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ABSTRACT

Watson, John D. Ph.D., Purdue University, May 2015. Growth of Low Disorder
GaAs/AlGaAs Heterostructures by Molecular Beam Epitaxy for the Study of Corre-
lated Electron Phases in Two Dimensions. Major Professor: Michael J. Manfra.

The unparalleled quality of GaAs/AlGaAs heterostructures grown by molecular

beam epitaxy has enabled a wide range of experiments probing interaction effects in

two-dimensional electron and hole gases. This dissertation presents work aimed at

further understanding the key material-related issues currently limiting the quality

of these 2D systems, particularly in relation to the fractional quantum Hall effect in

the 2nd Landau level and spin-based implementations of quantum computation.

The manuscript begins with a theoretical introduction to the quantum Hall effect

which outlines the experimental conditions necessary to study the physics of inter-

est and motivates the use of the semiconductor growth and cryogenic measurement

techniques outlined in chapters 2 and 3, respectively. In addition to a generic intro-

duction to the molecular beam epitaxy growth technique, chapter 2 summarizes some

of what was learned about the material purity issues currently limiting the low tem-

perature electron mobility. Finally, a series of appendices are included which detail

the experimental methods used over the course of the research.

Chapter 4 presents an experiment examining transport in a low density two-

dimensional hole system in which the hole density could be varied by means of an

evaporated back gate. At low temperature, the mobility reached a maximum of

2.6 × 106 cm2/Vs at a density of 6.2 × 1010 cm−2 which is the highest reported mo-

bility in a two-dimensional hole system to date. In addition, it was found that the

mobility as a function of density did not follow a power law with a single exponent.

Instead, it was found that the power law varied with density, indicating a cross-over

between dominant scattering mechanisms at low density and high density. At low



xxv

density the mobility was found to be limited by remote ionized impurity scattering,

while at high density the dominant scattering mechanism was found to be background

impurity scattering.

Chapter 5 details an experiment examining transport in a series of two-dimensional

hole gases in which the dopant setback distance and the Al mole fraction in the

barriers of the quantum well were varied. The hole density was tuned in this way

from 0.18 − 1.9 × 1011 cm−2. Surprisingly, the mobility at T = 0.3 K was found

to peak at 2.3 × 106 cm−2 at an intermediate density of 6.5 × 1010 cm−2. Self-

consistent Schrödinger/Poisson calculations were performed for each wafer to examine

the scattering rates due to a variety of potentials at low temperature. The drop

in mobility at high density could be accounted for with the inclusion of interface

roughness scattering, but using the same interface roughness scattering parameters

for similar two-dimensional electron gases produced inconsistent results. This leaves

open the possibility of contributions from other scattering mechanisms in the hole

samples at high density.

Chapter 6 presents an in-depth study of in-situ backgated two-dimensional gases

used for studying the fragile fractional quantum Hall states in the 2nd Landau level.

It was found that leakage currents as small as 4 pA could cause noticeable heating

of the electron gas if the lattice was not properly thermally anchored to the cryostat.

However, it was also found that when the heterostructure design and device fabrica-

tion recipe were properly optimized, gate voltages as large as 4 V could be applied

before the leakage turned on, allowing the density to be tuned from full depletion to

over 4× 1011 cm−2. As a result, heating effects at dilution refrigerator temperatures

were negligible and the gap at ν = 5/2 could be tuned continuously with density to a

maximum value of 625 mK, the largest reported to date. An unusual evolution of the

reentrant integer quantum Hall states as a function of density is also reported. Such

devices should prove useful for the study of electron correlations in nanostructures in

the 2nd Landau level.
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1. Introduction

1.1 Dimensionality and Interactions

The study of strongly interacting electrons is one of the central themes in modern

research in condensed matter physics because, as Anderson succinctly put it, “More

is different” [1]. A great deal of the effort expended in experimental work in con-

densed matter physics is therefore directed at finding or engineering systems in which

interactions dominate the observed physics. One of the most fruitful methods of am-

plifying the effect of interactions is, as we shall see, to move to systems with reduced

dimensionality.

Figure 1.1a shows the simple yet somewhat pedestrian case of the density of

states of a two-dimensional (2D) system in the absence of any external potentials.

If the system is instead subjected to an external magnetic field B perpendicular

to the plane, the Hamiltonian describing the system can be written in the form of

the familiar harmonic oscillator potential with the well-known energy eigenvalues

EN = (N + 1/2)h̄ωc [2]. As a result, the density of states is changed to a series of

degenerate Dirac delta functions spaced apart in energy by the cyclotron energy (in

the case of a negligible Zeeman spin splitting) as shown in figure 1.1b. The index

N is referred to as the Landau level (LL) index and ωc = eB/m∗ where e is the

electron charge and m∗ is the electron effective mass. As figure 1.1 illustrates, the

degeneracy of the LLs can be understood with a simple geometric argument. Under

the application of an external magnetic field, the states become “compacted” into the

individual LLs. The degeneracy d of a single spin-resolved LL is then simply given

by

d =
1

2

m∗

πh̄2 h̄ωc =
eB

h
(1.1)
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Figure 1.1. Change in 2D density of states under the application of an
external, perpendicular magnetic field. The degeneracy of the Landau
levels is set by the number of states in a range h̄ωc that is “compacted”
into a single Landau level by the magnetic field.

The number of filled LLs (often referred to as the filling fraction ν) is thus

ν = n/d =
hn

eB
(1.2)

where n is the electron number density.

1.2 The Integer Quantum Hall Effect

Now suppose we pass a current I through a rectangular 2D system and measure

the voltage drop Vxx parallel to the current flow as we increase B as shown in figure

1.2. Figure 1.3 shows the results of a representative measurement at low temperature.

As the magnetic field is increased, the LLs will move up in energy and pass through
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Figure 1.2. Schematic of magnetotransport measurement setup. Shaded
regions represent contacts to the Hall bar.

the Fermi energy when the degeneracy increases sufficiently to accomodate all of the

electrons in the next highest LL. The conductivity will fluctuate with the density of

states at the Fermi surface resulting in an oscillating voltage Vxx. These fluctuations

(usually plotted as a resistance Rxx vs. B) are known as Shubnikov de-Haas (SdH)

oscillations and are periodic in inverse magnetic field. As the magnetic field is in-

creased further, the LLs will become more separated and the density of states will

become zero for certain values of the magnetic field. In this case since the density of

states is zero, the conductivity σxx will vanish. In addition, the resistivity ρxx will

also vanish since ρxx ∝ σxx in two dimensions [3]. This vanishing of the longitudinal

resistance, accompanied by a plateau in the transverse resistance, is known as the

integer quantum Hall effect (IQHE) and was first observed by von Klitzing et al. [4]

in the inversion layer of a Si MOSFET at low temperature.
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Figure 1.3. Magnetotransport in a 2DEG showing the Shubnikov - de
Haas oscillations, the onset of spin splitting, and the development of the
integer quantum Hall effect.

To better understand this peculiar situation of zero resitivity in a disordered sys-

tem at finite temperature, it helps to consider the distribution of energy levels across

the width of the Hall bar as shown in figure 1.4. When the Fermi energy EF lies in

between the Landau levels it is apparent that the only states at the Fermi surface

(and hence the only states that can carry current at low temperature) are at the edge

of the sample where the Landau levels cross the Fermi energy. In addition, these edge

states are chiral (i.e. the edge states flow in opposite directions on opposite sides of

the sample). The chiral nature of the edge states results from the presence of the

edge confining potential V (y) in concert with the magnetic field (see chapter 4 from

reference [5] for a formal treatment). From a hand-waving, semi-classical view the

edge states can be thought of as skipping orbits as the cyclotron orbits of the elec-

trons collide with the edge of the sample. The chiral nature of the edge states results
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Figure 1.4. Landau level energy across a 2D Hall bar of width w.

in the suppression of backscattering (and hence resistance) so long as the edges of

the sample are well-separated. For macroscopic samples the result is that Rxx is zero

when the bulk is gapped.

Given the fact that the 4-terminal resistance Rxx is zero, one might expect that

the 2-terminal source-drain resistance would also be zero apart, perhaps, from a small

contact resistance associated with the semiconductor-metal interface in a real device.

This, however, is not the case. As originally worked out by Landauer and Büttiker

[6, 7, 8] and explained in a pedagogical manner in references [9] and [3], there is a

finite conductance e2/h associated with a ballistic, one-dimensional channel. This

finite conductance arises due to the spatial quantization of modes in the channel.

Thus, in the case shown in figure 1.4, the measured 2-terminal conductance would

be 3e2/h since there are 3 edge channels which cross the Fermi surface. Now due
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to the fact that there is no voltage drop along the length of the sample (Rxx = 0),

this means that each side of the sample is at the same chemical potential as the

“upstream” source or drain contact. With one edge of the sample fixed at the source

potential and the other fixed at the drain potential, the 2-terminal conductance can

thus be measured in a 4-terminal arrangment by measuring the voltage drop across

the sample (i.e. the Hall voltage Vxy). Taken together, this means that the Hall

resistance Rxy will therefore be quantized at an integer multiple of h/e2 whenever

an integer number of LLs are completely filled and the Fermi energy lies in the gap

in the bulk of the sample. An experimentally measured Hall resistance vs. B would

still not look very exciting, though, since one would not be able to distinguish the

quantized value of Rxy from the adjacent non-quantized, classical values of Rxy.

The somewhat surprising missing ingredient necessary to observe a universal,

quantized conductance plateau in experiment is, in fact, disorder. In a real sam-

ple the disorder potential in the plane of the 2DEG will look like a landscape of hills

and valleys. These hills and valleys serve as sources and sinks of electrons to keep an

integer number of edge states filled as the LL degeneracy varies with magnetic field,

thus keeping the conductance quantized over a finite range of B [10]. Said another

way, the disorder gives rise to localized states in the tails of the LLs (broadened by

temperature and disorder) as shown in figure 1.5. With many states localized, the

measured conductance is set by the extended states. Therefore, as long as the Fermi

energy lies in the region of localized states between adjacent regions of extended

states, the conductance will remain quantized. As the sample disorder is increased

or the temperature is decreased, the number of localized states will increase and Rxy

will remain quantized over a larger range.

1.3 The Fractional Quantum Hall Effect

All of the features of the data in figure 1.3 can be explained using the relatively

simple single-particle physics already discussed. Using this theoretical picture, one
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Figure 1.5. 2D DOS in the presence of a perpendicular magnetic field,
finite temperature, and disorder. Cross-hatched regions indicate regions
of charge localization in the 2D bulk.

would (incorrectly) expect not much interesting to happen at high magnetic field

where all of the electrons occupy the lowest LL (LLL). In the LLL the kinetic energy

of all the electrons is constant and equal to h̄ωc/2 and as such is said to be “frozen”.

As a result, the only terms left in the electrons’ Hamiltonian are interactions between

the electrons and their environment (i.e. temperature and disorder) and each other.

Thus, in a sufficiently clean 2D system at sufficiently low temperature one can expect

interaction effects to dominate. It was this expectation that led Störmer and Tsui

in 1982 to search for a so-called Wigner solid of electrons at high magnetic field.

Instead, they discovered a plateau in Rxy and strong dip in Rxx at a filling fraction of

1/3 [11]. This effect, known as the fractional quantum Hall effect (FQHE), is due to
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the opening of a new energy gap in the bulk brought about by strong electron-electron

interactions as explained by Laughlin [12].

Laughlin’s famous wave function describing the FQHE at primary fractions such

as ν = 1/3, 1/5, etc. is given by

ψν =
∏
j<k

(zj − zk)1/ν exp

[
−1

4

∑
l

|zl|2
]

(1.3)

where 1/ν is an odd integer and zj = xj − iyj is the position of the jth electron.

The requirement that 1/ν be an odd integer is necessary for the wave function to

be anti-symmetric under particle exchange. While this explanation of Störmer and

Tsui’s data was a great success (which earned Laughlin a share of the 1998 Nobel

prize), it cannot by itself account for the menagerie of FQHE states observed in high
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quality samples as shown in figure 1.6. In order to understand the multitude of other

FQHE states in the LLL, it is necessary to invoke the composite-Fermion arguments

proposed by Jain [13].

In Jain’s theory, the energy of the many-body system is minimized when electrons

pair with magnetic flux quanta to form new particles known as composite Fermions

(CFs). These new composite particles then move through the residual, reduced mag-

netic field and form a new set of LLs often referred to as lambda levels (ΛLs). As

their name implies, these CFs obey Fermionic statistics which requires that an elec-

tron bind with an even number of flux quanta. The simplest case is therefore an

electron binding with two magnetic flux quanta. At ν = 1/2 this means that all

of the flux quanta will be attached to electrons and there will be no residual field

left. At exactly half filling of the LLL one would therefore expect these CFs to move

in straight lines analogous to electrons at zero field. This theoretical picture has in

fact been confirmed experimentally through experiments (among others) involving

resonant transport through anti-dot arrays [14] and extraction of the CF wavevector

through surface acoustic wave transport measurements [15]. Away from half-filling,

the ΛLs move through the Fermi level and Rxx and Rxy form zeros and plateaus,

respectively. Indeed, if one examines Rxx and Rxy in figure 1.6 around ν = 1/2, a

remarkable similarity with the low field SdH oscillations and IQHE of electrons can

be seen. In contrast, the extension of the edge state picture to the FQHE is not a

priori obvious but was nonetheless explained by Wen [16, 17] who showed that the

edge states in the FQHE regime are described by a one-dimensional, non-Fermi liq-

uid known as a chiral Luttinger liquid (CLL). In this way fractions in the sequence

ν = p/(2np + 1) with n and p integers can be accounted for in the CF model. This

accounts for nearly all FQHE states that have been observed to date with the notable

exception, among others, of the state at ν = 5/2 in the 2nd LL.
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1.4 The Incompressible State at ν = 5/2

From the first observation of an incompressible state at ν = 5/2 by Willett et

al. [18], it was clear that it was an “exotic” state because its even-denominator filling

immediately precluded its explanation by the standard CF theory. The appearance

of an incompressible state at half filling in a single quantum well is unique to the 2nd

LL. In the LLL at half-filling, a compressible composite-Fermi sea is formed while

the higher LLs are dominated at half-filling by the formation of charge density wave

states[19, 20]. Evidently in the 2nd LL there is a strong competition between different

families of many-body ground states with the incompressible, isotropic FQHE state

favored at half filling. Indeed, in very close proximity to ν = 5/2 there are re-entrant

integer quantum Hall (RIQH) states [21, 22, 23] due to a bubble or liquid crystal

phase in addition to more conventional odd-denominator incompressible states such

as ν = 7/3 and ν = 8/3 and other more exotic states such as ν = 12/5 [22, 24, 25] and

ν = 2 + 6/13 [25]. In addition to its exotic nature, the prediction that a non-Abelian

state at ν = 5/2 could be used as a topologically-protected qubit [26, 27] motivated

intense research by a large number of groups.

Given the rather unique nature of the ν = 5/2 state, it is useful to outline theo-

retical predictions about its nature and compare these predictions with experimental

results. The most exciting candidate wave-function for ν = 5/2 is the so-called Moore-

Read state, named after its creators [28]. This wavefunction, often referred to as the

Pfaffian, and its particle-hole conjugate the anti-Pfaffian became leading contenders

for the state at ν = 5/2 after being shown to have strong overlaps with exact diag-

onalization calculations for 2D systems with a few electrons [29, 30, 31, 32]. In the

absence of LL mixing, these states are degenerate [33], but it is not clear which state is

favored in the experimentally relevant case of finite LL mixing [34]. Both the Pfaffian

and Anti-Pfaffian are expected to carry an effective charge e∗ = e/4 and result from

a fully spin-polarized ensemble of electrons [28]. The salient difference between the

two wavefunctions is their edge structure; the Pfaffian has only down-stream propa-
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gating charge modes while the Anti-Pfaffian has upstream neutral modes in addition

to the downstream charge modes [34, 33]. One quantity that could be used to distin-

guish among different proposed wavefunctions is the Luttinger interaction parameter

g. Theoretical models for the 2-terminal conductance as a function of temperature

of a quantum point contact in the weak back-scattering regime in principle allow g

to be extracted from experiment [35, 33, 36]. The Pfaffian state is predicted to have

g = 1/4 while the anti-Pfaffian should have g = 1/2 (see reference [37] for a summary

of g values for various wavefunctions). In addition, one of the easiest parameters to

measure and use for comparison with theoretical models is the state’s energy gap. In

the absence of disorder, LL mixing, and finite width effects the gap at ν = 5/2 has

been calculated using exact diagonalization and density matrix renormalization group

methods for small systems [29, 38]. The results of these calculations predict that the

gap at ν = 5/2 should be 0.03 - 0.05 in units of the Coulomb energy e2/4πε`0. For

a 2DEG density of 3× 1011 cm−2 this corresponds to an energy of ∼ 3-6 K. Finally,

perhaps the most exciting experiment related to ν = 5/2 would be a measurement of

its quantum mechanical statistics using a two point-contact Fabry-Perot interferome-

ter as this would definitively reveal whether ν = 5/2 is a non-Abelian state of matter

[39, 40].

Measurement of the effective charge e∗ of the quasiparticles at ν = 5/2 has been

explored in measurements of the shot noise of tunneling through a quantum point

contact (QPC) in the 2DEG and been found consistent with e∗ = e/4 [41] where

e is the electron charge in vacuum. Later measurements by the same group [42],

though, found that the effective charge could be larger than e/4 for certain QPC

transmission probabilities. Examination of the tunneling conductance of a QPC with

a local filling fraction of ν = 5/2 as a function of temperature has also been used

to infer e∗. By fitting theoretical models for weak tunneling to the experimentally

measured data, the best fit e∗ was found to be e∗ = 0.17 [37] in a narrow QPC, while

a later measurement on the same device with a different set of depletion gates and

different gate annealing parameters resulted in best fit values of e∗ = 0.25e and e∗ =
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0.22e for a modified QPC geometry and a quantum long contact (QLC), respectively

[43]. A more recent experiment that examined tunneling at ν = 5/2 found e∗ to vary

from 0.18e to 0.25e depending on the measurement setup [44]. Thus, while there seems

to be general agreement with e∗/e ∼ 1/4 there is still considerable variation from

experiment to experiment which may suggest that the theoretical models [45, 36, 33]

neglect important sample parameters that affect the value of the extracted charge.

A number of different experiments have been conducted to probe the degree of spin

polarization at ν = 5/2. The earliest was a tilted-field study conducted Eisenstein et

al. [46]. As the sample is tilted at fixed filling fraction (i.e. fixed field perpendicular

to the 2DEG), the total field and thus Zeeman energy increase. Thus, if the state

at ν = 5/2 required the co-existence of opposite spins, increasing the Zeeman energy

would weaken and eventually destroy the state. In this early experiment, Eisenstein

et al. were unable to directly measure the energy gap at 5/2 due to the relatively

low-quality of their sample. Instead, they used the “deepness” of the minima in

the longitudinal resistance Rxx as a proxy for the gap and found that the state ap-

peared to weaken with increasing tilt angle, therby concluding that the state at 5/2

was unpolarized. However, it was later shown that the in-plane field caused a phase

transition to an anisotropic stripe phase [47, 20], and thus tilted-field measurements

could not be used to reliably determine the spin polarization at ν = 5/2. Opti-

cal measurements utilizing resonant inelastic light scattering at ν = 5/2 suggested

a lack of spin-polarization, though accompanying resonant Rayleigh scattering mea-

surements gave evidence of the coexistence of sub-micron domains of spin-polarized

and spin-unpolarized fluids [48]. By contrast, measurements of the Knight shift via

resistively-detected nuclear magnetic resonance [49, 50] suggested fully spin-polarized

states throughout the lower spin branch of the 2nd LL. In addition, the measurements

performed by Tiemann et al. [50] showed evidence for full spin-polarization at ν = 5/2

across the entire measured density range (2.4-4.2 ×1011 cm−2). Gap measurements

at ν = 5/2 as a function of density performed by Nübler et al. [51] and the Man-

fra group (see chapter 6) showed a monotonic dependence of activation energy on
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density over the density range 1.3-3.35 ×1011 cm−2 in 30 nm quanum wells. This

monotonic dependence appears to rule out a spin transition in this density range.

While there is obviously still some controversy regarding the polarization of ν = 5/2,

it appears likely that at least in the density range producing the largest energy gaps

(∼ 2.7− 3.3× 1011 cm−2) the state is fully polarized.

Another theoretical prediction for some proposed wave functions at ν = 5/2 is the

existence of upstream neutral modes (see, for instance, reference [52] for a summary

of predictions for various wavefunctions). Evidence for upstream neutral modes at

ν = 5/2 using shot noise measurements was first reported in reference [53], but later

work by the same group showed a more nuanced picture as they found similar signa-

tures for upstream modes at filling factors not initially anticipated to have upstream

modes such as ν = 1/3, 2/5, and 4/3 [54]. Experiments to measure the edge state

temperature from the width of Coulomb blockade peaks in quantum dots located

in close proximity to the edge states [55] were evidently unable to couple both the

heater and thermometer to edges other than the outermost one. As a result, they

were unable to make any claims about heat carried by upstream neutral modes at

ν = 5/2. However, Venkatachalam et al. [55] did find evidence for upstream neutral

modes on the high-field side of ν = 1 for gate-defined edges which points to edge state

reconstruction for the shallow confining potential from the gate. Such edge recon-

structions could explain the presence of edges modes seen in reference [54] in states

not expected to have upstream modes for sharp confining potentials.

Returning to the tunneling experiments discussed earlier, yet another measurable

quantity that differs among the various proposed wavefunction is the Coulomb inter-

action paramter g, also known as the Luttinger interaction parameter. The first edge

state tunneling experiment at ν = 5/2 by Radu et al. [37] found the best agreement

with the predictions of the non-Abelian anti-Pfaffian and U(1)×SU2(2) states. Later

tunneling experiments with different gate configurations and preparations [43] on the

same Hall bar and experiments by a different group [44] found results consistent with

the Abelian (331) and (113) states. However, the fact that Radu et al. [37] and Lin
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et al. [43] found different answers when using different gate preparations and con-

figurations on the same Hall bar seems to suggest that such details may need to be

included in the tunneling theory to extract meaningful results from the measurements.

It could potentially be interesting to compare such tunneling experiments with similar

experiments with the QPC gates deposited in trenches to create a sharper confining

potential in an attempt to minimize edge state reconstruction.

One of the most frequently measured quantities in quantum Hall experiments is

the energy gap of the incompressible states. As mentioned previously, theoretical

predictions for the gap at ν = 5/2 based on numerical calculations result in relatively

large gaps of a few Kelvin. However, the largest gaps measured to date at ν = 5/2 are

< 600 mK [56]. The discrepancy between the predicted and measured gap is ascribed

to a phenomenological disorder broadening Γ such that ∆int = ∆meas + Γ where ∆int

is the intrinsic gap in the zero-disorder limit (i.e. the theoretically calculated gap) and

∆meas is the experimentally measured gap. Due to the large discrepancy between the

experimental and theoretical gaps, Γ is evidently quite large (O(1K) [57]). However,

by examining the gap at filling fractions 5/2, 7/2, 7/3, and 8/3, Samkharadze et

al. [57] were able to estimate the disorder broadening in a series of samples. Further,

by extrapolating the intrinsic gap to the limit of zero LL mixing, they found an

intrinsic gap of ∼ 0.032 in units of the Coulomb energy which compares very well

with the numerical results discussed previously [29, 38]. Nübler et al. [51] also found

that inclusion of LL mixing in theoretical calculations of the gap at ν = 5/2 had

a large impact on the intrinsic gap. Therfore, LL mixing is evidently an important

parameter to include in trying to reconcile theoretical predictions and experimental

observations at ν = 5/2.

Far and away the most convincing demonstration of the non-Abelian nature of

the ν = 5/2 state would be a measurement of braiding statistics in a quasiparticle

interferometer. Figure 1.7 shows a sketch of the layout of a so-called Fabry-Perot in-

terferometer. In such a setup the 2DEG in a Hall bar is depleted under electrostatic

gates to define two constrictions. Tunneling of quasiparticles between the edges at
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Figure 1.7. Sketch of the geometry of a Fabry-Perot interferometer in the
quantum Hall regime. The 2DEG is bound by the blue rectangle, the
yellow regions represent Ohmic contacts, the black shapes represent sur-
face gates used to electrostatically deplete the 2DEG underneath them,
red lines represent the flow of edge states, and blue x’s represent localized
quasiparticles. As the side gate voltage is varied the number of quasipar-
ticles encircled by the edge states changes, giving rise to oscillations in
the conductance of the interferometer due to the change in phase of the
edge states.

these constrictions allows the edge quasiparticles to interfere with themselves. This

then modifies the 2-terminal conductance of the device from its quantized value.

The interference is determined both by the Aharanov-Bohm phase resulting from the

encircling of magnetic flux quanta in the interior of the device as well as a phase

resulting from the encircling (i.e. exchange) of localized quasiparticles in the bulk

of the interferometer. If the area of the interferometer is changed (e.g. by tuning

the side gate voltage), both the number of encircled quasiparticles and the number

of encircled flux quanta change. It has been theoretically predicted [33] that if the

state at ν = 5/2 is either of the non-Abelian Pfaffian or Anti-Pfaffian wavefunctions,

the 2-terminal conductance of the device should oscillate if an even number of quasi-

particles are encircled while the interference effect should be lost if an odd number

of quasiparticles is encircled. Thus, for sufficiently large side gate voltage sweeps,
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one would expect to find an alternation between oscillations and no oscillations in

the 2-terminal conductance as a function of the side gate voltage. Experiments with

Fabry-Perot interferometers aimed at examining ν = 5/2 have been conducted by

a number of groups [58, 59, 60, 61] but have had mixed results. The experiments

by Willett et al. [58, 59] showed an alternation of the frequency of oscillation as a

function of side gate voltage with the two frequencies suggesting effective charges of

e/4 and e/2. The results from the Chicago group [60] showed “phase slips” (possibly

due to the entrance/exit of quasiparticles from the interferometer) at ν = 5/2 and

ν = 7/3 consistent with a non-Abelian state at 5/2 and an abelian state at 7/3.

However, the lack of quantization in the diagonal resistance through the device and

the very poor quality of the bulk transport away from the interferometer cast some

doubt on whether the observed phase slips were indeed due to quasiparticle interfer-

ence. Finally, the Harvard group [61] was not able to observe oscillations at ν = 5/2,

though they did find oscillations consistent with a an effective charge of e at integer

filling and e/3 at fractions ν = 1/3, 2/3, 4/3, and 5/3. At this point more work, both

theoretical and experimental, is likely needed to understand the impact of factors

such as device design and confining potential strength on the observed interference

patterns.
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2. Molecular Beam Epitaxy

2.1 Principles of Molecular Beam Epitaxy

Molecular beam epitaxy (MBE) is a highly controllable physical vapor deposi-

tion technique performed in an ultra-high vacuum (UHV) environment. The MBE

growth technique is relatively simple conceptually. Atomic and/or molecular fluxes

are generated thermally in furnaces known as effusion cells or Knudsen cells and

are modulated by shutters. Due to the UHV enivronment and relatively low beam

equivalent pressures (BEPs) of the sources, there is no gas-phase reaction as there

would be in a chemical vapor deposition (CVD) process. The crystal growth rate is

set by the BEP of each source, and the BEP is controlled by the effusion cell tem-

perature. Growth rates can be set low enough to allow superlattice structures to be

grown with thicknesses as small as a few monolayers (ML). Studying the physics of

low dimensional systems requires spatial confinement on the scale of a few to tens of

nanometers in addition to minimal disorder from crystal defects and impurities. The

tight control of layer thickness coupled with the high crystal purity made possible

by the UHV environment thus make MBE an ideal growth method for examining

mesoscopic physics.

2.1.1 MBE Chamber Layout

Figure 2.1 illustrates a cross section of the basic design of an MBE growth cham-

ber. The vacuum vessel is typically constructed from 316L or 304 stainless steel and

electropolished to minimize the surface area and potential adsorption sites for gases.

In a UHV environment the chamber surface can be thought of as a sponge that ad-

sorbs gases when the chamber is vented and subsequently slowly releases these gases
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Figure 2.1. Cross sectional sketch showing the functional form of a typical
MBE chamber.

when the chamber is under vacuum. Thus, minimizing the chamber surface area

through electropolishing and minimizing the total size of the chamber is important

for achieving a low base pressure. The desorption of gases from the surface can be

greatly accelerated by elevating the temperature, and thus baking the chamber is a

commonly used technique to quickly drive gases into the pumps to more quickly reach

the UHV regime upon cooling the chamber.

Due to the difficulty in achieving UHV, it is necessary to include a load lock (LL)

chamber and sometimes an additional buffer chamber so that the growth chamber is

not exposed to air each time wafers are loaded and unloaded. New wafers are typically

loaded into a small LL chamber which can be pumped down quickly, and the wafers

are subsequently transferred into a buffer chamber where they can be heated to desorb
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resdiual adsorbed gases. This approach minimizes the number of gaseous impurities

introduced into the growth chamber by daily operation.

2.1.2 Pumping Methods

In addition, achieving UHV conditions requires specialized vacuum pumps. The

most commonly types of pumps used in MBE systems are turbo pumps, ion pumps,

titanium sublimation pumps (TSPs), and cryo pumps. Turbo pumps compress and

exhaust gases with a set of fan blades spinning at high speed (∼ 20,000 RPM). The fan

blades and housing unit are machined to very tight tolerances to enable the pump to

function without an oil seal between the blades and housing. The lack of oil is critical

in UHV applications since any oil backstreaming from the pump into the chamber

would compromise the vacuum quality. Turbo pumps have very high pumping speeds

and exhaust the pumped gases to the room. This makes them especially useful

for pumping LL chambers since the large gas load arising from frequent venting is

continuosly removed from the pump. However, the use of turbo pumps in deposition

chamber requires oil-free, magnetic-levitation designs to reduce the chance of oil back-

streaming. Even with such oil-free designs, however, having such a large number of

high-precision, moving parts internal to the vacuum raises reliability concerns. To get

around this problem, deposition chambers are often pumped with ion pumps, TSPs,

and cryo pumps which have no moving parts internal to the vacuum.

Ion pumps function by ionizing gas particles with magnetically confined, energetic

electrons. The ions then either react with a titanium getter or are buried on the wall

of the pump by sputtered titanium. Ion pumps are thus a type of entrapment pump

since the gases are not exhausted into the room. However, if the pump loses power

the pumped gases are not released back into the chamber. This means that there is

no requirement for an expensive, high conductance valve between the pump and the

chamber. Ion pumps, however, typically have a fairly low pumping speed (< 300-500
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L/s N2 at 10−6 mbar [62]) and are thus not suitable as the only pump on a chamber

with a large gas load.

Titanium sublimation pumps are another simple type of entrapment pump. TSPs

operate by heating a filament or charge of titanium to sublimate pure titanium onto a

surface typically cooled by water or liquid nitrogen. The fresh titanium is extremely

reactive and thus getters reactive gases effectively; hydrogen, for instance, can be

pumped at a rate > 1000 L/s throughout the UHV regime for a TSP with a 1-inch2

water-cooled pumping surface; cooling the pumping surface with liquid nitrogen more

than triples this pumping speed [62]. Like ion pumps, the pumped gases cannot escape

back into the vacuum chamber, so valves are not necessary. TSPs do not pump all

gases well, though. Noble gases in particular are not pumped effectively by a TSP,

so a TSP is not an effective stand-alone pump.

Finally, cryo pumps act by cooling a surface with a large surface area (typically

activated charcoal) to ∼ 10 K. If a gas particle lands on the surface of the cold head,

it will not have sufficient thermal energy to desorb and will thus stay adsorbed on

the surface. Cryo pumps can have very high pumping speeds; for instance a cryo-

pump mounted on a 14-inch flange can have have water-vapor pumping speeds as

high as 9000 L/s [63]. In addition, cryo pumps have no moving parts internal to

the vacuum which make them ideal for deposition chambers. However, if the pump

loses power, the adsorbed gases will desorb and contaminate the chamber. A high

conductance valve is thus needed in between the pump and the chamber so that the

pump can be valved off for maintenance and/or in the case of an emergency. Cryo

pumps also tend to be expensive, the pump and requisite compressor have moving

parts, and the compressor typically requires a high voltage power source and water

cooling. These factors make cryo pumps somewhat prone to failure and make fail-safe

mechanisms such as uninterruptible power supply (UPS) systems harder and more

costly to implement. Due to the various advantages and disadvantages of each of

these types of pumps, many MBE chambers utilize more than one type of vacuum

pump.
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Returning to figure 2.1, an MBE chamber also usually has cooling shrouds around

the sources and the main body of the growth chamber. The shrouding around the

sources is necessary to eliminate thermal cross-talk between the cells and also to

prevent damage to the stainless steel wall that is in close proximity to the hot effusion

cells. This source shroud can be cooled with liquid nitrogen or in some cases coolant

circulated through a closed-circuit chiller. Some sources with particularly high power

requirements may also have built-in water cooling jackets to prevent fragile parts of

the source from overheating. The shroud around the body of the growth chamber,

called the growth shroud, is cooled with liquid nitrogen and functions as a large cryo

pump.

The mean free path λ of gases in vacuum is given by [64]

λ =
1√

2πd2
0n

(2.1)

Where d0 is the molecular diameter and n is is the gas density. Assuming a diameter

∼ 5 Å and the upper pressure bound of the UHV regime ∼ 10−9 Torr [65] this

correponds to a mean free path ∼ 3 × 104 m, somewhat larger than typical MBE

chambers. As a result, gas particles follow straight trajectories when they desorb

from the chamber wall until they collide with another surface in the chamber. Thus,

in order for impurities to reach the substrate they must desorb from a surface with

a direct line of sight to the substrate. Impurity incorporation into the growing film

can, therefore, be greatly reduced by keeping surfaces close to the substrate cooled

to liquid nitrogen temperatures since the desorption rate from a 77 K surface will be

reduced exponentially compared to that of a room temperature surface.

2.1.3 Vacuum Analysis

Quantitative analysis of the vacuum quality is accomplished most frequenly with

two types of instruments: ion gauges and residual gas analyzers (RGAs). Ion gauges

are used to measure the total pressure in a chamber. As shown in figure 2.2, electrons

are produced by thermionic emission from the hot filament and accelerated towards



22

Figure 2.2. Schematic of the operating principle of an ion gauge. Elec-
trons are produced by the filament and accelerated to the grid. Ions are
accelerated to the collector where they produce a measurable current.

the grid by a large electric field. The energetic electrons ionize gas particles which

are subsequently drawn to the collector electrode. The ion current is then easily

measured and is proportional to the pressure of ionized gases. Since different gases

have different ionization rates, the gauge must be calibrated for a specific gas (usually

N2); the ion gauge reading is, therefore, not an exact measure of the total pressure in

the chamber. However, the pressure measured by an ion gauge is still a useful point

of reference for qualitatively understanding the state of the vacuum. The minimum

detectable pressure is set by the so-called x-ray limit which depends on the specific

design of the gauge. The energetic electrons produce x-rays when they impact the

grid, and these x-rays in turn produce a collector current even in the absence of any

ionized gases. Standard ion gauges are usually x-ray limited in the low 10−11 Torr

range, but specialized gauges1 can measure the pressure as low as 10−13 Torr.

1For instance, the Ionivac Extraktor IE514 gauge used on the Manfra group GaAs MBE
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(a) 

(b) 

Figure 2.3. Sketch of an RGA. (a) Side view of a typical RGA show-
ing the three main sections and direction of ion flow. (b) Illustration
of the electrodes forming the quadrupole mass filter. Figure reproduced
from Operating Manual and Programming Reference - Models RGA100,
RGA200, and RGA300 Residual Gas Analyzer, copyright (1996), with
permission from Stanford Research Systems.

By contrast, RGAs are used to map out a broad partial pressure spectrum of the

gases in the vacuum; a schematic of an RGA is shown in figure 2.3. The gas particles

are first ionized with energetic electrons, and the resulting ions are next accelerated

down the center of four electrodes as shown in figure 2.3b. The electrodes are used

to generate a quadrupole electric field which can be tuned in-situ to allow stable

trajectories for a specific ion mass-to-charge ratio. The ion current is measured by a

Faraday cup detector or amplified by an electron multiplier and converted to a partial

pressure reading. The stable trajectory is subsequently swept, allowing the instrument

to map out a large spectrum of partial pressures. Figure 2.4 shows RGA spectra in
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Figure 2.4. RGA spectra. (a) RGA spectrum from a well-baked and leak-
free chamber. (b) RGA spectrum from a leaking, unbaked chamber. The
leak is evinced by the large peak at 32 and the fact that the 14 peak is
larger than the 15 peak which together indicate the presence of O2 and
N2 leaking into the chamber.

two limiting cases. Figure 2.4a is taken from a well-baked, leak-tight chamber. The

only residual gases in the chamber are called out, with hydrogen being the dominant

partial pressure. Figure 2.4b, on the other hand, shows an RGA spectrum taken

from a chamber shortly after assembly. There are many more peaks visible in figure

2.4b, and the tell-tale signature of a leak is present: the mass 14 peak is larger than

the mass 15 peak, and the mass 32 peak is large. The large 14 peak relative to the

15 peak indicates the presence of nitrogen, and the 32 peak is due to atmospheric

oxygen. Beyond revealing the presence of a leak, the RGA is vital to finding the

leaking vacuum joint. To find a leak, the RGA is set to detect a mass:charge ratio of

4 and helium is sprayed around each seal. If the seal is leaking, the RGA will show

an increased signal as the helium leaks into the chamber.

2.1.4 The RHEED Technique

In order to grow heterostructures for studying mesoscopic physics, it is important

to have tight control over the crystal growth rate. The MBE growth method is at an
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Figure 2.5. Sketch of the effect of increasing the lattice constant along the
z direction. As the real space lattice constant increases, the corresponding
reciprocal lattice constant decreases. In the limit of a 2D crystal in the x-y
plane, the reciprocal lattice would consist of a series of thin rods parallel
to the kz axis.

advantage in this regard over growth processes occuring at higher pressures. Due to

the UHV environment and the associated long mean free path, reflection high energy

electron diffraction (RHEED) can be used to measure the crystal growth rate in-situ.

In the RHEED technique a high energy beam of electrons (∼ 10 keV) impinges on

the substrate at a glancing angle. Due to this shallow angle, the electrons scatter

off only the first few atomic layers, thereby generating a quasi-2D diffraction pattern

which can be viewed on a phosphor screen. In trying to visualize the diffraction

pattern from a 2D surface, it is useful to think of the 2D crystal as the limit of a

3D crystal with the spacing between atomic planes along the z direction tending to

infinity. Since the diffraction pattern is essentially a Fourier transform of the real



26

𝑘𝑓 

𝑘𝑖 

Observer 
Phosphor 
screen 

Reciprocal 
lattice rods 

Ewald 
sphere 

kz 

kx 

𝑘𝑓 

𝑘𝑖 

Ewald 
sphere 

ky 

kx 

Figure 2.6. Cross sectional views of the Ewald sphere construction used to
determine momentum- and energy-conserving scattering processes from a
2D crystal.

space crystal, the reciprocal lattice spacing along z will collapse to zero as the real

space lattice spacing is taken to infinity as shown in figure 2.5. This means that

the reciprocal lattice of a 2D crystal in the x-y plane would consist of a series of

rods, broadened by disorder, parallel to the kz axis. Since the electrons will scatter

off the atoms elastically, their initial and final wave vectors ~ki and ~kf must be of

equal magnitude. In addition, in order to conserve momentum, the initial and final

wave vectors must differ by a reciprocal lattice vector ~G. These conditions can be

visualized using the Ewald sphere construction. Figure 2.6 shows 2D cross-sectional
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Figure 2.7. Typical RHEED diffraction pattern in GaAs at growth
temperature. (a) RHEED pattern showing the 2× reconstruction. (b)
RHEED pattern showing the 4× reconstruction.

views of the Ewald construction with a 2D crystal. For an incident momentum ~ki the

electron’s kinetic energy and momentum will be conserved if its outgoing momentum

vector ~kf simultaneously lies on the surface of the Ewald sphere and intersects a

reciprocal lattice rod. The trivial case of no scattering is also a possibility, and this

results in the so-called straight-through beam. The brightest beam apart from the

straight through beam is typically the specular beam which is simply the reflection

of the incident beam from the surface. Figure 2.7a shows a typical diffraction pattern

from GaAs showing the specular and straight-through beams along with the first-

and half-order streaks in the first Laue zone. The half order streaks are due to the
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(a) 

(b) 

Figure 2.8. (a) RHEED pattern from a rough wafer immediately after
desorbing the oxide at growth temperature. (b) RHEED pattern from a
smooth wafer.

reconstruction of the surface which in this case doubles the periodicity along the

RHEED beam. The orthogonal direction shown in figure 2.7b has a periodicity four

times that of the bulk and thus has quarter-order streaks in addition to the primary

streaks.

In addition, an important feature used for qualitative analysis of the wafer surface

is the degree of “streakiness” of the diffraction spots. The diffraction pattern from

a very smooth surface will exhibit long streaks perpendicular to the wafer surface

on the phosphor screen. This is because for typical RHEED energies and scattering

geometries, the finite width of the reciprocal lattice rods will intersect the Ewald
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Figure 2.9. Sketch of crystal surface in cross section during growth. As the
surface roughens due to the nucleation of a new monolayer, the specular
intensity drops. Once the new atomic layer nears completion, the intensity
recovers.

sphere over a large range along their length. A rough surface, which can be thought

of as more “3D”, will instead show a diffraction pattern with well-defined spots as the

spacing along z-direction of the reciprocal lattice planes becomes resolvable. Figure

2.8 contrasts the diffraction pattern from a rough surface in panel (a) to the diffraction

pattern from a smooth surface in panel (b).

Finally, RHEED patterns can also be used to measure the growth rate by monitor-

ing the intensity of the specular beam as a function of time. As figure 2.9 illustrates,

the surface roughness of the growing crystal will oscillate in time as atomic monolay-

ers nucleate and spread. The intensity of the specular beam is proportional to the

surface roughness and, therefore, also oscillates, with each peak in reflected intensity

corresponding to the completion of a single monolayer. Figure 2.10 shows intensity
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Figure 2.10. Typical oscillations in the intensity of the RHEED spec-
ular spot during growth of GaAs. The oscillations are damped due to
roughening of the surface as islands nucleate on top of other islands. The
oscillation period corresponds to the crystal growth rate.

oscillations as a function of time taken from a growing GaAs surface. By measuring

the oscillation frequency one is able to accurately measure and adjust the growth rate

as necessary prior to growing a heterostructure.

2.2 Design Considerations for High Mobility MBE

The preceding section described the basic features of a generic MBE system. In

order to grow the low-disorder structures necessary for modern research in correlated

electrons in GaAs, however, additional design constraints must be taken into account.

Achieving and maintaining high electron mobilities requires that two guiding princi-

ples be considered during the machine design. First, every component in the growth

chamber must be designed to maximize vacuum purity and minimize power input to

the system. Second, the machine should be designed with as much redundancy and as
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many back-up mechanisms as possible to extend the length of the growth campaign

and minimize the impact of equipment failures on chamber purity.

The MBE design was based on the Varian High Mobility GenII system which

was chosen as it is one of the few remaining 2 inch MBE systems commercially

available. By contrast, most current research MBE machines are designed to grow

on 3 or 4 inch wafers. However, it has been shown [66] that a larger substrate heater

with its correspondingly larger power dissipation results in significantly lower electron

mobilities. Furthermore, while reference [66] showed that a larger substrate heater

in a given growth chamber decreases the maximum achievable mobility, this study

did not take into account an additional source of mobility degradation from using a

larger system. In order to achieve acceptable epilayer uniformity on a larger wafer,

the substrate must be situated further from the effusion cells. This, in turn, requires

larger effusion cells which dissipate more power to maintain the same growth rate.

Therefore, from the standpoint of minimizing power input to the system, a smaller

machine can be expected to perform better than a large machine.

Besides the 2 inch substrate, the High Mobility GenII design was chosen because

it utilized all-metal components on the growth chamber to enable the entire growth

chamber to be baked at 200 ◦C for extended periods. The primary difference be-

tween the standard and “High Mobility” designs is that the gate valves on the “High

Mobility” growth chamber utilize metal sealing surfaces rather than commonly used

rubber seals such as Viton. The rubber seal cannot be baked as hot as a metal seal

can, particularly if the valve is closed, and this limits the clean-up of the machine. In

addition to using all-metal gate valves, the gate valves on the Manfra high-mobility

MBE were custom-designed to allow the full 10 inch opening of the CT-10 cryop-

ump to see the growth chamber and take full advantage of the large pumping speed

of the cryopump. Figure 2.11 shows the Manfra high-mobility MBE with its three

cryopumps and custom gate valves. In addition to the growth chamber itself being

bake-able, the cryopumps were also modified from the standard design. First, the

rubber pressure relief valve on the back of each pump was replaced with an all-metal
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Figure 2.11. The Manfra high mobility MBE machine as installed. The
design and materials of construction play an important part in determin-
ing the ultimate crystal purity (see text).

burst disk to improve the vacuum-tightness of the pump. Naively one might expect

that a small leak on the backside of a fast pump such as a cryopump would not im-

pact the vacuum quality or even be noticeable. However, figure 2.12 shows the RGA

spectra from a different chamber in the lab before and after replacing the rubber

poppet valve with an all-metal burst disk. This leak was very difficult to find since it

required that the leak-checking first saturate the pump with helium before the helium

signal was visible on the RGA, but removing the poppet valve nonetheless had a clear,

positive impact on the vacuum quality. Second, the pumps themselves were modified

to allow the outer vacuum can of the pump to be baked. This involved removing

plastic components inside the pump and adding water cooling rings to the mouth of

each pump to help manage the heat load on the pump during bake-outs. Baking the

vacuum can of the pumps was shown to be important for achieving high mobilities by

Pfeiffer and West [67]. As they pointed out, if as little as 1% of the vacuum surface is

left unbaked, that surface will be the dominant source of outgassing in the chamber.
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Figure 2.12. RGA spectra showing the impact of replacing the rubber-
sealed poppet valve on the chamber’s cryopump with an all-metal burst
disk. (a) RGA spectrum from chamber with poppet valve. The spectrum
shows the tell-tale sign of a leak: the mass 14 peak is larger than the mass
15 peak and the 32 peak is large relative to the 28 peak. (b) RGA spectrum
after replacing the poppet valve with an all-metal burst disk. The leak
signature is gone, though the the chamber still required additional baking
to improve the overall vacuum purity.

Figure 2.13 [68] shows the result of various improvements to MBE technology, source

material purity, and heterostructure design. The jump in maximum mobility between

1986 and 1988 (“English et al.” data and “Our data” in plot) was a result of the

installation of all-metal gate valves and bake-able cryopumps described in reference

[67].

In order to achieve high mobilities, the choice of pumps was limited from what is

often used in more standard MBE systems. First, no turbo pumps or other mechanical

roughing pumps were installed on any of the MBE chambers due to the potential risk

of particulate generation and/or oil back-streaming from nominally “dry” pumps.

This left liquid nitrogen cooled sorption pumps as the only option for roughing pumps.

In order to maintain high throughput, it was necessary to utilize cryo pumps (albeit

non-bake-able designs) on the LL and buffer chambers because ion pumps would

not have sufficient pumping speeds for chambers with such large gas loads. Finally,

although the standard GenII design uses a combination of cryopumps, ion pumps, and
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Figure 2.13. Plot of maximum 2DEG mobility as a function of temper-
ature showing the result of improvements in MBE and heterostructure
design and materials. Reprinted with permission from L. Pfeiffer, K. W.
West, H. L. Stormer, and K. W. Baldwin. Appl. Phys. Lett. 55, 1888
(1989). Electron mobilities exceeding 107 cm2/Vs in modulation doped
GaAs. Copyright (1989), AIP Publishing LLC.

TSPs to pump the growth chamber, there is anecdotal evidence that at the extremely

low pressures needed for high mobility GaAs growth ion pumps may actually make

the vacuum worse [67]. As a result, our design did not incorporate any ion pumps.

Next, the effusion cells themselves were optimized since, as the hottest part of the

chamber, they represent the most likely source of impurity outgassing during growth.

The cells were modified from the standard “high mobility” design to include additional

heat shielding to reduce their power consumption. Moreover, wherever possible the

http://dx.doi.org/10.1063/1.102162
http://dx.doi.org/10.1063/1.102162
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hot parts of the cells were specified to be made from high purity tantalum or from

high purity pyrolitic boron nitride (pBN) where electrical insulation was required.

In order to further reduce the power input into the system, the dopant sources

were home-made, resistively-heated filaments of silicon (for n-type doping) and carbon

(for p-type doping). The filament design allowed the dopant sources to be ramped

from zero current to their full operating temperature in as little as 30 seconds, thereby

minimizing outgassing from the dopant sources and surrounding chamber walls during

the rest of the growth. In addition, silicon and carbon were chosen as the dopant

sources due to their low vapor pressure at room temperature. Carbon, in particular,

is a significant improvement over other commonly used p-type dopants like berrylium

and zinc which have large vapor pressures even at room temperature. Carbon, by

contrast, must be heated to ∼ 2000 ◦C to develop an appreciable vapor pressure. As a

result, whatever carbon leaves the filament will permanently stick to the first surface

it impacts and thus not degrade the quality of subsequent growths.

The second consideration that was taken into accout during the design of the MBE

was the incorporation of redundancy and fail-safe mechanisms. UHV equipment is

usually quite fragile, and stopping a growth campaign to fix broken components can

easily set a research team back 6 months or more. There are also a number of failure

modes in a high mobility system that while not requiring any repairs can nevertheless

significantly degrade the mobility for extended periods.

In terms of redundancy, the system was designed to use two sources for both

gallium and aluminum, and each dopant source was designed with a back-up filament.

The second gallium and aluminum sources act as back-ups in case the first source fails

and also enable the growth of more complicated heterostructures with multiple alloy

concentrations. Next, the system utilizes three cryopumps. This first creates a very

large pumping capacity and second acts as a fail-safe in case one pump malfunctions.

Another failure mechanism that was designed around was a failure of the liquid

nitrogen supply. With the lab being located in the Midwest, it is not difficult to

imagine that a winter storm or other severe weather could prevent the building’s
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primary liquid nitrogen system from being re-supplied for a few days. If the liquid

nitrogen supply were to run out, the cryopanels would warm up and release a large

number of impurities into the chamber. What is more, if the cryo panel were to warm

up, the stainless steel walls could potentially be heated to a dangerous level by the

nearby effusion cells. As a safeguard against this failure mechanism, the MBE liquid

nitrogen system was designed with a dedicated, continuously-filled 1000L back-up

tank which would automatically start feeding the MBE if the house liquid nitrogen

supply were to run out.

Power outages are another likely failure mode, and as such the liquid metal sources,

ion gauges, control computer, cryo pump temperature monitors, cryo pump compres-

sors, and liquid nitrogen control system were all powered by the building UPS power

supply to ensure their continued operation. Next, while not originally designed into

the system, our group has subsequently purchased a closed-cycle water chiller for

cooling the cryopump compressors in the event of a failure in the building’s process

cooling water supply. Finally, if any of the likely failure mechanisms do occur, an

auto-dialer system was setup to automatically alert all group members to the emer-

gency situation.

2.3 Machine Setup

The MBE system was shipped to Purdue in pieces, so the initial installation was

quite involved. One of the first steps was the installation of the high-purity argon

lines used for venting the different vacuum chambers. The house argon was supplied

from the boil-off of liquid argon and was routed to the lab via stainless steel lines.

Inside the lab, the argon first passed through a gettering furnace2. The furnace

operates by passing the gas to be purified over a hot charge of high purity titanium

which reacts with impurities such as oxygen, carbon dioxide, hydrogen, and water.

Our gettering furnace was specified by the manufacturer as being able to reduce an

2Centorr Vacuum Industries model 2G-100-SS inert gas gettering furnace.
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initial oxygen concentration of 10 ppm to as low as 1 × 10−6 ppm. After leaving

the gettering furnace, the argon was routed to the various chambers on the MBE by

electropolished stainless steel lines. All connections were made with either butt-welds

or metal-gasket-sealed VCR type connections. During the first growth campaign, the

lines were simply flushed with argon; but prior to re-loading the source material at

the start of the second growth campaign, all the lines were additionally baked under

vacuum to remove residual water from the stainless steel.

One issue that arose during the initial leak-checking was that the helium back-

ground in the chamber was intially quite high. This was because the cryo pumps had

been saturated with helium when the MBE was leak-checked at the factory. Despite

the fact that the pumps were removed and sat in air for several months before the

system was installed at Purdue, the helium level (∼ 1.5 × 10−8 Torr) was still large

enough to make it difficult to find small leaks. Evidently, it is very difficult for the

helium to find its way out of the “maze” of the charcoal on the cryo pump cold head,

even at room temperature. In addition, this helium could not be simply flushed out

of the charcoal with repeated pump/purge cycles. The only method we found that

successfully removed the helium was to pump on the cryopumps with a turbo pump

for ∼ 24 hours while heating the cryo pump to ∼ 50 C. During the repeated pump-

downs of the MBE, the liquid nitrogen-cooled sorption pumps also became satured

with helium. Once the sorption pumps were filled with helium they acted as a source

of helium when used to rough down any helium-free chamber. As a result, we found it

necessary to also regenerate the zeolite molecular sieve material as well. This was ac-

complished by baking the sorption pumps to ∼ 200C for a few days while the vacuum

vessel was evacuated with a turbo pump. Once the helium was successfully removed

from all the cryo pumps and sorption pumps, the helium background in the MBE

was reduced to the mid-10−13 Torr range (i.e. the noise floor of the RGA).

Once the venting system was in the place and the initial leak checking was com-

pleted, the system was baked (without effusion cells) for 6 days with the growth

chamber at 200 C for four of those days. This initial, short bake was meant to check
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Figure 2.14. MBE system with the baking system in place.

that the system met the manufacturer’s vacuum specification. Uniform baking of the

chamber was facilitated by the convection bake-house (shown in figure 2.14) supplied

by the manufacturer.

After the vacuum specification was met, the long work of preparing the sources

began. Machined parts were de-greased in a multi-step process. First, the parts

were soaked and wiped in trichloroethylene (TCE) to remove gross contamination.

Second, the parts were sonicated in clean TCE in a new, clean beaker. Once the parts

could be wiped on a clean, white wipe without leaving any dark residue, they were

then sonicated in acetone followed by methanol followed by DI water; the cleaning

process was finished with an extended rinse in running DI water. In addition to this

de-greasing, de-greased tantalum parts were briefly etched in 1:1 HF:HNO3 and then

baked in an argon furnace at 850 ◦C for 4 hours to drive hydrogen out of the tantalum3.

In order to spot-weld tantalum pieces without embedding any copper residue, a set

of weld tips were made as shown in figure 2.15. The molybdenum wire was jammed

3It should be noted that the etchant used to etch tantalum is very aggressive and care should be
taken to not over-etch the tantalum, particularly when dealing with small, threaded parts.
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Figure 2.15. Homemade molybdenum tips for spot-welding MBE compo-
nents.

into the copper housings while the copper was hot to create an interference fit with

minimal electrical resistance. The copper housings then threaded into the existing

electrodes on the spot welder.

The PBN crucibles were etched in aqua regia to remove residual metallic contami-

nants and thoroughly rinsed in DI water. Following the etch, the crucibles were baked

in oxygen at 650 C for 4 hours to volatilize organic residues. Before the crucibles were

outgassed in vacuum, the effusion cells were first heated to ∼ 1350 ◦C for 1 hour in an

auxiliary UHV chamber. Care was taken to increase the power to the source slowly

until the source was above ∼ 100 ◦C to allow heavy hydrocarbon molecules to desorb

without cracking. The risk in cracking the hydrocarbons would be that atomic carbon

could be left behind on the source and result in a p-type background that would be

extremely difficult to remove due to the fact that carbon’s vapor pressure does not

rise rapidly until ∼ 2000 ◦C. After the source was outgassed and leak-checked, the

crucible was installed in the source and outgassed to ∼ 1500 ◦C for ∼ 3 hours in the

auxiliary chamber. In the case of sources and/or heater zones that could not reach
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1500 ◦C, the source was outgassed to its maximum temperature as specified by the

manufacturer.

Once each source was outgassed in the auxiliary chamber and deemed to be leak-

tight, it was transferred to the MBE. The aluminum sources were filled at this point,

but all other sources were left empty. The entire system was then baked at 200 ◦C for

∼ 5.5 days in an attempt to remove the small 32 amu signal (i.e. oxygen) seen in the

RGA. As the 32 peak was removed by the baking, the chamber was (after extensive

leak checking) deemed to be leak-tight and ready to receive the gallium and arsenic.

Great care was taken at this point to vent the system as cleanly as possible.

The chamber was vented with the clean argon supplied by the gettering furnace as

previously described. In addition, the sources were contained with glove bags sealed

to the MBE so that the source and MBE would not be exposed to air. Furthermore,

great care was taken to not handle the source material with anything other than

its original packing to avoid introducing additional impurities. Once all the source

material was loaded, the machine was baked at 200 ◦C for 2 weeks.

Following the extended bake, the cryo panels were flooded, and the TSP was run

with a short duty cycle of 7 minutes on, 30 minutes off, for 3 days. Initially, however,

it was necessary to use longer duty cycles to drive the hydrogen out of the titanium

in the TSP. Once the TSP itself had cleaned up, the total pressure steadily dropped

as the TSP pumped the hydrogen in the system (the dominant partial pressure). The

total pressure in the MBE ultimately saturated ∼ 2.1 × 10−12 Torr at which point

the TSP was permanently powered down and initial wafers were grown to calibrate

the dopant sources.

2.4 Lessons Learned During the First Growth Campaign

Over the course of the first growth campaign we learned a great deal about the

finer points of growing high mobility GaAs. The first lesson we learned was about

the great importance of source material purity. The first two months of attempting
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Figure 2.16. Summary of MBE clean-up early in first growth campaign.
The first ∼ 12 heterostructures grown were electrically insulating at low
temperature. Most of the growths between 12-17 were bulk, undoped
GaAs used to measure the background impurity concentration. After
extensive outgassing the mobility rapidly increased as we first worked
on the design of a single heterojunction (SHJ) heterostructure and then
switched to optimize the growth parameters before finally moving to a
more complicated doping well type heterostructure.

to grow heterostructures resulted in failure after failure as every heterostructure we

grew was electrically insulating at low temperature. After growing a nominally un-

doped epilayer of GaAs and measuring the Hall density at room temperature, it was

determined that the GaAs had a p-type background ∼ 2.7 × 1015 cm−3 even after

the equivalent of ∼ 150 µm of GaAs had been evaporated during previous growths

and outgassings. After several additional outgassings and bulk GaAs growths which

evaporated the equivalent of an additional ∼ 190 µm of GaAs, we were able to grow

our first working 2DEG with a mobility ∼ 1× 106 cm2/Vs. Following this extensive
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outgassing of the gallium source, the mobility rose very rapidly as shown in figure 2.16

which charts the mobility as a function of growth number. This illustrates that the

base pressure of the chamber (which was extremely low in our case) is, surprisingly,

not a good predictor of resulting electron mobility. In addition, the RGA spectra

were not particularly helpful in determining the source of contamination. The RGA

spectra never showed a significant increase in impurities when the gallium cells were

heated to growth temperature. In contrast, the RGA did show a noticeable rise in

some impurities when the valve to the arsenic source was opened. Evidently, the

impurities that readily incorporate into the growing film are not the same as the

ones that are able to bounce around in the growth chamber and reach the RGA.

