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ABSTRACT

Weigel, Peter F. PhD, Purdue University, May 2015. Orderability and rigidity
in contact geometry. Major Professor: Peter Albers.

We study the existence of positive loops of contactomorphisms on a Liouville-

fillable contact manifold (Σ, ξ = ker(α)). Previous results (see [1]) show that

a large class of Liouville-fillable contact manifolds admit contractible posi-

tive loops. In contrast, we show that for any Liouville-fillable (Σ, α) with

dim(Σ) ≥ 7, there exists a Liouville-fillable contact structure ξ′ on Σ which

admits no positive loop at all. Further, ξ′ can be chosen to agree with ξ on

the complement of a Darboux ball. We then define a relative version of or-

derability for a Legendrian submanifold, and discuss the relationship between

the two notions.
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1. Introduction

In [2], Eliashberg and Polterovich introduced the notion of orderability in con-

tact geometry. Central to their investigation is the study of the (non-)existence

of contractible positive loops of contactomorphisms on a contact manifold

(Σ, ξ = ker(α)), i.e. loops of contactomorphisms whose t-derivative is positive

with respect to the contact form. For example, positive loops of contactomor-

phisms arise in Riemannian geometry: a P-metric on a closed manifold M

induces such a loop on the associated unit cotangent bundle ST ∗M . It is a

classical result that the existence of such a metric imposes strict topological

restrictions on M , see [3].

There is also a link between topology and orderability, though it is not as

well understood. Using Givental’s nonlinear Maslov index [4], Eliashberg and

Polterovich showed that RP2n−1 is orderable. Eliashberg, Kim, and Polterovich

showed that all unit contangent bundles are orderable, but that contact bound-

aries of 2-subcritical Stein domains (for instance, standard spheres) are not [1].

This suggests that for fillable contact manifolds, the topology of the filling

plays an important role. We ask a related question: given a non-orderable

contact structure on Σ, are all other contact structures non-orderable as well?

Our main result is the following:

Theorem 1.0.1. Let(Σ, α) be a Liouville-fillable contact manifold with dim(Σ)

at least 7. Then there exists a Liouville-fillable contact structure ξ′ on Σ,

agreeing with ξ on the complement of a Darboux ball, which admits no positive

loop of contactomorphisms. In particular, it admits no contractible positive

loop of contactomorphisms, thus ξ′ is orderable.

We now outline the technical framework in which we will be working, and

sketch the proof of the above. Throughout, (Σ, α = λ|Σ ) will denote the
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boundary of a Liouville domain (W,ω = dλ). Cieliebak and Frauenfelder have

defined an invariant of such a pair (Σ,W ) called Rabinowitz Floer homology

[5]. In this paper, we define the positive growth rate Γ+(Σ,W ) associated to

RFH(Σ,W ). We show that a positive loop of contactomorphisms can be used

to compute RFH.

In Section 7, we show that Γ+ detects obstructions to the existence of a

positive loop of contactomorphisms. Specifically, a contact manifold whose

filtered RFH has superlinear growth does not admit one. This implies, in

particular, that a Liouville-fillable contact manifold with Γ+ > 1 is orderable.

Proposition 1.0.2. Suppose that (W,ω = dλ) is a Liouville domain (see

Defn. 3.0.13) with boundary (Σ, α = λ|Σ ), which admits a positive loop of

contactomorphisms ϕ. Then Γ+(Σ,W ) ≤ 1.

Corollary 1.0.3. Suppose that(Σ, α) arises as the contact boundary of a Liou-

ville domain (W,ω = dλ), with Γ+(Σ,W ) > 1. Then (Σ, α) admits no positive

loops of contactomorphisms. In particular, it is orderable.

In Section 8, we complete the proof of Theorem 1.0.1 by proving that the

contact structure can always be modified locally (using handle attachment

surgeries) so that Γ+(Σ,W ′) ≥ 2.

Proposition 1.0.4. If dim(Σ) ≥ 7, there exists a Liouville domain (W ′,Σ′)

which is diffeomorphic to (W,Σ) with Γ+(Σ′,W ′) ≥ 2. We can arrange that

the Liouville structures agree on the complement of a Darboux ball.
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2. Background in contact orderability

Let (Σ, ξ = ker(α)) be a co-oriented contact manifold. Following [2] and [1],

we define what it means to say that ξ is an orderable contact structure.

First, let ϕt : [0, 1]×Σ→ Σ be a contact isotopy with ϕ0 the identity. We

say that ϕt is non-negative if

αϕt(x)

(
dϕt

dt

)
≥ 0.

Consider now the identity component of the group of contactomorphisms of

Σ, that is, those contactomorphisms which are contact isotopic to the identity,

and denote it C. For ϕ ∈ C, it is natural to ask whether a similar notion of

non-negativity can be defined - that is, whether a given contactomorphism

isotopic to the identity can be generated by a non-negative isotopy.

Definition 2.0.5. We say ϕ ∈ C is non-negative, denoted 0 ≤ ϕ, if it can be

realized via a non-negative isotopy. Given also ψ ∈ C, write

ψ ≤ ϕ

if 0 ≤ ϕψ−1.

In [2], the authors asked whether ≤ induces a non-trivial partial order on

C̃, the universal cover of C. Recall that a partial order is a binary relation ≤

satisfying the following:

I. (reflexivity) a ≤ a

II. (antisymmetry) a ≤ b and b ≤ a implies a = b.

III. (transitivity) a ≤ b and b ≤ c implies a ≤ c.
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The relation ≤ on C induces one on C̃, and it is immediate that it satisfies

reflexivity and transitivity. Antisymmetry fails, and hence ≤ fails to be a

partial order on C̃, if there exists a contractible non-negative loop based at the

identity. This was strengthened as follows:

Proposition 2.0.6. ≤ gives a non-trivial partial order on C̃ if and only if any

strictly positive loop of contactomorphisms is noncontractible.

If this holds, say that ξ is an orderable contact structure. Using Givental’s

nonlinear Maslov index [4], the following was deduced:

Proposition 2.0.7. The standard contact structure on RP 2n+1 is orderable.

At the time, it was conjectured that the orderable contact structure on

RP 3 would lift to an orderable contact structure on S3. However, in [1], it was

shown that contact spheres, and more generally 2-subcritical Stein boundaries,

are all non-orderable. Moreover, the authors showed that all unit cotangent

bundles are orderable, whence follows the orderability of RP 3 by identification

with ST ∗S2.

Remark 2.0.8. We recall that a Stein manifold can be defined as an open com-

pex manifold W of real dimension 2n, along with a strictly plurisubharmonic

Morse function f whose sublevel sets are compact. Strict plurisubharmonic-

ity implies that the Morse index of any critical point is less than or equal to

n. We say that a Stein manifold is k-subcritical if all Morse indices are less

than or equal to n− k. We point out the quirk that a Stein manifold which is

k-subcritical is also j-subcritical for all j ≤ k.

The Stein structure on W induces a symplectic structure with symplectic

form

ω = −ddc(f),

and regular sublevel sets of f are contact submanifolds with contact form

α = −dc(f).

Contact manifolds arising in this way will be called Stein boundaries.
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3. Preliminary Notions

We begin by defining some relevant terms and fixing terminology. Throughout,

(Σ, ξ = ker(α)) is assumed to be a smooth closed contact manifold. The Reeb

vector field of α will be denoted R.

Definition 3.0.9. A positive loop of contactomorphisms (or P-loop) is a

smooth map

ϕ = {ϕt}t∈R/Z : R/Z× Σ→ Σ

satisfying

ϕt∗ ξ = ξ, ιϕ̇tα > 0 for all t ∈ R/Z, ϕ0 = Id,

where we employ the notation ϕ̇t := d
dt
ϕt. We denote the set of all P-loops by

L +(Σ, α),

or simply L + where no confusion is possible.

Remark 3.0.10. For any g ∈ C∞(Σ), one readily observes that

L +(Σ, α) = L +(Σ, egα),

i.e. although it is essential that ξ be coorientable, the notion of positivity is

independent of the choice of contact form within a given coorientation class.

Definition 3.0.11. Suppose ϕ ∈ C∞(Cont(Σ, α)) is a path of contactomor-

phisms. Following [6] (and hence in turn [4]), we call a point x ∈ Fix(ϕt) a

discriminant point of ϕt if

(ϕ∗t α)x = αx;

we call (x, t) a discriminant pair of ϕ.
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Remark 3.0.12. One observes that the notion of discriminant point is inde-

pendent of the contact form defining ξ. We shall see below that this is not an

analytical curiosity, but rather a manifestation of the topological fact that ϕt

is Lefschetz degenerate at x, see Definition A.1.4 and Lemma A.1.7.

