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ABSTRACT

West, Paul R. Ph.D., Purdue University, May 2015. Novel Techniques for Quasi
Three-Dimensional Nanofabrication of Transformation Optics Devices. Major Pro-
fessor: Alexandra E. Boltasseva.

Current nanofabrication is almost exclusively limited to top-down, two-dimensional

techniques. As technology moves more deeply into the nano-scale regime, fabrication

of new devices with quasi three-dimensional geometries shows great potential. One

excellent example of an emerging field that requires this type of non-conformal 3D

fabrication technique is the field of “Transformation Optics. This field involves trans-

forming and manipulating the optical space through which light propagates. Arbitrar-

ily manipulating the optical space requires advanced fabrication techniques, which are

not possible with current two-dimensional fabrication technologies. One step toward

quasi three-dimensional nanofabrication involves employing angled deposition allow-

ing new growth mechanisms, and enabling a new realm of quasi three-dimensional

fabrication.

Transformation optics also has potential for having a huge impact on one of the

most fundamental and impactful aspects of optics - the capability of fully control-

ling and manipulating the phase of light. For this purpose, dielectric metamaterial

arrays can be fabricated, altering the phase of light transmitted through the struc-

tures, while maintaining a high transmittance (low reflection). By fabricating these

structures with a high-index material (such as silicon), a large gradient in phase can

be implemented by adjusting the material’s effective filling fraction. Using these di-

electric metamaterial arrays, anomalous refraction and focusing is demonstrated in

films with thicknesses less than one wavelength.
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1. PLASMONIC MATERIALS - CHALLENGES AND

APPROACHES

The field of Transformation Optics allows for a strong manipulation of an optical

wave as it passes through an artificially created material. In order to have this strong

control over an incident field, many devices require metallic components (with neg-

ative permittivity) to have complete control over the material’s permittivity. The

study of a wave’s behavior with these metals, (known as plasmonics), is a research

area merging the fields of optics and nanoelectronics by confining light with relatively

large free-space wavelength to the nanometer scale - thereby enabling a family of novel

devices. Current plasmonic devices at telecommunication and optical frequencies face

significant challenges due to losses encountered in the constituent plasmonic materi-

als. These large losses seriously limit the practicality of these metals for many novel

applications. Research in materials plays an important role in transforming ideas

into next-generation electrical and plasmonic technologies. Currently, plasmonic and

metamaterial devices have a lack of feasible materials (especially metals), required

to realize useful devices While current plasmonic technologies primarily rely on sil-

ver and gold, there are many other materials that exhibit metallic properties and

provide advantages in device performance, design flexibility, fabrication, integration,

and tunability. This paper provides an overview of alternative plasmonic materials

along with motivation for each material choice and important aspects of fabrication.

A comparative study of various materials including metals, metal alloys and heavily

doped semiconductors is presented. The performance of each material is evaluated

based on quality factors defined for each class of plasmonic devices. Most importantly,

this paper outlines an approach for realizing optimal plasmonic material properties for

specific frequencies and applications, thereby providing a reference for those searching

for better plasmonic materials.
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1.1 Introduction

The speed of information processing has seen rapid growth in the past few decades

from the progress in scaling down the sizes of devices in micro- and nanoelectronics.

However, researchers are experiencing major difficulties in reaching speeds over a few

tens of GHz using this scaling approach due to fundamental limitations from RC-

delays and power dissipation in the devices. In contrast, photonics offers bandwidth

in the THz range [1]. However, conventional photonic elements, such as optical fibers,

require physical dimensions on the order of the wavelength of light (about a micron)

due to diffraction limitations. The difference in physical size between nanometer-scale

electronics and micrometer-scale photonic elements yields an incompatibility between

the two types of devices. Plasmonics merges the high bandwidth offered by photonics

and the nano-scale integration offered by nanoelectronics by coupling a photons en-

ergy with a free-electron gas, creating a subwavelength, oscillating mode known as a

plasmon [2–5]. Because plasmonic devices are capable of subwavelength confinement,

plasmonics forms the basis of the research area of nanophotonics. Plasmonics and the

recent birth of metamaterials [6–8] (for recent review on optical metamaterials see [9])

and Transformation Optics (TO) [10–12] are currently driving the development of

a family of novel devices with unprecedented functionalities such as subwavelength

waveguides [4, 13, 14], optical nanoantennas [15–24], superlenses [7, 25–28], optical

invisibility cloaks [11, 29–32], hyperlenses [33–36], planar magnifying hyperlens and

light concentrators [8, 37, 38].

Because the plasmon phenomenon in optical and telecommunication frequencies

typically originates from the collective oscillations of free charges in a material due

to an applied electromagnetic field, plasmonic devices generally require metallic com-

ponents, which have an abundance of free electrons. These free electrons provide the

negative real permittivity that is an essential property of any plasmonic material.

However, metals are plagued by large losses, especially in the visible and ultra-violet

(UV) spectral ranges, arising in part from interband electronic transitions. Even
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the metals with the highest conductivities suffer from large losses at optical frequen-

cies [39, 40]. These losses are detrimental to the performance of plasmonic devices,

seriously limiting the feasibility of many plasmonic applications. In an attempt to

mitigate material losses, optical gain materials can be combined with metallic struc-

tures [41–55]. However, even the best gain materials available are barely enough to

compensate the losses in the metal. Because these losses are inherent to the con-

stituent materials, alternative plasmonic materials with lower losses are required to

develop robust plasmonic devices. Lower losses in such improved plasmonic compo-

nents can be readily compensated with existing gain materials.

Plasmonics could have a large impact on applications at telecommunication and

optical frequencies, and hence we begin this review with a survey of several potential

plasmonic materials (also see [56]). We compare the relative merits of these poten-

tial materials within the context of novel plasmonic devices to gain insight into the

suitability of each material in particular applications. In Sect. 1.2, we provide a brief

background on the various electromagnetic losses associated with solids at frequencies

in and near the visible range. In Sect. 1.3, we review the optical properties of various

plasmonic materials and also discuss the methodologies adopted in choosing potential

low-loss materials for plasmonics. Specifically, Sects. 1.3.1, 1.3.2, and 1.3.3 review

metals, metal-alloys, heavily doped wide-band semiconductors, and graphene respec-

tively. We formulate the figures-of- merit (or quality factors) for various classes of

plasmonic devices to effectively compare the performances of plasmonic materials in

Sect. 1.4. Finally, in Sect. 1.5, we present a comparative study of the performance of

the various potential materials based on figures-of-merit and other practical criteria.

We conclude the paper with a discussion that quantitatively identifies the best of the

reviewed material choices for each class of devices for various regions of the visible

and near-infrared (NIR) ranges.
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1.2 Background

Polarization describes a materials interaction with electromagnetic waves. While

polarization can be electrical and/or magnetic in nature, the magnetic polarization of

naturally occurring materials is negligible for frequencies higher than several hundred

THz. The electrical polarization can be described by the materials complex electrical

permittivity or dielectric function, denoted by ε(ω). While the real part of the dielec-

tric function (denoted by ε1 or ε’) describes the strength of the polarization induced

by an external electric field, the imaginary part (denoted by ε2 or ε′′) describes the

losses encountered in polarizing the material. Thus, a low loss material is associated

with small values of ε′′.

Primary loss mechanisms in the NIR, visible, and soft UV frequencies may be

broadly classified as arising from phenomena related to conduction electrons and

bound electrons (interband effects) [57]. Losses for conduction electrons arise from

electron-electron and electron-phonon interactions, and from scattering due to lat-

tice defects or grain boundaries. Because the conduction electrons have a nearly

continuum of available states, their interaction with an electromagnetic field is well

approximated by classical theory. The Drude theory [58] describes this phenomenon

by treating conduction electrons as a three-dimensional free-electron gas. According

to the generalized Drude theory, the permittivity of a material can be written as

follows:

ε(ω)′ + iε(ω)′′ = ε(ω) = εint −
ω2
p

ω(ω + iΓ)
, (1.1)

ω2
p =

ne2

ε0m∗ . (1.2)

In Eq. (1.1), γ = 1/τ where τ is the mean relaxation time of conduction electrons,

and εint is a contribution due to interband transitions; it is unity for the case of a

perfectly free-electron-gas. The plasma frequency (ωp) is given by Eq. (1.2), where

n is the conduction electron density, and the effective optical mass of conduction
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Table 1.1
Drude model parameters for metals. ωint is the frequency of onset
for interband transitions. Drude parameters tabulated are not valid
beyond this frequency.

Material εint ωp(eV ) Γ (eV) ωint (eV)

Silver [39, 59, 60] 3.7 9.2 0.02 3.9

Gold [39, 60] 6.9 8.9 0.07 2.3

Copper [39, 59, 60] 6.7 8.7 0.07 2.1

Aluminum [61,62] 0.7 12.7 0.13 1.41

electrons is m∗. In general, εint depends on wavelength (which is typically accounted

by including the Lorentz oscillators terms [57]), but for some spectral ranges it can

be roughly approximated as constant (see Table 1.1). Also, Γ can depend on the size

of the plasmonic particle. According to the classical theory, the total damping rate,

Γ, is the sum of damping rates due to electron-electron scattering, electron-phonon

scattering and lattice defects or grain-boundary scattering. The boundary scattering

rate depends on the size of the plasmonic particle, so that the relaxation rate for a

spherical particle of size R can be approximated as:

Γ = Γ∞ + A
vF
R

, (1.3)

where Γ∞ is the relaxation constant of the bulk material, vF is the Fermi velocity;

A depends on details of the scattering process, and is typically on the order of unity

[57, 63,64]. For simplicity, below we assume that Γ = Γ∞.

Because plasmonic applications require materials with negative ε0, Eq.(1.1) clearly

indicates that this requirement is satisfied for materials with a plasma frequency

higher than the desired frequency of application. Because metals tend to have large

plasma frequencies and high electrical conductivity, they have traditionally been the

materials of choice for plasmonics. In Table 1, we summarize the material parame-
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ters for high-conductivity metals as reported in the literature. Among the metallic

elements, silver has the smallest Γ and is the best-performing choice at optical frequen-

cies. Gold, which has a larger Γ than silver, is often the metal of choice at lower NIR

frequencies, having the advantage of being chemically stable in many environments.

However, gold has high interband losses in the visible spectrum for wavelengths below

or about 500nm. Similarly, copper is plagued by large interband losses over most of

the visible spectrum. Thus, silver and gold have predominately been the materials

of choice for plasmonic applications around the optical frequencies. However, future

plasmonic applications demand even lower losses to fully exploit their potential.

Interband transitions, which form a significant loss mechanism in materials at

optical frequencies, occur when electrons jump to higher, empty energy levels caused

by absorption of incident photons. In metals, when a bound electron absorbs an

incident photon, the electron can shift from a lower energy level to the Fermi surface

or from near the Fermi surface to the next higher empty energy level. Both of these

processes result in high loss at optical frequencies.

In semiconductors and insulators, valence electrons absorbing the energy from a

photon shift into the conduction band, resulting in loss. This loss manifests as an

increase in ε′′, and can be treated using the formalism of the Lorentz oscillator model.

The two-level description of the absorption process results in a simple Lorentz model

given by Eq. (1.4) [65]:

εlk(ω) =
flkω

2
p,lk

ω2
lk − ω2 − iωΓlk

. (1.4)

Here, flk corresponds to the strength of the oscillator at energy levels l and k,

ωlk is the resonant frequency corresponding to the difference between the energies

of levels l and k, Γlk is the damping in the oscillator accounting for non-zero line-

width of the peak, and ωp,lk is similar to the plasma frequency given by Eq. (1.2)

with the difference that n here refers to the concentration of electrons in the lower

occupied state. When there are many of such interacting energy levels, the effective

permittivity can be expressed as a summation over all allowed Lorentzian terms. This
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is a popular approach utilized in the Drude-Lorentz model to reasonably approximate

the dielectric function of metals [66]. In general, solids with a periodic lattice have

electronic energy levels which exist as bands instead of discrete levels, requiring a

Joint-Density-of-States description and integration over all the allowed transitions

at any given photon energy (a more detailed discussion of this formulation is found

in [65]).

To illustrate the impact of interband transitions on losses in a material, Fig. 1.1

shows the imaginary part of permittivity for copper. The free-electron and inter-

band transition contributions to loss are shown along with the values extracted from

experimental results [39]. The peak in the experimental ε′′ curve at 2.1 eV clearly

corresponds to interband transitions; this peak is the result of electronic transitions

from the filled L3 band to the Fermi surface [59]. Similarly, the peak at 5.2 eV is due

to X5 → X40 transitions and L2 → L1 transitions [59]. Table 1 shows the frequency

ωint that marks the onset of significant loss due to interband transitions in several

selected metals.

The direct transitions discussed above form an important loss mechanism in both

semiconductors and insulators. In direct bandgap semiconductors, the bandgap cor-

responds to the onset of interband transitions. In indirect bandgap semiconductors,

indirect transitions contribute to loss for photon energies exceeding the bandgap be-

fore the direct transitions set in. For photon energies below the bandgap, there can

be appreciable losses due to various mechanisms such as trap-assisted transitions (e.g.

nitrogen levels in GaP:N [67]), generation of excitons (especially for wide bandgap

semiconductors and insulators [68–70]) and transitions between impurity levels [71].

1.3 Survey of Alternative Plasmonic Materials

This section focuses on potential candidates for low-loss plasmonic materials in

the NIR, visible, and near-UV spectral ranges. Various metals, metal-alloys, metallic

com- pounds and semiconductors that can offer advantages as plasmonic materials are
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Fig. 1.1. The losses in Cu shown as the sum of interband losses
and free electron losses [39, 59]. Annotations identify the interband
transitions responsible for peaks in ε′′

identified and discussed in terms of their relevant properties. Discussion is categorized

into subsections based on the class or type of material reviewed. Metals are considered

first, followed by metal-alloys in the second subsection. The third subsection focuses

on doped semiconductors, while the last discusses graphene.

1.3.1 Metals as Candidates for Plasmonics

As discussed in Sect. 1.2, metals are candidates for plasmonic applications be-

cause of their high conductivity. Among metals, silver and gold are the two most

often used for plasmonic applications due to their relatively low loss in the visible

and NIR ranges. In fact, almost all of the significant experimental work on plasmon-

ics has used either silver or gold as the plasmonic material. Silver has been used for

the demonstration of a superlens [26,27], a hyperlens [35], a negative-refractive-index
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material in the visible range [72], and extraordinary optical transmission [73]. Gold

was used for the first demonstration of a negative-refractive-index material in the

NIR [74], many studies on Surface-Enhanced Raman Scattering (SERS), the fabri-

cation of plasmon waveguides, and numerous Localized Surface Plasmon Resonance

(LSPR) sensors (see for instance, [75]). While metals other than silver and gold have

been used in plasmonics, their use is quite limited, as their losses are higher than

those of silver and gold. For instance, platinum and palladium have been used as

plasmonic materials in systems where the catalytic activity of the plasmonic material

is important to the overall device functionality [76,77]. In addition, nickel films have

been reported to have surface plasmon-coupled chemiluminescence, which may merit

the use of nickel in particular plasmonic applications.

Among the alkali metals, sodium and potassium have the lowest losses [78, 79].

In fact, these losses are comparable or even better than that of silver. Although

there have been several theoretical studies on alkali metals [79], they will not be

discussed in this section, as their potential has not been experimentally verified to

our knowledge. In pure elemental form, these alkali metals are very reactive to air

and water, and therefore they must be stored in mineral oil or Ultra High Vacuum

(UHV) environments to avoid highly energetic and dangerous reactions. Such extreme

restrictions have made fabrication with alkali metals prohibitive. While depositing

alkali metals can be a straightforward process, accomplished with an alkali metal

dispenser, other fabrication and characterization obstacles must be overcome before

alkali metals find use in plasmonics. In the following section, we will discuss low-loss

noble metals (silver, gold and copper) and aluminum. The plots of ε’ and ε′′ of these

four metals along with potassium and sodium are shown in Fig. 1.2

As previously mentioned, silver has the lowest loss in the visible and NIR ranges.

However, in terms of fabrication, silver degrades relatively quickly and the thickness

threshold for uniform continuous films is around 1223nm [80–82], making silver less

suitable for TO devices (discussed in Sect. 5). Additionally, silver losses are strongly

dependent on the surface roughness [57]. Gold is the next-best material in terms of
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Fig. 1.2. Real (a) and imaginary (b) parts of the permittivities of Ag,
Au, Na, K, and Al. The data for Ag, and Au are taken from [39], and
those of Al, Na, and K are from [78]

loss in the visible and NIR ranges. Compared with silver, gold is chemically stable

and can form a continuous film even at thicknesses around 1.57nm [83,84]. It is very

important to note that films deposited with thicknesses below the percolation thresh-

old are semi/discontinuous with drastically different optical properties compared to

uniform films [85,86]. These fabrication complications make these materials undesir-

able at thicknesses below the percolation threshold when continuous films are needed.

Silver and gold films can be fabricated by various physical vapor deposition (PVD)

techniques and nanoparticles and metal-coated nanoparticles can be synthesized by

liquid chemical methods. Typical PVD methods include electron-beam/thermal evap-

oration and sputtering. In liquid chemical methods, chloroauric acid (H[AuCl4]) and

silver oxide (Ag2O)/silver nitrite (AgNO4) are commonly used for gold and silver,

respectively.

Because copper has the second-best conductivity among metals (next to silver),

it is expected to exhibit promising plasmonic properties. Indeed, ε′′ of copper is

comparable to that of gold from 600-750nm. Considering the cost of silver and gold,

copper would be a good candidate to replace silver and gold as a plasmonic material
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if the performance of copper were tolerable. Unfortunately, fabricating devices with

copper is challenging, as it easily oxidizes and forms Cu2O and CuO. A systematic

study of the oxidation effects on copper for LSPR modes is found in [87]. In their

results, Chan et al. have demonstrated that oxide-free nanospheres exhibit a sharp

and narrow LSPR peak comparable to that of silver and gold.

Aluminum has not been an attractive plasmonic material due to the existence of

an interband transition around 800nm (1.5 eV), resulting in large ε′′ values in the

visible wavelength range (see Fig. 1.2). However, in the UV range, ε’ is negative even

at wavelengths smaller than 200nm where ε′′ is still relatively low. Thus aluminum

is a better plasmonic material than either gold or silver in the blue and UV range.

It is important to note that the ε’ values of silver and gold do not become positive

until wavelengths greater than 326nm and 207nm, respectively. Aluminum is easily

oxidized and very rapidly forms an aluminum oxide (Al2O3 ) layer under atmospheric

conditions, making device fabrication with aluminum challenging. The thickness of

this Al2O3 layer is typically 2.5-3nm [88], and the presence of this oxide layer results

in a red shift in LSPR peak position [89]. Despite these challenges, aluminum has

been used in plasmonic systems in the UV-blue spectral region such as to study

LSPR [88, 89], surface plasmon polariton (SPP) propagation [90], surface-enhanced

fluorescence [91, 92], and Raman spectroscopy [93, 94].

1.3.2 Metallic Alloys

Metallic alloys, intermetallics and metallic compounds are potential candidates

for alternative plasmonic materials owing to their large free electron densities. This

section primarily discusses the various techniques employed to tune the optical charac-

teristics of metals by making alloys. Metallic compounds such as magnesium diboride

(MgB2) are not discussed here due to their poor performance as plasmonic materials

around optical frequencies [95–99]. Similarly, intermetallics such as silicides, which
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are reported to be plasmonic materials, will not be discussed owing to their large

losses in the NIR and visible spectrum [100–105].

Noble-Transition Alloys

Because of the strong plasmonic performance of noble metals, one approach to

improve these materials is by shifting their interband transitions to another (unim-

portant) part of the spectrum. This can be achieved by alloying two or more elements

to create unique band structures that can be fine- tuned by adjusting the proportion

of each alloyed material.

Noble-transition metal alloys are one interesting set of potential alternative plas-

monic candidates. Bivalent transition metals, such as Cadmium and Zinc, when

doped into monovalent noble metals contribute one extra electron to the free-electron

plasma [106]. This results in n-type doping of noble metals, which raises the Fermi

level, increases ωp, and shift the threshold for interband transitions, thereby modify-

ing the optical spectra of the alloy. By changing the Fermi level of a metallic layer,

one can, in principle, reduce the absorption at a specific wavelength. This could

be accomplished, for example, by shifting the Lorentzian peak to some other wave-

length that is unimportant for a particular application. This process of manipulating

and fine-tuning a materials electronic band structure to achieve desirable electronic

properties is referred to as band engineering.

The particular experiment detailed in [106] involved n-doping gold with cadmium

and employed samples with pre-determined stoichiometries that were purchased from

commercial vendors. Alloying gold and cadmium creates a unique band structure,

shifting the peak losses to new frequencies and resulting in higher losses in one fre-

quency range, with simultaneously lower losses in another range. To illustrate this

point, Fig. 1.3 shows a simulation demonstrating how doping gold with cadmium

shifts the interband transition peaks, confining high losses to one region while lower-

ing losses almost everywhere else in the spectrum. This method of raising the Fermi
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level by small amounts can continue for low doping levels (<10% volume), but the

technique will break down as the doping levels become high enough to significantly

modify the materials band structure. This technique may be extended to different ma-

terial combinations, creating unique band structures optimized for specific frequencies

and applications.

