoremediation of arsenic since the discovery of the As-hyperaccumulating Chinese 

brake fern (Pteris vittata) [1]. Cropping As-hyperaccumulators [1, 13, 14] provides an in 

situ, large scale, cost-effective and eco-friendly alternative to chemecally detoxifying 

contaminated soils. The phytoremediation potential of hyperaccumulators has been tested 

in hydroponic environments, and the accumulation factor (ratio of arsenic concentrations 

in plant tissues to arsenic concentrations in the hydroponic solution) can be as high as 

138 [15]. 

1.2 Chemistry and toxicity of Arsenic in Plant 

Arsenic (atomic number 33; atomic weight 74.9216) belongs to subgroup Va of 

the periodic table, and its outer electronic configuration is 4s
2
4p

3
. Due to the transitional 

properties between nonmetallic and metallic groups, it is often described as a metalloid. 



4 

 

4
 

The most common oxidation states of As are -3 (arsine), 0 (arsenic), +3 (arsenite) and +5 

(arsenate). Arsenate[As(V)] and arsenite[As(III)] are the predominant species in soil, 

depending on the surrounding redox state [4]. Arsenate dominates in aerobic conditions, 

whereas arsenite is the predominant form in less-aerated environments such as flooded 

rice paddies.  

Arsenate closely resembles phosphate in many aspects and can replace phosphate 

in critical biochemical reactions. For example, pentavalent As(V) interferes with the 

synthesis of ATP by competing with phosphate during oxidative phosphorylation and 

forming unstable and short-lived ADP-As, and thus affects the cell energy cycle [16]. 

Upon absorption, As(V) is rapidly reduced to As(III), which is a more toxic form of 

As[17], by ACR2 arsenate reductases [18, 19]. The toxicity of As(III)  is mainly due to 

its high sulfhydryl reactivity and the generation of oxidative stress. As(III) can bind up to 

three sulfhydryl groups [20], and such cross-linking ability can have profound effects on 

protein folding and potentially inactivate proteins [21, 22]. The Cys-rich binding targets 

of As(III) include transcription factors, signal transduction proteins, proteolytic enzymes, 

metabolic enzymes, redox regulatory enzymes, and structural proteins [reviewed in [22]].  

Oxidative stress is another major factor contributing to plant arsenic toxicity. 

Exposure to inorganic arsenic gives rise to reactive oxygen species (ROS) such as 

superoxide (O2• 
−
), the hydroxyl radical (•OH), and H2O2 [17, 23, 24], which can damage 

proteins, nucleic acids, carbohydrates (e.g., cell wall polysaccharides), and cause 

peroxidation of membrane lipids [25]. The defense strategies for oxidative stress in plants 

involve both enzymatic reactions, such as induced production of catalase, superoxide 

dismutase (SOD), and increased synthesis of non-enzymatic antioxidants including 
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glutathione (GSH), phytochelatin (PC), ascorbate, carotenoids, and anthocyanin 

[reviewed in [26]]. Thiol-containing glutathione is an important cellular antioxidant and a 

precursor of phytochelatin. Its production is an essential process for detoxifying a range 

of metals and metalloids. Arsenite has high affinity for thiols such as glutathione (GSH) 

and phytochelatin (PC). Direct formation of As(III)-GSH or As(III)-PC complexes, and 

As(III)-induced PC synthesis, deplete the GSH pool in the cytoplasm, further reducing 

the amount of GSH available for quenching ROS and thereby indirectly increasing 

oxidative damage to the cell [17].  

 

1.3 Arsenic uptake and transport 

Arsenic can be present as either inorganic or organic species in the environment. Of 

the two inorganic forms, arsenate occurs predominantly as H2AsO4
-
 and HAsO4

2-
 in 

aerobic environments, while arsenite (as H3AsO3
0
 and H2AsO3

-
) is more prevalent in 

anaerobic conditions like submerged soils. Many factors could affect the phyto-

availability of As in soil: oxidation state of arsenic, soil properties such as pH and 

mineral content, the microbial community, the presence of other ions, etc. In terms of 

binding reactivity, arsenate can bind to most soil minerals and easily precipitate from the 

soil, while arsenite binding is selective and dependent on specific chemical conditions. 

For example, arsenate forms strong surface complexes on oxides/hydroxides of Al, Fe 

and Mn; and aluminosilicate may retain appreciable concentrations of arsenate [27]. In 

contrast to arsenate, arsenite exhibits a limited affinity for most soil minerals, with the 

exception of iron (hydr)oxides and magnetite, to which it binds more extensively than 

arsenate due to the formation of inner-sphere moieties [27]. As a result, the amount of 
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phytoavailable arsenic is very limited in aerobic soils because of the strong retention of 

As(V) by soil minerals. However, flooding of paddy soils leads to the reduction of As(V) 

to As(III) and the reductive dissolution of ferric oxyhydroxides, releasing the adsorbed or 

co-precipitated As back to the soil solution [28]. Meanwhile, inorganic arsenic species 

can be converted into organic forms by microbial methylation. Most common organic 

forms include mono-, di- and tri- methylated derivatives of As(V)/As(III). Methylated 

arsenic species may also originate from the remainder of As-containing pesticide or 

herbicides. 

 

1.3.1 Arsenate uptake  

Arsenic mainly exists as arsenate in aerobic soils. As an inorganic phosphate (Pi) 

analog, arsenate is taken up by plant roots via high-affinity phosphate transporters (Pht). 

Physiological and electrophysiological studies support the idea that arsenate shares and 

competes with phosphate for the same transport system: 1) suppression of high-affinity 

phosphate transporters decreases the uptake of arsenate [29, 30]; 2) increasing phosphate 

supply strongly inhibits the uptake of arsenate [8, 31, 32]; and 3) under low Pi conditions, 

arsenate may outcompete Pi for entry into the plant by repressing genes involved in the 

phosphate starvation response while inducing other As(V)-regulated genes [33]. Specific 

genes that could mediate the uptake of arsenate have been identified. For example, the A. 

thaliana mutant pht1;1-1 displays enhanced As-resistance and better growth than 

wildtype [34].  The double mutant pht1;14, which lacks two phosphate transporters 

expressed in roots, showed even stronger resistance to arsenate without much growth 

reduction, indicating that Pht1;1 and Pht1;4 mediate a significant portion of arsenate 
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uptake in Arabidopsis [34]. Different phosphate transporters differ in their affinity for 

arsenate. In a kinetic study of As(V) influx in ferns, given the same arsenate 

concentration in the growth media, the As-hyperaccumulating species Pteris vittata and 

Pteris cretica showed lower Michaelis-Menten kinetic parameters, Km, than the non-

accumulating Nephrolepis exaltata (L.), suggesting higher affinity of the transport protein 

for arsenate in hyper-accumulating ferns [35]. 

 

1.3.2 Arsenite uptake  

Arsenite is the predominant species in anaerobic, reducing environments. Under 

normal soil conditions, arsenite remains mostly as neutral arsenous acid (H3AsO3, with 

pKa=9.2, 12.1 and 13.4). It has been proposed that plants take up As(III) through Nodulin 

26-like Intrinsic Proteins (NIPs), which belong to the aquaporin family of major intrinsic 

proteins (MIPs). Aquaporins are membrane channel proteins that allow the transport of 

water, small neutral molecules (glycerol, urea, boric acid, silicic acid), hydrogen peroxide, 

gases (ammonia, carbon dioxide, nitric oxide) [reviewed in [36]] and metalloids 

[reviewed in [37]]. It is worth mentioning that solute movement via aquaporins can be 

bidirectional, depending on the concentration gradient [37, 38]. Recent studies have 

demonstrated that a number of NIPs are permeable to arsenite [38-40], and the capacity 

of NIPs to transport arsenite is conserved across plant species [16, 38]. Expression of 

several Arabidopsis NIPs improves yeast growth on As-containing medium, probably due 

to increased As(III) efflux. In rice roots, the OsNIP2;1/OsLsi1 silicon transporter, which 

is constitutively expressed at the distal side of exodermal and endodermal cells, acts as 

the major Si and As(III) uptake protein. Rice mutants defective in Lsi1 show drastically 
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reduced short-term As(III) uptake at the root [40] as well as reduced arsenic 

accumulation. Expression of Lsi1 in Xenopus oocytes and yeast increases arsenite 

transport activity by 3-5 folds. However, the long-term impact of Lsi1 deficiency on 

arsenic accumulation, in shoots and grain of field grown rice, is less prominent than Lsi2, 

another important arsenite transporter in rice.  

Lsi2, a previously known silicon effluxer, which is localized at the proximal side 

of the same cells as Lsi1, has been shown to function as an efflux carrier of arsenite from 

the exodermal and endodermal cells into root stele and vascular tissue [40]. Lsi2 is not an 

aquaglyceroporin but is distantly related to ArsB, the bacterial arsenite efflux protein [40]. 

Loss of function of Lsi2 significantly affects As accumulation but not short-term uptake. 

In comparison with wildtype, two independent lsi2 mutants show markedly reduced 

arsenite concentration in xylem sap (73% and 91% lower) and grain (63% and 51% lower) 

[40]. These results indicate that Lsi2 plays a more crucial role than Lsi1 in translocating 

As to the shoots and ultimately to the grain. As a whole, Lsi1 and Lsi2 work together to 

facilitate the uptake of silicon and arsenite from the soil into root cells, and efflux it to the 

stele. 

 

1.3.3 Uptake of methylated As species 

A number of methylated arsenic species are also present in small amounts in the 

soil, and they may originate from either the residue of As-containing 

pesticides/herbicides, or the transformation of inorganic arsenic through microbial 

methylation. For example, methylated pentavalent arsenic species such as 

monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA) are widely used as 
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herbicides for weed control on cotton, orchards, and lawns, or as a defoliant of cotton 

(U.S. Environmental Protection Agency, [41]). Li et al. [42] found that MMA and DMA 

can enter rice roots through the aquaporin channel OsLsi in the protonated, neutral forms, 

although the uptake efficiency is much lower than that of inorganic species [8]. 

Surprisingly, the other important player in the silicon pathway, OsLsi2 is not involved in 

the efflux of DMA or MMA toward the stele [42]. Given that MMA and DMA have 

relatively low pKa (4.2 and 6.1, respectively), they can easily dissociate in alkaline 

conditions. Increasing the external pH would lead to significant dissociation of MMA and 

DMA, and thus a smaller portion of uncharged molecules available for transport through 

aquaporin channels, and less uptake. Li et al. [42] showed that the uptake MMA(V) and 

DMA(V) in rice seedlings increases with decreasing medium pH due to the increasing  

portion of undissociated molecules, which confirms that only neutral methylated As 

species can be taken up by transporters in rice roots. Opposite to the root uptake, upon 

absorption, methylated arsenic has much greater mobility in plant tissues [42, 43], and the 

translocation of As species from roots to shoots was in the order TMA(V) > DMA(V) > 

MMA(V) > As(V) [44]. During grain filling, DMA is transported to the grain through 

both the phloem and the xylem with substantially greater efficiency than arsenite. When 

As species were fed directly to the flag leaves, DMA(V) and MMA(V) were efficiently 

translocated to the grain, whereas arsenate was rapidly reduced within the flag leaves and 

retained as arsenite [45].  

 

1.3.4 Long distance transport 

 The mobility of As from roots to shoots is limited in most plants, except for 
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hyperaccumulators. Wild-type A.thaliana only translocates 2.6% of As taken up by roots 

to the shoots when exposed to arsenate [46]. Raab et al. [43] examined the uptake and 

translocation of As(V), MMA and DMA from roots to shoots in 46 plants species and 

reported that the root-to-shoot transfer factor (TF, the ratio of shoot As dry weight, and 

root As dry weight)  in arsenate-treated plants ranged from 0.01 to 0.9, with a median of 

0.1. Despite the low uptake rate of DMA, it was translocated more efficiently with TF 

ranging from 0.02 to 9.8, with a median of 0.8. 

 In most plant species studied, arsenite is the predominant form of As found in the 

xylem sap, accounting for approximately 60-90% of total As, regardless of the form of 

arsenic that is supplied to plant roots [16]. Although As is also present as arsenate in the 

xylem sap, studies with phosphate transporter mutants of A. thaliana suggest that arsenate 

is not the major form loaded into the xylem. Mutations in AtPho1, a xylem loading 

phosphate transporter, showed no effect on root-to-shoot As distribution in A. thaliana 

[46]. The pho2 mutant accumulates excessive Pi, but not arsenate, in the shoots [46]. It 

appears that As is loaded into the xylem mainly as free arsenite, and no As-thiol 

complexes were detected in the xylem sap [47], which is consistent with the fact that 

roots have a high capacity for arsenate reduction. After the rapid conversion of arsenate 

to arsenite, non-hyperaccumulating plants either sequester As in root vacuoles, or efflux 

As to the environment. In contrast, hyperaccumulating plants have evolved more efficient 

root to shoot translocation mechanisms that may play an important role in their 

hypertolerance. Rice loads arsenite into xylem through the highly expressed Lsi2 silicon 

transporter and shows greater efficiency in the root-to-shoot translocation than other 

cereal crops [48]. In the As hyperaccumulator P. vittata, As is rapidly transported as 
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As(III) into the fronds, where it is sequestered and accumulated as free As(III) in 

vacuoles [49, 50]. The exceedingly efficient As translocation may be crucial to its 

hypertolerance, however, the underlying mechanisms remain to be elucidated. 