Definition 3.0.13. We say that a contact manifold is Liouville-fillable if it

arises as the boundary of a Liouville domain, i.e. a compact symplectic man-

ifold (W,ω) satisfying

I. ω is exact, ω = dλ

II. (W,ω) admits a Liouville vector field X; that is, a vector field X satis-

fying LXω = ω whose negative flow is complete

III. X is transverse to Σ = ∂W .

Liouville domains behave well under Cartesian product; that is, if W1 and

W2 are Liouville domains, then W1 ×W2 admits a natural Liouville structure

after smoothing the boundary, see [7].
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4. Rabinowitz Floer Homology

Rabinowitz Floer homology was developed in [5] as a fixed-energy analogue

of symplectic homology. It is defined (under suitable assumptions) for exact

convex hypersurfaces in non-compact symplectic manifolds. Let (M,ω = dλ)

be an exact symplectic manifold, and let H : M → R be a smooth autonomous

Hamiltonian satisfying the following assumptions:

I. 0 is a regular value of H

II. Σ := H−1(0) is connected and separates M into two components, with

H−1(−∞, 0] compact

III. dH is compactly supported.

The Rabinowitz action functional is defined as follows:

AH : C∞(S1,M)× R→ R,

(u, η) 7→
∫
S1

u∗ λ− η
∫ 1

0

H(u(t)) dt.
(4.1)

One computes that the critical points of AH are pairs (u, η) satisfying

u̇ = η XH(u(t)),

H(u(t)) = 0.
(4.2)

The Rabinowitz Floer chain complex RFC∗(Σ,M,H) is a free Z2 module gen-

erated by the critical points of the action functional AH . 1 Its homology

RFH∗(Σ,M) is defined by counting Floer trajectories between critical points,

where the grading is given by the Conley-Zehnder index. We refer to [5],

[8] for more details, and to [6] for the extension to positive periodic contact

Hamiltonians which we will need here.
1To be precise, in the autonomous case one needs to add a small time-dependent perturba-
tion to break the reparametrization symmetry, or use Morse-Bott techniques.
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Remark 4.0.14. Recall that Rabinowitz Floer homology is equipped with an

action filtration: let

σ(AH) :={c ∈ R | ∃(u, η) ∈ Crit(AH) with AH(u, η) = c}

denote the action spectrum of AH . Let ε > 0 be such that

ε < min{|c| | c ∈ σ(AH)− {0}},

and x ∈ (−ε,∞) − σ(AH). Critical points of the action functional with ac-

tion in (−ε, x) generate a subcomplex of RFC∗(Σ,M,H), whose homology is

denoted

RFH(−ε,x)
∗ (Σ,M,H) =: Vx.

If x ≤ x′, there is a chain homomorphism induced by inclusion of complexes

ιx,x′ : Vx → Vx′ .

Note that the family {Vx}x∈(−ε,∞)−σ(AH) is a directed system, and we denote

its direct limit by

RFH+
∗ (Σ,M,H) := lim

−→
Vx.

We now quote two fundamental results which will be very useful. The first

relates RFH+ with the symplectic homology of M , while the second shows that

RFH depends only on the compact region of M which Σ bounds, which we

denote by W . This makes it possible to define RFH+ for a Liouville domain

W .

Proposition 4.0.15 (cf. [8, Proposition 1.4] ). RFH+
∗ (Σ,M) is related to

SH∗(M) by the following long exact sequence:

· · · → H−∗+n(W,Σ)→ SH∗(M)→ RFH+
∗ (Σ,M)→ H−∗+1+n(W,Σ)→ · · · .

(4.3)

Here n denotes half the dimension of W .

Remark 4.0.16. Although not explicitly stated, [8] shows that the above long

exact sequence is compatible with action filtrations.
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Proposition 4.0.17 (cf. [8, Proposition 3.1]). RFH+
∗ (Σ,M) depends only on

the exact symplectic manifold W and not on the ambient manifold M .

Remark 4.0.18. We can now define RFH+ for a Liouville domain (W,Σ) by

attaching the symplectization of Σ along Σ = ∂W . Proposition 4.0.17 shows

that this is well-defined. In the sequel, we will abuse notation and denote the

resulting homology simply by RFH+
∗ (Σ,W ).

We now wish to study the growth of RFH(−ε,x)
∗ (Σ,W ) as x gets large. This

will allow us to extract more refined quantitative information than simply the

total dimension of the homology, which is often infinite. We adapt a definition

given by M. McLean in the context of symplectic homology [9]. With x and

Vx as above, define

a(x) := dim
(
Im(ιx,∞ : Vn → RFH+

∗ (Σ,W ))
)
.

Definition 4.0.19. The positive growth rate of RFH(Σ,W ) is defined to be

Γ+(Σ,W ) := lim sup
x

log(a(x))

log(x)
.

Remark 4.0.20. Recall that the inclusion maps have the property that for

x < y < z,

ιx,z = ιy,z ◦ ιx,y.

This implies that a(x) is monotone with respect to x. If there exists a constant

C > 0 such that

|x− y| < 1 −→ |a(x)− a(y)| < C,

we can choose constants cn satisfying n− ε < cn < n− ε/2 for which

Γ+(Σ,W ) = lim
n→∞

log(a(cn))

log(cn)
.

This will simplify the computation of Γ+ in the sequel.

Remark 4.0.21. A priori, it is not clear that the definition above is, as indi-

cated, independent the contact Hamiltonian associated to ϕ. McLean shows

something stronger: namely, that the growth rate of symplectic homology is
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defined up to Liouville isomorphism. Proposition 4.0.15 shows the same is true

for RFH+.

Remark 4.0.22. Γ+(Σ,W ) takes values in {−∞} ∪ [0,∞]. A finite growth

rate indicates polynomial growth, while an infinite growth rate implies super-

polynomial (e.g. exponential) growth.
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5. The Rabinowitz action functional associated to ϕ

Now we will adopt the setup from the introduction, namely that W is a Liou-

ville domain with boundary (Σ, α), and that (Σ, α) supports a positive loop ϕ.

We recall the contact Hamiltonian and associated action functional associated

to ϕ. This is first defined on the symplectization SΣ of Σ, and then extended

using cutoff functions to all of

Ŵ := W ∪Σ ([1,∞)× Σ)

in such a way that no additional critical points are introduced [6]. We stress

that although the critical set does not depend on the choice of filling, it can

happen that the resulting homology does.

Definition 5.0.23. The contact Hamiltonian associated to ϕ is given by

ht : Σ× S1 → R

ht(ϕ
t(x)) = αϕt(x)

(
d

dt
ϕt(x)

)
.

The lifted contact Hamiltonian Ft : SΣ → R is given by Ft = rht and its

Hamiltonian flow is given by

φt(r, x) =

(
r

ρt(x)
, ϕt(x)

)
,

where ρt := ιR ϕ
∗
t α.

Definition 5.0.24. The action functional associated to ϕ is defined as

Aϕ : C∞(S1, SΣ)× R→ R,

(u, η) 7→
∫
S1

u∗ λ− η
∫ 1

0

[Fηt(u(t))− 1] dt.

The critical points of Aϕ are pairs (u, η) satisfying

u̇ = η XFηt ,

Fη(u(1)) = 1.
(5.1)
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Remark 5.0.25. We point out that for (u, η) ∈ Crit(Aϕ), Aϕ(u, η) = η, i.e. the

action of a critical point is equal to the period.
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6. Transversality and Admissible P-loops

To define RFH for the lifted contact Hamiltonian associated to ϕ ∈ L +, the

problem arises that although

Critk(Aϕ) :={(u, η) ∈ Crit(Aϕ) | Aϕ(u, η) = k}

may be identified with Σ by projection for each k ∈ Z, the identification is

somewhat noncanonical. Therefore, we ensure that for all critical points with

integer period, r(u(0)) = r(u(1)) = 1, i.e. that the start and end point lies in

Σ.

Rescaling the contact form: Fix ϕ ∈ L + and define a new contact form α̃ for

ξ on Σ by setting

α̃ =
α

h0

. (6.1)

We observe that we may view (Σ, α̃) as Liouville isotopic to (Σ, α) within Ŵ .