Ultimately, then, the only feedback that can be reliably used to optimize the growth

system is the electron mobility (or background impurity concentration in the case of

very high impurity levels).

After all the initial outgassings and growths necessary to optimize our standard

operating procedures and heterostructure designs, we were concerned that the length

of the growth campaign would be limited by the amount of gallium we had loaded.

As a result, we did not do any extended high temperature outgassings of the sources

later in the campaign to try to push the mobility higher. However, it turned out that

the length of the first growth campaign was limited not by the gallium but by the

arsenic. Based on the amount of gallium remaining in each source at the end of the

first growth campaign, we estimated that 1 µm of GaAs corresponded to ∼ 17 mg

of gallium. Based on the total time each source was hot for each growth (including

setup time) this would mean two gallium sources filled with a total of 200 g of gallium

could grow ∼ 2000 wafers (roughly 10 years of work).

However, since we did not know that so little gallium would in fact be used until we

removed the gallium cells at the end of the first campaign, we built a dedicated UHV

chamber, shown in figure 2.17, for outgassing the gallium prior to loading the effusion

cell into the MBE. The chamber was designed with a near-vertical port for the effusion

cell so that the crucible could be filled with more gallium than the crucible could
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Figure 2.17. Dedicated gallium outgassing chamber. The chamber fea-
tured a near-vertical port to enable the the crucible to be filled almost
completely with gallium. The frame supporting the chamber could be
rolled into position next to the MBE to allow sources to be passed into
the MBE without exposure to air.

hold in the MBE. The intent was to then outgas the excess gallium in this auxiliary

chamber and finally to transfer the source in an argon environment to the MBE. In

addition to cleaning the gallium, outgassing the gallium in a separate chamber would

minimize the risk of creating electrical shorts inside the growth chamber from all the

evaporated gallium. The transfer into the MBE would be facilitated by the ability

to roll the support stand to within a few feet of the MBE source flange where the

outgassing chamber would mate with a custom made acrylic glove box [69] attached

to the MBE. However, once we realized how much gallium was left after the first

campaign, it was decided that the risks involved in moving a hot source through a
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plastic glove bag and glove box outweighed the benefits of loading the MBE with

pre-outgassed gallium.

Based on the lessons from the first growth campaign, we made some small changes

to our loading procedure. The biggest change was to replace the glove bags used to

load the sources with a homemade acrylic glovebox. This greatly increased visibility

and dexterity when working on the vacuum components. In addition, this box com-

bined with the outgassing chamber shown in figure 2.17 allowed the sources to be

removed from the MBE, loaded with a new crucible, outgassed, loaded with material,

and re-installed in the MBE without ever being exposed to air. The quality of the

purge gas in the glovebox was monitored with a sensitive oxygen monitor in order to

determine when the box was sufficiently purged to open the MBE. With appropriate

purge techniques and flow rates it was possible to achieve oxygen concentrations as

low as 50 ppm in the box. Oxygen contamination was a larger concern during the

re-loading than it was during the initial machine setup due to the large amount of

arsenic in the chamber. Large amounts of AsO would easily be formed by a bad vent

and would likely result in a large n-type background in subsequent growths.

As a result of the improvements to our venting techniques, it was not necessary

to bake the chamber after re-loading the source material. While the partial pressures

of some gases were slightly higher after reloading than they were prior to removing

the sources, we believed that while baking would improve the total vacuum quality, it

would primarily move impurities from the walls of the chamber to the source material.

Instead of baking the entire system, we simply heated the sources in the absence of any

liquid nitrogen in the cryopanel to outgas the sources, shutters, and walls immediately

surrounding the sources.

After re-assembling everything on the MBE, we immediately outgassed all the

source material extensively prior to growing any heterostructures. After outgassing

the equivalent of ∼ 250 µm worth of GaAs from the first source, it began producing

heterostructures with mobilities > 20 × 106 cm2/Vs. While this is not substantially

less material than was evaporated at the beginning of the first growth campaign, it
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Island defects 

Island defects 
after cleaving 

Figure 2.18. Wafer with so-called “island defects” after cleaving. Two
defects (circled) away from the cleave lines as wells as a few defects along
cleave lines are called out in the figure.

is worth noting that it took ∼ 6 months and 70 growths during the first campaign

to reach this mobility. At the start of the second campaign, by contrast, it took 10

growths and less than a month to reach a mobility of 20× 106 cm2/Vs.

While the importance of outgassing the gallium was the most valuable lesson we

learned during the first campaign, there were a number of other important details

that we also worked out along the way. The most important of these were related to

the formation of various kinds of defects in the wafers. The first prominent defect we

encountered was what we termed “island defects”. Figure 2.18 shows an image of a

half-wafer with island defects after cleaving. It turned out that these defects formed

when the gallium holding the wafer to the tantalum block froze in the LL chamber.

The LL was designed in such a way that the wafers were situated in close proximity

to the 80 K array of the cryo pump on the chamber. As a result, the inside of the

chamber would radiatively cool to ∼ 13 ◦C which was cold enough to harden the

gallium sufficiently to punch out chunks of the wafer. After we determined the cause

of these defects, we eliminated them by simply keeping the LL heated to 50 ◦C with

its built-in bake-out lamp.
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Figure 2.19. Nomarksi contrast optical micrograph of a wafer showing
so-called cross hatch morphology. The field of view is ∼ 2.5 mm wide.

In addition to these macroscopic defects, the first ∼ 12 months of our growths

were plagued by a rough morphology we referred to as “cross hatching”, shown in

figure 2.19. This rough morphology was gradually improved by implementing several

changes to our standard procedure. First, the initial smoothing sequence of each

heterostructure was changed from 5 repeats of 100 nm of GaAs separated by 100

second smoothing pauses to 50 repeats of 10 nm of GaAs separated by 20 second

pauses. Even though the total thickness of the smoothing sequence was not changed,

the higher frequency of smoothing pauses evidently increased the rate at which the

wafer surface smoothed out. In addition, the outgassing time at growth temperature

in the growth chamber was reduced from 30 minutes to 10 minutes to reduce the

period during which the substrate could roughen due to desorption. Finally, the

tantalum blocks used to hold the wafers were gradually replaced with new, re-designed

blocks. These blocks were modified in two ways. First, the block featured a short

pedestal with a diameter ∼ 4 mm smaller than that of the wafer. This left the

edge of the wafer free to move as the wafer and block expanded and contracted,

thereby decreasing stress on the wafer during growth. In the absence of this pedestal,

the gallium used to mount the wafer reacted with arsenic during the growth, and
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this material would quickly build up on the edge of the block with the result that

after several growths the edge of the wafer would typically be pushed up slightly by

this build-up. This resulted in distortion lines appearing on the center of the wafer

following a growth, and the blocks required regular etching to remove this build-up.

In addition to eliminating this build-up, the pedestal on the block added to the total

thickness of the block, thereby decreasing the radial thermal gradient in the wafer.

This decreased thermal gradient helped reduce the prevalence of cross hatching in

addition to reducing the occurence of slip line defects at the edge of the wafer.

2.5 Heterostructure Design

While the previous sections emphasized the work necessary to produce a high

quality vacuum environment, the design of a heterostructure also has a large impact

on the quality of low temperature electron transport. As a starting point, it is useful

to ask why one would choose to study low-dimensional electrons in the GaAs/AlAs

material system and not some other semiconductor system. The GaAs/AlAs system

is unique in that the two materials are almost perfectly lattice-matched [56]. This

means that heterolayers of GaAs, AlAs, and their alloy AlGaAs can be grown with

arbitrary thickness without the introduction of significant strain or crystal defects.

All other III-V and group IV semiconductor systems such as InGaAs/GaP, Si/Ge,

GaN/AlN/InN, etc. require complicated strain-relieving buffer layers to achieve hiqh-

quality heteroepitaxy. In addition, unlike the ubiquitous Si/SiO2 system, the barrier

material (AlAs) is crystalline and as such does not introduce the level of interface

states or interface roughness found at a crystalline/amorphous interface. Moreover,

the conduction band minimum in GaAs is at the Γ point which eliminates the compli-

cation of valley degeneracy that occurs in indirect gap materials such as Si. Finally,

from a practical standpoint, the availability of low-cost, high-purity, semi-insulating

GaAs substrates is an additional advantage over some other material systems such as

GaN [56].
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2.5.1 Smoothing and Gettering Layers

Having selected GaAs/AlAs as the semiconducting material of choice for studying

electron correlations, there are a number of design considerations that must be taken

into account when growing a heterostrcuture. First, it is necessary to smooth out

the substrate prior to growing the active region of the device. This is necessary

because when the native oxide is desorbed from the GaAs surface, it leaves the surface

relatively rough (see figure 2.8a for an example of a RHEED pattern from a surface

immediately after oxide desorption). The oxide layer consists of several different As-

and Ga-oxides [70]. The As-oxides desorb below ∼ 400 ◦C and Ga2O desorbs between

400 - 500 ◦C. The surface roughens primarily when the final oxide is desorbed from

the substrate (∼ 600 ◦C) which proceeds according to the reaction [71] Ga2O3 + 4Ga

→ 3Ga2O3. The oxide is believed to have defects which weaken it or expose GaAs,

and these weak spots then act as sources of mobile Ga atoms which act to desorb

the oxide via the aforementioned reaction. This then leads to pits on the surface,

the lateral size of which grow with oxide thickness [71]. Thus the buffer layer, along

with a series of growth interruptions, smooth out the substrate so that subsequent

epitaxial layers can have the requisite smooth interfaces.

Next, a GaAs/AlGaAs superlattice is grown for several reasons. First, it “exer-

cises” the sources by repeatedly actuating the shutters; this is believed to shake loose

contaminants that may have adsorbed on the moving parts after the previous growth.

Second, the superlattice acts as a trapping barrier to impurities from the substrate.

The exact method by which the superlattice traps impurities is not well agreed upon

in the literature, but possible reasons are different solubilities of GaAs and AlGaAs to

impurities [72] or strain-induced gettering [72, 73]. Third, the superlattice is believed

to further smooth the growth front, particularly when compared to a thick AlGaAs

cladding layer [72, 74].
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Figure 2.20. Sketch of the Γ band edge as a function of depth for a simple
single interface heterojunction. The dashed line shows the position of the
Fermi energy EF .

2.5.2 Charge Transfer Fundamentals

Following the intial smoothing sequence and superlattice layers, the active region

of the device is grown. Figure 2.20 shows the band edge as a function of depth

for a simple single heterojunction with a single delta doping layer. This structure

consists of (in the order of growth) a GaAs channel, an AlxGa1−xAs barrier with a

delta doping layer, and a GaAs capping layer which forms a self-limiting oxide layer.

Modern heterostrcutures, particularly those used in the study of the FQHE, are more

sophisticated, but the single heterojunction is still useful for understanding the basics

of band structure engineering. In order to create the electrostatic confinement of the

2DEG, barrier layers of AlxGa1−xAs or AlAs are needed. The conduction band offset

∆EC between AlxGa1−xAs and GaAs is roughly linear in the aluminum mole fraction

x and is ∼ 65% of the band gap difference between AlxGa1−xAs and GaAs [75]. Larger

values of x increase the conduction band offset until the conduction band minimum
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crosses over from the Γ point to the X point of the Brillouin zone for x ∼ 0.45 [76]

at which point the conduction band offset is ∼ 360 meV [3]. Most heterostructures

used for electrical transport measurements, however, employ barriers with x < 0.45.

A larger conduction band offset at the primary heterojunction will result in stronger

spatial confinement and thereby increase the electric subband spacing.

In addition to spatial confinement, the conduction band offset affects the density

of charge transferred from modulation doping layers to the 2DEG. Considering the

energies sketched in figure 2.20, we can write down the following equation:

Eb +
e2

ε
nd = ∆EC − E0 − Ek (2.2)

where Eb is the donor binding energy, the second term on the left-hand side is the rise

in energy due to the field between the doping layer and the 2DEG, e is the electron

charge, ε is the permittivity, n is the 2DEG density, d is the dopant setback, ∆EC is

the conduction band offset, E0 is the ground state energy of the roughly triangular

confining potential, and Ek is the kinetic energy of the 2DEG in the plane. Note that

it is assumed here that the temperature is essentially zero and the 2DEG density is

sufficiently small so that only the ground electric subband is occupied. The kinetic

energy in 2D can be written in terms of the density as

Ek =
h̄2k2

F

2m∗
=
πh̄2

m∗
n (2.3)

where kF is the Fermi wavevector and m∗ is the electron effective mass. Next, the

ground state energy of the confining potential can be approximated in closed form

with the variational Fang-Howard solution [77].

E0 =
3

2
(
3

2

e2

ε
n

h̄√
m∗

)3/2 (2.4)

Thus equation 2.2 can be re-written as

n(ad+ c) + bn2/3 = ∆EC − Eb (2.5)
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where a = e2/ε, b = 3
2
(3

2
e2

ε
h̄√
m∗ )2/3, and c = πh̄2/m∗. For a dopant setback of the

order of ∼ 50 nm and a 2DEG density ∼ 1011 cm−2, ad >> c and adn is ∼ 1 order

of magnitude larger than bn2/3 so to a rough approximation we can write 2.5 as

n ≈ ∆EC − Eb
ad

(2.6)

The electron density is thus roughly linear in dopant setback as one would expect from

treating the dopant layer and 2DEG as a parallel plate capacitor. The conduction

band offset will be linear in x as mentioned previously, but for a dopant such as Si the

binding energy will also change with x. This means that a more detailed microscopic

understanding of the dopant binding is necessary to predict the charge transfer to the

2DEG.

2.5.3 Silicon Dopant Incorporation

Silicon in AlxGa1−xAs can incorporate as a shallow or deep donor depending on

the Al concentration. For Al mole fractions x < 0.22 the Si exclusively incorporates

as a shallow, hydrogenic donor with a binding energy ∼ 6 meV [77]. However, for

x > 0.22, the majority of the Si atoms occupy interstitial sites which results in a deep

donor level known as the DX center [78, 79, 80, 81]. The DX center is unusual in that

it has a large barrier both to thermal emission and capture. Thus, if DX centers are

ionized by illumination at low temperature the electrons cannot be re-captured by

their parent ions and the 2DEG density will be increased essentially indefinitely after

the illumination is removed. This so-called persistent photoconductivity can in some

instances be used as a controllable way to change the 2DEG density in-situ [67]. The

leading microscopic theory of DX centers, put forth by Chadi and Chang [80, 81], uses

a negative U Hubbard model to describe the donors. This means that the ground state

of the DX center is actually the negatively ionized DX− state. The binding energy of

the DX center is predicted by this model to be Eb[eV] = 1.18x− 0.26. It can be seen

that the DX level lies above the conduction band edge for x < 0.22, though the DX
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center can be induced in GaAs and low-x AlxGa1−xAs by the application of a large

hydrostatic pressure [78].

Returning to equation 2.6, we can now predict the impact of Al concentration on

the 2DEG density, at least in simple cases. For x < 0.22, the donor binding energy

will be quite small compared to the conduction band offset, and thus

n ∝ x

d
, x < 0.22 (2.7)

Once x is large enough for DX centers to form, the electron density without illumina-

tion becomes more difficult to predict in closed form due to the presence of two donor

energy levels. After illumination, however, the Fermi level should equilibrate with the

shallow donor level for sufficiently high doping concentrations and the dependence of

density on Al concentration will again be described by equation 2.7. In this case the

electrons excited out of the DX centers will either populate the 2DEG or return to

shallow donors. If the doping level is sufficiently high that the effective Bohr radii

of the shallow, hydrogenic donors overlap, the electrons ejected from the DX centers

that return to shallow donors will form a low-mobility, parallel-conducting channel

that will interfere with transport measurements. Higher values of x will increase the

maximum doping before parallel conduction sets in due to the larger conduction band

offset.

Examining figure 2.20 again, it is clear that there is also a large electric field

between the surface and the doping layer. This is due to the surface states arising

from dangling bonds on the surface which steal charge from the dopant layer. These

surface states pin the Fermi energy ∼ 0.7-0.8 eV below the GaAs conduction band

edge at the surface. This means that for the 2DEG to be fully populated, the dopant

concentration must be considerably larger than that necessary to populate the 2DEG.

This effect becomes more pronounced as the depth from the surface is reduced and

the field between the dopants and surface is increased. In practice, this makes it very

difficult to grow doped heterostructures with a 2DEG depth less than ∼ 40-50 nm.
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2.5.4 Impact of Heterostructure Design on Scattering Mechanisms

Armed with this basic understanding of heterostructure design and charge trans-

fer, we can now turn to a discussion of the design considerations involved in growing

a high mobility heterostructure. First, the four dominant electron scattering mech-

anisms at low temperature are background impurity (BI) scattering from the unin-

tentional impurities in the crystal, remote impurity (RI) scattering from the ionized

intential dopants, alloy disorder scattering where the electron wavefunction penetrates

the AlxGa1−x barrier, and interface roughness (IR) scattering from variations in the

width of the confining potential along the growth direction. Quantitative analysis of

these scattering mechanisms is presented in chapter 5 in the context of 2D hole gases;

for the purposes of this section I will focus on the qualitative description of these

scattering mechanisms.

BI scattering is influenced by a number of factors in the heterostructure design.

First, the growth rate influences impurity incorporation. At a slow growth rate vac-

uum impurities have more time to incorporate into the growing film thus resulting in

higher BI scattering rates. Second, hot, reactive Al is known to be an effective getter

of vacuum impurities [68, 56]. Therefore, reducing the Al concentration will reduce

the incorporation of background impurities. However, for a fixed dopant setback this

will also typically reduce the 2DEG density which results in reduced screening of the

disorder potential by the 2DEG. To avoid this problem, one solution is to use a low

Al concentration in the vicinity of the 2DEG and a higher Al concentration around

the dopant layer. This results in efficient charge transfer while keeping the layers

immediately surrounding the 2DEG as clean as possible.

RI scattering is, of course, due to the ionized donors, so reducing the concentration

of ions and increasing their separation from the 2DEG is necessary to minimize RI

scattering. Increasing the dopant setback, however, comes at the cost of reduced

2DEG density and reduced screening. In the highest mobility samples, though, it

is possible to keep the electron density sufficiently high that RI scattering does not
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limit the mobility [82]. In order to keep the RI concentration low, it is necessary

to make the 2DEG sufficiently deep. As already discussed, decreasing the distance

from the doping layer to the surface increases the dopant ionization due to surface

compensation. Thus, the highest mobility samples typically have a 2DEG depth

from the surface ∼ 200 nm. However, this depth is rather large for experiments with

nanostructures since the minimum feature that can be electrostatically defined in the

2DEG by the gates is of the order of the 2DEG depth. As a result, trade-offs between

mobility and minimum feature size are often made.

Alloy scattering arises due to the random distribution of the Al and Ga atoms on

the group-III lattice sites. Because both atoms have the same valence, however, the

scattering is short ranged and therefore only occurs in regions where the wavefunction

has an appreciable probability of being found. This is a major scattering mechanism

in materials such as InGaAs where the channel is an alloy, but it is not typically

very significant in GaAs/AlGaAs structures. The alloy scattering that does occur in

the barrier, though, depends on both the degree of randomness of the alloy and the

amplitude of the wavefunction. Maximal alloy disorder is achieved for x = 0.5, but the

large conduction band offset results in very minimal penetration of the wavefunction

into the barrier. In practice, alloy scattering increases as x is decreased; in other words

as x is decreased, the increased penetration of the wavefunction into the barrier wins

out over the decreased randomness of the alloy.

Finally, IR scattering is closely related to alloy scattering. It arises from variations

in the width of the confining potential in the plane of the 2DEG which results in vari-

ation of the electric subband energy as the electron moves in the x-y plane. It can be

reduced by adding short pauses at the quantum well interfaces to allow the surface to

smooth out. However, the pauses can also increase background impurity incorpora-

tion, so it is necessary to empirically find the appropriate pause duration. The growth

temperature and Al concentration also influence interface roughness. Higher Al con-

centrations and lower growth temperatures typically cause rougher growth because

the optimal growth temperature for AlAs is significantly higher than that typically
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Figure 2.21. Modern quantum well structure for studying 2nd LL physics.
(a) Sketch of the Γ band edge as a function of depth for a quantum well
with a doping well doping scheme. The horizontal dashed line shows the
position of the Fermi energy EF while the vertical dashed lines show the
position of the Si delta doping layers. An enlarged view of the dashed
blue box is shown in the adjacent panel. (b) Close-up view of the doping
well layer sequence.

used for GaAs/AlxGa1−xAs heterostructures. Finally, the growth rate can also im-

pact the roughness with higher growth rates resulting in rougher interfaces. However,

IR scattering is not usually the dominant scattering mechanism in GaAs except for

very narrow quantum wells. By contrast, IR scattering is known to be an impor-

tant scattering mechanism in Si MOSFETs where the 2DEG is pulled up against the

amorphous oxide interface [83].

2.5.5 Doping Considerations for Amplifying 2nd LL Physics

The method of incorporating dopants also has a significant impact on the behav-

ior of the 2DEG. In order to maximize the FQHE energy gaps in the 2nd LL, it is

necessary to incorporate the donors in a so-called “doping well” scheme, also referred

to as a short-period superlattice (SPSL) doping scheme[84, 85]. In this design, shown
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in figure 2.21, the Si donors are deposited in a thin GaAs layer sandwiched between

thin layers of AlAs. The strong spatial confinement created by the AlAs barriers

ionizes the Si atoms and results in efficient charge transfer to the 2DEG. In addition,

the layer thicknesses can be set such that the ground state for X-band electrons in

the AlAs layer is below that of Γ-band electrons in the GaAs layer [84]. In this case,

charge from excess Si atoms will reside as heavy electrons in the AlAs layer. Due

to their large effective mass and close proximity to their parent ions, these electrons

will have a very low mobility and not be visible as parallel conduction in magneto-

transport measurements. However, they will still be sufficiently mobile to be very

effective at screening their parent Si atoms. This strong screening effect evidently

has a strong influence on transport in the 2nd LL[85]; using this doping scheme we

have achieved record energy gaps at ν = 5/2 as large as ∼ 600 mK [56, 86]. Creating

this strong screening of the Si ions, however, comes at the expense of charge stability

in nanostructures. Since there is so much loosely-bound charge in the doping layers,

it is often necessary to wait several hours for the charge to stabiliize after changing

the gate voltage [87]. This difficulty in controlling the gating of nanostructures on

heterostructures with optimal bulk transport is one of the outstanding challenges in

current research on the 2nd LL.

2.5.6 Doping Considerations for Minimizing Charge Noise

In situations that require more stable gating, such as spin qubits, it is necessary

to remove the doping well and instead deposit the Si directly in AlxGa1−xAs with a

large Al concentration such that the electrons will be tightly bound to DX centers

at low temperature. In addition to the persistent photoconductivity effect already

discussed, the freeze-out of the DX centers at low temperature can also be used to

manipulate the low-temperature threshold voltage of a gated device. Figure 2.22

shows the effect of the so-called bias cooling technique in which the device is cooled

from room temperature with a forward bias applied to the gate. Figure 2.22a shows
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Figure 2.22. Sketch of the Γ band edge as a function of depth for a
heterostructure (a) cooled without a cooling bias, (b) during cooling with
a forward bias, and (c) at low temperature after bias cooling. Reprinted
figure with permission from M. Pioro-Ladrière, J. H. Davies, A. R. Long,
A. S. Sachrajda, L. Gaudreau, P. Zawadzki, J. Lapointe, J. Gupta, Z.
Wasilewski, and S. Studenikin, Phys. Rev. B, 72, 115331 2005. Copyright
(2005) by the American Physical Society.

the band structure after cooling without a gate bias. The bands bend and charge

transfers to the interface and surface as previously shown in figure 2.20. The only

significant difference from the heterostructure shown in figure 2.20 and the one shown

in figure 2.22 is that the latter employs a uniform doping scheme in which the doping

is spread out over a finite stretch of AlxGa1−xAs rather than being placed in a single

http://dx.doi.org/10.1103/PhysRevB.72.115331
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delta layer. As figure 2.22a shows, in the absence of a cooling bias the surface ionizes

13 nm of the doped region in order to satisfy the dangling bonds at the surface. Figure

2.22b shows the heterostructure during cooldown with a positive bias of 0.2V applied

to a top gate. In this case the field from the gate reduces the total field between

the surface and doping layer which results in a thinner depletion layer (10nm) in the

doping layer. While the bias is maintained, the 2DEG density is the same as in figure

2.22a. Once the sample is below the freeze-out temperature of the DX centers (∼

100 K [88]) no charge can enter or leave the DX centers. Thus if the cooling bias is

removed, the only free charge that can be stolen by the surface resides in the 2DEG

itself, and the system behaves as if there is a built-in reverse bias of 0.2V as shown

in figure 2.22c.

This so-called “bias-cooling” technique has been studied both as a way to control

charge correlation in the donor layer [89] and also as a way to control charge noise

in nanostructures [88, 90]. One dominant mechanism for generating charge noise in

nanostructures is evidently charge leakage from the reverse biased gate to the 2DEG

via an intervening trap [91, 88, 90]. When an electron tunnels from the gate to a trap

in the vicinity of the nanostructure this alters the local electrostatic environment.

Such local changes in the electrostatics results in variation in the conductance of QPC

constrictions and is also believed to result in dephasing of spin qubits [92]. By using

the bias cooling method the required gate voltage necessary to reach a given 2DEG

depletion is lessened. This results in dramatically suppressed tunneling rates from the

gate and thus more temporally stable electrostatic environments in nanostructures.

Lateral charge hopping in the doping layer, presumably between hydrogenic Si

donors, may also contribute to charge noise. To combat this effect, spacing the

dopants out by changing from a delta doping distribution to a uniform doping dis-

tribution would be expected to reduce this charge noise mechanism. There is some

evidence supporting this ideal [90], so our group typically avoids the use of delta

doping layers in wafers intended for spin qubit experiments.
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2.5.7 2D Holes in GaAs

Thus far the discussion has been centered on 2D electron gases, but 2D hole

gases (2DHGs) are also of interest for various experiments. Their large effective

mass enhances interaction effects and makes them useful for studying phenomena

such as a 2D metal-insulator transition [93]. In addition, their p-wave symmetry

results in a reduced contact hyperfine interaction with the nuclear spin bath. As

such, 2DHG-based qubits are expected to have longer coherence times than their

electron counterparts [94, 95, 96]. Early work on high mobility 2DHGs in GaAs took

advantage of the amphoteric nature of Si and used (311)A-oriented substrates to

cause the Si to incorporate as an acceptor, though this came at the expense of a large

in-plane mobility anisotropy due to interface corrugations [97]. With the advent

of filament-type dopant sources[98, 99, 100, 101] it became possible to use carbon

as an acceptor on the same high-symmetry (100) substrates use for high-mobility

Si-doped 2DEGs and thereby eliminate the mobility anisotropy of (311)A 2DHGs.

Design of carbon-based 2DHGs follows similar principles as previously discussed.

One important difference, though, is that carbon is not known to incorporate as

a DX center as evinced by the lack of a strong persistent photoconductivity effect

[101, 102]. Instead of forming a DX center, carbon incorporates as a shallow acceptor

with a binidng energy ∼ 26 meV [77]. The lack of dopant freeze-out is a likely

cause of the difficulty encountered in fabricating stable nanostructure involving C-

doped heterostructures [103]. By contrast, undoped p-type heterostructures in GaAs

have shown promise as platforms for nanostructures [104, 105]. A second important

difference between n- and p-type heterostructures in GaAs is that the mixing of the

light- and heavy-hole bands result in an effective mass that is dependent on both the

hole density and the shape of the confining potential [106, 107, 108]. This variable

effective mass means that the hole mobility cannot be used directly to quantify the

relative quality of two wafers unless the density and confining potential are fixed.
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2.6 Summary

In summary, MBE is a highly controllable crystal growth technique ideally suited

for the study of low-dimensional electron correlations in a variety of material systems.

The GaAs/AlxGa1−x material system is particularly-well suited for studying electron

interactions due to its low effective electron mass, lattice-matched barrier and channel,

direct bandgap, and mature growth and processing technology. In order to reduce

disorder to the levels necessary for state-of-the-art research, it is necessary to go to

great lengths to achieve the necessary growth chamber vacuum quality. In addition

to meticulous vacuum hygiene, a thorough understanding of growth mechanisms,

material properties, and band structure engineering is necessary to produce high

quality 2D electron and hole gases.
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3. Cryogenics for Electrical Transport Measurements

In the previous chapters I have laid out the motivation for studying electrons in low di-

mensions and discussed the method the Manfra group uses to grow the GaAs/AlGaAs

heterostructures used to cofine the electrons to two dimensions. The remaining re-

quirement to study electron interactions is to cool the electrons sufficiently that the

Coulomb energy dominates over the thermal energy. There are several methods for

cooling below 4.2 K, the boiling point of 4He, but I will focus on the two types

of cryostats used in the Manfra lab, evaporatively cooled 3He fridges and 3He/4He

dilution refrigerators.

3.1 Janis Pumped 3He Cryostat for Cooling to T = 300 mK

One commonly used method for achieving temperatures below ∼ 1.2K, the limit

of evaporatively-cooled 4He, is to evaporatively cool 3He. Figure 3.1 shows a sketch of

the cross section of the fridge used in the Manfra lab. Cooling is accomplished through

a multi-step process. Starting from the top of the cryostat at room temperature and

working down, heat is first removed by the cold 4He gas and finally the liquid 4He

contained in the dewar. To further cool the system, the cold parts of the fridge must

be insulated from the “warm” 4.2 K bath. This is accomplished by evacuating the

inner vacuum can (IVC). The outer wall of the IVC can is plated with copper. The

copper’s high thermal conductivity serves to keep the temperature at the top of the

IVC fixed near 4.2K even when the liquid level falls significantly below the top of the

IVC. Next, a so-called 1K pot is used to evaporatively cool liquid 4He to ∼ 1.5K. In

our fridge’s top loading design, the 1K pot has a square toroidal geometry to allow the

sample probe to pass through its center. 4He is drawn in through a thin “sipper” that

extends into the main 4He bath. Flow into the 1K pot is regulated by a needle valve;
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Figure 3.1. Sketch of the cross section of the Manfra group top-loading
3He fridge.

since there is no regulation on the 1K pot pump, the conductance of the needle valve

acts to control the pressure in the 1K pot. As the pressure in the 1K pot is lowered,

the temperature of the remaining liquid will in turn drop as the hot He atoms boil

off. The minimum temperature that can be achieved in a 1K pot is ∼ 1.3K [109], but

in practice the temperature is often higher due to the extenal heat load.

To reach temperatures below 1.3 K, it is necessary to utilize 3He. Like its heavier

cousin 4He, 3He can also be cooled by evaporation. However, as the world’s 3He
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supply comes primarily from the decay of the US nuclear weapons stockpile [110] it

is rather difficult to obtain compared to 4He. Thus, simply pumping liters of 3He out

into the lab on a daily basis is not a cost-effective cooling method. Instead, the 3He

is cooled by closed-cycle cryo-pumping. As shown in figure 3.1, a large portion of the

3He space inside the IVC region is coated with activated charcoal. The charcoal is

cooled by a continuous flow of cold 4He gas from the main dewar space that flows

through the charcoal cooling line after it evaporates. The desorption rate of 3He from

a surface at 4.2K is extremely slow, so the cold charcoal with its large surface area

acts as a very effective entrapment pump of the 3He. The liquid 3He bath contained

in the 3He pot can thereby be cooled to 300 mK. The boil-off of 3He is the final heat

sink that absorbs heat from the sample and heat radiatively coupled from the walls of

the IVC. This method of evaporatively cooling 3He is, of course, a “one-shot” cooling

method. Once all the 3He boils off, the sample will be warmed above the temperature

of the 1K pot by the thermal radiation from the IVC. In order to re-condense the

3He, the charcoal is heated to ∼ 30 K by a non-inductively wound, resistive heater.

The 3He driven out of the charcoal will then condense on the inner wall of the 1K

pot and drip down to the 3He pot. Our system is designed to use 20 L of 3He and

can give a hold time > 24 hours if a sufficient portion of the 3He is condensed and if

the overall heat load on the 3He pot is minimized.

The hold time, however, is not the most important parameter for our group. As a

group which is focused primarily on materials growth, the most important factor in

the fridge design is the turn-around time necessary to change and cool new samples.

Given that we typically grow ∼ 200 wafers a year and that most of these wafers require

characterization at sub-K temperatures, a top-loading design is essential as it allows

samples to be cooled down, measured, and warmed back up in one day. Returning

again to figure 3.1, the sample is lowered into the fridge on the end of the long sample

probe. This probe can be withdrawn into a load-lock on the top of the fridge so that

the fridge itself can stay cold while samples are warmed up and replaced.
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3.1.1 Wiring of the 3He System

The wiring of the 3He probe is relatively simple. The BNC break-out box on

the electronics rack is connected by shielded, twisted pairs to Pi filters, with a 4 nF

capacitance, on top of the probe. At the top of the sample probe the wires are fed

into the probe through hermetically sealed Fischer connectors. Inside the probe, the

wires to the sample, the sample thermometer (a calibrated RuO2 resistor), and a

red LED positioned over the sample are constantan twisted pairs which are threaded

down the inside of the probe to the thermal anchor. At the thermal anchor they are

varnished to a copper bobbin which acts as a 1.5 K heat sink when the heat sink

is pressed tightly against the inner wall of the 1K pot. The wires are connectorized

below the thermal anchor and then continue to the sample mount. The socket on the

end of the probe has a 16-pin dual inline package (DIP) layout which is convenient

for measuring cleaved Van der Pauw squares. The DIP socket can also be removed

and replaced with an LCC socket which is convenient for characterizing processed

samples requiring more connections.

3.2 Kelvinox 100 3He/4He Dilution Refrigerator

3.2.1 Basic Operating Principle

The most commonly used cryostat for achieving temperatures below ∼ 300 mK is

the 3He/4He dilution refrigerator. The basic operating principle of a dilution fridge

is sketched in figure 3.2. The mixture first enters the fridge through the condenser

line at a relatively high pressure (∼ -28 inHg). It is first cooled to ∼ 4 K by the

main 4He bath in the dewar. It then enters the interior of the 1K pot (discussed in

the previous section) where it is cooled to ∼ 1.7K and condenses. After leaving the

1K pot, the liquid flows through the primary impedance which is necessary to keep

the pressure of the mixture in the 1K pot high enough to cause condensation. The

liquid leaves the 1K pot and is cooled to ∼ 700-800 mK by the still (the operation of
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Figure 3.2. Schematic of the main components of a dilution refrigerator.
Black dashed lines represent cold plates in the fridge to which heat sinks,
thermometers, or heaters can be attached. Red lines represent incom-
ing mixture while blue lines represent outgoing mixture. Line thickness
indicates the relative size of tubing in the fridge.

the still will be discussed later). After being cooled in the still it encounters another

impedance which is necessary to keep the mixture from evaporating at the relatively

high temperature in the still [109]. Next, the mixture flows through a number of

heat exchangers where it is cooled by the mixture leaving the mixing chamber. The

first heat exchanger is the so-called counter-flow heat exchanger which is consists of

a pair of coaxial tubes carrying the counter-flowing mixture. The final stage of heat

exchangers are sintered silver exchangers. The sintered silver has an extremely large
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surface area which, in addition to its high thermal conductivity, make it an ideal heat

exchanger. The Manfra group fridge has only two sintered exchangers, but it is not

uncommon for fridges to have several more. Finally, the mixture enters the coldest

part of the fridge, the mixing chamber.

The key phenomena that makes the whole dilution fridge work is the finite sol-

ubility of 3He in 4He at low temperature. Below 0.87 K [109] a mixture of 3He and

4He will separate into two phases, one rich in 3He and the other poor in 3He. Due to

its lower density, the 3He-rich phase will float on top of the 3He-poor phase. As the

temperature is lowered, the molar fraction of 3He in the 3He-poor phase will decrease

but saturate at 6.6% at zero temperature. At the lowest temperatures this means

that if one 3He atom were removed from the dilute phase another one would have to

cross the phase boundary to take its place in order to maintain the minimum con-

centration of 6.6%. It turns out that the heat capacity of the dilute phase is larger

than that of the concentrated phase [109], and as a result when the 3He crosses the

phase boundary the system is able to cool (or absorb heat if its temperature is fixed).

A rough way of thinking of this process is to imagine the 3He expanding into the

“vacuum” of the inert, Bose-condensed 4He background.

The key experimental challenge to take advantage of this cooling method is to

design a way to extract 3He from the dilute phase. This is accomplished by linking the

still to the mixing chamber with a tube that extends below the phase boundary in the

mixing chamber. At the high temperature in the still (∼ 700 mK) the vapor pressure

of 3He is almost 3 orders of magnitude larger than that of 4He [109]. Therefore, if the

still is pumped, the gas removed from the still will be almost entirely 3He. This will

cause an osmotic pressure gradient to develop between the mixing chamber and still

which will drive 3He from the mixing chamber up to the still, thereby accomplishing

the goal of removing 3He from the mixing chamber and absorbing heat. As the

circulation rate is increased, either by increasing the pumping speed of the pumps or

by increasing the temperature of the still, the cooling power of the mixing chamber

will increase. However, this will only reduce the temperature of the fridge to a point;
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eventually the heat exchangers will not be able to sufficiently cool the incoming 3He

and further increases in circulation rate would cause the mixing chamber to warm. It

is worth noting that the cooling power of the fridge, typically quoted at a temperature

of 100 mK, is not a direct indication of the base temperature. In other words, a 400

µW fridge will not necessarily get four times colder than a 100 µW fridge.

Once the mixture leaves the fridge, it is compressed by the pumps and returned

to the condenser. Unfortunately, the pumps and other room temperature vacuum

connections can add impurities such as oil and air to the mixture. These impurities

will quickly plug up the primary impedance in the condenser, so it is necessary to

utilize cold traps to prevent the impurities from reaching the fridge. The first trap,

cooled by liquid nitrogen, will catch the majority of the air and oil. However, the

hot, oil-sealed pumps will also generate hydrogen over time, and this hydrogen will

not be caught by the nitrogen trap. For this reason, it is also necessary to have a

liquid helium cooled trap immediately upstream of the condenser. If the system is

leak-tight it is possible in this manner to keep the fridge continuously cold (i.e. below

4 K) for many months.

3.2.2 Initial Construction

The Manfra group fridge came to Purdue after having been moth-balled for several

years following its use in optical experiments. As a result, it required a bit of work

to get it (and the lab) setup for making electrical transport measurements. Due to

the system’s large magnet (17T at 2.2K), Oxford recommended removing as much

structural steel as possible from close proximity to the fridge. In addition, the low

ceiling in the lab required that the dewar1 be setup in a pit in order to extract the

insert from the dewar. Thus setup of the system started with digging up an 8’ ×

8’ section of floor around the fridge to remove the rebar and install a plastic insert

to define the walls of the pit as shown in figure 3.3. The lab preparation phase also

1Custom made vapor-shielded dewar with 60 L belly from Precision Cryo, Indianapolis, IN.
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Figure 3.3. Lab space during construction of the pit.

involved mounting a chain hoist2 on the ceiling to simplify loading and unloading of

the insert and the construction of an aluminum stand3 for the dewar. The system at

the end of the initial construction is shown in figure 3.4

3.2.3 Gas Handling System

The original gas handling system designed by Oxford did not make the trip to

Purdue with the rest of the fridge, so we made our own manifolds to control the flow

of the mixture. Figure 3.5 shows a schematic of the gas handling system (GHS). The

GHS was designed with several features in mind. First, the system was designed such

that the mixture could return to the storage dump via a 10 psi check valve in the

event of a plug in the condenser or either of the cold traps. Second, the GHS can

be setup to “wash” the mixture by bypassing the fridge while still circulating the

2McMaster-Carr PN 3287T61 trolley-mount chain hoist with 1100 lbs capacity. The large capacity
of the hoist enabled us to use it to center the stand and dewar under the hoist during initial setup.
3Designed and built by Tom Halsmer in the physics machine shop. The assembly was simplified by
the use of pre-formed 80/20 R© extruded aluminum beams.
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Figure 3.4. Dewar, magnet, and stand in place at end of the intial con-
struction phase.

mixture through the cold traps. This is useful as a way to check for leaks after the

system has been sitting unused for an extended period. In addition, the pumping

system was setup in such a way that the system could be pumped with the rotary

pump alone or with the rotary pump in series with the high speed roots blower. This

was necessary as we did not know initially what circulation rate would give the lowest

base temperature; it has since been determined that running the two pumps in series

without putting any heat into the still minimizes the base temperature. Moreover, in

order to maximize the circulation rate, the vacuum lines from the still to the pumps

were all large, NW-50 flanged hoses, and the valves between the still and pumps

were all high-conductance gate valves. In order to minimize the long-term potential

for leaks, all the connections used in the dashed box in figure 3.5 utilized metal

compression fittings instead of rubber-gasket sealed NW connections which could dry

out and crack over time. The final vacuum connections to the fridge were all made

with plastic clamps and plastic centering rings to electrically isolate the fridge from

the pumps. In addition, the vacuum lines from the still and 1K pot were clamped
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Figure 3.5. Schematic of the homemade gas handling system. Line thick-
ness denotes size of vacuum hoses.

to a bucket of sand to minimize the propagation of vibrations from the pumps. A

better design, however, would have been to bury the pumping lines in the sand since

the original design did not significantly attenuate the vibrations in the pumping lines.

That being said, the vibration level thus far has been sufficiently low that it has not

hampered our measurements.

After assembling and leak checking the GHS, it was necessary to adjust the amount

of 3He and 4He in the mixture as some mixture had evidently leaked out of the dump

during the fridge’s several-year-long hibernation. To optimize the circulation rate,

mixture volume, and still power we first cooled the fridge without a tail to eliminate

the chance of any thermal shorts between the tail and the radiation shield. In addition,

this allowed us to test the effectiveness of the magnet’s cancellation coil. The ratio

of 3He to 4He was determined by one-shotting the fridge with the still temperature
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Figure 3.6. Threaded rods (circled in red) that were adjusted to center
the radiation shield inside the IVC.

< 1 K. At this temperature the 3He vapor pressure in the still is, of course, much

higher than that of the 4He, so once the still pressure dropped to zero it was safe to

assume that the majority of the mixture returned to the dump was 3He. The fridge

plus GHS as originally designed by Oxford was specified to use 38 L of 4He and 7 L

of 3He; however, we found the cooling power to be maximized using ∼ 33 L 4He and

∼ 10 L 3He. During the initial cool-down it was also determined that the radiation

shield was touching the IVC as the base temperature would not drop below ∼ 30

mK and the cold plate thermometer was stuck ≥ 160 mK. This was likely due to

the fridge being stored horizontally for several years. To fix this, the two threaded

rods shown in figure 3.6 were adjusted to center the radiation shield in the IVC. This

was made much easier by the fact that the IVC had a window in the bottom of it
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Figure 3.7. Threaded insert and plug used to block thermal radiation
from reaching the sample.

(originally to allow laser illumination of the sample). In addition to re-centering the

radiation shield, we machined a threaded insert and matching plug to seal the end of

the radiation shield as shown in figure 3.7. The insert was hard-soldered in place4, and

the removable plug allowed the tail to be inspected for thermal shorts to the radiation

shield. After removing the thermal short and adding helium to the mixture, the base

temperature of the fridge was minimized (∼ 10 mK) for zero power input into the

still. Finally, during the initial cool-down, the mixing chamber temperature did not

change for fields up to 10 T, indicating that the cancellation coil was quite effective

at eliminating eddy current heating in the mixing chamber.

3.2.4 Wiring and Sample Mount

Starting from the BNC breakout box, the sample leads consisted of copper twisted

pairs in two separate shielded cables with D-subminiature (D-SUB) style 25-pin con-

nectors. On top of the fridge the cables were connected to so-called data transfer

switches5. The data transfer switches allowed all of the leads going to the sample to

4Harris “Safety-Silv 56” 56% silver brazing alloy with Harris “Stay-Silv” flux.
5Manhattan DB25 data switch, www.qualitycables.com part number 150460
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Figure 3.8. Homemade filter box that couples a D-SUB 25 cable to the
Fischer connector on top of the fridge.

be grounded simultaneously to the fridge during cool downs when the cables to the

breakout box would be too short to reach the top of the fridge. Following the data

transfer switches, a short, shielded cable with twisted pairs connected the transfer

switches to home made filter boxes (see figure 3.8). These filter boxes then plugged

directly into the Fischer connectors on top of the fridge6. The filters were Pi-filters

built into a D-sub connector for ease of fabrication7.

Inside the fridge, twisted pairs of constantan wire connected the hermetically

sealed Fischer connectors to connectors on the 1 K plate. The heat sinking at this

stage and at the 4 K plate was part of the wiring originally supplied by Oxford and

appeared to consist of wires wrapped around copper posts and varnished in place.

The heat sinking below the 1 K plate was not deemed to be satisfactory, so we made

our own heat sinks. The wires consisted of constantan twisted pairs in a cotton

624 pin Fischer series 105 connector part number S 105 A093-80+ with clamp set part number E31
105.2/10.7+B, both purchased from Kensington Electronics, Austin, TX, www.keiconn.com
7Spectrum-Control part number 56-721-013 1 nF Pi filter with 3 dB point of 3.2 MHz and > 70 dB
attentuation above 1 GHz, purchased from Newark/Element i4 www.newark.com
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Figure 3.9. Home made heat sinks mounted on the 50 mK plate.

loom8. The heat sinks at the still plate, 50 mK plate, and mixing chamber plate all

consisted of loom wrapped tightly around copper posts after being coated with silver

epoxy9. The copper posts were polished with fine grit sandpaper and cleaned with

isopropanol immediately prior to applying the epoxy to minimize thermal resistance

from oxidation and debris. Figure 3.9 shows the heat sinks on the 50 mK plate. At

the mixing chamber the constan wire was connectorized10 and transistioned to copper

twisted pairs in a cotton loom11. Care was taken during construction to ensure that

the same sets of twisted pairs were maintained from the BNC breakout box all the

way to the sample mount on the end of the tail.

8Part number A8-312 from Oxford Instruments www.cryospares.com
9Part number EJ2189-LV from Epoxy Technology www.epotek.com
10Cinch Connector Inc. Lombard, IL. Mating part numbers DCDM25PSB and DCDM25SSB.
11Oxford Instruments part number A8-311 www.cryospares.com



75

Figure 3.10. Tail after etching in 1:1 water:nitric acid.

The first tail that we fabricated to hold the samples was a simple design consisting

of an OFHC copper rod that threaded into the bottom of the mixing chamber with a

copper stud. The wires were epoxied to the side of the tail with the same silver epoxy

used for the heat sinks at higher stages. However, this design had two flaws. First,

due to the soft copper threads and the small diameter of the rod, the rod could not

be fastened to the mixing chamber well enough to completely thermalize the bottom

of the tail with the mixing chamber. Second, upon cooling, the epoxy contracted

significantly more than the copper and, as a result, pulled away from the copper rod.

In order to solve these problems, several changes were made. Construction of

a new tail began by designing a large copper plate that could be tightened against

the mixing chamber with stainless steel screws passing through clearance holes rather

than tapped copper holes. This allowed the stainless steel screws to be tightened with

stainless steel nuts and eliminated the risk of stripping soft copper threads. This plate

was then welded to the rest of the tail to ensure a strong thermal link.

In order the clean the copper after welding, the copper was etched in 1:1 wa-

ter:nitric acid for 3 minutes. This removed the heavy, black oxide left from the weld-

ing process, but a different oxide started to form during rinsing as shown in figure

3.10. This oxide was then cleaneded off with Brasso metal polish followed by toluene,
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Figure 3.11. Tail after cleaning with Brasso metal polish, toluene, acetone,
and methanol.

Figure 3.12. Slurry of GE varnish and silver powder used to heat sink
copper wires to tail.

acetone, and methanol. Immediately following this cleaning, the copper wires were

pasted in place with GE Varnish12 infused with silver powder13. The varnish was

diluted with 1:1 toluene:methanol in order to extend its working life. The slurry of

varnish and silver powder, shown in figure 3.12 had the consistency of molasses when

12VGE-7031 varnish from Lakeshore Cryotronics www.lakeshore.com.
13Part number 61-310 from Ted Pella, Inc. www.tedpella.com.
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Figure 3.13. Finished tail mounted on the mixing chamber.

first mixed and an electrical resistance of ∼ 1 MΩ aross ∼ 1 inch of the petri dish

shown in figure 3.12. The resistance dropped to ∼ 0.5 Ω across 1 inch after the slurry

dried. As soon as the wires were pasted in place and covered with more varnish, the

top plate (shown in the background of figure 3.11) was placed on top of the wires

and screwed in place with stainless steel screws. Figure 3.13 shows the completed

tail mounted on the fridge. Prior to mounting the tail on the fridge, both the mixing

chamber plate and the mounting plate on the tail were polished with 3000 grit sand-

paper and cleaned with acetone and methanol. The sandpaper was mounted on a

smooth wooden block to ensure that the polishing did not de-planarize either surface.

This new and improved tail design significantly improved the thermal contact of

the samples to the mixing chamber. However, the large amount of copper in the

magnetic field resulted in a large nuclear demagnetization effect. While this was in
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some sense useful for reaching lower temperatures, it made it difficult to assign a

single temperature to data from large field sweeps. What is more, we have found that

the coldest looking data typically come from up-field sweeps that closely follow down-

field sweeps. We speculate that this is due to the long thermalization time constants

present at base temperature. In other words, during the down-sweep the tail de-

magnetizes, but the electron temperature does not change significantly until near the

end of the sweep. If the field is then swept back up, the electrons stay at this colder

temperature for much of the up-sweep. Future tail designs would probably benefit

in this regard by using silver as in reference [111] due to its low nuclear magnetic

moment.

3.2.5 Thermometry

The temperatures at the various cold stages on the fridge were measured with

resistance thermometers. Uncalibrated RuO2 resistors with typical resistance vs.

temperature profiles were used to estimate the temperature at the 1K plate, still

plate, and 50 mK plate. The temperature at the mixing chamber and on the end of

the tail were measured with calibrated RuO2 thermometers.14 The mixing chamber

thermometer was mounted using the original copper package supplied by Oxford.

The tail thermometer was glued to a small copper tab with cigarette paper soaked

in GE varnish. The copper tab was then screwed into the end of the tail close to the

sample holder. The resistor was thermally cycled between 77 K and room temperature

four times and was additionally cycled between 4 K and room temperature four times

prior to calibration to minimize the potential changes in calibration during subsequent

cool-downs.

The wiring of the thermometers in the fridge was not modified from what was

originally supplied by Oxford. Heat sinking at each cold plate was accomplished by

varnishing the wires (presumably constantan twisted pairs) to copper posts. In order

14A special thank you to Gabor Csáthy and Ethan Kleinbaum for calibrating our tail thermometer
in their fridge.
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Figure 3.14. Wiring diagram of the thermometers and heaters in the
fridge.

to fit all the wires in a 24 pin Fischer connector, the uncalibrated thermometers were

wired with a common ground as shown in figure 3.14. The tail thermometer is not

shown in figure 3.14; it was wired using extra wires on the tail which were heat sunk

and filtered as described earlier.

The thermometers shown in figure 3.14 were measured using an AVS-47 resistance

bridge with its associated pre-amplifier connected to the fridge with a shielded cable

while the tail thermometer was measured with a PAR 124A lock-in amplifier. To avoid

self-heating at base temperature, the mixing chamber thermometer was measured

with a 3 µV excitation from the resistance bridge and the tail thermometer was
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Figure 3.15. Schematic of electronics setup and grounding.

measured with a 100 pA excitation from the lock-in amplifier. This corresponded to

power dissipations of 100 aW and 1 fW, respectively.

It turned out that the resistance bridge was a very sensitive detector of ground

loops and interference. If the mixing chamber thermometer was measured with a 3

µV excitation, the bridge would easily overload in the presence of grounding issues or

noise from other electronics. In addition, the monitor output channel on the bridge

could be viewed with an oscilloscope to check for the presence of noise signals that were

present but too small to overload the bridge. This served as a convenient diagnostic

for setting up the electronics. The first step in achieving a low-noise setup was to

electrically isolate the fridge from the pumps by using plastic centering rings and

plastic clamps on all the pumping lines. The second adjustment that improved the
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noise level in the resistance bridge was to isolate the bridge, lock-in amplifiers, fridge

power supplies, and multimeters (used to measure the lock-ins and bridge) from the

mains ground. This was accomplished by using an isolation transformer and breaking

the ground on the secondary as shown in figure 3.15. We also optically isolated the

GPIB communications cables to the sensitive electronics using a combination of a USB

optical isolator15 and a USB-GPIB converter16. Finally, since the magnet leads were

not grounded to the fridge, we did not install an isolation transformer and cheater

combination to isolate the magnet power supply17. Consequently, it was necessary

to run the magnet supply off a different, non-isolated GPIB bus to keep the grounds

separated.

While this setup eliminated problems due to ground loops, it was also necessary to

eliminate noisy electrical instruments from the system. The first two methods we used

in trying to isolate the GPIB actually made the noise level in the bridge worse. The

first GPIB isolator we tried18 caused the bridge to overload as soon as the isolator was

turned on, even if it was not connected to any electronics in the rack. The first USB

optical isolator we tried19 in conjunction with the GPIB-USB adapter also behaved

as a source of high frequency noise. The bridge was also quite sensitive to noise from

the original fridge power supply20; as soon as the still power was turned on the bridge

would overload. Despite many attempts at changing the grounding and location of

the power supply, the problem persisted, likely due to capacitive coupling between the

heater leads and the thermometer leads in the cabling leading to the shared Fischer

connection on top of the fridge. As a result, we were forced to switch to powering

the still and mixing chambers with small, analog power supplies21. Finally, the first

DC power supply22 we tried to use with gated samples also resulted in a large high

15Sealevel Hub7i optically isolated USB hub from www.sealevel.com.
16National Instruments GPIB-USB-HS adapter.
17Oxford IPS 120-10 power supply.
18National Instruments GPIB-120B bus isolator/expander.
19Keterex 751-KXUSB-150
20Oxford PS2603 fridge power supply.
21HP 6218A DC power supply.
22Keithley 2612B source-meter.
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frequency noise signal on the bridge and significant heating of the thermometers. Once

again, changes to the location and grounding of the power supply did not improve

the interference, and we were forced to switch to a different DC supply23.

23Yokogawa 7651 programmable DC supply.
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4. Scattering Mechanisms in a High-Mobility Low-Density

Carbon-Doped (001) GaAs Two-Dimensional Hole System

J. D. Watson1, S. Mondal1, G. A. Csáthy1, M. J. Manfra1,2,3,, E. H. Hwang4, S. Das

Sarma4, L. N. Pfeiffer5, K. W. West5

1Department of Physics and Birck Nanotechnology Center, Purdue University West

Lafayette, IN 47907, USA

2School of Electrical and Computer Engineering, Purdue University West Lafayette, IN

47907, USA

3School of Materials Engineering, Purdue University West Lafayette, IN 47907, USA

4Condensed Matter Theory Center and Department of Physics University of Maryland,

College Park, MD, 20742, USA

5Department of Electrical Engineering Princeton University, Princeton, NJ 08544, USA

1 Abstract: We report on a systematic study of the density dependence of mobility in a

low-density Carbon-doped (100) GaAs two-dimensional hole system (2DHS). At T=50 mK,

a mobility of 2.6 × 106 cm2/Vs at a density p=6.2 × 1010 cm−2 was measured. This is the

highest mobility reported for a 2DHS to date. Using a back-gated sample geometry, the

density dependence of mobility was studied from 2.8 × 1010 cm−2 to 1 × 1011 cm−2. The

mobility vs. density cannot be fit to a power law dependence of the form µ ∼ pα using

a single exponent α. Our data indicate a continuous evolution of the power law with α

ranging from ∼ 0.7 at high density and increasing to ∼ 1.7 at the lowest densities mea-

sured. Calculations specific to our structure indicate a crossover of the dominant scattering

mechanism from uniform background impurity scattering at high density to remote ionized

impurity scattering at low densities. This is the first observation of a carrier density-induced

transition from background impurity dominated to remote dopant dominated transport in

a single sample.

1This chapter is adapted with permission from Phys. Rev. B 83, 241305(R) (2011). Copyright (2011)
American Physical Society.
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The two-dimensional hole system (2DHS) offers an attractive platform for the

study of strong carrier interactions parameterized by rs : the ratio of the Coulomb

energy to the Fermi energy. rs = Ec/Ef ∝ m∗/
√
p, where p is the hole density and

m∗ is the effective mass. Recent developments in the growth of Carbon-doped (100)

GaAs heterostructures by molecular beam epitaxy (MBE) have resulted in 2DHSs of

unprecedented quality [112, 101]. Such structures have been utilized in the study the

metal-to-insulator transition (MIT) [93], fractional quantum Hall physics in the 2nd

Landau level (LL)[113], spin-orbit coupling in Aharonov Bohm rings [114] and charge

density wave formation in partially filled LL’s[115],[116]. These initial experiments

and the prospect of studying strong correlations in the presence of tunable spin-orbit

coupling provide strong motivation to understand the scattering processes presently

limiting mobility in the highest quality samples. Here we present mobility vs. density

data on an unprecedently high mobilty 2DHS. One of the most exciting avenues for

future research is the investigation of ultra-low density 2DHSs at very large rs. Thus,

our data and calculations will inform the design of new hole heterostructures of ever

increasing quality.

Carbon doping[101] of 2DHSs offers advantages over the more commonly used ac-

ceptor dopants Beryllium and Silicon. Carbon diffuses and surface segregates much

less at typical MBE growth temperatures (T∼630 ◦C) than Beryllium[77]. Addition-

ally Carbon can be incorporated as an acceptor on multiple crystallographic orienta-

tions, including on the high-symmetry (100) face of GaAs. Silicon can also act as an

acceptor to produce high quality 2DHSs but so far high mobility (µ ∼ 106 cm2/Vs)

Silicon-doped 2DHSs have only been realized on (311)A face[97]. The (311)A face has

a well known mobility anisotropy between the [2̄33] and [011̄] directions [97] whereas

Carbon-doped structures on the (100) face have a significantly lower anisotropy be-

tween the [011] and [01̄1] directions [101]. Furthermore, the high symmetry of the

(100) orientation dramatically alters the nature of spin-orbit interactions in 2DHSs as

compared to quantization along the (311)A direction. Indeed, further experimental

work is needed to fully exploit the potential benefits of Carbon-doped (100) 2DHSs.
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Figure 4.1. Schematic of the device structure used in our experiments.