Fig. 1.3. By courtesy of Dr. M. Noginov and Dr. V. Gavrilenko,
Norfolk University [106]) Numerical simulation detailing the shift in
interband transition peak and modified band structure when Au [39]
is doped with 3.3 at.% Cd. The dashed curve shows the imaginary
permittivity for the undoped gold, while the solid curve is the result
for the doped alloy. The doping process combines the losses from
peaks I & II into a single, confined high-loss region, while leaving
lower losses elsewhere.

Alkali-Noble Inter-Metallic Compounds

Alkali-noble metal inter-metallic compounds are another group of candidates for

low-loss metals because the Group I alkali metals exhibit the strongest free-electron-

like behavior [107]. As far back as 1978 [108], the permittivity of Li2AgIn was exper-
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imentally measured, exhibiting zero-loss permittivity values at 2 eV without mention

of the implication of this result for plasmonic devices. Note that this paper presents

data showing negative losses, which raises some doubts about the accuracy of mea-

surements or parameter extraction. While many alkali-noble metal binary compounds

have been presented as alternative plasmonic materials [107], the compound predicted

to show the most promise is potassium gold (KAu), which has been calculated to have

zero interband losses below its unscreened plasma frequency at 1.54 eV. However, be-

cause of Drude losses, the crossover point is 0.5 eV. Because KAu does not have

negative ε values in the telecommunication and visible frequency ranges, it cannot be

considered a plasmonic candidate for applications in these spectral ranges.

Fabrication of alkali-noble compounds can be challenging. Just bringing two met-

als of significantly different properties together to form an alloy can be a non-trivial

task. The vapor pressures of potassium and gold differ by 10 orders of magnitude and

their surface energies differ by an order of magnitude, making the alloying process

difficult. Assuming these compounds behave similarly to pure alkali metals, these

highly reactive alloys must either be characterized in-situ or be passivated prior to

removing them from the fabrication chamber in order to prevent rapid oxidation.

Passivation would allow for further optical characterization of the fabricated sample

using ellipsometry, prism coupling, SPP propagation, and other techniques, but the

passivation itself may alter the surface properties of the sample as well as limit appli-

cability of such films for real device fabrication. Because such compounds have not

been extensively studied in the past, the phase, stoichiometry and growth kinetics of

these alloy systems are not well understood.

1.3.3 Semiconductors

Semiconductors are conventionally regarded as dielectric materials for frequencies

above several hundred THz. However, semiconductors can actually exhibit a negative

real permittivity in this spectral region under certain circumstances [109–112]. Due
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to the ease of fabrication and flexibility in tuning their properties such as carrier

concentration, semiconductors are also potential materials for plasmonics. In order

to qualify as a low-loss plasmonic material, the bandgap and plasma frequency of the

semiconductor both must be larger than the frequency range of interest. While a

large plasma frequency ensures a negative real permittivity, a large bandgap ensures

almost no interband transition losses. Semiconductors can exhibit negative ε’ in IR

frequencies when heavily doped [109–111] or in resonance (e.g. phonon resonance in

silicon carbide [78, 112, 113]). Because resonance is a narrow-band phenomenon and

phonon resonance occurs at low frequencies, here we con- sider only heavily doped

semiconductors as possible low- loss plasmonic materials. Thus, a wide bandgap,

heavily doped semiconductor with high carrier mobility can qualify as a low loss

plasmonic material around the optical frequencies.

Despite the abundance of semiconductors with large bandgap values (> 1.5 eV)

and high carrier mobilities, very high doping levels are necessary to bring the crossover

frequency of semiconductors into the optical range, and achieving these doping levels

is challenging. Hoffman et al. [111] reported that doping gallium arsenide to 7× 1018

cm−3 can raise the crossover frequency (where ε’ changes from negative to positive) to

about 9μm. However, to bring the crossover frequency near the optical range, a doping

level of at least 3× 1020cm−3 is required. The necessity of doping semiconductors so

heavily raises concerns about the solid solubility limit, the fraction of dopants that

would be active, and doping compensation effects [114, 115]. Another major concern

at such high doping levels is retaining the high carrier mobility that is essential for

low losses. Due to these issues, plasmonics in the optical spectrum has remained

mostly out-of-reach for semiconductor materials.

However, indium-tin-oxide (ITO) has been shown to be a potential plasmonic

material in the NIR region [116–120]. ITO is a transparent, conducting oxide typically

consisting of 90% wt indium oxide (In2O3 ) and 10%wt tin oxide (SnO2). ITO has

been widely studied in the field of optoelectronics. Because ITO is non-stoichiometric,

predictions show its plasma frequency can be engineered between 0.44 eV and 6.99 eV
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by varying the tin (Sn) doping level in In2O3 up to 45%wt. Experimentally, the plasma

frequency has been measured between 0.78 and 2.13 eV [110,121,122]. Robusto et al

have demonstrated SPPs in ITO between 1.8μm and 1.9μm [116], which was followed

by many other groups [117–120] reporting SPPs in the NIR region. Therefore, ITO

appears to be an appealing plasmonic material in the NIR and optical frequency

ranges.

Because ITO is a non-stoichiometric compound, its optical properties largely de-

pend on the growth/deposition processes and annealing conditions, including the

temperature and ambient gasses [110]. Sputtering and laser ablation techniques have

reliably produced quality films of ITO [123]. Post-deposition annealing in nitrogen

has been shown to produce more conductive and less transparent films due to in-

creased oxygen vacancy (VO) defects [124]. On the other hand, less conductive and

more transparent films are produced by annealing ITO in an oxygen ambient [124].

In our own experiments, we have observed significant changes in the dielectric func-

tion of e-beam evaporated ITO films annealed in different ambient environments, as

shown in Fig. 1.4. While ITO films annealed in oxygen do not show negative ε’ in

the spectrum of interest, the films annealed in nitrogen ambient do show negative

real permittivity. Fig. 1.4 also shows that ITOs properties depend on the annealing

temperature. A higher annealing temperature increases the conductivity of the ITO

film and reduces the loss within the wavelength range of interest. It is important to

note that the loss in ITO films is comparable to that of silver in the NIR range but

is significantly lower than the losses in silver at longer wavelengths.

Other than ITO, high performance conductive zinc oxides such as Aluminum Zinc

Oxide (AZO) and Gallium Zinc Oxide (GZO) can be promising low-loss alternatives in

NIR. These conductive zinc oxides are widely studied for applications in transparent

electronics. Based on the optical characteristics of these films reported in literature,

we have found that AZO and GZO can have significantly lower loss than silver at

telecommunication wavelengths which are of particular importance for photonics and

nanophotonics applications (see Fig. 1.5) [125–127]. While AZO can exhibit losses
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Fig. 1.4. Real (a) and imaginary (b) parts of permittivity of ITO
annealed at various conditions (N2, 450

◦C; N2, 650◦C; O2, 450
◦C; O2,

650◦C).

Fig. 1.5. Real (a) and imaginary (b) parts of permittivity of AZO
and GZO obtained from parameters reported in reference [125]. The
losses in AZO and GZO are much smaller than that of silver [39] at
the telecommunication wavelength.

more than three times lower than that of silver at the wavelength of 1.5μm, GZO

being only slightly inferior to AZO, can exhibit lower losses too.
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Similar to other conductive oxides, AZO and GZO are non-stoichiometric, and

deposition conditions play a crucial role in achieving the desired properties. High

quality thin films of AZO and GZO may be produced by sputtering or laser abla-

tion. Deposition temperature, oxygen partial pressure during deposition and dopant

concentration must be optimized in order to achieve low loss as well as negative real

permittivity [109,125–129]. For example, M. H. Yoon et al. report that large doping

of zinc oxide does not necessarily increase the carrier concentration [130]. In AZO,

a large doping level results in the formation of ZnAl2O4 , which does not increase

carrier concentration, but adversely affects the carrier mobility through increased

scattering. This causes the zero-cross-over of real permittivity to shift towards longer

wavelengths. We observe this happening in Pulsed Laser Deposited (PLD) AZO films

with 2%wt Al2O3. Evidently, lower Al2O3 concentration of about 0.8 %wt produces

AZO films with ε’ -cross-over at a wavelength smaller than 1.5μm [125]. With losses

being much smaller than in silver at this wavelength, AZO is a promising low-loss

alternative material for plasmonics in NIR.

Aside from oxide semiconductors, III-V semiconductors (e.g. GaAs, GaN, GaP)

and SiC are potential candidates for plasmonics in the NIR and optical spectral

ranges. However, heavy doping could again be a problem that must be addressed

when considering these materials as options for alternative plasmonic materials.

1.3.4 Graphene

Graphene is another material that has generated excitement in the research com-

munity due to its unique band structure and high carrier mobility [131–134]. Graphene

is a two-dimensional system - enabling excitation of surface plasmons (SP) similar to

the surface plasmons on metal/dielectric interfaces. However, these two-dimensional

plasmons in graphene exhibit a dispersion relation different compared to plasmons

in three dimensions [135–137]. Some schemes for plasmon based THz oscillators in

graphene have already been proposed in literature [138–140]. These plasmon modes
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can possibly exist up to near-IR frequencies. However, in order to evaluate the po-

tential of graphene as an alternative low loss plasmonic material, the losses in the

plasmon modes must be evaluated [141].

It can be expected that interband transitions contribute significantly to losses be-

cause of the zero band-gap in graphene. These interband transitions occur above a

threshold determined by Fermi energy and plasmon wavevector [136]. However, this

threshold can be shifted to frequencies beyond the region of interest by larger doping,

which increases the Fermi energy. It has already been experimentally demonstrated

that the interband threshold can be tuned by varying electrical doping [142]. Be-

low the interband threshold, the losses are primarily due to impurity scattering and

excitation of optical phonons together with electron-hole pairs. Jablan et al. have

analyzed the electron relaxation times due to different loss mechanisms in graphene,

and demonstrate that graphene may inherently contain lower losses relative to con-

ventional metal/dielectric interfaces up to frequencies corresponding to 0.2 eV [141].

Initial theoretical estimates indicate that graphene is a good plasmonic material for

THz applications. However, at NIR frequencies, losses in graphene may still be com-

parable to noble metals. This makes graphene less attractive as an alternative plas-

monic material at the telecommunications and visible wavelengths.

1.4 Quality Factors

Quality factors, or figures-of-merit, form a common platform to compare the per-

formances of various materials used in different applications over a wide frequency

band. Although the loss in a material characterized by ε′′ is a necessary indicator

of performance, the real part of permittivity ε’ is also important in quantifying the

overall material quality in many devices. Because the field distribution in a material

depends on ε’ and the loss depends on ε′′, performance metrics or quality factors for

a plasmonic material are generally a function of both ε’ and ε′′. Considering that

different applications can have different definitions for the quality factors [143–146],
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our discussion is focused on four major classes of plasmonic devices: LSPR based

devices, SPP waveguides, TO devices and superlens. It is important to note that

the following discussions are valid only in the range of frequencies for which ε’ is

negative. For metals and metal-like materials such as heavily doped semiconductors,

this translates to frequencies below the crossover frequency. It should also be noted

that in the following discussion, the term metal is used for both metals and metal-like

materials for brevity.

In the first part of this section, the quality factors of LSPR and SPP systems

are considered and are denoted as QLSPR and QSPP, respectively. LSPR and SPR

systems produce local field enhancement at the surface of metallic components. Hence

their quality factors can be defined as follows:

Qf =
(Enhanced local field)

(Incident field)
(1.5)

Quality factor for LSPR depends significantly on the shape of the metal nanopar-

ticles. For a sphere, QLSPR is given by Eq. (1.6):

QLSPR(ω) =
−ε′(ω)
ε′′(ω)

. (1.6)

For a cigar-shaped spheroid, Eq. (1.6) becomes Eq. (1.7):

Q′
LSPR(ω) =

ε′(ω)2

ε′′(ω)
. (1.7)

For SPR, the quality factor QSPR assumes the same form as Eq. (1.6). QSPP

can be defined as the ratio of the real part of the propagation wavevector (k′x) to the

imaginary part (k′′x) [147]:

Q′
SPP (ω) =

k′x(ω)
k′′x(ω)

=
ε′m(ω) + εd(ω)

ε′m(ω)εd(ω)
ε′m(ω)

2

ε′′m(ω)
, (1.8)

where εm is the permittivity of the metal, and εd is the permittivity of the sur-

rounding dielectric material. If |ε′m| � εd, Eq. (1.8) can be simplified as follows:
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Q′
SPP (ω) =

ε′(ω)2

ε′′(ω)
. (1.9)

It may be noted that QSPP has the same form as Q′
LSPR defined for spheroid

nanoparticles. The quality factors for LSPR and SPP are shown in Fig. 1.6. This

figure does not include semiconductors and alloys, as their quality factors are much

lower than the rest. Eqs. (1.6) & (1.9) explain how QLSPR and QSPP become large

when a material has a large, negative ε′ and a small ε′′. These equations clearly

convey why conventional plasmonic materials such as silver and gold, which have a

large, negative ε′ and a low ε′′, have been the plasmonic materials of choice for most

applications.

Fig. 1.6. Quality factors for localized surface plasmon resonances
(QLSPR) is shown in panel (a), and surface plasmon polaritons quality
factor (QSPP ) is shown in panel (b). The permittivity values used to
calculate the presented quality factors are the same as those shown in
Fig. 1.2

Transformation optics (TO) devices, however, require a different figure of merit

due to the nature of TO devices. These devices typically need materials with a real

part of effective permittivity close to zero at the operating frequency [12]. Thus,

TO devices require the response of metallic components to be nearly balanced by
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that of dielectric components (which typically have εd ∼ 1). Hence, for practical

values of metal filling factors, the magnitude of ε′m of metal must be comparable in

magnitude (and opposite in sign) to that of the dielectric component. Thus, plasmonic

components of TO devices operate near their crossover frequency where ε′ is negative

and small in magnitude. Thus, in this case, only the losses (ε′′) are relevant in defining

the quality factor:

QTO =
1

ε′′m
(where − ε′m ∼ εd ∼ 1) (1.10)

We now turn our attention to the superlens and its resolution limits. The resolu-

tion limit of superlens can be defined through Eq. (1.11):

Δ

d
=

−2π

ln
(−ε′′

2ε′
) (1.11)

where Δ is the minimum resolvable feature size and d is the thickness of the

superlens [148]. The value Δ/d can be considered as the normalized resolution of the

superlens. For the purpose of comparative studies using quality factors, we define

the inverse of Δ/d as the superlens quality factor QS. For the sake of comparison,

the host material is assumed to be air, hence ε′ of the superlens is set to -1 for the

following discussion. Therefore, QS can be expressed as:

QS =
d

Δ
=

− ln
ε′′

2
2π

(where ε′ = 1). (1.12)

Quality factors give a quantitative assessment of the performance of plasmonic

materials in their respective categories. However, practical considerations arising

from fabrication and integration issues must be considered before choosing the best

material.
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1.5 Comparative Studies

A summary of the figures-of-merit for various materials discussed in the previous

sections is provided in Table 1.2. While quality factors describe how well a material

will perform for various applications, there are limiting issues in terms of processing

and fabrication. For example, alkali metals are difficult to work with because they are

extremely reactive in air ambient environments. Thus, alkali metals have not been

used in plasmonic applications regardless of their high quality factors. In addition,

silver and aluminum are not ideal materials for the fabrication of plasmonic devices

because these materials easily oxidize when exposed to air, which can significantly al-

ter their plasmonic properties. Other fabrication issues can arise in particular designs,

such as the formation of extremely thin metallic films and the controlled synthesis of

metallic nanoparticles.
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Therefore, despite the fact that sodium and potassium have the highest QLSPR

and QSPP values next to silver, they are extremely difficult to work with, and are

therefore probably not practical from a fabrication standpoint. In most cases, silver is

by far the best material in terms of quality factor, but it is associated with problems

such as oxidation and cost. Aluminum has the advantage of having an extremely high

plasma frequency, and it is the only reviewed material that acts as a metal in the UV

part of the spectrum. However, aluminum also oxidizes quite easily, which can cause

issues in terms of fabrication.

Quality factors for TO devices and superlens indicate that alkali metals can be

a good choice. However, they have problems with processing and hence are not the

material of choice. Aluminum has a high QTO value, but is probably not particularly

good for TO applications. This is due to the fact that at the Al crossover wavelength

of 81nm, the thickness of the aluminum layer can be at most 8nm for effective medium

theory to hold. In this range, film roughness, as well as the formation of oxidation

layers, could be detrimental to the plasmonic properties of the aluminum structure.

However, Aluminum will perform well as a superlens, if these issues can be resolved.

Silver also suffers from similar fabrication problems. From the alkali-noble metal

alloys, KAu is a possible candidate for TO or superlens applications in terms of

the materials quality factor, but there are serious challenges with the synthesis and

chemical stability of KAu. In contrast, doped zinc oxide and indium-tin-oxide are

realistic choices for TO devices in the NIR range including the telecommunication

wavelength, which is particularly important for nanophotonics circuitry. With the

optimization of processing conditions, these materials can outperform silver for TO

applications, potentially enabling unsurpassed control of light on the nanoscale.

1.6 Conclusions

We have discussed the optical properties of different plasmonic materials, including

a comparison of their predicted performance metrics in terms of quality factors. The
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comparative study shows that there is not a single clear choice for the best low-loss

plasmonic material for all applications. Our comparison demonstrates that silver

dominates all of the materials we considered in terms of its quality factors in LSPR

and SPP applications in the visible and NIR ranges. However, silver is not the

clear choice as a low-loss plasmonic material for other applications such as TO and

superlens. Even though alkali metals and aluminum have high quality factors for

TO devices and superlens, they pose processing challenges. Thus, silver is the best

material for a superlens in the near UV. In NIR, AZO may be the best material for

TO devices and superlensing, followed by ITO and GZO. Furthermore, these oxide

semiconductors can work well at the telecommunication wavelength, which makes

them very important substitutes for conventional materials such as gold and silver.

A materials quality factor describes how well a material performs, but it does not

give insight into other aspects such as ease of processing and feasibility of integration.

A final choice of materials requires a trade-off between quality factor, fabrication

practicality, and cost. As an example, the material cost of gold and silver prohibit

their wide-scale adoption in cost-driven markets such as photovoltaics.

With the rapid development of nanophotonics, it is clear that there will not be

a single plasmonic material that is suitable for all applications at all frequencies.

Rather, a variety of material combinations must be fine-tuned and optimized for

individual situations or applications. While several approaches and materials have

been presented, the problem of losses in plasmonic materials remains open-ended. An

improved plasmonic material has the potential to make an enormous impact on both

optics and nanoelectronics by allowing for a new generation of unparalleled device

applications. We expect the comparative study presented herein to be useful in the

elimination of poor choices, and it will serve as a guide in making the optimum choice

for a low-loss plasmonic material in various applications.
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2. NANOWIRES GROWN WITH GLANCING ANGLE

DEPOSITION (GLAD)

Exploring and developing new and higher performance-based plasmonic materials is

the first step for practical and realizable Transformation-Optics devices. However,

many applications need non-conformal and films with gradient thicknesses that are

not possible with traditional, top-down, 2-Dimensional fabrication. As technology

moves forward towards Transformation Optics and other electronic technologies, in-

novation relies on new and 3D fabrication techniques.

2.1 Comparing Traditional PVD to GLAD

Physical Vapor Deposition (PVD) is an extremely common and developed tech-

nique used for depositing thin films on substrates. Using this technique, energy is

added to the source material - causing it to evaporate under vacuum. The evaporated

material will travel in a linear “line-of-sight” manner from the source to the substrate.

The sample is typically held directly above the source material at an angle normal to

the deposition. The films deposited in this manner onto the substrate will typically

be planar and uniform in thickness due to the relatively even deposition flux across

the substrate. When a mask is applied on the substrate, the line-of-sight nature of

the evaporation will deposit material relatively evenly both on the top of the mask,

and onto the substrate through the mask opening(s).

As opposed to typical deposition systems (where the sample’s angle and rotation

are fixed), Glancing Angle Deposition is a PVD process that allows full control over

the angle and rotation of the sample. With these added degrees of control, many

of the previous assumptions about the films deposited in PVD evaporation must be

reconsidered when the sample is rotated and/or the flux is deposited at an angle.
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Using Glancing Angle Deposition (GLAD), this line-of-site behavior can be exploited

to produce a variety of films with non-planar geometries for new optical and electrical

devices. For example, when the substrate is rotated to a large, glancing angle (above

about 65◦), nanowires will grow (not continuous films). When materials are deposited

at an angle over a mask, non-planar films can be formed behind the mask. Similarly,

when materials are deposited on an angle over non-planar structures, non-uniform

structures can be created along curved surfaces. This fabrication approach shows

great promise in the Transformation Optics and metamaterials community to develop

materials with unprecedented control over the flow of light. A variety of interesting

and exciting devices can be fabricated using this fabrication technique that would be

difficult or impossible to do without it.