Because RFH is invariant under such isotopies 1 , all statements about RFH

do not depend on this choice of rescaling. Since

h̃0 = α̃(ϕ̇0) = 1,

we obtain the desired property about critical points. To wit, for k ∈ Z,

periodicity of ϕ implies that

hk(ϕ
k(x)) = h0(x), ρk(x) = 1.

Therefore, every x ∈ Σ corresponds to a critical point, and by the second

requirement of (5.1),

r(ux(1)) =
1

h̃k(ϕk(x))
= 1.

1We were unable to locate a direct proof of this in the literature. An indirect proof combines
analogous results in symplectic homology with the long exact sequences in [8]. An alternative
and more parsimonious approach would be to define RFH using α̃, since all of our results
require only that (Σ, α̃) is Liouville-fillable.
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The goal of the next two lemmas is to sketch how transversality can be achieved

for Aϕ, which here means Aϕ is Morse-Bott. Full statements and proofs are

given later in this section - here we illustrate the conceptual framework. The

proofs given in Section 7 all rely on the fact that given an admissible ϕ ∈ L +,

i.e. one for which the Floer homology can be defined, the growth rate of the

homology is bounded above by the growth rate of the chain complex, which

is linear. Given any P-loop, the strategy becomes clear: use its existence to

prove the existence of an admissible P-loop. Assuming for the moment that

a generic perturbation yields an admissible path of contactomorphisms, care

must be taken so that the result is still a loop. Here the structure of the

Rabinowitz action functional is of great help. By Remark 5.0.25, the critical

values of Aϕ are simply the periods of the periodic orbits, so it is possible

to perturb ϕ in time, rather than by action. In addition, imposing the loop

condition requires that Aϕ is Morse-Bott for integer critical values.

Lemma 6.0.26. Let ϕ be a positive loop of contactomorphisms. Then there

exist ϕ̃ ∈ L + and a constant ε > 0 which depends only on ϕ such that

• If dist(t,Z) ≤ ε, ϕ̃t = ϕt

• Any critical point (u, η) ∈ Crit(Aϕ̃) with η /∈ Z is Morse.

(Sketch). We focus solely on η ∈ (0, 1) and extend by periodicity. We claim

there exists ε > 0 such that

σ(Aϕ) ∩ ((0, ε) ∪ (1− ε, 1)) = ∅.

Indeed, by compactness of Σ and nonvanishing of ϕ̇, there exists ε > 0 such

that ϕη(x) 6= x for any η ∈ (0, ε) ∪ (1 − ε, 1). Hence any such η is vacuously

a regular value of Aϕ. It is then possible to perturb ϕ to ϕ̃ rel endpoints,

i.e. so that the perturbation is trivial on the set where ϕ is known to be

regular. By choosing the perturbation sufficiently small in C1-norm, the result
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is still a positive loop of contactomorphisms. We refer to Proposition 6.1.4 and

Proposition 6.4.2 for details.

Lemma 6.0.27. The Rabinowitz action functional Aϕ is Morse-Bott when

restricted to integral critical values, in the sense that the critical set may be

identified with Σ = {r = 1}, and the kernel of the Hessian of Aϕ may be

identified with TΣ.

(Sketch). Here the motivating principle is that since ϕk is the identity for

k ∈ Z, given a critical point (u, k) and a tangent vector v ∈ Tu(0)Σ, one can

produce a new critical point by setting

ũ(t) := φtk(expv(u(0))),

which implies that TΣ is contained in the kernel of the Hessian. Nondegeneracy

of ω and the nonvanishing of ϕ̇t then implies that this is the only way the

Hessian can vanish. We refer to Proposition 6.1.4 for the full argument.

6.1 Minimal degeneracy of P-loops

Achieving transversality for Aϕ presents certain difficulties not seen in

classical Floer theory, which we summarize here.

• Aϕ can never be Morse.

This is to be expected, as we are dealing with the zero-energy level set of a

free time action functional, i.e. Critη=0 will always correspond to Σ = {F0 =

0}. This is typically handled using Morse-Bott techniques [5]. For a P-loop,

the additional complication is that Critη∈Z ∼= Σ, i.e. Σ appears as a critical

manifold infinitely many times.

• The Poincaré return map.

A more serious obstacle is the existence of isolated degeneracies. Recall (or see

below) that a critical point of the classical action functional (corresponding
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to a fixed point of a Hamiltonian diffeomorphism ψ) is nondegenerate if and

only if ψ is Lefschetz regular at x (see Definition A.1.4), i.e. if and only if

1 is not in the spectrum of the Poincaré return map ψ∗. This is satisfied for

generic Hamiltonians. However, for φt this can never be the case - the r-

invariance guarantees that ∂r will always be mapped to itself, see (6.14). Here

the Lagrange multiplier condition is essential; the second equation in (5.1)

ensures that ∂r cannot lie in the kernel of the Hessian.

• Multiplicity of 1 as a symplectic eigenvalue.

Recalling that real eigenvalues of symplectic matrices occur in reciprocal pairs,

we see that the algebraic multiplicity of the eigenvalue 1 is at least 2. If

the geometric multiplicity is at least 2, we shall see below that regularity is

impossible. This does occur, for example when one studies the lift of the Reeb

flow - the critical manifold carries a free action by reparametrization. For a

generic contact form, one can achieve that these correspond to Morse-Bott

critical circles. It is certainly unreasonable to ask that this can be achieved

for a nonautonomous contact Hamiltonian using a C1-small perturbation.

• Lefschetz degeneracy of discriminant points.

The final complication is that any contactomorphism is Lefschetz degenerate

at a discriminant point, in the sense that a nonzero vector is fixed by the by

the Poincaré return map, see Lemma A.1.7. Putting the pieces together, φt∗

at the lift of a discriminant point has the schematic form
1 ~ >

0 1 0

0 z (ϕt∗)|ξ


relative to the splitting

TxW = span(∂r)⊕ span(R)⊕ ξ.
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In light of this, restrictions must be placed on ϕ to ensure that the Floer homol-

ogy is well-defined. The first is to require that the P-loop be as nondegenerate

as possible.

Definition 6.1.1. Given ϕ ∈ L +, consider the set of discriminant points

C :={(η, x) ∈ R× Σ | ϕη(x) = x, ρη(x) = 1}.

We say that ϕt is minimally degenerate if

• For all (η, x) ∈ C with η /∈ Z, the subspace of TxW fixed by the Poincaré

return map has dimension 1

• Any k ∈ Z is a Morse-Bott critical value of Aϕ.

Denote the set of all minimally degenerate P-loops by L +
md.

Remark 6.1.2. We first point out that the second condition in Definition 6.1.1

is always satisfied, see Proposition 6.1.4. Given this, we emphasize that the

minimal degeneracy of ϕ is then equivalent to its graph ϕ being transverse

to the diagonal, see Lemma A.1.7 and Definition A.1.6. This is not inconse-

quential - it shows that minimal degeneracy is an open condition for paths

of contactomorphisms. Combining this with a straightforward modification of

the ideas in Appendix A.2, we obtain that it is a generic property, i.e. that

minimal degeneracy holds for an open and dense subset of C∞(R,Cont(Σ, α)).

Definition 6.1.3. For any ϕ ∈ L +, minimally degenerate or otherwise, define

the subset of critical points Critmd(Aϕ) to be the set of those critical points

(u, η) such that (η, u(0)) satisfies the criteria of Definition 6.1.1. The most eco-

nomical description for our perturbation method will be the following: define

the subset of the action spectrum

σmd(Aϕ) ={η ∈ σ(Aϕ) | (u, η) ∈ Critmd for all u ∈ Critη(Aϕ)}.

In this translation,

ϕ ∈ L +
md ⇐⇒ σmd(Aϕ) = σ(Aϕ).



18

Proposition 6.1.4. For any ϕ ∈ L +, Aϕ is Morse-Bott for integral critical

values, in the sense that the critical manifold may be identified with Σ and the

kernel of the Hessian with TΣ. Further, for any P-loop ϕ, there exist ϕ̃ ∈ L +
md

and ε > 0 such that for all k ∈ Z,

|t− k| ≤ ε =⇒ ϕ̃t = ϕt.

Proof. By Proposition 6.3.9, the kernel of the Hessian ker(Du,η) may be iden-

tified with

{
(a∂r, ζ0) ∈ Tu(0)W | φη∗ ζ0 = ζ0, a hη(u(1)) + r(1) dhη(ζ0) = 0

}
.