Our sample consists of a 20 nm Al0.16Ga0.84As/GaAs/Al0.16Ga0.84As quantum well

asymmetrically modulation doped with Carbon at a density of 1 × 1012 cm−2 above

the quantum well at a setback of 80 nm. FIG. 4.1 shows a sketch of the device along

with the numerically calculated [117] band structure and heavy hole ground state

wavefunction (normalized to unity). For simplicity in simulation the superlattice and

buffer regions are truncated. In order to modulate the density in the quantum well, we

utilized a back-gate geometry. The sample was first thinned to approximately 150 µm

and then cleaved into a Hall bar approximately 2 mm× 9 mm. Ohmic contacts consist

of In/Zn dots positioned approximately 1 mm apart along the length of the Hall bar

and annealed at T = 430 ◦C. The hall bar was subsequently fixed to a gold backgate

evaporated on an undoped GaAs substrate. The carrier density was measured from

minima in the longitudinal magnetoresistance, and the conductivity was obtained

from four-terminal zero field measurements using standard lock-in techniques. As
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Figure 4.2. Effect of gate voltage on carrier density and leakage current
at T = 300 mK.

shown in FIG. 4.2, the 2DHS density depended linearly on voltage over the range

measured. Modeling the structure as a parallel plate capacitor with one plate being

the 2DHS and the other being the backgate we estimate the gate to be situated

175 µm from the well. The peak mobility µ at low temperature (T = 50 mK) was

measured to be 2.6 × 106 cm2/Vs at a density of 6.2 × 1010 cm−2 in an as-grown

sample.

FIG. 4.2 also shows the leakage current as a function of the gate voltage. The

linear dependence of the leakage current on the gate voltage and its small magnitude

(< 1.5 nA as compared to an excitation current of 50 nA) suggest that the observed

leakage represents parasitic current passing through the measurement circuit and not

hard breakdown in the GaAs. In addition, the linear dependence of the density on

the gate voltage also suggests that sharp breakdown did not occur. FIG. 4.3 shows a
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Figure 4.3. Low field magnetoresistance of the backgated sample at T =
50 mK.

representative trace of the magnetoresistance at T = 50 mK. The deep minima in the

fractional quantum Hall states around filling factor ν = 3
2

illustrate the high quality

of the processed sample. We note that this sample has also been studied at ultra-low

temperatures (T ≤ 10 mK) in which the first evidence of a fully formed fractional

quantum Hall state at ν = 8/3 in the 2nd Landau level in a 2DHS was observed [113].

In order to examine the scattering mechanisms limiting mobility in our system,

we measured the dependence of the mobility on the 2D hole density modulated by

the backgate as shown in FIG. 4.4. As can be clearly seen on this log-log plot the

data points do not fall on a straight line as would be expected for a single dominant

scattering mechanism. The mobility vs. density cannot be fit to a power law depen-
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Figure 4.4. Mobility as a function of the density at T = 300 mK (squares)
and T = 50 mK (open circles). Straight lines are guides to the eye to the
300 mK data to illustrate 0.7 and 1.7 power laws.

dence of the form µ ∼ pα using a single exponent α. Our data indicate a continuous

evolution of the power law with α ranging from ∼ 0.7 at high density and increasing

to ∼1.7 at the lowest densities measured. Thus the data indicate the presence of

multiple dominant scattering mechanisms over the range of density tested. Indeed

at the lowest densities measured, the mobility decreases rapidly indicating that the

system will eventually approach a finite density MIT[93]. We emphasize, however,

that kF l, the product of the Fermi wavevector and the mean free path, remains larger

than 50 over the entire range of density tested. It can be seen at high density that

the mobility follows a power law behavior µ ∝ p0.7 which is indicative of uniformly

distributed charged background impurity (BI) scattering [118], [66] in 2D carrier sys-

tems. However, the power law continuously shifts towards higher α of approximately
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1.7 at low density. Typically, an exponent ∼ 1.5 − 1.7 is taken as an indication of

the dominance of remote ionized (RI) impurity scattering[118],[119] originating in

the remote doping layer in 2D systems. We emphasize that it is unusual that such a

crossover behavior can be seen in a single sample while remaining in the high mobility
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(or equivalently large kF l) regime. It is interesting to note that our setback distance

is 80 nm, a distance at which remote ionized impurity scattering usually makes a

relatively minor contribution to the total scattering in samples with density > 1011

cm−2. Nevertheless, it is clear that for the material parameters of our structure it

dominates scattering at lower density. A similar transition to remote ionized impu-

rity scattering in low density 2D electron samples was report by Jiang et al. [120],

but in these samples kF l was substantially lower and the samples were approaching a

conduction threshold. Unusual transport behavior was also recently reported in the

2DHS in an undoped electron-hole bilayer [121] and subsequently explained by car-

rier inhomogeneities resulting from strong carrier-carrier interactions and non-linear

screening [122]. It could be argued that T = 300 mK data is only marginally outside

the range where phonons could be playing some role, but the fact that our T = 50

mK data displays the same functional dependence seems to rule out any critical scat-

tering contributions from phonons. Interface roughness (IR) scattering should also

be considered, but significant IR scattering should also manifest itself in a significant

mobility anisotropy [66] which was not observed in our sample. Nevertheless we can-

not rule out possible contributions from IR and alloy scattering as the sample is gated

to higher densities. Finally, scattering between the light and heavy hole bands[112]

as well as changes in the effective mass [108] have also been reported. However, both

of these effects should decrease as the density is lowered and the Fermi level moves

towards the top of the valence band and away from light hole band.

To explain our experimental observation we calculated the Coulomb scattering

rate due to background charged impurity scattering and remote charged impurity

scattering using a Boltzmann transport method[123], [124]. Screening was taken

into account using the random phase approximation (RPA). The calculation was

performed both with and without the inclusion of correlation effects via the Hubbard

approximation. The analysis assumed a 3D background impurity concentration of

ni3D = 3 × 1013 cm−3, dopant setback from the center of the quantum well d = 90

nm, hole effective mass m∗ = 0.4me where me is the free electron mass, quantum well
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width a = 20 nm, and a remote ionized impurity concentration ni = 2 × 1011 cm−2.

We note that m∗ has been measured for our sample by cyclotron resonance to be m∗ =

0.4me[107]. FIG. 4.5(a) shows a crossover of the mobility exponent changing from

α ∼ 0.7− 0.8 to α ∼ 1.5− 1.7 which has the same qualitative behavior as seen in the

data in FIG. 4.4. The results of the calculations are compared with the experimental

data in FIG. 4.5(b). Qualitatively, as the hole density is lowered, screening of the

remote dopants by the 2D hole gas becomes less effective, and the dominant scattering

mechanism transitions from being dominated by uniform background impurities to

being dominated by remote dopants. Such a transition point in the density is governed

entirely by ni3D, d, and ni, and thus it is not surprising that this is the first time (to

our knowledge) that such a transition has been observed in a single sample within

the high mobility regime.

To understand the transition in the transport mechanism observed in our data,

it is important to realize[122] that the impurity scattering strength in the transport

theory carries the form-factor exp(−2kFd) at low temperatures where 2kF is the

typical momentum transfer for resistive scattering by impurities, and d is the typical

separation of the impurities from the 2D carrier layer. Since kF ∼ p1/2, it is clear that

lowering the carrier density would lead to stronger scattering by remote impurities

which is exponentially suppressed at higher values of kFd. For a screened Coulomb

potential with two impurity contributions (remote and background charged impurity)

we can derive the approximate qualitative formula for the mobility

µ ∝ (kFd)3qTF
ni + Ani3D(kFd)3qTF/(2kF + qTF )2

(4.1)

where A is a density independent constant and qTF = 2/aB is the Thomas Fermi

screening wave vector with the effective Bohr radius aB = h̄2/m∗e2. In the high-

density limit, kFd � 1 the mobility is proportional to the square of the sum of two

wave vectors, i.e., µ ∝ (2kF + qTF )2. However, as kFd (or, density) decreases the

mobility behaves approximately µ ∝ (kFd)3. Thus, as long as strong localization

does not set in, which is the usual situation for lower mobility samples[120], lowering

carrier density should always lead to a continuous increase of the exponent α as
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scattering from the remote dopant impurities becomes important. This is exactly the

theoretical behavior predicted in the theory (Fig. 4.4), and experimentally observed

in our extremely high-mobility hole sample.

In conclusion, we measured the density dependence of mobility in a very high

quality 2DHS. The 50 mK mobility was found to be 2.6 × 106 cm2/Vs at a density

of 6.2 × 1010 cm−2 in a pristine sample. The mobility appears to be limited by back-

ground charged impurity scattering at high density but in the low density regime

is a stronger function of the density indicating an increasingly important scattering

contribution from remote impurities. From this data, we can surmise that increased

2DHS mobility at low density can be realized by significantly increasing the spacer

thickness. Our work also demonstrates that in samples of sufficiently high quality,

where the 2D MIT transition is pushed down to very low carrier densities, the theo-

retically predicted continuous transition from background impurity scattering limited

transport to remote dopant scattering limited transport can be quantitatively verified

by decreasing the carrier density in a single sample. We are currently exploring the

structural parameter space of Carbon-doped 2DHSs in order to optimize mobility.
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1 Abstract: We report on the growth and electrical characterization of a series of two-

dimensional hole systems (2DHSs) used to study the density dependence of low temperature

mobility in 20 nm GaAs/AlGaAs quantum wells. The hole density was controlled by chang-

ing the Al mole fraction and the setback of the delta-doping layer. We varied the density

over a range from 1.8 × 1010 cm−2 to 1.9 × 1011 cm−2 finding a nonmonotonic dependence

of mobility on density at T = 0.3 K. Surprisingly, a peak mobility of 2.3 × 106 cm2/Vs

was measured at a density of 6.5 × 1010 cm−2 with further increase in density resulting in

reduced mobility. We discuss possible mechanisms leading to the observed non-monotonic

density dependence of the mobility. Relying solely on interface roughness scattering to ex-

plain the observed drop in mobility at high density requires roughness parameters which

are not consistent with measurements of similar electron structures. This leaves open the

possibility of contributions from other scattering mechanisms at high density.

Two-dimensional hole systems (2DHSs) on (001) oriented GaAs offer an interesting

alternative to the more widely studied two-dimensional electron systems (2DESs).

2DHSs on (001) GaAs have effective masses roughly 4.5 to 7.5 times larger[108, 107,

106] than that in corresponding 2DESs which increases the importance of Coulomb

1This chapter is adapted with permission from Phys. Rev. B 85, 165301 (2012). Copyright (2012)
American Physical Society.
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interactions relative to the kinetic energy resulting in enhancement of importance of

many-body effects. In addition, the p-wave symmetry of the valence band in GaAs

leads to a much reduced hyperfine coupling of hole spins to the atomic nuclei which

makes them an exciting alternative to electrons for quantum dot spin-based qubits[94,

95, 96]. The presence of spin-orbit coupling and light/heavy hole mixing in the valence

band of GaAs also allows extensive band structure engineering[125, 126, 127]. This

feature has been exploited to alter the nature of groundstates in the quantum Hall

regime.[116, 115]

Here we describe our efforts to understand the limits to low temperature mobility

for (001) 2DHSs. Continued improvement in 2DHS quality is motivated by the well-

established paradigm for 2DESs that increased low-temperature mobility often leads

to the observation of new correlated groundstates[68]. Historically, improvement to

the low temperature mobility of 2DHSs has lagged behind that of 2DESs due to the

lack of a p-type dopant in GaAs that does not diffuse or segregate significantly at

typical molecular beam epitaxy (MBE) growth temperatures ∼ 635 ◦C. Si can act

as a low-diffusivity acceptor on the (311)A face of GaAs, but subsequent transport

experiments are known to be complicated by a significant mobility anisotropy due

to surface corrugation[97]. However, recent use of low diffusivity carbon doping (C-

doping)[100, 101, 112] has rapidly led to low temperature mobilities > 106 cm2/Vs

without the accompanying transport anisotropy. Purely from a growth standpoint,

then, there does not appear to be any reason why low temperature hole mobilities

should not approach that of electrons once scaled by the appropriate effective mass.

Presently it is widely believed that uniformly distributed ionized background impu-

rities limit the mobility in the best 2DESs [118]. However, the highest hole mobility

reported to date[128] of 2.6 × 106 cm2/Vs is still about a factor of two lower than

record mobility 2DESs grown in the same MBE chamber[68] once the heavy hole to

electron effective mass ratio of 0.4me : 0.067me is taken into account. The question

then remains, if sufficiently reducing background impurities[118] is the main obstacle
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Figure 5.1. Layer structure of devices in this experiment. Note the use
of two different Al mole fractions xw and xd in some of the devices as
indicated in Table 5.1.

to reaching an electron mobility of 100 × 106 cm2/Vs, what are the key ingredients

to a hole mobility of 15 × 106 cm2/Vs?

In order to answer this question, we have begun to explore the impact of varying

structural parameters on the resulting mobility. Samples in this work were grown in

a customized Veeco GenII MBE which has recently achieved electron mobilities > 20

× 106 cm2/Vs and extremely large excitation gaps for the fragile ν=5/2 fractional

quantum Hall state. C-doping was performed with a carbon filament capable of

producing a doping rate of 2.8 × 1010 cm−2/sec at a total power (including parasitic

dissipation) of ∼ 150 W [129]. In this experiment, we utilized a 20 nm quantum

well situated 190 nm below the surface and asymmetrically δ-doped from above at

a setback d of 80, 110, or 140 nm. The Al mole fraction x was also varied between

0.07 and 0.45 to allow further tuning of the 2DHS density. Table 5.1 summarizes the

structures grown in the experiment, and Fig. 5.1 shows the epilayer design. Square
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Table 5.1.
Summary of structural parameters including δ-doping setback distance
d, Al mole fraction around the dopants xd, Al mole fraction surrounding
the quantum well xw, 2DHS density p, and T = 300 mK mobility after
illumination µ.

Sample d xd xw p µ

nm 1011cm−2 106 cm2/Vs

1 80 0.24 0.24 1.1 1.2

2 80 0.24 0.24 0.98 1.4

3 80 0.45 0.45 1.9 0.55

4 80 0.10 0.10 0.32 1.8

5 80 0.35 0.35 1.4 .80

6 80 0.20 0.20 0.80 1.6

7 80 0.07 0.07 0.18 1.3

8 110 0.10 0.10 0.29 1.5

9 140 0.10 0.10 0.23 1.4

10 110 0.24 0.24 0.70 1.6

11 80 0.16 0.16 0.65 2.3

12 110 0.13 0.13 0.36 1.8

A 80 0.45 0.16 1.7 0.73

B 80 0.45 0.24 1.5 0.78

C 80 0.35 0.16 1.34 1.3

D 80 0.35 0.24 1.30 1.1
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samples were prepared using InZn contacts annealed at 430 ◦C for 15 minutes in

H2/N2 forming gas. Characterization was performed in the dark and after illumination

with a red LED at T = 300 mK using standard lock-in techniques, and the density

was determined from quantum Hall effect (QHE) minima. Illumination typically

resulted in ∼ 3-5% increase in density and as much as a 27% increase in mobility

for low density samples. Transport data also showed a qualitative improvement after

illumination, indicating that illumination increases the homogeneity of the 2DHS and

has a favorable impact on the screened disorder potential. Figure 5.2 shows transport

data of the highest mobility sample and a low density sample; the number of nascent

fractional QHE features attest to the sample quality.

Fig. 5.3a shows the measured mobility as a function of density for various values

of d. We note that remote ionized impurity (RI) scattering does not play a significant

factor in limiting the mobility since within experimental uncertainty there is no mean-

ingful difference between the mobility at different values of d for the same density.

However, increased d should allow these samples to be gated to ultra-low densities

before RI scattering begins to cause the mobility to rapidly drop off with further de-

creased density[128]. The most interesting feature of the data in Fig. 5.3a, however,

is the strongly non-monotonic dependence of the mobility on density. For 2DESs

in this density range with such a large value of d, one would expect the mobility to

monotonically increase with density[68, 118, 66, 67] following a power law dependence

µ ∝ pα where α ∼ 0.6 - 0.8 with ionized background impurity (BI) scattering being

the dominant scattering mechanism. In analyzing our results, we first note that the

effective mass is known to vary throughout the density range of our samples due to

the valence band non-parabolicity arising from light- and heavy-hole band mixing.

By performing a linear fit to cyclotron resonance data on 2DHSs in (001) 20 nm

quantum wells in refs. [108, 107] and assuming the cyclotron mass plateaus at 0.5me

at high density we estimate the transport lifetime for our structures as shown in Fig.

5.3b. The transport lifetime, however, follows the same non-monotonic behavior as
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Figure 5.2. (Color online) Magnetotransport at T = 300 mK after illu-
mination with a red LED of (a) peak mobility sample and (b) low density
sample that exhibits many nascent fractional QHE features.

the mobility which indicates a competition between different scattering mechanisms

throughout the density range of our experiment in addition to the changing mass.

To shed further light on possible scattering mechanisms, we have performed a

series of scattering calculations including the effects of BI, RI, alloy, and interface
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Figure 5.3. (Color online) (a) T = 300 mK mobility after illumination with
a red LED as a function of density for various dopant setback distances
d. Solid lines are guides to the eye. For fixed d the density was controlled
by varying the Al mole fraction x. Samples were grown in random order
to avoid continued machine clean-up from skewing the observed trend in
mobility. Samples A-D were grown with varying x at fixed p to test the
effect of alloy and interface roughness scattering on the mobility (see text).
(b) Transport lifetime estimated as a function of density. Inset: Effective
mass for our structures as a function of density extrapolated from refs.
[108, 107].

roughness (IR) scattering. We follow the derivation of the transport relaxation time

in [130] which assumes T = 0 and neglects intersubband scattering, multiple scat-

tering events, and correlation between ionized impurities. This simple calculation is
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intended to elucidate the expected trend of the mobility as the density is increased

and determine if scattering mechanisms dominant in 2DESs can qualitatively explain

our observations. More sophisticated calculations have been made by S. Das Sarma

and coworkers.[123, 124, 118] Transport relaxation times are calculated individually

and then the total mobility is calculated using Mathiessen’s rule. For BI and RI

scattering the transport lifetime is given by

1

τtr(εF )
=

m∗

πh̄3

∑
i

∫ π

0

dθ(1− cos(θ))

×
[

2πeZiei
4πε (q + qTFgs(q))

]2 ∫ ∞
−∞

dzNi(z)g2
imp(q, z) (5.1)

where m∗ is the hole effective mass (as estimated in Fig. 5.3b), h̄ is the reduced Planck

constant, θ is the scattering angle, Ziei is the impurity charge, ε is the dielectric

constant of the semiconductor, q is the scattering vector, kF is the Fermi wavevector,

qTF is the Thomas-Fermi screening wavevector, Ni(z) is the ith impurity distribution,

and the form factors are given by

gs(q) =

∫
χ2(z)χ2(z′)exp(−q|z − z′|)dzdz′ (5.2)

gimp(q, z) =

∫
χ2(z′)exp(−q|z′ − z|)dz′ (5.3)

where χ(z) is the self-consistently calculated[117] envelope function in the effective

mass approximation. For the BI calculation we use a three-dimensional impurity

concentration N3D as a fitting parameter and find the best agreement with the exper-

imental data for N3D = 2 × 1013 cm−3. We use a remote impurity sheet concentration

NRI equal to the hole concentration p. A more realistic value of NRI could also in-

clude some of the ionized impurities due to the surface compensation; however, we

assume a simple parallel-plate capacitor model of the surface-δ-layer charge and thus

neglect the surface compensation contribution to NRI . This neglect of charge due to

surface compensation is typical in these types of calculations.[118, 119, 131] For our

purposes, though, the exact value of NRI is not important since it will not change the

qualitative dependence of the RI-limited mobility as p is varied.
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To calculate alloy scattering we use the virtual crystal approximation with a square

well potential limited over a spherical range[132] which is independent of temperature

in 2D systems[133]. The alloy limited relaxation lifetime is unscreened due to its short

range nature and given by[130, 134]

1

τalloy(εF )
=

4Ω2m∗U2x(1− x)

a3h̄3

∫
barrier

χ4(z)dz (5.4)

where a = 0.565 nm is the lattice constant of the compound semiconductor, Ω is the

volume of the scattering potential given by Ω = (4/3)πr3, and r = (
√

3/4)a is the

nearest-neighbor separation. There is a broad range of estimates of the magnitude

of the scattering potential U in the literature[134], ranging from 0.12 to 1.56 eV. We

take U= 1 eV (as suggested in ref. [130]) as a rough estimate.

To examine the possible effect of interface roughness scattering, we employ a

simple model which makes use of the Fang-Howard variational wavefunction and

associated potential[135] which takes the distortion of the wavefunction with increased

density into account. In this model, the IR scattering rate is given by[83, 136]

1

τIR(εF )
=

(
∆Λe2p

2ε

)2
m∗

h̄3

∫ π

0

(
q

q + gs(q)qTF

)2

× (1− cos θ)exp(−Λ2q2/4)dθ (5.5)

where the wavefunction used to calculate gs is

χ(z) =

 1√
2
b3/2ze−bz/2 z > 0

0 z ≤ 0

where the variational parameter is[3, 83]

b =

(
33m∗e2p

8h̄2ε

)1/3

(5.6)

We take one monolayer roughness height to be a reasonable estimate and thus set ∆

= 0.2825 nm and use Λ as a fitting parameter with the result that Λ = 6 nm.

As a justification for using the Fang-Howard wavefunction to model our asymmet-

ric quantum well system, we show in Fig. 5.4 a comparison of the self-consistently
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Figure 5.4. (Color online) Dashed lines show a comparison of the self-
consistently calculated valence band edges (dashed lines) for the high
density sample # 3 and and a single heterojunction sample with x =
0.45. Solid lines show a comparison of the self-consistently calculated
wavefunction for sample # 3 and the Fang-Howard variational wavefunc-
tion.

calculated valence band edges for quantum well (QW) sample # 3 and a single hetero-

junction (SHJ) along with the self-consistently calculated wavefunction for the QW

structure and the Fang-Howard wavefunction which is often taken as an approxima-

tion of the wavefunction in SHJ structures. The band edges show that the bottom

barrier of the QW changes the confining potential very little, and the high density

samples (where IR scattering could be important) can therefore be approximated by

the Fang-Howard model.

The results of our calculations are compared with the d = 80 nm experimental

results in Fig. 5.5. It is clear that even with a changing effective mass and wave

function profile the BI and RI limited mobilities steadily increase with increasing
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density and therefore cannot account for the drop in mobility at high density. The

exact contributions of alloy and interface roughness scattering are initially less clear,

however. We will address alloy disorder first.

If U is large enough, alloy scattering could conceivably contribute to the drop

in mobility seen in the experimental data. Before continuing, it should be noted

that the slight increase in the calculated alloy-limited mobility at high density is

simply due to the saturation of the effective mass as shown in the inset of Fig. 5.3b.

We have repeated the calculations (not shown) without forcing the mass to plateau

at 0.5me, but even with a mass as high as 0.7me at high density the alloy limited

mobility does not appear to be limiting the total mobility. To test the contribution of

alloy scattering we grew a series of four test structures (labeled A-D in Fig. 5.3a) in

which xd, the Al concentration starting 25 nm above the quantum well (e.g. around

the δ-doping layer), was kept fixed to keep the density constant while xw, the Al

concentration around the quantum well, was varied between xw = 0.16 and xw =

0.24. Samples A, B, and 3 (xd = 0.45) suggest that xw has no impact on the mobility,

though there is scatter in the resulting density which we attribute to wafer-to-wafer

variation and possible variation in the illumination. Samples C, D, and 5 (xd = 0.35),

however, suggest that increased xw does cause the mobility to decrease somewhat.

Most importantly, this is the opposite trend that would be expected if alloy scattering

per se were limiting the mobility. Our calculations for the test structures (not shown)

and ref. [136] predict that the alloy-limited mobility would increase for increased xw

since as xw is increased for fixed density the wavefunction is more confined. This in

turn causes the integral of χ4 to decrease faster than the x(1 − x) term increases in

equation (5.4) resulting in a decrease in the alloy scattering rate for increased xw.

The results from this set of structures is consistent, however, with the theory that

Al getters impurities[68], thus an increase in xw would locally increase NBI and the

associated scattering. Regardless, samples C, D, and 5 show that the negative side

effects of increasing xw are not enough to explain the data of Fig. 5.3. If the increase

in xw was dominating the mobility we would expect test structures A and C to have
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significantly higher mobilities than the peak mobility sample #11 due to the higher

hole density of the test structures. This, however, is clearly not the case.

Finally, our fit seems initially to indicate that IR scattering is limiting the mobility

at high density. However, whenever parameters can be freely adjusted caution must

of course be exercised to obtain physically meaningful results. The dashed pink line

in Fig. 5.5 shows the IR limited mobility for a SHJ 2DES in the Fang-Howard model

while the pink star shows a 2DES SHJ structure with x = 0.35 grown during the

course of this experiment. Evidently the Fang-Howard calculation overestimates the

IR scattering by at least a factor of four. Repeating our self-consistent calculation for

BI, RI, and alloy scattering in this 2DES SHJ using the impurity concentrations and

alloy potential listed in the inset of Fig. 5.5 we find that the IR-limited mobility at a

density of 2.4 × 1011 cm−2 would have to be 86 × 106 cm2/Vs to fit the measured total

mobility of 7.9 × 106 cm2/Vs. To get such a high IR-limited mobility we are forced

to set ∆ = 0.1 nm and Λ = 2.2 nm. Figure 5.6 shows the result of our calculation for

the hole structures using these smaller roughness parameters. With these reduced

roughness parameters there is no longer a good fit to the hole data at high density

as the IR term makes almost no contribution to the total mobility, though we still

obtain a good fit at low to medium density. We conclude that our crude model of

interface roughness scattering cannot simultaneously account for our experimental

data in both electrons and holes and are thus hesitant to conclude that interface

roughness scattering is the dominant source of our drop in mobility at high density.

Similar discrepancies between electron and hole data have been noted in ref. [137].

Another possible scattering mechanism that must be kept in mind at high density

is scattering between the electric subbands of the quantum well which is known to

degrade the mobility in high density 2DESs.[138] To estimate the possibility of such

scattering, we use a finite square well with a barrier height of 230 meV and an effective

mass of 0.5me, which corresponds to our highest density sample. This estimate results

in an energy spacing of 5.0 meV between the heavy hole ground and first excited state.

Assuming a light hole mass along the (001) direction[3, 126] of 0.090me the spacing
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Figure 5.5. (Color online) Comparison of d = 80 nm experimental data
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obtain a good fit to data. Pink star represents SHJ 2DES grown during
this experiment.

between the heavy hole and light hole ground states is 6.4 meV. In both cases this

energy spacing is significantly larger than the Fermi energy EF = πh̄2p
m∗ ∼ 0.9 meV

which precludes a significant contribution from intersubband scattering between the

electric subbands.

Next, we note the presence of beating in the Shubnikov-de Haas oscillations in Fig.

5.7 which is indicative of B = 0 spin-splitting. Such spin-splitting is known to occur in

structurally-asymmetric devices[125, 127, 139] due to Rashba spin-orbit coupling[126].

We sketch the qualitative effect of this splitting in inset (a) of Fig. 5.7. As the 2DHS

density is increased, the electric field (and hence spin splitting) in the well is also

increased. Furthermore, it is know that the presence of a parallel channel can result



106

0.1 1
0.1

1

10

100

NRI = p
U = 1 eV
 = 0.1 nm 
 = 2.2 nm

NBI = 2 x 1013 cm-3

 

 

 (1
06  c

m
2 /V

s)

p (1011 cm-2)

 Experiment
 BI
 RI
 Alloy
 IR
 Total

Figure 5.6. (Color online) Comparison of d = 80 nm experimental data
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this experiment (see text).

in a Hall density different from the sum of the subband densities and a measured

mobility different from that of either subband even in the absence of intersubband

scattering. In our case, we assume that the two parallel channels are non-interacting

B = 0 spin-split subbands of the heavy hole ground state. The measured Hall density

pHall and mobility µHall in the absence of intersubband scattering are given by[3]

pHall =
(p1µ1 + p2µ2)2

p1µ2
1 + p2µ2

2

(5.7)

µHall =
p1µ

2
1 + p2µ

2
2

p1µ1 + p2µ2

(5.8)

where µ1(2) and p1(2) are the mobility and density, respectively, of the first (second)
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Figure 5.7. (Color online) Shubnikov-de Haas oscillations of high density
d = 80 nm, x = 0.45 device. Inset (a): Sketch of the spin-split heavy
hole and light hole ground states in a quantum well. Inset (b): Index of
extrema in Rxx vs. B−1. The high field slope gives the total density of 1.8
× 1011 cm−2, and the low field slope gives the lighter sub-band density of
7 × 1010 cm−2 while the difference in the two gives the second sub-band
density of 1.1 × 1011 cm−2.

subband. Figure 5.8a illustrates the Hall density as a function of the subband mobili-

ties in our peak density sample (sample # 3) predicted by Eq. 5.7 using the subband

densities extracted in Fig. 5.7. It is clear from Fig. 5.8a that in order to measure a

Hall density ∼ 1.8 × 1011 cm−2 the subband mobilities should be comparable, though

the high density subband should have a slightly higher mobility. In order to estimate

the effect of the presence of two subbands on the measured mobility, we therefore

assume that the high density subband is also the high mobility subband. In order to

determine if the presence of the lower mobility subband could by itself account for
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the drop in mobility seen in Fig. 5.3, we assume that the high mobility subband is

unchanged from the peak total mobility value (∼ 2 × 106 cm2/Vs) at low density.

Figure 5.8b shows what we would thus expect to measure as a function of density
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and mobility in the low mobility subband if the high mobility subband has a density

p1 = 1.1 × 1011 cm−2 as we measure in Fig. 5.7. For the measured second subband

density of p2 = 7×1010 cm−2 (dashed red line) we see that this parallel subband effect

would not decrease the measured mobility below ∼ 1.75 × 106 cm2/Vs. We therefore

conclude that the presence of a second, possibly low mobility B = 0 spin-split sub-

band cannot explain our observed drop in mobility at high density in the absence of

intersubband scattering.

A final possible mechanism for the observed drop in mobility at high density

is intersubband scattering between the spin-split subbands of the heavy hole ground

state of the quantum well. The question remains, however, whether or not there exists

a potential capable of coupling the spin-split sub-bands and causing back-scattering.

Such scattering is typically neglected in theoretical calculations of the mobility due

to the assumed lack of a significant spin-flip mechanism[140], though intersubband

hole-hole scattering in inversion-asymmetric structures is not without precedent.[141]

At this time more theoretical work is needed to resolve the relative contributions of

the different scattering mechanisms.

In conclusion, we have performed an experimental study of the density dependence

of mobility in C-doped (001) GaAs/AlGaAs quantum wells by varying the dopant

setback d and Al mole fraction x. The mobility was seen to depend non-monotonically

on the density. At low density the mobility increased with density. The T = 300

mK mobility was found to peak at a value of 2.3 × 106 cm2/Vs at a density of 6.5 ×

1010 cm−2. This 2DHS mobility is among the highest ever reported. Increasing the

density further, however, resulted in a sharp drop in mobility. Scattering calculations

indicate that background ionized impurities and remote ionized impurities will not

lead to a decrease in mobility at high density even with a changing effective mass,

and alloy scattering cannot account for all of our experimental results from various

test structures. Interface roughness scattering contributions remain unclear due to

the difficulty in obtaining physically reasonable roughness parameters that predict

both electron and hole mobilities. Beating in the Shubnikov-de Haas oscillations in
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our high density samples is indicative of zero-field spin-splitting which leaves open

the possibility of an intersubband scattering contribution to the mobility. Further

theoretical work is needed to determine the mechanism and magnitude of such a

contribution.
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JDW would like to thank S. Birner, C. Rössler, and T. Feil for helpful discus-

sions regarding calculations with Nextnano3. JDW is supported by a Sandia Labo-

ratories/Purdue University Excellence in Science and Engineering Fellowship. MJM

acknowledges support from the Miller Family Foundation. The MBE growth and

transport measurements at Purdue are supported by the U.S. Department of Energy,

Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under

Award DE-SC0006671.



111

6. Impact of Heterostructure Design on Transport

Properties in the 2nd Landau Level in In-Situ Back-Gated

Two-Dimensional Electron Gases
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1 Abstract: We report on transport in the 2nd Landau level in in-situ back-gated two-

dimensional electron gases in GaAs/AlxGa1−xAs quantum wells. Minimization of gate

leakage is the primary heterostructure design consideration. Leakage currents resulting in

dissipation as small as a few pW can cause noticeable heating of the electrons at 10 mK,

limiting the formation of novel correlated states. We show that when the heterostructure

design is properly optimized, gate voltages as large as 4V can be applied with negligible

gate leakage, allowing the density to be tuned over a large range from depletion to over 4 ×

1011 cm−2. As a result, the strength of the ν = 5/2 state can be continuously tuned from

onset at n ∼ 1.2× 1011 cm−2 to a maximum ∆5/2 = 625 mK at n = 3.35× 1011 cm−2. An

unusual evolution of the reentrant integer quantum Hall states as a function of density is

also reported.

1J. D. Watson, G. A. Csáthy, and M. J. Manfra (2015). “Impact of heterostructure design on
transport properties in the 2nd Landau level in in-situ back-gated two-dimensional electron gases”.
Manuscript submitted for publication.
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6.1 Introduction

Since the discovery of the fractional quantum Hall effect (FQHE) at ν = 5/2

over 25 years ago[18], this state has drawn intense scrutiny. The well-known Laugh-

lin wave-function and extensions enabled by composite Fermion theory [13] cannot

explain the existence of incompressible states with even-denominator filling. Many

potential wavefunctions have been proposed (see references [142, 52] for a summary

of candidate states), but the exact nature of the ground state at 5/2 is still controver-

sial. The exact ground state realized in experiment may depend on sample param-

eters such as electron density, well width, edge confining potential, etc. Numerical

work[29, 30, 31, 32] has shown strong overlaps with the Pfaffian wavefunction[28] and

its particle-hole conjugate state, the so-called anti-Pfaffian[34, 143]. This is a tanta-

lizing prospect as both these states give rise to non-Abelian quasiparticle excitations

which have been proposed as a route to fault-tolerant quantum computing[26, 27].

There have also, however, been theoretically proposed wavefunctions for the ν =

5/2 state that exhibit Abelian statistics[142, 52]. To date, the experimental tests to

determine the nature of the ground state at ν = 5/2 have failed to agree on the identity

of the wavefunction. Experiments probing the temperature dependence of tunneling

between the edge states at ν = 5/2 have been proposed[144] and conducted[37, 43]

as a way to measure the quasiparticle effective charge e∗ and Luttinger liquid inter-

action parameter g in order to discriminate between proposed wavefunctions. These

experiments, however, were inconclusive as tunneling experiments performed on the

same Hall bar mesa but with different electrostatic confinement potentials gave results

consistent with the non-Abelian anti-Pfaffian and U(1) × SU2(2) states[37] and the

Abelian 331 state[43]. As it is unclear how possible edge reconstruction[145] due to

shallow confining potentials might influence the interpretation of these experiments, it

is possible that the different confinement parameters in the previously studied devices

could be responsible for this apparent discrepancy. It would therefore be desirable

to examine transport in nanostructures in the quantum Hall regime more systemati-
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Figure 6.1. Effect of Ohmic annealing temperature on device performance
from wafer A. (a) Median 2-terminal resistance to ground of individual
contacts measured in the dark at T = 4 K and Vg = 0 as a function of
annealing temperature. (b) Vleak, defined as the voltage at which the gate
leakage current reached 1 nA, as a function of annealing temperature.

cally in samples in which the electron density and confining potential could be tuned

simultaneously in a single structure. A variable density would also allow for direct

comparisons between experimental results in the N = 1 Landau level (LL) and the

more well-understood N = 0 LL in a single device.

In order to undertake such experiments, however, it is necessary to have a thor-

ough understanding of how heterostructure design and device fabrication parameters

affect device yields and the quality of transport in the 2nd LL. Towards this aim, we

have grown and processed a series of high quality, in-situ backgated two-dimensional

electron gases (2DEGs). The processing of similar devices of lower mobility has been

reported[146, 147, 148, 149, 150, 151, 152, 153] and a similar high mobility device has
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been used to examine the energy gaps of FQHE states in the 2nd LL[51]. However,

to our knowledge there has not been a published systematic study of heterostructure

design and processing conditions and their impact on the visibility of states in the

2nd LL.

6.2 Device Growth and Fabrication

We studied three wafers utilizing two heterostructure designs to study the impact

of the heterostructure on the gate leakage and the low temperature transport. Both

designs feature a 2DEG located approximately 200 nm from the surface in a 30 nm

GaAs quantum well flanked by Al0.24Ga0.76As barriers modulation doped from the

top side only at a setback of ∼ 70 nm. The dopants were incorporated in a so-called

doping well scheme (also known as a short-period superlattice) [21, 68, 85, 56] which

has been found empirically to maximize the FQHE energy gaps in the 2nd LL. The in-

situ gate consisted of an N+ GaAs layer situated 850 nm below the bottom interface

of the quantum well. The key difference between the two designs was that design #1

used a 200 nm Al0.24Ga0.76As barrier to separate the quantum well from a GaAs/AlAs

(2/2 nm) superlattice while design #2 decreased this superlattice setback to 20 nm

while keeping the gate setback fixed at 850 nm. Wafers A and B utilized design #1

while wafer C utilized design #2.

Device fabrication began by etching via holes to the gate layer using an etchant

consisting of 50:5:1 water:phosphoric:peroxide followed by a second, ∼ 160 nm deep

etch to define 1 mm Van der Pauw square mesas. Ohmic contacts consisted of a

8/80/160/36 nm stack of Ni/Ge/Au/Ni and were annealed for 1 min in forming gas

at a variety of temperatures. Following the annealing, large TiAu pads off of the

mesa were deposited in order to facilitate wirebonding.

Figure 6.1 shows the effect of annealing temperature on the quality of the contacts

and the gate leakage measured in the dark at T = 4 K on devices fabricated from

wafer B. The lead resistance of the measurement setup was ∼ 1 Ω, so the 2-terminal



115

resistance values quoted here are reasonable proxies for the true contact resistance.

At an annealing temperature of 360 ◦C, the contacts were electrically open at low

temperature, and the contact morphology was extremely smooth, indicating that the

metal did not melt or diffuse significantly during the anneal. Figure 6.1b displays the

effect of the annealing on the gate leakage. To quantify the leakage from our devices,

we defined Vleak as the gate voltage Vg at which the gate leakage current reached 1

nA; thus high values of Vleak are expected for a high quality gate insulating layer.

Both the 2-terminal resistance and Vleak decrease monotonically as the annealing

temperature is increased and the NiAuGe diffuses further into the semiconductor.

To further study the impact of mask design and processing parameters on the gate

leakage and contact resistance, we fabricated a set of test structures (not shown) which

gave evidence that the gate leakage was primarily through the annealed contacts and

not through the bulk of the mesa. In addition, the test structures gave evidence

that the leakage current density through annealed metal in etched regions was larger

than that through annealed metal in un-etched regions. The increased electric field

due to the decreased gate-contact separation in the etched regions was insufficient to

account for this increase in leakage density. This observation appears to imply that

the etching procedure enhances the subsequent diffusion of the contacts. With this

in mind, we designed our lithographic mask sets to minimize the total Ohmic area,

particularly in the region off of the etched mesa. In our final design the total Ohmic

area was < 1.5 × 104 µm2 per device, and the total Ohmic overhang off each mesa

was ∼ 6000 µm2. By minimizing the total time the etched sidewall of the mesa was

exposed to air between the etch step and the metallization (typically ∼ 3-4 hours)

and optimizing the geometry of the Ohmic contacts to include 45◦ scallops, we were

able to produce devices with acceptably low contact resistances in the range of a few

hundred Ohms while minimizing the gate leakage.

Next, we examined the impact of heterostructure design on device performance.

Using our optimized fabrication recipe and mask set, we fabricated devices on both

wafers B and C, using an annealing temperature of 375 ◦C. Figure 6.2 is a histogram
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Figure 6.2. Histogram of leakage turn-on voltage Vleak for devices fabri-
cated with the optimized processing recipe and mask set. All the devices
were annealed at 375 ◦C. The dashed line represents the voltage required
to reach a 2DEG density of ∼ 3.2 × 1011 cm−2.

of the leakage turn-on Vleak for devices from each wafer. The leakage in the majority

of devices from wafer B (black bars) turned on around 2.2 V while the leakage in

devices from wafer C (red bars) typically turned on around 3.8 V. Evidently, the

proximity of the superlattice to the quantum well has a pronounced effect on the gate

leakage.

The dashed line in Fig. 6.2 represents the gate voltage required in our geometry to

reach a 2DEG density of ∼ 3.2 × 1011 cm−2, roughly twice the zero-bias density and

the approximate electron density of 2DEGs exhibiting state-of-the-art energy gaps in

the 2nd LL (see for instance references [154, 86, 56]). As the devices from wafer C

clearly could be biased well beyond the point necessary to study the FQHE of the

2nd LL, we fabricated Hall bar devices with larger contacts on wafer C to check how

much less stringent the device design and fabrication requirements were for this wafer
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to exhibit acceptable gate leakage. These devices were based on a design[87] known

to both exhibit high quality transport in the 2nd LL and allow the incorporation of

nanostructures. The total Ohmic area per device was 3.0 × 105 µm2 with 4.6 × 104

µm2 overhanging the edge of the mesa. Even though the Ohmic area in the etch field

increased by a factor of ∼ 8 and the total Ohmic area increased by a factor of ∼ 20

from our optimized mask design, the leakage turn-on in most devices was still beyond

2.5 V, further highlighting the importance of proper heterostructure design.

We speculate that the large reduction in gate leakage in wafer C is due to two

effects. First, the alternating layers of the superlattice act as a diffusion barrier[72, 73]

to the metal from the Ohmic contacts; thus, by moving the superlattice closer to the

quantum well, less metal is able to diffuse towards the gate, thereby reducing the

shorting of the Ohmics to the gate. In addition, Fowler-Nordheim tunneling[155, 156,

157, 158, 159] from the bulk of the 2DEG to the gate can be expected to be reduced

by moving the tall AlAs barriers of the superlattice closer to the 2DEG. The fact

that there was such a minimal decrease in Vleak when the contact area was increased

on wafer C (see Fig. 6.2) may suggest that with our optimized fabrication procedure

Fowler-Nordheim tunneling in wafer C is comparable to leakage from the contacts.

While moving the superlattice closer to the quantum well has the benefit of dra-

matically increasing the maximum achievable density, it also has the undesirable

consequence of placing a significant amount of AlAs close to the quantum well. It is

known that Al is an effective getter of vacuum impurities during MBE growth[68],

and thus moving the superlattice closer to the 2DEG may degrade the quality of the

FQHE states. Indeed, the average maximum electron mobility in devices from wafer

B was ∼ 15× 106 cm2/Vs while that from wafer C was ∼ 11× 106 cm2/Vs. Wafers B

and C were grown on the same day, so it appears likely that the decrease in mobility

can be attributed to the change in heterostructure design. That being said, it has

become clear in recent years that the zero field mobility is not a good predictor of

energy gaps in the 2nd LL[51, 154, 160, 56]. Consequently, it was necessary to examine
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Figure 6.3. Magnetotransport in the lower spin branch of the 2nd LL in
device A. During the first cool down of the sample (black curves) the sam-
ple was mounted on a commercial ceramic chip carrier. At a gate leakage
current (power) of ∼ 63 pA (76 pW) the electrons appear very warm as
seen by the lack of RIQHE features, despite a low mixing chamber temper-
ature TMC. During the second cool down of the sample (blue curves), the
device was mounted on a homemade header with a copper strip screwed
onto the end of the cold finger on the mixing chamber. The electrons
were obviously much colder even for a slightly higher TMC. The green
curve shows the transport around ν = 5/2 during the second cooldown
for TMC = 51 mK. Comparing the green and black data, we conclude that
the electron temperature was ∼ 50 mK for TMC = 11 mK during the first
cooldown.

the magnetotransport at low temperature to make any definitive statement on the

potential negative impact of moving the superlattice closer to the 2DEG.
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6.3 Low Temperature Transport

Figure 6.3 illustrates the importance of minimizing the gate leakage and properly

heat sinking the sample in order to study the 2nd LL at low temperatures (T < 25

mK). The data shown were taken from an early device from wafer A which was

fabricated prior to the final optimization of our processing recipe. During the first

cool down of the device, the Joule heating of the electrons due to the gate leakage

current evidently caused the electron temperature to depart from the mixing chamber

temperature TMC for a gate leakage current (power) ∼ 4 pA (∼ 3.5 pW) as evinced by

the weakening of the reentrant integer quantum Hall effect (RIQHE) features (data

not shown). By contrast, the excitation current of 2.1 nA contributed a neglible

power dissipation of ∼ 45 fW at ν = 5/2. In order to facilitate wire bonding, we

mounted the device on a commercial bondable ceramic chip carrier during the first

cool-down. This meant, however, that the sample was only cooled through the 18 µm

thick Au bond wires. To improve the heat sinking, we re-wired the same device on a

homemade header. In this design the sample was mounted to a strip of Cu with Ag

paint, and the Cu strip was screwed directly onto the Cu cold finger of the mixing

chamber resulting in a continuous metal connection between the mixing chamber and

sample. With this improved heat sinking, heating of the electrons was not evident

until a gate leakage current (power) ∼ 56 pA (67pW). Figure 6.3 illustrates the vast

improvement in electron temperature achieved by improving the heat sinking of the

sample. For a fixed density and approximately constant gate leakage current, the data

taken with the Cu strip header show strong RIQHE features while the data taken

with the ceramic chip carrier shows no RIQHE features. To quantify Telectron during

the first cool-down, we show data (green curve in Fig. 6.3) taken at TMC = 51 mK

during the second cooldown. The insulating peaks in Rxx in the vicinity of ν = 5/2

at TMC = 51 mK during the second cool-down are comparable to those seen at TMC

= 11 mK during the first cool-down. This allows us to estimate Telectron ∼ 50 mK for

the black curves in Fig. 6.3.
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Figure 6.4. Magnetotransport in device C after illumination with a red
LED. The re-entrant states are labelled following the convention in ref-
erence [161]. Red data show the transport for the maximum strength in
RIQHE states 2a and 2b while the blue data show transport at the highest
density before the second subband became occupied.

After screening devices from each wafer at T = 4 K and T = 300 mK, we cooled one

exemplary device each from wafers B (device B) and C (device C) to low temperature

(< 25 mK) to examine the transport as a function of density at low temperature.

Figure 6.4 shows low temperature transport (TMC ∼ 10 mK) at two different densities

for device C after illumination with a red LED. The device shows excellent transport

with all four RIQHE states present and well developed FQHE states at ν = 14/5,

8/3, 5/2, and 7/3. In addition, nascent states at ν = 12/5 and ν = 2 + 6/13 begin

to develop at high density. This is, to our knowledge, the first time these states have

been observed in a back-gated device, and their presence in spite of their extreme

fragility[22, 25, 162] further points to the high quality of the 2DEG.

We examined the strength of the FQHE in each device quantitatively by measuring

the gap at ν = 5/2 (∆5/2). Figure 6.5 displays the gap at ν = 5/2 as a function of
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Figure 6.5. Gap at ν = 5/2 as a function of density for devices B and C.
Inset shows the Arrhenius plot for device C at a density of 3.35 × 1011

cm−2 where the gap was measured to be 625 mK.

density for devices B and C. It is clear that, within the experimental resolution,

the gaps are nearly identical for both devices at low density (n < 2.5 × 1011 cm−2).

Evidently, neither the day-to-day variation in the MBE growth conditions nor the

uncontrolled sample degradation from device fabrication nor the proximity of the

superlattice to the 2DEG significantly affect the gap at ν = 5/2. Device C, however,

allows investigation of much higher 2DEG densities. Moreover, the magnitude of the

gaps are very large with the gap in device C reaching a maximum value of 625 mK,

the highest reported to date, at a density of 3.35× 1011 cm−2.

One noticeable feature of the data from device C in Fig. 6.5 is that at the high-

est density measured the gap shows a pronounced drop. It has been previously

reported[163] that the gap at ν = 5/2 drops suddenly when the energy difference

between the Fermi energy EF and the first excited electric sub-band in the quantum

well equals the cyclotron energy. In this case, there is a level crossing and the ground
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and the second sub-band (blue circles) overlaid with ∆5/2 for Wafer C.
∆5/2 drops suddenly at high density when the ground state is pushed into
the lowest LL of the anti-symmetric sub-band.

state is pushed into the lowest LL of the anti-symmetric sub-band. Figure 6.6 shows

the calculated[117] energy spacing along with the cyclotron energy as a function of

density. As expected, the experimentally measured gap at ν = 5/2 is seen to drop

suddenly when the cyclotron energy becomes approximately equal to the gap between

EF and the second sub-band.

Finally, the RIQHE states in device C (from wafer C) showed an interesting evo-

lution with density. In order to quantitatively compare the states, we defined the

strength S of the RIQHE states as

S ≡
|Rc

xy −Rxy|
|Rc

xy −Ri
xy|

(6.1)

where Rc
xy is the the classical Hall resistance at the filling fraction of interest, Rxy

is the actual Hall resistance at the peak position, and Ri
xy is the resistance of the
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Figure 6.7. Strength (as defined in the text) of the RIQHE in device C
during the second cool-down as a function of density; the power dissipation
from the gate leakage current is shown in the top panel. States 2a and 2b
weaken over the measured density range while states 2c and 2d strengthen
over the same range.

nearest integer Hall plateau. Using this definition, a fully quantized RIQHE state

has a strength of 1 while a completely absent state has a strength of 0. Figure 6.7

shows the evolution of the RIQHE states in device C during its second cool-down.

The states on the high field side of ν = 5/2, 2a and 2b, are seen to weaken over

the measured density range while states 2c and 2d continue to strengthen. Figure

6.8 shows a comparison of the evolution of state 2a in device C as a function of

density for two different cooldowns. Even though the power dissipation from the

gate leakage varied by ∼ 1 order of magnitude between the two cool-downs, the data

show the same trend. Comparisons between the other three states for the two cool-

downs show similar agreement. This appears to indicate that the observed evolution

in strength is driven primarily by the 2DEG density and not by heating from the
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Figure 6.8. Comparison of the strength of the 2a RIQHE state in device
C from two different cooldowns. The strength of the state is compara-
ble between the two cooldowns despite the large change in gate power
dissipation.

gate leakage. At present, the origin of this behavior is not understood. Regardless of

the mechanism that causes states 2a and 2b to weaken with increasing density, this

behavior is qualitatively different than that seen in states 2c and 2d and may point

to a difference in the underlying localization mechanisms. In contrast, the strength

of all the RIQHE states in device B (from wafer B) with the larger superlattice

setback (data not shown) were seen to increase with density up to a density (power

dissipation) of 2.67×1011 cm−2 (6.4 pW) after which all the RIQHE states weakened.

While we cannot identify the mechanisms causing localization, it appears that the

different proximity of the superlattice to the 2DEG in wafers B and C has a significant

impact. Based on our measurements from all three devices, we estimate that ∼ 10

pW is the maximum acceptable power dissipation from the gate leakage before the

RIQHE states begin to weaken given the cooling power of our dilution refrigerator.
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This extremely low power level serves to highlight the necessity of minimizing the

gate leakage in order to study the 2nd LL.

6.4 Conclusion

To summarize, we have examined the effect of heterostructure design and device

processing on the performance of in-situ back-gated 2DEGs in the 2nd LL. We found

that the position of the GaAs/AlAs superlattice barrier relative to quantum well has

a large impact on the leakage characteristics of the device due to its effectiveness in

blocking the diffusion of the Ohmic contacts towards the gate and minimizing Fowler-

Nordheim tunneling. Moving the superlattice closer to the 2DEG greatly increases

the range of low-leakage gating without significantly degrading the strength of the

gap at ν = 5/2 or other correlated states in the 2nd LL. In addition, we found that

gate leakage dissipation powers as small as a few pW are sufficient to cause electronic

heating that impacts transport in the 2nd LL. By improving the heat sinking of the

lattice, the acceptable power dissipation is increased to ∼ 10 pW. Moreover, it is

likely that the FQHE gaps would continue to rise at higher density beyond what

we report here if the electric sub-bands were spaced sufficiently far apart. Thus,

examining gaps as a function of density in narrower quantum wells could potentially

yield important results on the density dependence of the gap at more exotic fractions

such as ν = 12/5. As we have demonstrated a robust recipe for these structures and

as the FQHE states in the 2nd LL are very strong over a wide range of density, these

devices should prove an interesting platform for studying transport in nanostructures

as a function of density in the 2nd LL.
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7. Summary and Future Work

7.1 High Mobility MBE

Our group’s experience during the first two growth campaigns has consistently

pointed to the purity of the Ga source material as the primary limit on the resulting

2DEG mobility. Further improvements to the gallium quality, however, will likely be

a very involved endeavor as material suppliers are typically not interested in changing

their procedures without a clear need in industrial settings. Perhaps at some point in

the future the Ga outgassing chamber I built will in fact be necessary to make further

improvements in Ga quality.

That being said, our group has also done extensive work to show that the zero

field mobility is in fact a poor indicator of the quality of 2nd LL physics. In addi-

tion, it seems unlikely that major progress in the field (e.g. an experiment which

decisively reveals the identity of the ground state at ν = 5/2) will result from bulk

transport measurements alone. Future high-impact experiments will very likely re-

quire more complex nanostructures. Due to the poor gate-ability of the doping well

heterostructures that typically give the best 2nd LL transport, however, it appears

that improvements in heterostructure design which could allow more stable gating

while preserving the strength of the states in the 2nd LL would have a large impact

on the field.

7.2 2D Hole Systems

Due to the combination of large effective mass and high mobility, 2D hole systems

in GaAs offer a unique platform for studying strongly interacting systems. In addition,

the tuneability of spin-orbit coupling and effective mass allow for extra experimental
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knobs not present in the conduction band of GaAs. Moreover, the reduced hyperfine

coupling of holes to nuclear spins presents a possible avenue to more robust spin

qubits in GaAs.

Given that our results in chapter 5 indicate that interface roughness scattering

may limit the mobility at higher density, it would be interesting to more thoroughly

explore symmetrically doped quantum wells as well as other heterostructure designs

intended to minimize interface roughness scattering. By contrast, the mobility in

low density samples appears to be limited by remote impurity scattering, and, as

such, growing samples with even larger dopant setbacks could be important for work

with metal-insulator transitions, for instance. The relative importance of remote

impurity scattering, however, is still not firmly established experimentally since the

zero field mobility had not saturated by 300 mK in the wafers measured in chapter 5.

Characterizations at dilution refrigerator temperatures should, therefore, shed some

light on routes to higher quality low density hole systems.

7.3 The ν = 5/2 FQHE State

With the potential for discovering a non-Abelian state of matter at ν = 5/2 there

is significant motivation for continuing to study this system. In addition, there is

still much that is unclear regarding the true nature of the ground state. Given the

incomplete and sometimes even contradictory results of various experiments, it seems

clear that systematic studies of the influence of heterostructure and device designs

are worth pursuing. In particular, a clearer understanding of the tuneability of the

edge state structure could provide motivation for more theoretical work including the

impact of edge reconstructions on transport in nanostructures. The density-tuneable

back-gated heterostructures presented in chapter 6 are now at a position to be useful

in these experiments. Given the extremely high quality of the transport and the

widely tuneable density, these structures will serve as an ideal platform for studying

nanostructure transport with varying energy scales.



APPENDICES



128

A. Computer Codes

In this section I’ve included some input files for the Nextnano3 Schrodinger/Poisson

solver as well as the Matlab code I used to calculate the scattering rates in [102].

For the Nextnano simulations of gated devices sometimes small, seemingly insignif-

icant changes can cause the simulation to not converge. The scattering calculations

were intended for estimating the transport lifetime resulting from various scattering

mechanisms as a function of wafer design. The calculations primarily follow those in

reference [130]; they can be easily adjusted to calculate the quantum lifetime as well.

A.1 Standard Structure Nextnano Input

The code shown below is what I have been using for our so-called “standard

structure” which is a doping-well type heterostructure with a 30 nm quantum well.

This structure has been found to maximize the mobility and ν = 5/2 energy gap,

and we commonly use it as a test of the cleanliness of the MBE. The main issue in

simulating these structures is that Nextnano calculates the dopant ionization prior to

doing any Schrodinger calculation. This means that if you naively input the binding

energy of Si in GaAs (∼ 6 meV), Nextnano will show flat bands. To get the code to

show physically reasonable charge accumulation in the quantum well it is necessary to

first calculate the binding energy with the spatial quantization of the doping well taken

into account and then insert this by hand into the code. To first order the dopant

level Ed which you should input into Nextnano is given by Ed = E0−Eb where E0 is

the ground state energy of the GaAs/AlAs finite square well referenced to the bottom

of the well (remember this is backwards from many elementary quantum mechanics

textbooks which usually define the energy levels relative to the top of the well) and Eb

is the binding energy of Si in GaAs (∼ 6 meV). Assuming you insert enough Si into
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the doping layer, E0 will define the position of the Fermi level (Nextnano defines this

as E = 0 in the band structure output) and thus cause charge to accumulate in the

main quantum well. Since Nextnano defines a positive Ed as below the conduction

band edge, you need to stick a minus sign in front of the energy you calculate for

Ed to put the Fermi level above the conduction band edge in the GaAs layer in the

doping wells. I’ve inserted comments where appropriate to document the flow of the

code below; the Nextnano3 website (http://www.nextnano.com/nextnano3/) has a

lot of documentation, though, and the “Keywords” section is particularly useful for

understanding the various parts of the input files. This input file was run successfully

on a 64-bit Windows 7 PC with the “nn3 Intel 32bit.exe” executable compiled on

6/9/2011. Note that newer (or older) versions of Nextnano may or may not run this

file successfully. I would recommend saving all versions of Nextnano you use in their

own folders in case a new release fixes a bug for one input file but creates a new bug

for a different input file. Figure A.1 shows the result from the input file given below.

!****BEGIN SIMULATION********!

!Exclamation points denote comments

!-------------------------------------------------------------!

$simulation-dimension

dimension = 1 !Can also do 2 & 3, but that is more complicated

orientation = 0 0 1

$end_simulation-dimension

!-------------------------------------------------------------!

