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ABSTRACT

Villaseñor, Eric Ph.D., Purdue University, May 2015. Improving Capacity-Performance
Tradeoffs in the Storage Tier. Major Professor: Mithuna Thottethodi.

Data-set sizes are growing. New techniques are emerging to organize and analyze

these data-sets. There is a key access pattern emerging with these new techniques,

large sequential file accesses. The trend toward bigger files exists to help amortize

the cost of data accesses from the storage layer, as many workloads are recognized

to be I/O bound. The storage layer is widely recognized as the slowest layer in the

system. This work focuses on the tradeoff one can make with that storage capacity

to improve system performance.

Capacity can be leveraged for improved availability or improved performance.

This tradeoff is key in the storage layer, as this allows for data loss prevention and

bandwidth aggregation. Typically these tradeoffs do not allow much choice with

regard to capacity use. This work will leverage replication as the enabling mechanism

to improve the capacity-performance tradeoff in the storage tier, while still providing

for availability.

This capacity-performance tradeoff can be made at both the local and distributed

file system level. I propose two techniques that allow for an improved tradeoff of

capacity. The local file system can be employed on scale-out or scale-up infrastruc-

tures to improve performance. The distributed file system is targeted at distributed

frameworks, such as MapReduce, to improve the cluster performance. The local file

system design is MorphStore, and the distributed file system is BoostDFS.

MorphStore is a file system that significantly improves performance when accessing

large files by using two innovations. MorphStore combines (a) load-adaptive I/O

access scheduling to dynamically optimize throughput (aggregation), and (b) utility-
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driven replication to best use capacity for performance. Additionally, adaptive-access

scheduling can be utilized to optimize scheduling of requests (for throughput) on

systems with a large number of storage devices. Replication is utilized to make

available high utility files and then optimize throughput of these high utility files

based on system load.

BoostDFS is a distributed file system that allows a better capacity-performance

tradeoff via inter-node file replication. BoostDFS is built on the observation that

distributed file systems currently inter-node replication for availability, but provide

no mechanism to further improve performance. Replication for availability provides

diminishing returns on performance, this is due to saturation of locality. BoostDFS

exploits the common by improving I/O performance of these local tasks. This is done

via intra-node replication by leveraging MorphStore as the local file system. This

technique allows for capacity to be traded for availability as well as performance,

with a small capacity overhead under constant availability.

Both MorphStore and BoostDFS utilize replication. Replication allows for both

bandwidth aggregation and availability, This work primarily focuses on the perfor-

mance utility of replication, but does not sacrifice availability in the process. These

techniques provide an improved capacity-performance tradeoff while allowing the de-

sired level of availability.
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1. INTRODUCTION

Data-sets are growing in size. Cloud computing has information constantly being

pushed to the data center where it is accessible for use and analysis. The term “Big

Data” has been coined from this trend. This is the idea that there is a wealth of

information stored within these data-sets, if only one could analyze them to discover

that information. The need to gather such information has led to the introduction of

frameworks and organization techniques to accomplish exactly this analysis on large

data-set workloads.

Storage is commonly acknowledged as the slowest tier of a system [1]. This tier

is important, not only because of its persistence, but mainly because of the capacity.

One can store quite a lot of data in this tier, and this is cheaper than any of the other

tiers for sheer capacity. So, while this may be the slowest tier, just about every use

for a system will at some point in time end up in this tier. That makes storage a very

integral part of system performance.

There are two main goals in the storage tier, availability and performance. Both

of these goals make use of the capacity in the storage tier. Yet, currently most designs

favor availability in the tradeoff of capacity, and the side effect is performance. I do

not propose to degrade availability, but to allow a choice in the tradeoff of capacity.

This choice improves performance in return for capacity.

Performance, at the storage level is device oriented. A single device can only per-

form up to its limits. However, one can pool devices and their aggregate performance

can exceed a single device. This technique is common knowledge and is used by many

systems.

Availability, this is the idea that information stored on the storage tier can later be

accessed regularly, no interruptions (i.e., it can be found). Systems require a certain
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level of availability to ensure operation, this requirement is predominantly placed on

the storage tier. This is the primary capacity tradeoff most designs target.

Large transfers amortize costs. Overhead amortization by increasing the amount

of useful work; this is a basic tennent of system architecture. One can effectively

utilize a high percentage of storage throughput by selecting a large enough block size

to transfer. This provides an access pattern used throughout large data-set workloads.

The access pattern is large sequential reads of files.

This trend toward large files enables the use of a mechanism to improve the

capacity-performance tradeoff, without sacrificing availability. The mechanism to

which I refer is replication. Replication controlled at the file system level provides

the flexibility to maintain availability and provide performance. This work intro-

duces two designs that capitalize upon this goal of a improved capacity-performance

tradeoff. MorphStore, a local file system, and BoostDFS, a distributed file system.

I will first expand upon the file systems that enable these frameworks, both local

and distributed. Then I will discuss the frameworks that would be applicable to the

proposed designs. Then I will outline the goals and contributions of this work and

detail the organization of the remainder of this document.

1.1 Local File Systems

The local file system layer interfaces with the underlying attached storage devices.