2.2 Background

Historically, most Glancing Angled Deposition (GLAD) fabrication has been fo-

cused on various types of nanowire fabrication. When a small amount of material

is first deposited on a substrate, rather than forming a thin and continuous film,

the material will begin by forming small islands. A good example of this process is

when silver is deposited on a silica substrate. For those unfamiliar with Ag thin film

deposition on Silica, the growth mechanisms involved are actually quite nontrivial,

and have been studied extensively in the past. Due to surface energy differences be-

tween Ag and Silica, rather than forming a smooth continuous film, Ag will transition

from small island formations to a percolated film, and eventually continuous films at

around 0-10nm, 10-20nm, and 20nm respectively. When Ag is deposited on a Silica

substrate at a glancing angle (larger than ∼65 ◦), a very different growth mechanism

occurs. At low deposition thicknesses, islands will form at random locations on the

substrate (similar to traditional evaporations). However, because the material flux is

incident at such high angles, the small islands will cast shadows behind them block-

ing the silver from depositing onto these areas. Because this shadowing effect allows
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for the Ag to be deposited in some areas while not others, growth will only occur

in the non-shadowed areas effectively creating nanowires. This growth mechanism

is somewhat similar to the way in which trees grow in a forest. After the seeds are

randomly arranged on the forest floor, only the seeds that get sun will grow into trees.

As the trees become larger, they will capture more light, and continue growing, while

those left in the shadow will no longer grow. An illustration of this nanowire growth

mechanism is shown in Fig. 2.1.

Fig. 2.1. Growth mechanism for nanowire growth using GLAD. The
red arrows represent silver deposited at an oblique angle to the sub-
strate. The red ellipses represent actively growing nanowires, while
the gray ellipses represent the nanowires that have been shadowed
and are no longer growing.

One detail of importance in Fig. 2.1 is that the nanowires grow parallel to one

another, but not antiparallel to the incident flux (as might be expected). This angle

of growth can be very roughly approximated using Eq. (2.1)
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β = α− arcsin

(
1− cos(α)

2

)
(2.1)

where α is the angle of material deposition, and β is the angle of nanowire growth

[42] but a more exact calculation for the growth angle would involve many other vari-

ables, including what material is deposited, vacuum pressure, substrate temperature,

evaporation rate, etc.

Preliminary fabrication testing of nanowire growth was conducted by depositing

silver on a silicon dioxide substrate. Simultaneously, wires were also grown on a silicon

dioxide substrate with a very thin (15nm) ITO coating. Side- and top-views of this

fabricated sample are shown in Fig 2.2. The side view displays the deposition angle,

and the angle of wire growth. The top view shows nanowires with aspect ratios of

more than 11:1.

Fig. 2.2. Side and top views of the randomly grown array of Ag nanowires

2.3 Random Nanolasing

A laser/spaser can be created around randomly oriented structures that scatter

light randomly. In the case where these random structures scatter light in a “loop”,

an efficient feedback system can be formed. Gain medium surrounding these random

structures can provide the required amplification when it is properly pumped. Silver

nanowires grown with GLAD techniques can provide very large arrays of nanowires
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either randomly or periodically, and can act as a feedback system for random nanolas-

ing. The strong scattering from the nanowires provide a high probability of forming

a coherent feedback loop, depending on the length, density, and periodicity (random

or periodic) of the structures.

In order to test the effect that length of the nanowires have on lasing, three dif-

ferent samples were fabricated with different amounts of material deposited (400nm,

700nm, and 1000nm). Due to the growth mechanisms described in the GLAD Fabri-

cation Chapter 2 “Nanowires grown with Glancing Angle Deposition”, we know that

over these deposition thicknesses, the randomly grown nanowires will change from

randomly positioned and sized islands to very short nanowires, and finally to ran-

dom nanowires with strong variation in lengths and structures. Images of the three

fabricated samples are shown in Fig 2.3.

2.4 Experimental Results

The samples were then covered with R6G-PVA (10nM)and pumped using a Nd:YAG

Laser (532nm, 800ps, 1Hz) using an optical setup shown in Fig. 2.4

The output intensity from the 3 different samples were measured and compared

to a glass wafer without any nanowires grown on it. The results can be seen below

in Fig. 2.5a. It is clear that the nanowires greatly enhance the lasing intensity, and

that longer nanowires show a greater enhancement than the shorter wires. To further

demonstrate the lasing effect, the samples were pumped with different powers and

the output intensity was measured. Results from this study can be seen in Fig. 2.5b

These randomly arrayed nanowires clearly show the behavior expected of a lasing

source. There is still ongoing work to determine some of the finer details of lasing in

these structures. First, the lasing could be purely from the strong electromagnetic

field enhancement that these nanowires are expected to exhibit, and not from a co-

herent feedback from the random wires. To completely understand this, simulations

of the structures should be performed to determine the field behavior around indi-
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Fig. 2.3. Three nanowire samples grown by GLAD with three effective
deposition thicknesses (400nm, 700nm, 1μm).

vidual and paired nanowires to understand how the field behaves with individual and

paired nanowires. Secondly, the randomly arrayed nanowires should be compared



33

Fig. 2.4. The setup for nanolasing optical measurements

with nanowires of uniform periodicity. Comparing these structures and having strong

simulation results should help us understand more precisely the nature of lasing in

this nanowire sample

2.5 Advanced Nanowire Growth Techniques

While these linearly grown nanowires are interesting, they barely scratch the sur-

face of what is possible with the GLAD system. Another relatively simple nanowire

growth technique using GLAD that would be almost impossible with traditional fab-

rication techniques is a “chevron” nanowire 2.6. For this chevron geometry, the

substrate was rotated 180◦ in the middle of the deposition. After the substrate is

rotated, the continued GLAD deposition will continue growing the nanowires in the

opposite direction. This technique can be repeated several times to create a “zig-zag

nanowire.

If the substrate is rotated by small increments during deposition, a chiral or helical

structure can be fabricated via Glancing Angle deposition. Here the substrate was

rotated 90◦ in 10 small steps while the entire 2μm of silver was deposited. Rather

than depositing the chiral structures randomly onto a flat substrate, Zinc Oxide wires

were grown on a glass substrate by Professor Nicholas Kotov’s student Bongjun Yeom

at the University of Michigan. The ZnO template and the silver nanowires grown on

the template can be seen in Fig. 2.7. Because the deposition of the silver will only
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Fig. 2.5. a) The intensity spectrum for the 3 nanowire samples com-
pared to a blank glass sample. b) The output intensity as a function of
the input pumping power. Both curves show characteristic behavior
for lasing

be on the topmost regions of the template (seen in Fig. 2.1), the wires will tend

to grow only on the tips of the ZnO nanowires - acting as a quasi-seeding layer. In
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Fig. 2.6. “Chevron nanowire - grown by rotating the sample 180◦ in
the middle of the deposition.

this figure, crystalline structure of the silver can be observed along the growth of the

nanowire. While the nanowires grow due to the line-of-sight nature of the Glancing

Angle Deposition, after the material is initially deposited, the atoms will tend to

settle in a crystalline manner, rather than a purely “line-of-sight” fashion.

2.6 Nanowires Grown on a Seeded Template

Like trees randomly growing in a forest, the nanowires previously described will

grow from random locations, and grow to different sizes and geometries. However, by

properly seeding locations for the nanowires to grow, the fabricated structures will be

uniform in period and geometry. This seeding can be accomplished by first creating

a thin film of the material at desired locations on the substrate using traditional

e-beam lithography. However, this seeding method must be approached carefully.

Seeding the wires too closely will cast shadows that prevent neighboring wires from

growing. Seeding the wires too far from one another will allow wires to grow from
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Fig. 2.7. Silver chiral structures with 90◦ counter-clockwise rotation
grown on a ZnO nanowire template

undesirable locations. Size of the seeding area is also critical as a seeding area that

is too large will allow several nanowires to grow from one location. Seen in Fig.

2.8, a seeded template of Hydrogen Silsesquioxane (HSQ) was made using e-beam

lithography. Here, we see that the silver will grow only from this seeded template,

and not from the flat substrate. The nanowires grown in this fashion are clearly more

uniform in size, shape, and length.

2.7 Complex Nanowires from Previous Literature

Several techniques of Glancing Angle Deposition have been reported in litera-

ture [149–151]. These mentioned papers describe techniques for several advanced

techniques exploiting the GLAD phenomena. While all the structures described above

have been grown with silver on an un-cooled substrate, Glancing Angle Deposition
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Fig. 2.8. Silver nanowires grown from a seeded template. As the
nanowires only grow from the seeded template, their size is more
uniform in size, shape, and length

can be exploited to make nanowires of more complexity by depositing materials will

less surface energy on a cooled substrate. Fig. 2.9 shows several structures made

from MgO on a cooled substrate. This combination allows for nanowire growth of

higher aspect ratios of complex shapes, such as helices and chevron structures.

Fig. 2.9. Various types of nanowire growth via GLAD techniques
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3. GLANCING ANGLE DEPOSITION ON CURVED AND

SPHERICAL SURFACES

3.1 Introduction

When materials are deposited via PVD on curved surfaces, non-uniform films

can be created. Using Glancing Angle Deposition (GLAD), the line-of-site behav-

ior of physical vapor deposition can be exploited to produce a variety of films with

non-planar geometries for new optical and electrical technologies. This fabrication ap-

proach shows great promise in the Plasmonics and Transformation Optics and meta-

materials community to develop materials with unprecedented control over the flow

of light. A variety of interesting and exciting devices - ranging from non-diffraction

limited lenses to nanolasers can be created using this angled deposition that would

be difficult or impossible to do without this technique.

3.2 Angled Deposition on Curved Surfaces

In physical vapor deposition, the source material will be evaporated in a “line

of sight” manner, and the film deposition thickness is determined (in large part) by

the effective surface area that is exposed to the source material being evaporated. In

the case of a planar substrate, film thicknesses will be uniform because the effective

surface area is constant. However, in the case of a non-planar surfaces, the amount

of deposited material will change with the effective surface area. For example, in the

case of spherical particles, the material deposited at an angle normal to the particle

will receive the full amount of deposited flux, the edges of the particle will receive only

a glancing (close to zero) amount of material, and there will be some distribution in

film thickness across the sphere. An example of the thickness gradient created when
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a material is deposited at an angle on a sphere is shown in Fig. 3.1. By rotating the

angle of the substrate, an angled deposition can be performed at any angle (between

0◦ and 180◦) over the spherical particle to create this curved distribution of film

thickness from any angle around the sphere.

Fig. 3.1. Schematic of angled PVD deposition on a spherical sur-
face. A gradient in thickness is created due to the varying amounts
of surface exposed at the angle of deposition

As an example of this film thickness gradient, Fig. 3.2 shows the result of de-

positing 40nm of silver on a 5μm SiO2 microsphere at an angle of 45◦. The growth

dynamics of silver films on SiO2 has been studied in depth and thin film formations

has been previously analyzed. When the effective deposited thickness is below 10nm,

silver will form isolated “islands”. When the effective thickness is around 10nm, the

film will become percolated, and when the effective thickness approaches 20nm, the

film will become continuous. In Fig. 3.2 we see a clear effective thickness gradient

of deposited silver across the microsphere. Because the total deposited film on the

sphere is 40nm, the entire spectrum of this film growth can be seen along the film,
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from a continuous layer on the upper right (∼20nm), through the percolated film,

islands, and eventually uncoated SiO2.

Fig. 3.2. A 40nm silver deposited at a 45◦ angle over a 5μm SiO2

microsphere. A distribution in effective thickness can be seen ranging
from no coverage through full continuous coverage.

Multiple layers of different materials can be deposited in this manner to create

“core-shell” structures of alternating materials. By depositing each material at a

large angle (∼ 86◦) and continuously rotating the substrate during deposition, the

outside edges of the sphere will be coated with continuous films, while the top of

the structure will receive a glancing deposition of material. As noted in section 2.2,

nanowires can be grown by depositing the source material at large angles close to 90◦

and care must be taken to prevent these wires from growing at the glancing angles

(top of the sphere). If silver is deposited directly onto SiO2 at large angles, the silver

films will have very rough and discontinuous surfaces, even with larger deposition
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thicknesses. In Fig. 3.3, five alternating layers of silver and SiO2 are deposited on a

5μm microsphere at an angle of 86◦ without germanium wetting layers. Despite their

relatively large total deposited thicknesses (100nm), the films are extremely rough

and discontinuous. At the top of the structure (Fig. 3.3b), the films are especially

rough due to the shadowing effects occurring at glancing angles (similar to nanowire

growth).

Fig. 3.3. Deposition of silver on SiO2 microsphere without germanium
wetting layer. Despite the films’ relatively large thicknesses, layers
are rough and discontinuous. The top of the structure is especially
rough, due to the shadowed, “nanowire”-like growth of the films at
sharp glancing angles

Because of its prominence in the optical community as an outstanding optical

and plasmonic material, great effort has been invested into developing techniques for

depositing silver films as thin as possible. One technique allowing for smooth and

continuous silver film growth on SiO2 is by depositing a very thin (∼ 1nm) germa-

nium wetting layer before the silver. This wetting layer promotes thin and continuous

growth of silver on SiO2 down to thicknesses below 7nm. To create continuous and

uniformly deposited films on spheres, special measures must be taken into account

during deposition. Firstly, the sample must be rotated for a short time to deposit a

small thickness of material over the area of discontinuous growth. Depositing small

amounts of material over these small islands that will form in regions of glancing depo-
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sition angles will smoothen the regions surface and prevent nanowires from forming.

Secondly, employing a wetting layer (germanium) allows for more smooth films of

silver, which will help with surface roughness and minimize nanowire growth on the

top of these structures. An example of such a core-shell structure can be see in Fig.

3.4. Here, 1nm germanium wetting layers were applied between each silver/SiO2

interface, and the deposition angle was continually changed during the substrate ro-

tation to provide continuous and relatively smooth layer coverage, despite the layer

thicknesses being relatively thin (just ∼13nm)

Fig. 3.4. 1μm SiO2 microsphere before (a) and after (b) FIB cut.
Although layers are only ∼13nm each, they remain relatively smooth
and continuous

There has been recent interest in the optics community of making non-uniform

layer thicknesses on curved surfaces for devices such as a planar hyperlens and optical

concentrator. By depositing materials at glancing angles onto the microspheres, it

is possible to create films that have a greater thickness on the sides of the sphere

and taper to thin films on the top of the sphere. Fig. 3.5 shows such a sphere

with tapered thicknesses across the side and top of a sphere. These curved layers of

varying thickness can be fabricated by depositing alternating layers of silver and SiO2

at glancing angles (86◦).
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Fig. 3.5. Gradient film thicknesses around a 5μm microsphere.
Fig.3.5a shows the entire microsphere, while Fig.3.5b is an inset of
the sphere, showing the difference in film thicknesses between the top
and sides of the sphere.

3.3 Comments

When growing thin films on curved surfaces, there are several additional notable

effects that must be taken into consideration beyond the purely “line of sight” nature

of the deposition. First, surface diffusion will have an impact on the final structure.

The effects of surface diffusion is nontrivial and depends on several variables, including

the material properties of the deposited material and its underlying layer, substrate

temperature, and deposition rate. While employing germanium as a wetting layer will

improve the growth of silver on SiO2, other parameters (such as substrate temperature

monitoring and cooling) are not available for observation or manipulation in this

system. Secondly, it should be noted that although material can be deposited all

around the outside of the sphere, there will always be an opening at the bottom of

the sphere, where no material can be deposited. This opening can be seen in the

bottom of Fig. 3.5a. Third, only the deposition onto the sphere has been discussed

in this chapter. In practice, deposition on the substrate around the sphere (see, for
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example Fig. 3.5) is unavoidable and its existence should be accounted for in device

design.
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4. SHADOWED ANGLED DEPOSITION FOR

THICKNESS TAPERED THIN FILM HYPERBOLIC

HYPERBOLIC METAMATERIALS AND WAVEGUIDES

4.1 Introduction

Typically, in Physical Vapor Deposition (PVD) grown thin films, layers will be

deposited at an angle normal to the substrate, which creates planar films that are

uniform in thickness. However, when a source material is deposited in a PVD evap-

oration at an angle over a mask, a “shadowed” region is created behind the mask.

This region will have a gradient amount of material deposited over the mask, which

will lead to a gradient in film thickness across the substrate. A schematic of this

angled shadowed deposition technique is shown in Fig. 4.1. While this concept may

seem trivial, the ability to create non-planar films of non-uniform thicknesses enables

a new field of nanofabricated devices with a higher degree of control over deposited

films’ thickness. This fabrication technology enables a family of devices with smooth

gradients in electrical and optical properties. This chapter will explain how mul-

tilayered films of alternating metal/dielectric layers can be fabricated with tapered

thickness profiles, and chapter 6 discusses two examples of a device that requires this

fabrication technology.

4.2 Tapered Silver Films on Uniform SiO2

As a source material is deposited at an angle over a mask via PVD, a gradient

in deposited layer thickness can be deposited (Fig. 4.1). The first type of shadow

deposited film described is a multilayered metal (silver)/dielectric (SiO2) structure



46

Fig. 4.1. Depositing material at an angle over a mask will produce a
shadowed region behind the mask with a tapered deposition thickness
profile.

where the silver thickness tapers from 20nm down to 0nm (continuous below 7nm),

and the SiO2 thickness is a constant 58nm across the substrate.

First, a Kapton R© tape mask (∼ 60μm) is applied to the glass substrate before

loading the sample into the chamber. Upon loading the sample , a 1nm germanium

wetting layer is deposited at an angle normal to the substrate (0◦). Next, the sample

is rotated to 20◦, and a 20nm silver film is deposited. By depositing the silver film

at an angle, a “shadowed” region is present behind the Kapton R© tape mask, which

will receive a distribution of deposited material. Regions of the sample that are

more than 20◦ from the top of the tape will receive the full 20nm of deposited silver.

Regions of the substrate below 20◦ will receive a distribution of deposited material.

As a combination of this gradient of flux and surface diffusion, the shadowed region

behind the tape will have a silver film whose thickness tapers between 20nm down to

0nm. SiO2 can then be deposited normal to the substrate to create a film of uniform

thickness (or at an angle to create a film with gradient thickness). The process can

then be repeated many times to create multilayer structures with aligned tapered

thickness films.
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The length of this tapered region may be increased by rotating the angle of flux

during the deposition. For example, holding the substrate at 20◦, but sweeping ± 2◦

will increase the length of the tapered region of the film. Fig. 4.2 shows layers of

silver tapering in thickness from 20nm down to zero, while the SiO2 layer thicknesses

remain constant at 58nm. Here, 45 layers in total were deposited (15 each of SiO2,

Ge, and Ag).

Fig. 4.2. Alternating metal / dielectric layers with subwavelength thickness

4.3 Tapered SiO2 films on Uniform Silver

While the previous section described a technique for creating a gradient films with

thicknesses tapering down to zero, here focus is on continuous films with non-planar

and non-uniform thicknesses. Rather than tapering the thickness of the silver film,

the SiO2 thickness is tapered in this case. Using similar angled deposition techniques,

these films may also be realized.

By adjusting the thickness of one material (dielectric), while keeping the thickness

of the other material constant, the effective properties of the composite material vary

with their relative filling fraction. The fabrication of this class of material begins

similarly, with a mask over which the materials are deposited. In this case, each

material is first deposited at a normal angle (0◦) to the substrate. After the desired
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thickness for one part of the structure (thickness 1) is achieved, the deposition angle is

rotated, creating a shadowed region with tapered thickness. The material continues to

be deposited at this angle until the final thickness of the second part of the structure

(thickness 2) is achieved. Through these means, a two (or more) sectioned effective

metamaterial can be fabricated with smooth transitions between sections. Fig 4.3

shows such a fabricated structure. Here, there are 15 layers each of silver and SiO2

(with 15 germanium wetting layers). The silver films here have a uniform thickness

of 10nm across the entire structure, while the SiO2 thickness varies between 30nm

and 100nm. This change of thickness changes the metal filling fraction, which in turn

changes the effective permittivity of the material in the in-plane and out-of-plane

directions.

Fig. 4.3. 15 alternating silver/SiO2 layers. Each silver layer has a
uniform thickness of 10nm. Each SiO2 layer has a thickness that
tapers between 30nm and 100nm

The strong change in metallic filling fraction across the substrate is enough to

make the material’s in-plane permittivity an effective positive (dielectric) at one side

(thick) of the structure, and an effective negative permittivity (metal) on the other

(thin) side of the structure. This strong change in effective optical properties of the

film have very interesting properties for a field or wave passing along this adiabatically

tapered film.
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4.4 Planar Magnifying Hyperlens

One exciting application for the fields of Transformation Optics and metamaterials

is to develop devices with resolution less than the diffraction limit. Feature sizes less

than the diffraction limit have their spatial information contained in waves with large

wave vectors or k-vectors. Because normal dielectric materials (such as air, glass, etc.)

only allow waves with finite (and relatively small wave vectors) to propagate through

them. In contrast, hyperbolic metamaterials (HMMs) do allow large k-vectors to

propagate through them. While the large k-vectors can propagate inside the HMM,

they cannot propagate through air, as the high-k waves are evanescent, and lost in the

far-field. Rather than using planar HMM layers, the layers can be curved to magnify

the image of the object. If there is enough magnification to bring the feature sizes

of the object larger than the diffraction limit, the features can indeed propagate into

the far-field, where they can be detected through conventional optical techniques.