 

1.4 Arsenic metabolism 

1.4.1 Arsenate reduction 

Arsenite is the dominant form of As in plant tissues even when arsenate is supplied 

[51-53], indicating that arsenate reduction may be the first step of intracellular arsenic 

metabolism. Arsenate reduction is carried out by specific arsenate reductases. Plant 

arsenate reductases have been identified in A. thaliana [19], Holcus lanatus [18], rice 

[54], and P. vittata [55]. These proteins are homologs to CDC25-like (cell division cycle) 

tyrosine phosphatases, which often exhibit both phosphatase and arsenate reductase 

activities. The exception is PvACR2 from P.vittata, which only has arsenate reductase 

activity [55]. In vitro experiments demonstrated that plant ACR2s can catalyze arsenate 

reduction using GSH and glutaredoxin as reductants [18, 55]. Expression of 

Arath;CDC25(AtACR2) in E.coli mutant lacking ArsC, suppresses the As sensitivity due 

to the lack of an endogenous arsenate reductase [19]. However, As(III) still dominates As 

speciation in Arabidopsis knockdown lines of AtACR2, suggesting there are functional 

redundancy of arsenate reduction, or alternative non-enzymatic reduction mechanisms in 

plants. It has been shown that P. vittata cytosolic triosephosphate isomerase directly or 

indirectly functions as an arsenate reductase [56].  
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1.4.2 Detoxification and sequestration of arsenic 

Given that arsenite has high affinity for the sulfhydryl (-SH) groups, 

complexation of arsenite by thiol compounds such as glutathione (GSH) and 

phytochelatin (PC) is a major detoxification mechanism for cytoplasmic arsenic in non-

hyperaccumulating plants. As-PC complexes have been isolated from arsenate treated 

plant tissues [57, 58], which are dominated by GS-As(III)-PC2 and As(III)-PC3.[59] The 

biosynthesis and short term accumulation of PCs is significantly induced by arsenate 

exposure [57, 58]. Gene and enzymes involved in synthesis, metabolism and transport of 

the PC precursor GSH are up-regulated during arsenate treatment [60]. On the other hand, 

application of a PC synthase inhibitor increases sensitivity to As [61, 62]. The 

Arabidopsis mutant cad1-3, which is impaired in PC synthesis, is 10-20-fold more 

sensitive to arsenate than wild type [63]. This strongly suggests the essential role of PCs 

in As detoxification, particularly in As non-hyperaccumulators. Notably, only a small 

portion (1-3%) of the As in P.vittata was found to be chelated with PCs, indicating that 

PC-based detoxification contributes little to As hyperaccumulation [64]. 

 The As-PC complex is ultimately removed from the cytoplasm by storage within 

vacuoles. ATP-binding cassette (ABC) family proteins are the major players in 

transporting metal complexes across membranes. The vacuolar transporter, Ycf1p in 

yeast, confers arsenite resistance by transporting the As(III)-(GS)3 into the vacuole [65]. 

Yeast HMT1, another member of the ABC family, transports Cd-PC complexes into the 

vacuole [66], and may also transport As(III)-PC complexes. In P. vittata fronds, As is 

stored in the vacuoles mainly as free arsenite [49]. An arsenite-specific transporter 

PvACR3 [67] has recently been isolated from the vacuole membrane, which mediates the 
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efflux of arsenite into vacuoles, and has been proven to be essential to arsenic tolerance 

in P.vittata.  

              

1.4.3 As hyperaccumulation 

Since the first discovery of in P.vittata as an As hyperaccumulator [1], more members of 

the Pteridaceae family, especially within the genus Pteris, were found to 

hyperaccumulate As [reviewed in [68]]. In non-hyperaccumulating plants, As tolerance is 

generally achieved through two mechanisms: 1) reduced As intake by suppression of the 

high-affinity phosphate transporter [69]; and 2) sequestration of arsenite in root vacuoles 

by glutathione and PC conjugation [69]. Hyperaccumulators have adapted different 

strategies to cope with excessive As. P.vittata exhibits both higher As uptake rate at roots, 

and enhanced arsenic translocation to the above-ground portion of the plant. The ratio of 

the As concentration in the xylem sap of P. vittata to that in the nutrient solution was 

about 2 orders of magnitude higher than that in the nonhyperaccumulators [38]. Energy 

dispersive X-ray microanalyses (EDXA) also revealed that 96% of total As was located 

in the pinnae [49], indicating efficient translocation of arsenic from roots to the fronds. 

Enhanced vacuolar sequestration in fronds is another key mechanism of As detoxification 

in hyperaccumulators, which is exemplified by the positive linkage between vacuolar 

transport of As(III) by PvACR3 and the arsenic tolerance ability of P.vittata [67]. 

  

1.5 Objectives of this study 

Understanding the ability of P. vittata to hyperaccumulate arsenic has great 

implications for the design of phytoremediation strategies, and the genetic engineering of 
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safer food crops. Efforts have been made to elucidate the mechanisms of arsenic 

hyperaccumulation in P.vittata at the molecular level, and important genes have been 

characterized. However, due to the lack of a genome sequence or mutant library, most 

genetic studies of P.vittata conducted so far were carried out at the single-gene level. The 

molecular mechanisms underlying arsenic tolerance and hyperaccumulation are still 

poorly understood. The purpose of the studies presented in this thesis is to investigate the 

fundamentals of arsenic tolerance and hyper-accumulation in P. vittata using high 

throughput sequencing and bioinformatics tools. We focus on the identification and 

characterization of As-induced modulation of the P.vittata gametophyte transcriptome. 

Chapter 2 describes the de novo assembly of the gametophyte transcriptome from RNA-

Seq short read data. Chapter 2 also addresses the identification and characterization of 

differentially expressed genes under As treatment. Chapter 3 describes the 

implementation of a text-mining system for arsenic tolerance literature, which could 

facilitate gene function annotation and discovery of linkage between genes. Chapter 4 

proposes a statistical machine learning method that recognizes gene mentions from texts. 

Identification of additional gene names could improve the indexing of literature in 

Textpresso, and thus enhance the ability of fact retrieval. 
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CHAPTER 2.  TRANSCRIPTOME ASSEMBLY AND DIFFERENTIAL 

EXPRESSION ANALYSIS OF PTERIS VITTATA IN RESPONSE TO ARSENIC 

STRESS 

2.1 Introduction 

Arsenic is a natural contaminant in the soil and ground water and is the focus of 

considerable concern in food safety and human health worldwide. Arsenic is extremely 

toxic to most organisms at very low concentrations (parts per billion), and it is classified 

as a group 1 human carcinogen. Human exposure to As occurs mainly through 

consumption of contaminated drinking water and plant-based food. Chronic exposure to 

As has been associated with dose-dependent elevated risk, particularly skin, lung, and 

bladder cancers [reviewed in [5]].  

The fern Pteris vittata (Chinese brake fern) is the first identified arsenic 

hyperaccumulator [1]. It is highly tolerant to normally toxic concentrations of arsenic and 

accumulates arsenic up to 2% or more of its dry weight [55]. Several other fern species in 

the order Pteridales, including Pityrogramma calomelanos [70], Pteris cretica, Pteris 

longifolia and Pteris umbrosa [68], have also been reported to have similar abilities to 

hyperaccumulate As.  

More interestingly, the P.vittata sporophyte appears to have a unique mechanism 

for efficiently translocating arsenic from the root to the fronds where it is stored in 

vacuoles. This distinctive property has raised the possibility of using P. vitatta in
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phytoremediation of As-contaminated areas [71]. Because of its extraordinary tolerance 

to arsenic, P.vittata has been the focus of extensive study of arsenic uptake, metabolism, 

and translocation [55, 72-77].  

Inorganic arsenic occurs predominantly as two species, arsenate[As(V)], and 

arsenite[As(III)], depending on the redox environment [4]. As a phosphate analog, 

arsenate can be taken up via high-affinity phosphate transporters [69], while arsenite is 

taken up by aquaporin transporters [78]. In non-hyperaccumulating plants, As tolerance is 

generally achieved through two mechanisms: 1) suppression of the high-affinity 

phosphate transporter, thereby reducing As uptake [69]; and 2) restricted translocation of 

arsenate by rapid reduction to arsenite, and subsequent conjugation and sequestration of 

arsenite in root vacuoles using thiol-containing compounds such as glutathione and 

phytochelexins (PCs) [69]. On the contrary, P.vittata exhibits both a higher As uptake 

rate, and enhanced arsenic translocation to the above-ground portion of the plant. Energy 

dispersive X-ray microanalyses (EDXA) revealed that 96% of total As was located in the 

pinnae, probably compartmentalized in the vacuoles of the upper and lower epidermal 

cells [49], indicating efficient translocation of arsenic from roots to fronds. Only a small 

portion (1-3%) of the As in P.vittata was found to be chelated with PCs, which suggests 

PCs contribute little to As transport in P.vittata [64].  

Efforts have been made to elucidate the mechanisms of arsenic resistance in 

P.vittata at the molecular level, and important genes have been characterized. The 

arsenate reduction to arsenite in P.vittata is mainly catalyzed by PvACR2 [55]. Unlike its 

homologue in Arabidopsis, PvACR2 exhibits only arsenate reductase activity and lacks 

phosphatase activity, which is probably linked to a change in a critical residue that 
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defines the active site [55]. The P. vittata cytosolic triosephosphate isomerase also has 

shown to either directly or indirectly function as an arsenate reductase [56], indicating 

functional redundancy of arsenate reduction in P. vittata. An arsenite-specific transporter 

PvACR3 [67] has been isolated from the vacuole membrane where it mediates the 

transport of arsenite into the vacuole, and was proven to be essential to arsenic tolerance. 

A glutaredoxin-coding cDNA (Grx) has also been identified in P.vittata fronds, and 

found to be involved in regulating intracellular arsenite levels and thus arsenic resistance 

[79].  

Only a limited number of genes that are linked with arsenic resistance have been 

identified so far. The details of most of the processes underlying arsenic tolerance and 

hyperaccumulation still remain to be elucidated. Genome-scale next-generation 

sequencing technologies such as RNA-Seq, now offer an alternative approach to 

investigating these mechanisms from a global point of view, providing a powerful 

approach to studying the transcriptome and enabling the identification of changes in gene 

expression triggered by arsenic. Here we apply the RNA-Seq technique to characterize 

arsenic-induced changes in the P.vittata gametophyte transcriptome. The gametophyte 

transcriptome was reconstructed de novo, and genes whose expression differs 

significantly between As(V)-present and As(V)-absent conditions were identified. This 

study provides a valuable genome resource to the fern community and sheds light on the 

fundamental basis of arsenic tolerance in P.vittata. 
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2.2 Material and Methods 

2.2.1 Plant material preparation and Illumina sequencing 

The origin of Pteris vittata sporophyte has been previously described [80]. 

Sporophylls from each plant were placed in glassine bags for 2 weeks; spores released 

within each bag were collected and stored at room temperature. Collected spores were 

soaked overnight in sterile double-distilled (dd) H20, surface sterilized in a solution 

containing 50% bleach and 50% Tween for 5 min, and rinsed four times in sterile ddH20. 

Gametophyte culture medium contained 0.5× MS salts (Sigma M5524, St. Louis MO), 

pH 6.5. When required, medium was solidified with 0.65% agar (Sigma A9915) prior to 

autoclaving. Arsenate stock solutions were prepared from monobasic anhydrous 

potassium arsenate (Sigma A6631) dissolved in 18 MΩ water, sterilized by filtration 

through a 0.2 μm cellulose acetate filter, and, where necessary, added to previously 

autoclaved medium. Spores were grown in medium containing petri dishes at 28C in a 

growth chamber. One month later, 6 dishes of gametophytes were covered with liquid 

medium containing ddH2O, and 6 dishes were covered with liquid medium containing 10 

mM KH2AsO4. After 24 hours, gametophytes were harvested and frozen in liquid 

nitrogen. Samples were subsequently stored at -80C. 

In each treatment, gametophytes from two dishes of the same treatment were 

combined into one sample for mRNA extraction and library preparation, resulting in 3 

replicates for each condition. Frozen gametophyte tissue was ground for at least 30 min 

in liquid nitrogen with a mortar and pestle.  RNA extractions were performed using the 

RNeasy Plant Mini Kit (QIAGEN, Hilden, Germany). The TruSeq kit (Illumina, Inc, San 
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Diego CA) was used to prepare cDNA libraries for sequencing. Libraries were sequenced 

in 2 lanes on an Illumina HiSeq2000 platform producing 100 nt paired-end reads. 