The local file system is responsible for allocating space for files and tracking file meta-

data. The local file system ensures data consistency when updates to files occur.

Typical local file systems do not manage the underlying storage devices.

Popular local file systems, such as ext2 [2], are responsible for ensuring data is

placed on the underlying storage device. The block layer manages these storage de-

vices and provides either a performance or reliability configuration for the file system.
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1.2 Distributed File Systems

There are many varieties of distributed file systems for large data-set applications

[3–8]. Distributed file systems are typically built on top of local file systems. The

storage system and its performance for accessing large files is of great importance to

large data-set applications as demands increase. The frameworks that manage the

data center resources have a distributed file system (DFS) component that manages

the storage resources for each node in the cluster while providing the abstraction of

a unified, large store.

The use of large data-sets for computation necessitates the use of a distributed

file system (DFS). Currently, there are frameworks that use such file systems such as

MapReduce [9, 10], Dryad [11], and Spark [12]. Presto [13] and Hive [14], are other

frameworks which do not use a distributed file system, but rather a simple storage

abstraction, this can be used on top of a DFS. Presto is used for Structured Query

Language type commands in distributed analytics. All of these frameworks start by

loading data from the storage tier in order to do computation tasks. They are all

working are large data-sets which have the sequential read heavy characteristic [15].

Typically distributed file systems are designed for fault-tolerance [16]. The pri-

mary motivation for replication is reliability. Should one node malfunction and the

data stored at that node become unavailable, any task that requires the data can not

execute as the necessary piece of data is unavailable. For example, distributed file

systems use inter-node replication of files to increase availability. The goal is to make

effective use of the nodes in the cluster, by placing data at strategic locations. Inter-

node replication of files ensures availability in such scenarios. This helps maximize

the use of network, storage, and compute resources. In addition, such replication is

also leveraged for performance. A “shared-nothing” cluster – the standard design of

a scale-out cluster – ensures that each node is self sufficient. This means each node

has its own compute and storage resources although other remote resources may be
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available. Replicating the file increases the available nodes that can execute the task

locally, allowing better utilization of cluster resources and availability of data.

1.3 Goals and Contributions

The goal of this thesis is to develop techniques to improve the performance of file

systems that access large files (64MB-1GB+). The contributions of this work span

both the local file system and the distributed file system layers. There are the main

components of this work.

• A utility driven replication technique that improves utilization of storage device

capacity at the local file system. The key insight of my technique is careful

allocation of replication capacity. Capacity is provided to files that can extract

the maximum utility (typically popular, read-mostly files),

• A load adaptive scheduler that improves the throughput of the underlying stor-

age devices at the local file system layer for small-scale storage systems (i.e.,

nodes with 4 or fewer storage devices). The key insight of my technique is

that dynamic load-aware scheduling switches between striping across storage

devices (at low loads) and single storage device access (at high loads) for best

case performance. My collaborator on the MorphStore project also pursued an

alternative access scheduling approach [17]. It employs integer linear program-

ming (ILP) to compute optimal access schedules. It uses offline computation of

schedules and online lookup in a table (which contains the schedule). The work

presented within does not use ILP-based scheduling, rather a simpler scheme

based on load history.

• A capacity-performance tradeoff for the distributed file system that maximizes

node utilization by capitalizing on common case local tasks. The key insight

is that inter-node replication provides diminishing returns via the saturation of

locality. Instead local task performance can be improved by intra-node replica-
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tion of blocks. This provides improved throughput for the common case. This

approach allows capacity to be traded for performance while maintaining the

desired level of availability.

These contributions allow one to trade capacity for performance at the local or

distributed file system layer. The use of replication allows the effective use of storage

device bandwidth. These techniques improve the overall performance of the system.

1.4 Organization

This dissertation consists of the following chapters. First, in Chapter 2, I will

discuss the background of techniques used in storage systems. In Chapter 3, I will

discusses throughput improvement techniques that increase performance for local file

systems. Next, in Chapter 4, I will discusses a distributed file system that leverages

intra-node replication to offer a capacity-performance choice for I/O bound workloads.

The last chapter, Chapter 5, discusses the impact of this work.
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2. BACKGROUND

I will discuss the basic configurations of storage devices. These are static and do

not allow the flexibility to tradeoff capacity for availability or performance. I will

also discuss the tiered storage systems that use multiple configurations, or a caching

configuration to provide static configurations that do not allow for a capacity tradeoff.

2.1 Redundant Arrays of Inexpensive Disks

Redundant Arrays of Inexpensive Disks (RAID), have been around for many

years [1] and are in use throughout systems today. There are three basic types of

array configurations, Figure 2.2 illustrates these configurations. Others exist, but for

the most part they are a mixture of one of these basic types and parity.

• Striping (RAID-0) is the configuration where one places a chunk of data on

individual storage devices then accesses the data as a stripe across all storage

devices. This configuration will aggregate bandwidth across disks.

• Mirroring (RAID-1) is the configuration where one places a copy of the data on

another storage device. One can then steer accesses to a storage device that is

available to serve the data. This configuration will utilize single-disk bandwidth

of each disk in the configuration, effectively aggregating the disks bandwidth.