Therefore, a magnifying hyperlens can provide resolution much below the diffraction

limit in the far-field. While a magnifying hyperlens has been demonstrated using a

curved, cylindrical structure, there remains a desire to have a hyperlens that is planar,

such that it can be more easily integrated with conventional optical microscopes.

For this reason, we have developed a metamaterial that has hyperbolic dispersion

(to allow high-k waves to propagate), curved on one side (to provide the required

magnification), and planar on the other side (to easily integrate into conventional

optical systems).

4.5 Design and Fabrication

As discussed previously in Section 4.3, a wedge-like structure can be fabricated

that is hyperbolic, curved on one side, and planar on the other side. As the curvature

of the layers will determine the device’s magnification, the curvature should be as

large as possible. As can be seen in Fig. 4.3, the final curvature (and magnification)

of the structure will become larger as more curved layers are consecutively stacked
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upon one another. Unfortunately, because the metal (silver) used in the HMM is

lossy, more added layers will lead to more loss. Therefore, there is a direct tradeoff

in this structure between magnification and internal losses (depending on the metal

used).

4.6 Simulations and Remarks

While this fabrication technique of making the curved wedge structure does pro-

vide magnification, limitations in the fabrication process dictate the limitations of the

final curvature of the structure. Because the structure in Fig. 4.3 is the largest cur-

vature achievable with this technique, we used this structure to simulate the amount

of achievable magnification. Using a COMSOL FEM model, the HMM structure was

simulated with two slits in a chromium (used for blocking the light) mask. Here, the

two slits are separated by a distance of 1100nm. One of the slits is on the flat region,

where the feature will travel straight through the structure, while the other slit is

positioned on the curved part of the structure, where its features will be magnified.

The image is detected in the far-field, and the magnification can be defined as the

ratio between the separation of the two slits, and the separation of the two intensity

peaks detected in the far-field. Upon simulating this structure, the results can be

seen in Fig. 4.4.

These simulations are useful, but unfortunately do not provide the results we

hoped for. On one side of the wedge, the two slits are separated by 1100nm. Upon

passing through the HMM wedge structure, the separation in intensity peaks is ap-

proximately 1300nm. While there is some magnification, it is only a factor of about

1.18, or 18% larger. As previously mentioned, adding more layers to this structure

would indeed increase the magnification, unfortunately, it would also provide greater

losses, to which this device is already very sensitive. In conclusion, while this de-

vice does, in principle demonstrate magnification is possible, the magnification is

not nearly enough to be useful in a practical device. However, using metallic films
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Fig. 4.4. Simulations used to calculate the magnification induced from
the HMM wedge structure.

with lower losses would allow one to increase the number of layers used, which could

provide the greater curvature needed for a planar magnifying hyperlens.
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5. INTRODUCTION TO HYPERBOLIC

METAMATERIALS

Bulk materials have a dielectric permittivities ε(λ) = (ε′ + iε′′). While the real part

of the dielectric function (ε′) describes the strength of the polarization induced by

an external electric field, the imaginary part (ε′′) describes losses associated with the

materials electric response. Metals (by definition) have a negative ε′, due to their

free-electron behavior at the wavelength of operation, while dielectric materials have

(by definition) a positive ε′. By stacking alternating layers of metal and dielectric

with subwavelength thicknesses (Fig. 5.1), this “metamaterial” exhibits effective

permittivities in the in-plane and out-of-plane directions, which can be approximated

by Effective Medium Theory (EMT). Here, the permittivity in-plane (x-y, or ε‖) can

be approximated by Eq.(5.1), the out-of-plane permittivity (ε⊥) can be approximated

by (5.2), and the relationship between k-vectors in the 3 directions is described by

Eq. (5.3).

Fig. 5.1. Alternating metal / dielectric layers with subwavelength
thickness and coordinate system used.

ε‖ = fmεm + (1− fm)εd (5.1)
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In these equations, εm is the real part of the permittivity of the constituent metal

layers, while εd is the permittivity of the dielectric layers. The variable fm is the volu-

metric metal filling fraction, ε‖ is the permittivity in the in-plane (x̂ and ŷ) directions,

and ε⊥ is the permittivity in the out-of-plane (ẑ) direction. One can see from these

equations that as the metal filling fraction is increased, the effective permittivities will

eventually become negative. In the range where the in-plane permittivity is negative

and the out-of-plane permittivity is positive, the dispersion relation between ky and

kz will exhibit a hyperbolic profile. One-quarter of a cross-section of the dispersion

relations for air, SiO2, and an HMM are shown in Fig. 5.2.

Fig. 5.2. Dispersion relations for air, SiO2, and an HMM structure,
demonstrating how waves propagating in the ẑ-direction cannot be
coupled to air or SiO2 because the y-components of the wave vectors
cannot be matched.
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Simple dielectric materials, such as air and SiO2, have ellipsoidal (or spherical)

dispersion relations. Waves propagating in these media have relatively small wave-

vectors that are bound to their dispersion curves. The name “Hyperbolic Metamate-

rial” comes from the shape of the dispersion profile for this class of materials, which is

a hyperboloid as shown in Fig. 5.2. The hyperbolic dispersion relation illustrates how

an HMM can support unbounded k-vectors that can be extremely large in magnitude.

For these reasons, HMMs have been of great interest to the optics community, and

have been used for several devices with unprecedented optical performances. The

resolution of conventional optical systems is limited by the Abbe diffraction limit.

In these systems, the resolution is limited by Eq. (5.4). Feature sizes smaller than

d have large k-vectors that will evanescently decay in media that cannot support

the large-k wave vectors. Because HMMs do support large k-vectors, subwavelength

features are preserved when traveling through the HMM. By curving the planar HMM

layers into a cylindrical structure, the features can be magnified to sizes above the

diffraction limit and these low-k waves can propagate into the far-field. In this way,

sub-diffraction limited features can be imaged in the far-field - a device known as a

hyperlens.

d =
λ

2nsin(θ)
(5.4)

As the photonic density of states (PDOS) is proportional to the volume of the

shell enclosed between two isofrequency contours in the k-space, HMMs can have a

PDOS that is much greater than that of dielectric media. An emitter’s spontaneous

emission is determined by the surrounding material’s PDOS. An HMM can provide

a coupled emitter with a nearly infinite broadband set of additional decay channels

that can ultimately enhance the emitters spontaneous emission through the Purcell

effect. Because the PDOS is proportional to the maximum k-vector in the surrounding

medium cubed (PDOS ∼ k3
max), every small increase in the maximum wave-vector

in the system can lead to a drastic enhancement of the PDOS. This approach has

produced valuable results towards improving the efficiency of broadband single pho-
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ton sources (such as Nitrogen Vacancy centers in nanodiamonds) [152]. However,

the high-k modes, which are evanescently coupled into the HMM are very difficult

to outcouple, due to a very large momentum mismatch. The next Chapter 6: “Ta-

pered Hyperbolic Metamaterial Waveguides” is devoted to designing, simulating and

fabricating a device that drastically enhances an emitter’s PDOS, and provides an

efficient method for outcoupling the high-k waves.
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6. TAPERED HYPBERBOLIC METAMATERIAL

WAVEGUIDES

6.1 Introduction

Due to the extremely large Photonic Density of States (PDOS) of HMMs, they

have the potential for drastically enhancing the spontaneous emission rate of single-

photon emitters. Using HMMs for enhanced single-photon emission has been previ-

ously studied [152], and a two-fold increase in emission rate was measured by placing

the single-photon emitters in close vicinity to a TiN/AlScN structure exhibiting hy-

perbolic dispersion. While placing the emitters above an HMM clearly enhances the

emission rate of single-photons, the enhancement goes into high-k waves of the HMM

and cannot be detected in the far-field. One proposed method for extracting the

high-k waves from the HMM is by surrounding the emitter by a “bulls-eye” grating

structure [153]. This technique should be avoided as it is narrow-band, and does not

take full advantage of the broadband nature of HMMs.

6.2 Outcoupling High-k Waves from HMMs

One of the distinguishing characteristics of HMMs is that they support propa-

gation of high-k waves. However, the challenge in taking full advantage of these

materials is the extracting (out-coupling) these high-k waves into free space. Fig.

6.1a illustrates this problem. For a wave incident on a material in the ẑ-direction, the

in-plane (x- and y-component) of the field must be conserved. It is therefore impossi-

ble to couple light between the HMM and air or SiO2, as the k-vector cannot transfer

between the materials while conserving ky (Fig. 6.1). A wave at this HMM/dielectric

interface will be evanescent, and quickly decay.
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In contrast to waves propagating in the ẑ-direction, waves propagating in the ŷ-

direction must conserve the z-component of the k-vector. In this case, it is possible to

couple light between HMMs and dielectrics such as air and SiO2 while preserving the

z-component of the wave-vector. In figure 6.1a, we can see that coupling is possible

when the magnitude of the ẑ-component of the wave is less than that shown in the

green dashed line.

Typically, dielectric materials and HMMs are classified as two distinct material

groups. However, here we examine the behavior of these metamaterials as they tran-

sition between dielectric and HMMs by varying the constituent metal filling fraction.

Figure 6.1b shows the dispersion relation for HMMs of different metallic filling frac-

tions, ranging from 0% (pure dielectric) to 35% (clearly HMM). This figure assists

in the understanding of waves propagating in and between metamaterials of different

metallic filling fractions.

For waves propagating along the HMM in the in-plane (ŷ) direction, the kz com-

ponent of the field must be conserved. As the field traverses between materials, the

k-vector will pass between dispersion curves in a horizontal manner, as shown in Fig.

6.1b. From this figure, it can be seen that wave vectors transform from k3 to k2 as

the metal filling fraction changes between 23% and 35%. The wave vector can also

transform from k2 to k1 as the wave passes from the HMM with 35% filling fraction

into air (along the green line in Fig. 6.1b). It is possible for wave vector k3 to directly

convert into k1, however, this coupling transition will have higher reflective losses (as

reflection is determined by the difference in magnitude of k-vectors).

While extracting light from the HMM into air is clearly important, the enhance-

ment of the PDOS must also be analyzed. The enhancement of the PDOS is propor-

tional to the cube of the maximum k-vector of the surrounding HMM (k3
max). Wave

vector k3 is larger in magnitude than k2 and will have a significantly larger enhance-

ment of the PDOS. Likewise, k2 will have a significantly enhanced PDOS compared

to k1. While considering the possibility of using these single photons in a practical

device however, outcoupling these high-k waves must be considered. While k3 shows
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greater enhancement, outcoupling the enhanced modes of vector k3 into free space

is very inefficient due to the large wave vector mismatch between k3 and k1. Con-

versely, vector k2 has better coupling efficiency to k1, but a much lower enhancement

of PDOS (compared to k3). Ideally, one would like a metamaterial waveguide that

can exploit the benefits of both filling fractions of HMMs. This can be accomplished

with a waveguide where one end would have a maximum enhancement of PDOS, and

the other end of the waveguide would have optimal coupling between the HMM and

free space. Between the two HMMs, a smooth transition would provide a medium

for the large k-vectors to be converted into low-k vectors while eliminating reflective

losses by adiabatically tapering the metal filling fraction of the HMM.

While a tapered waveguide can be designed to optimize the outcoupling of high-k

waves into free-space, these structures can also be used to quench the high-k modes

traversing through a tapered waveguide. In the previous example, high-k waves are

first created in the HMM region of lower metal filling fraction, and are converted into

lower-k modes as they pass into the HMM with higher metal filling fraction. By using

the waveguide in a reverse manner and decreasing the metal filling fraction (greatly

increasing the magnitude of the wave vector), high-k waves of an HMM can be quench.

By introducing high-k waves into the HMM in a region of high metal filling fraction,

the waves can pass along the waveguide into a region with lower metal filling fraction

(eg. from vector k2 to k3 in Fig. 6.1b). In this case, the magnitude of the k-vector will

grow very quickly into very high-k modes, where the energy will quickly be quenched

as the metal filling fraction approaches zero.

The goals of this work is to demonstrate that high-k waves can be coupled out of

HMMs, and finally, to demonstrate a waveguide that can optimize both enhancement

of PDOS, and outcoupling into free-space. Using a similar design, a parallel goal is to

demonstrate an adiabatically tapered waveguide with decreasing metal filling fraction

will quench the high-k waves passing through.
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Fig. 6.1. Dispersion relations for various dielectric and HMM struc-
tures. Fig. (a) demonstrates how waves propagating in the ẑ-direction
cannot be coupled to air or SiO2. Waves propagating along the y-axis
can be coupled to SiO2 or air, as they have matching ẑ-components of
their respective wave-vectors. Fig. (b) shows how the dispersion rela-
tion for various dielectric and HMMs change as a function of metallic
filling fraction.

6.3 Design

From of Fig. 6.1b, it is evident that HMMs with lower filling fractions are better

for supporting and propagating very high-k waves, while HMMs with higher filling
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fractions will couple into free-space more efficiently. The design for the adiabatically

tapered HMM waveguide will therefore proceed as follows: First, an HMM is chosen

with a metal filling fraction for an optimized enhancement of the PDOS. The emitting

source should be place in this region to optimize the source’s emission enhancement.

When choosing the filling fraction of this HMM, It is critical that the kz component of

the field one would like to outcouple must lie below the kz component of the material

of which the wave will eventually be outcoupled (shown as the green dashed line in

Fig. 6.1b). Next, an HMM with a different metal filling fraction is chosen which

has ky components that will be outcoupled as close to the surrounding dielectric as

possible. The purpose of the HMM in this region is to minimize reflection between

the HMM and the surrounding dielectric, which is satisfied when the k-vectors of two

regions are matched as closely as possible. Finally, the two regions of the HMM will

be joined by an adiabatically tapered waveguide structure.

The tapering of this waveguide allows the large k-vectors (e.g. k3) to smoothly and

efficiently transition into smaller k-vectors (e.g. k2) through an impedance matched

region that will minimize reflection. The length of the tapered transition should be

larger than the operating wavelength to avoid abrupt transitions (large reflections),

while not being too long - as material losses in the constituent metal will decrease the

device’s internal efficiency (the length would be on the order of 1μm). The number

of layers deposited in the structure should be at least 5 (of each Ge/Ag/SiO2) so that

the structure behaves as an HMM, although the number of layers can be increased

if the desired size of the outcoupling end of the waveguide is required to be larger.

The waveguide should be abruptly truncated at the end of the tapered region on the

outcoupling side to avoid unnecessary losses. The emitter should be place on top of

the HMM with optimized enhancement of the PDOS (e.g. k3), and as close as possible

to the tapered region. The enhanced emission will travel into this HMM, through the

adiabatically tapered waveguide, and outcoupled into air (or other dielectric medium)

with maximized outcoupling efficiency (as seen in Fig. 6.2b).
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Fig. 6.2. Outcoupling of enhance emission of single-photon emitters

For the case of quenching in tapered HMM waveguides, the design should be

reversed. Rather than designing the waveguide’s dispersion relation to transform

high-k waves into low-k waves to be outcoupled, for quenching, the high-k wave

should be transformed into very high-k waves that cannot couple into free-space and

will quickly die in the tapered region of the waveguide. In this case, as the waves

move along the tapering of the waveguide, the metal filling fraction should taper

down to zero. In practice, this tapering can happen in two ways: First, the metal

film thicknesses can decrease down to zero. While in practice it is very difficult to

bring the thickness of a silver film perfectly down to zero, the films can certainly be

continuous below 7nm, which can correspond with a very low metallic filling fraction.

The second option is to increase the dielectric film thickness while leaving the metal

thickness the same - which also decreases the metal filling fraction. Similar to the

outcoupling structure, the length of this tapered region should also be larger than the

wavelength to avoid abrupt transitions in the waveguide and prevent large reflections.

A schematic for the quenching tapered waveguide is shown in Fig. 6.3 where the metal

film thickness tapers down to zero.

6.4 Simulations

Using a commercial Finite Element Method (FEM) software package (COMSOL

Multiphysics), multilayer HMM structures with different metal filling fractions were

simulated to find how well waves in HMMs outcouple to air. For both the simulated
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Fig. 6.3. Quenching of high-k waves passing through metamaterial
with decreasing metallic filling fraction

structures shown in Figure 6.4, the scatterers (at equal distances from each end of

the waveguide) are cut adjacent to the tapering. In Figure 6.4a, the modes propa-

gating along the tapered region clearly encounter significant propagation loss as the

magnitude of k increases with the decreasing metal filling fraction. Thus, device 1 is

a possible solution for efficient light absorption (i.e. in-line waveguide termination).

Alternatively, the design 2 simulation reported in Figure 6.4b predicts the possibility

of tapering to convert the high-k HMM modes into waves with lower-k which can out-

couple more efficiently into air. The power outcoupled from the tapered HMM section

(right of Figure 6.4b) into air is 10% larger than the power outcoupled from the non-

tapered HMM (left Figure 6.4b). Additionally, the final filling faction of design 2 can

be further optimized to maximize the outcoupled power for a certain range of high-k

modes. Design 1 has been tested to verify the feasibility of in-plane out-coupling,

and design 2 is still under investigation to confirm the predicted improvement of the

outcoupling efficiency

As expected, the outcoupling efficiencies are greater when the magnitude in k-

vectors across the HMM/Air interface match more closely (see Fig. 6.1b). From

the chart in Fig. 6.1, the HMM with 35% metal filling fraction clearly has the

highest outcoupling efficiency and should be used to outcouple from the HMM to

air. However, although the HMM with 35% metal filling fraction provides the best
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Fig. 6.4. Outcoupling efficiencies of HMMs with various metal filling
fractions (a). Simulated outcoupling for one of the more high-efficient
modes (b).

outcoupling, the magnitude of the k-vector in this HMM is not nearly as large as that

of the HMMs with lower metal filling fractions, and will therefore have a much lower

enhancement in PDOS.

6.5 Fabrication

The fabrication process for these tapered waveguide structures is explained in

greater detail in Chapter 4.3, but a brief description specific to the design above

is presented here. First, a (∼ 60μm) Kapton R© tape mask is applied to an SiO2

substrate before loading the sample into the chamber. Upon loading the sample into

the evaporation chamber, a very thin (∼1nm) germanium wetting layer is deposited

followed by a 16nm silver layer at a normal angle of incidence. Next, SiO2 is deposited

normal to the substrate until the thickness is 30nm (corresponding with a 35% metal

filling fraction). The substrate is then rotated 20◦ and the SiO2 continues depositing

until the final thickness is 48nm (corresponding with a 25% metal filling fraction).

Rotating the structure during the deposition will create a shadowed region with a



64

tapered thickness profile that transitions between the two HMM regions. The steps

for depositing the three materials should be repeated until the final total number of

layers is deposited. A schematic for this fabrication procedure and final fabricated

structure (although with different filling fractions) can be seen in Fig. 6.5

Fig. 6.5. Outcoupling of enhance emission of single-photon emitters

The fabrication method for creating the quenching tapered waveguide can also be

fabricated using an angled deposition technique. First, a (1nm) germanium wetting

layer should be deposited normal to the substrate. This wetting layer is crucial

when tapering the silver film, because without it, the silver will not be continuous

for thicknesses below 20nm, and the films will be rough and non-continuous as the

metal filling fraction decreases. For creating the tapered structure where the silver

film thickness tapers down to zero, the silver film can be deposited over the KaptonR©

tape mask - providing a shadowed region that will create a region of tapered film

thickness. The thickness will taper down from 20nm in the more metallic HMM

region, down to 0nm in the fully dielectric region. After each silver layer, SiO2 will be

deposited at an angle normal to the substrate to create SiO2 films which are uniform
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in thickness. Because the metal film thicknesses taper down to zero, and the SiO2

thicknesses are constant, the metal filling fraction will taper from an HMM to a pure

(SiO2) dielectric. A fabrication schematic and SEM image of the final quenching

tapered HMM waveguide can be seen in Fig. 6.6.

Fig. 6.6. Outcoupling of enhanced emission of single-photon emitters

6.6 Conclusions

While HMMs provide a medium with extraordinary fundamental optical proper-

ties (including extremely high PDOS), HMMs have until this point, remained elusive

for use in practical devices because their extraordinary optical properties are diffi-

cult to observe in the far-field. These properties (including enhanced emission from

single photon emitters, and super-resolution) are contained within high-k waves that

can propagate within HMMs, but evanescently decay in dielectric media (which have

bounded k’s). To this point, methods for converting these high-k waves into the far-

field have been impractical and inefficient. Here we propose a design for outcoupling
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broadband high-k waves from an HMM with relatively high efficiencies. Rather than

outcoupling in the out-of-plane direction, high-k waves can be converted into low-k

waves in the in-plane direction. Furthermore, the enhancement of the PDOS and the

impedance matching for outcoupling can be independently optimized by using HMMs

of different filling fractions. These HMMs can then be linked by a tapered transition

region, which converts high-k waves into low-k waves (or vice versa) with impedance

matching for reduced reflection. Most importantly, this technique allows for both an

optimized enhancement in PDOS and optimized outcoupling of the high-k waves into

free-space.
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7. ALL-DIELECTRIC FULL-PHASE CONTROLLED

METASURFACES

7.1 Introduction

Controlling and manipulating the phase of an electromagnetic (EM) wave is a

fundamental technique in optics and optical devices. While there are devices which

currently serve this purpose, there remains a need for optical devices that are smaller,

thinner, more efficient, broadband, and in many cases, Complementary Metal Oxide

Semiconductor (CMOS) compatible.