 

2.2.2 Reads cleaning and de novo assembly of transcriptome 

A series of cleaning steps were conducted to prepare the reads for transcriptome 

assembly. Raw reads from all samples were checked for alignment to bacterial, viral, 

rRNA, mitochondrial RNA, and chloroplast DNA using DeconSeq 0.4.1 [81]. Suspicious 

contaminant reads with greater than 75% identity and 50% coverage were removed. 

Illumina adapter sequences were removed by a custom perl script, and Trimmomatic 0.22 

[82] was used to trim bases with quality scores of 10 or lower from the 3′-end of each 

read, as well as windows with an average quality < 13 in a window of five bases. Cleaned 

reads with a minimum length of 30 nt after trimming were kept for transcriptome 

reconstruction. De novo assembly of the P.vittata transcriptome was carried out using the 

Trinity package r 2012-06-08 [83] with k-mer size of 25, and a minimum contig length of 

150.  

 

2.2.3 Assessment of the completeness and quality of transcriptome  

The quality and completeness of the P.vittata transcriptome assembly was 

assessed in three ways: comparison with known plant protein references, searching for 

the presence of core eukaryote proteins, and a chimerism test. All assembled transcripts 

were searched against 4 reference protein databases, including Arabidopsis thaliana, 

Oryza sativa, Selaginella moellendorffii, and Physcomitrella patens using blastx [84]. 

Additionally, we searched the assemblies against A. thaliana core proteins in Core 
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Eukaryotic Gene Mapping Approach (CEGMA) dataset [85] using tblastn [84]. The 

CEGMA set contains 458 highly conserved proteins that are found universally in 

eukaryotes, and can be used to evaluate the completeness of a transcriptome. The 

transcriptome assembly was also tested for the presence of chimerism. To identify 

potential incorrect assemblies, we first identify the set of unique Arabidopsis proteins by 

comparing the TAIR10 protein database (TAIR; http://www.arabidopsis.org, TAIR 10 

release) against itself using blastp. Unique proteins are the ones that only match to 

themselves. The assemblies were compared to the set of unique proteins using blastx [84], 

and those that aligned with two or more different unique proteins in disjoint loci were 

considered as potential chimaeric.  

 

2.2.4 Expression estimation and statistical analysis  

Cleaned reads were divided into paired and single reads and separately aligned to 

the assembled transcriptome. Reads were aligned with Bowtie 0.12.8 [86]. The bowtie 

mapper requires a valid alignment to have both of the paired reads matched to the 

transcriptome in correct orientations, within the size range of the insert. Only one 

mismatch was allowed per 25 nucleotides, and reads with more than 50 matches in 

different locations of the transcriptome were discarded. The number of reads 

corresponding to each predicted transcript in each sample was estimated with RSEM 

1.1.23 [87]. RSEM estimates the number of aligned reads at both the ‘isoform-level’ and 

‘gene-level’, where the Trinity component is considered to correspond to a gene and 

individual predicted transcript assemblies are considered to be isoforms. For each isoform 

or gene, counts of aligned reads estimated from paired and single reads were added 

http://www.sciencedirect.com/science?_ob=RedirectURL&_method=externObjLink&_locator=url&_cdi=271116&_issn=03781119&_origin=article&_zone=art_page&_plusSign=%2B&_targetURL=http%253A%252F%252Fwww.arabidopsis.org
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together to get the total number of aligned reads. Only predicted transcripts with more 

than 5 aligned reads in each of three (or more) samples were considered to be reliably 

determined. Predicted transcripts with fewer counts were not included in future analyses. 

We applied and compared the results of three statistical packages in terms of identifying 

genes with differential expression: edgeR [88], DESeq [89] and EBSeq [90]. P-values 

computed by edgeR [88] and DESeq [89] were corrected for multiple comparisons by the 

Benjamini and Hochberg method [91] to control the overall false discovery rate (FDR). 

The EBSeq model takes multiple comparisons into account, thus the output posterior 

probability of being differential expression is equivalent to (1-FDR) and can be directly 

used for screening. 

GO term enrichment tests were performed by topGO [92] Bioconductor package 

(http://www.bioconductor.org/packages/release/bioc/html/topGO.html). GO terms with 

p-value less than 0.05 in the one-sided Fisher exact test were deemed overrepresented in 

the differentially expressed genes.  

 

2.2.5 Quantitative real-time PCR analysis  

10 genes were selected to validate the results from differential expression analysis. 

Total RNA was reverse transcribed into single-stranded cDNA using the Tetro cDNA 

Synthesis Kit (Bioline, MA). Real-time RT–PCR was performed in the StepOne Plus 

Real-Time PCR System (Applied Biosystems, NY) using Quickstart with default 

parameters. Approximately 3ng cDNA was used as template in 20 µl reactions with 

SYBR green PCR Mater Mix (Applied Biosystems, NY). At least two biological 

replicates for each template were performed. PCR conditions were: 20 minutes of pre-
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denaturation at 95°C, 40 cycles of 3 seconds at 95°C and 30 seconds at 60°C followed by 

generation of melt curves (15 seconds at 95°C, 60 seconds at 60°C, and 15 seconds at 

95°C). Relative expression was determined with the 2
−ΔΔT

 method [93] by normalizing to 

the amount of Actin (GenBank accession number KC46369.7), which was constitutively 

expressed regardless addition of arsenate. Reactions without template added served as 

negative controls. The Ct method was used in calculating relative fold changes. Melt 

curves were generated and evaluated to ensure the absence of multiple peaks. The 

primers used for real-time RT–PCR are listed in Table 2.1. 

 

2.2.6 Functional annotation and classification of the P.vittata transcriptome  

The transcript assemblies were compared with sequences in the NCBI non-

redundant protein database (http://www.ncbi.nlm.nih.gov), Swiss-Prot protein database 

(http://www.expasy.ch/sprot), the Arabidopsis protein database (TAIR; 

http://www.arabidopsis.org, TAIR 10 release), and all plants sequences in the Kyoto 

Encyclopedia of Genes and Genomes (KEGG) database using blastx [84] with a cutoff E-

value of 10
-5

. Likely coding regions were extracted from transcripts using utilities 

included in the Trinity package [83], out of which the best candidate open reading frames 

were translated into protein sequences. We then ran HMMER [94], signalP [95], and 

TMHMM 2.0 (http://www.cbs.dtu.dk/services/TMHMM/), which are included in the 

Trinotate package (http://trinotate.sourceforge.net/),  on the translated protein sequences 

to identify protein domains, potential signal peptides, and likely transmembrane regions 

respectively. Gene ontology (GO) terms were assigned to each transcripts based on the 

blastx comparisons to the Swiss-Prot database using b2g4pipe (v2.5.0), a command line 

http://www.sciencedirect.com/science?_ob=RedirectURL&_method=externObjLink&_locator=url&_cdi=271116&_issn=03781119&_origin=article&_zone=art_page&_plusSign=%2B&_targetURL=http%253A%252F%252Fwww.ncbi.nlm.nih.gov
http://www.expasy.ch/sprot
http://www.sciencedirect.com/science?_ob=RedirectURL&_method=externObjLink&_locator=url&_cdi=271116&_issn=03781119&_origin=article&_zone=art_page&_plusSign=%2B&_targetURL=http%253A%252F%252Fwww.arabidopsis.org
http://www.cbs.dtu.dk/services/TMHMM/


23 

 

2
3
 

version of the Blast2GO suite (https://www.blast2go.com/blast2gocli). The top 20 Blast 

hits, with a cutoff E-value of 1e-6 and similarity cut-off of 55% were used for GO 

annotation, and the annotations were further processed in the ANNEX step [96], where 

extra annotations can be retrieved by exploring the relationships between GO terms of 

different categories. Generic GO terms assigned to each transcripts were then mapped 

onto the plant specific GOSlim set (http://geneontology.org/page/go-slim-and-subset-

guide) by GOSlimViewer in AgBase [97] and by custom Perl scripts. 

 

2.2.7 KOG analysis  

Open reading frames (ORFs) for each predicted transcript were extracted by the 

getorf function in the EMBOSS suite [98]. Only ORFs longer than 90 nucleotides were 

extracted as translated protein sequences. KOG annotations were obtained by submitting 

the longest ORF protein sequence for each predicted transcript to the WebMGA server 

[99] (http://weizhong-lab.ucsd.edu/metagenomic-analysis/server/kog/) with blastp E-

value cutoff of 10
-5

 . The outputs were downloaded and analyzed by in-house developed 

Perl script. 

 

2.3 Results 

2.3.1 De novo assembly and quality assessment 

6 samples were sequenced in 2 lanes of an Illumina HiSeq 2000 flowcell. We 

obtained approximately 373 million 100-bp paired-end reads. The raw reads were subject 

to a series of cleaning steps including removing sequence contamination by DeconSeq 

[81], removing adapter sequences, and removing low-quality bases from read ends using 
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Trimmomatic [82]. After read cleaning, the remaining 287 million reads were de novo 

assembled with the Trinity package [83]. The assembled transcriptome contained 344,048 

predicted transcript assemblies in 190,495 component groups, with lengths ranging from 

151 to 17,840 bases, and an N50 of 2,125 bases. A summary of the assembly statistics is 

given in Table 2.2. 342,544 transcript assemblies have at least one open reading frame 

(ORF) longer than 90 bases, of which 129,150 (37.7%) have ORFs larger than 300 bases. 

The length distributions of transcript and the longest ORFs are shown in Figure 2.1. 

The quality of the assembled transcriptome was first evaluated by comparing to 

the predicted transcripts to four plant proteomes: Arabidopsis thaliana, Oryza sativa, 

Selaginella moellendorffii, and Physcomitrella patens using blastx.  At a significance 

level of E<10
-5

, 109,099 (31.71%) predicted transcripts have matches in at least one of 

the references, and 80,352 (23.35%) have matches in all 4 references (Fig. 2.2.). 82.5% of 

the S. moellendorffii proteins have matches in the assembly, followed by 79.7% of A. 

thaliana, 66.2% of O. sativa and 61.1% of P. patens. We further applied the CEGMA [85] 

pipeline to assess the completeness and contiguity of the assembly. CEGMA searches the 

transcriptome assembly for the presence of a collection of highly conserved single-copy 

genes and also computes the coverage of each conserved gene. 91.05% of the core 

eukaryotic genes (http://korflab.ucdavis.edu/Datasets/cegma/) from Arabidopsis thaliana 

were mapped to the predicted transcripts with coverage > 70% of the full protein 

sequences at E-value of 10
-50

, and at E-value <10
-5

, all core genes were mapped. With the 

default setting, CEGMA analysis revealed that 99.6% of the core genes were complete 

and 100% were partially present in the assembly. These results together suggest that the 

http://korflab.ucdavis.edu/Datasets/cegma/
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Trinity transcriptome assembly contains the transcripts of most known protein-coding 

genes, and has a good coverage to the full length of coding region. 

In order to detect potentially chimeric assemblies, a set of 8401 unique 

Arabidopsis proteins were identified by comparing the TAIR10 protein dataset 

(http://www.arabidopsis.org, TAIR 10 release) to itself using blastp. The assemblies were 

mapped to the identified unique Arabidopsis proteins using blastx with an Evalue cutoff 

of 10
-5

. Only 3347 (0.973%) predicted transcripts aligned to two or more different unique 

proteins in non-overlapping loci, and thus were considered as potential chimaeric. This 

low degree of chimerism was considered to be negligible.  

 

2.3.2 Transcriptome profiling and annotation 

The predicted transcripts in the Trinity assembly were annotated by comparing 

the sequences to the NCBI non-redundant protein database (nr), Swiss-Prot protein 

database, and TAIR 10 protein database. 124,045 (36.05%) of the 344,048 predicted 

transcripts have at least one hit in the nr database, 101,380 (29.47%) showed matches in 

Swiss-Prot, and 91,469 (26.59%) have significant similarity to at least one sequence in 

the TAIR10 proteome at E<10
-5

. A total of 126,329 predicted transcripts presented at 

least one significant match in the databases mentioned above. Given that Trinity reports 

multiple predicted isoforms per gene, this number seems reasonable. 