For integer periods k ∈ Z, ϕk is the identity and hk ≡ 1, since the contact

form is normalized to the contact Hamiltonian, see (6.1). Hence

ahη(u(1)) + r(1) dhη(ζ0) = 0 =⇒ a = 0,

and since ϕk∗ ζ0 = ζ0 for all ζ0 ∈ TΣ, we obtain that ker(Du,η) is precisely the

tangent space to the critical manifold Σ, hence

Z ∈ σmd(Aϕ) for all ϕ ∈ L +;

equivalently, Aϕ is Morse-Bott for integral critical values. This proves the first

statement.

Next we show that there exists ε > 0 such that for any k ∈ Z,

0 < |η − k| ≤ ε =⇒ Critη(Aϕ) = ∅.

This is not a feature unique to positive contactomorphisms, but holds for any

smooth nonvanishing vector field on a compact manifold.

Claim. Let X be a smooth compact manifold, and let Yt, t ∈ [−a, a] be a

smooth nonvanishing time-dependent vector field, with flow ψt and ψ0 the

identity map. Then there exists ε > 0 such that Fix(ψt) = ∅ for 0 < t < ε.
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Proof. Fix an auxiliary metric g on X, and denote its injectivity radius by δg.

Then

|t| < ε1 :=
δg
‖Yt‖∞

=⇒ ψt(x) ∈ Bδg(x).

Assume

0 < |t| < ε := min

(
ε1,

minX×[−ε1,ε1] |Yt|g
‖∇tYt‖g,L∞

)
,

and using Euclidean coordinates for Bδg(x), we obtain

0 < |tYt| −
t2

2
‖∇tYt‖g,L∞

≤ |tYt|g −
∫ t

0

s |∇sYs|g ds

≤ |tYt|g −
∣∣∣∣∫ t

0

s∇sYs ds

∣∣∣∣
g

=

∣∣∣∣∣|tYt|g −
∣∣∣∣∫ t

0

s∇sYs ds

∣∣∣∣
g

∣∣∣∣∣
≤
∣∣∣∣tYt − ∫ t

0

s∇sYs ds

∣∣∣∣
g

=

∣∣∣∣∫ t

0

Ys ds

∣∣∣∣
g

= distg(x, ψ
t(x)). (6.2)

Using this, there exists ε > 0 such that

0 < dist(c,Z) < ε =⇒ c /∈ σ(Aϕ).

For any ϕ̃ such that for t ∈ [0, 1] there holds:

• ϕ̃t = ϕt if t ∈ [0, ε] ∪ [1− ε, 1]

• ϕ̃|t∈[ε,1−ε] is transverse to the diagonal, see Definition A.1.4;

we can extend by periodicity to obtain a periodic loop of contactomorphisms.

The transversality in the second requirement can be achieved rel endpoints

and such that ϕ̃ and ϕ are arbitrarily close in C1 norm, meaning that ϕ̃ can

be taken to be a P-loop. By Lemma A.1.7 and Remark 6.1.2, c ∈ σmd(Aϕ̃) for

all c /∈ Z, and hence ϕ̃ ∈ L +
md.

In the sequel, we will assume absent proviso that any P-loops mentioned

are minimally degenerate.
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6.2 Analysis of the Hessian, part 1: revisiting the classical action

functional

Suppose now that M is symplectic and ω is the symplectic form. Assume

for simplicity that ω = dλ is exact. For a Hamiltonian Ht : M → R, define

the classical action functional

AHt : C∞
(
S1,M

)
→ R

u 7→
∫
S1

u∗ λ−
∫ 1

0

Ht(u(t)) dt.
(6.3)

Critical points of the action functional are closed orbits of the flow φt of the

Hamiltonian vector field. The differential of the action functional

AHt(u) : L2(u∗ TM)→ R

vanishes at u if and only if∫ 1

0

ω(u̇−XHt , µ) dt = 0 for all µ ∈ L2(u∗ TM),

i.e. if and only if u ∈ Crit(AHt). To define the Hessian of the operator, let

(ζ, µ) ∈ L2(u∗TM)×W 1,2(u∗ TM).

We extend ζ and µ by defining

v : S1 × [−1, 1]× [−1, 1]→M, (t, s1, s2) 7→ v(t, s1, s2),

where v(t, 0, 0) = u(t), ζ = (∂s1v)(t, 0, 0) and µ = (∂s2v)(t, 0, 0), and we define

Du(ζ, µ) =

∫ 1

0

∂

∂s1 |(t,0,0)

ω(∂tv −XHt(v), ∂s2v)dt.

Because ∂tv−XHt(v) vanishes when s1 = s2 = 0, one sees that the formula

is independent of the extension of ζ and µ, and we denote the result

Du : L2(u∗TM)×W 1,2(u∗ TM)→ R,

(ζ, µ) 7→
∫ 1

0

ζ ω(u̇−XHt , µ) dt,
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We then define

Du : W 1,2(u∗ TM)→
(
L2(u∗ TM)

)∗ → L2(u∗ TM) (6.4)

where the first map assigns to µ the linear functional

Du(µ) : ζ 7→ Du(ζ, µ),

and the second is the ω-duality isomorphism.

Remark 6.2.1. We call Du a pseudo-Hessian because it is anti-symmetric. To

establish the Fredholm properties of Du, choose an almost complex structure on

M compatible with ω. This induces a Hilbert space structure on L2(u∗TM),

with respect to which Du is an unbounded self-adjoint operator with dense

domain of definition W 1,2(u∗TM). We can still refer to the kernel of (6.4)

as the kernel of the Hessian, since this is independent of the almost complex

structure.

Lemma 6.2.2. If u ∈ Crit(AHt) and ζ ∈ ker(Du) ∩ C∞(u∗TM), then ζ(0) =

ζ(1).

Proof. We assume far too much, but state it this way for reference. Consider

the circle as S1 = R/Z. Since u is a map from the circle, any ζ ∈ C∗∞(u∗ TM)

is the derivative at s = 0 of a map

v(s, t) : (−ε, ε)× S1 →M, v(0, t) = u(t).

Since v(s, t) is a loop for all s,

v(s, 0) = v(s, 1) for all s ∈ (−ε, ε)

=⇒ ζ(0) = ∂sv(0, 0) = ∂sv(0, 1) = ζ(1). (6.5)

We now state for reference an elementary, but important, lemma. The

proof is omitted.
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Lemma 6.2.3. Given a symplectic manifold (M,ω) and a symplectic isotopy

ψt, suppose u : [0, 1]→M satisfies u̇ = ψ̇t and v : (−ε, ε)×[0, 1]→M satisfies

v(0, t) = u(t). Then

d

ds |s=0
ω
(
ψ̇t − ∂tv, µ

)
= 0 for all µ ∈ C∞(u∗ TM)

⇐⇒ ∂sv(0, t) = ψt∗ ∂sv(0, 0).

If pointwise vanishing is replaced by

d

ds |s=0

∫ 1

0

ω
(
ψ̇ − ∂tv, µ

)
dt = 0 for all µ ∈ W 1,2(u∗ TM),

the conclusion remains true if the equality is taken in L2.

Corollary 6.2.4. Any ζ ∈ ker(Du) is smooth.

Corollary 6.2.5. The kernel of the Hessian of AHt at a critical point u is

identified with {
v ∈ Tu(0)M | φ1

∗ v = v
}
.

Proof. Lemma 6.2.3 plus Lemma 6.2.2 show the following:

ker(Du) =
{
ζ ∈ L2(u∗ TM) | ζ(t) = φt∗ ζ(0)

}
∼=
{
v ∈ Tu(0)M | φ1

∗ v = v
}

(6.6)

6.3 Analysis of the Hessian, part 2: the kernel of Du,η

We now extend the analysis of the classical action functional to the Rabi-

nowitz action functional. We assume in this section that the symplectization

of (Σ, α) is embedded in a symplectic manifold W , and use coordinates (r, x)

as before. However, we do not require here that Σ is Liouville fillable or admits

a P-loop. Assume

ϕ : [0, 1]→ Cont(Σ, α)

is a smooth positive path of contactomorphisms. We recall for the reader’s

convenience a brief glossary of the terminology used.
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Definition 6.3.1. To any positive path ϕ, define

ρt : Σ→ R, ρt := ιR(ϕ∗t α)

ht : Σ→ R, ht = ιϕ̇tα

Ft : W → R, Ft(r, x) = r ht(x)− 1

φt : W → W, (r, x) 7→
(

r

ρt(x)
, ϕt(x)

)
.