Recently, researchers have expanded the knowledge of controlling the phase of

light at a planar boundary - leading to a modification of Snell’s Law (one of the most

fundamental laws in optics) [154]. Most of the related work in this field involves

altering the phase of an incident wave at the boundary of two dielectric materi-

als by using arrays of plasmonic (metal) antennas with different geometries, which

have a plasmonic response, leading to discrete phase discontinuities. This new field

has recently gained attention in the metamaterials community, and many various

demonstrations have been conducted, including a focusing lens [155], extraordinary

reflection/refraction [154], three-dimensional holograms [156], waveplates [157], bire-

fringence [158] and others.

While these various devices have been shown to function, they rely on plasmonic

surface structures, which suffer from high losses, and very low efficiencies (currently

10% or below in transmission mode [157]), especially at optical and infra-red frequen-

cies. Additionally, these metasurfaces only work for specific input polarization, and

very specific antenna design to achieve the required phase distribution.

To this end, the phase (or wavefront) and polarization of incident light can be

modulated by using metasurfaces - specifically designed, subwavelength metamate-
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rial structures on a substrate’s surface. Metasurfaces are designed to abruptly and

precisely shift the phase, amplitude or polarization of incoming light. Metasurfaces

are able to fully control the phase within a thin layer (less than the free-space wave-

length) after transmitted through, or reflected by the metasurface. These optically

thin metasurfaces are desired over 3-Dimensional (3-D) optical materials, due to their

relatively simplistic fabrication, and reduced thickness. Existing metasurfaces rely

on plasmonic (metal) structures to achieve the desired phase shift. These structures

depend on a plasmonic resonance, making them inherently lossy and narrowband.

In contrast to plasmonic metasurfaces, dielectric metasurfaces completely eliminate

losses within the metasurface, greatly improve efficiencies, and operate broadband, all

while remaining very thin - less than one free-space wavelength. Furthermore, these

binary structures can all be fabricated simultaneously with a single lithography and

etching process.

7.2 Detailed Description

In contrast to existing metasurfaces, all-dielectric, subwavelength, lossless, meta-

surfaces with full (2π radians) phase control, and much higher efficiency have been

developed. These surfaces are also very thin (less than the wavelength of light in free-

space). Additionally, because this technology is not reliant on any resonant effects

(such as plasmonic or phononic), the phase modulation is broadband. In this chapter,

dielectric is defined as a material with positive real-part of permittivity (ε′) at the

operation wavelength that does not exhibit a metallic (plasmonic) response, and this

definition does include semiconductors such as silicon. Similar to plasmonic meta-

surfaces, dielectric metasurfaces can still be very thin - smaller than the free-space

wavelength.
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When a plane wave is incident on the boundary of two dielectric materials with a

”step”-like geometry as shown in Fig 7.1, the phase of the wave will shift by a phase

given in Eq. (7.1) [159]

Δφ =
height× 2πΔn

λ0

(7.1)

where λ0 is the wavelength of incident light in free space, Δn = nhigh − nlow where

nhigh is the material with high index, and nlow is the surrounding medium with low

index. In order to achieve full phase control (Δφ = 2π), the height (or depth) of

these various structures should be at least (7.2)

height =
λ0

Δn
. (7.2)

For example, if the substrate is Silicon (nsilicon = 3.48) surrounded by air (nair =

1.00), the metasurface thickness should be at least 626nm for 1.55μm incident light.

In other words, having an abrupt step in height of one material can bring an

abrupt change in phase Δφ of 2π. However, what is desirable for most applications is

the ability to have full control over phase modulation (any angle between 0 and 2π)

at any location on the metasurface, as shown in fig 7.1

Fig. 7.1. The figure on the left shows an abrupt change in height,
resulting in a 2π phase shift. The figure on the right shows a gradient
transition from nlow to nhigh, providing any phase between 0 and 2π

In order to achieve this, a family of discrete, dielectric metamaterial structures

that exhibit an abrupt change in phase of any angle between 0 and 2π has been
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developed. These structures are broken down into two groups: posts and holes, with

all structures having approximately the same height (or etching depth). In various

aspects, when the minimum height from Eq. (7.2) is achieved, control over the full

Δφ = 2π phase control is possible, leading to a large number of new applications.

The period of these dielectric elements should be less than or equal to approxi-

mately(7.3)

period ≤ λ0

nhigh

(7.3)

to behave as an effective metamaterial and avoid higher-order modes, and therefore

scattering.

Here, posts refer to solid high-index dielectric elements surrounded by low-index

medium, and holes are a high-index medium filled with ”holes” of the low-index

medium. As the size of the posts increases (or size of holes decreases), the filling

fraction of high-index material increases, increasing the phase delay caused by the

metasurface. Additionally, structures that are entirely high-index or low-index ma-

terials (neither holes nor posts) can be used. The size of posts and holes can be

precisely modulated, allowing almost any sized hole or post to be fabricated (only

limited by fabrication methods and periodicity from Eq. (7.3)). Using this precision,

structures with a smooth gradient in size can be created.

The geometry and filling fraction of each structure changes the phase differently,

producing a smooth gradient and large distribution in phase for variously sized posts

and holes with vertical sidewalls. Figure 7.3 demonstrates one example - using silicon

and air as high- and low-index materials (respectively), equation (7.2) defines the

minimum height for full-phase modulation to be 626nm when the incident wavelength

(λ0) is 1.55 μm. Using a slightly larger height of 650nm, simulations show that a phase

difference (Δφ) of more than 2π can be achieved. The various structures have been

modeled and their reflections have been calculated to be between 0.4% and 30%.

One significant difference between these dielectric metamaterial structures, com-

pared to their plasmonic counterparts [154] is the drastic improvement in efficiency.
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Fig. 7.2. Periodic arrays of 4 different dielectric metasurface element
types (a) Large Posts, (b) Small Posts, (c) Large Holes, (d) Small
Holes. Each element type has a corresponding phase accumulation
associated with it. In general, the phase shift corresponds with the
filling fraction of high-index to low index materials in the structures.
Generally, (a) - (d) corresponds with the phase accumulation from
least to greatest. In addition to these 4 structures, purely low-index,
or purely high-index elements can be implemented - corresponding
with smallest and largest phase displacement (respectively).

Because these structures do not require a metal (plasmonic) response, they are nei-

ther subject to the inherent losses in metals, nor do they depend on any resonance -

making them broadband. In fact, these dielectric structures have virtually no losses.

The metasurface can be designed to be either dependent or independent of polariza-

tion. Furthermore, these structures can have a reduced impedance mismatch between

planar high-index to low-index interfaces, which can lower reflections and increase

throughputs if desired. Even lower reflections can be achieved by creating structures

with non-vertical tapered sidewalls, further reducing the impedance mismatch.
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Fig. 7.3. Phase displacement corresponding with various post / hole
structures. Posts and holes on the bottom are schematic sketches of
holes and posts of different sizes

7.3 Anomalous Refraction with Dielectric Metasurfaces

Applications for these dielectric metasurfaces include any optical element that

utilizes 2π (or close to 2π) phase modulation. Just a few applications this technol-

ogy is applicable towards include wave-plates, aberration free lenses, spatial light

modulators, photonic computing devices, polarization dependent & independent ex-

traordinary reflection & refraction, improved Total-Internal Reflection (TIR) cou-

pler/decoupler, optical vortexes, wavefront shaping, beam shaping, 3-D full-wave

Holograms, integrated optics, tunable, adaptive & tunable optics, birefringence, dis-

play technologies, energy harvesting, photovoltaics, and many others. The remaining

part of this chapter is devoted to extraordinary reflection and refraction (as seen in

Fig. 7.4)
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Fig. 7.4. Extraordinary refraction arising from the distribution in
phase accumulation along the dielectric metasurface. The top figure
shows one unit cell of the extraordinary reflection / refraction array.
The bottom figure shows a beam entering a metasurface and under-
going extraordinary reflection or refraction. A similar approach can
be taken for reflecting light at extraordinary angles.

One example of using dielectric metasurfaces to modulate the phase and direct

the direction of incoming light is a blazed grating structure. Operating at 1.55μm,

such silicon post and hole structures can refract incoming light anomalously.

As previously discussed, a series of binary post/hole structures can be used to

linearly alter the phase of the transmitted light by increments of 2π by altering the

structures filling fraction of high-index and low-index materials

The array of post structures were fabricated in the following manner (schematic

in Fig. 8.3). First, a 500μm × 500μm array of square and square-with-hole structures

were patterned into AEP resist on a double-side-polished (DSP) wafer. These pat-

terned structures are for the mask for the host and hole structures. Next, a 45nm layer

of Al was deposited in a standard deposition and lift-off procedure. This Al Layer was
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used as the mask for later etching. Etching was performed on these structures using

the Panasonic Reactive Ion Etcher (RIE) with SF6 gas. In total, 4 consecutive etches

were performed on the structure. In between each etch, the sample was examined in

the SEM, and the bias power in following etching recipes was adjusted to maintain

vertical walls through the etching process. After the final etching depth was achieved

(∼600nm), the remaining Al mask was removed with “NanoStrip” (Piranha) and the

final structures can be seen in Fig 7.6

Fig. 7.5. Schematic showing the major steps of the fabrication process.

Fig. 7.6. Sideview of the post and hole structures fabricated for
anomalous refraction.
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Here, we see that indeed the binary dielectric metasurface layer does refract light at

anomalous angles very efficiently. While only 6.2% of light travels straight through the

sample, as predicted by traditional Snell’s law, 46.8% refracts at an anomalous angle

(calculated), and 33.88% exits the sample at an anomalous angle of 23◦ (measured).

Angular measurements of the sample were taken using the spectroscopic ellip-

someter. Focusing probes were used to focus the incident light down to a 500μm

diameter. The sample was illuminated normal to the substrate on the etched side

of the sample. Transmission measurements were taken by sweeping the detector be-

tween -5 and 30◦ from the substrate normal. Measurements at 1.55μm were taken

with both p-polarization (along the surface gradient) and s-polarization (perpendic-

ular to the surface gradient). The results are shown below in Figure 7.7. While the

structure was designed to operate at 1.55μm, the optical transmission was measured

in a broadband range from 1μm to 2.3μm. As expected, the silicon absorbs light with

wavelength below ∼ 1.2μm, and anomalously refracts light at a very broad range of

wavelengths at a range of angles very efficiently, as can be seen in Fig. 7.8.

Upon this first demonstration of refracting light at anomalous angles, these same

principles are applied in the Chapter 8 “All-Dielectric Metasurface Focusing Lens”

for creating a dielectric metasurface focusing lens.
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Fig. 7.7. Angular transmission measurements at λ = 1.55μm.
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Fig. 7.8. Spectroscopic angular scan of the transmission through the
silicon metasurface for p-polarization (Results are almost identical for
s-polarization).
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8. ALL-DIELECTRIC METASURFACE FOCUSING LENS

We have proposed, designed, manufactured and tested low loss dielectric micro-

lenses for infrared (IR) radiation based on a dielectric metamaterial layer. This meta-

material layer was created by patterning a dielectric surface and etching to sub-micron

depths. For a proof-of-concept lens demonstration, we have chosen a fine patterned

array of nano-pillars with variable diameters. Gradient index (GRIN) properties were

achieved by engineering the nano-pattern characteristics across the lens, so that the

effective optical density of the dielectric metamaterial layer peaks around the lens

center, and gradually drops at the lens periphery. A set of lens designs with reduced

reflection and tailorable phase gradients have been developed and tested - demon-

strating focal distances of a few hundred microns, beam area contraction ratio up to

three, and insertion losses as low as 11%.
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8.1 Introduction

Flat and compact micro-lens arrays can be used for many applications including

imaging systems, displays, and detectors. In contrast to conventional curved lenses

and lens arrays, dielectric metasurface lenses can be readily wafer-level integrated and

manufactured using processes compatible with CMOS technology. These lenses can

be designed to improve the effective array filling factor by being tightly mapped on a

surface. Size, weight, and other packaging characteristics for optical sensors, as well

as assembly cost, can be improved significantly. Making binary surface GRIN lenses

as a metamaterial layer can be more efficient, compared with conventional methods

of micro-lens manufacturing (such as surface profiled Fresnel lenses, geometric micro-

machined lenses, or an assembly of separate discrete micro-lenses into arrays).

Planar binary surfaces with sub-wavelength patterns have been used for reducing

the reflection [160] from high index materials, as well as modulating the phase [161]

of the transmitted wave. While this phase modulation can be accomplished using

plasmonic surfaces, dielectric metasurfaces have the huge advantage of reducing or

even eliminating insertion losses. Strong intrinsic absorption within an operational

spectral band located in the vicinity of the plasmonic resonances results in very low

transmission through plasmonic metasurfaces, at a level of a few percent at best.

This makes the plasmonic approach impractical for transmission optics applications.

Conversely, the sub-wavelength structures of metasurfaces are virtually dissipation

free (even near polaritonic resonances), if a transparent dielectric is used as the lens

material. Lack of material dissipation and reduced reflectivity avoids the problem of

insertion loss for these meta-lenses.

Similar dielectric diffractive structures have been used for designing physically thin

versions of various optical components, including blazed gratings [162–165], waveguide

couplers [166–168], and computer generated holograms [169,170]. Flat lenses based on

diffractive structures have also been proposed [165,171,172] and demonstrated [171].

For example, a TiO2 blazed grating lens has been developed for a wavelength of 860
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nm, with a demonstrated focal length of 400 μm [164,173]. Other similar lenses were

proposed for on-axis and off-axis imaging [161, 164, 174]. A similar lens operating in

the visible range (650nm) has been proposed using silicon pillars on an oxide substrate.

Although silicon is absorbing in the visible and NIR range, losses in the proposed

lens are on the order of 20% at an operational wavelength of 650nm when using a

transparent substrate, due to the small volume fraction of Si in the structure [175].

Hence, the phase mask depth variation Δφ ≈ 2πδnh/λ0 ∼ 2δn · rad < 2π

8.2 Approach

We have developed a simple design for a thin dielectric meta-surface lens that

can be easily manufactured with relaxed tolerance, compared to precision diffractive

structures. The objective was to create a sub-wavelength, fine-patterned meta-surface

as a phase mask with a smooth radial dependence of phase increment on transmission,

avoiding 2π phase steps. Quasi-parabolic radial gradients of phase along the surface

were created by slow variation of geometric parameters of the fine pattern. The

meta-surface thickness is approximately one-third of the free-space wavelength (λ =

1.55μm, and height ≈ 0.5μm), in our specific case. Hence, the phase mask depth

variation, Δφ ≈ 2πδn(h/λ0) ∼ 2 ·δn ·rad < 2π across the lens area is relatively small.

Therefore, the mask covers just one single central Fresnel zone of the transmitted

beam, rather than multiple Fresnel zone rings with 2 phase steps as are typical in

a diffractive lens structure. As our experiments show, a mask of this type can be

sufficient to reduce a laser spot diameter by a factor of about three, which can be

very useful for many laser receiver applications.

For a proof-of-concept demonstration, we selected a nano-patterned regular array

of pillars etched with near vertical walls over the silicon wafer surface. The periodicity

of pillar positions has been chosen to be constant over the entire lens, while the

pillar diameter gradually varies from the lens center to its periphery to create spatial

variations in effective refractive index of the meta-layer. To obtain a phase mask with
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only 0th order diffraction that minimizes scattering loss into other diffraction orders

of the periodic structure, the periodicity of the pillar structures must be less than

the structure cutoff scale, λ0/n, where λ0 is the wavelength in free space, and n is

the refractive index of the substrate. For the case of 1.55μm incident light with a

silicon substrate, the pillar periodicity should be less than about 445nm (here, 440nm

was chosen). The pillars were arranged into a square symmetry lattice in the x-

and y- (in-plane) directions to guarantee polarization isotropy and the same optical

characteristics under both x- and y-polarization. As a first approximation, we assume

that all pillars will have approximately the same height (given by the etching depth)

due to the simultaneous etching of all structures.

Before fabrication, a commercial software package utilizing Finite Element Method

(FEM) was used to simulate the optical properties of various structures. A paramet-

ric three-dimensional model of periodical pillar structures was simulated, and phase

increments of transmission and reflection were calculated. Parametric sweeps were

run over the pillar height, diameter, and wall slope to find structures exhibiting both

low reflection and large phase increments. Due to practical fabrication reasons, all of

the pillar heights and wall slopes were maintained constant across the entire structure

in simulations, while the pillars diameter were varied across the surface providing

the required phase distribution.

The phase of a wavefront incident on a conventional lens is modulated by the lens

curved profile resulting in lateral variations of the optical path due to glass thickness

variations across the lens. Similarly, a dielectric meta-lens alters the optical path

length (phase) of the transmitted light. The lens thickness is constant, and it is

the effective index of the layer that varies, as takes place for conventional gradient

index (GRIN) lenses. Using pillars of different diameters while maintaining the same

periodicity, the volumetric fill factor of the substrate material (vs. air) can be tailored

across the metalayer surface. Extended dynamic range of the phase variations in the

transmitted light requires a large variation in the effective refractive index of the

sub-wavelength thin modified layer. The dielectric metamaterial forming the desired
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meta-layer provides this capability. A plane wave incident on this lens will exit the

surface with the curved phase profile characteristic of a positive focusing lens are

shown in Fig. 8.1

Fig. 8.1. Plane wave-fronts (shown in red) travelling through a con-
ventional thick, curved lens (a), compared to a thick gradient index
(GRIN) lens (b), and to a thin, flat meta-surface lens (c).

8.3 Design

Pillars with a small diameter will result in a low fill factor, mostly dominated by

the air between the pillars; and the effective index will approach that of air, index

n = 1.0. Such areas of the pattern will accumulate a small leading phase, and are

placed at the periphery of the lens. Thicker pillars with larger diameters result in a

higher volumetric fill factor with a higher attendant effective index; and these will

accumulate a large lagging phase, slowing the wave-front of the incident field.

Our models show that the effective index of actual meta-layer-induced deviates

from the simple direct proportionality to volumetric filling factor. As an example, in-

teractions of transmitted light with localized polaritons in the nano-structures results

in pushing more light into volumes occupied by the high index substrate dielectric.

In general, dielectric meta-layers can be designed to provide sharper spatial phase

gradients than ones anticipated from simplified fill-factor effective medium model.

Fabri-Perrot type of spectral resonances created by incident light multi-bouncing be-

tween two interfaces bordering the meta-layer one at the air side, another at the
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substrate side should also be accounted for. In particular, transmission and reflec-

tion characteristics of the metalayer become dependent on wavelength and on angle

of incidence.

The lenses examined in this paper are each 30μm × 30μm in size, and square-

shaped. The nano-pattern for every lens consists of five concentric “belts. The belts

are formed by a discrete collection of square tiles, each 3μm x 3μm in size. The pillars

diameter is constant over the whole surface for every tile, see Fig. 8.2. Thus, the belts

were formed by pillars with constant diameter. We explored two designs square and

rounded lenses, both shown on the images in Fig. 8.2. The diameter of the pillars

changes from belt to belt (see Fig. 8.4), and belts are arranged with thick pillars near

the lens center and thin pillars towards the periphery.

Fig. 8.2. Top-view of the two realizations of the lens designs: a square
lens (left), and the rounded lens (right), with notched belt corners.
The colored region shows the arrangement of the belts for each lens.

8.4 Fabrication Method

The pillar structures were fabricated by first patterning the circular discs used

as a mask for dry etching, (Fig. 8.3). The lithography was done using a Leica VB6

electron beam writer on a double-side-polished silicon substrate with ZEP resist.
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Upon lithography and development, a 45nm thick aluminum mask was deposited,

preceded by a 2nm titanium adhesion layer via electron beam evaporation. The ZEP

resist was removed via lift-off, leaving the aluminum mask on the substrate - used

for etching. The etching was performed over the entire substrate, leaving behind

only the small areas protected by the aluminum mask. Upon plasma etching, these

aluminum circular discs leave behind cylindrical silicon pillars rising up from the

flat, etched substrate. Three alternating steps of Reactive Ion Etching (RIE) and

Scanning Electron Microscopy (SEM) were performed. In each step, the etching

recipe was altered to ensure vertically etched sidewalls, and precise etching depths.

After reaching a depth of 550nm, the aluminum mask was removed using Nanostrip,

leaving behind the array of vertical silicon pillars of different diameters.

Fig. 8.3. Schematic showing the major steps of the fabrication process.