To classify the functions of the predicted transcripts, generic gene ontology (GO) 

terms were assigned to each sequence by the b2g4pipe (v.2.5.0) program, which is a 

command line version of the blast2go suite [100]. 87,238 (25.36%) out of 344,048 

predicted transcripts yielded significant gene ontology (GO) annotation based on blastx 

http://www.sciencedirect.com/science?_ob=RedirectURL&_method=externObjLink&_locator=url&_cdi=271116&_issn=03781119&_origin=article&_zone=art_page&_plusSign=%2B&_targetURL=http%253A%252F%252Fwww.arabidopsis.org
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comparison to Swiss-Prot sequences with an Evalue cutoff of 10
-6

. There were a total of 

11,039 gene ontology terms associated with the assembled transcriptome. Of these, 6547 

(59.31%) assignments were denoted as biological process, followed by molecular 

function (3185, 28.85%) and cellular components (1307, 11.84%). These assemblies 

were further categorized into groups by mapping them to the plant specific GO slim set 

(http://geneontology.org/ontology/subsets/goslim_plant.obo). GO slims are reduced set of 

higher-level GO ontologies, which provide a broad overview of the functional 

distribution of the assigned GO terms. The Trinity transcriptome assembly covers 99 of 

the 100 plant GO slim terms (Fig. 2.3).  

An additional functional annotation of the assembly was performed by searching 

for putative orthologs and paralogs in the KOG database [101]. A total of 63,254 

(18.38%) predicted transcripts were assigned to 26 eukaryotic orthologous groups (Fig. 

2.4). The category of signal transduction mechanisms is the most abundant in the 

annotated transcripts, accounting for 14.63% of the annotated transcripts, followed by 

general function prediction (13.56%) and posttranslational protein modification (9.36%). 

 

2.3.3 Analysis of differentially expressed genes 

Trinity [83] reconstructs the transcripts by starting with a greedy extension from 

the most abundant k-mers to join overlapping kmers into components and a de Bruijn 

graph is built for each component. Reads are then assigned to their best matching 

component. The component graphs are trimmed and corrected according to the read-

mapping information, and may be broken into several disconnected subcomponents. 

After graph cleanup, sequences of possible isoforms/contigs are extracted from each 
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component or subcomponent. All possible isoforms that can be constructed using all 

possible alternative splice site are reported by Trinity. Here we treated Trinity 

components as genes, and contigs within the same component as alternative isoforms. 

Counts for each gene were derived from summing over counts of all transcript assemblies 

from the same trinity component. These counts serve as the raw input to statistical 

packages used for detecting differentially expressed genes (DEGs). Differentially 

expressed genes were defined as those with an adjusted P-value (FDR equivalent) less 

than 0.2, and at least 2-fold change in average expression level between treatment 

conditions. Three statistical methods were used to identify DEGs, namely DESeq [89], 

EdgeR [88] and EBSeq [102]. DESeq is the most conservative one, and identified 10 

DEGs, all of which were found by the other two methods. EBSeq identified 15 DEGs. 

EdgeR identified 163 DEGs, which include all that were found by DESeq and EBSeq. At 

FDR of 0.2, the three packages together identified 163 differentially expressed Trinity 

components having absolute fold-change greater than 2. Among these identified DEGs, 

57 were up-regulated and 106 were down-regulated by arsenic treatment. The difference 

in the numbers of detected DEGs likely arises from different model assumptions, FDR 

controls, and sensitivities to outliers in the tested approaches [103]. At E<10
-5

, out of the 

163 DEGs, 331 (50.77%) predicted transcripts from 57 (35.18%) genes have at least one 

match in the Swiss-Prot database. 9 predicted transcripts from 3 additional genes mapped 

to Arabidopsis protreins in TAIR10. A total of 60 (36.36%) genes were mapped to 

proteins in Swiss-Prot or TAIR 10 by blastx with E<10
-5

. The list of differentially 

expressed genes and their annotations is given in Table 2.4.  



28 

 

2
8
 

To further validate the list of statistically identified DEGs, we collected 69 

Arabidopsis protein sequences and 24 rice protein sequences whose expression has been 

experimentally determined to react to arsenic stress [104]. Those arsenic-responsive 

proteins were compared to the DEGs using tblastn, and were found to match 11 DEGs. 

The function and fold change of those genes in both RNA-Seq and assay experiment are 

summarized in Table 2.5. 

 

2.3.4 Validation of expression of selected predicted transcript assembly using qRT-

PCR 

We selected 10 genes with a wide range of fold change between two conditions for 

validation by qRT-PCR. According to the differential gene expression analysis, 4 of the 

selected genes were significantly upregulated in arsenate-treated samples, while the other 

6 were considered constitutively expressed in both conditions. As shown in Table 2.6 

trends of expression observed in qRT-PCR data were consistent with those inferred from 

the RNA-Seq expression data for all ten genes. 

 

2.3.5 Arsenic-responsive genes 

Arsenate stress significantly affects the expression of genes involved in stress 

response, ion transport, and signaling pathways. Annotations and fold changes of the 

differentially expressed genes are given in Table 2.4. Glyceraldehyde-3-phosphate 

dehydrogenase C subunit 1 (GAPC-1) and PHI type glutathione S-transferase (GST) 

were the most upregulated genes in As-treated gametophytes, and their expression 

increased by 374 and 234 fold, respectively. Genes of 4 transporters were markedly 
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upregulated by arsenate, including one putative carnitine transporter 4, two ACR3-like 

arsenite transporters, and a probable heavy metal transporter, while a phosphate 

transporter gene exhibited lower expression under arsenate exposure. ACR3 is a vacuolar 

arsenite transporter that plays a key role in arsenic tolerance of P.vittata [75]. It has been 

reported that the expression of ACR3 increases by approximately 9 fold in arsenite-

treated gametophytes [75]. Here RNA-Seq data showed a similar increase of 5.61-fold in 

ACR3 level. A sizable portion of the remaining transcripts are related to signaling and 

stress response. Arsenate induced the expression of genes encoding homolog of an 

A20/AN1-like zinc finger family protein, UDP-glucosyl transferases (UGTs), 

phytosylfokine-alpha receptor 2 and cytochrome P450s, while suppressing expression of 

homolog of genes of glyoxal oxidase-related protein, peroxidase and heat shock protein 

70 (HSP70).  Despite the central role of arsenate reduction and PC-chelation in arsenic 

detoxification and tolerance, phytochelatin synthase (PCS) and arsenic reductase (AR) 

levels were not altered significantly.  

A group of genes that are involved in signal mediation have significantly altered 

expression during arsenate stress. A potential ethylene-responsive transcription factor 

rap2-4 was upregulated, two putative histidine kinases, a putative ring-h2 finger protein, 

and a putative phytosylfokine-alpha receptor 2 coding transcript were upregulated. On the 

contrary, the expression of homolog of transcription factor myb46, a burp domain-

containing protein, and an NAC domain-containing protein were significantly down-

regulated. 

To further characterize the function of the DEGs, a GO term enrichment analysis 

was performed against the entire transcriptome. 583 and 11260 GO terms were originally 
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associated with the DEGs and the transcriptome by the Blast2GO suite [100], 

respectively, which were mapped to 100 plant specific GO slim terms, and then tested for 

over-representation using one-sided Fisher’s exact test as implemented in topGO [105]. 

The GO terms with adjusted P<= 0.01 were considered significantly enriched in the 

DEGs. The analysis revealed major categories of biological processes, molecular 

functions and cellular components that differ in DEGs from the remaining genes. 

Biological processes such as response to biotic stimulus, response to external stimulus 

and cell-cell signaling are overrepresented in DEGs. Transporter activity is then only 

significantly enriched molecular function in the DEGs. For the cellular components, 

significantly enriched GO terms include plasma membrane and membrane.   

 

2.4 Discussion 

The present work seeks to identify arsenic-induced changes in the transcriptome 

of the P.vittata gametophyte at an early stage of arsenic exposure. Substantial progress 

was made in recent years in understanding As uptake, translocation, toxicity and 

tolerance in plants. So far, we have learned that As-hyperaccumulating plants take up the 

metalloid more quickly than non-accumulators, and efficiently translocate As to the 

above-ground tissues where it is sequestered in the vacuole as free arsenite. Besides the 

rapid uptake and translocation, As-hyperaccumulators also possess a greater antioxidant 

capacity to maintain lower ROS levels. It is conceivable that the ability to 

hyperaccumulate As requires synergistic contribution from numerous physiological 

processes. Thus, the recent development of global transcript analysis technologies such as 
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RNA-Seq adds new dimensions to our understanding of the molecular details 

underpinning arsenic tolerance.  

 

2.4.1 Stress responsive genes 

Arsenic can induce severe oxidative stress in plant cells. Exposure to inorganic 

arsenic generates reactive oxygen species (ROS) such as superoxide (O2• 
−
), the hydroxyl 

radical (•OH), and H2O2 [17, 23, 24], which can lead to DNA and protein damage, lipid 

peroxidation, and depleted antioxidant defense levels [25]. Previous studies have shown 

that a number of enzymes involved in the antioxidant responses are induced by arsenic 

exposure [23, 106]. A significant portion of the arsenic-responsive genes identified in the 

present study are involved in combating oxidative stress and the restoration of redox 

hemostasis, such as one PHI type glutathione S-transferase (GST), two forms of UDP-

glucosyl transferases (UGT), and two cytochrome P450s.  

GST is ubiquitously present in prokaryotes and eukaryotes, and has an established 

role in response both biotic and abiotic stress in plants, including heavy metal exposure 

[107]. It catalyzes the conjugation of electrophilic toxins with the reduced-form γ-Glu-

Cys-Gly tripeptide glutathione (GSH) to form non-toxic peptide derivatives. Apart from 

the their function in GSH-dependent conjugation, plant GSTs can also act as glutathione 

peroxidases to directly detoxify toxic electrophiles. Studies have confirmed that higher 

GST activity contributes to better tolerance of herbicides in maize [108] and soybean 

[109]. Comparison of the arsenic hyperaccumulator P.vittata with the non-arsenic 

hyperaccumulator P.ensiformis revealed that P.vittata has an inherently greater 
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antioxidant potential in terms of higher concentrations of ascorbate (AsA) and 

glutathione (GSH), with or without arsenic exposure [24]. We observed a 234 fold 

increase in GST expression upon arsenic exposure, indicating that enhanced GST 

expression and activity maybe essential to maintain the antioxidant level, and to 

minimize the detrimental effects of ROS in P.vittata.   

UDP-glycosyltransferases (UGTs) catalyzes the glycosylation of several classes 

of small molecules to generate secondary metabolites in plants, and have a vital role in 

the regulation of cellular homeostasis. We found that two homologs of UGTs increased 

their expression level by 5.8 and 4.6 fold, respectively, in arsenate-treated P.vittata 

gametophytes. It has been reported that several Arabidopsis UGTs are highly inducible 

under oxidative stress, pathogen invasion, and UV radiation [110-112]. P.vittata is likely 

to utilize UGTs as mediators to initiate the cascade of abiotic stress response. 

Upregulated transcripts that are related to stress response also include those 

encoding homologs of cytochrome P450 (CYP), A20/AN1 zinc-finger containing protein, 

DNA glycosylase, and pectin methylesterase (PME). CYPs have a well-established role 

in the oxidation and detoxification of herbicides in plants (reviewed in [113]). Previous 

studies have demonstrated that multiple forms of CYPs were up-regulated by As(V) and 

As(III) exposure in rice [23, 60]. Two forms of CYP homologs were found to be 

differentially expressed in this work, and their expression increased by 2.75 and 3.85 fold, 

respectively. The P.vittata homolog of A20/AN1 zinc-finger containing protein gene 

OsiSAP1 is inducible by various abiotic stresses like cold, salt, drought, and heavy metals, 

and the overexpression of OsiSAP1 enhances stress tolerance in transgenic plants [114]. 

Similarly, PMEs are differentially regulated by multiple environmental stresses to modify 
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the degree of methylesterification of pectins in plant cell wall and thus regulate stress 

response.  

 

2.4.2 GAPDH in carbon metabolism and as a potential arsenate reductase 

One of the most noticeable changes in gene expression is the upregulation of the 

transcript encoding a homolog glyceraldehyde-3-phosphate dehydrogenase C subunit 1 

(GAPC1), whose expression drastically increased by 374 fold under arsenate treatment. 

GAPDH catalyzes the conversion of glyceraldehyde-3-phosphate and Pi to 1,3-

bisphosphoglycerate, where As(V) can replace the substrate Pi and lead to the formation 

of unstable and short-lived 1-arseno-3-phosphoglycerate. The 3-arseno-phosphoglycerate 

product rapidly decomposes and thus uncouples ATP synthesis from glycolysis, resulting 

in reduced energy output. A resent proteomics study of P.vittata fronds revealed that 

enhanced expression of multiple forms of GAPDH and several other proteins of carbon 

metabolism under arsenate exposure. Ahsan et al. (2010) [115] also reported increased 

activity of proteins associated with energy metabolism, such as NADP-dependent malic 

enzyme, NAD-dependent formate dehydrogenase in the leaves of arsenate-treated rice. 

Those findings together suggest that coping with As stress requires extra energy input, 

and the upregulation of GAPDH may be a compensatory mechanism to fulfill the 

increased energy needed for metabolizing arsenic when the ATP yield from glycolysis is 

jeopardized. 