• Concatenation (JBOD) is the configuration where one linearly concatenates

storage devices. All devices are able to store individual files, no copies of data

are made on this configuration. This configuration will aggregate bandwidth of

disks based on file system block allocation which spaces files to lower fragmen-

tation.
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These two techniques are the foundation for throughput aggregation. Striping is

beneficial when only a few large sequential access occur. Mirroring is beneficial when

there are a lot of large sequential accesses. This behavior can be seen in Figure 2.1.
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These configurations suffer from static allotment of capacity. Even those that attempt

to provide a mix of two static configurations [18] must migrate data between those

static configurations and do not allow a capacity performance tradeoff.

2.2 Tiered Storage Layers

A tiered storage layer provides a fast medium (cache) to serve data and a slow

medium to store the data long term. This can be either a faster storage device [19],

such as a solid state drive, or a location in memory to hold data [20]. These tiered

storage systems work well for workloads that iterate over a working set, as that work-

ing set will be located in the faster storage medium. However caching is ineffective

when the characteristic is sequential large files accesses.



9

2.3 MapReduce Framework

Throughout this work the Hadoop MapReduce framework [10] will be discussed.

This framework is one of a few that provides ease of programmability to analyze large

data-sets. I will discuss the overall functionality of this framework in this section.

Figure 2.3 illustrates the MapReduce [9] framework flow. MapReduce executes

tasks on nodes in a cluster. These nodes hold data that the tasks use to compute an

intermediate (key, value) pair. Once the intermediate (key, value) pair are computed,

this data is then sent through a reduction to combine keys and output the final (key,

value) pair.

The distributed file system that connects all the nodes in the cluster facilitates

this style of computation. Tasks are assigned to nodes which contain a local copy of

the block the task will read as input. This is called a local task. Tasks, are either

local or remote. A remote task must fetch the data it wishes to read off another node.

Local tasks are preferable as they better utilize system and network resources.

Nodes are prone to failure, thus to assure availability, blocks are replicated by a

specified factor. These replicated blocks are placed on different nodes such that if one

node fails, that block can be available from a different node.
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3. A LOCAL FILE SYSTEM FOR BIG DATA WITH

UTILITY-DRIVEN REPLICATION AND

LOAD-ADAPTIVE ACCESS SCHEDULING

3.1 Introduction

Disk performance remains a key performance bottleneck for a large and impor-

tant class of applications. While disk capacity has increased tremendously, disk access

latency has only been improving at about 15% per year [21]. Well-known disk per-

formance optimizations such as striping, replication and combinations thereof have

targeted this bottleneck [18, 22–24]. Unfortunately, existing approaches employ a

static one-size-fits-all approach wherein entire storage systems are statically striped

and/or replicated. Because striping and replication target specific and disjoint types

of parallelism, such a static “one-size-fits-all” approach has drawbacks. For example,

while replication is beneficial for workloads that are disk-read-intensive, replication

does not result in any performance improvement under low loads because disk ac-

cesses do not benefit from replication. Further, replication results in poor write

performance, especially at high loads. On the other hand, while striping is useful at

low disk loads, striping may be counter-productive at high disk loads since striped

disk-accesses (which occupy all disks) have to be serialized. In a non-striped multi-

disk environment, it may be possible to achieve better performance accessing disks in

parallel (depending on file placement).

From these observations, ideal performance requires (a) striped disk accesses at

low loads (b) replication of files that are accessed in a read-intensive way, especially

at high-loads and (c) non-replication of write-intensive files. This paper presents

MorphStore – a file system architecture that automatically achieves all the above

design goals.



11

There are two key innovations in MorphStore.

First, MorphStore achieves load-adaptive disk access scheduling to achieve the

best of both striping and replication. MorphStore maximizes throughput at high

loads by exploiting inter-request parallelism by assigning requests to parallel disks,

thus mimicking mirroring. However, at low loads, MorphStore uses replicated data to

achieve striping (i.e., intra-request parallelism) by exploiting the fact that large disk

transfers may be broken down to smaller transfers from different disks. Such a strategy

allows an arbitrary striping degree that is limited only by the number of replicas in

the file system. MorphStore uses a simple, yet highly effective, history-based load

prediction mechanism that directly drives the choice of striping vs single-disk access.

Second, MorphStore employs a utility-based replication technique that treats

replication capacity as a resource that must be used to maximize its utility. At a

high-level this replication strategy is based on the conventional wisdom that repli-

cating read-intensive files has positive utility (i.e., benefits performance) and that

replicating write-intensive files has negative utility (i.e., hurts performance). How-

ever, the conventional wisdom does not address several concrete questions such as

(a) which files to replicate, (b) how many replicas are to be created for each file. A

replication strategy is developed that is guided by access statistics (from prior profile

runs) to answer both of the questions. This profile-guided, utility-driven replication

strategy is based on the assumption that the profile access pattern which is used is a

reasonable expectation of future access patterns (capitalizing upon historys period-

icity). In general, MorphStore may use any other source of profile data and is not

limited to the use of the most recent profile (or any profile for that matter). Note,

MorphStore only concerns itself with the degree of replication, the profile calibra-

tion is solely in the purview of the administrator. Once the degree of replication is

established, MorphStore assumes random placement of replicas for load balancing.