%FunctionParser = yes !Allows the user to use variables - very

!useful for creating input files that update

!automatically when layer thicknesses are

!changed

!-------------------------------------------------------------!
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Figure A.1. Output of standard structure simulation.

$warnings

warnings = .FALSE. !This doesn’t make much difference

$end_warnings

!-------------------------------------------------------------!

!-------------------------------------------------------------!

$global-parameters

lattice-temperature = 1d0 !Kelvin

$end_global-parameters

!-------------------------------------------------------------!
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!-------------------------------------------------------------!

$simulation-flow-control

flow-scheme = 2 !Calculates Schrodinger/Poisson

!self-consistently

raw-directory-in = raw_data1\ !Not used here, but can be used

!with other flow schemes

raw-potential-in = no !Used with other flow schemes

strain-calculation = zero-strain-amorphous !All you need for GaAs

$end_simulation-flow-control

!-------------------------------------------------------------!

!Variables to define simulation region

!Variables denoted by "%"

!-------------------------------------------------------------!

!Layer thicknesses I will use

!Because I used variables the code will update the coordinates

!of the boundaries automatically. If I hadn’t used variables,

!I would have to update all the coordinates following the

!changed layer by hand (very time consuming)

%Cap = 10d0 !Thickness in nm. "d0" denotes floating point number

%AlGaAsTopSpacer = 100d0

%AlAsBarrier = 2d0

%GaAsDope = 3d0

%TopBarrier = 75d0

%QW = 30d0

%BotBarrier = 75d0

%AlGaAsBotSpacer = 250d0

%AlGaAsSL = 10d0
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%GaAsSL = 3d0

!Define sequence of layers (starting from surface)

!Each variable represents the coordinate of a layer boundary

%R2 = %Cap !Start with region 2 - region 1 is used for a Poisson

!boundary condition defined later

%R3 = %R2 + %AlGaAsTopSpacer

%R4 = %R3 + %AlAsBarrier

%R5 = %R4 + %GaAsDope

%R6 = %R5 + %AlAsBarrier

%R7 = %R6 + %TopBarrier

%R8 = %R7 + %QW

%R9 = %R8 + %BotBarrier

%Rten = %R9 + %AlAsBarrier !NN doesn’t like "R10"

%Releven = %Rten + %GaAsDope

%Rtwelve = %Releven + %AlAsBarrier

%Rthirteen = %Rtwelve + %AlGaAsBotSpacer

%Rfourteen = %Rthirteen + %AlGaAsSL

%Rfifteen = %Rfourteen + %GaAsSL

%Rsixteen = %Rfifteen + %AlGaAsSL

%Rseventeen = %Rsixteen + %GaAsSL

%Reighteen = %Rseventeen + %AlGaAsSL

%Rnineteen = %Reighteen + %GaAsSL

%Rtwenty = %Rnineteen +%AlGaAsSL

%TopDeltaHigh = %R5 - 1.45d0 + .5d0 !Define a delta doping layer by

!a 1 nm thick layer of doped

!material (1 nm makes the math

!easier). Center the doping in
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!the middle of the doping well

%TopDeltaLow = %R5 - 1.45d0 - .5d0

%BotDeltaHigh = %Releven - 1.45d0 + .5d0

%BotDeltaLow = %Releven - 1.45d0 - .5d0

!-------------------------------------------------------------!

$domain-coordinates

domain-type = 0 0 1 !Do not change

z-coordinates = -.5d0 %Rtwenty !Start at -.5d0 for the

!Poisson boundary. First

!real layer will start at

!0d0

growth-coordinate-axis = 0 0 1

pseudomorphic-on = GaAs !Do not change

$end_domain-coordinates

!-------------------------------------------------------------!

!-------------------------------------------------------------!

!Now assign the coordinates you created in variables to

!"region-numbers" (i.e. what Nextnano uses internally to define

!different materials, grid points, etc.)

$regions

region-number = 1 base-geometry = line region-priority = 1

z-coordinates = -.5d0 0d0

region-number = 2 base-geometry = line region-priority = 1

z-coordinates = 0d0 %R2

region-number = 3 base-geometry = line region-priority = 1
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z-coordinates = %R2 %R3

region-number = 4 base-geometry = line region-priority = 1

z-coordinates = %R3 %R4

region-number = 5 base-geometry = line region-priority = 1

z-coordinates = %R4 %R5

region-number = 6 base-geometry = line region-priority = 1

z-coordinates = %R5 %R6

region-number = 7 base-geometry = line region-priority = 1

z-coordinates = %R6 %R7

region-number = 8 base-geometry = line region-priority = 1

z-coordinates = %R7 %R8

region-number = 9 base-geometry = line region-priority = 1

z-coordinates = %R8 %R9

region-number = 10 base-geometry = line region-priority = 1

z-coordinates = %R9 %Rten

region-number = 11 base-geometry = line region-priority = 1

z-coordinates = %Rten %Releven

region-number = 12 base-geometry = line region-priority = 1

z-coordinates = %Releven %Rtwelve
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region-number = 13 base-geometry = line region-priority = 1

z-coordinates = %Rtwelve %Rthirteen

region-number = 14 base-geometry = line region-priority = 1

z-coordinates = %Rthirteen %Rfourteen

region-number = 15 base-geometry = line region-priority = 1

z-coordinates = %Rfourteen %Rfifteen

region-number = 16 base-geometry = line region-priority = 1

z-coordinates = %Rfifteen %Rsixteen

region-number = 17 base-geometry = line region-priority = 1

z-coordinates = %Rsixteen %Rseventeen

region-number = 18 base-geometry = line region-priority = 1

z-coordinates = %Rseventeen %Reighteen

region-number = 19 base-geometry = line region-priority = 1

z-coordinates = %Reighteen %Rnineteen

region-number = 20 base-geometry = line region-priority = 1

z-coordinates = %Rnineteen %Rtwenty

$end_regions

!-------------------------------------------------------------!

%AlAsFactor = 1d0 !Other values can be used for non-uniform grid

%GaAsFactor = 1d0

%AlAsGrid = 7 !Will give 0.25nm spacing



136

%GaAsGrid = 5 !Will give 0.25nm spacing

%INT(AlAsGrid) = %AlAsGrid !Convert to integer

%INT(GaAsGrid) = %GaAsGrid

!-------------------------------------------------------------!

!Note z-grid-lines, z-nodes, z-grid-factors should each be on their

!own line. These sections extend to multiple lines for formatting

!purposes in this dissertation

$grid-specification

grid-type = 0 0 1 !Don’t change

!Grid line at boundary of each region

z-grid-lines = -.5d0 0d0 %R2 %R3 %R4 %R5 %R6 %R7 %R8 %R9 %Rten

%Releven %Rtwelve %Rthirteen %Rfourteen

%Rfifteen %Rsixteen %Rseventeen %Reighteen

%Rnineteen %Rtwenty

!z-nodes = # of grid points. Set this to a uniform value. As a

!check with new input files, always set the donor binding energy to

!-100d0 (i.e. fully ionized) and make sure ionized impurity

!concentration matches what you told Nextnano (poor grid spacing can

!cause NN to get this wrong)

z-nodes = 1 19 199 %INT(AlAsGrid) %INT(GaAsGrid)

%INT(AlAsGrid) 149 59 149 %INT(AlAsGrid)

%INT(GaAsGrid) %INT(AlAsGrid) 499 19 5 19 5 19

5 19

z-grid-factors = 1d0 1d0 1d0 %AlAsFactor %GaAsFactor %AlAsFactor 1d0

1d0 1d0 %AlAsFactor %GaAsFactor %AlAsFactor 1d0 1d0

1d0 1d0 1d0 1d0 1d0 1d0
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$end_grid-specification

!-------------------------------------------------------------!

!-------------------------------------------------------------!

!Assign regions to clusters. You will assign each cluster to a

!material and/or Poisson boundary condition later

$region-cluster

cluster-number = 1 region-numbers = 1

cluster-number = 2 region-numbers = 2 5 8 11 15 17 19 21

cluster-number = 3 region-numbers = 3 7 9 13 14 16 18 20

cluster-number = 4 region-numbers = 4 6 10 12

$end_region-cluster

!-------------------------------------------------------------!

!-------------------------------------------------------------!

$material !See Keywords on website for allowed materials

!Cluster 1 will be a Poisson boundary condition

material-number = 1

material-name = GaAs

cluster-numbers = 1

material-number = 2

material-name = GaAs

cluster-numbers = 2

material-number = 3

material-name = Al(x)Ga(1-x)As

cluster-numbers = 3

alloy-function = constant
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material-number = 4

material-name = AlAs

cluster-numbers = 4

$end_material

!-------------------------------------------------------------!

!-------------------------------------------------------------!

$alloy-function

material-number = 3

function-name = constant

xalloy = 0.24d0

$end_alloy-function

!-------------------------------------------------------------!

!-------------------------------------------------------------!

!Define coordinates of doped regions. "only-region" defines min/max

!z coordinates of that doping function.

$doping-function

doping-function-number = 1

impurity-number = 1

doping-concentration = 10d0 !Units: 10^18 cm^-3 - i.e.

!10*10^18 cm^-3 * 1 nm = 1E12 cm^-2

!sheet density

only-region = %TopDeltaLow %TopDeltaHigh

doping-function-number = 2

impurity-number = 1

doping-concentration = 8d0
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only-region = %BotDeltaLow %BotDeltaHigh

$end_doping-function

!-------------------------------------------------------------!

!-------------------------------------------------------------!

!Specify properties of each dopant used

$impurity-parameters

impurity-number = 1

impurity-type = n-type ! n-type, p-type

number-of-energy-levels = 1 !Do not change

energy-levels-relative = -0.2d0 !Binding energy of dopant [eV].

!Negative value means dopant

!level above conduction band

!edge (or below valence band

!edge)

degeneracy-of-energy-levels = 2 !2 for n-type, 4 for p-type

$end_impurity-parameters !

!-------------------------------------------------------------!

!-------------------------------------------------------------!

$poisson-boundary-conditions

!Specify Poisson boundary conditions. Here this is used to set Fermi

!level pinning due to surface states

poisson-cluster-number = 1 !Can use this for defining current

!calculations or voltage sweeps applied

!at different points in the

!heterostructure

region-cluster-number = 1

applied-voltage = 0.0d0
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boundary-condition-type = schottky !See Keywords for options

contact-control = voltage

schottky-barrier = .8d0 !Height of barrier [eV]

$end_poisson-boundary-conditions

!-------------------------------------------------------------!

!-------------------------------------------------------------!

!Define variables for position of quantum regions

%Quant1low = %TopDeltaHigh - 20d0

%Quant1high = %TopDeltaHigh + 20d0

%Quant2low = %R7 - 30d0

%Quant2high = %R8 + 30d0

%Quant3low = %BotDeltaHigh - 20d0

%Quant3high = %BotDeltaHigh + 40d0

%Quant4low = %Rfourteen - 20d0

%Quant4high = %Rtwenty

!-------------------------------------------------------------!

$quantum-regions

!Define regions where Schrodinger will be solved

region-number = 1 !Top doping region

base-geometry = line

region-priority = 1

z-coordinates = %Quant1low %Quant1high

region-number = 2 !2DEG

base-geometry = line

region-priority = 1

z-coordinates = %Quant2low %Quant2high
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region-number = 3 !Bottom doping region

base-geometry = line

region-priority = 1

z-coordinates = %Quant3low %Quant3high

region-number = 4 !Superlattice

base-geometry = line

region-priority = 1

z-coordinates = %Quant4low %Quant4high

$end_quantum-regions

!-------------------------------------------------------------!

!-------------------------------------------------------------!

$quantum-cluster

!Group quantum regions into cluster. Will later specify unique quantum

!calculations for each cluster

cluster-number = 1 !Quantum cluster number

region-numbers = 1 !Quantum region number

deactivate-cluster = no

cluster-number = 2

region-numbers = 2

deactivate-cluster = no

cluster-number = 3

region-numbers = 3

deactivate-cluster = no
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cluster-number = 4

region-numbers = 4

deactivate-cluster = no

$end_quantum-cluster

!-------------------------------------------------------------!

!-------------------------------------------------------------!

$quantum-model-holes

model-number = 1

model-name = effective-mass !8x8kp,

!6x6kp or effective-mass

cluster-numbers = 1

valence-band-numbers = 1 2 3 !i.e. HH, LH,

!Split-off

number-of-eigenvalues-per-band = 3 3 3 !Array size must

!match array size of

!valence-band-numbers

boundary-condition-001 = Dirichlet !See Keywords

boundary-condition-010 = Dirichlet

boundary-condition-100 = Dirichlet

$end_quantum-model-holes

!-------------------------------------------------------------!

!-------------------------------------------------------------!

$quantum-model-electrons

model-number = 1

model-name = effective-mass !8x8kp or

!effective-mass

cluster-numbers = 1
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conduction-band-numbers = 1 2 3 !i.e. Gamma, L, X

number-of-eigenvalues-per-band = 3 3 3 !Array size must

!match array size of

!conduction-band-numbers

boundary-condition-001 = Dirichlet !See Keywords

boundary-condition-010 = Dirichlet

boundary-condition-100 = Dirichlet

$end_quantum-model-electrons

!-------------------------------------------------------------!

!-------------------------------------------------------------!

$quantum-model-holes

model-number = 2

model-name = effective-mass !8x8kp,

!6x6kp or effective-mass

cluster-numbers = 2

valence-band-numbers = 1 2 3 !i.e. HH, LH,

!Split-off

number-of-eigenvalues-per-band = 3 3 3 !Array size must

!match array size of

!valence-band-numbers

boundary-condition-001 = Dirichlet !See Keywords

boundary-condition-010 = Dirichlet

boundary-condition-100 = Dirichlet

$end_quantum-model-holes

!-------------------------------------------------------------!

!-------------------------------------------------------------!

$quantum-model-electrons
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model-number = 2

model-name = effective-mass !8x8kp or

!effective-mass

cluster-numbers = 2

conduction-band-numbers = 1 2 3 !i.e. Gamma, L, X

number-of-eigenvalues-per-band = 3 3 3 !Array size must

!match array size of

!conduction-band-numbers

boundary-condition-001 = Dirichlet !See Keywords

boundary-condition-010 = Dirichlet

boundary-condition-100 = Dirichlet

$end_quantum-model-electrons

!-------------------------------------------------------------!

!-------------------------------------------------------------!

$quantum-model-holes

model-number = 3

model-name = effective-mass !8x8kp,

!6x6kp or effective-mass

cluster-numbers = 3

valence-band-numbers = 1 2 3 !i.e. HH, LH,

!Split-off

number-of-eigenvalues-per-band = 3 3 3 !Array size must

!match array size of

!valence-band-numbers

boundary-condition-001 = Dirichlet !See Keywords

boundary-condition-010 = Dirichlet

boundary-condition-100 = Dirichlet

$end_quantum-model-holes
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!-------------------------------------------------------------!

!-------------------------------------------------------------!

$quantum-model-electrons

model-number = 3

model-name = effective-mass !8x8kp or

!effective-mass

cluster-numbers = 3

conduction-band-numbers = 1 2 3 !i.e. Gamma, L, X

number-of-eigenvalues-per-band = 3 3 3 !Array size must

!match array size of

!conduction-band-numbers

boundary-condition-001 = Dirichlet !See Keywords

boundary-condition-010 = Dirichlet

boundary-condition-100 = Dirichlet

$end_quantum-model-electrons

!-------------------------------------------------------------!

!-------------------------------------------------------------!

$quantum-model-holes

model-number = 4

model-name = effective-mass !8x8kp,

!6x6kp or effective-mass

cluster-numbers = 4

valence-band-numbers = 1 2 3 !i.e. HH, LH,

!Split-off

number-of-eigenvalues-per-band = 3 3 3 !Array size must

!match array size of

!valence-band-numbers
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boundary-condition-001 = Dirichlet !See Keywords

boundary-condition-010 = Dirichlet

boundary-condition-100 = Dirichlet

$end_quantum-model-holes

!-------------------------------------------------------------!

!-------------------------------------------------------------!

$quantum-model-electrons

model-number = 4

model-name = effective-mass !8x8kp or

!effective-mass

cluster-numbers = 4

conduction-band-numbers = 1 2 3 !i.e. Gamma, L, X

number-of-eigenvalues-per-band = 3 3 3 !Array size must

!match array size of

!conduction-band-numbers

boundary-condition-001 = Dirichlet !See Keywords

boundary-condition-010 = Dirichlet

boundary-condition-100 = Dirichlet

$end_quantum-model-electrons

!-------------------------------------------------------------!

!-------------------------------------------------------------!

!Used for sequential calculations with different flow schemes (i.e.

!not important in this example)

$output-raw-data

destination-directory = raw_data1\

potential = yes

fermi-levels = yes
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kp-eigenstates = no

$end_output-raw-data

!-------------------------------------------------------------!

!****IMPORTANT***************************!

!NOTE: CHANGING WHAT NEXTNANO OUTPUTS CAN AFFECT THE CALCULATIONS

!THEMSELVES. BE CAREFUL WHEN CHANGING PARAMETERS IN THIS SECTION.

!ON THE FLIP SIDE, IF A CALCULATION IS NOT CONVERGING, TRY CHANGING

!THE OUTPUT SECTIONS - SOMETIMES THIS HELPS

!*****************************************!

!-------------------------------------------------------------!

$output-1-band-schroedinger

destination-directory = sg_1band1\

sg-structure = yes

conduction-band-numbers = 1 2 3

cb-min-ev = 1

cb-max-ev = 10

valence-band-numbers = 1 2 3

vb-min-ev = 1

vb-max-ev = 10

$end_output-1-band-schroedinger

!-------------------------------------------------------------!

!-------------------------------------------------------------!

!-------------------------------------------------------------!

$output-bandstructure

destination-directory = band_struc1\
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conduction-band-numbers = 1 2 3

valence-band-numbers = 1 2 3

potential = yes

$end_output-bandstructure

!-------------------------------------------------------------!

!-------------------------------------------------------------!

$output-densities

destination-directory = densities1\

electrons = yes

holes = yes

charge-density = yes

intrinsic-density = yes

ionized-dopant-density = yes

piezo-electricity = yes

pyro-electricity = yes

interface-density = yes

integrated-density = yes

subband-density = yes

$end_output-densities

!-------------------------------------------------------------!

!*****END OF SIMULATION******************!

A.2 In-Situ Back-Gated 2DEG Nextnano Input

This input file was used to simulate the band structure and electron density of

an in-situ back-gated 2DEG under voltage bias. It can be quite tricky to get these

gated simulations to converge, so do not be surprised if even minor changes to the
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following input file results in a simulation that doesn’t converge. In particular, overlap

between the Schottky regions and the quantum regions can cause problems. Changes

to the output of the current calculation can also cause problems; as called out in the

previous input file, changing whether or not Nextnano outputs data from the current

calculation can affect the simulation (i.e. cause it to stop converging). Note that in

order to simplify the input file I only included the first few superlattice layers closest

to the quantum well. After that I simply specified a 50% AlGaAs layer to represent

the superlattice. I wasn’t too worried about inaccuracies this might cause since I was

mostly interested in the electric field in the quantum well, the wavefunction symmetry,

and when the second sub-band became occupied. As with the previous input file,

this simulation was run with a 64-bit Windows 7 PC with the “nn3 Intel 32bit.exe”

execeutable compiled on 6/9/2011. For the sake of time, I have not included as many

comments in this input file as compared with the standard structure input file; I

would recommend familiarizing yourself with that input file first before attempting

the gated simulation. Figure A.2 shows the output generated from the input file

below.

!****BEGIN SIMULATION********!

!Exclamation points denote comments

!-------------------------------------------------------------!

$simulation-dimension

dimension = 1 !Can also do 2 & 3, but that is more complicated

orientation = 0 0 1

$end_simulation-dimension

!-------------------------------------------------------------!

%FunctionParser = yes !Allows the user to use variables - very

!useful for creating input files that update

!automatically when layer thicknesses are

!changed
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Figure A.2. Output of in-situ back-gated simulation.

!-------------------------------------------------------------!

$warnings

warnings = .FALSE. !This doesn’t make much difference

$end_warnings

!-------------------------------------------------------------!

!-------------------------------------------------------------!

$global-parameters

lattice-temperature = 1d0 !Kelvin

$end_global-parameters

!-------------------------------------------------------------!
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!-------------------------------------------------------------!

$numeric-control

simulation-dimension = 1

newton-method = Newton-3

current-poisson-method = couple-all-false

current-problem = solve-for-fermi-cg

current-problem-iterations = 100

current-problem-residual = 1d-11

current-block-relaxation-Fermi = 1d0

$end_numeric-control

!-------------------------------------------------------------!

!-------------------------------------------------------------!

$simulation-flow-control

flow-scheme = 1

raw-directory-in = C:\Users\John\Documents\nextnano

\Output\ISBG103121\raw_data1\

raw-potential-in = no !Used with other flow schemes

strain-calculation = zero-strain-amorphous !All you need for GaAs

$end_simulation-flow-control

!-------------------------------------------------------------!

%BotBarrier = 20d0

%AlGaAsBotSpacer = 10d0

%AlAsSL = 2d0

%GaAsSL = 2d0

%AvgSL = 758d0
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%Buffer = 50d0

%Gate = 500d0

%R2 = %Cap

%R3 = %R2 + %AlGaAsTopSpacer

%R4 = %R3 + %AlAsBarrier

%R5 = %R4 + %GaAsDope

%R6 = %R5 + %AlAsBarrier

%R7 = %R6 + %TopBarrier

%R8 = %R7 + %QW

%R9 = %R8 + %BotBarrier

%Rten = %R9 + %AlAsSL

%Releven = %Rten + %GaAsSL

%Rtwelve = %Releven + %AlAsSL

%Rthirteen = %Rtwelve + %GaAsSL

%Rfourteen = %Rthirteen + %AlAsSL

%Rfifteen = %Rfourteen + %GaAsSL

%Rsixteen = %Rfifteen + %AlAsSL

%Rseventeen = %Rsixteen + %GaAsSL

%Reighteen = %Rseventeen + %AlAsSL

%Rnineteen = %Reighteen + %GaAsSL

%Rtwenty = %Rnineteen +%AlAsSL

%Rt1 = %Rtwenty + %AvgSL

%Rttwo = %Rt1 + %Buffer

%Rtthree = %Rttwo + %Gate

%TopDeltaHigh = %R5 - 1.45d0 + .5d0

%TopDeltaLow = %R5 - 1.45d0 - .5d0
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!-------------------------------------------------------------!

$domain-coordinates

domain-type = 0 0 1

z-coordinates = -.5d0 %Rtthree

growth-coordinate-axis = 0 0 1

pseudomorphic-on = GaAs

$end_domain-coordinates

!-------------------------------------------------------------!

!-------------------------------------------------------------!

$regions

region-number = 1 base-geometry = line region-priority = 1

z-coordinates = -.5d0 0d0

region-number = 2 base-geometry = line region-priority = 1

z-coordinates = 0d0 %R2

region-number = 3 base-geometry = line region-priority = 1

z-coordinates = %R2 %R3

region-number = 4 base-geometry = line region-priority = 1

z-coordinates = %R3 %R4

region-number = 5 base-geometry = line region-priority = 1

z-coordinates = %R4 %R5

region-number = 6 base-geometry = line region-priority = 1

z-coordinates = %R5 %R6

region-number = 7 base-geometry = line region-priority = 1

z-coordinates = %R6 %R7

region-number = 8 base-geometry = line region-priority = 1

z-coordinates = %R7 %R8

region-number = 9 base-geometry = line region-priority = 1

z-coordinates = %R8 %R9
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region-number = 10 base-geometry = line region-priority = 1

z-coordinates = %R9 %Rten

region-number = 11 base-geometry = line region-priority = 1

z-coordinates = %Rten %Releven

region-number = 12 base-geometry = line region-priority = 1

z-coordinates = %Releven %Rtwelve

region-number = 13 base-geometry = line region-priority = 1

z-coordinates = %Rtwelve %Rthirteen

region-number = 14 base-geometry = line region-priority = 1

z-coordinates = %Rthirteen %Rfourteen

region-number = 15 base-geometry = line region-priority = 1

z-coordinates = %Rfourteen %Rfifteen

region-number = 16 base-geometry = line region-priority = 1

z-coordinates = %Rfifteen %Rsixteen

region-number = 17 base-geometry = line region-priority = 1

z-coordinates = %Rsixteen %Rseventeen

region-number = 18 base-geometry = line region-priority = 1

z-coordinates = %Rseventeen %Reighteen

region-number = 19 base-geometry = line region-priority = 1

z-coordinates = %Reighteen %Rnineteen

region-number = 20 base-geometry = line region-priority = 1

z-coordinates = %Rnineteen %Rtwenty

region-number = 21 base-geometry = line region-priority = 1

z-coordinates = %Rtwenty %Rt1

region-number = 22 base-geometry = line region-priority = 1

z-coordinates = %Rt1 %Rttwo

region-number = 23 base-geometry = line region-priority = 1

z-coordinates = %Rttwo %Rtthree

$end_regions
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!-------------------------------------------------------------!

%AlAsFactor = 1d0

%GaAsFactor = 1d0

%AlAsGrid = 7

%GaAsGrid = 5

%INT(AlAsGrid) = %AlAsGrid

%INT(GaAsGrid) = %GaAsGrid

!-------------------------------------------------------------!

$grid-specification

grid-type = 0 0 1

z-grid-lines = -.5d0 0d0 %R2 %R3 %R4 %R5 %R6 %R7 %R8 %R9 %Rten

%Releven %Rtwelve %Rthirteen %Rfourteen %Rfifteen

%Rsixteen %Rseventeen %Reighteen %Rnineteen

%Rtwenty %Rt1 %Rttwo %Rtthree

z-nodes = 1 19 199 %INT(AlAsGrid) %INT(GaAsGrid)

%INT(AlAsGrid) 131 59 39 3 3 3 3 3 3 3 3 3 3 3

378 24 249

z-grid-factors = 1d0 1d0 1d0 %AlAsFactor %GaAsFactor %AlAsFactor

1d0 1d0 1d0 %AlAsFactor %GaAsFactor %AlAsFactor

1d0 1d0 1d0 1d0 1d0 1d0 1d0 1d0 1d0 1d0 1d0

$end_grid-specification

!-------------------------------------------------------------!

!-------------------------------------------------------------!

$region-cluster

cluster-number = 1 region-numbers = 1 !Schottky barrier

cluster-number = 2 region-numbers = 2 5 15 17 19 24 !GaAs
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cluster-number = 3 region-numbers = 3 7 9 10 11 12 13 !AlGaAs

cluster-number = 4 region-numbers = 4 6 14 16 18 20 !AlAs

cluster-number = 5 region-numbers = 21 !Avg Superlattice

cluster-number = 6 region-numbers = 8 !Quantum well w/Poisson BC

cluster-number = 7 region-numbers = 22 23 !Backgate w/Poisson BC

$end_region-cluster

!-------------------------------------------------------------!

!-------------------------------------------------------------!

$material

material-number = 1

material-name = GaAs

cluster-numbers = 1

material-number = 2

material-name = GaAs

cluster-numbers = 2

material-number = 3

material-name = Al(x)Ga(1-x)As

cluster-numbers = 3

alloy-function = constant

material-number = 4

material-name = AlAs

cluster-numbers = 4

material-number = 5

material-name = Al(x)Ga(1-x)As
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cluster-numbers = 5

alloy-function = constant

material-number = 6 !Quantum well Fermi contact

material-name = GaAs

cluster-numbers = 6

material-number = 7 !Backgate

material-name = GaAs

cluster-numbers = 7

$end_material

!-------------------------------------------------------------!

!-------------------------------------------------------------!

$alloy-function

material-number = 3

function-name = constant

xalloy = 0.24d0

material-number = 5

function-name = constant

xalloy = 0.5d0

$end_alloy-function

!-------------------------------------------------------------!

!-------------------------------------------------------------!

$doping-function

doping-function-number = 1

impurity-number = 1
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doping-concentration = 10d0

only-region = %TopDeltaLow %TopDeltaHigh

doping-function-number = 2 !Backgate

impurity-number = 2

doping-concentration = 1d0

only-region = %Rttwo %Rtthree

$end_doping-function

!-------------------------------------------------------------!

!-------------------------------------------------------------!

$impurity-parameters

impurity-number = 1

impurity-type = n-type

number-of-energy-levels = 1

energy-levels-relative = -0.2d0

degeneracy-of-energy-levels = 2

impurity-number = 2

impurity-type = n-type

number-of-energy-levels = 1

energy-levels-relative = .006d0 !Si in GaAs

degeneracy-of-energy-levels = 2

$end_impurity-parameters

!-------------------------------------------------------------!

!-------------------------------------------------------------!

$poisson-boundary-conditions

poisson-cluster-number = 1
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region-cluster-number = 1

applied-voltage = 0.0d0

boundary-condition-type = schottky

contact-control = voltage

schottky-barrier = .8d0

poisson-cluster-number = 2 !2DEG

region-cluster-number = 6

applied-voltage = 0.0d0

boundary-condition-type = Fermi !i.e. QW = ground

contact-control = voltage

poisson-cluster-number = 3 !backgate

region-cluster-number = 7

applied-voltage = 0.0d0

boundary-condition-type = schottky

contact-control = voltage

schottky-barrier = .364d0

$end_poisson-boundary-conditions

!-------------------------------------------------------------!

!-------------------------------------------------------------!

$current-cluster

cluster-number = 1

region-numbers = 1

deactivate-cluster = no

$end_current-cluster

!-------------------------------------------------------------!
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!-------------------------------------------------------------!

$current-models

model-number = 1

transport-model-name = simple-drift-model

cluster-numbers = 1

$end_current-models

!-------------------------------------------------------------!

!-------------------------------------------------------------!

$simple-drift-models

model-number = 1

mobility-model = mobility-model-simba-1

current-model-numbers = 1

! charge-carriers = holes-only

$end_simple-drift-models

!-------------------------------------------------------------!

!-------------------------------------------------------------!

$voltage-sweep

sweep-number = 1

sweep-active = yes

poisson-cluster-number = 3

step-size = .05d0

number-of-steps = 50

data-out-every-nth-step = 5

$end_voltage-sweep

!-------------------------------------------------------------!

%Quant1low = %TopDeltaHigh - 20d0
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%Quant1high = %TopDeltaHigh + 20d0

%Quant2low = %R7 - 30d0

%Quant2high = %R8 + 10d0

%Quant3low = %Rfourteen - 8d0

%Quant3high = %Rtwenty + 20d0

!-------------------------------------------------------------!

$quantum-regions

region-number = 1

base-geometry = line

region-priority = 1

z-coordinates = %Quant1low %Quant1high

region-number = 2

base-geometry = line

region-priority = 1

z-coordinates = %Quant2low %Quant2high

region-number = 3

base-geometry = line

region-priority = 1

z-coordinates = %Quant3low %Quant3high

$end_quantum-regions

!-------------------------------------------------------------!

!-------------------------------------------------------------!

$quantum-cluster

cluster-number = 1

region-numbers = 1
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deactivate-cluster = no

cluster-number = 2

region-numbers = 2

deactivate-cluster = no

cluster-number = 3

region-numbers = 3

deactivate-cluster = no

$end_quantum-cluster

!-------------------------------------------------------------!

!-------------------------------------------------------------!

$quantum-model-electrons

model-number = 1

model-name = effective-mass

cluster-numbers = 1

conduction-band-numbers = 1 3 !Gamma and X

number-of-eigenvalues-per-band = 3 3

boundary-condition-001 = Neumann

boundary-condition-010 = Neumann

boundary-condition-100 = Neumann

$end_quantum-model-electrons

!-------------------------------------------------------------!

!-------------------------------------------------------------!

$quantum-model-electrons

model-number = 2

model-name = effective-mass
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cluster-numbers = 2

conduction-band-numbers = 1 3 !Gamma and X

number-of-eigenvalues-per-band = 3 3

boundary-condition-001 = Neumann

boundary-condition-010 = Neumann

boundary-condition-100 = Neumann

$end_quantum-model-electrons

!-------------------------------------------------------------!

!-------------------------------------------------------------!

$quantum-model-electrons

model-number = 3

model-name = effective-mass

cluster-numbers = 3

conduction-band-numbers = 1 3 !Gamma and X

number-of-eigenvalues-per-band = 3 3

boundary-condition-001 = Neumann

boundary-condition-010 = Neumann

boundary-condition-100 = Neumann

$end_quantum-model-electrons

!-------------------------------------------------------------!

!-------------------------------------------------------------!

$output-raw-data

destination-directory = raw_data1\

potential = yes

fermi-levels = yes

kp-eigenstates = no

$end_output-raw-data
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!-------------------------------------------------------------!

!-------------------------------------------------------------!

$output-1-band-schroedinger

destination-directory = sg_1band1\

sg-structure = yes

conduction-band-numbers = 1 3

cb-min-ev = 1

cb-max-ev = 10

$end_output-1-band-schroedinger

!-------------------------------------------------------------!

!-------------------------------------------------------------!

$output-bandstructure

destination-directory = band_struc1\

conduction-band-numbers = 1 2 3

potential = yes

$end_output-bandstructure

!-------------------------------------------------------------!

!-------------------------------------------------------------!

$output-densities

destination-directory = densities1\

electrons = yes

charge-density = yes

ionized-dopant-density = yes

integrated-density = yes

$end_output-densities

!-------------------------------------------------------------!
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!-------------------------------------------------------------!

$output-current-data

destination-directory = current1\

current = no

fermi-levels = yes

mobility-out = no

$end_output-current-data

!-------------------------------------------------------------!

!*********END OF SIMULATION***************!

A.3 Matlab Code for Calculating Transport Lifetimes

This section has the code I used in reference [102] to calculate the transport lifte-

time from different scattering mechanism for each wafer I grew. The code opens

the wavefunction (from the Schrodinger output folder) produced from the appropri-

ate Nextnano simulation. In order to keep the coordinate systems consistent, the

Nextnano input file must be setup to start the wavefunction at z = 0 (i.e. the sur-

face). In other words, use a single quantum region that extends from the surface to

below any scattering sites (i.e. the bottom doping layer). Once the Nextnano simu-

lation is done, specify the file path of the wavefunction data in the Matlab code (i.e.

“A=importdata();”). One useful check on your understanding of the code is to try

to reproduce the results on ionized impurity scattering from reference [118], digitize

their plots, and overlay your results; I was able to get essentially identical results

using my code below.

% Denotes comment

clear;

%Summary of 2D hole density from simulations
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%d80 = 80nm dopant setback

%x07 = 7% AlGaAs barrier

%d80x07 p = 2.3e10

%d80x10 p = 3.5E10

%d80x13 p = 4.7E10

%d80x16 p = 6.0E10

%d80x20 p = 7.6E10

%d80x24 p = 9.1E10

%d80x35 p = 1.3E11

%d80x45 p = 1.7E11

Holes = 1; %1 for holes, 0 for electrons

N_S = 1.7e11*1E4; %2DEG concentration in m^-2

%V_surf = 0.6; %Surface potential in Volts

A=importdata(’H:\My Documents\MATLAB\d80x45alloy.dat’);

N_ac = 2e13*1e6; %5E13*1E6; %acceptor concentration [m^-3]

x = .45; %Al mole fraction

N_RI = N_S; %Assume RI conc = 2DEG/2DHG density

%This is necessary to get reasonable results since the scattering

%model does not take correlation in doping layer into account

delta_V = 1.0*1.6e-19; %alloy scattering potential [J]

Delta = .1e-9; %Interface roughness height [m]

Lambda = 22e-10; %Interface roughness lateral size [m]

L = 20e-9; %Finite square well width [m] - for IR calculation

%****Calculation to Perform*****

Remote = 0; %yes = 1, no = 0

Background = 0;

Alloy = 1;
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IR_FNTSQWL = 0;

IR_FNGHWRD = 0;

%*******************************

hbar=1.05e-34; %in J.s

chg=1.6e-19; %electronic charge in C

epsilonnot=8.85e-12; %in C^2/N.m^2

kappa=12.9*4*pi; %note that Bastard calls

%kappa = 4*pi*12.9*epsilonnot

DopePos = 110e-9; %110nm for 80nm setback

kf = sqrt(2*pi*N_S);

a = .566e-9; %lattice constant for alloy scattering calculation

r = sqrt(3)*a/4; %alloy scattering potential range

Omega_not = (4/3)*pi*r^3; %alloy spherical potential well volume

if(Holes == 1)

if(N_S < 9E14)

m = (N_S*1e-4*2.5e-12+.27)*9.1e-31;

else

m = .5*9.1e-31;

end

else

m = .067*9.1e-31;

end



168

%N_Surf = V_surf*kappa*epsilonnot/(DopePos*chg); %Surface charge

%stolen from

%delta layer

%[m^-2]

%N_RI = N_S+N_Surf; %Net RI concentration in delta layer [m^-2]

%Import mod square of wave function from nextnano

RawData=A.data;

z=RawData(:,1)*1e-9;

Usqr=RawData(:,2);

scatter(z,Usqr);

%interpolate envelope function and establish real space grid

zi=min(z):.5*1e-9:max(z);

Usqri=1e9*interp1(z,Usqr,zi,’pchip’);

scatter(zi,Usqri);

area=(zi(2)-zi(1))*trapz(Usqri);

%

% %Begin scattering calculation

% %

%

q_not=2*m*chg^2/(epsilonnot*kappa*hbar^2);

%T.F. screening wavevector (=2/bohr radius)

%

%calculate form factor g(theta), theta array must have

%same length as zi array
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theta=0:pi/size(zi,2):(pi-pi/size(zi,2));

if(Remote == 1)

G_imp = zeros(1,size(theta,2));

for index = 1:size(theta,2)

G_imp(index) = N_RI*((zi(2)-zi(1))*trapz(Usqri.*exp(-2*kf*

sin(theta(1,index)/2)*abs(DopePos-zi))))^2;

%Note previous equation is split to two lines to fit dissertation

%format

end

end

% % %calculate g_s(q) screening form factor

if((Remote == 1) || (Background == 1))

z_prime_integrand=zeros(1,size(zi,2));

g_s = zeros(1,size(theta,2));

for index = 1:size(theta,2)

for index2 = 1:size(zi,2)

z_prime_integrand(index2) = Usqri(index2)*

(zi(2)-zi(1))*trapz(Usqri.*exp(-2*kf*

sin(theta(1,index)/2)*abs(zi-zi(1,index2))));

%Note previous equation is split to two lines to fit dissertation

%format

end

g_s(index) = (zi(2)-zi(1))*trapz(z_prime_integrand);

end

end
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% % %g_s = 1;

if(Remote == 1)

% %scattering rate

RI_rate = (m/(pi*hbar^3))*(theta(2)-theta(1))*trapz((1-cos(theta))

.*G_imp.*(2*pi*chg^2./(epsilonnot*kappa*(2*kf*sin(theta/2)

+q_not*g_s))).^2);

%Note previous equation is split to two lines to fit dissertation

%format

mu_RI = 1e4*chg/(RI_rate*m); %mu in cm^2/Vs

end

% %BI impurities

if(Background == 1)

clear c;

clear G_imp;

c = zeros(1,size(zi,2));

for index = 1:size(zi,2)

if((zi(1,index)>0)); % && (zi(1,index)>-10.4e-9-7.8e-9))

c(index) = N_ac;

else

c(index) = 0;

end

end

g_imp = zeros(size(theta,2),size(zi,2));

for index = 1:size(theta,2)
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for index2 = 1:size(zi,2)

g_imp(index,index2) = ((zi(2)-zi(1))*trapz(Usqri

.*exp(-2*kf*sin(theta(1,index)/2)

*abs(zi-zi(1,index2)))))^2;

%Note previous equation is split to two lines to fit dissertation

%format

end

end

G_imp = zeros(1,size(theta,2));

for index =1:size(theta,2)

G_imp(index) = (zi(2)-zi(1))*trapz(c.*g_imp(index,:));

end

%scattering rate - BI in channel

BI_rate = (m/(pi*hbar^3))*(theta(2)-theta(1))*trapz((1-cos(theta))

.*G_imp.*(2*pi*chg^2./(epsilonnot*kappa*(2*kf*sin(theta/2)

+q_not*g_s))).^2);

%Note previous equation is split to two lines to fit dissertation

%format

mu_BI = 1e4*chg/(BI_rate*m); %mu in cm^2/Vs

end

% %Alloy scattering estimate

if(Alloy == 1)

clear zi;

clear Usqri;
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zi=min(z):.01*1e-9:max(z);

Usqri=1e9*interp1(z,Usqr,zi,’linear’);

alloylower = zeros(1,size(zi,2));

for index=1:size(zi,2)

if(zi(1,index) < 190e-9)

alloylower(index) = 1;

else

alloylower(index) = 0;

end

end

alloyupper = zeros(1,size(zi,2));

for index=1:size(zi,2)

if(zi(1,index) > 210e-9)

alloyupper(index) = 1;

else

alloyupper(index) = 0;

end

end

alloy = zeros(1,size(zi,2));

for index=1:size(zi,2)

if((zi(1,index) < 190e-9) || (zi(1,index) > 210e-9))

alloy(index) = 1;

else

alloy(index) = 0;

end

end
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Int_lower = (zi(2)-zi(1))*trapz(alloylower.*(Usqri.^2));

Int_upper = (zi(2)-zi(1))*trapz(alloyupper.*(Usqri.^2));

Int_both = (zi(2)-zi(1))*trapz((alloylower+alloyupper)

.*(Usqri.^2));

Int_sum = Int_lower + Int_upper;

Alloy_Rate = (4*m*Omega_not^2/(a^3*hbar^3))*delta_V^2*x*(1-x)

*(zi(2)-zi(1))*trapz(alloy.*(Usqri.^2));

mu_alloy = 1e4*chg/(Alloy_Rate*m);

end

%IR Scattering calculation

if(IR_FNTSQWL == 1)

clear zi;

zi = -100e-9:.5e-9:100e-9; %new grid - QW from -L/2 to L/2

clear theta;

theta=0:pi/size(zi,2):(2*pi-pi/size(zi,2));

q = 2*kf*sin(theta/2);

if(Holes == 1)

V = .35*(1.087*x+.438*x^2)*1.6e-19;

%Use band offset according to Winkler’s book

else

V = .65*(1.087*x+.438*x^2)*1.6e-19;

end

alpha = sqrt(m*L^2/(2*hbar^2));
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f = @(T)sqrt((V-T)/T) - tan(alpha*sqrt(T));

Energy = fzero(f,2.5e-22);

%for holes in 20nm well start looking around .0017*1.6e-19

%for electrons look around 1.6e-21

figure(2);

T = 0:.0001*1.6e-19:5e-22;

scatter(T,tan(alpha*sqrt(T)));

hold all;

scatter(T,sqrt((V-T)./T));

hold off;

wv_vctr1 = sqrt(2*m*(V-Energy)/hbar^2);

wv_vctr2 = sqrt(2*m*Energy/hbar^2);

H = 1/sqrt(L/2+1/wv_vctr1);

G = exp(wv_vctr1*L/2)*cos(wv_vctr2*L/2)/sqrt(L/2 + 1/wv_vctr1);

psi = zeros(1,size(zi,2));

for index = 1:size(zi,2)

if((zi(1,index) < -L/2) || (zi(1,index) > L/2))

psi(index) = G*exp(-wv_vctr1*abs(zi(index)));

else

psi(index) = H*cos(wv_vctr2*zi(index));

end

end

area_fntsqrwll = (zi(2)-zi(1))*trapz(psi.^2);

clear z_prime_integrand;

clear g_s;
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z_prime_integrand=zeros(1,size(zi,2));

g_s = zeros(1,size(theta,2));

for index = 1:size(theta,2)

for index2 = 1:size(zi,2)

z_prime_integrand(index2) = (psi(index2)^2)

*(zi(2)-zi(1))

*trapz((psi.^2).*exp(-2*kf*sin(theta(1,index)/2)

*abs(zi-zi(1,index2))));

%Note previous equation is split to two lines to fit dissertation

%format

end

g_s(index) = (zi(2)-zi(1))*trapz(z_prime_integrand);

end

% g_s = 1;

F = (1/(2*pi))*(theta(2)-theta(1))*trapz(((q./(q+g_s*q_not)).^2)

.*exp(-Lambda^2*q.^2/4).*(1-cos(theta)));

%Note previous equation is split to two lines to fit dissertation

%format

IR_rate = 4*pi*m*Energy^2*Delta^2*Lambda^2*F/(hbar^3

*(sqrt(2*hbar^2/(m*(V-Energy)))+L)^2);

%Note previous equation is split to two lines to fit dissertation

%format

mu_IR = 1e4*chg/(IR_rate*m);

end

if(IR_FNGHWRD == 1)
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clear zi;

zi = 0:.25e-9:75e-9; %new grid - QW from -L/2 to L/2

clear theta;

theta=0:pi/size(zi,2):(pi-pi/size(zi,2));

q = 2*kf*sin(theta/2);

b = (33*m*chg^2*N_S/(8*hbar^2*12.9*epsilonnot))^(1/3);

psi_FH = zeros(1,size(zi,2));

for index = 1:size(zi,2)

%if((zi(1,index) < -L/2) || (zi(1,index) > L/2))

psi_FH(index) = (1/sqrt(2))*b^(1.5)*zi(index)

*exp(-b*zi(index)/2);

%Note previous equation is split to two lines to fit dissertation

%format

% else

% psi(index) = H*cos(wv_vctr2*zi(index));

% end

end

area_FH = (zi(2)-zi(1))*trapz(psi_FH.^2);

clear z_prime_integrand;

clear g_s;

z_prime_integrand=zeros(1,size(zi,2));

g_s = zeros(1,size(theta,2));

for index = 1:size(theta,2)
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for index2 = 1:size(zi,2)

z_prime_integrand(index2) = (psi_FH(index2)^2)

*(zi(2)-zi(1))

*trapz((psi_FH.^2).*exp(-2*kf*sin(theta(1,index)/2)

*abs(zi-zi(1,index2))));

%Note previous equation is split to two lines to fit dissertation

%format

end

g_s(index) = (zi(2)-zi(1))*trapz(z_prime_integrand);

end

% g_s = 1;

J = (theta(2)-theta(1))*trapz(((q./(q+g_s*q_not)).^2)

.*exp(-Lambda^2*q.^2/4).*(1-cos(theta)));

%Note previous equation is split to two lines to fit dissertation

%format

IR_FH_rate = (Delta*Lambda*chg^2*N_S/(2*epsilonnot*12.9))^2

*m*J/hbar^3;

mu_IR_FH = 1e4*chg/(IR_FH_rate*m);

end

%**********END OF CALCULATION************%
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B. MBE Standard Operating Procedure

An exhaustive (or maybe just exhausting) treatise

By John Watson

Last updated 2/18/2013
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A brief comment

The goal of this document is to describe in detail how to run the GaAs MBE and

to solidify the standard procedures so that everyone running the machine is running

it consistently (i.e. to try to turn random errors in the growth into systematic errors).

The standard procedures I outline here are just what I have been using for the past

two years; they are by no means the only (or best) way to do things. It is my hope

that this will be a working document that will be updated when improvements to the

standard procedures are found. To this end, the editable version of this will be stored

in the directory “Manfra MBE\GaAs growth data\Standard Operating Procedures”

along with the other standard operating procedures for the growth and low temper-

ature labs. This document will likely be quite long which will make it inconvenient

for reference during the growth setup, so to any new users I would suggest copying

off/making bullet points of sections that you have a hard time remembering. Ulti-

mately, you need to have all these procedures memorized so that setting up a growth

is controlled by muscle memory, so that you do the correct things automatically. As

an example, think of how you don’t have to consciously think about checking your

blind spot before changing lanes in your car; checking that the transfer arm is all

the way back before closing the gate valves should be a similar habit you always do

without having to think about it. The pictures I’ve included are the things you should

be seeing when you make these safety checks.
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The Golden Rules (i.e. lessons we’ve already learned the hard way)

GOLDEN RULE #1: SEE SOMETHING, SAY SOMETHING. If something ap-

pears to be changing over time or is suddenly different, clearly communicate this to

everyone else in the group so that we are all aware of how the machine is behav-

ing/changing. For instance, if the liquid nitrogen panel is flashing “Emergency Fill

Condition” at 5pm on Friday, don’t wait until Monday afternoon to mention it to the

boss.

GOLDEN RULE #2: IF SOMETHING IS OPERATING NORMALLY, WRITE

IT DOWN. IF SOMETHING IS NOT OPERATING NORMALLY, WRITE IT

DOWN AND TELL EVERYONE ELSE. As an example, this would include things

like the wafer morphology. Currently the morphology is consistently good (a vast

improvement from a year or two ago), so it may seem pointless to check all the wafers

with the Nomarski microscope. However, it has been shown1 that as soon as you stop

recording “superfluous” information like this, something will change in the machine

that will affect the morphology. Tracking down the source of this degradation in film

quality will be much easier if you can reference the database and say, “The mor-

phology started degrading as soon as we started using wafers from this new ingot.”

It will be much harder to fix problems if you look through the database and say,

“Well, the morphology was good the last time we checked it 6 months ago, but since

then we have used new wafers, reloaded source material, and changed our outgassing

procedure.”

GOLDEN RULE #3: FOLLOW THIS STANDARD OPERATING PROCEDURE,

EXACTLY, EVERY TIME, EVEN IF “IT SHOULDN’T MAKE A DIFFERENCE”.

IF THINGS NEED TO BE CHANGED, DISCUSS THIS WITH THE GROUP AND

UPDATE THIS S.O.P. IF A CHANGE IS AGREED UPON. This rule could also be

titled “There is no such thing as an absolute measurement in MBE.” Temperatures,

pressures, even growth growth rates (I suspect to some degree) are relative measure-

ments. Comparing these numbers between different MBEs is essentially meaningless

1Murphy, et al.
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because of the importance of the exact placement of thermocouples, ion gauges, and

beam flux profiles across the RHEED sample, respectively. The idea behind this

rule is to keep systematic errors from becoming random errors. This is even more

important if two different people are growing wafers for the same project.

GOLDEN RULE #4: DO NO HARM. The MBE is the most complicated and

easy to break piece of equipment in the building. If you are ever unsure of what to

do, ask someone before proceeding. All of the group member cell phone numbers and

lab numbers are posted on the wall, so you should always be able to contact someone

who will know what to do.
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Growth Setup

B.1 Machine Check-Out

Let’s assume you’re getting ready to start a growth, coming in bright-eyed and

bushy-tailed in the morning. The first thing to do is check that the machine is

running normally. Assuming there was one growth the previous day which finished

mid-afternoon, the reactor pressure should be in the low 10−10 Torr range, the buffer

chamber should be in the low 10−11 Torr range, and the load-lock (LL) will vary

depending on when it was last opened. If it was opened last night, and the LL

outgassing recipe was run, it will probably be ∼ 1 × 10−8 Torr. The cells should all

be at their idle temperatures, the viewport shutters closed, the LN2 phase separator

should be ∼ 75%, the gettering furnace should be off, the valves on the Ar lines should

be closed, and all the pressure-relief holes in the sorption pumps should be plugged

with their corks.

Next, check that the RHEED block is securely held in the CAR. This is not as

big an issue since we cleaned the Ga build-up out of the transfer mechanisms, but it

is still possible to drop the block if the pins in the block are not fully locked in the

“V”s in the As shield. While you are running the machine, everything that happens

is ultimately your responsibility, so don’t just trust that that lazy John guy did a

good job getting the block transferred last night before you start moving the CAR

around.

Before you forget, start warming up the wafer you will be using. The wafer should

have already been outgassed in the buffer chamber for 3.5 hours at 350C and should

now be sitting at 100C. Send the heated station setpoint to 210C at 2-3 degrees/min.

This will clean the wafer again a little bit (in case anything else condensed on it

overnight) and get it warm for transferring. I assume by the time it gets taken off

the heater and transferred to the CAR it is pretty close to the CAR temperature ∼

150C.
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At this point, write down the purpose of the growth in the notebook. This will

later get copied into the other/comment section of the sample database. For this doc-

ument, I will be explaining what I did during growth 2-14-13.1 (so you can reference

the notebook if necessary). The notes I have for 2-14-13.1 are “Repeat uniformly

doped SHJ 1-26-13.1 with two Ga cells to get faster growth rate up until top barrier

to try to improve mobility.” The important thing to note here is I state what I am

growing (uniformly doped SHJ), why I am growing it (to try to improve the mobil-

ity of 1-26-13.1), and I list the growth name from which I am iterating (1-26-13.1).

Including the name of the previous growth is important because it makes it much

easier to go back through many months’ worth of growths and summarize all the

work done on a given project. Also include the time you do each step in the margin

of the notebook so you can come back later and compare Epitrend data with what

you did (this is useful in the case of failures/emergencies to understand what actions

caused the problem).

Before you do anything else you should also get the recipe more or less written

out in the Excel recipe time calculator so you at least know what growth rates you

should be shooting for. Finally, make sure the most important switch is in the “ON”

position.
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Figure B.1. The most important switch.

B.2 Beam Fluxes

The next thing to do is to heat up the sources you will use. Look through the

notebook and use the temperatures that were last used to give the growth rate you

want. If you plan to take beam flux measurements, do not open the As valve yet.

The purpose of taking the beam flux is two-fold. First, it gives us a record over time

of how the flux is changing which will hopefully give us some warning of when the

source is running out. Second, it allows us to correct for the shutter transients. Since

our shutters are oriented perpendicular to the crucible opening, the shutter reflects a

lot of heat back into the cell. The thermocouple, however, is in the back of the cell at

the bottom of the crucible. When the shutter opens, the top part of the crucible cools

off because the shutter is no longer reflecting heat back in, but the thermocouple’s

temperature hasn’t really changed. This causes the flux (and thus the growth rate)

to drop a few percent over the course of about 5 minutes. The problem is that when

we measure RHEED oscillations, we are measuring the average growth rate over the

first ∼ 30-45 seconds the shutter is open. When we are growing, however, we are

doing most of the deposition when the shutter has been open for a long time, so there
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is less flux than there was during the RHEED measurement. The crude work-around

is to just set the RHEED-measured growth rate a few percent higher than what you

want and then assume the growth rate during the bulk of the growth is what you

used to calculate the time each shutter should be open. In other words, if you want 1

ML/s growth rate and the flux droped 4.5% over the course of 5 minutes, adjust the

cell temperature so that the RHEED growth rate is 1.045 ML/s. Then the growth

rate should be 1.0 ML/s 5 minutes after the shutter is opened.

If you are taking beam fluxes, the “Take Beam Fluxes” recipe (in the “Frequently

Used Recipes” folder) is convenient to use. You will first have to “resume” the “Outgas

Cracker Recipe” which has been paused since the cracker cooled down. Resuming the

recipe will ramp the current through the doping filaments to zero. Be sure to wait

until the Stepper shows the “end of run” message before loading the beam flux recipe.

While the dopant sources are ramping down, edit the beam flux recipe. I typically

keep the “layers” that I’m not using in the “unused recipe step” drop down menu so

that I can just drag and drop the layers into the recipe sequence if I need to change

which shutters are being opened. Set the initial pause so that the Al cell will be hot

for 10 minutes before its shutter is opened (always take the Al flux first since it heats

up/stabilizes before the Ga cells). The standard sequence for measuring a source’s

flux is to open the shutter for 5 minutes and then wait at least 5 minutes before taking

its flux the second time (this allows the material to warm back up due to having the

shutter closed). Save the recipe, load it in the stepper, and start the recipe. The

beam fluxes need to be taken with the CAR index at 180, but the CAR is probably

still at 179 from when the RHEED block got transferred onto it last night. First

rotate the index to 150, then to 180. The CAR can’t accurately do small changes in

position, hence why you have to first send it to 150. Open the main shutter so the

beam flux gauge is looking at the sources.

When the shutter opens, look at the source. You should do this every time you

grow so that you know what the source (and source material) normally look like.

Write down the state of the cell. If it is unchanged from the last growth, just write
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“Ga1 looks normal”. If it looks like a lot of Al has crept up in Al2, write some thing

like “Large puddle of Al at opening of crucible in Al2, does not appear to be in danger

of spilling out yet.” This is a pain but worth doing (see golden rule #2).

Figure B.2. Typical beam equivalent pressures of each source during first
growth campaign. Note that the first set of flux measurements has a
larger percentage drop while the shutter is open, likely due to As build-up
around the source.

The flux profile will look significantly different between the first and second times

the shutter opens. This is probably due to As buildup around the source that is

mostly gone after the first time you open the shutter - see figure B.2. Beam fluxes

should not be taken every day. Taking the fluxes takes around 45-60 minutes which

wastes a considerable amount of material over the years, and it also coats the beam

flux gauge with a lot of metal (we already had problems with the gauge partially

dying, presumably from an electrical connection being shorted by Ga/Al). Beam

fluxes should be taken once a week or if a cell is being used at a significantly different

growth rate than when the flux was taken (e.g. if you use a Ga cell at 0.5 ML/s and

its flux was last taken at 1.0 ML/s). If you do not take beam fluxes, just use the



187

percentage drops from the previous time the fluxes were taken to calculate the target

RHEED rate and note in the summary sheet that you assumed a given flux drop.

B.3 RHEED Warm-up

Once you’ve finished taking the fluxes, start warming up the RHEED wafer. Since

the thermocouple on the substrate manipulator died an untimely death, we have to

run the heater in constant power mode. Temperature ramps are thus accomplished

by using a code snippet. In the recipe editor, open “Ramp Substrate Power” in the

“Frequently Used Recipes” folder. The first line is the target power output. Set this

to 80 (this will get the wafer to ∼600C). The ramp time should be 900 (this is in

units of seconds). Save the recipe, load it in the stepper, and start it. A word of

caution is necessary at this point. Code snippets allow you to do things that can

break the machine. It is therefore critically important that you pay attention to what

you are changing in code snippets and that when you run a code snippet you keep

an eye on what the machine is doing. It is easy to write a code snippet that will take

a heater filament from 0% to 100% power in zero time. This could of course break

the filament and ruin everyone’s day (or several months). So whenever you start the

“Ramp Substrate Power” recipe, check the actual output of the CAR heater. The

idle level (∼150C) is 16%. So if you are ramping to 80%,the first output level should

be something like 16.7%. If you start the recipe and check the output and see that it

is suddenly 100%, there will be issues.

Start rotating the CAR index to growth (0) and open the As valve to the value

used for the previous growth. Set the As valve position in the status menu of Molly.

Do not change the speed (ramp rate). When the valve gets all the way open make

sure the valve driver is not moving. If it is bouncing back and forth (within 0.1 mil

of the target), set the valve controller to “manual”, manually open or close the valve

a tiny amount (∼ 0.1 mil), and set the controller back to “remote”. The controller

must be in “remote” control for the end-of-recipe script to run correctly.
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“CAR” 

Power supply 

% output 

Figure B.3. Check the power output % as soon as you start ramping the
CAR heater.

Make sure all the Ga/Al shutters are closed and that the main shutter is up

(Overview screen in Molly) so you don’t damage the RHEED wafer. Once the CAR

index reaches 0, start the wafer rotating so that it will heat uniformly.