In total, three different combinations of five nano-patterns for every lens were

selected to provide gradual variation of transmitted phase increments using prelimi-

nary modeling predictions. Altogether, 15 different nano-patterns for tiles were used

to design all the lenses. SEM photos for two of the 15 of nano-patterns are shown in

Fig. 8.4. For every combination of the belt patterns, both square and rounded lens

tile geometries (see Fig. 8.2) were applied to design 30μm x 30μm lenses. Moreover,
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to reduce the risk of manufacturing accuracy, every lens design was implemented in

three versions: one was patterned with an optimal pillar diameter, while another two

had small deviations from the optimum, both larger and smaller values. So, in total,

18 different lens realizations were patterned and fabricated on the same wafer.

Fig. 8.4. Side-view of the pillar structures that modulate the phase
of light passing through the lens. Pillars of large and small diameter
etched to similar depths.

Along with the lenses, 15 (120μm x 120μm) arrays of pillars were fabricated

simultaneously on the same wafer. These 15 arrays were patterned uniformly, each

containing pillars with the same diameter over the entire area. These replicate the

nano-patterns for all 15 elementary tiles we used for the lens designs. The additional

arrays allowed independent measurements of transmission through such patterns,

which were required to validate the model.

8.5 Phase Increment Measurement

Upon fabrication, SEM images of the 15 large (120μm x 120μm) arrays were mon-

itored to measure the final dimensions of the pillars in each array. These parameters

were fed into the original 3D FEM model, simulating predictions for the reflection and

phase of the field passing through each uniformly patterned tile. To experimentally

validate our model, the phase acquired upon crossing the pillar arrays was experimen-

tally measured using the shearing interferometer technique setup shown in Fig. 8.5.

The incident beam spot straddled the interface between the patterned region and the
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bare silicon surface, so that each half of the beam experienced different phase shifts

crossing the wafer. The position of the interference fringes (formed by interfering

these two parts of the illuminating laser beam) were compared to fringe positions

when the sample was laterally shifted so that both parts of the beam crossed the

un-patterned area of the wafer. As a result, a phase increment accumulated upon

passing through each pillar array was compared to the increment accumulated upon

passing through the surrounding flat substrate of the same thickness.

Fig. 8.5. Experimental setup for optical phase measurements. The
phase of each uniform array was measured by detecting the lateral
shift in the interference pattern created between the beam passing
through the patterned surface and the bare silicon surface.

The experimentally measured phase shift of each uniform array is shown and com-

pared to the computer simulations in Fig. 8.6. We clearly see a close correspondence

between the simulated and measured phase, and the simulations are well within the

margin of experimental error.

The arrays in the set we tested were enumerated using the following convention.

Of these 15 structures, arrays 1-5 were used to form the 5 sequential concentric belts,

starting from the lens center. Patterns 1-5 were used for lens design #1. Arrays 6-10,

similarly, refer to the concentric belts of lens design #2. Finally, the arrays 11-15 form
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Fig. 8.6. Simulation (blue) and experimental measurements (red) for
phase increments added by patterned meta-surfaces for the 15 pillar
structures. The black error bars represent the 15% margin of error in
the experimental measurements.

the concentric rings of the lens #3 design. Collectively, the gradual phase variations

from belt to belt of the lens will shape the wavefront, producing the focusing behavior

of the lens (as sketched in Fig. 8.1).

8.6 Focusing Effect

Focusing properties of the meta-lenses were experimentally studied in a separate

set of experiments. The surface of the silicon wafer lens was illuminated from the

patterned side with a collimated 1.55μm laser beam, shown in Fig. 8.7. The goal

for this experiment was to monitor the spatial structure of the beam spot after the

light had been transmitted through the lens. Different beam cross sections were

imaged behind the lens with a high magnification onto an InGaAs camera (with a

magnification factor of about 1:30). The evolution of the diffraction pattern (which is

induced by the nano-patterned phase mask) was captured by displacing the position

of the imaging plane along the z-direction. A large diameter uniform beam (that

overfilled the lens), or a Gaussian beam approximately matching the size of the lenses

were used. The small diameter Gaussian beam was deliberately tilted at a small
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angle (about 10◦), with respect to the normal. This tilt helped avoid interference of

the transmitted light with secondary reflections from the 0.5mm thick silicon wafer

surfaces that could potentially interfere with the primary images. A microscope

objective placed directly behind the silicon wafer collected light and used for imaging.

The position of the imaged cross-sections was varied in small increments by displacing

the microscope objective position, or by moving the camera along the z-direction.

Fig. 8.7. Schematic of the focusing effect demonstration. The single
mode radiation from an Er fiber laser was tightly focused on the Si
sample surface to monitor beam diffraction behind the surface micro-
lens using a simple imaging system.

Fig. 8.8 illustrates the dynamics of the focal spot evolution along the z-axis behind

one of the micro-lenses. Here, the wafer was illuminated by a large beam at normal

incidence. The spatial fluctuations seen in the background of the figure are artifacts

typical in coherent imaging. Imaging the wafer surface plane where the lens is located

(z = 0) provides a reasonably flat intensity profile. At a distance of about 160μm

behind the micro-lens (inside the wafer), the light is focused to a round spot of highest

concentration. This spot is much smaller than the 30μm x 30μm size of the micro-lens

(which is depicted as a yellow box in Fig. 8.8). The positions of the image plane have

been calculated to account for refraction of the imaging light at the output Si/air

interface. When shifting the image plane further into the wafer bulk, the spot size

increases. The beam spreading continues more rapidly when light escapes from the

Si wafer into air.
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Fig. 8.9 shows the intensity distribution at different imaging planes for the case

when a 24μm diameter tilted Gaussian beam illuminated the square micro-lens (left

photo in Fig. 8.2). Right at the micro-lens location (i.e. at input interface of the

wafer) plane, the original Gaussian profile is seen. The plane of minimal spot size

(which we call the focusing plane) is shown in the middle, along with the plane one

focal length behind the focusing plane, shown on the right. The plot in Fig. 8.9

compares the original Gaussian intensity profile with the profile at the focal spot. It

can be seen that the lens reduces the beam spot size by nearly a factor of three - the

FWHM of the incident light is decreased from 32μm to 11μm. The on-axis intensity

increases by a factor of 1.87 in this case (compared to input beam intensity).

Fig. 8.8. Intensity profiles taken at different image planes behind
the micro-lens surface measured from the input surface of the wafer.
The micro-lens is strong enough to focus light inside the wafer. The
yellow-color frame depicts a 30μm x 30μm box equivalent to the size
of the micro-lens.

The photos in Fig. 8.9 demonstrate that along with the tightly focused spots, a

halo pattern around the spots is present near the focus. The light power distributed
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Table 8.1
Lens Characteristics

Bare Si Wafer Circular Design Square Design

Front Surface Reflectivity 30% 11% 14%

Portion of Input Power in

15μm× 15μm spot

17.5% 35% 35%

Distance (μm) to the po-

sition with maximal con-

centration in 15μm× 15μm

spot

N/A 450 510

Focal distance defined by a

minimal spot size

N/A 122 221

over the halo around the spots explains why the peak intensity increase at the focal

spot center is less than would be expected from just beam area reduction. The

halo carries imprints of the square symmetry of the lens design, which indicates that

the halo is an aberration effect associated with the discrete tiled square lens design.

Another plausible explanation is insufficient amplitude of the phase mask for this first

realization of the micro-lens design. Perfecting the lens design, making the phase mask

deeper and the step size more gradual could increase the light intensity at the tight

focal spot, as compared to intensity of the incident light, by an order of magnitude.

Table 1 shows examples of the optical characteristics for two different micro-

lenses, along with a comparison to a bare, flat silicon wafer (with unmodified surface).

First, the surface reflection is reduced from 30% for a planar silicon surface to only

11% or 14% for the nano-patterned surfaces (due to improved impedance matching).

Second, lens focusing power for this microlens should be characterized by two different

parameters: distance to a plane of minimal spot size, and a distance to a plane

with maximal power concentration within a smaller square, (such as a quarter of the
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original square lens area). In particular, more than one-third of the input beam power

can be concentrated into a half-pixel size square, 15μm x 15μm, near the center of

a beam passing through the lens. Meanwhile, peak intensity can be doubled (Fig.

8.9) at the plane of smallest spot size when compared to the flat silicon wafer. Focal

distances observed for our 18 micro-lenses varied from about 160μm (see Fig. 8.8),

up to approximately half a millimeter, 450μm and 510μm for the two lenses with

a circular and square design, respectively (as listed in Table 8.1). This variation

is due to both the variety of lens designs tested, as well as to finite tolerance of

manufacturing process used.

Fig. 8.9. The light intensity distribution at the micro-lens surface (a),
at the minimal spot size focusing plane (b), and at two focal lengths
behind the focusing plane (c). The yellow frame depicts a 30μm ×
30μm square representing the size of the original lens. Secondary
reflection spots are visible near left lower corner of the photos. The
intensity of the Gaussian beam at the micro-lens input (green) is
compared to the measured intensity at the focusing plane (blue) for
one of the micro-lenses (d). This particular micro-lens increased the
axial intensity by a factor of 1.87.
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8.7 Conclusion

In conclusion, we have demonstrated a sub-wavelength thin planar all-dielectric

metamaterial lens patterned on a silicon wafer surface. A transparent dielectric sub-

strate with no metal elements avoids light absorption as light passes through the meta-

material layer (in contrast to plasmonic meta-surfaces). One key advantage of this

micro-lens design is a reduction in the insertion loss for wafer-level integrated micro-

lenses down to about 10%, making this approach suitable for a variety of narrow-band

and moderate bandwidth transmitting lens applications. Although the focusing sur-

face layer was only about 0.5 μm thin, the resulting lens demonstrated a focusing

distance of less than 0.5 mm with an attendant reduction in spot size by a factor

of three. To design such lenses, we have created a parametric computer model that

can calculate the phase of a plane wave passing through pillar structures of varying

geometric parameters (including height, slope and diameter). These computer sim-

ulations show close correspondence with experimental measurements on fabricated

structures.
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9. STUDIES OF METAL/DIELECTRIC COMPOSITE

SUPERLENS

9.1 Motivation

There is a great deal of interest to utilize an enhanced near-field EM signal. How-

ever, as close proximity to a metal surface can provide adverse effects to the sample

in question, there is strong interest in creating this strong evanescent enhancement

away from the metal surface. For this reason, we have studied the ability of a lamellar

near-field superlens to transfer an enhanced electromagnetic field to the far side of

the lens. In this work, we have experimentally and numerically investigated super-

lensing in the visible range. By using the resonant hot-spot field enhancements from

optical nanoantennas as sources, we investigated the translation of these sources to

the far side of a layered silver-silica superlens operating in the canalization regime.

Using near-field scanning optical microscopy (NSOM), we have observed evidence of

superlens-enabled enhanced-field translation at a wavelength of about 680 nm. Specif-

ically, we discuss our recent experimental and simulation results on the translation of

hot spots using a silver- silica layered superlens design. We compare the experimental

results with our numerical simulations and discuss the perspectives and limitations of

our approach. In this scheme, the localized and enhanced electromagnetic fields (or

hot spots) could be created by optical nanoantennas [15, 18, 176, 177], and the hot-

spot transfer with a superlens could be useful in applications such as surface-enhanced

Raman spectroscopy (SERS) [178] or enhanced fluorescence microscopy [23]. Optical

hot spots are important for a range of important bio-, chemical- and medical-sensing

applications, including surface-enhanced Raman scattering [179] and enhanced flu-

orescence [177]. It has also been shown theoretically that an optical hot spot can

be translated through a near-field superlens [180]. Such a setup is preferable to di-
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rect contact with a metal, which has been shown to cause structural and functional

changes in biomolecules [181], including denaturation of proteins [182]. Furthermore,

very close proximity with metal nanoparticles can cause fluorescence to be quenched

rather than enhanced [183].

9.2 Background

In 1873, Ernst Abbe postulated that it is impossible to focus light below a certain

limit due to diffraction effects. Termed the Abbe limit or the diffraction limit, this

idea was fundamentally challenged in 2000 with the proposal of a sub-diffraction su-

perlens by Pendry [7], which was based on the 1968 paper on negative-index materials

by Veselago [6]. Pendrys initial superlens would, in principle, work for propagating

(or far-field) waves and would allow unlimited resolution in the image of an object.

This superlens design required some rather strict conditions on the permittivity and

permeability of the superlens material, however. Pendrys proposal also included

a simplified, near-field superlens design that required only a negative permittivity,

rather than simultaneously negative permittivity and permeability. Near-field super-

lensing was experimentally demonstrated in 2005 by Fang and coworkers [26] and

nearly simultaneously by Melville and Blaikie [27], followed by others [184]. However,

the practical applications of near-field superlenses are still quite limited due to the

fact that the permittivities of the lens and the surrounding medium must be equal in

sign and opposite in magnitude. Because many metals have negative permittivities

in the visible range, they are a natural choice for superlenses. For superlensing opera-

tion, the matching condition εmetal = −εdielectric must be satisfied [7] for the real parts

of the permittivities. For dispersive materials, this condition means that superlens

operation can only be achieved at a single wavelength for each material system. In

the case of the silver-polymer combination used in many of the initial near-field su-

perlens demonstrations, the matching condition is met at a wavelength of around 365

nm [6,26,27]. However, superlensing in the visible or near-infrared wavelength range
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promises a number of exciting applications. Several solutions have been proposed to

bring superlensing to this spectral range, including the use of metaldielectric compos-

ites (MDCs) [28, 185–187] and multilayer lens structures. These solutions allow the

designer to select or tune the superlens operational wavelength by adjusting the fab-

rication procedure appropriately. Note that in using the term tune here we mean that

the operational wavelength of the superlens can be selected prior to fabrication. If

such a tunable near-field superlens could be achieved, it would open up many promis-

ing applications based on the spatial translation (or transfer) of highly localized,

enhanced electromagnetic fields [188–195] to the other side of a superlens [196].

Although we have studied both MDCs and multilayer superlens designs in our

research, here we focus on the latter category, specifically lamellar, multilayer metal-

dielectric devices for superlensing in the visible range. Therefore, as a side note, we

briefly mention some of the experimental [197] and numerical simulation [198] results

on our work with MDC films. Metal-dielectric composites or MDCs are materials

that consist of a random mixture of subwavelength metallic in a dielectric host (or al-

ternatively, small dielectric particles in a metallic host); such materials are sometimes

called cermets. In principle, according to effective-medium theories, MDCs permit

a designer to adjust the effective permittivity of the mixture through selecting the

constituent materials and the relative volume fractions. Ideally, such a MDC material

should produce a selectable effective permittivity at any wavelength in a wide range

while maintaining low loss. We have observed that it is indeed possible to adjust the

real part of the permittivity of a superlens based on MDC films, and hence the su-

perlens operational wavelength can be tailored for a particular application simply by

altering the volume ratio between the metal and dielectric components in the compos-

ite. However, we also discovered that passive MDC designs are inherently too lossy

to be useful in real superlens applications [197, 198]. It is due to this overwhelming

loss that we turned our attention to lamellar, multilayer superlens designs.

Single-layer and multilayer near-field superlenses have been studied by a number

of researchers in recent years. Most experimental studies have focused on the plas-
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monic operational regime, which is limited to the near-UV range for noble metals and

common dielectrics. In this regime, the matching condition is met directly through

the careful selection of the metal and dielectric materials, and the wavelength of op-

eration is not adjustable once the material combination is determined. Numerical

studies have also predicted the existence of a canalization regime in which superlens-

ing occurs in a highly anisotropic, layered, metal- dielectric system at wavelengths

away from the plasmon resonance and into the visible range. This canalization regime

has been experimentally observed in the microwave range. In this work, we have ex-

perimentally and numerically investigated superlensing in the visible range. Using

the resonant hot-spot enhancements from arrays of optical nanoantennas as sources,

we investigated the translation of these sources to the far side of a layered silver-silica

superlens operating in the canalization regime. With the technique of near-field scan-

ning optical microscopy (NSOM), we have observed evidence of superlens-enabled

enhanced-field translation at a wavelength of about 680 nm. The experimental evalu-

ation of the fabricated samples included NSOM, scanning electron microscopy (SEM),

atomic force microscopy (AFM) and far-field spectroscopy. We have also studied the

samples extensively using FDTD simulations to evaluate their near-field electromag-

netic behavior. Finally, we summarize and compare our experimental results with

respective numerical simulations and discuss the perspectives and limitations of our

approach.

Lamellar, multilayered metal-dielectric systems such can be used for wavelength-

selectable near-field superlenses in the canalization regime. A schematic of such a

multilayered lens design is shown in the left panel of Figure 9.1, and an SEM image

of a prototype multilayer structure is shown in the right panel of the figure. These

multilayered metal-dielectric systems can be considered to be uniaxial crystals that

exhibit a flat, hyperbolic dispersion relation [33,179]. Multilayered systems have been

extensively studied theoretically, and their lensing and optical properties have been

discussed by a number of authors [148, 179,180,199,200].
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Fig. 9.1. Schematic of a lamellar, alternating multilayer metal-
dielectric system (left). The metal is white, the dielectric is gray,
and the layers are subwavelength in thickness. This scheme provides
a method of adjusting the operational wavelength of a superlens. A
cross-section SEM view of a silver- silica prototype superlens design
with layer thicknesses labeled (right).

A metal-dielectric multilayered system with subwavelength layer thicknesses ex-

hibits an anisotropic permittivity characterized by the dispersion functions (9.1) [179]

εx = εy =
εdd1 + εmd2
d1 + d2

, εz =

(
ε−1
d d1 + ε−1

m d2
d1 + d2

)−1

(9.1)

where εd and εm are the bulk permittivities of the dielectric and metal constituents,

respectively, and the thicknesses are as labeled in Fig. 9.1. In superlensing applica-

tions, we are interested in obtaining a system with a parallel permittivity of unity

for impedance matching (εx = εy = 1) and an infinite perpendicular permittivity

(εz → ∞). This is known as the canalization regime [179]. In practice, however,

due to losses and material limitations, both conditions cannot be fulfilled simultane-

ously. These multilayer films are not restricted to operation at a single wavelength

for a given material combination; the operational wavelength can be tuned simply by

altering the relative thicknesses of the metal and dielectric layers.
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9.2.1 Nanoantenna Pattern Design and Fabrication

As stated above, we were primarily interested in studying the ability of a near-

field superlens to transfer field-enhanced optical hot spots, and hence our first step

was to design an array of optical nanoantennas to produce these hot-spot sources.

The antenna design was based on pairs of identical rhombus-shaped metal structures

with a narrow gap between the two. It is in this narrow gap where electromagnetic

energy is localized and where the hot spot is produced. These very high local field

intensities are created between antenna pairs only when the pair is illuminated with

correctly polarized light (that is, light that is polarized parallel to the long axis of the

antenna pair). This antenna design choice was selected based on existing expertise

from previous work [177].

Schematic designs of our antenna array are shown in Fig. 9.2. Each individual

antenna has a characteristic size X, which is the length of the minor axis. In our case,

X was about 80nm. The major axis is twice as long (160nm), and the second antenna

is placed along this axis, with a gap of 20nm separating the two. The antenna pairs

are spaced with a periodicity of 4X (320nm) along the minor axis and 8X (640nm)

along the major axis (see Figure 9.2).

The nanoantenna fabrication was performed by electron-beam lithography (EBL)

on a quartz substrate in large, 500μm × 500 μm arrays in order to permit far-field

optical characterization the final samples. Following EBL photoresist patterning and

development, a reactive-ion etch procedure was used to create 40nm holes in the

quartz substrate. Next, a 1nm layer of Ge followed by a 40nm layer of Ag was

deposited into these holes, resulting in a flatter topography than would be possible

without etching. For simplicity, light polarized along the major axis (across the gap)

will be referred to as parallel or x-polarized, while light polarized along the minor

axis will be referred to as perpendicular or y-polarized light. The antenna array

was designed to be resonant under parallel-polarized light at a wavelength of about

633nm.
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Fig. 9.2. Schematics of the basic nanoantenna design. (a) A nanoan-
tenna pair in top view and cross section. Two 40nm thick rhombus-
shaped antennas form a single pair and are spaced 20nm apart. The
antenna pair is embedded into a quartz substrate. (b) The individual
antenna pairs are part of larger arrays. The size of the individual
antennas is related to the spacing of the array. The size parameter X
can be varied in order to achieve different resonance wavelengths. In
the arrays we studied in this work, X was 80nm.

9.2.2 Superlens Design

The superlens design was based on finite-element model (FEM, COMSOL Multi-

physics) calculations and modeling using a chromium grating to simulate lens perfor-

mance at a resolution of 100nm, which was the grating half-pitch. The results from

these initial numerical simulations indicated that subwavelength resolution might be

possible without impedance matching, with λ/6 resolution achieved for a single-layer

silver lens with a SiO2 host. The highest contrast was achieved for a three-layer

superlens design. However, the intensity transmission through the sample was ex-

pected to be too low for NSOM measurements for this configuration. As a result, a

single-layer design was chosen since it provided the best compromise between contrast
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and transmission. The superlens design consisted of a 20nm silver layer covered on

both sides by 21nm SiO2 layers. While not included in the model, a 1nm germanium

adhesion layer was added below the silver layer in order to lower the silver roughness

and decrease the loss. The germanium layer itself is not expected to add much loss

due to the very low thickness and relatively low loss at 633nm.