Because randomization reduces the probability of pathological problems (e.g., corre-

lated files being placed on the same disk), MorphStore does not attempt to address

the replica placement issue.
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I implemented the MorphStore architecture in a Linux environment with the ext2

file system serving as the code-base on which MorphStore is implemented. In this im-

plementation, MorphStore maintains replication meta-state in the file system inode’s

extended attributes.

MorphStore is evaluated using a combination of micro- and macro-benchmarks.

The microbenchmark-based evaluations highlight the clear advantage of MorphStore’s

load-adaptivity; MorphStore is consistently closer to the best of either mirror-only or

striping-only strategies. The macro-benchmark based evaluations show that MorphStore

uses significantly less replication capacity than RAID-1 (mirroring) while still achiev-

ing 12% average performance improvements on a video server workload and 8% av-

erage performance improvement on a NoSQL workload.

In summary, the major contributions are:

• The development of a storage architecture – MorphStore– that achieves load-

adaptive performance improvements for disk-bound applications.

• MorphStore uses a profile/expectation-guided utility-based replication strat-

egy that maximizes performance by selectively replicating data within a given

amount of replication capacity.

• MorphStore performs closer to the best of static mirroring/striping strategies.

The remainder of this chapter is organized as follows: Section 3.2 offers a brief

background on disk and file system organization. Section 3.3 and Section 3.4 describe

the design and implementation of MorphStore, respectively. Section 4.5 describes

the experimental methodology. Section 4.7 presents experimental results. Finally,

Section 4.9 summarizes the impact of MorphStore.

3.2 Background and Related Work

Block-level disk-array organization Block-level devices can be organized as a

unit via a technique known as Redundant Arrays of Inexpensive Disks [1], otherwise
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known as RAID. There exist a number of RAID variants that target different levels

of the reliability/performance tradeoff. While reliability is one of the key motivations

behind RAID organizations, Specifically, I consider JBOD, RAID-0 and RAID-1 orga-

nizations. Other levels of RAID are based on RAID-0 and RAID-1 with the addition

of parity for reliability. I focus on the performance impact of disk array organization,

rather than reliability, and thus the consideration of only the base configurations.

Let us consider the following as the key tradeoffs of these base configurations. In the

presence of inter-request parallelism (i.e., abundant requests) JBOD and RAID-1 are

likely to perform well because independent requests can be handled independently

on separate disks. While JBOD may be subject to disk conflicts (two independent

accesses that happen to access blocks on the same disk), which result in request se-

rialization. RAID-1 is more reliably able to exploit inter-request parallelism of read

requests because all files are present on all disk-mirrors. Note, RAID-1’s advantage

has an associated cost in terms of (1) capacity overhead of mirroring, and (2) the

performance overhead of writing to all mirrored copies on each write.

RAID-0, on the other hand focuses solely on intra-request parallelism by using

striping. Inter-request parallelism is not exploited by this configuration. At low loads,

when inter-request parallelism is also low, RAID-0 outperforms JBOD and RAID-1.

However, RAID-0 incurs a performance penalty at high loads because it incurs the

cost of intra-request parallelism (i.e., striping incurs seek overhead on all disks, which

increases disk occupancy) and ignores the abundant inter-request parallelism (i.e.,

performance is degraded). One may reduce the relative fraction of seek overhead

for larger files by using larger block sizes. However, the larger the block size, the

greater the possibility of extended disk unavailability because block accesses cannot

be preempted. In practice, I limit RAID-0 block sizes to 2MB which can keep disks

busy for up to 50ms. (Larger block sizes can make the sytem unresponsive to critical

events such as page-faults, network events and user interactions.)

MorphStore differs from the above static mechanisms in two key ways. First,

MorphStore moves away from the one-size-fits-all policies; instead relying on (1) per-
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file utility-driven replication strategy, and (2) a load-sensitive access scheduling policy

that targets inter-request parallelism at high loads and intra-request parallelism at

low loads. Second, MorphStore is implemented purely at the file system level, which

negates the necessity to configure disk resources as a combination of striped and

mirrored.

Local vs. Global file systems Distributed file systems like Google File System

(GFS) [25] and the Hadoop Distributed File System (HDFS) [3] are used in big

data analysis. However, such file systems are typically overlaid on top of local file

systems such as ext2/ext3 and ext4 (rather than operating directly on the block-level

interface). Any improvement in local file systems’ performance will be reflected at

the global level as well.

Finally, the I/O stack is designed with a file size distribution in mind. For example,

the Linux inode structure is optimized for small files. Some of those assumptions must

be questioned when the same local file systems are used in emerging domains where

large files are routinely manipulated. MorphStore addresses this gap.

3.3 MorphStore Design Overview

High-level design choices are made to facilitate the design discussion. First,

MorphStore is implemented at the file system level. One may wonder why, as com-

peting replication techniques (e.g., RAID-0 and RAID-1) are implemented at the

block/device layer, so this design choice needs some justification. The design goals

for MorphStore are two-fold. First, it is necessary to manage replication and ac-

cess scheduling for large files based on load levels, popularity, and read-write ratios.