(6.7)

We point out that Ft generates φt as an exact Hamiltonian symplectomorphism

of W.

Definition 6.3.2. The Rabinowitz action function functional associated to

the data (Σ,W, ϕ) is

Aϕ : C∞
(
S1,W

)
× R→ R

(u, η) 7→
∫
S1

u∗ λ− η
∫ 1

0

Fηt(u(t)) dt.
(6.8)

The critical set is found to be

Crit(Aϕ) =
{

(u, η) ∈ C∞(S1,W )× R | u(t) = φηt(u(0)), Fη(u(1)) = 0
}
,

(6.9)

and can be identified with

Crit(Aϕ) ∼=
{

(r, x, η) ∈ W × R | ϕη(x) = x, ρη(x) = 1, r =
1

hη(x)

}
. (6.10)

At a critical point, the differential is defined as follows:

dAϕ(ζ, b) =
d

ds |s=0
Aϕ(v(s, t), η(s)),

where ∂sv(0, t) = ζ, v(0, t) = u(t), η′(0) = b, and η(0) = η. The pseudo-Hessian

Du,η : L2(u∗ TΣ)× R→ L2(u∗ TΣ)× R

and the associated ker(Du,η) are defined as in Remark 6.2.1.

Lemma 6.3.3. Given (u, η) ∈ Crit(Aϕ) and paths

η(s) : (−ε, ε)→ R, x(s) : (−ε, ε)→ W
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satisfying x(0) = u(0), η(0) = η, define

v(s, t) := φη(s)t(x(s)).

Set ζ := ∂sv(0, t), b := η′(0). Then if (ζ, b) ∈ ker(Du,η), b = 0.

Proof. For notational convenience, set x := u(0) and ζ0 := ζ(0). Although

v(s, t) is not necessarily a variation through loops, the assumption that (ζ, b) ∈

ker(Du,η) implies that ∂sv(0, 0) = ∂sv(0, 1). A short computation shows

∂sv = η′(s) t φ̇η(s)t + φη(s)t
∗ x′(s),

and hence the loop condition reads

0 = ∂sv(0, 1)− ∂sv(0, 0)

= η′(0) φ̇η + φη∗ x
′(0)− 0− φ0

∗ x
′(s)

=⇒ ζ0 = b φ̇η + φη∗ ζ0. (6.11)

This last equation follows from the definitions and the fact that

φ0 = Id =⇒ φ0
∗ ζ0 = ζ0.

By (6.10) there holds

ρη(x) = 1 =⇒ (φ∗η α)(x) =(ϕ∗η α)(x) = α(x)

=⇒ α(v) = α(φη∗ v), for all v ∈ TxW.

Apply α to (6.11) to obtain that

α(ζ0) = α
(
b φ̇η

)
+ α(φη∗ ζ0)

= b α(ϕ̇η) +(φ∗η α)(ζ0)

= b hη + α(ζ0).

The assumption that ϕt is a positive path is equivalent to h > 0. Hence

α(ζ0) = b hη + α(ζ0)

=⇒ b hη = 0

=⇒ b = 0. (6.12)
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Lemma 6.3.4. Suppose (ζ, b) ∈ ker(Du,η). Then b = 0.

Proof. First assume that b = 0. Observe that linearization of the Rabinowitz

action functional with both time vectors equal to zero, i.e.

Du,η(ζ, 0)(ζ̂ , 0),

is simply the linearization of the classical action functional. Hence Corol-

lary 6.2.5 applies, and we obtain that

(ζ, 0) ∈ ker(Du,η) =⇒ ζ(t) = φηt∗ ζ(0).

Now given (ζ, b) ∈ ker(Du,η), set x := u(0) and define

v(s, t) := φη(s)t(x(s))

as in Lemma 6.3.3. A priori, ∂sv(0, 0) may not equal ∂sv(0, 1). We claim that

∂

∂s |s=0
ω
(
∂tv − η(s)XFη(s)t , µ

)
= 0 for all µ ∈ Γ(u∗ TW ). (6.13)

Differentiating the expression in (6.13) is simple - the difference quotient is

zero for all s! Denoting ∂sv(0, t) by ζ̃ , we then have that

Du,η(ζ̃ , b) = Du,η(ζ, b) = 0

=⇒ Du,η(0, b) = Du,η(−ζ̃ , 0)

=⇒ Du,η(ζ, b) = Du,η(ζ − ζ̃ , 0) = 0,

which reduces to Step 1. Since ζ(0) = ζ̃(0), Step 1 shows that

ζ ≡ ζ̃ .

This implies that (ζ̃ , b) ∈ ker(Du,η) (i.e. we now know that ζ̃ is periodic), and

hence by Lemma 6.3.3, b = 0.

The following proposition summarizes our findings thus far.

Proposition 6.3.5. If (ζ, b) ∈ ker(Du,η), then
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I. b = 0

II. ζ(t) = φηt∗ ζ(0)

III. ζ(0) = ζ(1) = φη∗ ζ(0)

IV. If we write write ζ(0) = ζr∂r + ζΣ according to the splitting

TW = TR⊕ TΣ,

then III implies that

dρη(ζΣ) = 0, ϕη∗ ζΣ = ζΣ.

Proof. We have proven all of the above except IV. We use the definition of φ

(see Definition 5.0.23) plus the fact that for a critical point (u, η) there holds

u(t) = φηt(u(0)), ρη(u(0)) = 1

to compute

φη∗ ζ(0) =
1

ρη
ζr∂r + ϕη∗ ζr∂r −

r dρη(ζΣ)

ρ2
η

∂r + ϕη∗ ζΣ

= ζr∂r + 0− r dρη(ζΣ)∂r + ϕη∗ ζΣ

= (ζr − dρη(ζΣ))∂r + ϕη∗ ζΣ.

(6.14)

IV follows by setting the last expression in (6.14) equal to ζr∂r + ζΣ.

Remark 6.3.6. We stress that Proposition 6.3.5 gives necessary conditions for

(ζ, b) to lie in ker(Du,η). It is equivalent to saying that Du,η(ζ, b)(µ, 0) = 0, i.e.

d

ds |s=0

[∫ 1

0

ω
(
∂tv − η(s)XFη(s)t , µ

)
dt

]
= 0, for all µ ∈ L2(u∗ TW ).

However, the space of vanishing sections may be reduced by requiring that

they must also lie in the kernel of the second component.

Remark 6.3.7. In order to simplify things, we will not compute the full kernel

of the second component, i.e. determining all (ζ, b) such that

Du,η(ζ, b)(0, b̂) = 0, for all b̂ ∈ R. (6.15)
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Using the relationship

A ∩B = A ∩ (A ∩B),

it suffices to determine those solutions of (6.15) which also meet the criteria

of Proposition 6.3.5.

Proposition 6.3.8. (ζ, 0) ∈ ker(Du,η) if and only if ζ satisfies the conditions

of Proposition 6.3.5 and dFη(ζ(1)) = 0.

Proof. We compute the differential with respect to η and find

d

ds |s=0

[∫
S1

u∗ λ− η(s)

∫ 1

0

Fη(s)t(u(t)) dt

]
= − d

ds |s=0

[
η(s)

∫ 1

0

Fη(s)t(u(t)) dt

]
= − d

ds |s=0

[∫ η(s)

0

Fτ

(
u

(
τ

η(s)

))
dτ

]

= −η′(s)

[
Fη(u(1))−

∫ η(s)

0

τ

η(s)2
dFτ

(
u̇

(
τ

η(s)

))
dτ

]

= −η′(s)
[
Fη(u(1))−

∫ 1

0

t dFη(s)t(u̇(t)) dt

]
.

To complete the proof, it suffices to show that∫ 1

0

ζt dFηt(u̇(t)) dt

vanishes. Precisely as in Lemma 6.3.3, we choose

v(s, t) := φη(s)t(x(s)), where ∂sv(0, t) = ζ, η′(0) = 0

and compute ∫ 1

0

t dFη(s)t(∂tv) dt =

∫ 1

0

t dFη(s)t

(
η(s)XFη(s)t

)
dt

= η(s)

∫ 1

0

t dFη(s)t

(
XFη(s)t

)
dt

= 0.

(6.16)

The last equality in (6.16) uses the fact that for any Hamiltonian H,

ιXH dH = −ω(XH , XH) = 0.