Once the CAR index reaches 0, make sure the scribe marks on the index rotary

feedthrough (ROMO) are lined up (see figure B.6). It is possible for the stepper motor

to slip on the ROMO. If this happens, the controller will think it is in the growth

position, but the wafer will not be completely vertical. To help prevent this, every

time you check the position of the scribe marks, make sure the ROMO thumb-screw

is backed out all the way (i.e. all the way counter-clockwise) so that it can’t add any

resistance to the stepper motor-ROMO coupling

If the stepper motor does slip on the ROMO, make sure the controller thinks it

is at the 0 position, loosen the screws on the knurled connector and the gold screw,

align the ROMO so the scribe marks are lined up, and tighten the screws back down.

The screws need to be tight to keep things from slipping, but be careful to not strip

any of the screws. Before doing anything else, double check:
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Figure B.4. View of CAR control screen and As valve driver controller.

Top LED illuminated = 

main shutter up 

Bottom LED illuminated = 

main shutter  down 

Figure B.5. Main shutter with LED position indicator lights.

1. As valve open

2. Main shutter up
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Scribe marks lined 

up 
Screw on knurled connector 

Gold screw 

ROMO thumb-screw 

Figure B.6. View of the scribe marks on the CAR index position.

3. CAR in growth position

4. Wafer rotating 10 RPM CCW

5. CAR heater ramping steadily to 80%

6. Viewport shutters all closed

Now would be a good time to enter the flux measurements in the recipe spreadsheet

and print it off so you have easy access to your target growth rates (the spreadsheet

will calculate this automatically if you input the starting and ending fluxes for each

source you will be using).

B.4 RHEED Measurements

Next, hook up the RHEED camera and load the Labview program (“RHEED

Specular Measurement v1.1” located in \My Documents\Labview VIs). As an aside,

another useful program (for taking pictures of RHEED) is “Grab and Annotate Pic”

in the same folder. Once the Labview code is loading (it takes a while for the computer

to settle down after it starts loading), start warming up the RHEED supply. First,

turn on the beam blanking on the controller shown in figure B.7 (the red light will

turn on when the beam is blanked). This is a deflection voltage inside the electron
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Figure B.7. RHEED controller and power supply.

Figure B.8. Comparison of the 2× reconstruction (left) and 4× recon-
struction (right) as seen on the RHEED screen.

gun that will keep the electron beam from exiting the RHEED gun. Then go back

and forth between increasing the voltage and current in steps of 1.0 kV and 0.1 A,

respectively. Stop at 15.0 kV and 1.4 A.

Once the CAR heater has reached 80% output (should be 600C on the pyrometer

at steady state) you are ready to start the RHEED measurement. For the sake of

consistency, always do the growth rate measurements on the “2×” reconstruction.

The first time after I load a new RHEED wafer, I always set the 2× reconstruction to

one of the three presets on the CAR rotation screen. However, due to the 120 degree
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symmetry of the Ta block, you will never know in advance whether preset A, B, or C

will line up the RHEED wafer so that you will see the 2× reconstruction. The easiest

thing to do is look for the 4× reconstruction because it is very distinct (see figure

B.8). There are many rotation positions that will look like the 2× reconstruction, so

the only way to be sure is to first find the 4× reconstruction. Do this by sending the

rotation position to 90 degrees above or below one of the presets. Eventually, you

will find the 4× reconstruction 90 degrees off of A, B, or C. Once you have found the

4× reconstruction, send the rotation to the corresponding preset position (i.e. the 2×

reconstruction).

Sometimes the vibrations in the machine will cause the RHEED pattern to shake.

If this happens, change the rotation position (say 180 degrees) and then go back to the

2× reconstruction. You may have to do this a few times before the pattern stays still.

If the diffraction pattern is dancing around, you are guaranteed to have really bad

looking oscillations (and hence an uncertain growth rate). The electron beam should

be kept blanked whenever you are not actually measuring the diffraction pattern.

This keeps the wafer from getting charged up which will cause the diffraction pattern

to drift and make it impossible to measure the growth rate. This is also why we now

use the beam current at 1.4A and not 1.45A.

Next, set the shutters you will be using to manual mode so you can control them

with the PDA. For each port (i.e. effusion cell), there are 4 boxes: Open, Close,

Remote, and Manual. The open/close state in parentheses in the remote and manual

boxes lists the state that the shutter will go to when you switch to that control mode.

For example, suppose the shutter is currently closed and in remote mode, but you

already tried opening it with the PDA. The Remote (Close) button will be depressed,

and the Manual (Open) button will be unlatched. If you press Manual (Open), the

shutter will be opened and the control will be in manual mode. The Open and Close

boxes do essentially the same thing as the PDA when the shutter is in manual mode.

Now start the Labview code. Once you start the code you should be able to see

the diffraction pattern in real time on the computer screen. If necessary, adjust the
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Figure B.9. Shutter control screen on the e-rack touch-screen computer.

X knob on the RHEED controller. DO NOT ADJUST ANY OTHER KNOBS ON

THE RHEED CONTROLLER. The grid, focus, and rocking knobs all take a lot of

time to tune. The Y knob should not be adjusted because this will put the electron

beam on a different part of the wafer which will result in a different growth rate

being measured. This is one of those instances in which we need to keep systematic

errors from becoming random. The growth rates measured from RHEED are most

certainly (slightly) wrong, and probably wrong by different factors for different cells

since the flux profile across the electron beam is different for each cell. For growing

high mobility 2DEGs (as opposed to, say, quantum cascade lasers), this is not the

end of the world, but we do need things to stay consistent. If our 30 nm quantum

wells are actually 29 nm when grown with Ga2 that is fine, but they need to stay 29

nm every time we grow them and not vary from 29 to 31 to 28 to 30 nm, etc.

For the first set of oscillations of the day you will need to define a new rectan-

gle within which the program will average the pixel intensity. Once you have the

diffraction pattern looking good, click “Start Data Acquisition” and press “Define
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New Rectangle” in the pop-up window. Make a square over the most circular portion

of the specular beam (the most circular portion is the part that will consistently exist

over the course of the oscillations). When prompted to save the data, use the format

of MM-DD-YY-CellAs-oscillation#. In other words, the file name should look some-

thing like 02-14-13-Ga1As-1. Once the file is saved the program will start taking data.

Open the shutter and take 7 full periods of oscillations for GaAs or 4 full periods for

AlAs if you are growing GaAs ∼ 1 ML/s and AlAs ∼ 0.33 ML/s. If you deviate sig-

nificantly from this in growth rate, keep the shutter open for a comparable amount of

time. Again, the number of oscillations is part of keeping systematic from becoming

random errors. For instance, increasing the number of Ga2 oscillations beyond 7 will

result in a faster measured growth rate by a couple percent, so just stick with 7.

Always measure GaAs oscillations first. If you measure GaAs oscillations right

after AlAs oscillations this seems to result in a faster growth rate (again just by a

percent or two). For a given cell, measure the growth rate twice. If they are the same

within a percent or two, good. If not, measure a third time to see which one of the

first two measurements was a fluke and then adjust the cell temperature accordingly

(if needed). This seems to be especially important for the Al cells since the Al can

suddenly move around and change the growth rate significantly. This always seems

to happen when you have already been struggling to get the growth rate set for a

long time and finally have the growth rate where you want it. Then you measure the

growth rate a second time (i.e. what you think will be the last time), and then you

end up having to change the cell temperature 3 or 4 degrees to get the growth rate

back where you want it.

Once you have finished the GaAs oscillations for the current iteration and changed

its temperature (if necessary), measure the AlAs growth rate. After each set of AlAs

oscillations, open the Ga shutter for about 5 seconds to smooth out the RHEED

sample. Once you are done with this iteration of oscillations, make sure the Ga

shutter is open 5-10 seconds so that the surface will be ready for GaAs oscillations in

the next iteration of measurements. Once you adjust the cell temperature, wait 10
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Good GaAs oscillations Good AlAs oscillations 

Bad AlAs oscillations 

Figure B.10. Examples of good and bad GaAs and AlAs RHEED oscilla-
tions.

minutes before using that cell for measurements again. Also, if you measured a bunch

of AlAs oscillations (followed by the GaAs smoothing), make sure the Ga shutter is

closed at least 5 minutes before you measure its growth rate again since it takes ∼ 5

minutes for the shutter transient to build back up.

Usually you will only be adjusting the Ga cells ∼ 1 degree and the Al cells 1

to 3 degrees from the temperatures that previously gave the desired growth rate.

If you have to adjust the temperatures more than this, you should make sure you

are making adjustments based on good oscillations. Figure B.10 shows what the

oscillations should look like. If they look really bad (like the bottom plot), do not

expect the growth rate you extract to be accurate.

If the oscillations are looking really bad, there are a few things you can do. First,

you can try moving the CAR rotation position to a few different values and then back
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to the 2× reconstruction. I think this sometimes just allows the Ta block to shift

around in the substrate manipulator a little bit. If the block is not perfectly vertical

or if the RHEED wafer is not perfectly flat on the block, the oscillations will look

kind of funny and the measured rate will be way off. If that doesn’t fix things, the

next thing is to try smoothing out the wafer. Heat it up to 635C, send the CAR to

continuous rotation (10 RPM CCW), and grow GaAs (once the wafer has heated up

to 635C) for 5-15 minutes, and then cool the wafer back to 600C and try again. Of

course, once you stop growing GaAs, make sure to let the shutter stay closed for > 5

minutes before measuring the GaAs growth rate again. If none of this works, it may

be time for a new RHEED wafer; talk to others in the group before loading a new

wafer, though. Of course, if the oscillations are bad, make a note of which oscillations

are bad. This will allow troubleshooting in the future. If the electron density comes

out way off, your notes can serve as an indication that the reason for the bad density

was a bad growth rate.

B.5 Loading New RHEED Wafers

When a new RHEED wafer is loaded, you need to give it some TLC before trying

to use it for growth rate measurements. For starters, you need to get the oxide all the

way off to keep the wafer from getting hazy. The last oxide species seem to come off

above ∼ 610C on the pyrometer. So once the wafer is above 610C (in an As flux of

course), let it sit for 10 minutes. Then you will need to smooth the surface out since

the oxide steals Ga from the surface, creating small pits. It seems to smooth out the

fastest when you use short GaAs growth periods followed by a pause. You can watch

the wafer smooth out (i.e. watch the RHEED pattern get streakier) as you are doing

this. I usually do this by hand for 5 minutes or so and then load a recipe that does

our standard smoothing sequence (10nm GaAs, 20 sec pause, repeat 50 times). You

may also need to throw in some AlAs or AlGaAs layers followed by the GaAs and

smoothing pause layers to get the oscillations looking nice and symmetric for both
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GaAs and AlAs. Again, if the oscillations don’t look like the pictures shown above, I

would be somewhat skeptical of the growth rates you are extracting. The growth rate

is very likely wrong if you see any beating in either the GaAs or AlAs oscillations.

Loading new RHEED wafers doesn’t happen very often, though, so at this point

let’s assume you have all your growth rates set. Next, cool the wafer back down (16%

target power, 900 sec ramp time in the ramp substrate power recipe), and be sure

to keep the substrate rotating during cooling. Now would be a good time to start

writing the recipe in Molly. If you are just updating a previous recipe (e.g. slightly

increasing the doping or changing the Al concentration), be sure to “save as” a new

file so you dont overwrite the original recipe. Save recipes according to the naming

convention MM-DD-YY-growth# (e.g.“ 02-14-13-1.cmd”). Including leading zeroes

in the month and day makes it easier to find old recipes.

One word of caution when writing recipes. The code snippets used to ramp the

substrate power for the doping steps and the dopant source ramp snippets require cau-

tion when using. As mentioned previously, code snippets allow you to do potentially

harmful things to the machine, so be careful you haven’t forgotten any semi-colons

or added any extra zeroes after target currents, ramp rates, etc. If you ever need

to write more advanced codes, I would suggest using the copy of Molly on the RGA

computer. This way any infinite loops, etc. will only crash the RGA computer and

will have no effect on the MBE. Rather than controlling hardware, you can just have

the output of each function be sent to an echo command that will print the value to

the screen. Once you are convinced you have made a robust code that will not do

something unpredictable to the machine if you enter nonsensical input parameters,

just copy and paste the code to the Molly computer and replace the echoes with the

commands that actually control the hardware.
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The nose piece clamp is just 

about out of view through 

the top viewport 

Figure B.11. Slide the nose piece towards the growth chamber 9-10 inches
before opening the gate valve.

B.6 Pre-Growth Transfer

Now comes the trickiest part of the whole growth − transferring in the growth

chamber. Once the CAR heater has gotten down to 16%, stop the rotation and send

the index to 180. Once it gets there, the beam flux gauge will be reading the As

flux. The target starting As flux should be 8.5 to 8.7E-6 Torr. The goal really is

to get the flux close to 8.5E-6 Torr at the end of the growth. Unfortunately, the As

flux tends to drop over the course of the run, sometimes it drops worse than others,

so just look back through the notebook at how much it has been dropping recently

and set the As valve accordingly. Try not to take too long when you do this because

the As will eventually destroy the beam flux gauge filament. Once you have the As

flux set, close the main shutter, send the CAR index to 150 and then to 179 (transfer

position). Once the index reaches 179, make sure the rotation position is at 0. This

will minimize the parallax when you are trying to line the pins on the block up with

the slots in the CAR, and it seems to give consistent alignment between the nosepiece

and the CAR.

At this point you want to get everything ready so that you can minimize the time

the gate valve between the buffer chamber and growth chamber is open. Eventually
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Buffer in (preferably low) 10-11 Torr range 

LL gate valve closed 

Figure B.12. The buffer chamber pressure must be sufficiently low, and the
LL gate valve must be shut before the gate valve to the growth chamber
can be opened.

the sealing surface in this valve will get coated with enough As that it will no longer

seal, so we want to try to prolong that as long as possible. That being said, when

the gate valve is open, work efficiently and not frantically. The last thing we need is

someone tripping onto the MBE or dropping a block in the growth chamber. First,

move the transfer arm about 9-10 inches towards the growth chamber as shown in

figure B.11. This lets some of the pressure burst from moving the transfer arm get

pumped away in the buffer chamber before the gate valve to the growth chamber is

opened. Do not slide the transfer arm in too far; you don’t want to whack the gate

valve.

Next, start cooling the wafer you will be using for the growth. Send the heated

station to 100C at 10C/min. Finally, double check that the following conditions are

met so that the gate valve is safe to open: buffer pressure in 10E-11 Torr range, main

shutter down, LL gate valve closed, CAR in transfer position.

Now open the gate valve all the way as shown in figure B.13. Then slide the

transfer arm in as far as it can go while still leaving room to open the main flap to

the growth chamber without hitting the nose piece. Open the main flap and slide
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Main shutter down 

Gate valve is fully open 

when second line is 

visible 

First line 

Second line 

Figure B.13. The main shutter should also be down before the gate valve
is opened (left). The gate valve is fully open when the second line on the
arm is visible (right).

the transfer arm in all the way to the CAR. Depress the As shield and rotate the

nosepiece counterclockwise (from your view) until the pins of the block are locked all

the way in the slots on the nosepiece. Sometimes the block will get stuck a little bit

when you try to rotate it. If this happens, don’t panic. Just rotate the nosepiece

back to the starting point (but do not slide the transfer arm back at all) and then try

rotating the nosepiece counterclockwise again. The second try almost always will get

the block off. Two words of caution are in order here. First, don’t press the As shield

back too hard. The magnet can slip off of the ferromagnetic chunk in the back of the

transfer arm which will then allow the nosepiece to do whatever it wants (i.e. this is

a good way to drop a block). Second, once you start to take the block off the CAR,

you have to finish the job. It is very tricky to get the As shield far enough back to

lock the block back in to the V’s in the CAR if you have already started rotating the

block off.

Once you have the block in the nosepiece, slide the transfer arm back and close the

main flap. Leave the RHEED block on the “HS” station in the buffer. Now increase
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the ramp rate of the heated station to 40 degrees/min. This will minimize the power

spike that happens when you take the warm block off the heated station. Now take

the block for the growth into the growth chamber and load it on the CAR. When you

have the block on the CAR, efficiently (not frantically) walk to the other side of the

machine and check that the pins on that side are locked in the V’s. If the block is

fully engaged, slide the transfer arm ALL THE WAY back and close the main flap.

As a general rule, whenever the transfer arm is not in active use it should be slid all

the way back so it cannot get caught in a gate valve or the buffer carousel. Start to

close the gate valve, and double check that the transfer arm is all the way back. The

gate valve is closed when the plastic sleeve is up to the top line in the metal and the

indicator is in the closed position. Now send the CAR index to 150 then 180, open

the main shutter, and check the As flux again. If it is has drifted, adjust the valve

accordingly and record its position in the notebook. Follow the same procedure as

before to warm up the wafer. Send the CAR to 85% output power in 900 seconds,

send the CAR index to 0, make sure the main shutter is up, check the scribe marks on

the CAR index ROMO when the CAR index reaches 0, and start substrate rotation

(10 RPM CCW) when the CAR index gets to zero.

B.7 Wafer Warm-Up

Check the wafer’s morphology by examining the RHEED pattern once the wafer is

warming up, is in the growth position, and is rotating. Typically it is “faint and hazy”

as shown in figure B.15. This is due to the remaining oxides (Ga oxides) that have

not yet desorbed. A wafer that has not been outgassed at all should be even hazier

and have an amorphous ring in the first Laue zone. The fact that you can see some

diffraction streaks means the oxide layer is relatively thin. Record the description of

the RHEED pattern along with the time the wafer spent at 350C and 200C in the

notebook. Cool down the RHEED at the same rate you warmed it up and remember

to turn off the beam blanking. Double check now that all the viewport shutters are
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“Check your blindspot” – i.e. the 

transfer arm is all the way back 

Plastic sleeve all the way up to line in 

metal 

Metal indicator in “closed” position 

closed 

open 

Figure B.14. Double check that the transfer rod is all the way back before
closing the gate valve. The gate valve is closed when the plastic sleeve
reaches the top mark and the indicator is fully in the “closed” position.

closed, the main shutter is up, and the wafer is rotating. Now would also be a good

time to remember to update the wafer position sheet on the side of the electronics

rack, put the shutters back in remote mode, and load another wafer onto the heated

station (do not start outgassing a new wafer if the outgas will not finish before you

transfer the first growth out of the growth chamber).
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Examples of “faint and hazy“ morpohology at different azimuths 

Figure B.15. Examples of “faint and hazy” morphology immediately after
the wafer is loaded into the growth chamber.

B.8 Growth Startup

Now your time will be getting a bit tight since you don’t want to leave the wafer

hot for too long (this will cause cross-hatching morphology). The most important

thing to do while the wafer is heating up is to double and triple check that the Molly

recipe matches the Excel recipe and that both of them are indeed the structure you

intend to grow. Growing the wrong structure wastes a lot of people’s time (not to

mention source material), and that makes the boss cranky. Life is never better with

a cranky boss, so do your part to keep him not cranky. At this point you should

double check the following items: the shutter times are correct, the correct shutters

are being opened, the dopant source is being sent to the correct current, there is a

“layer” used to close the Ga/Al shutters prior to temperature ramps for delta doping



204

Figure B.16. Don’t forget to double check the recipe in Molly line-by-line
to make sure it matches what you intend to grow in the Excel sheet.

steps, the correct end of recipe script is being called (e.g. end of day vs. between run

shut down), the “sleep cold”/“sleep hot” times in the dopant ramp codes are correct

for the block you are using, and the total time matches between the Excel sheet and

the Molly recipe.

Watch how the pyrometer responds during the warm-up. It should smoothly

increase as the power is ramped up. If it does, write this down in the notebook. If

the pyrometer increases rapidly, then slowly drops a degree or two, etc. write this

down. If the pyrometer is oscillating during the warm-up it either means that there

is an inconsistent oxide on the wafer or that the Ga wetting on the back of the wafer

is not good. Either way, this will generally lead to rough morphology. Once the

pyrometer reads above 610C, start a timer. The growth should start 10 minutes after

the wafer reaches 610C. Do the final adjustments to get the temperature ∼ 633C;
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the wafer will heat up ∼ 2C once the sources start shining on it. If the recipe has

temperature ramp steps in it, make sure to update the “hot percent” values to match

the power output needed to get the wafer to growth temperature.

Once the recipe is finalized, load it into the stepper (be sure you are loading the

recipe from the correct year, e.g., 2-14-13.1 and not 2-14-12.1). Once the 10 minutes

is up, start the recipe and press resume through the dopant warning message (i.e. the

only safeguard against ramping the dopant sources too fast). Write down the time

you started the recipe, and as a safeguard, write down the exact name of the recipe

you see running in the stepper. We can only go back later and double check the recipe

saved in Molly, not the recipe that you actually ran, so this is important if you want

to be able to say, “No boss, I did everything correct with the recipe, it is just the

design or characterization that gave us a bad answer.”

B.9 Wrap-Up of Growth Setup and Checks During Growth

Write down the pyrometer temperature, power output (in Watts and percent),

the layer during which you measured the temperature, the reactor pressure, and the

beam flux pressure. Double check that all the viewport shutters are closed, the gate

valve is closed, the correct source shutters are opening and closing, and that there is

another block sitting on the heated station so it doesn’t have to work too hard to stay

at 100C. This probably also will be the start of your lunch break. If you time lunch

right, you can usually get back and record the temperature at the end of the GaAs

smoothing superlattice which is the most accurate representation of the ultimate

growth temperature. Once the GaAs/AlGaAs superlattice starts, the pyrometer-

measured temperature can drift around due to optical effects. Even if you don’t get

back before the superlattice starts, you should still record the pressures/layer at each

time you check on the machine. It is also a good idea to check in on the machine

during the doping steps to make sure the I-V characteristics of the doping filament

are normal and to record the temperature of the wafer during doping (this has been
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changing over time due to a bug in Molly’s ramping the CAR output down slower

than it did originally).

B.10 End of Growth

When the growth ends, the recipe will call either the end of day shutdown script

or the between run shutdown script. The between run shutdown will cool down the

substrate, stop the rotation, send the index to 180, wait for ∼ 10 seconds (to record

the As beam flux in Epitrend), close the main shutter, rotate the index to 150, and

rotate the index back to 179 (transfer position). The end of day script does all this

plus it will cool the sources to their idle setpoints and close down the As valve. Be

careful that the recipe has actually finished all the steps; Molly will usually say the

recipe has ended before this script finishes and then start back up at what looks like

the start of the growth. Ignore all this and do not try to start/stop/resume anything.

Molly is just a very buggy program, but so far it has not done anything that can

harm the hardware.

When the shutdown script really is finished (i.e. the CAR index is at 179), repeat

the transfer procedure as before. If you are starting a second growth, you should

have gotten that wafer up to 200C during the first growth (in addition to the 3.5

hour 350C outgas that would have been done earlier). Move the first growth from

the growth chamber to the buffer (remember which carousel station you transfer it

to) and load the new wafer into the growth chamber. If you are not doing a second

growth, load the RHEED block onto the CAR. There should always be a block on the

CAR. The block protects the hot filaments from getting eaten up by the As. Close

the gate valve (remember to check the transfer arm). Check the ending As beam flux

in Epitrend. Remember to multiply the pressure in Epitrend by 0.9507 to get the

pressure that matches the front panel display of the ion gauge controller.

If you are doing another growth, repeat the previous procedure. If you are done

for the day, run the “Outgas Cracker” recipe in the “Frequently Used Recipes” folder.
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Figure B.17. As valve setting during part of the first growth campaign.

This will ramp the dopant filaments up to 1A (their idle state) and heat the cracking

zone up. This clears out As that has built up in the conductance tube of the cracker

during the growth. This is really important. The As valve setting necessary to get

sufficient As flux will increase quite rapidly if the outgassing routine is not performed.

Figure B.17 is a plot showing the As valve setting as a function of growth number

before and after we increased the time the cracker is hot during its outgassing routine.

If you are done with everything for the day, go through the “End of day checklist”

sheet to make sure everything is safe to leave. Be sure to write down the phase

separator level from the LN2 controller in the galley; this needs to be tracked to see

if the valve that feeds the phase separator is continuing to degrade over time. If there

is an “Emergency Fill Condition” alarm, be sure to tell everyone immediately.
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Open these two valves 

Valve to load lock vent line 

Figure B.18. Valves to open when warming up the gettering furnace.

Figure B.19. LL vent line mechanical gauge and “N2 Vent” valve.

B.11 Unloading Wafers

First make sure all the wafers you want to unload are in the load lock. Next get

the gettering furnace warming up. Flip the power switch on and open the two valves

to operate it in furnace mode. The gettering furnace will overheat if there is no gas

flow through it when it is on, so also open the valve to the load lock vent line called

out in figure B.18. Watch the pressure on the load lock vent line mechanical gauge

shown in figure B.19, and open the “N2 Vent” valve on the pump cart when the gauge

reaches atmospheric pressure. Put the Ga beaker on the hot plate with a gloved hand

to start melting the Ga (this takes a while). Wipe down the load lock ROMO and
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Figure B.20. Prepare the LL ROMO and Ga beaker for re-loading the
LL.

door with some methanol and wrap a clean piece of foil around the ROMO as shown

in figure B.20 so that the surfaces you touch during the unloading will be as clean as

possible.

Get out as many new substrates as you will need, take them out of the wrappers,

and leave them in the clean hood. Get more clean wipes in the hood if needed. Use

only the TX1009 wipes (i.e. the green bag). Do not use the TX1109 wipes in the blue

bag since they leave fuzz on the tweezers and sharp edges. Send the load lock heater

lamp (“Intro Bake” control zone in Molly Status screen) down to 10C at 5C/min.

If you don’t send it down below room temperature it will send 100% power to the

lamp when you open the gate valve back up, and this probably shortens the life of

the lamp. Once this is ramping down, make sure the gate valve to the buffer chamber

is closed and turn off the load lock ion gauge (see figure B.21). Next, close the gate

valve to the load lock cryo pump. Keep an eye on the buffer ion gauge to make sure

it doesn’t spike up when you close the load lock cryo gate valve (i.e. to make sure the

gate valve between the load lock and buffer really is sealed).

Now start filling the nitrogen dewars for the sorption pumps. BEFORE filling

with LN2, check that the rubber pressure relief corks are all plugged in so you don’t

try to pump the whole room into the sorb. Forgetting this step will likely earn you

a good deal of ribbing from the boss. It usually takes about four trips to get the
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LL heater ramping down 

LL ion gauge off 

Remember to put the 

cork in 

Figure B.21. Ramp down the LL heater, turn off the LL ion gauge, and
check that the sorption pumps are plugged before cooling down the sorp-
tion pumps.

dewars all the way full and cold. Try not to splash a bunch of LN2 on the electrical

or waters lines on the floor next to the sorbs; plastic and rubber generally don’t like

cold shocks very much. Once the dewars are full and the gettering furnace is warm

(the orange light will be flashing rather than just staying on continuously) you are

ready to unload. Put on the “clean jacket” and a pair of the purple gloves and blow

yourself off with one of the nitrogen guns. Then double check the following items:

• LL ion gauge off > 5 min

• LL heater off > 5 min

• Gate valves to LL cryo and to buffer closed

• Gettering furnace hot
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No spikes in temperatures 

No spike in pressure 

Figure B.22. Watch for evidence of leaking gate valves when the LL is
first vented. When the LL reaches atmospheric pressure, open the thumb
screw to relieve the pressure.

• Argon flowing

• Wafers you want to unload in LL

• New substrates ready to go in clean hood

• Ga beaker warm, plenty of clean wipes in hood

• Foil on ROMO, lights in position and turned on

• Big gate valve from buffer to MBE closed

Now open the all-metal valve to vent the load lock and simultaneously close the

“N2 Vent” valve on the pump cart so that no air can get sucked into the load lock.

As you are opening the all-metal valve, watch the buffer chamber pressure and the

temperatures of the load lock and buffer cryo pumps as shown in figure B.22. Any

spikes in any of these temperatures or pressures means one of the gate valves isn’t

sealed. The buffer chamber pressure will always show a small blip up from the vi-

brations of opening the all-metal vent valve, but this will only be a few percent. If

the pressure suddenly doubles there is a problem. Assuming there are no problems,

watch the pressure of the mechanical gauge. Once it gets to atmosphere, unscrew
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the thumbscrew on the load lock door and let the pressure from the argon push the

door open (you may have to help it a little bit to get the Viton unsealed). Keep the

door as closed as possible while you are mounting/de-mounting wafers to minimize

the amount of air that gets in the load lock.

Now put on a pair of the “Accutech Ultraclean” latex gloves over your purple

nitrile gloves. The purple gloves leave fingerprints on clean sheets of tantalum while

the latex gloves do not, so the latex gloves are evidently quite a bit cleaner. Blow the

hand-held nosepiece out with the nitrogen gun before removing the first wafer from

the load lock. When you unload the wafers, always start with LL carousel position

1, then 2, then 3 so that you don’t mix up the wafers. Gently place the block on

the stainless steel block on the hot plate. Double check which wafer was on which

carousel position and lay out the old wafer trays in the same order along with the

new substrates that will be replacing them. The unloading process is probably the

easiest time to mix up the wafers, so make sure you have a standard sequence in your

mind so that you keep track of the wafers.

Wipe the wafer tweezers off on a clean wipe and blow them off with the nitrogen

gun. Slide the wafer off of the block with the tweezers. This sometimes requires a lot

of force, particularly if the block is new. Be patient. If you can’t slide the wafer off

from one direction, try another direction. You can also try going around the edge of

the wafer and gingerly prying the edge up a little bit. You have to be really careful

to not crack the wafer while doing this. As soon as you see the surface of the wafer

start to flex a little bit, stop. Since the wafer sits on a the pedestal in the center of

the block, the edge of the wafer sits a little higher than the edge of the block, so keep

the wafer tweezers at a bit of an angle so that you don’t slip and make a big scratch

across the surface of the wafer. Put the wafer face-down in its tray once you get it

off the block. Wipe the Ga off the wafer tweezers and blow them off.

Next, wipe off the Teflon spatula with a clean wipe and blow it off. Add some Ga

to the block to replace the Ga left on the wafer you just removed. I typically add two

drops on the corner of the spatula as shown in figure B.23. There should always be



213

Slide wafer off with tweezers at a bit 

of an angle from horizontal 
Add ~ 2 spatula edges worth of Ga 

Block should have good puddle of Ga Make sandwich of wafer trays and flip over to 

get epi-ready side facing up 

Figure B.23. Procedure for mounting a new wafer on a block.

a good puddle of Ga on the block. If there is not enough Ga, the As from the back

side of the wafer will sublimate during the growth and create splotchy dry patches on

the block. Once this happens it is very difficult to get good Ga wetting on these dry

patches, more As will continue to sublimate off the wafers on subsequent growths,

and you can eventually wind up with cold spots on the wafer due to the poor thermal

link between the block and wafer.

Next, open up the new wafer tray, remove the spider with tweezers (try not to

touch the wafer), and check the surface for any dust. The epi-ready side is face down

in the tray, so you need to flip it over before putting it on the block. Using tweezers

is a bit dicey since there is always a chance the wafer can slip and get scratched by

the tweezers. My approach is to put a second wafer tray face down on top of the new

wafer tray and then flip the sandwich over. Now inspect the epi-ready side for any

dust and use the wafer tweezers to pick the wafer up and set it on the block.
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Push the wafer around on the block a couple times to get the back side coated

with Ga. If you slide the wafer about halfway off of the block you can peek at the

back side to see how good the coverage is. Again, try to keep the wafer tweezers at

a little bit of an angle when you are pushing the wafer around so that you don’t slip

and smear Ga on the surface. If you do get Ga on the surface, get a new substrate

and set the dirty one aside for future use in etch testing, etc. Make sure the wafer is

as centered as possible on the block, but also try to minimize the amount you push

the wafer around. Every time you touch the wafer you potentially add dirt to it or

nick the edge.

Once you are satisfied with the Ga coverage and wafer placement, blow out the

inside of the nose piece (try not to blow anything on to the wafer), blow off the wafer,

and inspect it for any visible dust. Load the new wafer into the load lock. Make one

last check for dust. The best way to do this is to move the ROMO back and forth and

look at the surface for little white specks. You will partially blind yourself with the

reflection from the light, but I guess that is just part of our contribution to science.

Once you have all the new wafers loaded in to the LL and are satisfied with their

cleanliness, tighten down the thumbscrew on the LL door and immediately close the

Ar valve to the LL.

Next, turn off the gettering furnace and close the two valves on top of the furnace.

Now open the valve to sorption pump stage 1. As it pumps down the LL you will

probably be able to tighten down the thumbscrew a little more. Tighten it down

finger tight, but do not over-tighten it. The screw itself is stainless steel, but the

body it sits in is brass. The genius that designed this fixture did not think about

how soft brass is. You, however, must have been deemed pretty smart if you are

being entrusted with the MBE, so you will know that the threads will strip and jam

if you overtighten the thumb screw. I’ve already had to clean these threads out once,

and I’m not sure if the brass body will survive getting jammed again. Before you

forget, throw any wipes/gloves with Ga/As/GaAs/etc. in the Ga waste container

shown in figure B.25. Once the LL pressure stops falling (should get to 2-3E-2 Torr),
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Close this valve when you close up the LL 

so you don’t make a bomb out of the LL 

Figure B.24. Do not over-pressurize the LL.

first close the valve to sorb stage 1 and then open the valve to sorb stage 2. This

second stage should get the pressure down below 1 mTorr as measured by the LL

ion gauge. Once the pressure has stopped falling and is below 1 mTorr, close the

all-metal valve finger tight with the small handle and then open the gate valve to

the cryo pump. Immediately get the torque wrench out to tighten the all-metal valve

down all the way. The LL all-metal valve is currently closed at 31 Ft-lbs. Remember

to always check that the torque wrench is set to 31 Ft-lbs (e.g. make sure no one else

borrowed it for the other MBE and set it to a different torque). The copper seats

in the all-metal valves get deformed when you increase the sealing torque, so if you

mistakenly tighten the valve down to say 45 Ft-lbs, you will always have to seal it

at 45 Ft-lbs in the future. Once the sealing torque reaches ∼ 200 Ft-lbs (if you can

even apply 200 Ft-lbs of torque without ripping the flange off the machine) the valve

has to be refurbished.
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Figure B.25. Ga waste container.

Now that the gate valve is open and the all-metal valve is sealed off, send the LL

lamp to 50C at 1C/min and start the “Wait for LL pump down then bakeout” recipe

in the LL tab of the stepper. Now close the valve to sorb stage 2 and double check

that all the valves on the sorbs and Ar lines are closed. The machine should be in idle

at this point. Run through the end of day checklist again to make sure you didn’t

forget anything. Be sure to read and record the phase separator level in the galley.

B.12 Wafer Inspection

The machine should now be safe to leave, but unfortunately you are not done yet.

Now you need to examine the wafers you unloaded. First, look at the Ga on the back

of the wafer and write the condition on the summary sheet for that wafer. For the

foreseeable future, you will just have to write “Very good Ga coverage with Ga-free
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ring around the edge.” The blocks with the pedestal are a huge improvement over the

original blocks with a completely flat surface. The pedestal blocks consistently wet

the wafer very well since there is no crud building up around the edge of the block

to prevent the wafer from making good contact with the Ga. The blocks may end up

in a downward spiral towards having dry patches, however, if you are stingy with the

Ga . If there is not enough Ga, the wafer can sublimate and make a dry patch on the

block. This dry patch is then not wetted very well with Ga the next time you load

a wafer, this wafer sublimates some more, and so on. If that happens you will likely

see patches of shiny GaAs on the back of the wafer when you unload it. If there is a

patch on the wafer without Ga, sketch out that patch on the summary sheet.

Next, flip the wafer over (you can usually do this without tweezers) and set it in

the clean hood (where the lighting is the best). There are a number of defects you

need to keep an eye on. The first is the infamous island defect that is apparently

unique to our lab. This defect happens when the Ga freezes under the wafer and

punches out chunks of the wafer. This plagued almost all our growths for the first

∼ 4 months we ran the machine until we figured out that the cryo pump in the LL

radiatively cools the inside of the LL to something like 13C which is more than enough

to solidify the Ga. The solution is to keep the LL lamp at 50C all the time. Note that

this can also (rarely) happen to the wafers after they are out of the machine. One

time I had a half piece of wafer face down in its wafer tray with a quarter sitting on

its back (i.e. the Ga-covered sides were touching). I touched the Ga with some cold

metal tweezers which flash-froze the Ga on the back of the two pieces and created

an island defect on one of my pieces of wafer. If there are any island defects on the

wafer, sketch out where they are on the summary sheet.

The second, more ubiquitous, defect you will see is “Ga-spitting” or “Ga-grit”.

This will look like dust on the surface of the wafer. Just write down the degree

to which you see the spitting. This is pretty subjective, but I usually use terms like

“Minimal Ga spitting” or “significant Ga spitting” if I can see a lot of spitting outside
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Figure B.26. Nomarski phase-contrast optical micrograph of slip lines at
the edge of the wafer.

the LL. Wafers grown with Ga1 usually have “significant Ga spitting” while wafers

grown with Ga2 usually have “Minimal Ga spitting.”

Another typical defect is slip lines. These are caused by thermal gradients between

the center and edge of the wafer and typically don’t show up until the wafer gets

heated all the way to growth temperature. The new custom blocks are thicker than

the original blocks, so there is better thermal uniformity and fewer slip lines than the

old blocks. Figure B.26 shows a picture (using Nomarski contrast) of slip lines at the

edge of a wafer grown on block H (the first custom block).

There are varying degrees of slip, though the slip has been minimized a lot since

we got the pedestal blocks. Here are my guidelines for classifying the amount of slip:

• No Slip: no slip lines visible to the naked eye
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• Minimal slip: probably 3-4 slip lines visible to naked eye around the flats and

directly opposite each flat

• Some slip: Several slip lines at the flats, slip lines extend more than 2-3 mm

• Significant slip: Many slip lines at each flat/across from the flats, some slip lines

extend more than 1 cm

I have found the best way to see the slip is to move your head back and forth while

looking at the wafer at a glancing angle. You should see a bit of a bend in reflections

on the wafer surface at the slip lines. This will probably take some practice to find

the best way to find the slip lines. Try to compare your sketch of the slip lines with

what you see in the Nomarski (more about this later).

A similar defect is what I term “distortion”. This used to happen when too much

crud got built up on the edge of the block and the wafer was not sitting perfectly flat

on the block. It still happens sometimes for the first one or two growths on a new

block (or right after a block is etched) and there is not good Ga coverage. It just

looks like slip lines in the center of the wafer that do not extend to the edge of the

wafer. Evidently these defects are caused by serious mechanical stress on the wafer

during growth. To find these, look at the reflection of a straight line and scan your

head around. If you see the straight line bend somewhere in the center of the wafer,

this is distortion. Write it down and try to sketch out where the distortion line is.

These lines do not typically follow the major crystal axes. If there are no distortion

lines, write “no distortion”.

Next, there is “interference”. This is just optical interference due to film non-

uniformity from the center to the edge of the wafer. It is more pronounced in wafers

grown with more Al. For most x = 24% wafers I say they have “minimal interference”.

For the higher x wafers, if they have very visible interference rings, I call it “some

interference.” For wafers grown with large amounts of AlAs the wafer may be pretty

green in some places, so I call that level of interference “significant interference.”
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We have also had problems with “haze” at various points in the past. The haze is

pretty easy to see; it looks like a white/hazy region of wafer. Sometimes it is easier

to see it in the LL with the bright lamp shining on it and then is easy to miss outside

of the LL. Haze can be caused by a few different things. First, too little As flux will

result in a hazy wafer. This isn’t usually a problem for us since we don’t change the

As flux from run to run. If too little As is the cause of the haze, the haze will be

circularly symmetric since the wafer is rotated during growth. Remember that it is

possible to have the wafer at growth temperature with the As valve completely closed

for short periods of time (you can do this and look for a phase change in the surface

reconstruction to calibrate the pyrometer). So for insufficient As to be the cause of

haze, the wafer has to be starved for As for an extended period of time, which to my

line of thinking requires the haze to be circularly symmetric if the wafer is rotated.

Second, insufficient outgassing at growth temperature can leave some oxide on the

surface of the wafer which will result in hazy regions. If the pyrometer reading is not

increasing smoothly when the wafer is first warmed up in the growth chamber, this

may be due to a non-uniform oxide. This is almost certainly the case if the pyrometer

stabilizes after the wafer has been above 610C for a few minutes. If this happens,

you really have to make sure the wafer is > 610C for 10 minutes to get all the oxide

off. This will probably show up as random spots of haze on the wafer. Occasionally

you will see small slivers right on the edge of the wafer that look white-ish. My

assumption is that this is just a region that never got hot enough to get rid of the

oxide. I generally just ignore tiny slivers of haze like this since they are right on the

edge of the wafer. Third, we have had at least one batch of wafers from Wafertech

that were not properly cleaned prior to shipment. The haze usually showed up in

a crescent shape when this was the case. Figure B.27 is a picture (again from the

Nomarski) of what the hazy region looked like on the dirty Wafertech wafers. I do not

currently have any pictures of other haze under the microscope; the other sources of

haze may cause a different looking morphology. All the previously mentioned defects

should be noted/sketched on the “wafer surface” portion of the summary sheet. All
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Figure B.27. Nomarski phase contrast micrograph of a hazy wafer. The
field of view is ∼ 2.5 mm wide.

these defects are visible to the naked eye, though they may take some practice to

spot on a regular basis. Once you have done this initial inspection it is time to look

at the wafers with the Nomarski microscope.

B.13 Nomarski Exam

The microscope with the Nomarski contrast capability in the electrical character-

ization lab has turned out to be an extremely useful piece of equipment in diagnosing

problems with the growths. The Nomarski contrast (also called “DIC”) allows you

to get rid of a lot of glare on the surface and see features that you would otherwise

miss in bright field or dark field modes. Getting the microscope to give good images

on the camera is a little tricky, though, so I’ve outlined all my settings here. First,

enable the tool in Coral. It is silly that we get charged $20−30 even if we just look at
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Push this knob all the way in 

Push the whole assembly all 

the way in as well 

You may also need to play with this shutter 

Knob for changing image color 

Figure B.28. Microscope setup.

the wafer for 2 minutes, but the rules are the rules. Next, turn the lamp power to 8

(remember no gloves on the microscope or computer), put the central rotation piece

to “DIC”, and make sure the Nomarski slide is slid in all the way in to the optical

path.

Normally you don’t have to adjust the shutter on the left side of the microscope,

but recently someone has started messing with it. If you can’t see any light on your

wafer when the microscope is in DIC mode you probably need to open this shutter up

more. Once you have the microscope set up, turn on the camera and open the “Spot

Advanced” software. If it says, “No camera found”, make sure the camera is on, close

the software and re-open the software; it sometimes takes a while for the computer

to realize the camera is there. Once the software is running, start the live image, and

select “JDW DIC” from the image setup menu (also can be selected at the bottom
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right corner of the screen). This has the right camera settings to get good images. If

someone else messed with my settings, the numbers to use in the image setup are:

• Exposure: 88 msec

• Gain: 1

• Full Chip Imaging

• No color correct

• Bit depth: 8

• Red: 1.136

• Green: 1.000

• Blue: 1.400

Adjust the focus and the knob on the Nomarski filter until you get a good image.

Figure B.29 is a picture of a wafer with good morphology (Wafertech wafer grown on

block H) with significant Ga spitting (used Ga1 and Ga2).

The morphology can be pretty hard to see sometimes because its visibility is very

dependent on the exact focus/contrast. So as a test, make sure you can see the slip

lines at the edge of the wafer as shown in figure B.26. Figure B.29 has a surface that

looks free of major features but may have a little bit of what I would call “orange

peel” texture. Other growers have also seen orange peel, but to my knowledge it is not

a major problem for nanostructure fabrication or FQHE quality. If you can’t see any

texture at all, I would guess you just haven’t got the image settings correct. Again,

this will take some practice to know what to look for and how to tweak everything.

Once you get the image settings correct, scan over the surface of the wafer a few times.

Don’t worry about noting the position of Ga spitting defects (even the big ones); they

are just the price we pay for using high mobility effusion cells (i.e. cold lipped cells).

The main thing you need to look for is cross hatching. This was another defect that



224

Ga spitting 

Figure B.29. Nomarski phase contrast micrograph showing a wafer with
good morphology.

made grad school less than fun for many months. Figure B.30 shows an image (again

with the Nomarski on the same scale as the previous picture) taken before I was good

with the microscope/camera settings (hence why the image is blue). This image

came from the center of the wafer. This kind of morphology is obviously bad news

for anyone who wants to make nanostructures of any kind on the surface. That being

said, it does not appear to affect the transport. I am pretty sure that our best ν=5/2

sample so far (that had ∼ 600 mK energy gap) had this kind of morphology. In fact,

we didn’t even know all our wafers had this morphology until Lisa Tracy pointed it

out to us.

Cross hatching is apparently due to roughening of the surface during growth. To

get rid of the cross hatching we changed a few things. First, we reduced the thickness

of the initial smoothing layers after the oxide is desorbed from 100 nm + 100 sec pause
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Figure B.30. Nomarski phase contrast micrograph of a wafer with “cross
hatch” morphology. The field of view is ∼ 2.5 mm wide.

× 5 repeats to 10 nm + 20 sec pause × 50 repeats. Just from watching how a RHEED

wafer smooths out it is obvious that thin layers with lots of pauses do a better job

at getting the RHEED pattern streaky than a bunch of thick layers do. Second, we

reduced the time the wafer sits hot at growth temperature prior to the growth from

30 minutes to 10 minutes. Third, the morphology is somewhat dependent on the

wafer manufacturer. The Wafertech wafers give smoother morphology than the AXT

wafers do (the Wafertech wafers start out smoother and have a thinner oxide). With

our current growth procedures the AXT wafers don’t typically have fully developed

cross-hatching, but they are still noticeably rougher than the WT wafers. Finally,

the pedestal block design again seems to have improved the morphology relative to

the original blocks with flat surfaces.



226

Once you are done scanning the wafer with the Nomarski, sketch out any cross

hatching regions on the “Nomarski exam” portion of the summary sheet. Try to get

this map accurate. If there is cross hatching, there may be parts of the wafer that

are still smooth, and it would be good to know this when we decide which piece of a

wafer to send to a collaborator. If there is no cross hatching or roughness, just write

“good morphology everywhere.” Now that you are finished with the wafer exam, put

the camera settings back to “factory defaults” so no one else edits my settings, close

out of everything on the computer, turn off the camera and lamp, and log out of

coral. Finally, make a photocopy of the summary sheet to send over to the physics

building with the wafer.

Lastly, make sure you have copied all the structure sheet, summary sheet, and

the wafer exam details into the database. If someone else has it open, e-mail or text

them and complain about how they forgot to close it again. Finally, send an e-mail

out to Mike plus anyone else who needs to be cc’d giving an update of the state of the

machine, anything unusual in the growth, and when/how the wafers will be getting

over to the physics building to be characterized (communication between everyone is

key to keeping wafers from getting lost or sitting uncharacterized for long periods of

time).

Congratulations, you’ve finally completed a day’s work in the MBE lab! Now go

home and get some sleep.
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C. Wafer Characterization Standard Procedure

C.1 Sample Preparation

C.1.1 Initial Bookkeeping

• Look at the sketch of the wafer morphology on the sample summary sheet and

choose a region with good morphology as the source of your samples

• Wear gloves while handling all clean tools

• Cleave a 4 mm wide strip out of the wafer (try to take a chip from as close to the

center as possible). If the wafer has already been characterized (i.e. if the strip

has been sitting in air > 24 hours ) you need to have four fresh edges for your

chips or the contact resistances may be very high. If the existing strip is wide

enough, you can cleave off a tiny sliver (∼ 500 µm) from each pre-existing edge,

or you can cleave out a new strip. In all cases try to conserve material as much

as possible. If you can, just cleave a strip out of a quarter wafer rather than a

half wafer to preserve more material for potentially shipping to collaborators.

• Be careful to wipe the Ga off of the tweezers each time you grab the strip to

minimize the amount of Ga on the surface of your square

• Make sure to not make your samples too big (e.g. 6 mm is too big). If the

sample is too large, it will waste a lot of material and there will be larger

sample-to-sample variation in density and mobility

• Draw a map of where the samples came from on the summary sheet
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• Naming convention example: “1-31-11.1-a”’ (“.1” indicates first wafer grown

on 1-31-11, “a” indicates which square the sample is − MAKE SURE TO

INDICATE SQUARE LOCATION ON SAMPLE MAP)

• Store wafer top side facing down in wafer tray, leave small pieces sitting on larger

half-wafer pieces (i.e. Ga-covered sides touching each other). Try to secure all

loose pieces with the plastic spider, avoid getting Ga on any material that came

from close to the wafer center.

C.1.2 Applying Contacts

• Scratch the square at each point you will make a contact − use a single scratch

∼ 0.5 mm long

• Record the alloy used for the contacts on the back of the summary sheet (use

the ∼ 6.9% Sn InSn mix for standard n-type contacts)

• MAKE SURE YOU ARE USING THE CORRECT SOLDER TIP (mixing

the wrong tip with the wrong alloy will contaminate the alloys and ruin the

contacts)

• Turn off soldering iron when done and scrape tip with its associated razor blade

C.1.3 Mixing Up Contact Alloy

This section is a bit of an aside in case the contact alloy stops working or you run

out. The InSn alloy rarely goes bad, but the InZn alloy has a tendency to suddenly

stop working after a month or two.

• Clean a glass petri dish (no plastic!) with some IPA and a clean wipe (try to

avoid leaving a bunch of fuzz in the petri dish)

• For mixing InSn, weigh out a couple pieces of In along with one piece of Sn.

Shoot for ∼ 7% Sn by mass
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• Mix up the In and Sn with the appropriate soldering iron tip in the petri dish

(use a new tip if the last batch of InSn got contaminated). Mixing ∼ 3-4 minutes

is usually sufficient

• For InZn, take a couple pieces of In plus one piece of Zn and mix together in

the petri dish. The solder tip should be at a low enough temperature to melt

the In but not easily melt the Zn. Mix the Zn around in the puddle of In until

the puddle starts to get a little sticky, then discard the remaining Zn pellet.

It seems that it only takes a few atoms of Zn per contact to make them work.

Adding too much Zn can cause strange behavior like the Hall trace being non-

linear. Zn has a very high vapor pressure, so our theory is that if there is too

much, it can evaporate during the annealing and form a weakly conducting film

across the sample that starts to short out the Hall voltage. Too much Zn in the

annealer is also a concern in terms of contaminating the n-type InSn contacts.

• Once you’ve tested that your new alloy works, label it (include the date) and

add this name to the database so that future samples can be tagged as having

been made with this particular batch of alloy.

• If the previous batch was contaminated and your new batch works, throw out

the old petri dish (in the sharps container) and the old soldering iron tip (in

the metals waste bin)

C.1.4 Annealing Contacts

• Purge the tube for 10 minutes with forming gas after you load your samples

• Use flow rate 5 sccm (most of the time this does not need to be adjusted)

• Use variac = 42% (the variac should always be left on and at this percent

output)

• Make sure the thermocouple is inserted all the way into the tube
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• After purging, insert the tube into the furnace and start the timer for 15 minutes

• At the end of the 15 minutes pull the tube out of the furnace and keep the gas

flowing until the samples cool (∼ 10 minutes)

C.1.5 Mounting Samples on Header

• File down the forks on the header a little bit to clean off any oxide so the In

will stick better

• Solder wires to your sample using the same solder tip that you used for applying

the contacts. If the wire breaks, please re-thread it

• Add some In to the forks on the header

• Glue your sample into the header with a dab of rubber cement

• Solder the wires to the header

• Label the sample boxes for each sample (including chips that you don’t imme-

diately mount on a header)

C.1.6 Room Temperature Checks

• Check that all the contacts are continuous using a 2-terminal measurement

with the lock-in (the high mobility “standard structures” should have 1.5 − 5

kΩ 2-terminal resistances to ground at room temperature)

• Check the the LED is working (use 2 mA current)

C.2 4K Characterization

C.2.1 Cooldown and Measurement

• Check that there is enough helium in the dewar (20L is the bare minimum)
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• After loading your sample and the LED, screw the magnet back on and make

sure its connections are continuous

• Mount the probe on the dewar and start lowering it slowly. Lower at a rate of

∼ 1 inch/minute

• Monitor the resistance of the magnet with a multimeter while you are lowering.

Once the resistance gets to ∼ 500 Ω stop and let it cool for ∼ 5 minutes

• Continue lowering the probe until the magnet resistance bottoms out (usually

∼ 1 Ω)

• Now switch the multimeter to the RuO resistor and continue lowering until the

resistance saturates ∼ 1057 Ω

• Measure and record the 2-terminal resistance values and the resistivity

• Hook the magnet leads up to the magnet supply and setup to measure the Hall

data

• Save the data using the existing organizational scheme − each sample gets its

own folder in the 4K data directory (don’t add sub-folders inside of the folder

for other samples from the same wafer).

• If illumination is necessary, ground all the contacts and illuminate with 2mA

for 2 minutes (remember to take the magnet to zero first)

C.2.2 Warm-Up

• Pull the thinner part of the probe up all the way and wait a few minutes

• Pull the bigger part of the probe up ∼ 3-4 inches at a time, wait ∼ 5 min in

between each step

• Once the probe is all the way up, wait until the magnet resistance > 1000 Ω

before removing the probe from the dewar
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• Double check that the vent valve on the dewar is open before you leave

C.2.3 Wrap-Up

• Update the database on the group drive with the results of your characteriza-

toin. Fill out all the fields on the 4K input form. Do not put text in the numeric

fields. If you couldn’t measure something, leave that field blank and state why

couldn’t measure it in the comment field

• Return equipment (e.g. heat gun, curve tracer, etc.) to its home, and store the

samples in the prep room in chronological order

• Update the group with the results of your measurement
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D. Room Temperature Hall Effect System Standard

Operating Procedure

This appendix will give a short overview of preparing and measuring samples with

the MMR room temperature Hall effect system. This tool is used for measuring

bulk doping concentrations to calibrate the MBE dopant sources and also to quantify

background impurity concentrations when the material is really dirty (for instance

at the beginning of a growth campaign prior to outgassing the sources). The lowest

density it can reliably measure is in the mid- 1014 cm−3 range.

D.1 Sample Preparation

Begin by cleaving out a square piece of the wafer ∼ 6 × 6 mm2. Apply contacts

as described in Appendix C, but only apply contacts to the corners (the MMR Hall

effect system can only handle contacts at the corners). If you are trying to measure

the background impurity concentration, you should try either pure In or InZn contact

alloy. Note that when the background concentration drops into the mid- to low- 1014

cm−3 range, the density the MMR spits out may be lower for pure In contacts than

for InZn contacts. After applying the contacts, anneal them as described in Appendix

C.

After the contacts have been annealed, wire them up with un-insulated copper

wire (there should be a spool on the shelf above the microscope in the sample prep

room). The normal gold bond wire used to wire up samples for low temperature

measurements is not strong enough to surive the mounting process on the Hall effect

system. Since the copper wire is of unknown cleanliness, use a “dirty” soldering iron

tip (e.g. the one labeled “NiAuGe soldering”) and its associated In for solder. You

should give yourself ∼ 0.4 inches of wire to ensure that you can wire the sample up
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Figure D.1. A bulk doped sample after being measured. The scale shown
is inches.

to the MMR system. Figure D.1 shows a finished sample. Since the copper wire is

thicker and stiffer than the gold bond wire, try to avoid putting too much stress on

the solder joint (e.g. if you need to bend the wire, hold the wire close to the bond

with one pair of tweezers and bend it with a second pair of tweezers). Since all the

contacts have to work, make yourself 2-3 squares before you head over to Birck to

measure them so you don’t waste the whole day going back and forth between the two

labs. Once your samples are ready, pack them up in a sample box with a kim-wipe

to keep them from rattling around and head over to Birck.

D.2 Sample Measurement

Your training on the MMR system should have already prepared you for using

the system, but here is a reminder in case your training was cursory or in case the
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Figure D.2. View of the inside of the MMR Hall effect system sample
chamber.

instruction sheet1 in the lab goes missing (I’ve also put a copy of the original in-

struction sheet on the group drive in the “/GaAs growth data/Standard Operating

Procedures” folder). First, open up the sample chamber (remember to rest the sample

end on the high-tech “sample stage”). Set your sample on the end of the suppport,

and very lightly tamp it down. The sample sits on the end of a very fragile (and

expensive) cantilever, so if you push too hard you will break the support (this has

happened before). The original procedure I was shown involved holding a wood q-tip

horizontally from the fuzzy end and lightly pressing down on the sample with the

other end. The sample just needs to be flat, so you don’t need to over-do it. Once

the sample is in place, solder your wires on to the four solder pads shown in figure

D.2. The soldering iron is not in very great shape, so you may need to clean some

of the oxide off with sandpaper followed by a good wipe with IPA. Make sure you

can wet the tip with some solder before you try melting the solder balls on the MMR

1The original operating procedure upon which this section is based was prepared by Jeremy
Schroeder.
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pads. If the soldering tip is not in good shape you will melt the plastic in the MMR

before you melt the solder (another expensive mistake). Once your sample is wired

up and flat on the support, screw the lid back on the chamber. Don’t over-tighten

the screws; you don’t need to do any temperature studies, so it doesn’t matter if the

chamber is hermetically sealed.

Slide the chamber into the magnet housing and tighten down the thumbscrew

underneath the chamber. Make sure the H-50, MPS-50, and K-20 controllers are all

off and then plug in the ribbon cable along with the four triaxial cables. Be careful

not to bend any of the pins on the ribbon cable connection.

Turn on the H-50 and MPS-50 controllers and start up the Hall effect software.

Open the communications setup window and make sure the following boxes are

checked: Splitter, Com1, MPS-50 present. Next open the H-50 manual control win-

dow and type SC0.00977 and press “send command”. This will set the Hall sensor

sensitivity constant to 0.00977 V/kG.

Next open up the “Experiment Setup” window. First you should check the con-

tacts as the original standard operating procedure says. Open up the Van der Pauw

tab, select “single point”, and click “options”. Set the “Max Voltage” field to 2.3V,

click the “Fixed Setting” radio button, set “Coefficient %” to 100, and click “Start

Measurement”. This will apply a voltage in both directions between each pair of

contacts. If the contacts are working, the I/V values should be approximately the

same for each polarity for a given contact pair. If you see a variation of more than

a few percent between the two polarities, you should try re-soldering the offending

contact to the MMR wiring harness. If you do this process a couple times without

improving the contact, move on to your next sample. You should have near 100%

yield for doping concentrations > 1017 cm−3, but you may have finicky contacts when

trying to measure background impurity concentrations. The maximum current the

MMR can supply is 20 mA, so if one of your contact pairs gave a current higher

than that, decrease the “Max Voltage” value and re-run the measurement. Note the

lowest current value and round it down to the nearest two significant digits. This will
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Figure D.3. Graph of data from the linearity check measurement.

be the maximum current you should specify in the Linearity Check and Hall Effect

measurement sections.