Given that per-file meta-data can be conveniently tracked using existing file system

structures, such as inodes, file systems are a natural candidate for tracking this state.

This also allows flexible capacity allotment for replication, without the need to tran-

sition between configurations. Second, it is also necessary to manage replication at a

suitable granularity without excessive overheads. In the file system layer, replicating
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data at the file granularity is natural because the file system supports primitives to

manipulate (read/write/create/delete) replicas. One may think that finer granularity

tracking may be more helpful in being more selective by replicating only hot pages

rather than entire files. However, it will add significant complexity to track finer grain

meta data.

Given the above design decisions, two key components of MorphStore follow:

load-adaptive access scheduling and utility-driven replication.

3.3.1 Load-adaptive Access Scheduling(LAAS)

A key component of MorphStore is the load-aware access scheduling mechanism

that decides if requests are issued to exploit striping across replicas (i.e., exploiting

intra-request parallelism like RAID-0) or to a single disk ( i.e., exploiting inter-request

parallelism like RAID-1). It is necessary for the adaptive mechanism to react to load

levels, therefore, the number of open inodes in a recent (tunable) window of time is

tracked. If the measured load exceeds a threshold, MorphStore switches to a high

load configuration where requests are issued to specific disks. In contrast, under low

load operation (i.e., when the measured load is below the threshold) the requests

are striped over available replicas. The threshold value is a configurable value which

is set to a factor of the number of devices in the storage array based on empirical

observations.

The striped requests are split over the available replicas as evenly as possible.

While MorphStore’s striping resembles RAID-0’s striping at first glance, there exists

an important difference between the striping methods. Striped access in the RAID-0

system results in contiguous reads; because of this, reads may be merged easily with

subsequent reads as shown in Figure 3.2. MorphStore’s approach to exploit intra-

request parallelism achieves the same degree of disk parallelism as RAID-0. However,

In contrast to RAID-0, the reads are non-contiguous (and hence non-mergeable) be-

cause the sub-blocks being read from different disks are effectively selected from full
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replicas (see Figure 3.1). On mechanical drives this requires adjustment to the next

block. An alternate way of looking at the above distinction is to say that RAID-0

organization achieves both parallelism and locality whereas MorphStore achieves only

parallelism. Should other technology besides mechanical storage be used, MorphStore

may be less impacted by the locality.

For the non-striped accesses, ideally it is desired for MorphStore to mimic RAID-

1. However, RAID-1 (because it operates at the block level) has information on disk

scheduling that MorphStore does not have (because MorphStore operates at the file

level). Specifically, RAID-1 can schedule block requests to the replica with the nearest

disk-head. To overcome this handicap, it is observed that in practice, RAID-1’s disk

level knowledge results in the characteristic that most block accesses of a single file

are sent to the same disk. As such, in MorphStore, the non-striped requests are sent

to a single device such that further accesses to the same file (i.e., for other blocks)

are bound to that device for the duration of the file access. This has the benefit

of aiding reference locality. MorphStore accomplishes this by associating the master

inode with a device while in high load mode. When the inode is no longer in use the

device association is eliminated. Finally, in an attempt to load balance, requests that

are not yet associated with any device are steered to the most lightly loaded device.

3.3.2 Utility-driven Replication (UDR)

The second component of MorphStore is utility-driven replication which aims to

use replication capacity to maximize performance. The model assumed is as fol-

lows. The file system tracks read/write accesses over fairly long periods of times

(say hours/days). File access statistics are analyzed infrequently (e.g., once every

few days) during the low-load periods (e.g., late at night when the diurnal load cycle

is typically low) to (a) determine which files will yield the highest opportunity for

replication, and (b) copying files over to achieve the desired replication. Such dy-
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Figure 3.1.: MorphStore Stripe

namic1 replication allows highly utilized files to be replicated on additional disks in

1Note, that UDR is referred to as dynamic replication because the replication strategy changes at
runtime, although the change is rather infrequent (i.e., once every few days). The contrast is with
static replication strategies like RAID-1 where the replication strategy is invariant.
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Figure 3.2.: RAID-0 Stripe

the disk array, including the originating disk. Such replicas enable the load-aware

access scheduling that was previously described. Dynamic replication also provides

space-saving over static replication by selectively replicating only those files which

will benefit the most by the strategy outlined below.

Replication is facilitated by use of extended attributes which allows the replication

information to be fed into the file system. The information consists of the number of

times the system should replicate this file.



19

3.3.3 Replication Strategy

The number of replicas to be generated for each file is decided based on the

notion of utility, which is determined by the number of read and write accesses to

that particular file as described in the algorithm below. The key idea is a notional

cost-metric in which replicas help read-costs (because reads may be distributed over

the replicas) and hurt write-costs (because writes must be duplicated for each replica).