Furthermore, mammalian GAPDHs are able to convert arsenate to arsenite in 

vitro in the presence of GSH, NAD and glyceraldehyde-3-phosphate [116]. Reduction of 
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arsenate to arsenite is the initial step in arsenate detoxification, and occurs rapidly in 

plants. Arsenic-induced differential expression of arsenate reductase PvACR2 was not 

observed in this study, which is consistent with previous finding that PvACR2 is 

constitutively expressed in the gametophyte, regardless of arsenate exposure [55]. It has 

been proposed that a functional redundancy of arsenate reduction exists in plants. For 

example, expression of a cytosolic triosephosphate isomerase (TPI) isolated from 

P.vittata conferred arsenate resistance to the E.coli strain lacking arsenate reductase ArsC. 

TPI is also involved in glycolysis. It appears that arsenate reduction is coupled with 

glycolysis. Besides its key role in role in glycolysis, GADPH may be directly or 

indirectly involved in arsenate reduction. It is worth investigating whether the P.vittata 

GAPDH is able to reduce arsenate in the presence of an appropriate electron donor. 

2.4.3 Transporter activities 

Asenic hyperaccumulators and non-accumulators differ distinctively in the 

distribution of As within the plant. While non-accumulators tend to retain most As in the 

root, hyperaccumulators efficiently translocate As to the aerial portion and accumulate 

extremely high concentration of As in the vacuoles. Rapid root-to-shoot translocation and 

vacuole compartmentalization are both crucial to arsenic-hyperaccumulation in P.vittata, 

but little is known about the mechanisms responsible for the transport of arsenic into 

vacuole. ACR3 is the first identified arsenite transporter located on the vacuolar 

membrane and plays a key role in P.vittata As-hypertolerance. Its expression was 

reported to increase by approximately 9 fold in arsenate-grown P.vittata gametophytes 

[75]. We observed a similar result of 5.61-fold up-regulation. There are two copies of this 
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arsenite transporter gene in P.vittata: ACR3 and ACR3;1. Pv ACR3 and ACR3;1 proteins 

are 84% identical at the amino acid level, and share highly conserved transmembrane 

domains, but only the ACR3 gene was inducible by arsenate exposure [75]. However, we 

observed a 14.48 increase of ACR3;1 expression in the present study. In addition, a 

putative organic cation transporter (OCT) and a copper transporter were also upregulated 

by 49.49 and 2.59 fold respectively in arsenate treatment. Previously, members of 

Arabidopsis OCT family have been shown to be localized to vacuolar membrane, and to 

play a role in adaptation to salt, drought, and cold stress [117]. The copper transport 

protein has a conserved cys-containing heavy-metal-associated (HMA) domain. The two 

cysteine residues of HMA domain are critical for the binding and transfer of metal ions 

like As, copper, cadmium, cobalt and zinc. Given that arsenic has strong affinity to 

sulfhydryl groups and can bind to reduced cysteines in proteins, the newly identified 

copper transporter homolog could have an important role in mediating the translocation 

of arsenic into vacuole. 

  

2.4.4 Signaling pathways 

ROS generated by arsenic exposure may trigger the production of messenger 

molecules such as jasmonic acid (JA), S-adenosyl-l-methionine (SAM), and cytokine, 

which act to activate or inactivate downstream response cascades. A Trinity gene similar 

to Arabidopsis histidine kinase 4 (AHK4) was upregulated by 2.05 fold by As treatment. 

The Arabidopsis histidine kinase 4 is a cytokinin-binding receptor that transduces 

cytokinin signals across the membrane [118]. It was demonstrated that AHK4 mediated 

cytokinin signaling negatively regulates Pi starvation responses in Arabidopsis by 
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repressing response genes such as phosphate transporter PHT1;1 [119], and Arabidopsis 

mutant defective in PHT1;1 displays enhanced arsenic accumulation [33]. Given that 

As(V) is a close analog of Pi, AHK4 mediated repression of Pi starvation responsive 

genes may promote the uptake of As(V).  

A phytosylfokine-alpha receptor 2 (PSKR2) homolog encoding transcript, which 

is involved in tyrosine-sulfated peptide signaling, was found to be up-regulated by 4.40 

fold. PSK-alpha acts as a growth factor that regulates root elongation in plants [120]. 

PSKR2 has recently been implicated a role in microbial resistance in Arabidopsis, and 

plants lacking PSKR2 function showed higher susceptibility to fungus and bacterial 

infection [121, 122]. We also observed a 4.65 fold decrease in the expression of a 

homolog of burp domain-containing protein 16 (BURP 16). The BURP domain has a 

highly conserved structure with a hydrophobic signal peptide at the N-terminus. Many 

BURP domain-containing proteins have been reported to be up or down regulated by 

biotic and abiotic stresses, including ABA [123], auxin [124], salt and cold [125], etc. 

However, it’s not clear that whether the PSKR2 and BURP16 homologs respond 

specifically to arsenic exposure or they are involved in the signaling process of generic 

stress response. 

 

2.5 Conclusions 

This study demonstrates that the transcriptome of P.vittata can be assembled from 

the RNA-Seq short reads without a reference genome, which provides both a high-quality 

sequence resource and an alternative approach to identify arsenic-responsive genes 

through transcriptome profiling. Our work also provides a guideline for evaluating the 
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quality of a de novo assembly by leveraging genomic resources from model plant species. 

Differentially expressed genes have been carefully annotated, and new players in arsenic 

tolerance have been identified from the gene differential expression analysis. The 

drastically enhanced expression of GAPDH and its ability to reduce arsenate in the 

presence of electron donors suggest that it could act as an alternative arsenate reductase. 

We also identified a putative cation transporter and a putative copper transporter as 

potential arsenic transporter that could facilitate the influx of arsenic into vacuoles. These 

findings provide insights on arsenic metabolism and tolerance and help to generate 

testable hypotheses for future study.  
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Table 2.1 Primers used in the study. 

Gene Forward Sequence Reverse Sequence 

Actin 5’-GGGTTTACATTCAGCGAAGC-3’ 5'-GCTTTCCCTCCAGTGGACTT-3' 

comp74286 5’-ATGAAAAGCTTTCGCTTCAC-3’ 5’-GGCGAGCATAACTTGATTGC-3’ 

comp91117 5’-TGTTGCGGACGAGACAATAG-3’ 5’-GGCTATGAGCAACAGCAGTA-3’ 

comp100020 5’-AGCCAGTCCATTGGCTTGGT-3’ 5’-CCAGCCTCAGAGGTTTAGCT-3’ 

comp110556 5’-ATGGAACCTTTTTGCCTGTT-3’ 5’-TGTGCATGGATGCATTTCTT-3’ 

comp85481 5’-AGCAATGGTGGAAGTAGAGTC-3’ 5’-GCTTAACCACACCCTCTTCAG-3’ 

comp98614 5’-AGCAGTGGCTAGAAGTGGAATC-3’ 5-AACCACATCTGCATCAGGAG-’3’ 

comp99511 5’-ATGGCCTCTCCATCATCAAC-3’ 5’-CACATGCGACTTCTCCAAAC-3’ 

comp103624 5’-GCTGCACTTGCCATACTCAA-3’ 5’-GCTCTATGGCATGGTCCAAT-3’ 

comp96855 5’-GCACCATCGACTGTCTTTTG-3’ 5’-TTGGCTCCACTTGCTAAGGT-3’ 

comp97777 5’-AGTACCACCAGCTGCAATGA-3’ 5’-TCCAAGCTTTGCAACACATC-3’ 
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Table 2.2 Statistics of the de novo transcriptome assembly. 

    

Total Bases 27,824,880,283 

Total Reads 287,177,776 

Total Predicted Transcripts 

Assembled 344,048 

Total Genes Components 

Assembled 190,495 

N50 (bases) 2,125 

Min Length (bases) 151 

Max Length (bases) 17,840 

Average Length (bases) 916  

Average GC% 47.27 
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Table 2.3 Distribution of KOG annotations of all predicted transcripts. 

Description Count Percentage  

Signal transduction mechanisms  9,254 14.63% 

General function prediction only  8,578 13.56% 

Posttranslational modification, protein turnover, chaperones  5,923 9.36% 

RNA processing and modification  4,330 6.85% 

Function unknown  4,217 6.67% 

Carbohydrate transport and metabolism  3,887 6.15% 

Transcription  3,818 6.04% 

Intracellular trafficking, secretion, and vesicular transport  3,724 5.89% 

Replication, recombination and repair  3,539 5.59% 

Cytoskeleton  3,399 5.37% 

Amino acid transport and metabolism  3,066 4.85% 

Translation, ribosomal structure and biogenesis  2,927 4.63% 

Lipid transport and metabolism  2,772 4.38% 

Secondary metabolites biosynthesis, transport and 

catabolism  2,450 3.87% 

Inorganic ion transport and metabolism  2,348 3.71% 

Energy production and conversion  2,209 3.49% 

Cell cycle control, cell division, chromosome partitioning  2,058 3.25% 

Chromatin structure and dynamics  1,236 1.95% 

Cell wall/membrane/envelope biogenesis  1,055 1.67% 

Coenzyme transport and metabolism  1,043 1.65% 

Nucleotide transport and metabolism  906 1.43% 

Defense mechanisms  464 0.73% 

Extracellular structures  316 0.50% 

Nuclear structure  289 0.46% 

Cell motility  39 0.06% 

multiple functions 26 0.04% 
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Table 2.4 List of differentially expressed predicted genes. 

  
Best Match in 

Arabidopsis 

Best E-

value 
Function Annotation 

FDR 
FC 

comp96855 AT3G04120.1 9.00E-178 
glyceraldehyde-3-phosphate 

dehydrogenase C subunit 1 1.14E-21 374.08 

comp98614 AT2G30870.1 1.00E-63 
glutathione S-transferase PHI 

10 5.26E-74 234.41 

comp103624 AT3G20660.1 1.00E-118 
organic cation/carnitine 

transporter4 4.27E-38 49.49 

comp108897 AT4G23160.1 9.00E-44 

cysteine-rich RLK 

(RECEPTOR-like protein 

kinase) 8 1.52E-41 14.48 

comp89355 AT4G12040.2 1.00E-25 
A20/AN1-like zinc finger 

family protein 1.46E-01 7.69 

comp98470 AT5G11280.1 8.00E-31 unknown protein 3.92E-05 5.90 

comp99546 AT1G22380.1 5.00E-78 
UDP-glucosyl transferase 

85A3 3.79E-14 5.80 

comp99730 AT1G80760.1 4.00E-66 
NOD26-like intrinsic protein 

6;1 7.15E-19 5.56 

comp91673 AT5G13250.1 2.00E-07 RING finger protein 3.79E-02 5.16 

comp69192 AT1G22370.2 1.00E-21 
UDP-glucosyl transferase 

85A5 2.49E-03 4.60 

comp64296 AT5G53890.1 5.00E-51 
phytosylfokine-alpha 

receptor 2 9.33E-02 4.40 

comp62480 AT2G45570.1 2.00E-65 
cytochrome P450, family 76, 

subfamily C, polypeptide 2 1.83E-01 3.86 

comp108099 AT1G10800.1 5.00E-11 unknown protein 1.86E-10 3.71 

comp105360 AT5G08250.1 2.00E-68 
Cytochrome P450 

superfamily protein 3.12E-04 2.75 

comp98848 AT5G19090.3 4.00E-19 

Heavy metal 

transport/detoxification 

superfamily protein  1.04E-03 2.59 

comp99639 AT3G19540.1 2.00E-121 
Protein of unknown function 

(DUF620) 8.54E-04 2.44 

comp105484 AT1G78080.1 5.00E-30 related to AP2 4 9.62E-03 2.41 

comp106272 AT1G76490.1 0 
hydroxy methylglutaryl CoA 

reductase 1 2.90E-04 2.34 

comp103740 AT5G57970.2 7.00E-74 
DNA glycosylase 

superfamily protein 4.62E-02 2.31 

comp104914 AT5G19730.1 4.00E-113 
Pectin lyase-like superfamily 

protein 2.06E-02 2.30 

comp110556 AT2G19920.1 7.00E-124 
RNA-dependent RNA 

polymerase family protein 3.40E-03 2.29 

comp95798 AT1G55210.2 6.00E-15 

Disease resistance-responsive 

(dirigent-like protein) family 

protein 1.20E-03 2.27 
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comp93130 AT2G29390.2 7.00E-148 
sterol 4-alpha-methyl-