Thus since the expression in (6.16) is identically zero, its derivative is zero.
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Proposition 6.3.9 (Summary). At a critical point (u, η) of the Rabinowitz

action functional, the kernel of the Hessian is identified with

ker(Du,η) =
{
v ∈ Tu(0)W | φη∗ v = v, dFη(v) = 0

}
∼=
{
a∂r + vΣ ∈ Tu(0)W | ϕη∗ vΣ = vΣ, dρη(vΣ) = 0

}
Proof. The identification follows from an interpolating step. Given a∂r + vΣ,

we know that the condition of the second line is necessary. To see that it is

sufficient to obtain a bijection of sets, observe that

dFη(v) = ahη(u(1)) + r(u(1))hη(vΣ).

Using the positivity of hη, we see that it is always possible to solve for a

uniquely.

6.4 The set of admissible P-loops

The final step is to show that for a generic P-loop ϕ, the Rabinowitz action

functional is Morse for noninteger critical values. We begin by describing

summarizing equivalent conditions for this to be true, shown in the last section.

Remark 6.4.1. The following are equivalent for c ∈ σ(Aϕ) \ Z.

I. c is a Morse critical value of Aϕ

II. φ is transverse to the diagonal at t = c

III. For any u with (u, c) ∈ Crit(Aϕ), E1(φη, u(0)) is spanned by ∂r

IV. For any u with (u, c) ∈ Crit(Aϕ), ϕ is transverse to the diagonal at t = c

and E1(ϕ, c) is transverse to ker(dρc) at u(0).

Here we use the terminology E1 and ϕ from Definition A.1.4.

We now show that this holds for a generic P-loop.

Proposition 6.4.2. The conditions in Remark 6.4.1 are equivalent to the

statement that ϕc is transverse to the diagonal and dρc(x) 6= 0 for any x ∈ Σ

with ϕc(x) = x and ρc(x) = 1. This is satisfied for a generic ϕ ∈ L +.
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Proof. We wish to show that for a generic ϕ ∈ L +, E1(φc∗) is one-dimensional

at any critical point. This is equivalent to

dim(coker(φc∗ − I)) = 1. (6.17)

Since ϕc is transverse to the diagonal, E1(ϕc∗) is one-dimensional, and since

ρc = 1 for a critical point, we obtain that

coker(ϕc∗ − I) = span(R).

This implies as well that the contact distribution ξ lies in the image of φc∗− I.

Combining this with (6.14), we see that

R ∈ coker(φc∗ − I),

and hence the condition that the cokernel is one-dimensional is equivalent to

the condition that ∂r lies in the image of φc∗ − I. Using (6.14) again, this is

equivalent to the nonvanishing of dρc. If we split the tangent space

Tu(0)Ŵ = span(∂r)⊕ span(R)⊕ ξ,

any symplectomorphism whose Jacobian always has the form

b

0

a

1
b

w

0

0 v A ∈ Sp(2n)



where

b > 0, a > 0,

v ∈ Mat1,2n(R),

w ∈ Mat2n,1(R).

is the lift of a contactomorphism. At a discriminant point, b = 1 and condition

(6.17) will be satisfied if dim(E1(ϕη∗)) = 1 and a or w is nonzero. Using the
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techniques of Appendix A.2, if we perturb using any map whose Jacobian

locally has the form

exp(JS), S =


0 0 0

0 0 ~

~ 0 S′

,
where J interchanges ∂r andR, the result generically has ker(φ̃∗−I) = span(∂r)

at any lifted discriminant point.

Definition 6.4.3. We say ϕ is RFH-admissible if it is minimally degenerate

and if for any discriminant pair (x, η) with η /∈ Z, one (and hence all) of the

following equivalent conditions holds:

I. dρη(x) 6= 0

II. ϕη∗ R 6= R

III. ϕ∗η dα 6= dα.

We denote the set of admissible P-loops by L +
a .

Proposition 6.4.4. Given any admissible P-loop ϕ ∈ L +
a , Aϕ is Morse Bott,

hence the Rabinowitz Floer homology is well-defined. More precisely, Aϕ is

Morse-Bott with critical manifold Σ for integer critical values, and Morse for

noninteger critical values. Further, L +
a is open and dense in L +, and given

any P-loop ϕ, there exists ϕ̃ ∈ L +
a which agrees with ϕ in a uniform neigh-

borhood of the integers and can be chosen arbitrarily close to ϕ in the C∞

norm.

Proof. Combining Proposition 6.1.4 with Proposition 6.4.2 shows that RFH

is well-defined for any ϕ ∈ L +
a . Proposition 6.1.4 gives a recipe for producing

from any P-loop a minimally degenerate P-loop, and we can repeat this proce-

dure using a periodic perturbation which is trivial near the integers to obtain

a P-loop satisfying the requirements of Definition 6.4.3.
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7. Applications

We now explore some consequences of the preceding. At the heart of these

lies the observation that the existence of a positive loop of contactomorphisms

places strong restrictions on the Rabinowitz Floer homology of a Liouville-

fillable contact manifold. Intuitively speaking, it can’t be “too big.”

Proposition 7.0.5. Suppose (Σ, ξ = ker(α)) is a Liouville-fillable contact

manifold which admits a positive loop of contactomorphisms ϕ. Then for any

filling W , Γ+(Σ,W ) ≤ 1.

Proof. The moral proof is as follows. The hypothesis that (Σ, α) admits a

P-loop implies that the chain complex underlying RFH grows linearly with

action. By Proposition 6.4.4, the existence of any P-loop implies the existence

of an admissible P-loop, i.e. one for which Aϕ is Morse-Bott, and for which

critical points with non-integer period are Morse, and hence the critical man-

ifold is compact. This implies that the set of critical points with η ∈ (0, 1) is

finite. Let us denote its cardinality by ν. By periodicity, the cardinality of the

critical set with η ∈ (j, j + 1) is also equal to ν, for any j ∈ Z. This implies

linear growth of the chain complex, if we focus solely on the summands with

non-integer η-values.

We wish to make the same claim for the entire chain complex. To do this,

we must specify how to pass from Morse-Bott to Morse. This is most easily

accomplished using the technique of gradient flows with cascades developed

by Frauenfelder [10], see also [5] for its use in Rabinowitz Floer homology.

To define RFH with Morse-Bott critical manifolds, one chooses an auxiliary
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Morse function on each connected component with positive dimension. There

exists a tautological isomorphism of ungraded vector spaces:⊕
∗∈Z

RFC
(a,b)
MB,∗(Σ,W, F, {fj}) ∼= Zm2 ⊕

⊕
i,j

Z2〈xi,j〉,

where the notation indicates that m is the number of points in the zero-

dimensional component of the critical manifold, and xi,j is a critical point of

the Morse function fj on the jth component with non-zero dimension. We

point out that the action of xi,j is equal to

AMB
ϕ (xi,j) = Aϕ(xi,j) + fj(xi,j)

= ηj + fj(xi,j),

where ηj is the common action on the jth component.

In the present setting, this simplifies greatly. By construction, for each integer

j,

Crit(j−ε,j+ε)(Aϕ) ∼= Σ.

We choose for each j the same Morse function fj ≡ f : Σ → R such that

‖f‖L∞(Σ) <
ε
2
. Recall (cf. Remark 4.0.14) that defining RFH+ involves the

choice of an increasing sequence of regular values which diverges to infinity.

To this end, choose cn satisfying cn ∈ (n − ε, n − ε
2
). This yields the desired

result: let ν ′ denote the number of critical points of the Morse function f .

Then

a(n) = rank(ιn,∞ : RFH(−ε,cn)
∗ (Σ,W, Ft, {fj})→ RFH+

∗ (Σ,W ))

≤ dimZ2

(
RFH(−ε,cn)

∗ (Σ,W, Ft, {fj})
)

≤ dimZ2

(
RFC

(−ε,cn)
MB,∗ (Σ,W, Ft, {fj})

)
= n(ν ′ + ν)

=⇒ Γ+ = lim sup
n→∞

log(a(n))

log n
≤ lim sup

n→∞

log(n(ν ′ + ν))

log(n)
= 1,

as required.
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Corollary 7.0.6. Suppose that (Σ, ξ = ker(α)) is a Liouville-fillable contact

manifold, and that for some filling W , Γ+(Σ,W ) > 1. Then (Σ, ξ = ker(α)) is

orderable.