Assuming that the file data structure holds the number of reads, number of writes,

replications and notional cost for each file, one can define this cost for a given file

as file.reads/file.replicas + file.writes × file.replicas. With this cost-metric, the

incremental utility of an additional replica is defined as the difference in notional

costs that a file may incur if the total number of replicas of that file is increased by

1 (see line 3 in Algorithm 1). The incremental utility captures the benefit (or loss)

associated with the additional replica.

A priority queue Q is used to hold all the files with incremental utility of an

additional replica as the priority value. Initially the number of replicas of each file is

set to 1. As long as the incremental utility of creating an additional replica of the file

is positive, the replication factor for that file can be increased by 1 while decreasing

the system capacity by the file size; otherwise it is marked as done (lines 4 − 9).

Depending on the total number of replicas for the file and the number of disks in the

system, the file is either marked as done or enqueued back in the priority queue(lines

10− 14). The algorithm terminates if there is no more capacity left in the system to

store the replicas or if there remains no positive utility for further replication.

The operation of the REPLICATE algorithm is illustrated with an example in

Figure 3.3. The example uses four files (A, B, C, and D) with the initial utility

values as shown in the left of the figure. The figure then illustrates the progress of

the algorithm for the first three iterations. On the first iteration (numbered iteration

0), the algorithm recognizes that file A has the highest incremental utility (100) and

hence is most favorable for replication. After increasing the number of replicas of
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Algorithm 1 REPLICATE(Q)

1: while Q is not empty or capacity > 0 do

2: file← dequeue Q

3: utility ← [file.reads/(file.replicas) + file.writes ∗ (file.replicas)] −

[file.reads/(file.replicas+ 1) + file.writes ∗ (file.replicas+ 1)]

4: if utility > 0 then

5: file.replicas← file.replicas+ 1

6: capacity ← capacity − 1

7: else

8: add file to done list

9: end if

10: if file.replicas = disks then

11: add file to done list

12: else

13: enqueue(file)

14: end if

15: end while
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Figure 3.3.: Replication Strategy

file A to 2, the incremental utility is recalculated and inserted back into the priority

queue. The new incremental utility of file A (40) is less than the incremental utility

of file C (60) and hence file C is now considered by the algorithm for replication. The

same process of increasing the replication factor and calculating the new incremental

utility is performed and the file inserted back into the queue. In the third iteration,

file A re-emerges at the head of the queue and is hence re-replicated to bring the

number of copies to 3. Some files like B and D have very low incremental utility, so

they are never considered for replication.
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3.4 Implementation Details

The MorphStore design may be implemented as modifications to any file system.

For this study, I implemented MorphStore as a modification of Linux’s second ex-

tended file system ext2 [2] because it is a widely used file system that has a relatively

small and clean code base. Moreover, there are mature tools to aid usage and devel-

opment for this file system such as e2fsprogs [26], which allow viewing the base file

system and modifying its attributes on disk. The following sub-sections will discuss

the implementation of MorphStore. First, I present a brief discussion of some imple-

mentation challenges. Second, I discuss the meta-data used to maintain the replicated

data. Third, I discuss the replication operation. Finally, I will close implementation

details with reads and writes to replicas (the replicated files).

3.4.1 Concatenation of Disks

A normal file system need not concern itself with the number and size of the disks

used as its backing store. However, in order to ensure that replication occurs on

specific devices MorphStore must know two characteristics of the underlying device

array, both of which are contained in the VFS (Virtual File System) super block

structure.

First, the size of each device must be known. This is to ensure that files are

placed within the boundaries of the device. This information is used in file allocation

to ensure that a replica is located on the intended device. Normal files need not

be remanded to a specific device; they may be placed on any device with sufficient

room. The one exception is that normal files may not cross disk boundaries. File

allocation uses device boundary information to ensure maintenance of this property.

The necessity for the file system to be aware of boundaries when allocating files

impacts contiguous file placement; should the file allocation begin near a boundary.

In such cases, the file is moved beyond the boundary to ensure contiguous placement

on a single device. However, this is not a serious limitation because (a) it only affects
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one file at each device-to-device boundary, and (b) to have any serious impact, an

unlikely scenario – one in which a large number of small devices and serious capacity

pressure – would have to be considered the common case.

Second, the number of devices must be known, as MorphStore requires more than

one device as a backing store. The use of the JBOD RAID level lends itself well to this

restriction, as this minimum number of devices is the only restriction for MorphStore

to function. The number of devices in the array determines the maximum number of

replicas that can exist within the system.

3.4.2 MorphStore Meta-data

The meta-data for MorphStore consists of two parts, on-disk meta-data and in-

memory meta-data. The former meta-data is in the form of special directories and file

attributes located on the disk, and the latter meta-data is a data structure attached

to the kernel’s VFS inode structure. Most frequent data updates occur on the in-

memory meta-data which is inexpensive to modify; a significantly smaller fraction of

changes trickle down to the on-disk meta-data which is more expensive to modify.

The initial structures of MorphStore are created upon first mounting of the file

system; these are the replicated file directories. These are special directories that

only contain replicated files. Section 3.4.1 discussed the necessity to partition the file

system via device boundaries. These directories reside on specific devices and hold

replicated files for those devices.