oxidase 2-2 4.86E-04 2.27 

comp109449 AT2G01830.1 0 
CHASE domain containing 

histidine kinase protein 9.22E-03 2.05 

comp98134 AT1G72200.1 8.00E-21 
RING/U-box superfamily 

protein 1.20E-02 2.04 

comp65351 AT3G57620.1 1.00E-173 
glyoxal oxidase-related 

protein 3.58E-02 0.50 

comp93517 AT3G52590.1 3.00E-18 ubiquitin extension protein 1 1.57E-01 0.48 

comp92136 AT1G49240.1 7.00E-09 actin 8 3.64E-02 0.44 

comp100006 AT5G05340.1 6.00E-83 
Peroxidase superfamily 

protein 4.10E-02 0.44 

comp104124 AT5G51550.1 2.00E-113 EXORDIUM like 3 7.66E-03 0.42 

comp2149 AT5G07720.1 8.00E-96 

Galactosyl transferase 

GMA12/MNN10 family 

protein 9.02E-02 0.39 

comp89401 AT1G01470.1 1.00E-54 
Late embryogenesis abundant 

protein 1.67E-01 0.37 

comp92513 AT3G08500.1 1.00E-35 myb domain protein 83 1.60E-01 0.28 

comp94448 AT5G61430.1 9.00E-64 
NAC domain containing 

protein 100 6.04E-03 0.27 

comp78861 AT1G75630.1 4.00E-13 
vacuolar H+pumping ATPase 

16 kDa proteolipid subunit 4 6.06E-05 0.22 

comp66898 AT1G72730.1 0 
DEA(D/H)-box RNA 

helicase family protein 1.09E-04 0.22 

comp93600 AT1G60390.1 2.00E-22 polygalacturonase 1 7.04E-04 0.22 

comp289996 AT2G19760.1 4.00E-19 profilin 1 5.70E-04 0.19 

comp117534 AT3G12110.1 0 actin-11 7.20E-18 0.17 

comp330452 AT2G41190.1 9.00E-07 
Transmembrane amino acid 

transporter family protein 9.78E-08 0.17 

comp73822 AT4G14960.1 3.00E-179 Tubulin/FtsZ family protein 2.80E-06 0.17 

comp224786 AT3G12580.1 0 heat shock protein 70 1.03E-11 0.16 

comp3806 AT2G27030.2 7.00E-58 calmodulin 5 3.95E-05 0.16 

comp30460 AT5G55400.1 1.00E-94 

Actin binding Calponin 

homology (CH) domain-

containing protein 6.09E-06 0.15 

comp82375 AT3G09630.1 2.00E-148 
Ribosomal protein L4/L1 

family 8.21E-08 0.15 

comp53236 AT3G53750.1 1.00E-155 actin 3 2.63E-13 0.15 

comp100331 AT1G10130.1 0 

endoplasmic reticulum-type 

calcium-transporting ATPase 

3 6.39E-20 0.14 

comp69353 AT3G12110.1 1.00E-120 actin-11 2.07E-12 0.14 

comp459543 AT5G36940.1 6.00E-14 
cationic amino acid 

transporter 3 1.35E-09 0.13 

comp65966 AT3G19940.1 2.00E-49 
Major facilitator superfamily 

protein 3.58E-06 0.12 
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comp60465 AT1G56070.1 0 

Ribosomal protein 

S5/Elongation factor G/III/V 

family protein 5.59E-20 0.12 

comp25083 AT2G28720.1 2.00E-42 Histone superfamily protein 2.80E-07 0.11 

comp68124 AT3G48850.1 1.00E-114 phosphate transporter 3;2 5.20E-09 0.10 

comp70445 ATMG01190.1 0 ATP synthase subunit 1 
1.91E-11 0.09 

comp97905 

   

1.33E-27 557.36 

comp79469 

   

1.01E-08 134.70 

comp70105 

   

3.27E-08 12.13 

comp57362 

   

6.41E-04 8.70 

comp93532 

   

7.60E-02 7.40 

comp91909 

   

7.60E-02 7.38 

comp87721 

   

1.15E-01 7.03 

comp92488 

   

3.67E-06 6.85 

comp68154 

   

1.67E-01 5.77 

comp96450 

   

3.80E-03 5.23 

comp111788 

   

8.87E-16 4.99 

comp124096 

   

3.13E-12 4.94 

comp85918 

   

3.95E-03 4.81 

comp63395 

   

4.63E-02 4.77 

comp86746 

   

1.84E-04 4.68 

comp83600 

   

9.33E-02 4.38 

comp60560 

   

6.81E-02 4.31 

comp83022 

   

5.25E-02 4.21 

comp67418 

   

1.33E-01 4.11 

comp70701 

   

6.46E-03 3.97 

comp55747 

   

9.70E-05 3.84 

comp85534 

   

1.60E-01 3.12 

comp89189 

   

2.02E-07 2.92 

comp91715 

   

6.06E-03 2.91 

comp92919 

   

4.10E-02 2.75 

comp123315 

   

9.13E-02 2.73 

comp89827 

   

3.67E-06 2.70 

comp50887 

   

1.18E-02 2.58 

comp94719 

   

9.71E-04 2.33 

comp95395 

   

8.68E-04 2.21 

comp96249 

   

8.40E-02 2.15 

comp88825 

   

4.85E-03 2.05 

comp107255 

   

1.26E-02 0.49 

comp108896 

   

1.04E-01 0.48 

comp108899 

   

1.06E-02 0.47 
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comp54403 

   

2.70E-03 0.47 

comp113699 

   

4.10E-02 0.46 

comp96093 

   

4.90E-02 0.44 

comp91701 

   

1.83E-01 0.43 

comp56500 

   

1.02E-01 0.41 

comp64612 

   

2.87E-02 0.40 

comp79188 

   

1.53E-05 0.38 

comp103117 

   

1.00E-02 0.38 

comp93183 

   

3.44E-02 0.35 

comp68602 

   

1.61E-01 0.32 

comp87152 

   

2.04E-02 0.30 

comp53805 

   

1.10E-01 0.27 

comp270317 

   

3.19E-03 0.26 

comp71256 

   

1.42E-02 0.25 

comp3659 

   

1.04E-02 0.24 

comp105551 

   

9.20E-09 0.23 

comp68956 

   

8.88E-04 0.23 

comp95315 

   

2.59E-05 0.23 

comp94752 

   

2.49E-03 0.22 

comp84679 

   

7.38E-05 0.22 

comp81235 

   

6.60E-06 0.21 

comp91381 

   

9.22E-06 0.21 

comp91485 

   

4.63E-03 0.20 

comp89275 

   

1.64E-05 0.20 

comp73204 

   

7.82E-08 0.20 

comp86598 

   

3.96E-05 0.20 

comp67552 

   

2.23E-05 0.19 

comp77578 

   

7.56E-05 0.19 

comp2123 

   

7.38E-05 0.18 

comp94754 

   

1.08E-09 0.18 

comp76631 

   

4.79E-07 0.18 

comp180100 

   

1.81E-08 0.18 

comp60363 

   

5.29E-08 0.17 

comp82873 

   

1.23E-13 0.17 

comp51704 

   

2.44E-07 0.17 

comp77077 

   

7.22E-07 0.17 

comp88395 

   

3.00E-10 0.16 

comp136586 

   

4.15E-07 0.16 

comp60648 

   

6.67E-11 0.16 

comp78244 

   

1.73E-02 0.16 

comp79827 

   

7.58E-16 0.16 

comp73200 

   

7.92E-14 0.16 

comp91928 

   

4.08E-05 0.16 
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comp172745 

   

5.41E-09 0.16 

comp84979 

   

6.91E-12 0.15 

comp86499 

   

8.89E-17 0.15 

comp76181 

   

6.01E-14 0.15 

comp94272 

   

1.22E-10 0.15 

comp91953 

   

9.29E-09 0.14 

comp254714 

   

1.63E-09 0.14 

comp97879 

   

4.60E-21 0.14 

comp84087 

   

4.91E-12 0.14 

comp38889 

   

4.13E-08 0.13 

comp385575 

   

6.92E-04 0.13 

comp285509 

   

4.23E-09 0.13 

comp92726 

   

2.22E-08 0.13 

comp13227 

   

2.59E-05 0.13 

comp360747 

   

2.32E-03 0.13 

comp49437 

   

2.80E-07 0.13 

comp95418 

   

5.20E-09 0.12 

comp92591 

   

7.11E-11 0.12 

comp52050 

   

3.80E-11 0.12 

comp48878 

   

5.20E-09 0.12 

comp90300 

   

1.67E-07 0.12 

comp92332 

   

7.06E-09 0.12 

comp92739 

   

5.76E-10 0.12 

comp106175 

   

5.85E-17 0.12 

comp95128 

   

5.73E-24 0.11 

comp85021 

   

4.29E-21 0.11 

comp94707 

   

3.80E-11 0.11 

comp92564 

   

1.43E-12 0.10 

comp92210 

   

2.74E-12 0.09 

comp62926 

   

8.23E-05 0.04 

comp89868       2.22E-08 0.03 

 

Note: only 54 of the differentially expressed genes are annotatable by blastx searching for 

matches in known protein databases.  
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Table 2.5 Set of previously identified As-regulated genes and their matches in Pteris 

transcriptome 

Description of gene 

Previously identified DEG   Pteris DEG 

Locus 

Fold 

change(+/-)   Locus 

Fold 

change(+/-) 

cytochrome P450 AT4G31500 (-)1.71 

 

comp100006 (-)2.27 

 

AT3G48520 (-)1.56 

 

comp102296 (+)1.80 

Zinc finger protein AT5G27420 (-)1.75 

 

comp102778 (+)1.87 

glutathione S-

transferase AT3G62760 (+)1.64 

 

comp103643 (-)1.79 

 

AT1G78370 (+)1.68 

 

comp105360 (+)2.75 

peroxidase AT5G17820 (+)1.68   comp98134 (+)2.04 
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Table 2.6 Quantitative real time PCR analysis of selected genes. 

  

qRT-

PCR 

Fold 

Change 

RNA-

Seq 

Fold 

Change DEG 

 

Annotation based on blastx results against 

Swiss-Prot 

comp74286 1.296 1.027 N HASTY 1 

comp85481 2.311 1.462 N glutathione s-transferase f10 

comp97777 1.535 1.474 N histidine-containing phosphotransfer protein 1 

comp100020 1.212 1.036 N * 

comp91117 0.7949 0.8894 N vesicle-associated membrane protein 721 

comp99511 0.2731 0.6253 N transporter ArsB 

comp98614 1533 234.4 Y glutathione S-transferase PHI 10 

comp103624 53.79 49.49 Y organic cation transporter 4 

comp96855 15246 374.0 Y 

glyceraldehyde-3-phosphate dehydrogenase C 

subunit 1 

comp110556 11.09 2.288 Y probable RNA-dependent RNA polymerase 

 

*Gene comp100020 has 6 isoforms, none of them has a significant match in the Swiss-

Prot database at E-value of 10
-5

. 
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Figure 2.1 Length distributions of the assemblies and the predicted ORFs of the 

P.vittata transcriptome. 

The x-axis shows the size category and the y-axis indicates the percentage of 

assemblies that lie in each bin. 
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Figure 2.2 Assessment of the completeness of the P. vitatta transcriptome by comparing 

to known plant proteomes. 
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Figure 2.3 Distribution of Plant GO slim terms assigned to P.vittata transcriptome 

assemblies. 
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Figure 2.4 Venn diagram comparing differentially expressed genes identified by different 

statistical packages. 
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Figure 2.5 MA plot of the differentially expressed genes between As-treated and 

untreated conditions.  

 

Each point represents a Trinity gene. The mean expression level of each Trinity 

component is plotted against the fold change. Red points are differentially expressed 

genes identified by three statistical packages at FDR < 0.2, and black points do not have 

statistically significant difference in As treatment. Blue lines are levels of 2 fold change. 
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CHAPTER 3. TEXTPRESSO FOR LITERATURE OF ARSENIC TOLERANCE 

3.1 Introduction 

Textpresso [126] is one of the most widely used text analysis tools for biological 

literature [127-130]. Textpresso features two important innovations: first, it performs 

searches on the full text of the article (full text search), rather than limiting the search to 

just the title, abstract, and keywords, so that one expects broader information coverage 

than would be seen in an abstract-only search for a given topic; second, Textpresso can 

automatically index and cluster literature according to user-defined concepts. In the 

Textpresso pipeline, a corpus of full texts related to a specific topic are tokenized into 

sentences, and the sentences into words. Sentences can either be indexed by individual 

words or semantically. Semantic indexing makes use of a structured lexicon, which 

contains ontologies of biological entities/concepts, and terms that describe the 

relationships relating them. Texts of interest are identified by matching to the terms 

encoded in the lexicon and labeling them with XML tags. A web interface allows users to 

query a combination of keywords and/or concepts within sentences or the document as a 

whole. The sentence-level search pinpoints the contexts where query matches appear, 

which is important for precise retrieval of biological facts. Semantically indexed texts not 

only allow searches by keyword query, but also enable semantic searches. Thus,
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meaningful biological facts can be efficiently recovered. Despite these advantages, 

Textpresso does have some drawbacks in text processing and database searching. During 

sentence indexing, Textpresso requires an exact match to lexical terms, thus the lexicon 

needs to include all possible tenses and forms of verbs and nouns in order to fully cover 

the potential targets. Such a verbose ontology dramatically slows down the indexing - the 

most time-consuming step in the Textpresso pipeline. The current Textpresso web 

interface only provides general keyword searching with "case sensitive" and "exact 

match" options, which does not take full advantage of its indexing strategy, and will 

therefore miss a significant number of sentences that match to the query, but use a 

different tense or form. 