Proof. We exploit the fact that the chain complex underlying RFH is inde-

pendent of the filling. If (Σ, α) is non-orderable, it admits a positive loop.

RFH(Σ,W ) can be computed as above using the associated lifted contact

Hamiltonian. Hence Γ+(Σ,W ) ≤ 1, a contradiction.
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8. Proof of the Main Result

We now turn to one of the questions raised in the introduction. If(Σ, α) is non-

orderable, is the same true for all co-orientable contact structures on Σ? We

answer in the negative. The following is Theorem 1.0.1 from the introduction.

Theorem 8.0.7. Let(Σ, α) be a Liouville-fillable contact manifold with dim(Σ)

at least 7. Then there exists a Liouville-fillable contact structure ξ′ on Σ,

agreeing with ξ on the complement of a Darboux ball, which admits no positive

loop of contactomorphisms. In particular, it admits no contractible positive

loop of contactomorphisms, thus ξ′ is orderable.

Proof. The main idea is as follows. We use Weinstein zero-surgery to form

the end-connect sum of W with a nonstandard ball B. According to Cieliebak

[11], symplectic homology does not change under subcritical surgery, so

SH∗(W #eB) ∼= SH∗(W )⊕ SH∗(B).

The strategy becomes then to construct B such that Γ+(B) ≥ 2. We learned

of this line of attack from [9].

According to Seidel [12], there exists a contractible 4-dimensional Liouville

domain A with nonvanishing symplectic homology. We take the cartesian

product of A with DT ∗S1. The result (after smoothing), will be denoted W1,

and has a natural Liouville structure. By work of Oancea [7],

SH∗(W1) ∼= SH∗(A)⊗ SH∗(DT
∗S1).

Attach a Weinstein two-handle along a trivially framed isotropic circle in the

boundary representing a generator of π1 and call the resulting Weinstein do-

main W2. By [11],

SH∗(W2) ∼= SH∗(W1). 1 (8.1)

1We point out a slight subtlety here. When computing the symplectic homology of a mani-
fold with non-contractible orbits, the grading depends on a choice of trivialization for each
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Now repeat the above, taking W3 := W2 ×DT ∗S1 and performing Weinstein

surgery to obtain W4. By the h-cobordism theorem, W4 is diffeomorphic to a

ball, and ∂W4 is diffeomorphic to a sphere. Further,

SH∗(W4) ∼= SH∗(A)⊗ SH∗(DT
∗T 2).

Finally, return to the original pair (Σ,W ). Attach a Weinstein 1-handle to

WtW4. The resulting pair (Σ′,W5) is diffeomorphic to (Σ,W ), with a Liouville

structure that agrees with the original one on (Σ,W ) on the complement of

the ball removed.

To conclude the proof, observe that Γ+(Σ′,W5) ≥ 2. Indeed, SH∗(DT
∗T 2)

is isomorphic to the homology of the free loop space of the torus, which can

be computed using the geodesic energy functional. Alternatively, a direct

computation goes as follows: since π1(T 2) is Abelian, RFH∗(ST
∗T 2, DT ∗T 2)

is indexed by elements of π1(T 2). Choose the quotient metric from R2/(Z⊕Z)

so that each of the generators a, b of π1(T 2) has a geodesic representative with

minimal length one. By the choice of metric, the critical manifold associated

to the homotopy class [
ai bj

]
, (i, j) ∈ Z× Z

is a copy of the torus itself, and hence for each k ∈ Z,

dim
(

RFH(−ε,k+ε)
∗

(
ST ∗T 2, DT ∗T 2

))
= 4
∣∣{i, j ∈ Z | i2 + j2 ≤ k2

}∣∣
= 4N(k)

= 4(πk2 + E(k)),

and E(k) satisfies

|E(k)| ≤ 2
√

2πk. (8.2)

free homotopy class. After a Weinstein surgery which kills the homotopy class of an orbit,
the resulting trivialization must extend over a spanning disk. Hence, the above isomorphism
should be taken to mean that there exists a choice of grading on SH∗(W1) which renders
the above a true statement. For our purposes, this distinction is inconsequential.
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Here N(k) denotes the number of integer lattice points inside a closed disk

of radius k in R2, E(k) is an error term, and the estimate in (8.2) is due to

Gauss. Taking the log-limit shows that

Γ+(ST ∗T 2, DT ∗T 2) = 2,

as expected.

If Σ has dimension greater than 7, we iterate the procedure above as many

times as needed, i.e. the operation of taking the Cartesian product withDT ∗S1

and using Weinstein surgery to kill the associated nontriviality in π1 gives a

well defined map of sets

{Liouville domains of dimension 2n+ 1} −→ {Liouville domains of dimension 2n+ 3}

which is monotone increasing with respect to Γ+. By this we can obtain a

Liouville filling for S2n+1 with Γ+(S2n+1, B) ≥ 2 for any n ≥ 3 and thus on

any Liouville-fillable contact manifold of the same dimension.
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9. Relative orderability

Fix a co-oriented contact manifold (Σ, ξ = ker(α)), with dim(Σ) = 2n + 1.

Recall that contact structures are maximally non-integrable with respect to

the Lie bracket, and hence any submanifold Λ ⊂ Σ satisfying

TΛ ⊂ ξ

must have dimension dim(Λ) ≤ n. If the dimension is equal to n, we call Λ a

Legendrian submanifold of Σ.

Suppose that ϕ : [0, 1]× Λ→ Σ is a Legendrian isotopy, i.e.

ϕt∗(TΛ) ⊂ ξ ∀t ∈ [0, 1].

We say that ϕ is non-negative (strictly positive) if α(ϕ̇t) ≥ 0(> 0).

Given Λ, consider the set EΛ of all Legendrian submanifolds of Σ which are

Legendrian isotopic to Λ. Given

Λ0,Λ1 ∈ EΛ,

say that

Λ0 ≤ Λ1

if there exists a non-negative Legendrian isotopy from Λ1 to Λ0. We can ask

whether ≤ is a partial ordering of the universal cover ẼΛ. As before, the ob-

struction lies in whether ≤ is antisymmetric. If so, we say that Λ is orderable.

Our first observation is the following:

Proposition 9.0.8. If ξ is non-orderable, then Λ is non-orderable for any

Legendrian submanifold of Σ.

Proof. Non-orderability of ξ implies the existence of a contractible P-loop.

Restriction yields a contractible loop of isotopies of Λ which is contractible.
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Remark 9.0.9. Equivalently, the existence of an orderable Legendrian implies

the orderability of ξ. However, we point out that the set of all Legendrians of

Σ can never be orderable - a standard contact ball can always be embedded as

a non-orderable contact submanifold, and any Legendrian contained therein

inherits non-orderability.

9.1 Legendrian obstruction to orderability

In light of the above, we make the following observation. The existence

of an orderable Legendrian implies orderability of ξ. Is the converse to this

true? If such a paradigm were to be established, the framework yielded would

be useful for studying such problems, specifically in cases where the structure

suggests the set of relevant Legendrians.

For example, recall that a Stein manifold (W, f) has a natural collection of

co-isotropic submanifolds, namely the asceding manifolds of the critical points

of the Morse functions. A critical point of Morse index n yields a Legendrian

submanifold when intersected with a regular level set. Following the analogy,

it is reasonable to believe that the orderability of W is determined by the

orderability of such Legendrians.

Conjecture 9.1.1. Let (W, f) be a Stein manifold, and let Σ ⊂ W be a regular

level set. Then Σ is orderable if and only there exists a critical point whose

ascending manifold intersects Σ in an orderable Legendrian.

This conjecture has the following corollary, which strengthens a central

result from [1].

Corollary 9.1.2. All subcritical Stein domains are orderable.
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A. Appendix

A.1 A review of topological transversality

Here we recall the basic results concerning finite-dimensional transversality.

Definition A.1.1. Let M and N be smooth manifolds, A ⊂ N a smooth

submanifold, and suppose F : M → N is a smooth map. We say that F is

transverse to A at x ∈ F−1(A) if

Im
(
DFx : TxM → TF (x)N

)
+ TF (x)A = TF (x)N.

If F is transverse to A at x for all x ∈ F−1(A), we say that F is transverse to

A and write F t A.