Since MorphStore is implemented at the file system layer, it leverages existing

meta-data mechanisms, and augments them to track replicated data. This is accom-

plished through the use of VFS inode structures, not to be confused with the ext2

inode structure. The VFS inode is augmented with a data structure that maintains

the following list of information.

• Replica list: holds replication information for the associated file.

• Replica mask: bit mask to easily select and test existence of replicas.



24

• Master location: device location of original file.

• File statistics: read/write usage for file.

The existing meta-data structures are used, and augmented with 42 bytes of extra

meta-data (assuming 8 byte pointers). This is on a per master file basis. Replicated

files do not need to hold meta-data, as they are subsequently not replicated, and

no reads/writes occur to replicas explicitly (i.e. via file system API); they are only

accessed as a byproduct of accessing the master file.

3.4.3 MorphStore Replica Operations

When a file is opened the VFS inode associated to the newly opened file is pop-

ulated with information from the ext2 inode. This information is used to create the

replica meta-data structure and attach it to the file’s VFS inode. In addition, a find

replica routine is called to search the special replication directories for existing repli-

cas of the file. If replicas are found, they are opened and their VFS inode information

is held in the master’s replica meta-data structure. Also upon file open, the stored

attributes are read from disk to populate the mask and file read/write statistics.

As file operations occur on the open file, updates to meta-data are stored in the

in-memory inode structure. When the file is closed, that structure is used to update

the ext2 inode structure and it is written back to disk. This provides an opportunity

to again update the extended attributes where MorphStore stores file read/write

statistics. Piggybacking on this update affords the minimization of reads and writes

to the device for meta-data. The tradeoff is that should the system crash the updated

meta-data will be lost (as it has not yet been written to the backing store). This is

an acceptable tradeoff as the next open will resume from the previous state loaded

from disk.

MorphStore uses the replica mask to either split the read (number of pages) over

replicas (RAID-0), or send all pages to a particular replica (RAID-1). Remember the

replicas are opened with the master, so sending the block request is simplified. The
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Table 3.1.: Test System Configuration

CPU Itanium 2

RAM 3 GB

Page Size 64 KB

File System Block Size 4 KB

Drives 4x500 GB

request is done via the normal file system read routine. MorphStore uses the meta-

data to select which replica (including the master) will supply the data. Striping is

handled as discussed earlier in Section 3.3.1.

MorphStore handles writes in a similar fashion to reads. Writes to a file occur

to all copies of the file (a necessity of maintaining replicas). This is accomplished

easily through the file system write routine. Again, the meta-data is used to select all

replicas when sending the write data. Writes will use all disks where replicas exist,

similar to RAID-1 (mirrored).

3.5 Evaluation Methodology

Two tools are used: Filebench [27], and IOStat [28] to gather information from the

file system level and the device IO level, respectively. The test system is configured as

shown in Table 3.1, with four devices configured in either JBOD (linear personality),

RAID-0 (striped personality), or RAID-1 (mirrored personality). Each configuration

is then formatted with the ext2 file system to test performance, and MorphStore is

loaded, as the file system driver (in place of ext2), additionally when using the JBOD

configuration to test the performance of MorphStore.

When the system is configured as RAID-0 the stripe size is set at 512 KB; this

helps amortize the seek overhead over large transfers. The RAID-0, RAID-1, and

JBOD configurations deal in file system blocks which are 4 KB, The system reads
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in pages from disk which are 64 KB in size. MorphStore is not limited to a specific

configuration, all of these parameters are tunable by the system administrator.

The read ahead size is set at 32 MB for each run of the respective configurations,

JBOD, RAID-0, and RAID-1. The tool mke2fs configures the ext2 file system with

the information of the underlying device array, so no extra configuration is needed.

Statistics are collected from seven 120 second runs of Filebench with IOStat collecting

from the devices every 5 seconds while Filebench is running.

Workloads Two workloads are used based on filebench benchmarks. The first is a

video server workload, which emulates large media distribution servers. The second

is a database workload based on popular NoSQL database MongoDB.

Video server workload emulates media distribution providers. These providers

serve large files for consumption, typically multimedia video files. This workload has

been modified to include content updates to the server.

MongoDB is a NoSQL open-source database. NoSQL databases have widespread

adoption in many large scale-out datacenters. A benchmark that mimics the IO

access patterns of MongoDB is used, in lieu of an actual database. This benchmark

emulates an access pattern with random appends to files and whole file reads.

Both of these workloads have been augmented to scale up the number of threads

performing IO accesses. This allows the ability to scale between low and high load

scenarios with these workloads. They both also use large (GB) files for IO accesses.

Filebench is used to generate a workload from the video server template, with an

average file size of 1 GB, This workload is scaled from a low load to a high load, which

increases the number of requests sent to the device array. Flowops are also defined to

introduce popularity for files in the file sets. The file sets typically take up 40% of the

device array for each configuration, this leaves room for replication on MorphStore.
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3.6 Results

The key findings reveal that MorphStore achieves significantly higher performance.

These findings also validate the intuition behind each of the proposed techniques.

• In both workloads video-server and MongoDB, MorphStore achieves significant

improvements relative to both RAID-0 and RAID-1 when averaged (harmonic

mean) across high and low load levels.