We have incorporated a stemming technique into Textpresso in order to decrease the 

above problems; we call this enhanced version of stemmed-Textpresso. The standard 

Porter stemmer [131] reduces texts in both the corpus and the lexicon to their common 

roots. The stemming has been modified to skip words that are potential gene or protein 

names/symbols. Indexing is performed on the stemmed corpus using a stemmed lexicon, 

so that sentences are labeled by word roots. In database searches, queries can be stemmed 

to retrieve more sentences of interest, and all versions of the query keywords are 

highlighted in the retrieved texts.  

 

3.2 Results 

Stemmed-Textpresso has been constructed on a collection of literature studying 

arsenic tolerance in plants and yeast. The literature database is available at: 

http://textpresso.genomics.purdue.edu/cgi-bin/cgiwrap/textmine/home. The current 

http://textpresso.genomics.purdue.edu/cgi-bin/cgiwrap/textmine/home
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corpus comprises 970 full text articles and 1778 abstracts, together with bibliographic 

information. The stemmed-textpresso lexicon consists of ontologies describing biological 

entities or concepts and their relationship together with auxiliary words. Gene Ontology 

(Gene Ontology Consortium [132]) terms contribute the majority of current Textpresso 

ontologies. We have added Arabidopsis genes, plant structures, cereal plant growth stages, 

and flowering plant growth stages (Plant Ontology Consortium (Plant Ontology 

Consortium
TM

, 2002) to the existing Textpresso ontologies. To generate a compact 

lexicon, entries in ontologies are stemmed and consolidated into their common roots. The 

stemming procedure reduces the number of lexical entries from 634,748 to 435,923, 

which not only significantly speeds up the semantic indexing of the corpus, but also finds 

more matched entities (3,028,991 compared to 2,881,080, an increase of 5.13%). In 

keyword indexing, each sentence in the text is indexed by each word in the sentence. The 

number of unique keyword indices decreased from 255,395 to 212,957 (16.6%), while 

the number of sentences stayed the same. Therefore, the information content of each 

keyword index is enriched in stemmed-Textpresso. 

In addition to the above improvements, stemmed-Textpresso retrieves more related 

facts than simple keyword searches. By default, stemmed-Textpresso removes the 

suffixes of query keywords and searches the stemmed database using the word roots. 

Alternatively, users can skip stemming and choose to search the non-stemmed database. 

For example, if we search “growth stimulation” in stemmed-Textpresso, the query is first 

split into “growth” and “stimulation”, which are reduced to their stem forms, “grow” and 

“stimulat”, respectively. Table 1 shows the difference in the number of sentences 

retrieved with the stemmed and unstemmmed versions of Textpresso. Stemmed-
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Textpresso shows higher recall at the expense of somewhat decreased retrieval precision. 

Retrieving and formatting the matching documents is a major contributor to the overall 

search time and accounts for the longer search times reported for stemmed-Textpresso.  

 

3.3 Implementation 

The Textpresso 2.5.1 package was downloaded from the Textpresso web site 

(http://www.textpresso.org/downloads.html ). Full text PDF articles are processed using 

the standard Textpresso procedure up to the point where individual sentences are 

obtained. The resulting sentences are stemmed by a Perl-implementation of the Porter 

stemmer (http://search.cpan.org/~creamyg/Lingua-Stem-Snowball-

0.952/lib/Lingua/Stem/Snowball.pm). Entries in the lexicon are also stemmed and 

consolidated. In semantic indexing, words in the stemmed texts are marked up by 

identifying terms that match those stored in the stemmed lexicon. Each sentence in the 

stemmed corpus is also indexed by words that constitute the sentence.  

To accommodate the changes we made to the literature database, the stemmer is also 

embedded in the search interface. Query phrases or hyphenated words are parsed, 

stemmed and reconnected. Unless the “Exact match” or “Case sensitive” option is 

selected, stemmed keywords or phrase queries are searched in the stemmed corpus. 

Sentences that contain the query are returned with matches in all syntactical forms 

highlighted. Users can also choose to search unstemmed queries vs. the corpus without 

stemming. 

 

http://search.cpan.org/~creamyg/Lingua-Stem-Snowball-0.952/lib/Lingua/Stem/Snowball.pm
http://search.cpan.org/~creamyg/Lingua-Stem-Snowball-0.952/lib/Lingua/Stem/Snowball.pm
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3.4 Discussion 

The use of the stemmed lexicon greatly simplifies the definition of lexical files by 

users. Comprehensively including all verb and noun forms in the lexicon is both tedious 

and error prone. Stemming is most powerful in cases where a number of variations of the 

query words appear in texts, which can be seen in the example “growth stimulation”. The 

calculation of the retrieval accuracy is somewhat subjective and may vary; we have used 

a very strict definition – most of the sentences we assign as negative would, in fact, be of 

interest given the queries. Despite the lower retrieval precision, stemmed-Textpresso is 

able to extract significantly more relevant sentences for further examination. 

Stemmed-Textpresso uses the Porter stemming algorithm to reduce the number of 

unique words in the corpus and lexicon, and thus simplifies lexicon construction as well 

as improves both indexing efficiency and search functionality. The new system not only 

expedites semantic indexing, but also recognizes more matching sentences in the indexed 

texts. Stemmed-Textpresso naturally expands the search query and offers better coverage 

of related biological facts. 
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Table 3.1 Comparison of search accuracies. 

Query Type Document 

Precision 

Document 

Recall 

Document 

F1 score 

Sentence 

Precision 

Sentence 

Recall 

Sentence 

F1 score 

 growth 

stimulation 

 stemmed 0.515 

(17/33) 

1.0 

(17/17) 

0.680 0.546 

(30/55) 

1.0 

(30/30) 

0.706 

     

unstem

med 

0.833 

(5/6) 

0.294 

(5/17) 

0.435 0.857 

(6/7) 

0.2 

(6/30) 

0.324 

 light 

  sensitivity 

stemmed 0.661 

(37/56) 

1.0 

(37/37) 

0.796 0.692 

(54/78) 

1.0 

(54/54) 

0.818 

    

unstem

med 

0.756 

(31/41) 

0.838 

(31/37) 

0.795 0.75 

(39/52) 

0.722 

(39/54) 

0.736 

 

To compute precision and recall, we strictly define a correct hit as sentence that has query 

keywords in close proximity with joint meaning relevant to the query.  
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CHAPTER 4. RECOGNITION OF GENE MENTIONS IN ARSENIC TOLERANCE 

LITERATURE USING AN SVM CLASSIFIER AND SIMPLE CONTEXT 

FEATURES 

4.1 Introduction 

Arsenic toxicity and tolerance has been a focused research area for many years. 

Search of the simple term ‘arsenic toxicity’ using the PubMed search engine returned 

5,248 articles on July, 18, 2014, and this number has been steadily growing in recent 

years. A large volume of literature makes it challenging for scientists to effectively 

extract relevant information and identify linkage among different pieces of scientific 

work. In a previous work, we have constructed the Textpresso-based literature mining 

tool for arsenic tolerance in plant and yeast. Textpresso provides a platform for 

organizing literature in a specialized field according to user-defined categories, and 

enables retrieval of biological facts by both keyword and category. In Textpresso, indices 

used to tag unstructured text have to be provided by users, and therefore the lack of a 

complete list of important biological concepts, e.g., all genes and proteins names 

involved in arsenic tolerance, has limited the retrieval coverage of facts in the literature. 

Over the past decade, much effort has been devoted to the development of automated 

extraction of biological entities from free text. Identifying those key concepts of interest 

is the cornerstone for many downstream text mining tasks, e.g., gene mention 

normalization, extraction of relationships, ontology construction, etc.
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Named entity recognition (NER) in biology is notoriously difficult. First, naming 

of biological entities is not consistent. There are few well-accepted conventions that 

researchers consistently apply to present biological entities in text. It is common for a 

bio-entity to have a number of synonyms, which may be used interchangeably; 

furthermore, researchers frequently introduce their own names or abbreviations instead of 

following existing rules. Second, a single biological entity can be represented by multiple 

concepts depending on the context, which further complicates the task of automated 

detection and classification. 

Recognizing named biomedical entities has been a research focus in biological 

text analysis, and several systems have been proposed in this field, such as ABNER [133] 

and BANNER [134]. Most proposed systems apply machine-learning approaches. 

Machine-learning approaches usually involve training a classifier on a collection of 

features extracted from a given corpus. Extraction of complex features from the corpus is 

time-consuming and labor-intense, especially for a new domain where annotated corpora 

are not always available. The existing NER systems have been trained on specific corpora, 

and therefore may not be easily transferred to other biological corpus if the representative 

features significantly differ. Moreover, there are few biomedical NER packages that are 

currently accessible by the public, and most advances in this field have limited to 

academic discussions and are not yet been coded into ready-to-use form. 

We have developed an innovative biological named entity recognition system 

using a Support Vector Machine (SVM) and simple contextual features. The idea is based 

on the observation that gene and protein names frequently co-occur in a restricted set of 

contexts, therefore the significance of the co-occurrence with contextual words indicates 



61 

 

6
1
 

the likelihood of a word being a gene or protein name. We first extracted contextual 

words that most often appear in the close neighborhood of pre-identified genes/proteins 

in the collection of full text papers on arsenic tolerance in plants and yeast. During 

feature evaluation, we proposed a new measure - supportive ratio, which measures how 

often a context is used in the description of the target terms. Here context is defined as 

the words appear in the same sentence and in adjacent to the gene or protein names. 

During the classification step, SVM-based classifiers have been trained to identify 

potential biological name mentions. We also evaluated the effect of search scope of 

context-term co-occurrence on the classification performances. The performance of our 

system is comparable to ABNER [133] on unseen texts, but requires only contextual 

features and allows simple adaptation to any corpus. 

 

4.2 Material and methods 

4.2.1 Dataset preparation 

The experiments were conducted on three types of bio-entities datasets, namely 

gene symbols, AGI gene codes, and enzyme names. AGI gene codes are generated from a 

uniform gene nomenclature system for the plant model species, which combines the 

name of the organism, type of the associated sequence (gene or repeat) and location in the 

chromosome. Gene symbols on the other hand, do not have a uniform naming system, 

and typically consist of 3 or 4 letters that define either a single gene or a gene family. The 

list of gene symbols was downloaded from The Arabidopsis Information Resource ftp 

(ftp://ftp.arabidopsis.org/home/tair/Genes/, gene_aliases version 2013-08-31).   AGI gene 

codes were retrieved from TAIR10 release of Arabidopsis genome, including all locus 

ftp://ftp.arabidopsis.org/home/tair/Genes/
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names and their variants. The list of enzyme names was downloaded and processed using 

Perl script through KEGG API service (www.kegg.jp/kegg/docs/keggapi.html).   

Each of the retrieved biological names was searched against the full text literature 

on arsenic tolerance in plants/yeast by Textpresso. The search returned 5,114 sentences 

that have at least one annotated gene name. 4,114 gene containing sentences which 

contain a total of 676 annotated gene names were used for contextual feature extraction 

and training, another 150 sentences were kept to test the predictive performance of 

proposed name recognition methods. 1,000 AGI names and 1,000 enzymes were 

randomly selected, and were balanced with an equal number of random words from 

articles of a different knowledge domain to form training sets. Testing sets for AGI 

names and enzymes each consists of 500 AGIs/enzymes and 500 random words. Table 

4.1 summarizes the counts of different types of entities used in this study. 

 

4.2.2 Context extraction and feature representation 

A context is a sequence of 2N+1 words centered on the target biological entity. 

We selected N=3 and extracted all the contexts Cg within the 7-word window 

surrounding the annotated genes G in 4114 gene-containing sentences. Extracted contexts 

were filtered for stop words and then ranked by their frequencies in the training sentences. 

The contextual features were manually selected from the top ranking contexts that co-

occur most frequently with gene names. 

We propose a supportive ratio method that utilizes web evidence to describe the 

how likely the named entities are accompanied by a specific context in the literature. The 

supportive ratio is defined as the number of database documents in which a named entity 

http://www.kegg.jp/kegg/docs/keggapi.html
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appears in a specific context, divided by the total number of database documents that 

have that named entity. All named entities in the training and test sets were queried with 

and without selected contexts against the PubMed database, and the numbers of 

documents retrieved were used to calculate the supportive ratio as defined below.  