Return to the “Experiment Setup” window and click on the “Linearity Check” tab.

Set the mode to “Curve”, select the “Current” option for the experimental variable,

click the “Linear” radio button, set the “Finish” field to the current value you wrote

down from the Van der Pauw measurement step, and set the “Start” and “Step” values

to convenient values so you get 4-5 steps from the initial to final current values. In

the “Advanced” window, set the number of repetitions to 1 and ignore everything

else. Click “Set” in the Experimental Setup window and press “Start” on the top

menu bar. This will measure the 2-terminal resistance of each contact pair for the

values of the current you specified. Once the measurement is done, click the graph

button on the top menu bar, click the “All four curves” option, select “Raw data”,

select the scatter plot graph type (i.e. the midddle option), and click “Best Fit” and

“Enter” to display the data on a graph. You should see something like that shown in

figure D.3. The resistance values for each contact pair should not vary by more than
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a few percent over the measured current range (i.e. the contact should be Ohmic).

If the resistance of any of the contacts does vary a lot, you can try re-soldering the

offending contact or discard the sample. If re-soldering doesn’t fix the problem, you

can still continue on to the Hall measurement step, but you shouldn’t put much stock

in the answer the MMR spits out. Save your linearity data in case you want to come

back later and check things (note that the software is old, so it will complain if the

file name is long or has illegal characters like spaces).

Next open up the “Hall” tab in the Experiment Setup window. Select “Curve”

mode, but set your current starting and ending values to both be equal to the working

current you wrote down in the Van der Pauw measurement step. In the advanced

setup window set the number of measurements to 1 or 2. The original operating

procedure suggests doing several measurements, but this is only because the people

who first used this tool had no idea how to make Ohmic contacts and consequently

got wildly varying Hall measurement results (including changes in the sign of the Hall

coefficient). If your contacts are working, the standard deviation of the density values

it measures will be several orders of magnitude smaller than the average reading.

Remember to set the thickness of your sample appropriately, make sure the “Field”

field is set to 3300 G, click “Set”, and press “Start” on the top menu bar. The

system will then proceeed to measure the resistivity at zero field and the Hall voltage

at positive and negative 3300 G for different contact configurations. At the end of

the measurement, it will spit out a screen with all the results; all we really care

about is the density and the sign of the carriers. Save your data and move on to

the next sample. The boss was initially somewhat skeptical of this machine since it

doesn’t actually show the Hall data anywhere. If you want to give him some more

convincing data, go back to the Experiment Setup window, click the “Field” tab, set

the start/finish/end values to take data at several field points up to 3300 G, and start

the measurement. Save the resulting data to a USB key as a CSV file and take it

back to your office to extract the data. Open the file in Excel and try to decipher the

meaning of all the sub-scripts in the header sections. You should be able to figure
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out which data fields correpond to the Hall voltage at each field value. Once you

find these values, you can make a plot of Rxy vs. B and extract the density. The

density you extract this way should match the density the MMR spits out, and the

plot should help reassure everyone that the MMR blackbox is actually working.

Once your measurements are all done, open the “H-50 Manual Control” window

and type FI0.0 and press “Send Command”. Shut down the software and turn off

the H-50 and MPS-50 controllers. Remove your sample, remember to turn off the

soldering iron, put everything away, and clean up your mess.
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E. Helium Transfer from Liquefier Standard Operating

Procedure

E.1 Pre-Transfer Bookkeeping

• Check on the Labview gas meter page that no more than one other person is

transferring. The compressor in the sub-basement can only handle ∼ 18 CFM,

so the sum of all the helium being boiled off in all the labs must be less than

this to avoid blowing a hole in the bag in the attic

• Hook your storage dewar up to the helium recovery line

• Check that there is enough liquid in the liquefier to do your transfer. There

always needs to be at least ∼ 150L in the liquefier

• If the liquefier was just started up, make sure it is stable before you transfer.

It is best to just ask Keith if it is ok to transfer, but if you can’t find him the

screen on the laptop should look something like that shown in figure E.1

• Measure the liquid level in your storage dewar with the thumper dipstick (the

brass quick-connect fitting should be in the top right drawer of the desk)

• Turn on the liquefier level meter if it is not already on (switch is on the back)

and put it in continuous mode (denoted by the *) by pressing < MENU >, <

ENTER>, < MENU >

• Fill out the Google Docs spreadsheet. The “LHe” column refers to the starting

amount of liquid in your storage dewar (in L), “Dewar cm” refers to the level

of helium (in cm) in the liquefier, “meter (scf)” refers to the reading on the gas

meter
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Figure E.1. View of the liquefier laptop when the liquefier is running
smoothly.

• Fill out Keith’s Excel spreadsheet with the date, time, “P impure” (from the

Ashcroft gauge shown in figure E.2), and liquefier dewar liquid level (in cm)

E.2 Starting the Transfer

• Put the appropriately sized quick-connect fitting on top of your storage dewar

to mate with the transfer tube

• Close the recovery valve on the big dewar (see figure E.3) so that you can

pressurize the dewar

• Open the valve on top of the liquefier and slide the tube down a few inches

• Immediately open the valve on the transfer tube to let the gas start flowing out

to purge the tube

• Once the tube is sufficiently purged (< 1 minute if the liquefier is pressurized,

∼ 1 minute if it is not pressurized) insert the transfer tube into your storage

dewar
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Figure E.2. Pressure gauge behind the computer showing the “P impure”
reading.

• Slowly lower the transfer tube into the liquefier and your storage dewar. It

should take ∼ 3-4 minutes to get the tube all the way down.

• If the tube starts to get stuck (it usually does since it is kinked a bit), gently

push away from you (towards the tool bench) while simultaneously pushing

down. It usually doesn’t require a lot of strength, just a little finesse. If you’re

having a really hard time stop and get some help (preferably Keith). Towards

this end, plan to do your transfers during regular business hours until you’ve

been transferring regularly for a couple months so that people will be around

in case you need help.

• Once you get the transfer tube down, make sure neither o-ring is leaking (i.e. no

hissing). If there is a leak, stop the transfer (see the end of this operating
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Recovery valve 

Figure E.3. Recovery valve on the liquefier dewar.

procedure) and replace the o-ring (there should be some spares in the top left

desk drawer). If you see that we are low on this particular size of o-ring, let

Keith know.

• If the liquefier is running, make sure that the pressure stays below 6 psi. If it

gets higher than this, the liquefier will shut down

• If the liquefier is running, do NOT pressurize the dewar with any gas. The

liquefier will keep itself pressurized.

• If the liquefier is not running, hook up the rubber helium hose from the gas

cylinder to the pressure-building valve (after purging the hose for ∼ 10 seconds).
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Figure E.4. Liquefier dewar pressure. Do not let this pressure exceed 6
psi if the liquefier is running.

• If the liquefier is not running, pressurize the liquefier dewar to ∼ 3.5 psi. This

should be high enough to complete the transfer, though you may need to check

if you are filling a completely empty dewar.

• If the liquefier is running, your storage dewar should start filling by the time

you get the transfer tube all the way down. If the liquefier is not running, it

will probably take ∼ 5-10 minutes to get liquid transferring (evidenced by the

sudden large drop in the boil-off rate from your storage dewar). Once liquid

starts flowing, it should take ∼ 1 hour to fill an empty (but still cold) dewar.

Do not try to fill a warm dewar. If the dewar is warm, you need to talk to Keith

about how to pre-cool the dewar. Attempting to transfer directly into a room

temperature dewar would waste an unacceptable amount of helium.
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Pressure 
building valve 

Figure E.5. Pressure building port.

• Once the recovery line starts to get cold close to the gas meter (usually ∼ 30

minutes into the transfer), turn on the heat gun below the recovery meter to

keep the meter from freezing up (see figure E.6. If the meter freezes, the rubber

seals inside will crack and we will start losing a lot of helium. This happened

once in the past (fortunately no one in our group was involved). Suffice it to say,

you don’t want to be the next guy to freeze up the meter. With this in mind,

always double check that the heat gun is actually putting out hot air. The heat

gun filament burns out once every few months, and people don’t always alert

others to this situation.

• Monitor the gas recovery rate during the transfer. Once the liquid starts trans-

ferring, it will drop down as low as 1 CFM but then gradually increase over the

course of the transfer, reaching ∼ 10 CFM by the end. If you see a boil-off rate
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Figure E.6. Heat gun used to keep the gas meter from freezing.

consistently above 11-12 CFM, though, this means you have probably over-filled

the dewar.

• As the transfer is proceeding, you can enter the liquefier dewar level and the

gas meter reading into the Google Docs spreadsheet to estimate the liquid level

in your storage dewar. If the liquefier is running during your transfer, the

spreadsheet estimate will be ∼ 10-12L low at the end of a 100 L transfer. This

is of course because the liquefier was making liquid during your transfer.
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E.3 Ending the Transfer

• Close the valve on top of the transfer tube.

• Put on pair of gloves. You only have to burn yourself once with helium before

remembering this step becomes easy.

• Start pulling the transfer tube out of the liquefier and your storage dewar. Raise

it about 6 inches at a time and don’t waste time. If you take too long, the quick-

connects will freeze up more, and it will be more difficult to pull the transfer

tube out. When pulling the tube out of the storage dewar, make sure to hold

on to the top half of the brass quick-connect so that you don’t pull it out of the

storage dewar (pulling the quick connect apart is a good way to give yourself

frostbite).

• Once you get the liquefier end of the transfer tube about 2/3 of the way out,

pull the tube all the way out of the storage dewar. Try to do this slowly and

after each time it moves a little bit try (gently!) closing the valve on the top

of your storage dewar. Be careful not to smash the transfer tube in the valve.

Once you get the tube out, hang it on the hook. During all this, try to avoid

bending the liquefier end of the transfer tube any more than it already is.

• Pull the liquefier end of the transfer tube all the way up. If it gets stuck, push

away from yourself (towards the tool bench) gently while simultaneously pulling

up with one hand and pulling on the rope with your other hand.

• Once the transfer tube is all the way up, close the valve on top of the big dewar

• Slightly open the liquefier’s recovery valve if the liquefier is not running. Open

it just enough to hear some hissing (∼ 1 CFM on the Labview page if nothing

else is hooked up to the meter). You will probably have to turn off the heat gun

temporarily to hear this. If the liquefier is running, do NOT open the recovery

valve. The tube between the liquefier proper and the big dewar carries liquid
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to the dewar and gas back to the liquefier. Opening the recovery line while the

liquefier is running will cause problems for the liquefier.

• Measure the liquid level in your storage dewar with the thumper. It should be

pretty easy to find the top of the liquid level, but don’t waste time with the

dipstick far down in the dewar as the nitrile glove membrane will freeze up. If

you can’t feel the change in vibration frequency, just pull the thumper out, let

it thaw out, and try again. Getting this measurement right is important for all

the helium accounting, so don’t guess.

• Adjust the starting gas meter number in the Google Docs spreadsheet to get

the final storage dewar reading to match what you actually measured.

• Update Keith’s excel spreadsheet like you did when you started. Make sure to

mark down how much helium you actually added to your storage dewar.

• Put the level meter back in sample/hold mode by pressing < MENU >, <

ENTER>, < MENU > again. Turn the meter off if the liquefier is not running.

• Thaw out the rubber hose on your storage dewar.

• Close both valves on the regulator if you had to pressurize the big dewar.

• Take your dewar back to the lab, hook it up to the recovery line, and just

slightly open the recovery valve so that the pressure is released slowly as the

dewar settles down.

E.4 Final Checks

After you take your dewar back to the lab, go back to the liquefier and double

check the following:

• Valve on top of the dewar closed

• Recovery valve opened (ONLY IF THE LIQUEFIER IS NOT RUNNING)
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• Valves closed on gas cylinder

• Pressure building valve on big dewar closed

• Level meter in sample/hold mode if liquefier is running, shut off if liquefier is

not running

• Heat gun is off

• Both spreadsheets updated and correct

• If you unhooked any dewars from the recovery line, make sure they are hooked

back up with their recovery valve(s) open
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F. 3He Fridge Standard Operating Procedure

F.1 Sample Loading

Assuming that the probe is all the way up and warm, use the following procedure

for loading your new sample on to the probe.

• Make sure that the gate valve is shut (see figure F.1a).

• Close the Speedi-valve to the probe (see figure F.1c) and disconnect the probe

pump-out line.

• Double check that the gate valve is shut.

• Open the lower Nupro valve (see figure F.1d) to the sample space.

• Break the KF-50 seal above the gate valve while keeping one hand on the load

lock to steady it.

• Use the winch to pull the probe up an inch or two as shown in figure F.2a.

• Remove the green clamp (figure F.2b) and pull the load lock up a couple inches

to reveal the sample holder.

• Change the sample (pin 1 is marked with the red paint). Be careful not to touch

the wires underneath the teflon tape shown in figure F.2c.

• Check that all four sets of set screws, the aluminum stand-offs, and both sets

of brass nuts shown in figure F.2d are all tight. If they are loose, tighten them

while being very careful to not touch any of the wiring.
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(a) (b) 

(c) (d) 

Probe pump 
out line 

Speedi-valve 

Lower Nupro 
valve 

Figure F.1. (a) Gate valve. (b) Probe pump-out line. (c) Speedi-valve.
(d) Lower Nupro valve (circled in red).

• Check that the heat-shrink tubing around the thermometer wires are not stick-

ing out past the edge of the sample mount. If they are sticking out, very gently

push them back so that they don’t get caught anywhere inside the fridge.

• Slide the load lock back down all the way and put the green clamp back on the

probe.

• Lower the probe back down to the KF-50 flange with the winch. Be careful to

steady the probe with one hand while the other hand operates the winch.

• Clamp the probe back on top of the gate valve with the KF-50 clamp.

• Hook the probe pump-out line back up.
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(a) (b) 

(c) (d) 

Green clamp 

Pin 1 

Set screws Aluminum 
stand-offs 

Brass nuts 

Figure F.2. (a) Probe suspended above the gate valve by the winch. (b)
Probe clamp. (c) Sample mount. (d) Tail. Make sure all set screws,
stand-offs, and nuts are secure.

(a) (b) 

Check that the heat shrink-tubing is not 
sticking out past the copper or brass. 

Figure F.3. (a) Check that the heat-shrink tubing around the thermome-
ter leads is not sticking out past the copper or brass. (b) Wait for the
probe pressure to fall to ∼ 20 mTorr before proceeding.
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Figure F.4. Close the valve between the dump and the fridge.

• Open the Speedi-valve to pump out the probe. Do not open the gate valve while

pumping out the load lock.

• Wait for the probe pressure to read ∼ 20 mTorr. Check that all your contacts

work while you are waiting.

• Once the probe is pumped out, close the lower Nupro valve to isolate the load

lock from the pump.

F.2 Sample Cool Down

• Double check that the lower Nupro valve is closed and that the upper Nupro valve

(i.e. the sliding seal valve) is open.

• Ground the sample.
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• Open the gate valve and watch that neither the probe pressure mechanical gauge

nor the probe pressure electronic gauge show any pressure spikes. If they do,

close the gate valve back up and ask for help.

• Open the needle valve to get the 1K pot pressure ∼ 7 Torr.

• Close down the valve between the 3He insert and the dump (see figure F.4) so

that the 3He all stays inside the fridge while you are doing the condensing.

• Set the charcoal setpoint to 15 K and set the heater output range to 625 mW.

• Lower the probe ∼ 6 inches.

• The probe must always stay lubricated with vacuum grease. If you cannot feel

any grease on the probe, add a thin layer of grease to the dry section of the

probe. Wear a glove while you do this and remove the greasy glove before you

spread the grease to everything else in the lab.

• Watch that the sliding seal pressure (measured by the “probe pressure” elec-

tronic gauge) does not increase at all while you lower the probe.

• Fill out the cool-down log sheet as you go.

• Once the charcoal reaches ∼ 14 K, set the output range to 6.2 W and set the

setpoint to 20K. Keep slowly increasing the setpoint until the charcoal is at 30

K.

• Keep lowering the probe a couple inches at a time. Aim for getting the probe

all the way down over the course of about 1 hour.

• Try to keep the 1K pot at “T-UNDR” with the lowest possible 1K pot pressure.

The 1K pot pressure will increase as there is an increasing heat load on it, but

if you started at 7 Torr with no heat load, it should not be necessary to open

the needle valve if you increase the charcoal temperature slowly enough.
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• While you are still lowering the probe, the 3He pot RuO should reach > 17.2

kOhm. The maximum resistance it will reach will depend on the helium level

in the dewar (refer to previous log sheets for what numbers to expect).

• Once the probe is all the way down, tighten the c-clamps on top of the probe

to compress the thermal anchor into the 1K pot.

• Turn off the charcoal heater.

• The sample should cool to 300 mK in ∼ 20 minutes. Check the 2-terminal

resistance of your contacts while the samples finish cooling.

• Record any unusual behavior (e.g. scraping, rises in probe pressure, difficulty

in sliding the probe through the sliding seal, etc.) in the log book and e-mail

this information to everyone else who works with the fridge.

• At the end of your measurements, record in the log book how long the sample

was at 300 mK. Normally you should be able to finish your measurements before

the 3He all boils off, so you should record something like “Hold time > 5 hours.”

F.3 Sample Warm Up

• Ground the sample.

• Turn off the magnet switch heater.

• Make sure the charcoal is at 4 K and the 1K pot reads “T-UNDR”.

• Remove the c-clamps from the probe and start raising the probe up. You should

be able to raise the probe ∼ 30 inches the first time.

• Take the slack out of the rope with the winch, but do not try to pull the probe

up out of the fridge with the winch.

• Wait 5-10 minutes for the probe/sliding seal to warm up.
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• Pull the probe up another few inches; stop when the probe pressure starts to

rise above ∼ 30 mTorr, the probe starts to frost, or the sound of the probe

pump changes.

• Never force the probe up if it feels stuck. If the probe does feel stuck, lower it a

little bit and then try pulling it back up. If this does not fix the problem, find

someone to help you diagnose the problem.

• Once the probe is all the way up, close the gate valve. Make sure the probe is

really all the way up and did not slide down through the green clamp while you

were getting down from the table.

• Tighten down the needle valve to seal off the flow of helium into the 1K pot.

• Open the valve between the dump and the fridge

• Before leaving, double check the following:

1. Needle valve tightened down.

2. Switch heater off.

3. Gate valve closed.

4. Valve from fridge to dump open.

5. Sample database updated and closed.

F.4 Changing the Sample Mount

The new probe design allows us to measure large samples mounted on DIP headers

as well as wire-bonded devices mounted on LCC chip carriers1. Due to the difficulty

in wiring the probe and sample mounts, great care should be taken when changing

out the sample mounts.

1Spectrum Semiconductor part number LCC03201, www.spectrum-semi.com
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(a) (b) 

(c) (d) 

Figure F.5. (a) Start by prying the connectors apart with the tweezers
sitting across multiple rows of connectors. (b) Move to the other end of
the sample mount and pry the connectors apart a little more. (c) Do
not try to pry the connectors apart with the tweezers parallel to rows of
connectors. (d) Check that none of the pins are bent before trying to
install the sample mount on the probe.

• Start gently prying the black connectors apart. Insert a sharp pair of tweezers

across the rows of connectors and pry the connectors apart just a little bit as

shown in figure F.5a.

• Next, pry the connectors apart at the other end of the column of connectors as

shown in figure F.5b.

• Next, continue prying the connectors apart on the other side of the sample

mount.
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Hold the sample mount here 

Hold the probe here 

Figure F.6. Support the sample mount and probe by holding either the
circuit boards or metal disks. Do not touch the wires.

• Do no insert the tweeezers parallel to each row of connectors as shown in figure

F.5c. This will put unnecessary stress on the connectors.

• Keep slowly working the connectors apart with the tweezers until the sample

mount is completely disconnected. Do not try to pull the sample mount off by

hand.

• Check that all the pins on the sample mount that you plan to install are straight

as shown in figure F.5d.

• Line up the red marks on the mating connectors (the red mark denotes pin 1).

• Very carefully push the pins on the sample mount into the sockets on the probe.

Hold on to the sample mount and probe by the circuit boards or copper/brass

disks as shown in figure F.6. Be extremely careful to not grab the wiring or slip

and bend any of the pins.
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• Inspect the probe to make sure nothing is loose or sticking out past the edge of

the circuit boards or metal disks.
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G. Device Fabrication Standard Operating Procedure

This appendix will cover the recipes I’ve used for processing devices in the clean

room for a number of different projects. Some points will be unique to the in-situ

back-gated devices, but for the most part the process flow would be the same for

fabricating other types of devices. I will also try to include what I’ve learned along

the way about more general ideas like mask design and process development in the

hope that the reader may not have as many wasted process runs as I did early on in

my time in the clean room.

Sumit Mondal and I were the first members of the Manfra group to start processing

in the Birck clean room, so we learned a lot about processing from a number of theses

from other groups. I would particularly recommend the theses of Jeff Miller[164] and

Doug McClure[165] from the Marcus lab at Harvard as these are the most detailed,

but I would also recommend the reader look through other theses [166, 167, 111,

168, 169, 170, 171, 172, 173, 174, 175, 176] to get a sense of what other groups do.

Reference [174] in particular has a lot of detail on the microscopic details of Ohmic

contacts which was helpful in understanding some of our rather bizarre initial results

(more on this later). There is, of course, a lot of variation among all these theses

in the specific details of the recipes, so it is useful to see what recipe steps can be

tweaked and still give good results.

G.1 Initial Preparations

At the risk of being pedantic, start out by choosing which wafer you are going to

process. If you are already well into a project, this won’t really be an issue as you

will know which wafers are working well for your project and which ones aren’t; but if

you are, for example, doing your first processing run in the clean room you will need
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to find a less-than-stellar wafer to practice with. Make sure you look at the transport

that was taken in the 3He system to be sure that the transport is homogeneous and

isotropic. Some of the mediocre doping well samples that we’ve grown over the years

show anisotropic transport. In other words, at 300 mK Rxx measured in one direction

may not get above 20 Ω even in the insulating states while the resistance at ν = 5/2

may be 150 Ω in the perpendicular direction. If the transport was not recorded in both

directions for a particular wafer, don’t bother trying to process it. Your processing

may be fine, but if the transport comes out looking anisotropic you won’t know if

this was due to damage during processing or was intrinsic to the wafer.

Once you’ve decided on a wafer to use, make a note in the sample database in

the “Collaborator Records” section about what material you are using (e.g. “Top R

1/4”) and what your goal is. Fold up half a small kimwipe and stick this on top of

your wafer in a plastic sample box to keep it from rattling around when you take

it over to Birck. When you take the sample into the gowning room, label the box

with the label maker (no masking tape allowed in the clean room), and replace your

dusty kimwipe padding with a strip of one of the clean room wipes. Ira keeps a pair

of scissors on the top shelf of the rack with all the new clean room garments; if you

borrow his scissors, make sure to put them back when you are done.

G.2 Tools and Tool Preparation

You should assume that all beakers, jars, tweezers, petri dishes, bottles for pho-

toresist, etc. that you bring in to the clean room are dirty, so you will need to clean

them before you start using them with your samples. At a minimum, you should

clean everything with solvents in the sonicator. If you are cleaning a large beaker,

just fill the beaker itself with the solvent and stick it in the sonicator. If you have

smaller beakers, tweezers, or other small tools, use a larger (already clean) beaker to

hold the solvent. Sonicate first with toluene to remove grease, sonicate with acetone

to remove the toluene, sonicate with IPA or methanol to remove the acetone, and
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finally sonicate in DI water to remove the remaining solvent residues. If you are

cleaning a beaker on its own (i.e. not inside a larger beaker), wipe the outside with

a solvent soaked wipe after each sonicating step since the outside of the beaker will

also be dirty.

If the tool will survive a piranha etch, this will do the best job cleaning things up.

Glass beakers, teflon tools, and stainless steel tweezers are all candidates for piranha

cleaning. If you do this, though, you should first read up on proper safety when

using piranha. Be careful to get rid of any organic contaminants and solvents before

sticking something in a piranha bath. Never attempt to clean plastic in piranha. Be

sure to rinse the tool(s) thoroughly (at least 5 minutes) in running DI after etching to

make sure there is no acid residue that could interact with your processing chemicals

later.

Perhaps not surprisingly, it is no small feat to get a small chip (sometimes as

small as 4 × 4 mm) through several rounds of lithography, etching, metalization,

etc. without scratching the surface of the chip, dropping a chip with wet photoresist

face down, leaving it in a chemical for too long because you couldn’t grab it easily,

etc. Each mistake like this can potentially degrade the quality of your device, so you

should try to make each processing step as dummy-proof as possible. Use shallow,

wide beakers for wet etches, developers, etc. If you drop your chip, it will be a lot

easier to fish it out of a beaker that is shallow and wide than one that is tall and

narrow. The last thing you want to do is ruin your last good piece of wafer because

you over-etched it by mistake.

In addition, don’t be cheap when choosing your tweezers. The “economy” tweezers

may claim to be a great value, but the tips will not close as uniformly and as a result

you will drop a lot more samples than if you get the “high precision” model. I

personally like the plastic “carbo-fib” tweezers from Techni-Tool1 since the soft tips

are less likely to scratch the chip and they are relatively high precision, though note

1www.techni-tool.com catalog #758TW0304
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that these tweezers are not suitable for HCl or photoresist developer. For processes

involving HF acid, get a pair of teflon-coated stainless steel tweezers2.

Furthermore, you need a reliable way to carry your samples around and protect

them from light exposure, rogue solvent squirt bottles, other people bumping your

storage box, etc. My personal approach is to take a 4 inch petri dish3 and cover the

lid with foil to keep the light out. The samples don’t slide around too much on the

glass, it is easy to pick the samples up and set them down on glass (as compared to

crinkly foil), and you can clean your petri dish with solvents each time you clean your

samples to keep the dish itself clean.

Most of your other supplies can be obtained from Ira in the Birck stockroom. For

your photoresist bottle, use the wide-mouth container with the hard plastic lid and

not the narrow-mouth jar with the built-in dropper. The rubber on the dropper can

dry and crack, potentially leaving rubber particles in your photoresist. Whenever you

run out of photoresist, get a new bottle from Ira. It’s not worth the risk of having

old, crusty photoresist contaminate your fresh resist. Whenever you fill up your small

photoresist bottle, label it with the expiration date so you know when to replace the

resist in case it expires before you use it all up. Each time you use the resist, wipe

the mouth of the bottle with a clean wipe to try to prevent resist from building up

on the lip of the jar; this build-up could turn into crusty flakes that will mess up your

lithography.

G.3 Ga Removal

The first step in processing a sample is to clean the gallium off the back of the

wafer. The staff don’t want gallium getting on any of their equipment (particularly

the evaporators and the RTA), so this step is important. Surprisingly, this step is

not mentioned in any of the theses I listed in the beginning section of this appendix.

Evidently, staff at other universities are not as paranoid about the presence of gallium

2www.tdiinternational.com catalog #TDI-2A-SATCE5
3These can be purchased from the chemisty stockroom
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in their equipment, or the students just never mentioned to the staff that the samples

had gallium on the backside. Regardless of the reason, we had to develop this process

on our own.

Start by blowing your sample off. Everything in the physics building (including

our sample prep room) is really dusty, so try to get any large dust bunnies off before

you do anything else. Next you need to coat your chip with resist to protect the

epilayers while you clean the gallium off. Enable the spinner in Coral and then start

setting up. First, line the black bowl with foil to make clean-up easier at the end. Lay

out two clean wipes in the hood (one for setting your stuff on, the other for cleaning

resist off your tweezers). Assume all wipes left in the hood by previous users are dirty.

You never know what chemical residues may be left on a wipe, so just get yourself

some new ones straight from the bag. You can use the ones other people left behind

for clean-up at the end. Go to the stock room (it is the door immediately to your

right when you walk out of the air shower from the gowning room) and grab yourself

a pipette, a bulb, and a glass slide. Set the pipette and bulb on one of your clean

wipes and don’t let the tip touch the dirty surface of the hood anywhere. Wipe the

glass slide off with a clean wipe and some IPA or methanol, go set it on one of the hot

plates in the lithography bay, and set the hot plate to 100C. Try to use the same hot

plate whenever possible as each of the three hot plates has a slightly different offset

from its setpoint. Get a small piece of foil and make a little ridge on it perpendicular

to the length of the pipette you set on it so that the tip of the pipette is not touching

the foil. Find a chuck that has a pedestal on it smaller than your sample and mount

it on the spinner. Set the spinner to ramp up to 4000 RPM over 4s, sit there for 40s,

and then spin down over 4s. Get a junk piece of GaAs and try spinning it. I would

recommend having a stash of junk chips of various sizes ranging from 4 × 4 mm up

to a quarter wafer so that you have test pieces roughly the same size as any of the

samples you may potentially spin. The spinners get abused a lot, so you always need

to test that the vacuum is good enough to hold your sample on before you fling your

real sample into the jagged foil. Make sure the junk chip stays on for the entire 40s,
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and then try mounting it a little off center, try abruptly stopping the spinner, etc. to

make sure the vacuum is really good.

If you get the vacuum interlock error, try pushing the chuck on to the spindle

more. If this doesn’t work, take the chuck off the spinner and check for flakes of the

white plastic insert on the o-ring inside the chuck. If there are flakes, try to clean

them out with a q-tip. If the vacuum is ok but the door interlock prevents the spinner

from starting, fold up a small piece of foil and set it on top of the lid interlock switch

to cause the lid to push it down a little more. If this fixes it, report the problem in

Coral so that the staff can adjust the sensitivity of the switch so you don’t have to

do the foil trick in the future.

Once you are convinced that the vacuum is good, do a test spin on your real

sample. The last thing you want is to get your sample coated with a bunch of

photoresist and then not be able to start the spinner because the vacuum is not good

between the back of your sample and the chuck. You can cheat a little and stop the

spinner once your sample starts spinning, but if you do this make sure you stop it

in the first second or so of spinning so that it doesn’t get up to full speed. If the

vacuum is not really good, the sudden stop can sometimes fling your chip off the

chuck. Once the spinner appears to be working, cover the surface of your chip with

AZ1518 resist (remember to blow the bubbles out of the resist somewhere other than

on your sample) and start the spinner. If you have additional chips, spin the resist

on them now.

Bake your samples for 2 minutes on the hot plate at 100C. Start the timer as soon

as you set the first one on the glass slide and space out subsequent samples ∼ 10s.

When the 2 minutes are up, pick the samples up in the same order with the same ∼

10s pause in between each one to ensure they all get baked for the same duration.

Don’t set your samples straight on the hot plate since the hot plates tends to have a

lot of photoresist, epoxy, and other mystery goop baked on to them.

Once your samples are done baking, turn off the hot plate and let it cool down to

∼ 50C, or if another hot plate is free set it to 50C. Set a clean wipe on the 50C hot
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Figure G.1. Gallium-covered backside of a wafer.

(a) (b) 

Figure G.2. (a) Backside of wafer after gallium has been wiped off. (b)
Approximate number of q-tips necessary to wipe all the gallium off a full
wafer.

plate and set your sample face down on the wipe as shown in figure G.1; this will keep

the gallium from freezing. Get a bunch of q-tips and wipe the gallium off the back.

You should be able to wipe 99% of the gallium off this way (see figure G.2). Be very

careful, though, to not slide your sample onto a part of the wipe with gallium on it.

In addition, try to slide your sample around as little as possible to avoid damaging

the protective resist layer.

Once you have wiped all the gallium off, spin and bake a second layer of AZ1518

resist onto your sample as before. This will fill in any holes you may have made in

the resist while wiping the gallium off. Clean up the spinner and disable it in Coral.

Next, etch your sample resist-side-down in full strength HCl for 3 minutes to remove
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any remaining gallium residue. You can use stainless steel tweezers to pick up your

samples, but don’t leave the tweezers in the acid for very long as the HCl will attack

the steel and give off a yellow/green cloud of junk. Rinse your tweezers as soon as you

take them out of the acid to prevent them from corroding while your sample etches.

I use a dedicated beaker for the HCl etch to avoid any potential cross-contamination

with other process steps. Have a rinse beaker filled and ready so that when the 3

minutes are up you can transfer your sample straight to the rinse. Let it sit in the

rinse water for ∼ 30s and then rinse it with running water for a few seconds and blow

it dry. Once all your samples are etched, rinse your beakers and tweezers thoroughly,

blow dry, and clean up your mess.

G.4 Cleave and Initial Clean

Now you need to decide how to cleave up your samples for your process run. I

would recommend that you process several samples through the Ohmic deposition

and annealing since the mesa etch and ohmic deposition takes a significant amount

of time but should have a relatively high yield. After the Ohmic deposition, you

can either cleave out individual chips to anneal at separate temperatures, or you can

anneal them all at the same temperature and then process them one at a time through

subsequent steps (like e-beam patterning of depletion gates).

At this point you will need to consider your remaining processing steps before you

cleave up your chips. Figure G.3 shows a sketch of the wire-bondable, 16-pin DIP

chip carriers that we use4. The orange lines represent the chip carrier bond pads and

the green rectangles represent the chip. I have found that designing my masks such

that my chips are 4.2 × 5.5 mm after cleaving generally results in my chips fitting

in the cavity of the chip carrier. From the drawing, though, it is obvious that this

doesn’t leave much room for error when cleaving, so it is best to make the scratch

to define the cleave line under a microscope or magnifying glass. If you process a

4Purchased from Spectrum Semiconductor Materials, Inc. www.spectrum-semi.com catalog
#CSB01648, manufacturer drawing IDK16F1-390GAL.
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Figure G.3. Sketch of wire-bondable chip carrier and chip. The orange
lines represent the chip carrier with the cross-hatched region representing
the gold bond pad. The green rectangles represent the chip. The larger
rectangle is the border of the chip and the smaller rectangle represents
the area on the chip that will be free of significant photoresist edge-bead.
All dimensions are in mm.

chip this small at any point during your fabrication, you will need to leave a ∼ 500

µm border around the edge of the chip so that the photoresist edge bead does not

interfere with your lithography. If you know for sure that you will not be processing

any individual chips you could make your chips smaller and then cleave each chip

out when you are completely done, but this will just depend on your process. The

main idea here is that you need to have a clear plan at this point for how you will

process your chips so that the cleaving step doesn’t make it impossible to finish the

fabrication.

Once you have thought through your processing plan, cleave out your chips. I

keep a chip in my clean room storage box that is known to fit in the chip carriers,
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and I use this chip as a template for cleaving. Make a single scratch with the scribe

(kept in the Manfra group storage box), grab the chip on each side of the scratch

mark with your tweezers, and cleave the wafer. Some people prefer to set the wafer

face down on a wipe and then push on the backside of the wafer with their tweezers,

but I don’t find this method to be precise enough for my purposes. Once you cleave

out your pieces, draw a picture in your notebook of where each chip came from on

the wafer, what its orientation is with respect to the major flats, and try to come up

with a way to tell each chip apart if you can. If the chips are all identical, you will

just have to be careful for now to not mix them up. Once you start processing them

further, the unique goobers on each chip will help you identify each chip if you mix

them up accidentally.

Now you need to clean the photoresist off your chip. This particular cleaning step

seems to have the largest impact on how clean your chip will end up looking after

subsequent process steps, so you need to be particularly aggressive in cleaning at this

point. Set up the acetone airbrush and have a beaker filled with acetone ready along

with a dirty beaker. Use a squirt bottle to rinse the resist off into the dirty beaker; the

goal here is to rinse all the junk off so that if you got any gallium on the resist while

you were wiping it off the back of the chip, it doesn’t have a chance to settle on the

wafer surface. Start spraying the chip down with the acetone airbrush immediately

after you rinse off the resist so that the acetone can’t dry on the surface. The acetone

airbrush will remove a lot of the more stubborn junk. Finally, stick the sample in the

clean acetone beaker when you are done spraying it down with the airbrush. Once

you have all your chips sprayed down with the airbrush, squirt them down with some

methanol or IPA (don’t let the acetone dry on the surface) and blow them dry with

the nitrogen gun. Inspect your samples under the micrscope and use the Nomarski

phase contrast filters as these will allow you to see a lot more debris/damage on

your chip than a standard bright field or dark field image will. If everything looks

reasonable, start the standard sonicated solvent clean.
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Figure G.4. Sonicator setup used to clean the samples.

Sonicate your samples for 5 minutes each in toluene, then acetone, then methanol

or IPA, and then DI water. The toluene will remove organic contaminants, the acetone

will remove the toluene and any residual photoresist, the methanol/IPA will remove

the acetone, and the water will remove the methanol/IPA. You need to be aware of

a few things when using the sonicators. First, the sonicators themselves are really

dirty. If the water in the bath looks really bad, dump it out, rinse out the sonicator,

and fill it back up with clean water. Even if you do this, though, you should try to

avoid getting any water from the bath in your beakers. The water tends to splash

more if the tank is not filled up to the fill line. Filling the tank all the way to the

fill line, though, means that your beaker will probably sink since the tray insert is

so deep. To get around this I wad up some aluminum foil to prop up the tray so

that the tray is only ∼ 1/2 inch below the water level. You should also cover your

beakers with foil, and I like to also always have two of the shallow 3 inch beakers in

the sonicator at all times (see figure G.4). Having two beakers covered with foil in

the sonicator will eliminate all chances of water splashing into your beakers. Water

can still creep up the side of the beaker, though, if your two beakers touch each other

or touch the walls of the tray, so try to avoid this.

While sonicating your samples, you also need to be careful to not allow your

chips to flip over or to jump on top of each other to prevent your chips from getting

damaged. One way to avoid this is to only have one chip in a beaker at a time, but
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Figure G.5. Homemade teflon inserts used to sonicate multiple samples
in parallel.

this will make each cleaning step take a really long time if you are processing multiple

chips in parallel. To get around this, I made some teflon inserts for the beakers with

slots in them for the chips (see figure G.5). This keeps the chips separated, aids in

keeping track of the chips, and speeds up the cleaning steps. If you use these inserts

or make similar ones, do not touch the inserts with your gloves as you will introduce

a lot more junk to your solvent bath and make your samples dirtier than when you

started. Only handle the inserts with clean tweezers.

Once the 5 minutes are up for a given sonication, squirt the chip down with

methanol to remove the previous solvent and transfer the chip to the next bath. The

only exception to this is after the methanol/IPA sonication. In this case, squirt the

chip down with methanol or IPA, blow it dry, and then transfer it into the water

bath. After the DI sonication, squirt the chip down with some running water and

then blow it dry.

When you think the chips are all clean, take a picture of each one with the

Nomarski filter and save them on your network drive. Figure G.6 shows a sample

imaged with the Nomarski filter after the gallium removal and initial cleaning step.

Dump the solvents from your beakers in the non-halogenated solven waste container,

rinse out the inside of the beaker with a little methanol or IPA, wipe the outside of

the beaker down with a methanol- or IPA-soaked wipe, and blow out the beaker with
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Figure G.6. Surface of wafer after gallium removal and sonicated cleaning.
Field of view is ∼ 2.5 mm wide.

nitrogen. Don’t touch the inside of the beaker with the wipe or your gloves. Clean

up your mess in the hood and move on to your next round of lithography.

G.5 Etching

Your first lithography step will most likely be an etch step, either for etching a

mesa or vias to a buried gate. The AZ1518 resist is free and is robust enough for all

the etching that I have ever done (as deep as ∼ 2 µm). You can use thinner S1805

resist if you are really concerned about the roughness on the edge of your mesa. The

thinner S1805 resist (∼ 500 nm as opposed to ∼ 1.8 µm thick AZ1518) allows the

mask to get closer to the wafer surface and as a result gives sharper etch features

as shown in figure G.7. Set up the spinner as described in the previous section. If

you are using the AZ1518 resist, the spinning and baking parameters are the same as

described before except that you only need to spin and bake a single layer of resist.

If you will use the S1805 resist, however, you should spin the resist at 5000 RPM

for 40s and bake for 5 minutes at 80C. For historical reasons, I also do a 2 minute

dehydration bake at 80C immediately prior to spinning the resist on the chip. I used

to also do a 2 minute 100C dehydration bake before spinning the AZ1518, but I never
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Figure G.7. Shallow-angle SEM view of mesa edge after etching using (a)
AZ1518 resist and (b) S1805 resist. The thinner S1805 allows features to
be defined more sharply and results in less edge roughness after etching.
Plan-view SEM images (not shown) show that typical roughness in the
plane of the original wafer surface is ∼ 150 nm for features defined with
AZ1518 resist while the roughness drops to ∼ 50 nm for features defined
with S1805 resist.

saw any noticeable difference in my devices, so I dropped this step. As a rule of

thumb, the less you do to the chip the better. Each time you handle the chip you

can potentially drop it, each time you heat it on a hot plate you bake junk onto the

surface, and so on, so don’t add steps if you can avoid them.

After the softbake, clean up your mess, disable the spinner in Coral, and enable

the mask aligner. Both MJB3 aligners will work, but I have learned to avoid MJB3 1

because it is so hard to see anything through the optics. Start out by setting your

exposure time and do a test exposure without a sample or mask in the aligner to

check that the power supply is putting out 10 mW/cm2 and that the timer is working

correctly.

The self-leveling feature of the aligner will not really work with a small sample

because the sample is not big enough to apply enough torque to the chuck to level

it out, so you need to improvise. Cut out a strip of the white clean room tape and

stick it on top of the chuck, making sure to cover up all the vacuum holes. Poke a
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hole in the tape over the central vacuum hole so that your sample will stay stuck to

the chuck and not stick to the mask. The tape is thick and soft enough to allow your

chip to level out when it is brought into contact with the mask. This will cause the

feature size of your resist to match that of the mask much more closely than if you

didn’t use the tape.

Next, load your mask (remember to put the chrome/iron oxide side down so it is

in contact with the resist) and your sample. Turn the z-height knob clockwise several

times so that when you bring the chuck into the “contact” position you don’t smash

your sample into the mask. The “separation” lever doesn’t work very well for small

samples with a lot of edge bead, so just leave the “separation” lever in the “contact”

position and control the height of the chuck with the knob. Adjust the alignment of

the chuck to align the edges of your sample with the mask. You can make this easier

by designing in some large, straight features in your mask design. Figure G.8 shows

the via and mesa designs from one of my masks. The mesa layer (black lines) has a

bright field polarity while the via layer (purple lines) has a dark field polarity. The

green rectangles are the same rectangles shown in figure G.3 which represent the chip

and the edge bead. The long, skinny purple rectangles are used to help align the chip

to the mask and center the region for the devices on the chip. All subsequent mask

layers also have these long, skinny rectangles to aid in the gross alignment of the chip

to the mask.

Once you have your sample aligned to the mask, bring the chip into contact with

the mask by rotating the z-height adjustment knob counter-clockwise until you see

the resist squash into the mask (this will probably happen primarily at the corners

of the chip). Make sure that the “soft exposure” button is depressed and start the

exposure. Expose 20s for AZ1518 resist but only expose for 6s with the S1805 resist.

After exposing all your chips, take your mask off the aligner, turn off the light

for the microscope, turn off the aligner, and disable the tool in Coral. Since your

mask now has photoresist smashed onto it, you need to clean it. Leave it soaking

in a beaker of acetone for a couple hours while you continue your processing. Make
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Figure G.8. Mask design showing via and mesa layers with large features
for aligning the sample to the mask.

sure to cover the beaker with foil and push it to the back of the hood so no one else

splashes any other chemicals into it. After the mask has soaked for a while, squirt

it down with acetone followed by IPA, dump the beaker into the waste container,

and then fill it back up with IPA and soak your mask in IPA for a couple minutes to

make sure all the acetone is gone. Then squirt the mask down again with IPA and

blow it dry quickly to try to avoid leaving any condensed water on any of the critical

features. Always remember to set the mask chrome/iron oxide side up in the beaker

so you don’t scratch the chrome/iron oxide on the bottom of the beaker.
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You should continue with the lithography while your mask is soaking in the ace-

tone. The next step is developing the pattern. Use MF-26A developer (free and

stocked in the cleanroom) for the AZ1518 resist and MF-319A for the S1805 resist

(we have to buy this developer ourselves, so don’t waste it). Set up two dedicated

developer beakers in one of the lithography hoods. Do not use your developer beakers

for other chemicals (including other developers); metal-ion containing developers and

metal-free developers in particular should not be used in the same beakers as cross

contamination in the part-per-million level can affect the development. Fill each

beaker with the appropriate developer and also fill your rinse beaker with fresh wa-

ter. You need to use two developer baths because the majority of the resist will come

off in the first bath, but you will need the cleaner second bath to finish removing

the resist to get the etch field really clean. Use the water to quench the developing

process. For AZ1518/MF-26A, develop 20s in the first bath and 10s in the second

bath. For S1805/MF-319A, develop 10s in the first bath and 6s in the second bath.

Regardless of the developer, wave your sample around in the rinse water for ∼ 15s

and then spray it down with some running water. If your developer bath starts to get

pink, refill that bath with fresh developer. If you need a really clean etch field, you

should probably change the developer out after ever 2-3 samples even if the developer

still looks clear. After developing, checking the lithography under the microscope.

Remember to use the UV filter so that if the developing is not finished you don’t

expose the resist any further with the bright white light from the microscope. If the

developing does not look complete, develop another ∼ 10s for the AZ1518/MF-26A

or another 5s for the S1805/MF-319A lithography and then check the lithography

again. Once you are happy with the development, save a picture of each chip, rinse

out your rinse beaker, and soak the samples in fresh DI water for 5 minutes. At the

end of the soak, squirt the samples down with running water and blow them dry.

Next, you need to “de-scum” your samples to remove the last few nm of resist

from the surface. Use the Branson asher to clean them with an Ar/O2 plasma (note

that the sample sits in a Faraday cage so there should not be many energetic ions
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striking and potentially damaging the sample surface). Pump the chamber down to

∼ 110-130mTorr and then turn on the gas flow. The flow meters on this tool are

pretty rough, so the units I list here should be considered arbitrary. Set the Ar flow

rate to 120, and set the O2 flow rate such that the top ball in the flow meter is ∼ 12

and the bottom ball is ∼ 5-6. It is difficult to adjust these flow rates very precisely,

but it doesn’t seem to matter much. The process pressure should be ∼ 1.3 Torr. Use

100W to generate the plasma (remember to check that there is no reflected power),

and “de-scum” for 90s. At the end of the cleaning, shut off the RF power, turn off

the gas flow, close the valve to the pump, and purge the chamber up to ∼ 200 Torr.

Then close the purge valve and pump the chamber back down to ∼ 200 mTorr. Do

this pump/purge process twice to make sure you pumped all the oxygen radicals out

before you open up the chamber.

The AZ1518 resist is ready for etching at this point, but the S1805 resist should

be baked another 5 minutes at 100C on the hot plate. I used to do additional baking

of the AZ1518 as well, but once again I never saw this make much difference. I have

never tried etching without doing this additional bake of the S1805, but I suspect it

also would probably survive a short etch.

Once you finish baking the resist (if necessary) get setup in an acid hood to do

your etching. Get yourself plenty of wipes so that you can dry your gloves off without

having to go back and rifle through the bag; if you have acid on your gloves you

want to keep that in the hood and not drip it all over the floor. Whenever you are

working in the hood, treat any liquid you see as an acid. HF acid gets used a lot in

all the hoods, so you should always be careful. Don’t ever touch your face, goggles,

or face shield with wet gloves, and always wipe up all liquid on the bench before

you start and before you leave. Wipe your acid apron and gloves off before you take

them off, and if someone else left liquid all over the apron or gloves, go get a different

pair. Your white cleanroom gloves will not offer you much protection if you handle

an acid-covered apron or glove. When you finish measuring out acids, wipe any drips

off the bottle and rinse out the acid-soaked wipe.
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We use a dilute phosophoric acid piranha, but other groups also substitute sulfuric

acid or ammonium hydroxide for the phosphoric acid. For the appropriate ratio of

acid or base to peroxide the etch will be fairly isotropic with the sidewall of your

mesa sloping gradually. For larger ratios of peroxide to acid, the etch will become

anisotropic, and this anisotropy can be used to determine the crystallographic orien-

tation [170]. For etching a standard mesa, however, you want an isotropic etch so that

your ohmics and gates can easily climb up over the edge of the mesa. Our etchant

recipe was provided by Lisa Tracy and was/is used in the Eisenstein group at Caltech

[111, 173, 172]. It consists of 50:5:1 water:phosphoric acid:hydrogen peroxide (30%).

Measure out 500 mL of water with a volumetric flask (make sure it is calibrated “TD”

- “To Dispense” and not “TC” - “To Contain”). Add 50 mL of acid with a volumetric

pipette or a small graduated cylinder, and add 10 mL of peroxide with a volumetric

pipette. Mix up the etchant thoroughly with the pipette and then rinse the pipette

out thoroughly. Since a 500 mL beaker is rather large, you should pour some of this

etchant into a smaller, shallow beaker so you can pick up your samples more easily

at the end of the etch.

At one point, I was trying to track down the source of some funny looking transport

and examined a couple of other etchants. Figure G.9 shows cross-sectional SEM views

of mesas etched with different etchants. The ammonium hydroxide etchant recipe was

provided to us by Bob Willett [177], and the phosphoric-based piranha etch shown

in figure G.9b was taken from [176]. In all cases, the cross-sectional view in the

orthogonal direction looks similar to the views shown in figure G.9. Since all three

etchants gave similar looking edge profiles, we never changed our etch recipe.

Etch your test piece for 90s and then quench the etch in your rinse beaker for ∼

30s; this should result in an etch depth ∼ 150 nm. If you need to etch farther in your

real samples, scale the etching time of your test piece so that your test etch depth is

comparable to your target etch depth in your real devices. Rinse with flowing water

and blow the sample dry. Now take the test piece to a solvent hood and strip the

resist for a minute or so in acetone. Rinse the chip with acetone followed by methanol
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Figure G.9. Cross-sectional SEM views of different mesa etches. (a) Mesa
etched with ammonium hydroxide piranha from [177]. (b) Mesa etched
with phosphoric piranha from [176]. (c) Mesa etched with our standard
phosphic piranha.

or IPA and blow dry. Enable the Bruker optical profileometer and measure the etch

depth on your chip in a couple places. The only thing you need to change from the

default measurement setup is to set the scan type to VXI and decrease the back-scan

from 25 to 5 µm. Use the 10× objective. Try to get the chip as level as possible

before you make the measurement; if you have to do a lot of leveling on the data, you

may introduce more error.

Normally, you should use a blank piece of GaAs as your etch test piece to conserve

your heterostructures. This will introduce a bit of a change in the etch rate, though.

For etching our “standard structures” (doping well structures with x = 0.24 AlGaAs

and a 200nm deep 2DEG) assume the etch rate will increase ∼ 15% from the test

piece to your real chips. Once you have your corrected etch rate calculated, etch

your real pieces all in one shot. For most wafers you only need to etch past the top
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doping layer to electrically isolate the 2DEG. If you have a really low density 2DEG

(i.e. really large dopant setbacks) you may need to etch all the way to the quantum

well. Some of the students in the Marcus group at Copenhagen found in some of our

low density wafers that adjacent mesas were only insulated from each other by a few

kΩ when the etch stopped right below the top doping layer [178].

Once you etch your devices, strip the resist and measure the step height like you

did with the test piece. Clean up your mess in the hood and disable the profileometer.

Another approach to hitting your etch target is to measure the resist thickness prior

to etching and then etch your real device in steps, measuring the height of the resist

plus the etch depth each time [164, 165]. However, I have found that both methods

result in similar accuracy in reaching the desired etch depth but that etching and

measuring in steps tends to take longer. If you try this method, remember that you

will have to use one of the stylus profileometers since the optical profileometer will

not measure the depth of the resist plus etch step correctly.

Clean your samples again with the sonicated 3 solvent plus DI clean as before.

If your first lithography step was etching vias to a buried gate, you can leave the

samples overnight without any problems. If instead you etched a mesa, you should

continue on to deposit the Ohmics so that the AlGaAs in the sidewall of the mesa

doesn’t oxidize too much. We and some of our collaborators [179] have found that

the contact resistances are much lower when the Ohmics are deposited the same day

the mesa is etched. If for some reason you have to leave an etched mesa overnight,

cover the sample up with photoresist and softbake the resist to try to minimize the

potential for oxidization.

G.6 Ohmic Contacts

The Ohmic contacts will be patterned by a lift-off process which means the pho-

toresist must be thick enough to create a break in the metal. The S1805 resist is

reportedly too thin for lift-off [176], so you will need to use the AZ1518 resist. Spin,
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(a) (b) 

Figure G.10. Shallow angle SEM images of resist profile for lift-off. (a)
AZ1518 resist after patterning and hardening with chlorobenzene. (b)
AZ1518 resist after metalization but before lift-off. Light regions are metal
and dark regions are resist.

bake, and expose the resist as previously described. Don’t forget to clean your mask

again. In terms of mask design, you may want to consider using transparent iron

oxide for your mask rather than chrome. Since the Ohmic layer will have a dark field

polarity you will not be able to see much of your chip through the mask unless you

have a design with large Ohmics.

After exposing the resist, you need to harden the resist with chlorobenzene before

developing. The chlorobenzene will create a hard layer on the surface of the resist

that develops slowly. Once the developer eats through this hardened region, it will

eat the resist underneath much more quickly and undercut the hardened layer. This

will prevent the metal you deposit in the evaporator from creeping up the sides of the

resist and forming a continuous film.

Soak your samples for 20 minutes in chlorobenzene in a dedicated beaker. Blow

your samples dry and then soak them in DI water for 5 minutes to remove the sol-

vent residue. Remember to dispose of the chlorobenzene in the halogenated solvent

container. Blow the beaker out and let it and any solvent-soaked wipes air out in
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the hood for a while for the fumes to dissipate. After rinsing your samples, blow

them dry and then develop in MF-26A for 70s in the first bath and 20s in the second

bath. Check the development under the microscope; the developing time required to

fully develop the resist tends to vary more than when developing non-hardened resist.

Once you are satisfied with the development, rinse in fresh DI water for 5 minutes

and blow dry.

De-scum your samples as before except only expose the samples to the plasma

for 15s. You have been working hard to put the Ohmics down the same day to

minimize oxidization, so it doen’t make sense to stick them in an oxygen plasma for

an extended period. Early on I tried a couple times to do control devices that didn’t

receive the de-scum, but for one reason or another the whole round of devices was

bad, so I never got a clear test of whether or not this de-scum actually improves the

contact resistance or transport quality. I ultimately decided to stick with it since this

step resulted in good devices in [164, 165] and since our own group found that resist

residue could be removed by this de-scum process.

Since you likely oxidized your contact region during the de-scum, you need to

remove that oxide before depositing the metal for your contacts. Get setup in a

hood to do a short HCl etch, but don’t do the etch yet. First enable and vent the

CHA evaporator. Blow out as many metal flakes as you can. Be especially careful

to blow out the region under the hearth around the filament so you don’t short out

the filament. Carefully inspect each of the sources. Set the source control on the

electronics rack to manual and move the knob to which source you want to look at

(don’t forget to set it back to “Automatic” when you are done). The Ge may look a

little blue; this is not uncommon and is ok. Make sure the Ni crucible is not cracked,

and watch for black spots on any of the source material. If any of the sources have

these little black spots, track down Kenny or Dave and let them know the source

material is covered in graphite. If the electron beam is not adjusted correctly and

hits the edge of the graphite crucible, the metal will get coated with graphite. If they

do replace a source for you, pump the chamber down and do an evaporation without
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your samples to clean up the source material. Also check the opening in the hearth

for large flakes of metal; if there are any flakes, pick them out with a freshly cleaned

pair of tweezers. You don’t want to have any other metals fall into a hot crucible

during the evaporation. Once you are satisfied that the evaporator is ready to go,

lower the bell jar to keep the vacuum surfaces from getting too soaked with humidiity.

Get the Manfra group sample holder out of the group box. I made this holder to

allow us to mount small samples; the clips are spaced more closely and the springs are

not as stiff, so it is easier to clip your samples on without scratching them. Remember

to not touch anything outside the evaporator with your clean gloves; the only “clean”

thing in the clean room is the air, so don’t get a bunch of goobers on your gloves if

you want to get a clean evaporation.

Now go back to the acid hood and do a quick HCl etch and rinse on your samples.

Etch for 20s in HCl and rinse ∼ 30s in DI water. Give your samples a quick squirt

with running water and then blow them dry. As soon as all your samples have been

etched, get them mounted and loaded into the evaporator so they don’t re-oxidize

too much. I typically get the evaporator roughing down ∼ 5 minutes after the last

sample comes out of the acid.

Rough the chamber down to 40 mTorr, close the roughing valve, and open the

gate valve to the cryo pump. If the chamber will not rough down for some reason,

close the roughing valve and notify the staff. Never leave the roughing valve open

for an extended period of time, and never allow the roughing valve and gate valve to

be open at the same time. Both of these actions will cause oil to back-stream from

the mechanical pump into the chamber, contaminating the source material. Back-

streaming results in a lot of down time for this tool, and our group should not be a

contributor to this failure mechanism.

Once the chamber pumps down below Kenny’s approved evaporation pressure

(this should take 20-30 minutes), de-gas the sources. Just start the deposition recipe

as normal but abort the deposition right before the “deposition” step and do not open

the shutter. Once the first source cools move on to the next source you will use. After
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de-gassing all the sources, let the chamber pump down for another hour. If possible,

I would recommend trying to time your work so that you get to this de-gassing step

before 4:00 pm when the staff leave. This way if something goes wrong with the

evaporator (e.g. filament burns out, turret gets stuck, source material is dirty, etc.)

there is some chance the staff can fix it. If you start later than this you will have

to leave your samples overnight if the evaporator breaks. Problems with the Ohmic

deposition have ruined a lot of processing runs for me, so do whatever you can to

make sure you can get a clean evaporation the same day you etch the mesa.

Once the evaporator has pumped down, deposit your Ohmics. There is a lot of

lore regarding metal stacks and different wafers, but from what I have seen the metal

stack doesn’t make a whole lot of difference most of the time. The common thread

is that you want an initial layer of Ni to help the metal wet the surface and improve

diffusion of the Au and Ge into the crystal during the annealing. The Au and Ge

thicknesses should have a ratio of 2:1. This is almost universal practice so don’t

change this ratio. The 2:1 ratio also turns out to give a mass ratio of 88:12 which is

the same as AuGe eutectic which is often used in thermal evaporators due to its low

melting temperature ∼ 360C. A Ni cap on top of the Au and Ge is optional, but it

does seem to result in smoother contacts. For the in-situ back-gated wafers I have

been using a metal stack of 8/80/160/36 nm Ni/Ge/Au/Ni since this was already

known to work for these types of wafers [169]. The initial Ni layer is deposited at a

rate of 1.5 Å/s while the other layers are all deposited at 2 Å/s. Our group has also

used the metal stacks from [111, 172], and these metal stacks (which do not use a Ni

cap) also give low contact resistances to a variety of wafers.