Theorem A.1.2 (Inverse Function Theorem). If F t A, then F−1(A) is a

smooth submanifold of M with dimension

dim
(
F−1(A)

)
= dim(M) + dim(A)− dim(N), (A.1)

where a negative dimension is taken to mean that F does not intersect A. In

general, for any F : M → N , any submanifold A and any point x ∈ F−1(A),

dim
({
v ∈ TxM | F∗ v ∈ TF (x)A

})
≥ dim(M) + dim(A)− dim(N), (A.2)

with equality holding if and only if F is transverse to A at x.

Theorem A.1.3 (Transversality Theorem). Let F : M → N be a smooth

map. Then given a submanifold A ⊂ N and a generic F , F t A.

Definition A.1.4. For a real vector space V , a linear map T ∈ End(V ), and

a ∈ R, define the a-eigenspace of T by

Ea(T ) :={v ∈ V | T v = av}
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Given a smooth manifold M , F ∈ Diff(M) and x ∈ Fix(F ),

Ea(F, x) := Ea(DFx), iL(F ) := max
x∈Fix(F )

dim(E1(F, x)).

We call iL(F ) the Lefschetz degeneracy index of F . F is Lefschetz regular if

iL(F ) = 0 and Lefschetz degenerate otherwise.

Remark A.1.5. In Definition A.1.4, Ea(T ) is defined for all a ∈ R, although

it is trivial if a is not an eigenvalue. Our definition of Lefschetz regularity

coincides with that used in the Lefschetz fixed point theorem: F is transverse

to the diagonal if and only if iL(F ) = 0.

Definition A.1.6. Assume that F ∈ Diff(M) is isotopic to the identity, i.e.

there exists a smooth map f : R×M →M such that

• For each t ∈ R, ft ∈ Diff(M)

• f0 is the identity map of M

• f1 = F .

To analyze ft we examine

Xt : [0, 1]→ Γ(TM), the generating vector field

F : M →M ×M, x 7→ (x, F (x)), the graph of F

f : [0, 1]×M →M ×M, (t, x) 7→ (x, ft(x)), the parametrized graph of the isotopy

∆M ⊂M ×M, the diagonal in M ×M.

For the remainder of the section, we assume that X1 ∈ Γ(TM) is nonvanishing

and fix α ∈ Ω1(M) to be any one form satisfying ιX1α > 0.

Lemma A.1.7. Suppose F , ft, X1 and α are as in Definition A.1.6. Given

x ∈ Fix(F ), the condition (F ∗α)(x) = α(x) implies that F is not transverse

to the diagonal at x. Moreover, iL(F, x) = 1 if and only if f is transverse to

the diagonal at (1, x).
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Proof. Examine the map f. By (A.2), for any fixed point x ∈ F−1
(∆M), there

exists a nonzero tangent vector

a∂t + v ∈ T(1,x)(R×M) ∼= R⊕ TxM with f ∗ (a∂t + v) ∈ T(x,x)∆M .

The Jacobian is found to be

f ∗ (a∂t + v) = (v, aX1 + F∗ v).

Applying α to both sides of

v = aX1 + F∗v

yields

α(v) = aα(X1) + α(F∗v)

= aα(X1) +(F ∗ α)(v)

= aα(X1) + α(v)

=⇒ a = 0,

and hence a nonzero vector in TxM is mapped to the diagonal, i.e. i1(F, x) ≥ 1.

By (A.2), F is not transverse to the diagonal. Moreover, the same equation

shows that i1(F, x) = 1 if and only if f is transverse to the diagonal at (1, x).

A.2 Geometric multiplicity of symplectic matrices and symplecto-

morphisms

We adapt the previous results to symplectic matrices and symplectomor-

phisms.

Definition A.2.1. Denote by Sp(2n) the set of symplectic matrices. Define

subsets

V1,k :={A ∈ Sp(2n) | dim(E1(A)) = k}, 0 ≤ k ≤ 2n. (A.3)

U1,k :={A ∈ Sp(2n) | dim(E1(A)) ≥ k}, 0 ≤ k ≤ 2n. (A.4)
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Proposition A.2.2. V1,k is open and dense in U1,k for all 0 ≤ k ≤ n. In

particular,

• The set of all symplectic matrices A such that 1 /∈ σ(A) is dense in

Sp(2n)

• {A ∈ Sp(2n) | dim(E1(A)) = 1} is open and dense in{A ∈ Sp(2n) | 1 ∈ σ(A)}.

Proof. We first examine a neighborhood of the identity in Sp(2n). Recall that

the Lie algebra of Sp(2n) may be identified with

gSp(2n) ={JS ∈M2n(R) | S ∈ Sym2n(R)}.

Any symplectic matrix close to the identity may be written as exp(JS). We

first claim that

exp(JS)v = v ⇐⇒ Sv = 0.

This may be seen as follows. If B is any matrix satisfying ‖B‖ < 1, (I +B) is

invertible. Hence

exp(JS)v = v ⇐⇒
∞∑
k=1

(JS)k

k
v = 0

⇐⇒ (I +B)JSv = 0,

where B is determined by S. Hence there exists ε > 0 such that ‖S‖ < ε

implies that I +B is invertible. Given this universal bound, we have

E1(exp(JS)) = ker((1 +B)JS) = ker(S).

Using the fact that symmetric matrices are diagonalizable, the proof is now

straightforward. To wit, the number of entries equal to zero in a diagonal ma-

trix is evidently upper semi-continuous, which implies that the set of symmet-

ric matrices with nullity k is open and dense in the set of symmetric matrices

with nullity greater than or equal to k + j, for any k, j ≥ 0.

To apply this reasoning to all of Sp(2n), we look at matrices of the form

A exp(JS). We omit the details of the extension, which are straightforward.
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Corollary A.2.3. A generic path At of symplectic matrices satisfies dim(E1(At)) ≤

1 for all t.

Corollary A.2.4. Given a nonzero vector v ∈ R2n, consider the set of all

symplectic matrices

v :={A ∈ Sp(2n) | Av = v}.

Then given ε > 0 and A ∈ v, there exists B ∈ v with ‖A − B‖ < ε and

E1(B) = span(v).

Proposition A.2.5. The set of symplectomorphisms which are Lefschetz reg-

ular is open and dense in Symp(W,ω). Further, a generic path of symplecto-

morphisms φt has iL(φt) ≤ 1 for all t.

Proof. For all the statements, the strategy is to appeal to the previous for di-

mension counts, and then to pass to infinite dimensional parametric transver-

sality to show the transversality can be achieved using symplectomorphisms.

Given φ ∈ Symp(M,ω), we may regard φ∗ as a section φ∗ ∈ Γ(Hom(TM, φ∗ TM))

and we form the map

φ̂ : M →M × Hom(TM, φ∗ TM), x 7→ (φ(x), φ∗). (A.5)

Note that Hom(TM, φ∗ TM)|Fix(φ) has natural subbundles1 V1,k whose fiber

above x is the set of endomorphisms whose 1-eigenspace has dimension k. This

is a natural construction when restricted to Fix(φ).2 Using this language, one

observes that a symplectomorphism has Lefschetz degeneracy at most k if and

only if the image of φ̂ does not intersect

Tk+1 := Fix(φ) ∩ V1,k+1 ⊂M × Hom(TM, φ∗ TM).

Since the codimension of Tk+1 is 2n+ k + 1, we conclude that

I. If φ̂ is transverse to T∗, it is Lefschetz regular

1Here we regard End(TM) as a fiber bundle. The subbundles we speak of are not linear.
2The reader may compare this construction to the formulation of the Conley Zehnder index.
Along a path u(t), trivialize Hom

(
Tu(0)M,u∗ TM

)
. Then the relative Conley Zehnder index

is (up to sign) the intersection number of the associated section and V1,1.
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II. If a path of symplectomorphisms is transverse to T∗, then φt has Lefschetz

degeneracy at most 1 for all t.

Here we employ standard usage that a map is transverse to a stratified sub-

manifold if and only if it is transverse to all the strata. It is clear that the

respective sets satisfying (I), (II) are open. To show that they are dense, we

must pass to parametric transversality.

The question we now address is the following: given a symplectomorphism

φ, it has been established that there exist diffeomorphisms arbitrarily close to

φ enjoying the desired properties. Can we strengthen this to symplectomor-

phisms? This is far more standard, hence we only sketch the argument. Form

the evaluation map

Symp(M,ω)×M →M × (T ∗M ⊗Symp(M,ω) TM), (ψ, x) 7→ (ψ(x), ψ∗).

Since this map is transverse to T∗, the inverse function theorem guarantees

that a generic symplectic map will satisfy the requirement.
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