 

#  documents containing both named entity and a context
supportive ratio=

#  documents containing only the named entity
       (1) 

 

The performance of the supportive ratio was also compared to that of 1/0 

representation for co-occurrence of named entities and contexts, where 1 stands for 

occurrence within certain search scope (document level or sentence level). The effects of 

search scope on classification performance were further tested using the collection of full 

text articles in the Textpresso database. For this purpose, pairs of named entity and 

context were searched against Textpresso arsenic articles for co-occurrence at both the 

document level and the sentence level to generate corresponding word-context vectors for 

SVM analysis.  

 Sentences used for labeling were first prepared by tokenization and the removal 

of stop words and punctuations. Then the word-context co-occurrence vector was created 

for each token, which is the direct input to classifier.  

 

4.2.3 Support vector machine classification 

 The support vector machine (SVM) was first introduced by Cortes and Vapnik 

[135]. SVM is a linear model working in a high dimensional feature space formed by the 
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nonlinear mapping of the n-dimensional input vector x into a K-dimensional feature space 

(K > n) through the use of a mapping function. The classification is achieved by choosing 

a separating hyperplane that achieves the maximal margin, where the nearest point to the 

hyperplane within each class is as far as possible from the hyperplane. In this work, we 

only consider the NER problem as a binary classification problem. Unlike the multi-

classifier approaches that try to distinguish among several types of entities, our approach 

only attempts to separate single-unit gene/protein mentions from the rest of the text. The 

SVM classifier was constructed using the LIBSVM [136] software package, which is 

available at http://www.csie.ntu.edu.tw/~cjlin/libsvm. An SVM classifier was trained on 

each type of biological entity and the prediction performance was measured by precision, 

recall and F1 score:  

Precision=
tp

tp fp
                                                           (2) 

Recall=
tp

tp fn
                                                               (3) 

1

precision recall
2

precision+recall
F


                                                    (4) 

where tp stands for true positives, fp stands for false positive and fn stands for false 

negatives. 

  

4.2.4 TF-IDF filtering 

TF-IDF (Term Frequency – Inverse Document Frequency) is defined as the 

product of Term Frequency (tf) and the Inverse of Document Frequency (idf). For a 

specific term ti in a document dj, its tf is calculated as: 
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ij

ij

kjk

frequency
tf

frequency



                                                         (5) 

where frequencykj is the number of occurrence of the term ti in document dj. The 

denominator is the total number of terms in the document dj. The idf of a term ti is 

computed as: 

logi

i

N
idf

n
                                                                (6) 

where N is the total number of documents in the corpus, and ni is the number of 

documents in which the term ti appears.  

The TF-IDF weight of each non-stop word was calculated for every document in 

the corpus. For each document in the corpus, words in the document were ranked 

according to the TF-IDF weight from high to low. The TF-IDF threshold was set as the 

percentage of ranking. During prediction, the SVM-classifier was first applied to label 

each word in the test set as gene or non-gene. If the TF-IDF filtering is enabled, words 

must also exceed the threshold on the TF-IDF weight in order to be labeled as gene.  

 

4.3 Results and Discussions 

4.3.1 Context extraction and evaluation 

54,975 unique words were found in 4,114 gene-containing sentences. After 

filtering stop words, punctuation and pure numbers, 33 contextual features with different 

word stems were manually selected from the top-ranking meaningful words that occur 

most frequently in the 7-word windows centered at gene/protein names. The set of 
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selected contextual words is listed in Table 4.1. These words describe the most common 

text environment where a gene or protein name tends to be found. 

 

4.3.2 Feature representation 

 One of the limiting steps for automated named entities recognition (NER) is the 

lack of sufficient hand-annotated corpora/training sets, which are time-consuming to 

obtain. Moreover, most machine-learning-based NER systems are built on corpus of a 

specific knowledge domain, which are not easily transferable to related but different 

domains [137]. However, large amounts of unlabeled text are often available for most 

domains. This fact motivates leveraging web evidence from online literature databases to 

enrich training data. In a previous study, Brewster et. al [138] exploited web evidence to 

decide whether a candidate concept belonged to animal behaviors. In their work, a set of 

semantic patterns containing the candidate term were queried against the entire web via 

the Yahoo! BOSS search engine. If a query phrase was found to have at least one hit, the 

candidate term was taken as a legitimate term while no hits indicates that this term should 

be excluded from consideration. In our case, instead of searching the entire web, the 

PubMed database was queried by a named entity with and without selected contexts 

through the Entrez programming utilities (E-Utilities) API service [139] 

( http://eutils.ncbi.nlm.nih.gov/entrez/eutils/ ). Given a query, the PubMed search engine 

looks for its presence in the fields of title, abstract, authors, and MESH term tags, etc., of 

the database articles. Numbers of articles that contain the search query were extracted 

from the search results, and were used to compute supportive ratio as defined in formula 

(1). If no article was returned for a specific combination of a named entity and a context, 

http://eutils.ncbi.nlm.nih.gov/entrez/eutils/
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the supportive ratio of the context for this named entity was set to be 0. Feature vectors 

using 1/0 representation were also constructed for the same sets of data, where 1 indicates 

the co-occurrence of a named entity with a certain context at the specified search level 

(document/sentence). 

 

4.3.3 Comparison of different feature representations 

An SVM classifier was trained on each type of named entity with different feature 

representations. The performance was summarized in Table 4.3. In comparison to 1/0 

representation, supportive ratio vector improved the F1 scores for gene symbols and 

enzymes by 7.14% and 4.05%, respectively, while the prediction precision on AGI names 

slightly decreased,  leading to a drop of 1.19% in F1 score. However, even in the worst 

case, an SVM classifier trained on the supportive ratio still achieved approximately 86.13% 

in F1 score, indicating the potential of the proposed approach. Differences in the 

predictive abilities of SVM classifiers are largely due to the fact that AGI names and 

enzymes are characterized by unique. For example, the AGI name for a gene always 

starts with the organism abbreviation followed by the chromosome number, the sequence 

type (gene or repeats), and the gene id, e.g., AT2G01650. Enzyme names also follow 

strict naming conventions, and each enzyme is described by a sequence of four numbers 

preceded by “EC”, where the numbers indicate functional classification, e.g., EC 1.1.1.1. 

On the other hand, gene symbols are defined by individual researchers, often contain 

three or four-letter terms resembling words that are much more common in daily use thus 

less distinguishable from the rest of the text, e.g., the abbreviation of the short 
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meristemless gene (STM) is the same as the stock name of the STMcroelectronics 

company. 

 

4.3.4 Comparison of different search levels 

 The selection of search level could affect the precision of retrieving articles 

related to a combination of keywords. In articles returned by document-level searches, 

despite the co-occurrence, the target keywords could appear in different sections of the 

text, and may not be closely related. The sentence-level search pinpoints the contexts 

where query matches appear, which is important for precise retrieval of biological facts. 

Therefore we tested the effect of different search levels on classification performance. A 

total of 720 gene symbols were annotated in the arsenic tolerance corpus by Textpresso 

indexing. Annotated gene symbols and 500 words randomly selected from the same 

corpus were searched against the Textpresso database for co-occurrence with the selected 

33 contexts at both full text and sentence levels, and two co-occurrence matrices were 

constructed accordingly. Table 4.3 shows the summary of training and test data for two 

search levels. 

 Classification using sentence level co-occurrence led to improved recall rate at the 

expense of decreased precision, but the F1 score was still higher for sentence level 

vectors. The AUC measures were also comparable between the two levels of co-

occurrence. It seems that once enough context features are included in the SVM model, 

different levels of co-occurrence may have less than expected effects on the overall 

identification performance. However, the sentence level co-occurrence yields a higher 

recall rate, which could be important for constructing a complete list of gene names. 
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4.3.5 Comparison with ABNER on unseen text 

ABNER [133] is a state-of-art software tool designed for biological named 

entities recognition, which is based on a statistical machine learning system using linear-

chain conditional random fields (CRFs) [140] with a variety of orthographic and 

contextual features. It achieved a 69.9% F1 score for tagging protein/gene names in the 

BioCreative corpus [133]. The SVM-classifier trained on a sentence-level co-occurrence 

vector of gene symbols and the context set in previous step was compared with ABNER 

to tag gene/protein names in 150 new sentences that have 94 gene/protein names in total. 

The proposed model correctly tagged 68 gene names and achieved 72.34% in recall rate, 

while ANBER only identified 59 correct names and had a recall rate of 62.77%. SVM-

based classifier predicted 262 gene names, which is 95 more than ABNER, but the 

precision was lower. The SVM classifier and ABNER achieved 25.95% and 35.32% in 

terms of F1 score, thus the overall tagging performance of ABNER on unseen text was 

slightly superior to the proposed model. 

To improve the prediction precision of proposed model, the list of predicted 

gene/protein names were further refined by setting thresholds based on their TF-IDF 

weight. TF-IDF is high when a term t occurs many times within a small number of 

documents, lower when the term occurs fewer times in one document or occurs in many 

documents, and the lowest when the term occurs in virtually all documents. Thus TF-IDF 

weighting scheme can help to identify terms that are highly specific to the topic conveyed 

by the corpus of literature. By In terms of F1 measure, the best performance of the 

proposed model was achieved with probability threshold = 0.91, where precision = 

37.06%, recall=81.84% and the highest F1-measure is 0.5102. 
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Neither ABNER nor the proposed model gave completely accurate prediction on 

the testing sentences. Despite the low precision, the proposed model achieved a high 

recall rate, which is more important for the purpose of finding the complete list of gene 

names. After applying TF-IDF screen, the precision of the same model was increased by 

14.7%, and the recall rate is still comparable to that of ABNER. 

 

4.4 Conclusions 

Overall, the proposed approach is promising in identifying terms such as 

gene/protein names. Using co-occurrence with selected contexts, the proposed SVM 

model is able to generate a list that is enriched with gene/protein names. The accuracy 

can be further improved by filtering the predicted positives with TF-IDF weights. For 

biologists, an automated system with high recall and even moderate precision (like the 

current Textpresso) confers a great advantage over skimming text by eye. 
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Table 4.1 Frequencies of selected contexts in gene-containing sentences. 

Context Frequency Percentage Rank 

protein 717 17.43 1 

gene 525 12.76 2 

arsenic 476 11.57 3 

expression 458 11.13 4 

arsenate 332 8.07 9 

activity 306 7.44 11 

arsenite 225 5.47 14 

cells 218 5.30 15 

promoter 211 5.13 17 

control 209 5.08 18 

tolerance 192 4.67 21 

plant 192 4.67 21 

levels 189 4.59 22 

resistance 172 4.18 27 

stress 163 3.96 31 

mutant 155 3.77 33 

response 154 3.74 34 

involved 142 3.45 37 

growth 140 3.40 38 

increased 139 3.38 39 

membrane 134 3.26 42 

transport 129 3.14 45 

transcription 118 2.87 48 

accumulation 116 2.82 49 

biosynthesis 111 2.70 52 

metal 111 2.70 52 

sequence 108 2.63 55 

concentration 108 2.63 55 

function 90 2.19 69 

regulation 83 2.02 75 

complex 69 1.68 87 

signaling 26 0.63 129 

interaction 10 0.24 145 

 

Note: the value of percentage is calculated by dividing the number of gene-

containing sentences that have the given context by the total number of gene-

containing sentences. 
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Table 4.2 Counts of different types of entities used for training and testing. 

 

Gene containing 

sentences Gene Symbols AGI Enzyme 

Training 4114 676(+)/800(-) 1,000(+)/1,000(-) 1,000(+)/1000(-) 

Test 150 95(+)/200(-) 500(+)/500(-) 500(+)/500(-) 

 

Note: “+” denotes positive case, and “-” denotes negative case. 
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Table 4.3 Performance of SVM-based NER system using features evaluated on 

web evidence. 

  1/0 Representation Support Ratio 

  Precision Recall F1  Precision Recall F1  

Gene symbol 0.8878 0.6643 0.7600 0.9008 0.8252 0.8613 

AGI name 0.9632 0.994 0.9784 0.9416 1 0.9699 

Enzyme name 0.8946 0.9 0.8973 0.9259 0.95 0.9378 
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Table 4.4 Counts of positive and negative cases in training and testing sets for different 

levels of co-occurrence. 

 
Full Text Sentence 

 
Train Test Train Test 

Gene symbols 575 143 478 119 

Random words 373 93 281 70 
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Table 4.5 Effects of levels of co-occurrence on the performance of SVM classifier. 

  Precision Recall F1 score 

Full text 0.8558 0.6643 0.7480 

Sentence 0.7946 0.7479 0.7705 
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Table 4.6 Performance of the proposed SVM classifier and ABER on unseen text. 

  Precision Recall F1 score 

SVM 0.2595 0.7234 0.3820 

SVM+TFIDF 0.2792 0.7128 0.4012 

ABNER 0.3533 0.6277 0.4521 

 

Note: the best performance of SVM + TF-IDF classifier was achieved when the 

threshold of TF-IDF was set to top 20%. 
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