One peculiar problem we encountered early on with the Ohmics turned out to be

due to the mask design. Evidently, it is easier for electrons to tunnel from the 2DEG

into the contact along the (011) direction than it is along the (011) direction. What

this means in practice is that if your Ohmic contacts are rectangular pads on the mesa

your Hall bar will wind up with a working source and drain but dead voltage probes

if the body of the Hall bar is oriented along (011) and just the opposite if the Hall
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bar is oriented along (011). The work-around to this problem is to design saw-tooth

or square-wave “scallops” into the Ohmic layer on top of the mesa so that electrons

have a tunneling path into the contact along (011) for all your Ohmics. Figure G.11

Figure G.11. Drawings of different mesa and Ohmic designs. The black
lines represent the mesa while the red lines represent the Ohmics. The
Ohmics on the Hall bar on the left have well defined directions in which
the electrons in the 2DEG would have to tunnel into each contact. The
Hall bar on the right has Ohmics with “scallops” which allow the electrons
to tunnel into the contacts along both crystallographic direction for all the
contacts. The contact region of the voltage probe is shown enlarged for
clarity. The bottom contact on the right has no overlap with the edge
of the mesa. Such “interior” contacts were consistently insulating at low
temperature.

shows two different designs for a Hall bar; the black lines outline the mesa while the

red lines outline the annealed metal for the Ohmic contacts. In the device on the left

the electrons must tunnel along one direction to enter the source and drain and must

tunnel along the perpendicular direction to enter the voltage probes. This results
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in a large contact resistance anisotropy between the source/drain and the voltage

probes. The device shown on the right has square-wave “scallops” on the Ohmics.

In this case electrons can tunnel along both crystallographic directions to enter both

the source/drain and voltage probes with the result that the contact resistances are

similar for the source/drain and voltage probes regardless of device orientation. Also

shown in the device on the right is an “interior” contact in which the annealed metal

does not overlap the edge of the mesa. These contacts were consistently found to

be insulating at low temperature, suggesting that diffusion of the metal through the

sidewall of the mesa is also important for contacting the 2DEG. Similar behavior has

also been reported in reference [153]. As a result, we also added the square wave

scallops to the edge of the mesa in the contact region to increase the perimeter of the

mesa in the contact region. This anisotropy in contact resistance has also been seen

by other groups. It is specifically mentioned in [175, 174], and similar scalloping is

used by other groups as well [164, 165, 171].

Once you finish the evaporation, start soaking your chips in acetone to initiate

lift off. Use a dedicated beaker since it will get coated with metal flakes over time.

Soak for ∼ 5 minutes and then squirt the metal off with some acetone. Do not let

the acetone dry before you get all the metal off. If any of the metal lands on the

surface of your sample and the acetone dries, it will be difficult to remove the metal.

Once you get the metal squirted off, spray the chip down really well with the acetone

airbrush and then transfer the chip to a clean beaker of acetone. Since your next

step is to bake the samples in the RTA, you need to get the devices really clean. Any

resist left on the surface now will get hard-baked on to the surface and never come

off. Soak your samples in clean, hot acetone for 30 minutes. Set the hot plate to ∼ 70

◦C and cover the beaker with a watch glass or round bottomed flask filled with water

to condense the acetone that boils off. You should see convection lines in the acetone,

but the acetone should not actually start boiling. After soaking in acetone, spray

the chips down with methanol, soak in methanol for 5 minutes, rinse with methanol,

blow dry, soak in DI water for 5 minutes, rinse, and blow them dry.
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Next enable the Jipelec RTA and do a test run to 400 ◦C to warm up the chamber.

The RTA is designed to hold a 6 inch wafer, so each student has his/her own 6 inch

Si wafer to act as a chuck on which to set his/her samples. In order to get the

control and reproducibility in annealing temperature necessary for the in-situ back-

gated project, I found it was necessary to use a special wafer with a thermocouple

bonded to the top side of the wafer. It turns out that the top side of the wafer (the

side facing the lamps) is ∼ 40 ◦C hotter than the backside of the wafer as measured

by the built-in thermocouple that is pressed up against the back of the wafer. So

if you use the backside thermocouple to control the temperature, be aware of this

offset when trying to map out contact resistance vs. annealing temperature. The

annealing time does not seem to matter a whole lot, but the temperature has a

strong impact on the contact resistance. Shoot for a sample temperature of ∼ 375C

for 1 minute in forming gas (4% hydrogen, 96% nitrogen) for the in-situ back-gated

devices; if there is no buried gate present, anneal at ∼ 420C as this will give you lower

contact resistances. Do not use the standard recipes that Dan has written for the

RTA because the initial purge time is not long enough; the chamber must be purged

for 10 minutes to avoid oxidizing the contacts. If you use a thermocouple wafer, do

an annealing run without your samples to check that everything is working normally.

Once you are done with the annealing, inspect your samples under the microscope

and save a picture of each device. The contacts for the in-situ back-gated samples

must be annealed at as low a temperature as possible to minimize gate leakage, so

the Ohmics should not look much different before and after the annealing. Contacts

annealed at higher temperature will show minimal roughening if a Ni cap is present

but will show significant roughening and non-uniform color if there is no Ni cap.

If you managed to get through the mesa etch, evaporation, lift off, and annealing,

congratulations. Go home and get some sleep. The time-sensitive portion of the

processing is now done. Once you have the Ohmics annealed, you can set chips aside

and process them one at a time if, for instance, you need to study the impact of

different nanostructure designs.
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G.7 Dielectrics

I have included this section on the deposition and patterning of dielectrics based

on the initial work that I have done on FET-based devices for studying charge noise.

These techniques should also prove useful for work with quantum Hall experiments

since depositing a dielectric underneath the depletion gates will prevent the gates

from leaking after illumination [59].

G.7.1 Deposition

I have used two different deposition systems and three different dielectrics. The

Axic PECVD system can be used to deposit SixNy, and the Fiji ALD system can be

used for Al2O3 and HfO2.

The recipe for the Axic PECVD system follows the recipe outlined in Sumit Mon-

dal’s thesis [180]. The chamber cleaning and the pauses in between deposition steps

were found to be very important to eliminate pin-holes in the dielectric which caused

signficant leakage. Below is a brief summary of the recipe:

• Manually clean the chamber to remove all dielectric flakes.

• Run plasma cleaning recipe: 15 min, 200 W, 250 C, 600 mTorr, 20 sccm CF4,

100 sccm O2.

• Condition the chamber with a nitride layer: 5 min, 150 W, 300 C, 600 mTorr,

100 sccm NH3, electrode at 3 inches.

• Load your sample, pump down, and deposit the dielectric: 150 W, 120 sccm

SiH3, 100 sccm NH3, 300 C, electrode at 3 inches, 600 mTorr. Deposit for 2

minutes total with plasma on/off as follows: 45 sec on, 30 sec off, 45 sec on, 30

sec off, 30 sec on.

This 2 minute deposition should give a film thickness ∼ 60 nm, but the deposition

rate is not especially repeatable, so if you need a tight control on the thickness you
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should first run a test piece, measure its thickness with the Filmetrics, and then adjust

your deposition time for your real sample accordingly. I would also suggest keeping

a chip with a known thickness of SixNy in your box to check that the Filmetrics is

giving you an accurate reading; I have had somewhat inconsistent readings with this

particular tool in the past.

The Fiji ALD system is a fully automated “black box” system which makes it very

easy to use but also rather inflexible (e.g. recipes can only be edited by the staff).

To run the system, use the following procedure:

• Check that the previous user’s “sytem idle” recipe is complete and that the

chamber is sufficiently cool (probably anything < 150 C is okay).

• Vent the chamber

• Load your sample(s) onto the chuck. If your samples are small (e.g. ∼ 4 × 4

mm), try to load them in the center with their edges touching. The pump down

of the chamber is very abrupt, and I’m told that if the samples are too small,

they can get blown off the chuck.

• Pump down the chamber and let it sit for 5 minutes after reaching the base

pressure before starting the recipe. I am not sure what (if any) impact this

waiting period has on the quality of the dielectric-semiconductor interface, but

since your sample will start out coated with a bunch of water from the air, I

suspect this may have some impact on the interface quality. There are some

reports in the literature that say that starting with a couple pulses of trimethyl-

aluminum (TMA) can help remove the native oxide and improve the interface

quality. The Fiji starts with a water pulse, so for the default recipe it may

not make much difference how long the chamber is pumped down before the

deposition starts, but if you want to try starting with some TMA pulses, this

pump down time would likely be an important variable.
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• Load the intended recipe. So far I have only used the “Thermal HfO2 110C”

recipe for depositing HfO2 and the “Thermal Al2O3 100C” recipe for depositing

Al2O3.

• Set the number of layer repeats.

• Start the recipe. There is nothing you can control at this point, so just watch

that the pressure spikes alternate like they should and then go do something

else while it runs.

The deposition rate is unfortunately not as repeatable as it should be for the ALD pro-

cess. You can assume deposition rates of 0.09 nm/cycle for Al2O3 and 0.15 nm/cycle

for HfO2. Particularly for the HfO2, though, this deposition rate differs significantly

from what is reported in the literature, but I have not found anyone else at Purdue

who knows what is normal for the Fiji machine (evidently most people who use the

Fiji don’t actually measure their resulting film thicknesses). Because of this variation

in deposition rate, you should make sure to simultaneously deposit the dielectric on

a larger test chip coated with Au so that you can measure the thickness with the

Filmetrics and also chop it up and use it for etch test pieces prior to patterning the

dielectric on your devices.

In an initial test I found that for metal-insulator-metal capacitors, the ALD di-

electrics give leakage-free capacitors at 4 K for areas as large as 100 × 400 µm. To

be more precise, for a 28 nm thick Al2O3 film with Ti/Au pads for both capacitor

plates the I-V was linear to 5 V with a resistance > 1 TΩ. The resistance did not

scale with area which indicates that the small leakage current that was measured was

likely through the wire insulation in the measurement setup. At room temperature,

however, the ALD films were very leaky (measured in the dark). The same Al2O3

capacitors mentioned previously gave 1 nA of leakage for voltages as low as 0.87 V

for an area of 2500 µm2. The HfO2 films (56 nm thick) gave similar results both at

low temperature and room temperature. The PECVD SixNy recipe is also known
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to give leakage-free dielectrics at low temperatures (see references [180, 181]); to my

knowledge the SixNy films have not been tested for leakage at room temperature.

G.7.2 Dielectric Patterning

There are two options for patterning the dielectric: lift-off or etching. The lift-off

process has been shown to work for low-temperature-grown ALD films [182, 183, 184,

166]. However, this lift-off procedure is not compatible with the high temperature of

the PECVD chamber, and it may also be difficult to lift-off small, isolated features.

In other words, I suspect it works better for bright-field polarity masks than for dark-

field polarity mask designs. For this reason, I chose to pursue patterning the dielectric

by wet etching with buffered oxide etch (BOE).

All three dielectrics can be etched with BOE. The approximate etch rates for full

strength BOE are 0.09 nm/s, 2.8 nm/s, and > 4 nm/s for HfO2, Al2O3, and SixNy,

respectively. The etch rates do still vary, however, so you should once again etch

a couple test pieces for varying times to make sure you know the current etch rate

before you try patterning your device. As the etch rates for Al2O3 and SixNy are

quite high, the feature defintion tends to not be particularly sharp for small (<5 µm)

features. I suspect that the resist does not adhere well to the dielectric. However, I

have not yet done a systematic study of the impact of hard baking the resist or using

an adhesion promoter like HMDS.

The BOE will stop abruptly on Au as well as annealed NiAuGe, so there is no

danger in damaging Ohmic contacts or gates with the wet etch. BOE will, however,

etch the oxides on the surface of GaAs, so whatever metal layer you use as an etch

stop should be several microns larger than the etch window you are defining in order

to connect, for instance, an Ohmic contact to a bondpad.

If you want to make your own metal-insulator-metal capacitors to study leakage

in different films, the TiAu of the bottom plate of the capacitor can be defined by

etching in a two-step process. I suggest etching rather than lift-off to define the metal
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pads because liftoff can often leave a ridge of metal at the edge of the pad which

could be difficult to cover with the dielectric. The Au can be etched with aqua regia.

The etch rate is extremely high, so just wave the chip around in the etchant until

you see the pattern appear on the surface of the wafer. After rinsing thoroughly,

the Ti adhesion layer can be removed with a quick etch in BOE (30 seconds should

be sufficient to remove 20 nm Ti). The etch field will look quite rough, but the

pads should be electrically isolated well enough to measure the leakage through the

subsequently deposited dielectric.

G.8 Electron Beam Lithography

G.8.1 Sample Preparation

Electron beam lithography proceeds similarly to optical lithography except that

you will use an e-beam resist (PMMA 950 A2 in our case) and expose the resist with

an electron beam rather than a UV lamp. Start out with a clean sample. If you just

annealed your sample last night, you don’t need to do any additional cleaning since

you did an extensive cleaning just prior to the annealing. If you’ve had your sample

sitting in a petri dish or plastic box for a week or two, though, you should re-clean it.

Be careful about sonicating the sample, though. You should check your test sample

(i.e. the one on the blank GaAs wafer and not a real heterostructure) first to see if

the sonication will cause the metal to peel off before cleaning your real sample. If you

are concerned that the metal might come off, just soak your sample in each solvent

and/or use the acetone airbrush or hot acetone to do more aggressive cleaning.

Next, get the spinner set up. Set it to spin at 4000 RPM for 45s. Pre-bake your

sample at 100C for 2 minutes and try to minimize the time that moisture can coat

the surface before spinning the resist. Once you’ve spun all your chips, bake them

at 180C for 10 minutes. Remember to let the hot plate warm up and stabilize for a

while before baking the PMMA.
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G.8.2 Raith Setup

Clean up your mess, disable the spinner, and take your sample out to the Raith. I

would recommend using something other than foil to carry your sample so you don’t

drop it or flip the sample over and scratch the resist. Enable the Raith in Coral,

pull the sample holder out of the load lock with clean gloves, and set it on a fresh

clean wipe. Don’t use the wipes other people have left out on the bench, this is poor

vacuum hygiene. Load your samples onto the sample holder with plastic tweezers so

you don’t scratch the sample holder. Place the holder in the load lock and shut the

load lock door.

Open up the e LiNE software on the left computer screen (henceforth referred to

as [L]) and log in using your username/password from your initial training. Click

on the “Navigator Loadlock” icon and select “via Loadlock”, “Load sample”, “Ok”.

Follow the prompts that the software gives you to pump down the load lock and

transfer the sample holder into the main chamber. Click “Yes” when prompted to

reset the u/v alignment. Enter a name for your sample (this doesn’t really matter).

Next, turn on the electron gun (EHT) on the lower right of the right computer

screen (henceforth referred to as [R]). Set the accelerating voltage to 20 kV and select

the 10 µm aperture. The accelerating voltage and aperture will, of course, need to

be selected based on your feature size; for now, let’s assume we are just writing a

quantum point contact with a minimum feature size ∼ 200 nm. On [L], open the

“stage control” window and drive the stage to the Faraday cup. On [R], select the

“Detectors” tab and select “Signal A = InLens” for accelerating voltages of 20 kV

and under. Turn off the beam blanker on [L]. Set the working distance on [R] to

18 mm and focus on the Faraday cup. Once you have it in focus, zoom in to ∼ 20

kX. On [L], select the “Exposure” tab and click “Measure”. This will measure your

beam current. Check your previous notes to make sure the system is operating as

you expect.
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Next, you need to set the working distance for writing your pattern. Everyone at

Birck uses a working distance of 10 mm, though I have never heard an explanation

of why except that it is known to work. If you end up having to push the resolution

limits of the machine, you may want to look into what impact the working distance

willl have. To set this distance, you first need to focus on something on the surface

of your chip. On [L], go to the stage control tab and drive to the clip that is holding

your sample. Once the stage has stopped, unblank the beam and zoom in to the clip

so that you don’t start exposing your sample. Carefully drive towards your sample

and find one of the corners of the chip. Find something to focus on and zoom in a

bit to get a rough focus and then blank the beam. On [L], click the “Stage Control”

button, select the “Drive” tab, enter your desired working distance (10 mm) in the

“W” field, make sure the “Absolute” and ”mm” radio buttons are selected, and press

“Start”. This will drive the stage up to the 10 mm position. Since you were focused

on your sample when it was at an 18mm working distance, though, you now need to

re-focus the electron beam. On [R], set the working distance to be 10 mm. Unblank

the beam to check that your sample is still in focus.

Now you need to do the hard work of getting the beam focused well enough to

write your pattern. This is accomplished by burning so-called contamination dots

into the resist to check the spot size and shape of the electron beam. First, find some

debris on the surface of the resist and focus as well as you can. Next, you need to align

the aperture. First click on the “Reduced Raster” icon on [R] to view a smaller area

with the SEM so that your refresh rate is faster. In the “Apertures” tab on [R], select

“Aperture Align” and turn on the focus wobble. The speck you have focused on will

now move in and out of focus and also probably dance around on the screen. Adjust

the aperture alignment until the speck stays still on the screen and only moves in and

out of focus. Once you think you have the aperture aligned, turn off the focus wobble,

select the “Stigmation” option on [R] and make fine adjustments to the stigmation

to try to get slightly better focus. In order to really adjust the stigmation, though,

you will have to examine your contamination dots.
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Move away from your dust speck to a clean area of resist, zoom in to 70 kX, and

center click on the “Spot short/Spot long” button” on [R] to start burning the dot.

Since the beam is likely not well focused, you will need to start out with a longer

exposure to get a visible dot. Start out with ∼ 60 seconds. At the end of the 60

seconds, center click on the “Spot short/Spot long” button again to stop the exposure

and return to normal SEM view. If you can’t see your dot, adjust the focus (remember

to make sure you have the focus and not the aperture align or stigmation selected on

[R]), and try burning another dot slightly away from your first dot. Keep repeating

this procedure until you can actually see something that looks like a oval-shaped

white blur.

Once one of your dots is visible, focus on it and then burn another dot. Keep

repeating until you have a well focused dot. If the dot is not a perfect circle, tweak

the stigmation slightly and burn another dot. Iterate in this fashion until you have a

nice round doughnut shaped dot. Now you should be able to start backing off on the

exposure time for each dot. After burning each dot, try to improve the focus. As the

exposure time decreases and your focus improves, the size of the dot should decrease.

Always aim for getting a 20 nm dot (you can measure it with the SEM tools on [R]),

but don’t work harder than you have to. If your smallest feature is 200 nm, a 30 nm

dot will still work just fine.

G.8.3 Sample Alignment

Now you need to get your sample coordinates set and align the write field so that

your pattern will come out where you want it on your chip. Due to the details of

how the Raith figures out the coordinate transformations, the order of these steps

is important. First, you need to do the 3-point alignment in order to tell the Raith

where to drive the stage in order to expose your pattern. The tricky part here is that

you need to find where you are on your chip without looking at anything on one of

your mesas to avoid exposing the resist. It will be much easier to orient yourself on
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Figure G.12. Overlay of mesa (black) and Ohmic (red) designs. The large
red rectangles at the top and bottom of the chip serve as initial orientation
markers during the initial e-beam alignment. The Hall bars shown in
the design are ∼ 1 mm long. The smaller L-shaped arrays of alignment
marks are used for the actual 3-point alignment procedure to create the
coordinate transformation between the mask and stage coordinates. In
addition, the fact that these features are large enough to be seen with the
naked eye enables one to mount the chip on the sample mount in a pre-
determined orientation. The inset shows a magnified view of the alignent
markers used for the 3-point alignment. These markers are arranged so
that the array lacks rotational symmetry; this lack of symmetry makes
errors during the alignment less likely. Dimensions shown are in microns.

the chip if you have some large features at the edge of the chip. Ideally, these features

should not be symmetric so that as soon as you find one of them you know exactly

where you are on the chip. Figure G.12 shows an overlay of the mesa and Ohmic

layers of one of our mask designs which feature these orienting features at the edge of

the chip. Once you have a sense of what part of the chip you are looking at, carefully

drive the stage to the nearest set of alignment markers.
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Once you find a set of markers, center the cross hairs on one of the markers and

blank the beam. Open up your GDS file in edit mode on [L] and drag flags #1, 2,

and 3 to the positions on your design that corresponds to the center of the alignment

marks you will use. For right now, just use three points that are in a single alignment

mark cluster. Open up the “Adjust UVW” window on [L] , select the “3-Points

Adjustment” tab, and press the eye dropper to capture the current stage coordinates.

Check the box to lock the UV/XY coordinate pair. Next, shift the stage to match

the coordinates at your 2nd and 3rd markers. Press “Adjust” to tell the software to

calculate the coordinate transformation.

Now that you have a rough alignment done, you can drive anywhere on your

sample by holding CTRL + R Click on your GDS file. In order to get a more

accurate coordinate transformation, re-do your 3-point alignment using alignment

marks spaced as far apart as possible to minimize the impact of errors during the

alignment. Drive around to various features on your chip using the CTRL + R click

method to verify that your alignment is good enough. Since our goal in the group

right now is primarily to looks at QPCs or larger devices for studying quantum Hall

physics, the alignment requirements are not that stringent. If at some point in the

future it is necessary to get really tight alignment between multiple e-beam layers, it

would probably be necessary to write the alignment marks on the chip with e-beam

prior to the mesa etching. As of this point, though, as long as your alignment is good

to within ∼ 2-3 µm when you drive all the way across the chip, you should be fine.

Now that you have your stage-mask coordinate transformation set, you need to

get the stage-beam transformation set by doing a write field alignment. The write

field alignment essentially consists of the computer moving the stage slightly and

then deflecting the electron beam (i.e. center of the SEM view) to where it thinks

the stage moved. The user tells the computer where the stage actually moved, and

the computer is thereby able to correct its error.

To perform the write field alignment, drive back to your speck of dust that you

used for your initial focusing and center the cross hairs on the sharpest protrusion of
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the speck. Do not adjust your focus, aperture, or stigmation. If necessary, adjust the

contrast and brightness to get a good image. Open a new positionlist from the “File”

menu on [L]. In the “Microscope Control” window, select the desired write field size.

In the “Scan Manager” window, select “Align Write Field Procedure”, then select

“Manual”. Drag the “100 µm WF - Manual ALWF 25 µm marks” line into the

positionlist, right click in the positionlist window, and press “scan”. Each time the

SEM view pops up, hold CTRL and drag the cross hairs back to the point on which

you originally centered the cross hairs. Once you get the cross hairs adjusted, press

proceed. This window will pop up three times. At the end of the procedure, accept

the corrections. Repeat this alignment procedure with the “100 µm WF - Manual

ALWF 5 µm marks” and “100 µm WF - Manual ALWF 1 µm marks” procedures.

This should give you a decent alignment of the write field. Poor write field alignment

will result in stitching errors at the write field boundaries in your pattern.

G.8.4 Exposing and Developing

Now that everything is aligned, you are ready to start the exposure. Drag your

GDS file into a new positionlist window, R click, and select “properties”. First, select

the layer you wish to expose. Make sure you only select your e-beam pattern if you

GDS file also contains the Ohmic layer. Next, click the button next to the working

area coordinates to update the working area coordinates. The working area is the

portion of your file that will actually get exposed, and its boundaries determine where

the Raith will put each write field (more on this later). Click the icon next to the UV

coordinates field to update the field based on your design. These fields correspond to

the center of the lower left-most write field in your working area.

Next, you need to calculate the exposure times. Open the “Exposure Parameter”

window and set the step size and dose (for now just set the step size to 20 nm). The

dose will depend on your design (more on this later). Click on the calculator icon

to set the dwell time. Go back to the properties window and click on “Times” to
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calculate the total exposure time. Assuming this is what you expect, click “Ok” to

go back to the positionlist. Right click on the positionlist window and select “scan”

to start the exposure. While the pattern is being exposed, keep an eye on the UV

coordinates in the bottom right corner of [L] to make sure they are roughly where

you expect the pattern to be written.

Repeat the 3-point alignment and write field alignment for each chip that you

have loaded. Once you have finished your writing, turn off the EHT on [R]. Open

the navigator window on [L], click on “unload”, and follow the prompts. Disable the

system in Coral and take your sample back to the cleanroom.

Develop the samples for 30 seconds in MIBK:IPA 1:3 (this is pre-mixed). Quench

the developing with IPA (make sure you don’t dilute your developer bath in the

process) and blow dry. Examine your device under the microscope to make sure the

pattern was exposed where you intended. Assuming it did, load the sample into the

evaporator.

As with photoresist, you should not leave the resist on the surface for extended

periods if you want to have repeatable results. As such, make sure you have an

evaporator reserved so that you can do the evaporation the same day as the exposure.

Assuming you are using the CHA, pump down the chamber for 1 hour and then

evaporate 5 nm Ti and 20 nm Au at rates of 1.5 and 2.0 Å/s, respectively.

After the evaporation, soak the samples in acetone for a few hours and finish with

∼ 5 seconds in the sonicator to clean up the edges. Rinse with methanol or IPA

and blow dry. Take pictures of the device at this point (assuming it still looks ok).

Next, do another aggressive solvent clean to make sure all the PMMA is really gone

before you move on to your next lithography step. Soak in toluene for 5 minutes, hot

acetone for 10 minutes or more, and methanol for 5 minutes.
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Extra exposure due 
to write-field 
boundaries 

Extra exposure due to 
incorrect rastering 
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to write-field 
boundaries 

(a) (b) 

(d) (c) 

Figure G.13. Example of the influence of e-beam pattern design on expo-
sure uniformity. (a) Pattern in which each arm of the multi-QPC device
is “OR-ed” into a single large polygon. The black dashed box denotes the
100 µm write field used for the exposure. (b) The same device broken
up into multiple polygons. (c) Optical micrograph of resist after exposing
and developing using the design in (a). The device shows brighter lines
at the boundaries of the write fields (where the design was exposed twice)
as well as through the central arms of the device. (d) Optical micrograph
of resist after exposing and developing using the design in (b). No excess
exposure is seen in the central arms of the QPC structure.

G.8.5 Design Tips

I cannot claim to be a real expert at e-beam writing, but I have picked up a few

useful points while learning to use the Raith. The most important detail is that the

GDS pattern should be broken up into multiple polygons to get consistent exposure

doses for your entire pattern. Figure G.13 illustrates why this is important. In

figure G.13a, each of the four arms of the device were “OR-ed” into individual, large
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polygons since this was our standard procedure for generating optical masks. Figure

G.13b, on the other hand, shows the same design but with each arm of the device

broken up into smaller, simpler polygons. Panels (c) and (d) show the PMMA after

exposing and developing. These patterns were some of the under-exposed regions

of a dose test. The important point, however, is that because these features were

intentionally under-exposed, inconsistencies in the pattern exposure become evident.

There are, not surprisingly, bright lines in the exposed regions of both figure G.13c and

G.13d that correspond to the boundaries between write fields. However, figure G.13c

also shows an additional bright line through the central arms of the QPC structure.

This additional bright line was evidently due to the Raith making a poor decision

on how to raster the central features which, as a result, received a larger exposure

dose. One word of caution, however, is in order regarding breaking the design up into

polygons. The rastering can also sometimes leave small gaps between polygons, so

be sure to overlap your polygons a little bit to ensure your features are continuous.

As a result of this design-dependent dosing, a dose test must be performed for

all new pattern designs, even if the design is a small perturbation from a previous

design. Figure G.14 shows an example of a successful dose test using the multiple

polygon design from figure G.13b. As the dose is increased, progressively smaller

and smaller features survive the lift-off procedure until the minimal clearing dose is

reached. It is important to note that the dose test must always be followed by a

metalization and lift-off since it is impossible to tell from optical or SEM imaging

whether the PMMA was completely cleared out of the smallest features. An SEM

examination of the metallization following the dose test is important for examining

the smallest features, as shown in figure G.14. However, processing lore states that

actual devices should not be examined with the SEM following lift-off as this could

potentially embed charge in the active region of the device.

Another important design consideration is the definition of the working area. As

figure G.13 shows, features at the boundary of each write field will get a higher dose

than features away from the boundary. As a result, it is important to keep fine
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(a) (b) 

(d) (c) 

150 uC/cm2 175 uC/cm2 

210 uC/cm2 195 uC/cm2 

Figure G.14. Example of a successful dose test. Main panels show optical
micrographs after metal lift-off while the insets show SEM micrographs of
the center of the device. As the dose is increased from (a) to (d), smaller
and smaller features should survive the lift-off procedure.

features away from write field boundaries. In addition, poor write-field alignment

can also cause rotational and/or translational discontinuities at the edge of the write

fields. This is not a big issue for large features, but it could easily ruin small ones.

The position of the write fields is determined by the working area. While you are

designing your device, set the working area such that it will be tiled with an integer

number of write fields with one of the write fields centered on your smallest features.

Name this working area something obvious like “Use me” so that you don’t make any

mistakes in telling the Raith which working area to use.

Finally, avoid curves in your design if possible and instead draw quasi-curves with

multiple polygons. The Raith can write curves without too much trouble, but curves

will not translate correctly if the design is created in AutoCAD and then imported
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as a DXF file into e LiNE. You could do all your designs in e LiNE to get around

this issue, but I personally think AutoCAD allows much more control in designing

your features (the object snap functionality is particularly nice). In addition, you

can download AutoCAD for free as a student and use it whenever you want, whereas

using e LiNE requires you to check out the license key from the Appenzeller group

office which is often times not convenient.

G.9 Optical Gates and Bond Pads

Once your sample has been thoroughly cleaned of all resist residue, do the lithog-

raphy the same as you did for your Ohmic contacts. Don’t worry about doing a

de-scum or oxide removal etch; you just need to make electrical contact between the

Ohmics/bond pads and/or the e-beam and optical gates, so the invisible residue of

photoresist is not a big deal. Pump the CHA down for about an hour after load-

ing your samples. If the CHA is not available, the Lesker is another good option for

Ti/Au. The Varian can also do TiAu, though it will take significantly longer to pump

down and will heat your sample significantly during the evaporation. The Airco is

faster but has had problems in the past with Cr contamination in the Au which re-

sults in a bunch of black spots in the deposited metal layer. Evaporate 20/150 nm

Ti/Au at a rate of 2/2 Å/s. Thinner metal layers may work for wire bonding, but

decreasing the thickness is kind of risky. I know from personal experience that 5/75

nm Ti/Au is not sufficient for wire bonding, but I have not tried anything in between

these two values.

Once the evaporation is done, do lift-off in acetone, spray the chip down with

the acetone airbrush, and soak in methanol for a few minutes to remove the acetone

residue. Don’t worry about doing a DI water soak. Take pictures of your completed

devices, make photocopies of your notes from this round of processing, pack your

samples up in plastic boxes with clean-wipe padding, and take them over to the

physics building for measurement.
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G.10 Sample Mounting and Wire-Bonding

Now that you are back in the dusty physics building, you need to be careful with

how you handle your samples if you want to have an easy time with the wire bonder.

Clean your tweezers with some IPA or methanol, but be warned that they are likely

still not very clean. If you touch any bond pad with your tweezers, assume that you

will have a hard time bonding to that pad. This is particularly important if you need

to cleave chips out of a larger strip. If you do this, try to grab the strip with the

tweezers as close to the edge as possible.

For initial testing you should use the commercial ceramic chip carriers5. These

are easy to bond to, and their poor thermal conduction makes no difference when

the sample is submerged in liquid helium in the dipper probes and the 3He system

where you will do your initial characterization. Handle the chip carriers with clean

gloves and try to avoid touching the bonding surfaces as much as possible. Snip off

the shorting bars on the legs with wire cutters. Mount your chips in the carriers

with rubber cement; try to avoid getting any of the stringy cement on the bond pads.

Since the bonds can be somewhat fragile, cut out a square of the black foam in the

prep room to stuff into the bottom of your small plastic sample box. This will keep

the chip carrier from rattling around and also give a (weakly) conductive path to all

the pins on the chip carrier in case your device is ESD sensitive. Once your samples

are all mounted, take them upstairs to the wire bonder.

Always start the bonds on the chip carrier since this will give a stronger bond

than the TiAu on your sample will. Our bonder (a wedge bonder) works by applying

pressure and an ultrasonic vibration to the wire to scrub it across the bond pad,

expose clean Au atoms on the pad and wire, and cause the two pieces to form a cold

weld. The wire is fed through the back of the wedge so that the end of the wire is

right under the wedge where the pressure and vibration is applied. During the bond

process, the wire gets deformed into a long, narrow foot. As a result, the bond is very

516-pin CERDIP chip carrier from Spectrum Semiconductor Materials, Inc. www.spectrum-
semi.com. Part number CSB01648, Mfg. Dwg. IDK16F1-390GAL.
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weak if the wire is pulled perpendicular to the length of the bond. This means that

you need to plan out your bond path and pull the wire straight back from the initial

bond site. If you pull the wire too much to the side, the first bond will likely pop off.

Remember to write down your bond parameters in the log book when you are done

and turn off the microscope light.

The bonding settings that have worked well for me are as follows:

• Bond 1 power: 2.5

• Bond 1 time: 2.5

• Bond 1 force: 3.3

• Bond 2 power: 1.8

• Bond 2 time: 3.9

• Bond 2 force: 2.0

• Tail: 2.2

• Pull: 0.6

• Stage temperature: Room temperature

• Tool temperature: no heat

• Bond wire size: 1 mil

If your sample and the wire are both clean you should have a success rate > 90%.

The most likely cause of difficulty in bonding is a dirty sample. If the bonder is not

breaking the wire after the second bond, examine the clamp. Sometimes the wire

starts to slide around in the clamp, and this causes problems with breaking the wire

after the second bond and/or advancing the wire before the first bond. If you are

still having trouble, make sure the sample is at the correct height; the bond surface

should be 3 inches above the base. If the bond surface is not at the correct height,

the wedge will contact the bond pad at an angle and not be able to form the bond.



306

G.11 Condensed Checklist for In-situ Back-gated Devices

G.11.1 Ga Removal

• Spin AZ1518 40s 4000 RPM, 1000 RPM/s ramps up/down. No pre-bake nec-

essary.

• Bake 2 min 100C

• Wipe off Ga

• Spin and bake second layer AZ1518

• Etch 3 min HCl, full strength

• Rinse thoroughly, blow dry

• Cleave as necessary. Make sketches of chips if possible to keep them in order.

• Rinse resist off with acetone into dirty beaker, spray down with acetone gun,

soak in clean acetone

• Rinse with methanol, soak in methanol few minutes

• Rinse with methanol, blow dry

• Check sample under microscope

• Sonicated triple solvent clean: 5 minutes each toluene, acetone, methanol, DI.

Rinse with methanol after each step except after DI rinse. Blow dry after

methanol step. Rinse with running water after DI sonication and blow dry.

• Take pictures
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G.11.2 Via Etch

• Spin AZ1518 40s 4000 RPM (no pre-bake)

• Bake 2 min 100C

• Expose 20s 10mW/cm2 on MJB3 2

• Develop 20 + 10s MF-26A, rinse 30s

• Check development with UV filter. Take pictures if development complete

• Soak 5 min DI, rinse in running water, blow dry

• De-scum 90s Branson asher. 130 mTorr base pressure, 120:5.5/12 Ar:O2, 1.3

Torr process pressure, 100 W power (check reflected power)

• Do not hard bake resist

• Etch test piece 50:5:1 water:phosphoric:peroxide. Assume 1.7 nm/s etch rate

and aim for close to desired etch depth in real devices.

• Strip resist on test piece in acetone, rinse with methanol, blow dry

• Measure etch depth with Bruker optical profileometer. Use VXI scan type, 5

µm backscan, 10× objective, default parameters

• Assume 15% increase in etch rate from GaAs to standard high mobility structure

• Etch real samples, aim for 160 nm above gate layer (will etch the rest of the

way during the mesa etch)

• Strip resist, measure actual etch depth for each device

• Sonicated triple solvent + DI clean

• Take pictures

• Leave overnight
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G.11.3 Mesa Etch

• Pre-bake 2 minutes 80C

• Spin S1805 40s 5000 RPM

• Bake 5 minutes 80C

• Expose 6s 10 mW/cm2

• Develop 10 + 6s MF-319

• Rinse 30s, blow dry

• Examine developing. Take pictures if complete.

• Soak 5 minutes in DI, rinse with running water, blow dry.

• De-scum 90s Branson asher. 130 mTorr base pressure, 120:5.5/12 Ar:O2, 1.3

Torr process pressure, 100 W power (check reflected power)

• Bake 5 minutes 100C

• Etch test piece 90s 50:5:1 water:phosphoric:peroxide

• Strip resist, measure etch depth, calculate rate for real devices assuming 15%

increase in rate

• Etch devices. Aim for 160 nm etch depth for standard doping well structures

with 110 nm deep doping layer and 200 nm deep 2DEG.

• Strip resist, measure etch depth

• Sonicated triple solvent + DI clean

• Take pictures

• Minimize time mesa sidewalls exposed to air. It is possible to have sidewall

exposed for as little as 3-4 hours prior to Ohmic deposition
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G.11.4 Ohmics

• Spin AZ1518 40s 4000 RPM (no pre-bake)

• Bake 2 minutes 100C

• Expose 20s 10 mW/cm2

• Harden 20 minutes in chlorobenzene

• Blow dry, soak 5 minutes in DI water, blow dry

• Develop 70 + 20s MF-26A, rinse 30s, blow dry

• Examine developing, if necessary develop longer in 10s intervals

• Take pictures when developing complete

• Rinse 5 minutes in DI water, blow dry

• De-scum 15s Branson asher. 150 mTorr base pressure, 120:5.5/12 Ar:O2, 1.3

Torr process pressure, 100 W power (check reflected power)

• Vent evaporator. Blow out metal flakes. Check source cleanliness. Lower bell

jar and leave chamber purging. Get sample holder ready

• Etch devices 20s HCl, rinse ∼ 30s, blow dry.

• Load samples into evaporator and pump out chamber.

• De-gas metals once pressure low enough. Do NOT open shutter.

• Pump down 1 hour

• Evaporate 8/80/160/36nm Ni/Ge/Au/Ni 1.5/2/2/2 Å/s.

• Lift-off few minutes in acetone, squirt down with acetone. Do not let metal flakes

settle on surface of device. Spray down with acetone airbrush and transfer to

clean acetone.
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• Soak in 70C acetone 30 minutes

• Squirt down with methanol, soak in methanol 5 minutes. Spray down with

methanol and blow dry. Soak 5 minutes in DI water, squirt down with running

water, blow dry.

• Take pictures

• Warm up Jipelec RTA with test run (no devices)

• Anneal 1 minute in forming gas at target temperature (375C for in-situ back-

gated devices). 1 minute ramp up, ramp down as fast as possible. Purge

chamber 10 minutes prior to annealing.

• Take pictures

• Leave overnight

G.11.5 E-beam Gates

• Clean devices if they have been sitting for an extended period

• Pre-bake 2 minutes 100C

• Spin PMMA 950 A2 45s 4000 RPM

• Bake 10 minutes 180C

• Expose in Raith

• Develop 30s MIBK:IPA 1:3, squirt down with IPA, blow dry

• Check development, take pictures

• Evaporate 5/20 nm Ti/Au 1.5/2 Å/s

• Lift-off few hours in acetone, finish with 5s sonication
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• Take pictures

• Soak 5 minutes in toluene, > 10 minutes hot acetone, 5 minutes methanol, 5

min DI water

G.11.6 Optical Gates and Bond Pads

• Spin AZ1518 40s 4000 RPM (no pre-bake)

• Bake 2 min 100C

• Expose 20s 10 mW/cm2

• Harden 20 minutes in chlorobenzene

• Blow dry, soak 5 minutes in DI water, blow dry

• Develop 70 + 20s MF-26A, rinse 30s, blow dry

• Examine developing, if necessary develop longer in 10s intervals

• Take pictures when developing complete

• Rinse 5 minutes in DI water, blow dry

• No de-scum or de-oxidization etch

• Evaporate 20/150 nm Ti/Au 2/2 Å/s

• Lift-off few minutes in acetone, spray down with acetone airbrush, squirt down

with methanol, soak few minutes in methanol, squirt down with methanol, blow

dry.

• Take pictures

• Photocopy notes, pack up samples



312

G.11.7 Mounting and Wire Bonding

• Cleave as necessary

• Keep samples as clean as possible

• Glue into chip carriers with rubber cement

• Wire up in bonder

– Bond 1 power: 2.5

– Bond 1 time: 2.5

– Bond 1 force: 3.3

– Bond 2 power: 1.8

– Bond 2 time: 3.9

– Bond 2 force: 2.0

– Tail: 2.2

– Pull: 0.6

– Stage temperature: Room temperature

– Tool temperature: no heat

– Bond wire size: 1 mil

• Fill out log sheet and turn off microscope light

• Measure device, publish paper, graduate, get paid the big bucks
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H. Kelvinox Dilution Fridge Standard Operating Procedure

H.1 Introduction to the System

The Kelvinox fridge was originally put together with the goal of being able to

measure the fractional quantum Hall gaps of different wafers with a large through-

put to act as feedback on heterostructure design. As a result, we designed a tail and

associated headers that can hold up to four 4 mm Van der Pauw squares. Each sample

has its own red LED pointed at it so that if multiple samples are examined after
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illumination, they should all have experienced identical illumination conditions. This

is important since the illumination has a very large effect on the gaps and transport

quality. In addition, the samples are mounted on homemade headers that have a

copper strip that can be screwed into the copper tail so that there is a continuous

metal connection between the sample and the mixing chamber. Finally, the Labview

code was written in such a way that all four samples could potentially be measured

simultaneously with the data saved to separate data files with corresponding log

files automatically generated by the code to help keep track of all the measurement

parameters. In principle, then, if everything is working (a big if) and if the samples

are roughly the same density, the gap at say ν = 5/2 could be measured from four

different wafers in the space of a week or so.

The downside to having such ambitious goals when setting up a fridge is that the

system has very tight design parameters. Namely, there is a very small gap between

the samples and the radiation shields meaning that the possibility of a thermal short

between the samples and the (∼ 50 mK) radiation shield is always present. In ad-

dition, the headers don’t have much space for mounting samples, and to get a good

thermal link between the sample and the fridge it is necessary to use a conductive

adhesive (silver paint) to mount the samples which introduces the extra complication

of potentially shorting contacts to the fridge. This is not too much of a problem for

large Van der Pauw squares with soldered contacts, but it makes mounting processed

samples (which require wire bonding) very challenging at times.

Finally, this system was put together from parts of a couple fridges and is therefore

very “homebrew” (which is I suppose fitting for a piece of equipment which runs

“mash” through a “still”). In other words, this standard operating procedure should

be taken as a guideline for what normally works and how the system normally behaves,

but it should not be followed blindly without understanding how each part of the

fridge works and what can potentially go wrong.
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Jack screw 

Figure H.1. Top of the IVC with jack screw called out. The jack screws
are used to break the indium seal.

H.2 Preparing Samples

Let’s assume that you are starting with the fridge at room temperature but with

the sliding seal, inner vacuum can (IVC), and radiation shield in place and the copper

headers still in the fridge. The first step is to get the headers off of the fridge. First,

remove the sliding seal (you may need to get someone else to help hold the sliding seal

while you unscrew the last couple screws). Next, make sure the fridge is high enough

above the floor that you will be able to slide the IVC off. Remove all but two of the

screws from the IVC and start threading screws into the jack-screw threads shown in

figure H.1. Loosen your remaining screws holding the IVC on a little bit but do not

completely un-thread them. Then go back and forth tightening the jack screws until

you break the indium seal; the IVC should be resting on the two remaining screws

at this point. Now hold the IVC with one hand (again you may want a buddy to

make this easier) while removing the last two screws with your other hand. Once the

screws are out, lower the IVC off the fridge very carefully; pay special attention not

to catch the IVC on the serpentine pre-cooling line and be extremely careful not to

scratch any of the silver heat sinks with the IVC (if you do you will wind up having to

re-wire the fridge). Once you get the IVC off, set it on the bench and put something
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Align this cut-out with 
the heat sink to avoid 
scratching the wiring 

Once the top of the radiation shield is even 
with the mixing chamber plate, rotate 
slightly so that the cut-out is aligned with 
the corner of the connector shown here 

(a) (b) 

Figure H.2. Procedure for removing the radiation shield. (a) Align the
cut-out in the radiation shield flange with the heat sink to avoid scratching
the wires on the heat sink. (b) Once the flange is safely past the heat sink,
rotate it slightly to align the cut-out with the corner of the connector.

heavy in front of it so that it can’t roll off the table. Peel the indium off of the IVC

or fridge (wherever it stuck) and dispose of it in the zip-loc bag in the green cabinet

(we will eventually recycle this and hopefully recover some of the cost of the metal).

Next, put on some clean gloves (get a new pair if you touched the chain hoist with

your old gloves) and unscrew the radiation shield and slowly lower it off the fridge.

Getting the top flange past the mixing chamber is a bit tricky. First, as shown in

figure H.2a, you have to align one of the cut-outs in the flange with the silver heat

sink closest to the edge of the mixing chamber to get the flange all the way down to

the mixing chamber plate level. Once the flange clears the heat sink, rotate the flange

about 15◦ to get the same cut-out to align with the corner of the micro-d connector

on the tail as shown in figure H.2b. Do NOT force the shield off. If you have the

shield aligned properly you should not feel resistance. If you do feel resistance, stop

and think about what you are doing. This is another point at which you could scratch

some of the wiring and short a bunch of wires to each other. Once you get past the

micro-d connectors, just keep sliding the shield off slowly and be careful to not whack

the LEDs when you get the skinny part of the radiation shield past the end of the

tail. Once the shield is off, set it on the bench and again be careful to not let it roll
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Figure H.3. Copper headers mounted on the tail. Care should be taken
when removing the radiation shield to not bump the LEDs with the shield.

off the table. At this point it would also be a good idea to make sure that the LEDs

on the end of the tail are above the level of the fridge stand so that if you bump the

fridge the LEDs don’t get bent.

Figure H.3 shows the copper headers mounted on the fridge. To remove them

first unscrew the stainless steel screw (note that this is the only screw on the whole

fridge that is not a metric thread) and then gently start prying the headers off with

a blunt pair of tweezers (do not use sharp tweezers as these will scratch the copper).

While removing the headers there are a few things to keep in mind. First, be careful

what you touch on the tail. I have found the best place to hold the tail to steady it

is the part of the teflon tape with the copper oxide rub marks on it. This point on

each side of the tail is free of any wires that you might inadvertently shift around.

Try to avoid touching the RuO2 thermometer or any of the other wiring. Second, try

to pry the header out evenly so that you don’t bend the pins on the header or put

any unnecessary stress on the epoxy bond that glues the copper strip to the plastic

header. Finally, do your best not to scratch up the copper surfaces that mate between
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the header and the tail since these surfaces are what link your sample to the mixing

chamber.

Once the headers are off the fridge, take them into the prep room and remove

the old samples. You should be able to just push the sample off the header with a

pair of tweezers to break the silver paint bond. Do not use the clean tweezers in the

sample preparation supply drawer to avoid contaminating any samples and the tube

furnace with silver paint; instead, use a dirty pair of tweezers from the dil fridge lab.

To avoid bending the pins on the header I like to put the header in the socket glued

to a piece of copper that we usually use for wiring up samples. Once the samples are

off, put them back in the appropriate sample boxes for long term storage. Next, you

need to clean the headers in order to ensure that you get a solid thermal connection

with your new samples. The silver paint is soluble in acetone, so put a little acetone

on a q-tip and wipe the paint off. Try to minimize how much acetone you get on

the plastic since the plastic is not very resistant to the acetone. Once all the paint is

off, put some acetone on a fresh q-tip and go over it all once more to make sure it is

really clean. Once all the paint is gone it is a good idea to remove the copper oxide

and acetone residue with some very fine grit sandpaper1. Figure H.4 shows some

technology I developed to make cleaning the headers and other small parts easier. Be

sure to get the oxide off the top and bottom of the copper strip. Once you have the

copper looking nice and shiny, wipe it down with some methanol or IPA on a q-tip to

remove the sandpaper grit. The last step before you mount your samples is to make

sure you have good indium blobs on all the solder forks on the header. When you

do this, be sure to use the “dirty” indium and associated soldering iron tip. These

are currently labeled “NiAuGe soldering” since they are also used for making solder

connections to large evaporated NiAuGe ohmic contacts.

Now that the headers are clean, it is time to mount your samples. If you are

going to mount two samples on a header I would recommend that you first put the

1I typically use 2000 or 3000 grit sandpaper. Very fine sandpaper like this is often used for autobody
work and is available at most auto parts stores
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Figure H.4. Homemade sandpaper tools for cleaning copper oxide off of
small pieces. 2000 and 3000 grit sandpaper is glued to wooden sticks with
quick set epoxy to aid in cleaning small copper pieces such as the headers.

screw in the header so that you can position your samples appropriately. You should

also plan out now which sample(s) will go on each header. The headers are not

interchangeable on the tail (i.e. the header with the yellow paint marking pin 1 must

go on the socket with the yellow paint marking pin 1 in order to get the stainless

steel screw threaded). Take your samples (presumably already measured in the 3He

system) off of their original headers or chip carriers and try to keep track of the sample

orientation so you can use the same contact sets from the 3He system for taking your

data. To get the best thermal contact you will need to remove the rubber cement

from the back of the sample. Hold the sample by the edges with a pair of tweezers

and use your other hand to roll the rubber cement up into a little ball with a pair of

tweezers. The cement should stick to itself better than anything else so you should
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be able to roll it all into a little ball and then grab it with the tweezers. Once you

remove the rubber cement, get the silver paint from the green cabinet in the dil fridge

lab2. Stir up the silver paint a bit with a wooden stick and then shake the bottle

vigorously to get the silver uniformly distributed in the solvent. Put one drop of the

silver paint on the header immediately followed by your sample and push your sample

down with the clean end of a wooden stick. Remember to put the cap back on the

silver paint right away since the solvent evaporates quite quickly.

This gluing procedure can be a bit tricky. If you get to much silver paint on the

header, it will creep up the side of the chip and short your ohmics together or short the

back gate to the fridge if the sample has a back gate. For right now, just inspect the

chip for paint creeping up the side. If you think there is a short, remove the chip, wash

it thoroughly in acetone and then methanol or IPA and re-clean the header. Once

you have the samples mounted, solder the contacts to the header like you normally

would if your sample is a large Van der Pauw square. If you have processed samples

which require wirebonding, the next step is a little more challenging since you need

a bond wire with a wirebond on one end and a solder connection on the other.

First, move the header to the sockets glued to an aluminum block. These sockets

are glued on with silver-powder infused GE Varnish which acts to short all the leads of

the sockets together in case you have an ESD-sensitive device. The two adjacent rows

of sockets come in handy for wiring up processed samples on the copper headers. Put

your header in the single socket row and then put clean chip carriers in the adjacent

double socket row and take everything upstairs to the wirebonder. The goal here is

to use the chip carrier as the site of your first bond and then drag the wire over the

solder fork that you want to use before bonding to your sample (see figure H.5). If the

bond pops off the chip carrier, you can sometimes reposition things so that the wire

dangling from the wedge of the wirebonder falls on top of the solder fork. Make as

many bonds like this as you can and then take the aluminum block with your sample

back downstairs to the prep room. If you planned your bond path well, the wire

2Pelco 187 silver paint from Ted Pella, Inc., catalog number 16045
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Figure H.5. Illustration of how to wire up processed samples on the dilu-
tion fridge headers. Start the bond on the chip carrier (left) and drag the
wire over the solder fork before bonding to the sample (right). Note that
a standard plastic header without the copper insert is shown here because
the copper headers were both in the fridge during the preparation of this
manuscript.

should be bonded to your sample with the mid-section of the wire touching one of

your indium blobs. In this case, melt the indium blob with the soldering iron before

ripping the bond off of the chip carrier. If the wire is not touching the indium, try to

gently break the bond on the chip carrier without breaking the bond on your sample

(i.e. try to pull away from the chip carrier and towards your sample). Do your best

to have the soldering iron ready and solder the wire to the header. Because we have

a wedge bonder, the bonds are pretty weak if the bond footprint and the wire are not

collinear, so try to move the wire as little as possible. If it pops off, just repeat the

process as before. Because this bonding process is so difficult, I would recommend
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making your bondpads no smaller than 150 × 150 µm so that you have enough real

estate to make several bonding attempts before the bondpad is completely destroyed.

If you can put annealed metal underneath the bondpads, this will also help since the

annealed metal sticks to the sample better than plain TiAu does. If you go a few

hours without getting all the wires bonded, take a break, watch a stupid cat video on

YouTube, get some fresh air, pump some iron, take an aspirin, etc. to burn off some

steam before you go back to finish up the wiring. Once the samples are all wired up,

double check under the microscope that all the wires are continuous and not shorted

to anything. Before your samples can be mounted on the fridge there are a few other

checks to do, so just set your samples aside for now.

H.3 Preparing the Fridge

It is a good idea to check that all the solder joints on the fridge survived the

thermal cycling to room temperature before you mount your samples on the fridge.

First, check the resistance from the switch panel to the sockets on the tail. Hook

up the D-SUB cable from the switch panel to the appropriate switch box on the top

of the fridge (they are labeled #1 and #2) and make sure you have the switch box

in the “A” position so that the switch panel in the rack is connected to the sockets.

Then float all the switches on the switch panel and check the resistance to each pin

on the socket with a hand-held multimeter. Look back through the notebook to make

sure that the values you are measuring match the previously recorded values. If the

resistance of one connection increased significantly since the last cooldown, this may

be an indication of a bad solder joint. If there is a bad connection, you should try to

fix it. Keep in mind that the room temperature connections are much less likely to

have problems than the joints that get thermally cycled. So far most, if not all, of the

problem joints that I have found have been on the room-temperature side of the blue

connectors on the 1K plate; so when in doubt, start by re-soldering this connection

first.
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Once you are confident that all the wires are continuous, ground all the switches

on the panel (except the one you have the multimeter hooked up to) and check for

shorts. Be careful not to hook the multimeter up to any of the LEDs when you have

the multimeter set to measure resistance because this may drive an unsafe current

throught the LED. To test the LEDs, put the multimeter in diode testing mode and

use the cheat sheet taped to the switch panel to determine the correct polarity for

each LED. Again, compare the values you measure with their historical values and

record your measurements in the front of the log book.

Next, move filter box #1 on top of the fridge to Fischer connector #1. This will

connect pins 1-24 on the switch panel to the thermometers. Check the resistance

of all the combinations for each thermometer and record the readings in the front

of the log book. The log sheet has some helpful reminders about the wiring of the

thermometers. Once again, you should only see a couple Ohm variation from one

cooldown to the next. If you see a larger variation than this, a solder joint may need

to be fixed. Once you are done checking the thermometers, plug filter box #1 back

into Fischer connector #2.

Assuming all your wires are continuous, there are no shorts, and your thermome-

ters and heaters all match their historical values, it is time to mount the headers on

the fridge. Put on a clean pair of tight-fitting gloves (you will need good dexterity

to avoid breaking any wires) and get your samples and tweezers within arm’s reach

of the fridge. Hold the header upside down with the tweezers and align it with the

socket. Once the pins are lined up with the receptacles in the sockets, try to pinch

the header and socket sandwhich with your fingers and remove the tweezers. Then

try to go back and forth between each end of the header, pushing the header into the

socket a little bit at a time with the tweezers. Try to avoid pushing on the header

inside the solder forks (i.e around your bond wires). Also, make sure to work the

header into the socket evenly so you don’t break the epoxy joint on the header. Once

you get the header ∼ 2/3 of the way on the socket you can try threading the screw

into the tail. Be very careful to not cross-thread the threads. If you feel resistance,



324

stop and back the screw out. Copper is very soft and these threads are very small,

so it will not take much to ruin them. If the pins on the header are pushed into the

socket enough, you can usually get them the rest of the way by tightening down the

screw. Go back around with the tweezers and make sure the header is pushed all the

way into the socket and then tighten the screw a little more. Don’t over-tighten the

screws to avoid damaging the threads.

Once you get both headers on the fridge, re-install the radiation shield. Line up

one of the cut-outs with the corner of the micro-d connector to get the flange up to

the mixing chamber plate and than rotate ∼ 15◦ to align this cut-out with the heat

sink closest to the edge of the mixing chamber plate. Once the radiation shield is all

the way on, get all the screws started before tightening any of them down all the way.

Once they are all started, go around tightening them a couple times. The threads in

the radiation shield are brass so they are a bit more durable than the copper threads

in the tail, but you should still be careful to not over-tighten them since the stainless

steel screws are certainly capable of stripping the brass threads.

Once the radiation shield is on, test the 2-terminal resistance to ground of all your

contacts (hopefully you remembered to write down what connections go to which

contacts on the samples). As an aside, if you have any samples with an in-situ

backgate, you should check that the gate is not shorted to the copper strip before

loading the header on the fridge. Tie a gold wire around the hole in the copper strip

and solder it to an unused pin on the header. This will allow you to check for shorts

with the 4K dip stick. The wire connection to the copper strip is necessary because

the socket in the dip stick is all plastic and thus the copper strip is insulated from the

body of the probe and ground. Try to go slowly with cooling and warming the sample;

the silver paint can sometimes lose its bond after being thermally cycled. Assuming

you already did this, take the cap off the bottom of the radiation shield, lie down

directly underneath the fridge and look for any contact between the LEDs, headers,

teflon tape, etc. and the radiation shield. If there are not any thermal shorts, screw
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the cap back in and tighten it gently with a socket; both threads are copper so they

can get jammed very easily.

If your contacts resistances are all reasonable, then it is now time to install the

IVC and start pumping. First, clean the 4K flange on the fridge and the flange on the

IVC with some IPA or methanol and a clean wipe. If any indium is stuck to the 4K

flange, try to scrape it off with a wood stick. Do not use metal tweezers to scrape the

4K flange; the flange is made of soft brass and could be scratched by stainless steel

tweezers. Next, put four or five screws in the flange; you will use these to raise the

IVC the last little bit. Stand the IVC up on the bench and get a clean wipe, vacuum

grease, and IPA or methanol ready within arm’s reach. Pinch off a length of indium

long enough to go all the way around the flange and overlap the ends of the indium

around the “x” scratched into the side of the flange (this will ensure that the tails

of the indium don’t get bumped by the serpentine pre-cooling line. Wipe the indium

wire off a couple times with some IPA or methanol and then coat the wire with a

thin layer of vacuum grease. You only need the vacuum grease for sealing really small

cavities in the flanges, so don’t use too much. Lay the wire around the flange and

bend the tails down so they don’t get caught on anything. Lastly, inspect the wire for

any fuzz that might compromise the seal. If everything looks good, start sliding the

IVC on to the fridge. You will probably feel it hit the bottom of the radiation shield

when the skinny part of the IVC reaches the bottom of the radiation shield. Just

try to wiggle it around gently until the two shields get lined up. Just like when you

took the IVC off, be careful to not catch the IVC on the pre-cooling line or the heat

sinks. Once you get the flange up far enough to touch the screws, start threading the

screws into the IVC can and try to avoid touching the top flange with the indium

wire. Once you get four or five screws started, you can leave the IVC hanging. Make

one last check for any debris on the indium wire and then go around tightening each

screw a little bit at a time; the goal here is to uniformly bring the wire into contact

with the top flange. Once the wire is in contact with the flange, insert the rest of the

screws into the flange and tighten them finger-tight. Next go around in a star pattern
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tightening ∼ 1/4 turn each time to compress the wire evenly. After doing this a few

times, you can start tightening around in a circle until everything is snug. Lie down

under the fridge again and shake the bottom of the IVC a little bit; check that the

radiation shield wiggles around freely in all directions to check that it is not touching

the IVC anywhere.