We designed and fabricated three different types of samples for our experimental

investigations. Although the three sets of samples have exactly the same nanoantenna

design, the regions above samples differ in their overlayer designs (see Figure 3). The

first sample type was simply uncovered or bare nanoantennas with no overlayer. In

the superlens samples, the nanoantennas are covered with 21nm of silica, 20nm of

silver, and another 21nm of silica. In the final type of sample, the nanoantennas

were covered with a 62nm silica layer. This is an equivalent thickness to that in

the superlens samples, and hence these samples were used as reference samples. The

reference and bare nanoantenna samples were used to compare the near-field intensity

distributions to those of the superlens samples. In all samples, the overlayers were

fabricated using electron-beam evaporation. The cross-sections of the three sample

types are shown schematically in Figure 9.3

9.2.3 Sample Characterization

We performed a number of tests in order to evaluate the quality of the fabricated

samples and to characterize their properties. These tests were focused on the antenna

shape as well as the planarization and quality of the silver layer. We first used

scanning electron microscope (SEM) imaging to study the uncoated antenna arrays,

an example of which can be seen in Fig. 9.4. The antenna shape was generally

well reproduced, though the finite size of metallic grains does lead to a rounding of

the edges. As we will show, this rounding was taken into account in our numerical

simulations. In general, however, the nanoantenna elements were all generally very

uniform with no missing antenna pairs.
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Fig. 9.3. Cross-section of the three types of samples examined in
this study. a) the bare antenna sample, b) the reference sample with
a dielectric spacer above the antennas, and c) the superlens sample
with layered metal and dielectric films above the antenna arrays.

Fig. 9.4. SEM image of a nanoantenna array (X = 80nm). The
pattern is well reproduced with a gap size around 20nm. Some minor
variations in antenna shape can be observed, which can be ascribed
to the finite metal grain size. The slight rounding of the corners of
the nanoantennas is accounted for in our numerical simulations.
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We also used atomic force microscope (AFM) imaging to investigate the roughness

and surface quality of the embedded nanoantennas. Our goal was to produce a

flat final surface with minimized height deviations between the antennas and the

surrounding substrate within the antenna arrays. The AFM results (not shown here)

indicate that the embedding was generally very good, and the average height variation

between the antennas and the substrate was less than 5nm RMS. In addition, we

studied the quality of the deposited 35nm silver / 1nm germanium superlens layers

with AFM. This was done on a test sample with no SiO2 cover layer in order to allow

direct access to the silver material. The results show good film uniformity with a

small grain size and a low roughness of 0.5nm RMS. For comparison purposes, we

also deposited 35nm silver films directly on SiO2 with no germanium adhesion layer.

In this case, the AFM results show a much higher surface roughness of 2.7nm RMS.

9.2.4 Far-Field Characterization

The nanoantenna array was characterized optically via far-field transmission mea-

surements using a supercontinuum light source (Koheras) with a broad emission range

from 500nm to 2000nm. The light was focused on the sample with a focus size of 200-

300μm, and a linear polarizer was used to adjust the incident light polarization. After

passing through the sample, the light was refocused and coupled into a spectrometer.

Background reference measurements were taken through the sample in an area free

of visual defects and outside of the nanoantenna array. The reference intensities were

then subtracted from the array intensities in order to give a relative transmission

measurement.

As expected from theory [15,201], a strong resonance was seen for parallel-polarized

(x-polarized) light, and it is this resonance that is of interest in our work. For the

bare antenna array with a size parameter of X = 80nm, the resonance occurred at

a wavelength of 620nm, which is close to the expected 633nm resonant wavelength.

A weaker resonance was seen for light polarized orthogonal to the long axis of the
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antennas pairs (perpendicular or y polarization). This weaker resonance wavelength

was blue-shifted compared to that of the parallel polarization. Optical transmission

measurements were also performed after depositing the reference silica layer or the

silver/silica superlens layers on top of the bare antennas, and we observed significant

changes in the transmission spectra. For the reference sample, a red shift of about

40nm was observed in the resonance position. This shift was expected, since the SiO2

covering increases the refractive index around the antennas as compared to air. For

the superlens-covered sample, however, the red shift was slightly larger (45nm). In

fact, when we collected spectra from nanoantenna arrays with different size parame-

ters, we found that the resonant wavelength shift for silica-coated antennas was about

40nm for all arrays, while the shift for superlens-covered arrays depended on the ini-

tial resonance position. Antenna arrays with an initial resonance of about 500nm

showed no resonance shift with the addition of the superlens, while antennas with

a resonance around 700nm shifted by as much as 100nm when we added the super-

lens layers. We attribute this to coupling between the antennas and silver superlens

layer. As a result of this shift, the reference samples have a different resonance wave-

length than the superlens samples, even for otherwise identical antennas. Around our

wavelength of interest (≈ 633nm), the difference is slight, but for antennas outside

this range the difference can be significant, which complicates any direct comparisons

between the superlens and reference samples.

9.2.5 Near-Field Characterization

We performed a large number of NSOM scans in order to study the near-field

intensity distribution on the samples. These measurements were carried out at The

Max Planck Institute for the Science of Light and Friedrich-Alexander-Universitt

(Erlangen, Germany) and at Purdue University (West Lafayette, Indiana, USA).

The NSOM setup in Erlangen was equipped with an acousto-optic tunable filter in

combination with a supercontinuum light source, which enabled the selection of any
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incident-light wavelength from 450nm to 700nm. The setup also included a linear

polarizer, and NSOM measurements were taken with a highly modified Nanonics 4000

system. The NSOM setup at Purdue was a Nanonics 2000 system but was limited

to 633nm light and did not have polarization control in our measurements. In both

systems we used metal-coated aperture NSOM tips with sizes ranging from 150nm

down to 50nm, and in both systems we also used avalanche photodiodes (APDs) for

detecting the collected light intensity. Several types of NSOM scans are possible, with

each type providing different near-field information about the sample. Schematics of

three main NSOM modes are shown Fig. 9.5. In reflection-mode NSOM (Fig. 9.5,

left panel), the sample is illuminated in the near field via the tapered-fiber NSOM

tip, and the far-field reflected or scattered light is measured from the sample. In

transmission-mode NSOM (Fig. 9.5, middle panel), the sample is again illuminated

in the near field with the tapered-fiber tip, but in this case the transmitted light

is collected in the far-field. In our measurements we used collection mode NSOM

scanning (Fig. 9.5, right panel). In this case, the sample is illuminated from the

bottom with far-field light that is transmitted through the sample, and the near-field

intensity is collected with the NSOM tip.

Fig. 9.5. Three types of NSOM scanning modes. The thick arrow
represents illumination of the sample. The thin arrows represent the
collected or measured light. In this work we focused on collection
mode NSOM (right panel) for our near-field measurements.

With the NSOM system in Erlangen, we performed numerous NSOM measure-

ments on the nanoantenna array with a size parameter X = 80 nm, and scans were
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taken at wavelengths ranging from 530 nm to 680 nm in steps of 10 nm and with both

parallel and perpendicular light polarizations. At Purdue, measurements were done

at 633 nm with unpolarized light. In both systems, the measurements were done on

superlens samples as well as on reference samples and bare nanoantenna samples. The

scan sizes were either 5μm × 5μm or 10μm × 10 μm. The resolution was kept con-

stant at 128 data points per 5μm. We note that we have observed some complications

in interpreting our experimental NSOM results. These issues are related to several

factors, such as the fact that the fiber tips experience gradual degradation over time.

In addition, there are necessary manual alignments in both of our NSOM systems,

which is another source of discrepancies in comparing the data from one sample to

the next. When we combine these concerns with the automatic intensity rescaling

performed by the Nanonics software, we conclude that the measured intensity values

cannot be compared directly between scans.

9.3 Bare Antennas

When scanning the bare antenna samples under perpendicularly polarized (y-

polarized) light at 620nm, no resonance was observed, which is consistent with our

far-field measurements. In this polarization, the antennas simply block part of the

incoming light. Thus the antennas appear as regions with lower intensities, an exam-

ple of which is shown in Figure 9.6. The resolution in the scan in Fig. 9.6 is sufficient

to see individual antenna pairs, but we cannot resolve individual antenna elements.

When illuminating the array with light at the parallel polarization (x-polarized),

a periodic enhancement of the intensity is observed. This resonance has a periodicity

equal to the array periodicity, it overlaps with the light that is simply transmitted

through the sample, and its peak intensity is well above that of the incident light.

However, this is not the nanoantenna hot-spot resonance, which can be seen in two

ways. First, when we compared the AFM and NSOM data we observed that the

highest intensity regions are in the areas between the antenna pairs, whereas the hot-
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Fig. 9.6. NSOM scan (left) and intensity cross-section (right) of a
bare antenna array illuminated with perpendicular-polarized light at
620 nm. The antenna pairs can be observed as dark regions because
they block some of the light transmitted through the substrate.

spot resonance should occur in the gap in the middle of the antenna pair. Second,

when looking at the edge of an array, we see that the periodic enhancement extends

well beyond the boundaries of the antenna array, as seen in Fig. 9.7. This behavior

shows that the resonance is actually a propagating mode, and thus it is not the

highly localized hot-spot nanoantenna resonance. Note in Fig. 9.7 and in many of

our NSOM scans that we were not able to reliably resolve the antenna pairs in the

vertical direction of the image (the y-direction) because the periodicity is smaller in

that direction.

At this point it is important that we note some peculiarities of our antenna ar-

ray pattern with respect to the expected resonance wavelength of the reference and

superlens samples. It has been shown that coupled nanoantenna resonances die out

when the distance between the antenna elements exceeds 2.5 times that of the parti-

cle size [201], which is why the nanoantenna arrays used here have a spacing of three

times the particle size (corresponding to center-to-center distance of four times the

size parameter X, or about 320 nm for our X = 80nm array). However, for our silver

nanoantennas this spacing had the unintended consequence of producing a period-

icity (8 × 80nm = 640 nm) that is very close to the shifted resonance wavelength

of the reference and superlens samples. As a result, the nanoantenna array acts es-
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Fig. 9.7. NSOM scan (left) and cross-section (right) of a bare nanoan-
tenna array illuminated with parallel-polarized light at 620 nm. In
the cross-section scan, the antenna array boundary is at 4 μm. A pe-
riodic resonance is observed that extends well beyond the boundaries
of the array and decays with distance from the array. In this resonant
mode, the peak intensities are significantly higher than that of the
incident light.

sentially as a grating with a periodicity of λ in one direction and a periodicity of

λ/2 in the other direction; such gratings have been shown previously to couple light

from free space into propagating surface or waveguide modes [202, 203]. We expect

this grating-coupled propagating mode to travel inside the silica of the substrate it-

self, which could act as a waveguide due to its high refractive index compared to the

surrounding air. We will discuss this grating-coupled mode in more detail in later

sections.

9.4 Superlens and Reference Samples

Returning to our preliminary NSOM data, we observed a different field-enhancement

distribution near the expected resonance wavelength of 665nm (620nm + 45nm shift)

on the superlens samples. Here a second resonance appears with the same spacing

as the periodic mode described earlier but shifted by half a period. As shown in Fig.

9.8, this resonance is not present at 620nm, but it can be seen as very low intensity

peaks at 650nm, and it is even stronger still at 680nm. At 680nm this extra resonance
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mode reaches roughly the same intensity as the propagating mode, which gives it the

appearance of a simple doubling in frequency. No scans were performed at longer

wavelengths, since the wavelength limit of the setup had been reached, so it is not

known if the intensity grows even more at longer wavelengths.

Fig. 9.8. NSOM scans of the intensity distribution (left) and intensity
cross-section (right) measured on a superlens sample for three different
wavelengths. At 620nm (top) only the propagating mode is seen, at
650nm (middle) a weaker second mode starts to appear, and at 680
nm (bottom) the weaker mode has grown in strength to equal the
propagating mode.
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In addition to the appearance of this second resonance, we also see that the widths

of the intensity peaks were reduced significantly at 680nm. In order to investigate

the origin of this second resonance, an NSOM scan was performed using the same

wavelength (680nm) but with perpendicularly polarized light, and the results show

no sign of the additional resonance. Furthermore, identical scans were taken on a

reference sample to see if this effect was related to the silver superlens layer, and once

again no secondary resonance was observed. These scans are shown in Fig. 9.9

With this preliminary NSOM data in mind, we conclude that there were two main

phenomena occurring in our results. The first and most interesting was the appear-

ance of the second resonance mode, which occurred only near a specific wavelength

and in a particular polarization. The second phenomenon was the narrowing of the

intensity peaks. We see three possible contributions to the near-field intensity pat-

terns in our NSOM scans: (1) light transmitted through the sample in the bare areas

between the antenna pairs, (2) the grating-coupled propagating mode, and (3) the

localized field enhancement from the nanoantennas. Because the secondary resonance

appears very close to the expected resonance frequency of the nanoantennas, and only

at the correct polarization, it appears to be our sought-after nanoantenna hot-spot

resonance.

Furthermore, the narrowing of the intensity peaks would be consistent with an

increased extinction cross-section for the nanoantennas at resonance, which would

have the effect of stealing light from the surrounding area. This line of reasoning

suggests that this additional field enhancement is indeed the localized nanoantenna

resonance, and that the superlens allows it to be resolved on the far side of the lens,

which is not possible on the reference sample. However, due to the similarity of this

resonance to the propagating mode, more information and additional measurements

are needed to confirm this hypothesis. In the next section we discuss these further

measurements as well as the numerical simulations we performed in support of our

experimental results.
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Fig. 9.9. Comparison of the NSOM intensity distributions for the
same antenna array under three different conditions. In addition to
the propagating mode, a second resonance mode was observed for the
parallel polarization on a superlens sample (top panel), which caused
the appearance of frequency doubling. No such mode was observed
for the perpendicular polarization on the same sample (middle), or
for the parallel polarization on a reference sample (bottom). All data
was taken at an incident wavelength of 680 nm.

9.5 FDTD Simulations for Far-Field Spectra and Near-field Intensity

Maps of the Superlens and Reference Samples

After obtaining our preliminary NSOM results, it was clear that numerical simu-

lations on the antenna structures and cover layers would give us valuable insight into
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understanding the intensity profiles in our experimental results. We chose to use the

finite-difference time-domain (FDTD) method for our simulations because the results

with our new generalized dispersion model [204] are quite accurate and, with the

extensive cluster computing facilities available at Purdue, full 3D simulations were

possible.

As noted previously, the fabricated nanoantennas were slightly more elliptical

than the initial rhombus-shaped design. Because the shape of the antenna plays a

strong role in determining the overall plasmonic response, more realistic elliptical-

shaped antennas were used in our simulations. The gap between antennas was fixed

at 20nm, and the geometry of the simulated unit cell of the antenna array can be

seen Fig. 9.10.

Fig. 9.10. Elliptically-shaped nanoantenna pair used as the unit cell
of the array in the FDTD simulations. The shape of these antennas
corresponds more closely with the actual shape of the nanoantennas,
as indicated in our SEM results. In this image, white is metal (silver)
and black is dielectric material (glass).

We calculated full-wave responses of the three types of samples at a variety of in-

cident wavelengths and polarizations. Some representative near-field intensity maps

are shown below. In the simulated intensity maps, many unit cells are shown in an

array in order to mimic the scan area of the experimental NSOM results. The inten-

sities were calculated at a distance of 10nm above the top surface of the sample; this

was done in order to mimic the NSOM tip scanning distance. Finally, the calculated
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intensities were averaged with a 150nm circular averaging function in order to mimic

the aperture area of the NSOM tip. For convenience, the ellipses in the lower left area

of each image show the locations of the nanoantennas inside the simulated domain.

The details of the material models used in our FDTD simulations can be found in

our previous publication [198].

The nanoantenna structures were simulated for the three sample types (bare an-

tenna, superlens, and reference sample) using fully 3D FDTD calculations. The bare

antenna sample was simulated under 620nm and 633nm illumination schemes, corre-

sponding to the resonance wavelength and the Purdue NSOM laser source, respec-

tively. The superlens and reference samples were each simulated at 660nm and 680nm,

corresponding to the measured far-field resonance and the wavelength of the observed

double-periodicity pattern, respectively. For each wavelength, the field distributions

were calculated under parallel polarization (x-polarized, resonant case) as well as un-

der perpendicular polarization (y-polarized, off-resonant case). For each polarization,

the field intensity components were calculated along each axis direction (|Ex|2, |Ey|2,
|Ez|2). The computational domain used for these simulations was 640nm and 320nm

in the x- and y- directions (the z- direction is normal to the substrate surface), and

was 4000nm in the z- direction. The spatial discretization was 5nm, and the time

discretization was about 4.814583×10−18s. We used perfectly-matched layer (PML)

boundaries in the z- direction, and periodic boundary conditions (PBCs) were applied

to all other sides (that is, in the x- and y- directions) of the simulation domain. The

electric field (E-field) and magnetic field (H-field) for each unit cell were discretized,

and thus the intensity of each cell was defined as |Etotal|2 = |Ex|2+ |Ey|2+ |Ez|2. This
total field intensity (|Etotal|2) corresponds with the intensity measured experimentally

with NSOM. In all our FDTD simulations, the germanium layer was omitted and the

21nm and 62nm thicknesses were rounded-off to 20nm and 60nm, respectively. This

was done in order to accommodate the finite-sized grid of the simulation domain.

The incident wave illuminated the sample from the bottom in order to simulate the

experimental situation in collection-mode NSOM measurements.
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9.5.1 Representative FDTD Near-Field Intensity Maps for Bare Antenna

Sample

In Fig. 9.11 we show representative FDTD near-field intensity maps resulting

from our numerical simulations. These intensity maps were calculated for the bare

antenna sample at an incident wavelength of 620nm for both polarizations. Since the

intensities are not normalized among the maps, corresponding scale bars are included

for each image. These maps indicate that in the parallel polarization the near-field

intensity is dominated by the x- and z-components of the field, while in the perpendic-

ular polarization it is the y component that dominates the total intensity. This trend

is consistent for all of our calculated intensity maps at all wavelengths. Notably, the

strong z-component contribution indicates a strong grating-coupled diffraction mode

within the intensity distribution. This corresponds to our earlier NSOM analysis

that there is a strong propagating mode in the antenna array under parallel-polarized

light.

9.6 Comparing FDTD Simulations to NSOM

We can now compare the total, FDTD-calculated intensity distributions |Etotal|2

to the experimentally measured NSOM results. For each sample (bare antennas,

superlens, and reference), we show images of the NSOM scans in the parallel and

perpendicular incident light polarizations. The FDTD simulation results for the same

polarizations are shown below the corresponding experimental scans. Schematic insets

on the NSOM scans show the incident-light polarization and the orientation of the

antennas (not to scale). Although all the simulations results have been averaged

over an area roughly the size of the NSOM tip aperture, it is still obvious that the

simulation results are much clearer than the NSOM measurements. We attribute

this loss in resolution in the NSOM scans to a possible larger tip aperture due to

inevitable damage during scanning, to sample/tip interactions that perturb the near-

field, and/or to imperfections in fabrication. It should be noted that in most of the
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NSOM measurements, the sample image is rotated roughly 15◦ from vertical. This

slight orientation offset is due to the fact that sample alignment in the NSOM is done

manually, and it is therefore quite difficult to align the sample precisely.

9.6.1 Bare Antenna Sample

We begin with our results for the bare antenna structure in Fig. 9.12. Both the

simulations and the NSOM results were performed with illumination at a wavelength

of 620nm, which corresponds to the transmission dip (resonance) observed in our

far-field measurements.

Note that, as before, we see stripes in the NSOM images due to the inability to

resolve the rows of antenna pairs, although we can resolve the columns of the array.

We see very little difference between the NSOM scans for the two polarizations on

the bare antenna sample (top row of Fig. 9.12). The only differences are slightly

broader high-intensity stripes in the perpendicular polarization than in the parallel

polarization. Comparing the FDTD results (bottom row of Fig. 9.12), we see that

the parallel-polarized light is strongly confined to the antenna gap, which is expected

from the previous far-field measurements, and the intensity does not extend as far in

the y direction as in the x-direction. In the case of perpendicularly polarized light,

the intensity is not localized to the antenna gap, and the intensity profile is broader

in both the x- and y-directions. Both of these results agree reasonably well with our

NSOM results.

9.6.2 Superlens Sample

In Fig. 9.13 we show the NSOM scans and simulation results for the superlens

sample measured and simulated with 680nm incident light. In this case, the FDTD

simulations correspond very well with the NSOM results. We clearly see that the

parallel-polarized light exhibits double periodicity (two intensity peaks per antenna

pair), while the perpendicularly polarized light exhibits single periodicity. The double
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periodicity of the parallel-polarized light can be attributed almost entirely to the |Ez|2

component of the field (data not shown). This is indicative of diffraction coming

from the antenna structures, rather than the antenna hot-spot transfer that we were

seeking. However, the intensity profile still shows subwavelength confinement on the

far side of the superlens.