Now that the IVC is on, the guts of the fridge are protected so you can lower the

hoist a bit without as much risk of damaging something with the dewar stand. Fire

up the leak detector and hook it up to the IVC pump-out port. Don’t try to pump

out the IVC with the turbo pump; the helium background is too high for the turbo

pump to make any progress. Once the diffusion pump on the leak detector is heated

up, start pumping the IVC out with the rotary vane pump in the leak detector. This

will probably take 10-15 minutes, so every 5 minutes or so rotate the valve on the

leak detector back to position #2 to pump on the backside of the diffusion pump.

This may not actually be necessary, but I get nervous about leaving the diffusion

pump hot for long periods of time with no backing pump. Once the gauge on the leak

detector gets down to 2 mBar, go ahead and open the throttle valve to the diffusion

pump. This is above the pressure that the manual says to rough the chamber down

to before opening the throttle valve, but the fridge has a huge surface area and a lot

of very tortuous pumping paths, so 2 mBar is about as low as the rotary vane pump

will get the IVC. The diffusion pump is pretty efficient at pumping helium, so once

it is pumping on the IVC you should only have to wait a few minutes before you

can turn on the ion gauge. Let it pump until it shows a leak rate < 1 × 10−8 atm

cc/s. Leak check the IVC with a liberal amount of helium, and don’t forget to check

the window on the bottom of the IVC since it also has an indium seal. Let the leak

detector pump on the IVC for an hour or two (if things went smoothly this may be

a good time for a late dinner).

Once you are convinced that the IVC is leak tight, seal it off and shut down the

leak detector. Hook the turbo pump up to the condenser and start pumping down

the dilution unit. Be very careful to minimize the strain on the condenser port; the
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tube is very thin and there is a long lever arm. You may need to add an elbow to

the condenser port to keep the bellows from putting too much torque on the system.

Pump down the bellows before opening the condenser valve. Once the turbo pump is

up to speed and you are convinced there are no leaks in your connections (the pump

should get down into the low 10−4 Torr range within a minute or two of reaching its

top speed), turn off the ion gauge, valve off the turbo pump with the valve on top of

the pump, and open the condenser valve. Record the pressure that the hose comes

up to according to the convectron gauge. This should be a reasonable indication of

how much junk made it past the traps and into the fridge (or how much mixture you

left in the fridge and have now pumped into the room). If this looks ok (i.e. a few

Torr), slowly open the valve on top of the turbo pump. Be careful to do this slowly so

you don’t slam the pump with a large gas load. If there is still an appreciable helium

partial pressure in the system, the pressure will not really move. If this happens,

seal the condenser off, shut down the pump, let the turbo spin all the way down,

vent the hose, pump the hose back down, and then open the condenser valve back

up. Adding the air to the line should help flush the helium out of the pump. If the

pressure still gets stuck at 10’s of mTorr, that is a problem since it indicates there

was a lot of mixture left in the fridge. Seal everything off and talk to the big man

before proceeding. Assuming that whoever used the fridge before you was careful,

though, and got all the mixture out of the fridge, this won’t happen and the pressure

should start falling pretty quickly. Once you see that the pressure is below 1 mTorr

and is steadily falling, turn off the ion gauge and leave the system pumping like this

overnight. If loading the samples went reasonably well, this will probably be the end

of the day anyway so you will be ready for a break.

When you come back the next morning, the condenser pressure should be at the

base pressure of the pump (∼ 2 × 10−5 Torr). Assuming this is the case, seal off the

condenser and shut down the turbo pump. Let the pump spin down for ∼ 5 minutes

before you move it so that you don’t crash the fan blades into the housing of the

turbo pump. Next, you need to add some exchange gas to the IVC to get it to cool
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Nupro valve 

Figure H.6. Manifold used for adding exchange gas to the IVC. Fill the
4-way cross to ∼ - 24 inHg with helium and then add this to the IVC to
act as exchange gas.

efficiently to 4K. The goal here is to add a couple hundred mTorr of 4He to the IVC.

I put together a little manifold, shown in figure H.6, that makes this easier. It is just

an NW-16 4-way cross, but it does the trick. Hook this manifold up to the turbo

pump using one of the o-rings from the “helium saturated o-rings” bag (keep these

o-rings separate since they are no good for anything you need to leak check). The

manifold is kind of heavy, so try to rest it on the frame of the pump cart. Hook up

the helium line to the manifold and flow some helium through it to purge the air,

then seal off the green Nupro valve on the manifold. Hook the manifold up to the

IVC port and pump it down with the turbo pump. Let it pump on the hose for a few

minutes and convince yourself that there are no leaks. Then close the two NW-16

valves on the manifold to isolate the 4-way cross from the pump and the bellows and

turn off the pump. Slowly open the Nupro valve to fill the cross with helium up to ∼

−24 inHg. If you overshoot, you can bleed some pressure off into the pump assuming

it has spun down all the way. Once you hit your pressure target, seal off the Nupro
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valve and open the valve to the bellows and then the IVC. This will fill the IVC with

some exchange gas so that the guts of the fridge cool along with the rest of the fridge

to 4K. Over time I’ve slowly been cutting back on how much helium I add to the

cross to make it easier to pump out the exchange gas at 4K (more on this later).

Once you’ve added the exchange gas, seal off the IVC, put a blank on the IVC

port as a safety (you should also have blanks on the condenser and still ports), and

move the pump out of the way. Now put the sliding seal back on the fridge (you may

need to find a helper for this). Don’t over-tighten the screws on the sliding seal; you

are sealing a rubber o-ring, not an indium wire, and you just need to seal ∼ 1 psi of

helium, so don’t go bananas and squash the o-ring. Check the homemade red rubber

gasket on the bottom of the sliding seal for debris and cracks. This piece of rubber

is needed because the plastic o-ring that mates with the sliding seal has a small dent

in it that leaks a fair bit of helium. If the gasket is cracked, you can make another

one with an Exacto knife and some thin gasket rubber (I think I bought the rubber

at Menard’s or maybe Ace Hardware).

The last thing to prepare on the fridge itself is the 1K pot. You need to get it

filled with dry helium before cooling it down so that you don’t freeze the needle valve

shut or block the inlet or outlet with ice. Hook the turbo pump up to the 1K pot line

and pump it down (make sure the needle valve is all the way shut). Ultimately, you

need to pump out the 1K pot (to a few mTorr) and fill it back up with helium 3-5

times, but you have to be careful with the turbo pump. It doesn’t pump helium very

well, and hitting a thin fan blade spinning at 20,000 RPM with a bunch of gas is a

pretty risky move. So to prolong the life of the pump, valve off the pump from the

manifold (you should still have the 4-way cross hooked up after adding the exchange

gas to the IVC), and let the pump spin down. In the mean time, fill the 1K pot up to

atmospheric pressure with helium. Once the pump has spun down, start it back up

and immediately open the valve to the 1K pot. This will force the diaphragm pump to

do most of the pumping on the helium and allow the turbo pump to spin up gradually

under the gas load. Once you get the pressure down to -30 inHg on the mechanical
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gauge, valve off the pump again and shut it down. Repeat the pump/purge process

3-5 times. Leave the 1K pot pressurized at 1-2 psi the last time you fill it up with

helium. This will ensure that whatever is leaking through the needle valve is helium

leaking out of the fridge and not air leaking into the 1K pot.

H.4 Cooling the Fridge to 4K with a Cold Magnet

The fridge itself is now ready to go. At this point what you do next will depend

on whether or not the magnet is already cold. Since I already told you to pump and

flush the 1K pot, let’s assume the magnet is still sitting at 4K from the last cooldown.

Hook the sliding seal recovery port up to the recovery line (try to match the sharpie

marks on the the bellows and the valve) and raise the fridge with the hoist enough to

slide it into position over the dewar. You will have to remove the D-SUB cables if you

have not already done so. Before you do that, make sure that the switch boxes on

top of the fridge are in position “B” or “C” so that your samples are grounded to the

fridge. The initial lowering of the fridge into the dewar to mate the sliding seal with

the top of the magnet is not a very graceful process. You are opening a large hole in

the dewar and shining a lot of radiation into the helium, so things will start boiling

off pretty quickly. In addition, the IVC extends quite a ways below the end of the

sliding seal, so you will also be adding a lot of warm metal to a region previously filled

with cold helium gas. Before you can do this you need to plan ahead a bit. First, the

liquid level in the dewar should be no higher than ∼ 5 inches. If it is higher, you will

boil off a lot of liquid, pressurize the dewar a lot, and hit the helium recovery system

with a very large gas load. Second, you need to make sure no one else is transferring

too much. You will be boiling off a lot of liquid for the first ∼ 20 minutes, so you

should wait if someone else is transferring out of the liquefier since transferring out of

the liquefier boils off a lot of helium. It also wouldn’t be a bad idea to go around and

talk to the guys in the other labs and ask them to hold off transferring for the next

30 minutes so that the helium recovery compressor can safely handle the gas load.
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Main dewar recovery valve 
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Figure H.7. Dewar exhaust port to helium recovery system.

Remember that the maximum gas flow rate the compressor can handle is 18 CFM,

so the sum of the boil-off from all the labs shown on the gas meter webpage needs to

stay below 18 CFM for the compressor to keep up.

Once the helium recovery system is ready, find a buddy to help you lower the

fridge into the dewar. Get the fridge centered over the dewar, pull the cap out of

the magnet, set the cap someplace where it won’t roll off onto the floor, and start

lowering the fridge as quickly as possible while your buddy guides it into the magnet

opening. Stop lowering once the sliding seal is about 1 inch into the magnet. Open

the valves on the sliding seal recovery port shown in figs. H.7 and H.8 and close the

main dewar recovery valve (you may need to thaw this out with a heat gun) to force

the boil off to leave via the port on the sliding seal. This will take advantage of all

the cold He gas you are boiling off to help cool the fridge gradually before it reaches

the liquid surface in the dewar. Do not close the main dewar recovery valve before

you get the fridge in so you don’t create a bomb. Even with the main recovery valve

open, the dewar pressure will likely rise to ∼ 3-4 psi.
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Sliding seal valve #2 

Figure H.8. Sliding seal exhaust valve #2.

Keep lowering the fridge slowly and periodically check the liquid level in the

dewar and the boil-off rate on the gas meter webpage. Try to keep the boil off rate

∼ 4 CFM. This means you will probably lower the fridge ∼ 1 inch every 5 minutes.

Be vigilant to wipe the condensation and frost off the sliding seal as well as you

can. If you start to build up too much frost, you either won’t be able to get the

fridge lowered farther or (if you can keep lowering it) you may damage the plastic

o-ring that makes the connection with the G-10 of the sliding seal. Once you get

the fridge low enough, connect the resistance bridge pre-amp to Fischer connector

#1. Turn the bridge on, set the channel to “0”, range to “2 K”, excitation to 30

µV, input to “MEAS”, and leave everything else unchanged. Start up the Labview

VI “Monitor Bridge Temperatures”, select whichever Agilent multimeter you have

the bridge output connected to, select the temperature output option, select the sorb

thermometer, and start the code. You will have to adjust the “x” parameter to give

you the correct reading. This is just a scale factor to get the order of magnitude

right for the resistance the bridge is reading. Adjust this up or down in factors of
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Figure H.9. Fridge ground lines. Both these ground lines must be securely
connected to the fridge to keep the resistance bridge from showing overload
at base temperature.

10 until you get the right answer (it should show something like 200 K at this point

since the calibration for the sorb thermometer is basically flat from 200 K to room

temperature).

Once you get the fridge all the way down, screw it down into the magnet and

open the main dewar recovery valve back up. When screwing the fridge down be sure

to connect the copper ground strap between the fridge and the fridge stand and the

green and yellow ground line to connect the fridge to the building isolated ground as

shown in figure H.9. Try to get all these screws tight. There is an as-yet unfound

ground loop or noise source in the system that causes the bridge to show an overload

signal when Labview is talking to the multimeters if these screws are not all tight and

if the copper ground strap is not well connected.

H.5 Helium Transfer

By this point, the liquid level in the dewar will probably be getting pretty low

so it would be a good idea to transfer helium. If you are running the dil fridge, you

are probably already pretty familiar with transferring into the 3He system, but you

should pay attention to the details in this section anyway because it is a little trickier
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transferring into the dil fridge. Since you will always need to transfer shortly after

loading the fridge, be sure to plan things out in advance and have your storage dewar

full before you load the fridge. Assuming that you have plenty of liquid in the storage

dewar (you will probably use ∼ 60L to fill the dewar all the way if the liquid level

is around 2 inches), check the gas meter webpage (wait to transfer if more than one

other person is transferring). Go get the taller step ladder from the 3He system, move

the storage dewar into position in front of the fridge, and start lowering the transfer

tube into the storage dewar (make sure the extension on the transfer tube is threaded

in tightly). If the storage dewar is mostly full, you should not need to pressurize it to

get the liquid flow started. As soon as fog starts coming out the end of the transfer

tube, pull out the cork on the transfer port and insert the transfer tube a few inches.

You will probably hear the gas meter start spinning faster and the dewar pressure

may rise a little bit, but this should slow down in a minute or so. Slowly lower the

transfer tube until the 90◦ elbow in the transfer tube is about even with the top of

the green switch boxes on the fridge. Right now it doesn’t matter so much, but when

the magnet is energized you do not want to put the transfer tube down all the way.

If the tube is pushed all the way into the cone on the magnet, everything coming out

of the transfer tube will wind up at the bottom of the magnet. If there are any warm

gas bubbles coming along with the liquid, there is a small chance this could cause a

magnet quench. This is not very likely, but given that this magnet can go as high

as 15T without the lambda plate, a quench would probably vaporize all the liquid in

the dewar (and remember that 1L of liquid helium turns into 26.6 ft3 of gas at room

temperature).

Once you get the transfer tube down into the fridge, start pressurizing the storage

dewar. It will probably take 75-90 minutes to fill the fridge all the way to a liquid

level of 16.7 inches. Close the pressure building valve on the storage dewar when

the boil off rate gets up to ∼ 6 CFM, and open it back up again when the boil off

drops back down to ∼ 3.5 CFM. Try to plan things out so that you end the last

pressurization of the storage dewar when the the liquid level in the fridge is ∼ 15.6
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inches. This will let the fridge and dewar settle a little bit before you pull the transfer

tube out. Don’t get caught off guard; the last half an inch goes a lot faster than the

rest of the transfer. When you see that the transfer is almost finished, valve off the

helium regulator, take the rubber hose off the pressure-building valve, get the step

ladder in position, and grab yourself a pair of leather gloves. When the liquid level

hits 16.7 inches, crack the pressure building valve open to let some of the pressure off

into the room, quickly loosen the quick-connect fitting on the fridge transfer port (be

careful not to unscrew it all the way), and pull the transfer tube out in one smooth,

quick motion. If you go too slow or pause at any point, you will probably freeze and

rip the o-ring. In case this does happen I try to keep a spare o-ring right in front of

the level meter so it is within arm’s reach in case the o-ring on the fridge breaks. If

you rip that one too, there is a lifetime supply of the appropriately sized o-rings in

the plastic organizer drawer on the bench by the door (look for the drawer labelled

“Oxford o-rings”).

As soon as you get the transfer tube out of the fridge, plug the port with the cork.

I like to have the cork in my left hand while I pull the tube out with my right arm to

plug the hole as quickly as possible. This dewar gets pressurized a lot more during

the transfer than the 3He system does, so you will lose helium a lot more quickly if

you are fumbling around with the cork. You also will probably burn your fingers if

you aren’t wearing gloves at this point. Once you get the cork in, tighten it down,

open the pressure building valve on the storage dewar the rest of the way to minimize

how much liquid you are continuing to pump into the transfer tube, climb up the

step ladder and pull out the transfer tube. Be careful not to whack anything in the

electronics rack with the transfter tube as you get down. Close up the valves on the

storage dewar and put everything away.
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H.6 Preparing to Condense

Now that the fridge is full, you can start your final preparations to condense and

circulate. You could have done some of this before or during the transfer; most likely

the order you do things will be decided by the liquid level in the fridge, when other

people are transferring, etc. The first thing to do is to get the fridge hooked up to the

pumps and gas handling system. Hook up the 1K pot line to the 1K pot pump using

an o-ring with a plastic centering ring and an all-plastic clamp to keep the fridge

electrically isolated from the pump. Do the same for the still and condenser lines but

note that the still line isolation occurs where the NW50-NW40 adapter attaches to

the gate valve on the fridge, so you can use a metal centering ring when you attach

the NW50 hose to the still port. Make sure you line up the sharpie marks on the

NW50 hose with the marks on the NW50-NW40 adapter so that you don’t twist the

connections when you pump out the lines and the hose shrinks up.

Start up the leak detector and hook it up to the pump-out port on the sand-

bucket manifold shown in figure H.10. Make sure the valves to the helium trap and

to the long still hose are shut (essentially all of the valves on the gas handling circuit

should be shut at this point so you don’t risk pumping out any mixture). Pump out

the still and condenser hoses and leak check the connections you just made with the

leak detector. You should be able to get the leak rate below 1 × 10−8 atm cc/s. If

you have a background higher than this, let it pump for a while to make sure it falls

below this level. Once you are convinced there are no leaks, seal off the sand-bucket

manifold and remove the leak detector. If it is handy, hook up the turbo pump and

let it pump on the lines that were exposed to air for a while; the longer you can pump

these out the better in terms of removing water from the vacuum surfaces.

Once you have the leak detector free, hook it up to the IVC port and pump out

your lines. In the meantime get ready to start putting some heat in the sorb. Hook

one of the small green HP power supplies up to the sorb connection on the blue

Pomona box shown in figure H.11. Turn on the power supply and monitor its output
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Figure H.10. Sand-bucket manifold.

with the Keithley multimeter (make sure the output is as close to zero as you can

get it). Once the leak detector has the line pumped down start pumping on the IVC.

As a precaution (in case of a leak in the indium seal) first close the throttle valve

on the leak detector and then open the IVC valve. Assuming there is no leak, the

pressure the leak detector sees should still be well below 0.1 mBar, so you can just

open the throttle valve back up without using the rotary vane pump to rough it down.

If you turn the ion gauge on, you should see that the pressure is below the minimum

detectable level but the helium leak rate is probably over full scale. Shut off the ion

gauge so you don’t damage any of the electronics. Finally, switch the sorb from “NC”

(not connected) to “C” (connected) and turn the HP supply up to 4.6V slowly. You

should see the sorb reading in Labview rise to ∼ 40K. Try to keep the sorb at this

temperature; you will have to decrease the voltage over time as you pump out more

of the exchange gas and the sorb becomes less and less coupled to the 4K walls of
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Figure H.11. Fridge heater connections.

the IVC. Pump like this for about an hour and make sure you keep the nitrogen trap

in the leak detector full so you don’t pump a bunch of oil into the fridge. Once you

pump for an hour or so, turn off the heat to the sorb and seal off the IVC. As the sorb

cools back to 4K the charcoal gauze should act to trap the rest of the helium left in

the IVC so that the dilution unit is thermally isolated from the 4K bath. Make sure

the sorb is all the way cold before you cool down the 1K pot; if you cool down the

1K pot too soon, you can create a superfluid film of 4He on the dilution unit which

will put a heat load on the mixing chamber and limit the base temperature.
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If you haven’t already stopped pumping on the still and condenser hoses with the

turbo pump, seal everything off, shut down the turbo pump, and get it out of the

way once it spins down. You next need to start “washing” the mixture, meaning that

you will circulate it through the pumps and traps but bypass the fridge. Start by

plugging in the Pfeiffer sealed pump. Make sure you plug it into the correct power

cord because the phases in each power cord may be wired differently, so plugging the

pump into the wrong cord could potentially cause it to run backwards. When you

plug it in, keep an eye on the mechanical pressure gauge on the wall manifold. It

should come up a little bit as it pumps the mixture that backstreamed through the

pump while it was off, but it should not rise above -7.5 inHg. Once you’ve had the

sealed pump on for a minute or so, plug in the roots blower. It is very important that

the sealed pump always be running when the roots blower is on; if it is not and the

outlet pressure of the roots pump gets above atmospheric pressure, the roots pump

could be damaged.

Next, go around and start opening up the valves in the circulation path. Start

with opening the fridge bypass valve shown in figure H.10 and then open the helium

trap to the sandbucket manifold and watch what the still pressure gauge shows. Next,

open valve 11 on the wall manifold shown in figure H.12 and watch the condenser

gauge. Next, open valve 14 so that the wall manifold and the sandbucket manifold

are connected. At this point the still and condenser gauges may be reading a few

hundred mTorr from small leaks and outgassing, but this is not a big deal. As long

as the mechanical condenser gauge is still showing -30 inHg, it is fine. Next, open the

gate valve on the sand-bucket manifold to connect the He trap volume to the long still

hose. The pressure should drop when you do this because the connections on the long

hose seem to pretty good. Lastly, open valve 10 on the wall to connect the nitrogen

trap to this whole volume. As long as you don’t see any response on the mechanical

condenser gauge there is not much gas in the lines. You need to check that this is the

case before opening the lines to the pump; if there is a signifcant leak such that this

large volume has an appreciable amount of gas, you could over-pressurize the back
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Figure H.12. Primary gas handling manifold.

side of the pumps. Once you are convinced everything is safe, open the gate valve

with the red tape on the handle on top of the roots blower shown in figure H.13 to

connect the pumps to the rest of the circuit. Do NOT open the bypass gate valve on

top of the roots blower. This valve should never be opened while the roots blower

is running since it would allow the inlet and outlet of the roots pump to equilibrate

and damage the pump. This bypass valve was included when we originally put the

fridge together so that we could circulate with just the sealed pump (it was not a

priori obvious whether or not using the roots blower would raise or lower the base

temperature of the fridge). Finally, make sure valve 7 is shut to keep the majority of

the mixture sealed in the dump, open valve 4 all the way, and just crack valve 8 to

start letting a little mixture circulate. Keep slowly opening valve 8 until the system

equilibrates with the still gauge showing ∼ 300-400 mTorr.
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Figure H.13. Roots blower manifold.

After a few minutes when you are convinced that the circulation rate is stable,

slowly start cooling down the nitrogen trap. Try to stabilize the hoses on the trap so

that you don’t put a bunch of strain on the connections on the trap itself or on the

wall manifold. Once the trap is cold, let the circulation continue for 5 or 10 minutes.

Once you are convinced the circulation rate is stable, cool down the helium trap.

Since you are already circulating mixture you need to be extremely careful while you

are moving the trap into position over the fridge so that you don’t put a lot of stress

on a connection and open up a leak. Pull the cork out of the port on top of the fridge

and slide the trap in a few inches. The weld seam on the bottom of the trap is a bit

too large, so it can be a little tough to get it started. Try to wiggle it around a little

bit but be very careful to not bend the trap at all. Slowly lower the trap into the

fridge over the course of a few minutes and keep an eye on the condenser gauges and
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the still gauge to make sure there are no sudden jumps in the readings that could

indicate a leak or plug.

Once you have both traps cold, you can go ahead and open up valve 7 to allow

the mixture in the dump to join the circulation. The goal with this whole washing

procedure is just to make sure that whatever junk may have leaked into the lines gets

caught in the traps before you start condensing. You may need to adjust valve 8 on

the wall a bit to keep the still pressure around 400 mTorr since the conductance of

the traps changes a bit as they cool. Do not let the pressure get above this; at higher

pressure (i.e. higher circulation rate) the outlet of the nitrogen trap gets very cold

and this could cause the rubber o-ring to start to leak. If everything looks stable, let

the mixture circulate like this for at least half an hour.

H.7 Sample Checks and Illumination

While you are letting the mixture wash, you can keep yourself busy by checking

the 2-terminal resistance of all the Ohmic contacts on your samples. Remember to

change the switch boxes on top of the fridge to the “A” position after you hook up the

D-SUB cables. If you need to illuminate your samples, you can also do that now. If

the Keithley source-meter is available I prefer to use it for powering the LEDs since it

can limit the voltage being supplied (a useful safety in case you have an LED hooked

up backwards). I have generally been using just LEDs 1, 2, and 3. LED #4 has

its negative terminal shorted to ground. In principle, you could still use it as long

as you keep this leg as the end of your chain of series LEDs, but I’ve been a little

nervous about what it could potentially do to the samples. Set the current to 2mA.

The voltage drop across LEDs 1, 2, and 3 in series should be 8.2V, so set the voltage

limit on the supply to 8.3V. Make sure all your contacts are grounded and illuminate

with the LEDs for 15 minutes. If you have a gated sample now would also be a good

time to check that the gate is not shorted to anything.



343

H.8 Condensing and Circulating

Once you have determined that your samples are still working, start the condens-

ing process. First, make sure the back of the 1K pot pump is open to the helium

recovery lines and turn on the 1K pot pump. Open the valve on the fridge to the

1K pot. The 1K pot pressure reading should initially jump up a lot and then quickly

fall to near zero since the needle valve is completely shut. Switch the bridge and

your Labview temperature monitor code to read the 1K pot and start opening up the

needle valve. The needle valve tends to stick a bit when you open it up the first time,

but if it is really stuck don’t force it. Once you open the needle valve and get the

pressure up to a few Torr, the 1K pot should cool to 1.7K in less than 30 seconds.

The fridge is now ready to start condensing the mixture, so note this in the log

sheet and notebook. First, close the fridge bypass valve on the sand-bucket manifold

and close the gate valve on top of the roots blower. Next, open the condenser valve on

the fridge and watch the 1K pot pressure and temperature reading in Labview. You

may also need to adjust valve 8 on the wall. You should try to keep the condenser

pressure ∼ -26 inHg and the 1K pot temperature ∼ 1.7K. Keep monitoring the dump

pressure over time. You should be able to condense 95% of the mixture in 60-90

minutes. Also keep an eye on the mechanical gauge on the backside of the pumps.

Once it gets to -20 inHg, close valve 4. The manual says to keep the outlet pressure

> −22.5 inHg at all times, though it doesn’t say what might happen if the pressure

drops below that point. Keep condensing into the fridge; you will probably have to

keep opening valve 8 as you go to keep the condenser pressure ∼ -26 inHg. Once the

dump gets to -28 inHg, you have gotten as much mixture out as you can with the 1K

pot (the 1K pot is evidently not cold enough to get the vapor pressure of the mix any

lower than this).

Next, close the condenser valve on the fridge to seal most of the mixture in the

fridge. Now you need to pump the dump out with the pumps. Open the bypass

valve on the sand-bucket manifold and the gate valve on top of the roots blower.



344

You should see the mechanical gauge on the backside of the pumps start to come up

slowly (it will probably get to somewhere between -15 and -10 inHg). Keep pumping

on the dump like this until the still pressure gauge drops below 100 mTorr. Beyond

that you aren’t going to really gain much by continuing to pump. Close valve 7 to

seal off the empty dump.

Now put the fridge back in the condensing configuration to put this excess gas

into the fridge. Close the fridge bypass valve on the sand-bucket manifold, open the

condenser valve, close the gate valve on top of the roots blower, and slowly open valve

4 on the wall to let the mixture from the backside of the pump condense (do not open

valve 4 all the way). The pressure on the backside of the pump should drop pretty

quickly since you have increased its volume by a lot.

Now you are ready to start trying to circulate, so quickly make a note of this in

the notebook and logsheet. Open the still gate valve on the fridge; you will probably

hear some gas rush through it as it fills the big hose. Make sure the gate valve on

top of the roots blower is shut before you do this so you don’t slam the pump with

a large pressure. Now, very slowly start to open the gate valve on top of the roots

blower. This gate valve opens slowly enough that you can throttle the flow a little

which is important in this case. Until you get the still cooled down, the still pressure

will be very high and you will over-pressurize the gas handling system and warm up

the 1K pot if you pump too much gas out of the still.

As you are opening the gate valve on top of the pump, watch the mechanical gauge

on the wall. Close the gate valve back up when the pressure gets up to atmospheric

pressure. Go over to the computer and check the 1K pot and still temperatures. The

1K pot should be staying ∼ 1.7-1.8K, and the still should have cooled a bit below

the 1K pot temperature, though it is probably rising again now that you closed the

gate valve. Go back to the roots pump and, as long as the mechanical gauge on

the backside of the pumps is < -15 inHg, slowly open the gate valve again. Close it

back up once the pressure gets up to atmospheric pressure. After you do this cycle a

couple times, you should see the still pressure start to drop into a measurable range
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(i.e. 400-500 mTorr) at which point the still temperature has probably dropped to ∼

1K. Once the pressure on the backside of the pumps stays below -10 inHg with the

gate valve open, you are done. Just leave the gate valve open and let things start to

settle as you monitor the temperatures and pressures of the system. The cooldown to

base varies a lot from cooldown to cooldown. Sometimes the mixing chamber will cool

to 25mK in as little as 20 minutes, other times it will take 90 minutes. Anecdotally,

it seems that the total time to condense and cool to base is roughly constant. If you

do the condensing quickly, it takes longer to cool the rest of the way to base because

the still temperature (and hence circulation rate) drops quickly; whereas if you take

a long time to condense, it seems that the still stays warmer and the mixing chamber

cools more quickly. Once the pressure on the backside of the pumps has dropped

below -16 inHg, open valve 6 on the wall. This opens a path for the mixture back

to the dump through a 10 psi check valve in the event of a plug. While things are

settling down you may need to adjust valve 4 a little bit. A typical condenser pressure

is ∼ -28 inHg which is too low for the sealed pump, so you need to create a bit of a

pressure drop across valve 4. Try to set the pressure on the backside of the pumps to

∼ -20 inHg. Typical parameters for the fridge at base temperature are as follows:

• 1K pot ∼ 1.7 K

• Still ∼ 700-800 mK

• Cold plate ∼ 30 mK

• Mixing chamber ∼ 11 mK (sometimes the first day after cooling to base it only

gets to ∼ 12-13 mK)

• “J1” (i.e. tail) ∼ 1 mK higher than mixing chamber

• 1K pot pressure ∼ 3-7 Torr

• Still pressure ∼ 90-100 mTorr

• Condenser pressure ∼ -28 inHg
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• Back of pumps ∼ -18 inHg

• Still power at base temperature = 0

Once you get the mixing chamber close to base and everything looks stable, your

experiment will dictate what you do next. If you haven’t already done so for these

samples, you should probably check the resistivity (as well as the gate leakage, if

applicable) before you start sweeping the field. If you already have this information

from a previous cool-down, you might as well sweep out to ν = 2 to let the sample sit

overnight so you can take a slow down sweep through the 2nd LL the next morning

to see how things look. If this is the case, stop the Labview bridge monitor program,

but before you do tell it to measure “Mike’s RuO” (this is meant for channel 4 on the

bridge). Once Labview records at least one data point, go ahead and tell the program

to stop and create a folder to save your data (preferably in My Documents/Instrument

Logs/Temperature Logs/...). Please give the folder a meaningful name like “2014-09-

01 cool fridge from 300K to base” so that you or someone else can track down the

information in the future. Labview will save the data from each thermometer in its

own file (hence why you need to create a new folder), and the independent variable

will be a time stamp (i.e. it includes the date and time). I created an import template

and graph template in Origin to allow you to import this data easily and display it

all on a graph with a time stamp axis (this makes it easier to compare the data in

the graph with notes in the notebook or logsheet). If you haven’t collected data for

each thermometer, though, the program has problems and won’t actually save any

data (hence why you needed to give it a couple fake data points for the “Mike’s RuO”

thermometer). Once Labview has given up control of the GPIB bus, you should be

ready to start your experiment.

H.9 Cooling Down the Magnet

If the magnet was also warm before you started, there is obviously some additional

work you will need to do. Preparing the samples and loading them onto the tail is,
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of course, the same as is the room temperature preparation of the fridge. The first

difference in the procedure is loading the fridge into the dewar. Since there is no

liquid in the dewar, you can load the fridge into the dewar quickly. Just remember

to pull the plug out of the transfer port once you get the sliding seal mated with the

top of the magnet to let the pressure out as you lower the fridge (the dewar should

be valved off from the helium recovery system at this point so you don’t lose all of

the department’s helium). Once you get the fridge down, screw it into the magnet

and hook up the ground straps like I previously described.

Hook up the still and condenser lines, leak check them, and start washing the

mixture through the nitrogen trap like I described before. Since the fridge may have

been sitting for some time since it was last used, you need to be extra careful about

checking for any large gas load in the gas lines as you start pumping on the circuit.

There is a small leak somewhere in the system (possibly one of the pumps) that you

should be aware of. As a result, you should plan to wash the mixture through the

nitrogen trap overnight and then warm up and clean the trap out the next morning

so that you don’t start with a large gas load in the trap. To clean the trap, first close

valve 8 to stop the circulation of mixture and pump the remaining mixture out of the

trap. Wait until the condenser gauge drops to < 15 mTorr to be sure that you got all

the mixture out of the trap. You should also confirm that the dump pressure came

up to -7.5 inHg. While this is pumping out, get the turbo pump and hook it up to

the pump-out port on valve 12 on the wall (you may need to find someone to help

you lift the pump over the still line). Be very careful with the pump cart around the

dump; the connections on the dump are very flimsy, so if you run into them with the

pump cart you could potentially lose a lot of mixture. Pump out the line and make

sure the pressure drops enough to be sure you don’t have a leak, but do not open

valve 12. Turn off the ion gauge once you are convinced there are no leaks so that

the filament can cool down.

Once the trap is completely empty of mixture, close all the valves on the gas

handling system except valves 10 and 11 so that you can monitor the pressure in
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the trap with the condenser mechanical gauge. Get a heat gun and some zip-ties

within arm’s reach and then pull the trap out of the dewar while being careful to

minimize the strain on the connections. Zip-tie the trap to the handle on the dewar

so it doesn’t fall over if you have to walk away. Start gently heating the trap with

the heat gun. Don’t leave heat gun in the “hot” position for very long; just heat the

filaments up and switch to “cold” mode so that you blow luke-warm air over the trap.

You should be able to hold the heat gun an inch from your arm without burning

yourself. Periodically turn the filaments back on for 10-20 seconds to keep the air

warm. Try to thaw the whole trap out uniformly so that you don’t develop too much

thermal stress on the trap. While you are doing this you should also be keeping an

eye on the mechanical gauge. Don’t let the trap get above atmospheric pressure. If

it does start to go positive, stop heating the trap, close the valve on the top of the

turbo pump to protect the pump, and open valve 12 on the gas manifold to vent some

of the gas into the vacuum hose. Then you can stop the pump, let the blades spin

down, and then pump out the trap. Normally, though, this won’t happen. As long

as the trap pressure doesn’t go positive, keep heating it until the whole trap is warm

(but not hot) to the touch. Record the pressure it came up to in the front of the log

book along with how long it was sitting since the last use. Pump out the trap with

the turbo pump. There will be a large helium background, so you aren’t going to

accomplish much by leaving the pump running for more than 20 or 30 minutes. The

condenser gauge will probably show that it is stuck somewhere around 2 Torr. Seal

everything back up at this point so you don’t put unnecessary strain on the pump.

Before you can start cooling down the dewar, you will need to pump and flush

it with dry nitrogen or helium so that you don’t clog anything up with ice. Hook

up a gas line to the dewar purge port shown in figure H.14. Pump the dewar down

with the 1K pot pump by opening the dewar pump-out valve. Open this slowly and

stop when the pump starts howling. You can open the valve a little more once the

noise dies down. Monitor the progress with the 1K pot gauge by opening the 1K pot

manifold valve shown in figure H.15. You should be able to pump the dewar down
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Dewar purge port 

Dewar pressure gauge 

Dewar pump-
out valve 

Figure H.14. Dewar purge manifold.

to < 1 Torr. If you can’t get this low, look around for leaks, try tightening down the

screws bolting the fridge to the magnet, etc. Once the pressure bottoms out, close off

the dewar pump-out valve and fill the dewar back up with dry gas through the dewar

purge port. Do this pump/purge cycle 3 times. When you fill the dewar up with gas

the last time, leave it pressurized ∼ 1-2 psi.

Next, pump and purge the 1K pot (use helium and not nitrogen for purging).

Since the 1K pot gauge is not sensitive around atmospheric pressure, you will have

to hook up some kind of tee to watch its pressure (the NW16 4-way cross used for
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1K pot manifold valve 1K pot purge valve 

1K pot valve 

Figure H.15. 1K pot manifold.

Lambda plate port 

Figure H.16. Lambda plate port.

adding exchange gas to the IVC is a good option). Pump and flush the 1K pot 3-5

times and leave it pressurized ∼ 1-2 psi with helium when you are done. Close down
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Sharpie mark 

Figure H.17. High-tech LN2-fridge coupling unit.

the 1K pot valve and then hook up the 1K pot manifold to the lambda plate port

shown in figure H.16. You will probably need to grab a more flexible vacuum hose

to do this. Make sure the lambda plate needle valve is shut all the way before you

start pumping and purging. Pump and flush the lambda plate 3-5 times and leave it

pressurized ∼ 1-2 psi with helium.

Now that all the cavities in the fridge are either under vacuum or filled with dry

helium, you can start pre-cooling the system wiith liquid nitrogen. You will need

to borrow one of the big nitrogen dewars from Keith. Talk to him in advance and

remember that he really needs all three dewars when he is running the liquefier, so

try to plan your cool down to coincide with a day when the liquefier is shut down.

Hook your nitrogen dewar up to the nitrogen-fridge coupling unit shown in figure

H.17 (it should be on the bottom shelf in the storage room). Make sure the end of

the stainless steel tube (should be propped up against the door jamb by the green

cabinet in the dil fridge lab) with the sharpie mark is the end you have hooked up to

the rubber hose. This marks how far you have to shove the tube into the fridge to
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Figure H.18. Primary lab helium recovery valve.

get the tube all the way in to the cone on top of the magnet. Temporarily close the

dewar recovery valve and remove the plastic recovery hose. You will be venting a lot

of nitrogen out this port during the cool-down, and you don’t want to fill the helium

recovery system up with nitrogen. You should also make sure the primary lab helium

recovery valve shown in figure H.18 is shut so that you don’t lose any helium from

the recovery system by disconnecting the fridge.

Once you have the recovery line disconnected, crack open the valve on the nitrogen

dewar to start letting a little nitrogen purge the hose and your stainless steel tube.

You don’t want a large gas flow yet, so just open it a little. Pull the cork out of the

dewar transfer port and slide the stainless steel tube in quickly so you don’t get too

much air into the dewar. As soon as you insert the tube into the fridge, open the

dewar recovery valve so that you don’t blow up the dewar. Get the stainless steel

tube all the way inserted so that you feel it stop in the cone on the magnet and see

that the sharpie mark is just barely visible above the plane of the dewar transfer port.

Get some zip-ties and tie off the liquid nitrogen hose to help support the weight and
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Magnet thermometers 
Persistent switch 

Figure H.19. Magnet thermometers and persistent switch.

then open the valve on the nitrogen dewar a bit more. You should feel a strong, cool

breeze coming out the dewar exhaust port, but you shouldn’t hear any howling or

see any fog yet. According to Oxford, this particular magnet design can be damaged

during the pre-cool in one of two ways. First, if you don’t get the tube all the way

into the cone on top of the magnet, you will shower the top of the magnet with liquid,

and this thermal shock can cause damage. By getting the transfer tube into the cone,

you instead spray the bottom of the dewar with liquid and the resulting vapor does

the initial cooling of the magnet. Second, even with the transfer tube inserted all the

way, you can also damage the magnet if you cool down too fast. We unfortunately

don’t have a good way to quantify this, so you will just have to compare your cooling

rate with historical values. You can watch the magnet cool by hooking the Fluke

multimeter up to measure the magnet thermometer leads shown in figure H.19. The

red wire is a common ground, the white wire goes to the Allen-Bradley resistor on the

bottom of the magnet, the black wire goes to the resistor on the lambda plate on the

top of the magnet, and the green wire goes to a resistor 10 cm above the lambda plate
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(approximately the height of the mixing chamber). Record the resistance readings

for each resistor over time in the notebook and compare with previous cool-downs to

gauge if you need to open or close the valve on the nitrogen dewar. Keep filling with

nitrogen until the resistance of all three resistors has plateaued. This will probably

take over two hours. Once a steady stream of fog is shooting out the dewar exhaust

port, try to angle the exhaust up with some aluminum foil so you don’t blast the

magnet supply with cold, wet air for an extended period.

Once all three magnet thermometers and the sorb thermometer stabilize, you are

ready to cool to 4K. Depending on the time you may decide to leave the nitrogen

in the fridge overnight. If you do this (or if you need to leave the system for very

long with no liquid flowing into the fridge), put a blank on the exhaust port but do

not use an o-ring. This will cut down on the conductance enough so that no air will

get into the dewar and freeze, but the nitrogen boil-off will still be able to escape.

When you do decide to blow out the nitrogen, first crimp the rubber hose on the

liquid nitrogen-fridge coupler and disconnect your stainless steel hose from the liquid

nitrogen dewar. Go find a few small nitrogen dewars to collect the liquid you blow

out of the fridge. Then hook up a helium gas line to the dewar purge port shown

in figure H.14. When you are ready to start blowing out the liquid, close the main

dewar recovery valve, un-crimp your rubber hose so the nitrogen can get out and start

pressurizing the dewar with helium. Pressurize the dewar to ∼ 2 psi to force out the

liquid. If you don’t have the stainless steel tube all the way down into the cone on the

magnet, you won’t be able to blow out the liquid, so you might want to check that

this is really all the way down before you start trying to blow it out. You will know all

the liquid is out when you stop seeing liquid trickle out the nitrogen hose and see the

pressure on the dewar gauge suddenly drop to close to atmospheric pressure. When

all the liquid is out, keep the dewar pressurized with helium, warm up the transfer

port with a heat gun to thaw out the o-ring, and then pull out the stainless steel tube

and cork the transfer port. Remember to valve off the dewar purge port at the same

time so you don’t keep pressurizing the dewar.
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Next, you need to pump and purge the dewar since it still has a lot of nitrogen

gas left in it. Do this the same as you did at room temperature, but remember that

since the dewar itself is a lot colder, it will be holding a lot more gas and take longer

to pump down. As long as you can get it down to ∼ 1 Torr don’t worry too much. If

it gets stuck a lot higher than this, though, you may still have liquid in the bottom.

If that is the case, you need to try blowing it out again. If there is any liquid nitrogen

left in the bottom of the dewar, you will boil off all your helium trying to cool down

and freeze the nitrogen (not to mention you may end up plugging up the 1K pot

sipper or lambda plate sipper) when you start transferring helium. Once you get

the dewar purged a few times, leave it pressurized with helium gas. You should now

be ready to fill up the fridge with helium, so if you have a full storage dewar start

transferring as you normally would, but start out slow. You will be converting all

the liquid to gas for roughly the first 30 minutes, so make sure the recovery system is

ready to handle a big gas load. You also, of course, need to make sure that the fridge

is hooked up to the recovery line and that the main valve to the lab shown in figure

H.18 is open. While you are getting setup, though, keep the recovery valve on the

fridge itself closed so you don’t suck air from your recovery lines into the fridge. As

soon as you start transferring, make sure you open the recovery valve on the fridge

so that the gas has somewhere to go.

The transfer will probably take ∼ 2 hours. You can watch the magnet cool down

with the resistors just like you did when you pre-cooled it with liquid nitrogen. The

liquid level meter starts just above the “10 cm” resistor, so once the resistance of this

resistor plateaus wait a few minutes and then try turning on the liquid level meter.

Don’t turn the meter on too early as you can damage it by turning it on if it is too

warm. A full 100L storage dewar should be able to fill the fridge up to ∼ 12 inches

on the level meter. Once the transfer is done, continue cooling to base as previously

described.
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H.10 Warming Up the Insert

Once your experiment is done, you will need to get the fridge back to room

temperature so you can load a new set of samples. The first step is to pull all the

mixture back to the dump. Start up the bridge temperature monitoring program in

Labview, make a note in the notebook and logbook, and then close valve 8 to cut

off the flow of mixture to the fridge. You will need to get everything in the fridge

up to 4K to get all the mixture out, so close down the 1K pot needle valve to dry

it out as much as possible and then close the 1K pot valve to stop pumping on it so

that it will warm up. You can also open the fridge bypass valve on the sand-bucket

manifold so that you pump on both sides of the fridge. Then start adding some heat

to the still and mixing chamber to accelerate the process. Your ultimate goal is to

put 2.9V into the still and 3.3V into the mixing chamber, but work up to these values

over the course of ∼ 30 minutes so you don’t pressurize anything in the dilution unit.

The pressure on the backside of the pumps will first rise quickly as you pump all

the He3 out but then slow down after that. The still will also probably warm up

suddenly when you get all the 3He out. While you are pumping things out, keep an

eye on the pressure gauge on the backside of the pumps. When this gets to ∼ -10

inHg, open valve 7 to let some gas into the dump, but don’t let the pressure get too

low to avoid damaging the sealed pump. After ∼ 30 minutes, though, you should

have enough gas out that you can leave the valve open to the dump. Pump like this

until the still pressure drops suddenly to 0 and the cold plate warms up to 4K. Once

this happens, close the valve to the He trap on the sandbucket manifold so that you

are only pumping on the fridge and no gas from the traps can sneak into the fridge.

Pump on just the fridge for 10 minutes to be sure everything is out and then valve

off the condenser and still and turn off the still and mixing chamber heaters. Open

the valve to the traps back up and pump them out until the condenser gauge drops

down to ∼ 10 mTorr. By this point the dump pressure should be at -7.5 inHg. If it’s

not, you lost some mixture or didn’t pump it all out.
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Once you are convinced the mixture is all back in the dump, clean the traps. I

already described how to clean the nitrogen trap, and the helium trap cleaning is

very similar. Valve off everything but valves 11 and 14 on the wall so that you can

watch the trap pressure on the mechanical condenser gauge. Make sure the heat gun

is within arm’s reach and then pull the trap out of the fridge slowly in steps. Try to

thaw the o-ring out as you go, and be very careful not to bend the trap or yank the

vacuum hoses. Once you get the trap all the way out, put the plug in the port and

thaw out the trap. Record the pressure in the trap and then pump it out with the

turbo pump through the port on valve 12.

Next, disconnect the still and condenser lines. Make sure the valves on the fridge

are shut, of course, and also make sure the gate valve on the sand-bucket manifold is

shut as well as the valve on the sand-bucket manifold to the condenser. Remember

to put blanks on both the still and condenser ports on the fridge in case the valves

leak. Next, valve off the 1K pot manifold valve shown in figure H.15, disconnect the

1K pot line from the fridge, and put a blank on the 1K pot port on the fridge. Shut

off the 1K pot pump and close the valve connecting the pump to the helium recovery

line.

Since you’ve got all the mixture back to the dump, you can shut down the roots

blower and the sealed pump now, too. Just make sure that the gate valve on top

of the roots blower is shut so that the mixture that backstreams through the pump

can’t make it any farther than the gate valve. Shut down the roots blower first so

the sealed pump can keep the outlet pressure of the roots blower low. Once you shut

down both pumps, the mechanical gauge on the backside of the pumps will drop due

to mixture flowing backwards through the pumps. Make sure that valves 4, 6, and 7

on the wall are shut so that most of the mixture stays in the dump.

Now that the gas lines are all taken care of, disconnect the D-SUB cables on the

green switch boxes. Remember to first ground your samples to the fridge by putting

the switch boxes in position “B” or “C”. Next, unscrew the fridge from the magnet,
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remove the ground lines, and hook the fridge up to the hoist. Finally, valve off and

disconnet the sliding seal recovery line.

Start raising the fridge slowly. Remember that the hoist can easily lift a couple

thousand pounds, so if the fridge doesn’t start moving right away double check that

you don’t have anything still trying to hold it in place. Start by raising the fridge ∼

6 inches and then go in steps of a couple inches after that. Try to wipe off as much

frost as possible while you are pulling it out. The G-10 on the sliding seal is 27 inches

long, so keep track of how close you are to having the fridge out. It will probably take

about an hour and a half to get the fridge to the bottom of the sliding seal. When

you have about an inch of G-10 left in the magnet, go find a friend to help steady

the fridge while you pull it out. As soon as the sliding seal clears the magnet, a lot

of helium is going to start pouring out, so raise the fridge quickly. Plug the hole in

the magnet as soon as the bottom of the IVC is out of the magnet.

Once the fridge is out, you can either let it sit overnight for the guts to warm to

room temperature, or you can poison the IVC with some helium. If you add some

helium exchange gas to accelerate the process, it will probably take ∼ 2-3 hours for

the inside of the fridge to be warm enough to take the IVC off without condensing a

bunch of moisture on the dilution unit.

If you need to transfer into the dewar to keep the magnet cold while the fridge is

out, be warned that the cap is not held in place very firmly so it will pop out of the

magnet if you pressurize the dewar very much (like at the beginning of a transfer).

There are a couple of lead bricks under the sink, and setting one of these (gently) on

top of the cap is an easy way to keep the cap from jumping up. If you are not planning

on cooling the insert back down, just leave the dewar alone with the valve open to

the recovery. There is still quite a bit of helium in the tail region that the level meter

can’t measure, so you need to let this all boil off before you close up the recovery

system. It will probably take over two weeks for the bottom of the dewar to get all

the way to room temperature, so don’t leave any ports open before that point. If you

need to accelerate the process for some reason, you can try blowing some nitrogen gas
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down the transfer port, but try not to thermally shock the magnet. Once the fridge

is all the way warm, I would recommend shutting the main recovery valve to the lab.

Every once in a while the department loses a good chunk of helium for one reason or

another, and if this happens you want to be able to point to the closed valve as proof

that it was nothing in your lab that leaked.

H.11 Condensed Checklist

H.11.1 Cooling Down Fridge (Magnet Cold)

• Check resistors, LEDs, and wiring for bad solder joints.

• Attach radiation shield.

• Load samples, check 2-terminal resistance for shorts/opens.

• Attach IVC and pump out/leak check/add exchange gas. Use leak detector for

initial pump down. Use turbo pump for adding exchange gas.

• Pump out condenser with turbo pump.

• Pump/purge 1K pot 3-5 times, leave pressurized ∼ 1-2 psi with helium.

• Install sliding seal, hook up to recovery line.

• Double check samples are grounded to fridge.

• Load fridge into dewar. Make sure helium level < 5 inches. Make sure helium

recovery ready for big gas load.

• Force boil-off through sliding seal. Monitor sorb temperature with Labview.

• When fridge all the way down, screw into magnet and connect ground straps.

• Transfer helium
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H.11.2 Condensing and Cooling to Base

• Hook up gas lines, pump out, and leak check

• Heat sorb and pump out exchange gas with leak detector for 1 hour

• Wash mixture through LN2 trap. Start circulating mixture before cooling the

trap. Do NOT open roots blower bypass valve.

• Cool down He trap after washing configuration is stable

• Check 2-terminal resistances and gate leakage

• Illuminate (if necessary) 15 min, 2mA, 8.3V limit if using LEDs 1-3.

• Cool down 1K pot, close fridge bypass valve, open condenser valve to start

condensing

• Monitor 1K pot temperature, condenser pressure (should be ∼ -26 inHg), and

pressure on back side of pumps (don’t let it get < -22.5 inHg).

• Seal off fridge and pump out dump once dump pressure ∼ -28 inHg. Pump

until the still gauge reads < 100 mTorr.

• Start circulation. Remember to open valve on top of roots pump very slowly.

Close valve back down when backside of pumps ∼ 1 atm.

• Fridge should cool to ∼ 25 mK in < 2 hours and to ∼ 11 mK overnight.

• Open valve 6 to open path to dump through check valve.

H.11.3 Cooling Down the Magnet

• Load fridge, hook up and leak check gas lines, add exchange gas to IVC as

before.

• Wash mixture through LN2 trap overnight.
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• Clean the LN2 trap.

• Pump/purge dewar 3 times with 1K pot pump. Leave pressurized ∼ 1-2 psi.

Should pump down to ∼ 500 mTorr.

• Pump/purge 1K pot and lambda plate, leave pressurized ∼ 1-2 psi with helium.

• Pre-cool magnet with LN2. Make sure lab helium recovery valve is shut. Re-

member to open dewar recovery valve to let nitrogen exhaust to the room.

• Watch magnet resistors to set the pace of the cool-down. Should take ∼ 2 hours.

• Blow out the nitrogen.

• Pump/purge dewar with helium 3 times. Remember pumping will go slower

than at room temperature.

• Transfer helium. Make sure recovery system is hooked up and ready for big gas

load.

H.11.4 Warming Up

• Pull mix back to the dump. Close down 1K pot, add heat to still and mixing

chamber (2.9V to still, 3.3V to mixing chamber). Pump on both still and

condenser lines. Remember to open valve to dump.

• Once fridge empty, pump on only fridge (valve off traps) for another 10 minutes

to be safe.

• Seal off fridge, turn off heaters.

• Pump on traps until condenser gauge ∼ 10 mTorr.

• Dump should rise to -7.5 inHg.

• Clean the traps
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• Valve everything off and disconnect gas lines.

• Shut down pumps (roots blower first).

• Ground samples and disconnect electrical lines.

• Unscrew fridge from magnet.

• Pull fridge out (be careful when you start that it is not caught on anything).

• G-10 on sliding seal is 27 inches long.

• Let fridge warm up overnight or 2-3 hours if IVC poisoned.

• Let magnet warm up over ∼ 2 weeks.
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[169] J. Nübler, Density dependence of the ν = 5/2 fractional quantum Hall effect,
PhD thesis, Universität Tübingen, 2011.
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C. Gardner, and M. J. Manfra. “Low-temperature illumination and annealing

of ultrahigh quality quantum wells.” Phys. Rev. B 90, 121405(R) (2014).


	Purdue University
	Purdue e-Pubs
	Spring 2015

	Growth of low disorder GaAs/AlGaAs heterostructures by molecular beam epitaxy for the study of correlated electron phases in two dimensions
	John D. Watson
	Recommended Citation


	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	Introduction
	Dimensionality and Interactions
	The Integer Quantum Hall Effect
	The Fractional Quantum Hall Effect
	The Incompressible State at = 5/2
	Molecular Beam Epitaxy
	Principles of Molecular Beam Epitaxy
	MBE Chamber Layout
	Pumping Methods
	Vacuum Analysis
	The RHEED Technique

	Design Considerations for High Mobility MBE
	Machine Setup
	Lessons Learned During the First Growth Campaign
	Heterostructure Design
	Smoothing and Gettering Layers
	Charge Transfer Fundamentals
	Silicon Dopant Incorporation
	Impact of Heterostructure Design on Scattering Mechanisms
	Doping Considerations for Amplifying 2nd LL Physics
	Doping Considerations for Minimizing Charge Noise
	2D Holes in GaAs

	Summary
	Cryogenics for Electrical Transport Measurements
	Janis Pumped 3He Cryostat for Cooling to T = 300 mK
	Wiring of the 3He System
	Kelvinox 100 3He/4He Dilution Refrigerator
	Basic Operating Principle
	Initial Construction
	Gas Handling System
	Wiring and Sample Mount
	Thermometry
	Scattering Mechanisms in a High-Mobility Low-Density Carbon-Doped (001) GaAs Two-Dimensional Hole System
	Exploration of the Limits to Mobility in Two-Dimensional Hole Systems in GaAs/AlGaAs Quantum Wells
	Impact of Heterostructure Design on Transport Properties in the 2nd Landau Level in In-Situ Back-Gated Two-Dimensional Electron Gases
	Introduction
	Device Growth and Fabrication
	Low Temperature Transport
	Conclusion
	Summary and Future Work
	High Mobility MBE
	2D Hole Systems
	The = 5/2 FQHE State
	Computer Codes
	Standard Structure Nextnano Input
	In-Situ Back-Gated 2DEG Nextnano Input
	Matlab Code for Calculating Transport Lifetimes
	MBE Standard Operating Procedure
	Machine Check-Out
	Beam Fluxes
	RHEED Warm-up
	RHEED Measurements
	Loading New RHEED Wafers
	Pre-Growth Transfer
	Wafer Warm-Up
	Growth Startup
	Wrap-Up of Growth Setup and Checks During Growth
	End of Growth
	Unloading Wafers
	Wafer Inspection


	Nomarski Exam
	Wafer Characterization Standard Procedure
	Sample Preparation
	Initial Bookkeeping
	Applying Contacts
	Mixing Up Contact Alloy
	Annealing Contacts
	Mounting Samples on Header
	Room Temperature Checks
	4K Characterization
	Cooldown and Measurement
	Warm-Up
	Wrap-Up
	Room Temperature Hall Effect System Standard Operating Procedure
	Sample Preparation
	Sample Measurement

	Helium Transfer from Liquefier Standard Operating Procedure
	Pre-Transfer Bookkeeping
	Starting the Transfer
	Ending the Transfer
	Final Checks

	3He Fridge Standard Operating Procedure
	Sample Loading
	Sample Cool Down
	Sample Warm Up
	Changing the Sample Mount
	Device Fabrication Standard Operating Procedure
	Initial Preparations
	Tools and Tool Preparation
	Ga Removal
	Cleave and Initial Clean
	Etching
	Ohmic Contacts
	Dielectrics
	Deposition
	Dielectric Patterning

	Electron Beam Lithography
	Sample Preparation
	Raith Setup
	Sample Alignment
	Exposing and Developing
	Design Tips

	Optical Gates and Bond Pads
	Sample Mounting and Wire-Bonding
	Condensed Checklist for In-situ Back-gated Devices
	Ga Removal
	Via Etch
	Mesa Etch
	Ohmics
	E-beam Gates
	Optical Gates and Bond Pads
	Mounting and Wire Bonding

	Kelvinox Dilution Fridge Standard Operating Procedure
	Introduction to the System
	Preparing Samples
	Preparing the Fridge
	Cooling the Fridge to 4K with a Cold Magnet
	Helium Transfer
	Preparing to Condense
	Sample Checks and Illumination
	Condensing and Circulating
	Cooling Down the Magnet
	Warming Up the Insert
	Condensed Checklist
	Cooling Down Fridge (Magnet Cold)
	Condensing and Cooling to Base
	Cooling Down the Magnet
	Warming Up


	REFERENCES
	VITA

	Blank Page
