To further validate this hypothesis, scans were taken at Purdue with unpolarized,

633nm light at the edge of the antenna array, as seen in Fig 9.14. The left image

of Fig. 9.14 shows the AFM height profile that was measured concurrently with the

NSOM scan. While the antennas cover only about 40% of the image, the intensity

pattern extends throughout the whole NSOM image. This further indicates that a

propagating diffraction mode dominates the near-field intensity profile on the far side

of the superlens.

9.6.3 Reference Sample

Fig. 9.15 shows the experimental NSOM and corresponding simulation images for

the reference sample, which has only a dielectric spacer above the nanoantenna arrays.

In this case, both the simulations and the NSOM results were found using 660nm in-

cident light. The FDTD simulations for the reference sample correspond reasonably

well with the NSOM results. The simulation for parallel-polarized light shows a very

wide and ill-defined profile in the high-intensity stripes, and the NSOM results show

similar results with relatively wide, poorly defined stripes. For the case of perpendic-

ularly polarized incident light, the NSOM results clearly show high intensities for the

areas adjacent to the individual antenna pairs. These results also correspond quite

well with the FDTD simulation, where strong intensities are predicted for the areas

adjacent to the antenna pairs.
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9.7 Conclusions and Final Remarks

We have studied lamellar superlens designs using experimental measurements and

advanced numerical simulations. For this work, three different sample types were

prepared: bare antennas, antennas with a silver superlens, and antennas with a ref-

erence dielectric layer. Each sample was designed, fabricated, and characterized to

ascertain how the enhanced-field hot spot created by the antennas was translated

to the top side of the sample. In-depth FDTD simulations were performed to com-

pare with experimental measurements, and after analyzing the results, we conclude

that the superlens is not strongly transferring the antenna hot spot to the top side

of the sample. However, the superlens does provide the unintended consequence of

transferring a diffraction grating to the far side of the superlens, and this still pro-

vides subwavelength confinement of energy that could be used in enhanced sensing

applications or other devices.

In fact, this phenomenon provides a method of tailoring the localized, subwave-

length near-field enhancement of a superlens-translated intensity distribution. By

adjusting the sizes, shapes and periodicities of the nanoantenna array, we can apply

a genetic algorithm to optimize the near-field intensity distribution on the far side

of a superlens. In doing so, we can match the final near-field intensity pattern to a

specific application such as sensing or nonlinear-optical studies. This will be our next

step in our research on nanoantenna-superlens combinations.



117

Fig. 9.11. Representative FDTD near-field intensity maps. These
maps were calculated for the bare antenna sample with 620nm il-
luminating light at the parallel polarization (left column) and the
perpendicular polarization (right column). The maps show the in-
tensity patterns 10 nm above the sample, averaged in a 150nm radius
circle, and plotted for each field component. The corresponding inten-
sity scales (arbitrary units) are also shown. The x- and z-components
dominate in the parallel polarization, but the y-component dominates
in the perpendicular polarization.
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Fig. 9.12. NSOM scans and corresponding total near-field intensity
simulations for the bare antenna sample in both polarizations and at
an incident wavelength of 620 nm.
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Fig. 9.13. NSOM scans (upper panels) and corresponding total near-
field intensity simulations (lower panels) for the superlens sample in
both polarizations and at an incident wavelength of 680 nm.

Fig. 9.14. NSOM scans with unpolarized light at the edge of an an-
tenna array. The image on the left shows the topography (height
profile) of the sample. The antennas cover roughly 40% of the image.
The image on the right shows the corresponding NSOM intensity pro-
file of the same region. The intensity pattern continues beyond the
array, indicating a propagating, diffraction-based mode.



120

Fig. 9.15. NSOM scans (upper panels) and corresponding total near-
field intensity simulations (lower panels) for the reference sample in
both polarizations and at an incident wavelength of 660 nm.
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A. ELECTROMAGNETIC BOUNDARY CONDITIONS

FOR NANOMETER-SCALE CONFINEMENT AT

METAL-DIELECTRIC INTERFACES

This chapter provides a brief outline of how plasmonics is used to confine electromag-

netic waves to a very thin, planar metal interface. The principles examined in this

chapter will be used to describe plasmonic materials and devices in future chapters.

We will begin by exploring the metal / dielectric interface shown in Fig. A.1.

Fig. A.1. Metal / dielectric interface used for surface plasmon polariton excitation.

Let us first examine the TM mode of this wave with the geometry shown in Fig.

A.1. In the region z > 0 (dielectric), we solve for this system first by finding the

general solution for Hy, Ex, and Ez:

Hy = A1e
iβxe−k1z (A.1)

Ex = iA1
k1

ωε1ε0
eiβxe−k1z (A.2)
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Ez = −A1
β

ωε1ε0
eiβxe−k1z (A.3)

Likewise, in the region z < 0 (metal), we have:

Hy = A2e
iβxe−k2z (A.4)

Ex = −iA2
k2

ωε2ε0
eiβxe−k2z (A.5)

Ez = −A2
β

ωε2ε0
eiβxek2z (A.6)

It is important to note that the permittivities of the respective materials are

not longer the permittivity of free space but include a relative permittivity term,

which explains the electric fields interaction with the material. It is also important to

note that the permittivity in the dielectric is positive, while the permittivity in the

metal is negative. In these equations, we can see that the wave vector term (k1, k2)

perpendicular to the metal / dielectric interface defines the exponential decay of the

fields perpendicular to the interface essentially confining the field to the boundary

of the two materials. Applying continuity of the fields Hy and εEz at the boundary,

and solving for these equations requires that A1 = A2 and

−k2
ε2

=
k1
ε1

(A.7)

This tells us that in order to have a propagating wave at this interface, one of

the materials must have a positive permittivity (dielectric), while the other material

must have a negative permittivity (metal). Furthermore, the magnetic field along the

interface Hy must satisfy Eq. (A.8).

δ2Hy

δz2
+ (k0ε0 − β2)Hy = 0 (A.8)

Therefore,
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k2
1 = β2 − k2

0ε1 (A.9)

k2
2 = β2 − k2

0ε2 (A.10)

Combining this result with Eq. (A.7), we arrive at what is known as the ”disper-

sion relation” of the surface plasmon polaritons at the surface of the metal.

β = k0

√
ε1ε2

ε1 + ε2
(A.11)

Fig. A.2. Surface Plasmon Polaritons (SPPs). Distribution of free
charge carriers oscillating at the metal / dielectric boundary. The
distribution of the SPP mode can be seen by the red curve.

The material acting as a metal in this case must exhibit a negative permittivity

(ε < 0). This condition is satisfied when the frequency of the incident field is below

the plasma frequency ωp where

ωp =

√
ne2

ε0m∗ (A.12)

In Eq. (A.12), n is the number of free electrons in the metal, e is the charge of the

electron, and m∗ is the effective mass of the electron in the metal. To re-emphasize,

a surface wave can only exist in the condition where the permittivity of the metal is
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negative (εm < 0), and this condition is satisfied at or below the materials plasma

frequency.

A.1 Multilayer Systems and Plasmonic Waveguides

We have solved the wave equation for the case of a single metal / insulator inter-

face, and now move on to look at three-layer systems consisting of metal- insulator-

metal (MIM) and insulator-metal-insulator (IMI) structures. These structures can

be used as plasmonic waveguides guiding this plasmonic mode confined to a sub-

wavelength structure. In the IMI structure, when the thickness of the metal layer

approaches the SPP decay length in the z-direction, a coupled mode will arise be-

tween the two interfaces as shown in Fig. A.3.

Fig. A.3. A coupled SPP mode will exist when the thickness of the
metallic layer is below the decay length of the surface mode in an IMI
structure.

This type of symmetric profile of the SPP mode will arise when the dielectrics

have the same positive value of permittivity. These types of IMI structure have

several important features worth noting. First, most of the propagating mode is not

contained in the metal. For this reason, we say that the mode has weak confinement,

and thus has the disadvantage of not being able to be steered well along the metal
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path. While this structure can be used as a waveguide, if the metal path changes

direction, a large portion of the mode will not be able to follow this new path. Another

disadvantage for such a structure is that in practical applications, it is desirable for

these components to be grouped as densely as possible to fit more components onto

a chip. Having such a mode that is spaced so far into the dielectric region prohibits

such designs, as coupling to adjacent waveguides would typically produce undesirable

results. However, because very little of the mode is contained within the metal, this

type of structure has the advantage of very low losses for this propagating mode.

While the evanescent field suffers no losses in the dielectric material, the permittivity

of metals is a complex value, and must be described as:

ε(ω) = ε′ + iε′′ (A.13)

In Eq. (A.13), ε′ describes the metals susceptibility to polarization, while the term

ε′′ describes losses in the metal. Because very little of the IMI mode is contained in

the metal, it will suffer very little loss. For this reason, modes travelling in such a

structure can propagate for very long distances, and are therefore known as Long

Range Surface Plasmon Polaritons (LRSPP).

As previously mentioned, another type of structure can be used as a waveguide to

propagate such SPPs. An alternative to the IMI structure is the metal-insulator-metal

(MIM) structure shown below in Fig A.4.

Similar to the IMI structure, the MIM structure has a coupled mode between the

two metal interfaces. However, in this case the metal interfaces have an insulating

layer between them. As can be seen in Fig. A.4, most of the field in this MIM

structure is in the metal layers. For this reason, this mode cannot propagate for long

distances, as they suffer from the large losses in the metal. However, this mode is

confined very well, and can thus easily follow the path of the waveguide.

By comparing these two types of waveguide designs, it can be seen that there are

trade-offs to each design. For example, if an optical signal must be sent for a long

distance in a straight line in a system that does not require high component density,
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Fig. A.4. A coupled SPP mode in a MIM structure. While the mode
is confined well, most of the field is in the metal, and will therefore
suffer from the metallic losses.

the IMI structure is the clear choice. Alternatively, if the signal is only required to

travel a short distance in a more dense system, the MIM structure may be the better

choice. However, both structures have the advantage over conventional fiber optics

in that they allow for subwavelength, nanometer confinement of the electromagnetic

fields allowing for plasmonic integration with our current electronics.

A.2 Localized Surface Plasmon Resonance and Nano-Antennas

While the propagating mode of surface plasmon polaritons (SPPs) has been dis-

cussed, there is another type of surface plasmon known as localized surface plasmon

resonance or LSPR. For this case, we consider a structure similar to the the IMI

structure explained in the previous section, however we assume the metal now has a

finite length such as shown below in Fig. A.5.

While in the case of the SPPs propagating on a boundary infinite in length, free

charges were able to move for long distances under the influence of an oscillating field.

However, when the length of this layer becomes finite, we see that under the influence

of an oscillating electromagnetic wave, free charges will build up on the edges of these
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(a) The basic design of the structure.

(b) The localization of charges due to the finite length of the structure.

Fig. A.5. Geometry of the localized surface plasmon resonance.

conducting metals. The incident electromagnetic wave acts as an Alternating Current

(AC) source, oscillating the free charge carriers at optical frequencies. Naturally,

this type of structure has a resonant frequency at which the metal pairs absorb the

maximum amount of energy and confine it to the gap between metal pairs. For this

reason, this type of structure is known as a nano-antenna and has a wide range of

applications including enhancement of non-linear processes and improvements in solar

cell efficiencies.

A.3 Conclusion

When a wave is incident on a dielectric / metal interface, our boundary conditions

were able to identify the existence of a surface mode known as a surface plasmon

polariton under TM polarization. However, due to losses in the metal to which these

fields are confined, these fields will not propagate for long distances. To exploit

this phenomenon into a practical application (such as a waveguide), the geometry
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can be configured into an IMI or MIM structure each with its own advantages and

disadvantages. Finally, a similar technique can be used in a non-continuous structure

to create a localized surface plasmon resonance which is a non-propagating mode

but allows for the absorption and confinement of the field to a small volume. This

type of structure can be used as a nano-antenna for various applications requiring

strong field enhancement and confinement. Many of the Equations derived in this

chapter, and structures discussed will have a great amount of application throughout

the remainder of this dissertation.
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B. GLANCING ANGLE DEPOSITION (GLAD) - NOVEL

APPROACH FOR QUASI 3D FABRICATION

B.1 Glancing Angle Deposition at Purdue

B.1.1 Background

Due to the interest in creating films on non-planar surfaces and non-uniform thick-

nesses, we have ordered a custom designed and built Electron-Beam (e-beam) Evapo-

ration system from PVD Products (Wilmington, MA). The system’s installation was

completed in February 2012, and is located in the cleanroom of the Birck Nanotech-

nology Center. An image of the outside of the system can be seen in Fig. B.1. While

Birck has several other e-beam evaporators, this PVD GLAD system has control over

the substrate’s angle and rotation that make it unique to any of the other evapora-

tion systems on Purdue’s campus. Additionally, the system’s deposition parameters

(deposition rate, thickness) can be programmed to automate the deposition process

for many-layered films.

B.1.2 Hardware

The evaporator has a four-pocket turret, and the deposition angle can be auto-

matically controlled for each pocket. The rotational control of the substrate can be

set to rotate continuously at a designated rate (RPM), or can be set to do a single

angular rotation (e.g. rotate clockwise 90◦) through the computer’s user interface

(discussed later). The valve control for loading/unloading the chamber are all man-

ually controlled and are located on the left side of the evaporation chamber (shown

in Fig. B.1). Base pressures of 5 × 10−6 can be reached in approximately 1 hour,
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while pressures of 2 × 10−8 Torr can be achieved by letting the cryo pump run for

approximately 24 hours.

Fig. B.1. Some of the external components of the GLAD system

The inside of the evaporation chamber can be seen in Fig. B.2. While most of

the internal components are standard to most e-beam evaporators, the sample holder

and quartz crystal monitors (QCM) are slightly modified at should be explained in

detail. The sample holder’s angle can be controlled via the computer’s user interface

(discussed later). The motor for the angular control of the substrate is located out-

side the chamber, as seen in Fig. B.1, while the motor for the sample’s rotational

control is located internally. One of the design requirements of the GLAD system

was the capability to deposit large amounts of material in a single deposition without

breaking vacuum, and the system was designed accordingly. First, pockets for very

large (30cc) crucibles were included to accommodate the large volume of deposited

material. Secondly, because QCMs are extremely sensitive to (and deteriorate with)

the amount of deposited mass, the system has two separate QCMs with independent

shutters that can be opened and closed when one QCM has deteriorated. These in-
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ternal components allow for long depositions of thick and multi-layered films without

breaking vacuum.

Fig. B.2. Some of the internal components of the GLAD system

The current materials in the chamber, and their respective pocket numbers are

listed below:

1. Germanium (Ge)

2. Silver (Ag)

3. Silicon Dioxide (SiO2)

Other materials that can be evaporated in the chamber (though they are not

loaded) include but are not limited to:
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• Aluminum (Al)

• Aluminum Oxide (Al2O3)

• Gold (Au)

• Chromium (Cr)

• Silicon (Si)

• Copper (Cu)

• Titanium Dioxide (TiO2)

• Iron (Fe)

B.1.3 Automation and Computer User Interface

In order to automate the deposition of thick and multi-layered films, as well as

the sample’s angle and rotation, many of the system’s controls can be manipulated

through an external computer. Physically located next to the evaporation chamber,

a laptop controls the sample’s motion through a Graphical User Interface (GUI),

programmed in LabView. A screenshot of this GUI, along with important controls

are shown in Fig. B.3.

The bottom left box A: “Rotation Control” controls the substrates rotation. There

are two basic methods of oration: 1) continuously rotating at a specified rate (RPM),

or 2) rotating by an exact amount (e.g. 90◦) and stopping. The rotation is done

by a stepper motor, where full 360◦ rotation requires 20,000 steps. Therefore, 180◦

rotation is 10,000 steps and so forth.

The system has a 4-pocket turret, where the angle of deposition for each pocket can

be independently controlled. The designated angle foe each pocket is input into box

B: “Angle Control”. The angles are input as degrees (not radians), and are applied

to the substrate when the “Set Index Positions” button is clicked. The angle of the

substrate will change only when the source material in the corresponding pocket is

being evaporated.
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Because the system is designed to evaporate very thick (microns) and multilayer

films, the computer can save critical system information throughout the entire de-

position process. This information includes chamber pressure, deposition rate, film

thickness, substrate angle rotation, and so on. This data is saved in a plan-text comma

separated value (CSV) format, and its collection time interval can be assigned in Box

C: “System Data Collection”. More detailed instructions on loading/unloading the

chamber can be found in Appendix C.1 “Loading and Unloading the GLAD Cham-

ber”

B.1.4 WORDS OF CAUTION

The systems’ automation is a wonderful and essential feature for fabricating thick

and many-layered structures. Depositing many-layered films can take very long

amounts of time (some of the structures fabricated in this dissertation have taken

in excess of 24 hours to deposit). Automating this process allows the machine to

continue deposition without input from the user. However, this feature can lie users

into a false sense of security, so words of caution should be considered.

Although unlikely, there are several possible problems that can arise which could

lead to catastrophic system failure and destruction. A magnet failure is unlikely but

unpredictable. In the case of this event, the high-powered electron beam will go off

in an arbitrary direction, and can burn or melt through whatever it comes in contact.

This could burn a hole in the chamber itself and/or damage any internal components

in quite a short time period. The only way to catch this problem is to be present

and observant during deposition. Another possible (though avoidable) problem that

could arise is burning through a crucible and turret with the e-beam. This potential

problem is espycially apparent with dielectric materials, as they do not “pool” like

metals. This problem can be avoided by making sure the crucibles are always full,

and using proper sweeping.



148

Fig. B.3. Screenshot of the GUI for the GLAD system.
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C. STEP-BY-STEP INSTRUCTIONS FOR OPERATING

GLAD

C.1 Loading and Unloading the GLAD Chamber

1. Turn off ion gauge and wait 2 minutes for it to cool

2. Close the gate valve fully

3. Open the vent valve, wait for pressure to reach 760 Torr

4. The chamber door is difficult to open. Either wait a while (∼ 10 minutes) then

open the door, or pull VERY hard on the door to open.

5. While the chamber is open, double glove and check the turret pockets have

sufficientt material, chamber is clean, Quartz Crystal Monitors are in good health

(above ∼80%)

6. The sample holder is friction-mounted in the chamber. There are two Allen

wrenches on top of the chamber. Use the larger wrench to loosen the 2 screws

while holding the sample holder with the other hand. Be careful not to drop the

sample holder! I find the whole process is easier when the holder is rotated to

45◦.

7. Mount the sample into the sample holder using the smaller Allen wrench. Tip:

think ahead of time about where the shadow from the sample clips will fall -

especially at clanking angles (as it will cast a long shadow).

8. Remount the sample holder as before. Be sure it is tightly secured before releas-

ing with your hand - as to not let it fall down. Shake the sample holder slightly

so as to make sure it is securely mounted and will not fall down on its own.

Again, make note of the orientation of the sample and consider any shadowing

from the mounting clips.
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9. Close the chamber, tighten acre-mount on the side of the chamber (to make a

tight seal).

10. Close the vent valve

11. Open the roughing valve, wait for pressure to drop down to below 250mTorr

(0.250) Torr

12. Close the roughing valve

13. SLOWLY open the gate valve. Once the pressure begins to drop, wait 1 minute,

then continue opening the valve slowly. Once the pressure is below ∼1e−4 Torr,

open the valve up all the way and let the system pump down.

14. Wait ∼5 minutes to let the system drop in pressure.

15. Turn on the ion gauge, record the pressure in the logbook

16. Wait ∼1 hour for the pressure to drop to 5e−6 Torr

17. Wait ∼24 hours for the pressure to drop to 5e−8 Torr

C.2 Running an Evaporation

1. Turn on High Voltage switch and controller switch (bottom left - below the

chamber)

2. Turn on the “Sweep Controller” switch

3. Turn on the “Evap Enable” switch and wait for ∼2 minutes for the light to stop

blinking.

4. On the Inficon thin film deposition controller, go into the process menu to select

and edit a recipe. Here, film layers can be added or removed and parameters

(such as film thickness and deposition rate) can be modified.

5. Go back to the main menu, be sure the correct recipe has been selected.

6. Start the process.
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7. The sample angle for the 4 crucibles can be input into the “Index Positions” box

on the computer.

8. When the process finishes, turn the system off in the reverse order: evap enable,

sweep controller, high voltage, and controller.

9. Make sure the ion gauge is turned off and wait 2 minutes for it to cool before

venting.

C.3 Other Notes and Comments

• Get all source materials from the BNC staff (namely Dave Lubelski or Kenny

Schwartz)

• The “chimney” will need to be cleaned periodically, as pieces of deposited ma-

terial will flake off. Take the chimney out and scrape it with a razor blade. If

further cleaning is needed, Dave Lubelski can clean it with a sandblaster.

• Clean and vacuum any material that has fallen in the chamber - especially if it

is near any source crucibles.

• Keep the chamber clean! Ask BNC staff before putting any new materials inside

the chamber.

• We installed a plastic shield on the outside of the chamber around the substrate

angle rotation motor. This is there for safety and should never be removed. it

is a “pinch-point” and can crush a person’s fingers.

• Never open any of the High-Voltage boxes - they are an electric hazard and can

be lethal
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