• MorphStore can respond to limits on replication capacity by implementing util-

ity driven replication to the extent possible (i.e. capped by capacity). While

this does diminish the gains, results reveal that significant gains can be achieved

with minimal space overhead.

• Isolating the load-adaptive access scheduling technique, it is observed that

MorphStore tracks the better of either RAID-0 or RAID-1. MorphStore’s sim-

ple load-prediction based on recent-history is nearly as effective (within 8%) as

a priori knowledge of load.

• Similarly isolating the utility-driven replication, MorphStore achieves to within

4% of performance as an ideal (but impractical) replication scheme that has

perfect knowledge of file access patterns.

The remainder of this section elaborates on each of the above results.

3.6.1 MorphStore for Video Server and MongoDB Access Patterns

Figure 3.4 plots the file system data throughput (Y-axis, MB/s) for a range of load

levels (X-axis, requests/second) for the two workloads (two graphs). For each load

level (group of bars), the graphs show the performance of JBOD, RAID-0, RAID-1

and MorphStore (MS). An additional bar is included in each group for an Ideal-MS

which achieves ideal replication. Finally, the harmonic mean (HM) throughput is also

included for each configuration in the final (rightmost) set of bars.
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Figure 3.4.: File System Throughput

Figure 3.4 leads to four key observations common to both workloads. First, as

expected, RAID-0 achieves the best performance at low loads and it significantly
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Figure 3.5.: Device (disk-array) Throughput (IOStat)
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outperforms other configurations. However, its performance degrades with increasing

load and becomes the worst-performing configuration at high loads. Second, RAID-

1’s trend is a composite of two factors. On the one hand, at high loads, queuing

delays have the effect of reducing throughput at the file system level. On the other

hand, RAID-1 is better able to exploit inter-request parallelism at high loads. The

combination of these two factors results in a “sweet spot” in performance for RAID-

1 because queuing delays hurt performance at high loads and lack of intra-request

parallelism hurts at low loads. Note, the queuing delays at extremely high loads

reduce the effective bandwidth for all configurations. Third, MorphStore achieves

similar to RAID-0 performance at low loads although there remains a significant gap.

That gap is due to the fact that RAID-0 achieves perfectly contiguous reads on all

disks when requests merge (sequential access). However, because MorphStore uses full

file replication and not true striping, MorphStore incurs more seek overheads which

diminish performance. At high loads, while overall bandwidth reduces because of high

queuing delays, MorphStore remains closer to RAID-1 and much better than RAID-0.

The harmonic mean (HM) shows MorphStore performing 2.84x better than RAID-0

and 12% better than RAID-1 in Figure 3.4(a) for the video server workload. The

corresponding speedups over RAID-0 and RAID-1 for the MongoDB,Figure 3.4(b),

workload are 37% and 8%, respectively. Finally, it is observed that MorphStore’s

profile-based UDR is only marginally worse than the Ideal-MS which has a priori

knowledge of popularity and read/write ratios.

To isolate the disk-array bandwidth from the file system bandwidth (effectively to

hide the effects of file system queuing delays), the throughput of the disk array (i.e.,

from IOStat [28]) is also measured. Figure 3.5 uses similar axes and grouping as the

earlier Figure 3.4 with two key differences. First, the Y-axis shows device throughput

rather than file system throughput. Next, each bar separates out the read bandwidth

from the write bandwidth.

The trends remain unchanged for RAID-0; RAID-0 is best at low loads. RAID-1’s

throughput saturates at high loads (unlike the file system throughput which degrades
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because of queuing delays). MorphStore outperforms both RAID-0 and RAID-1 by

significant margins. The harmonic mean shows MorphStore performing 24% better

than RAID-0, and 26% better than RAID-1, on average for the video server and

11% better than RAID-0 and 6% better than RAID-1, on average for the MongoDB

workload. Note, MongoDB has a high read/write ratio. This is not surprising as the

read-heavy nature of datastores is widely reported [29–31].

3.6.2 MorphStore Under Capacity Constraints

In the previous experiments, it is assumed that MorphStore’s UDR replicated all

files until the system ran out of disks (i.e., there are as many replicas as disks) or the

system ran out of files with positive utility. No artificial constraints were imposed on

replication capacity. Even without any such limits, MorphStore utilized only 2.2X

additional capacity for the video server workload and 2.5X additional capacity for

the MongoDB workload (compared to 4X capacity used by RAID-1) while achieving

higher performance than RAID-1. In this section, MorphStore is examined under

various capacity constraints for performance.

Figure 3.6 shows the performance of MorphStore when the replication capacity is

arbitrarily limited; and compares MorphStore’s performance and replication overhead

to that of the baseline JBOD/RAID configurations, for each of the two workloads.

The performance of MorphStore is plotted against varying total capacity. For the

video workload the total capacity is varied in multiples of 1.2X, 1.6X, and 2.2X of the

baseline JBOD capacity. Similarly, for the MongoDB workload, multiples of 1.25X,

1.75X, 2.5X for the baseline JBOD file system capacity are used. The maximum

multiples (2.2X of video server and 2.5X for MongoDB) are chosen because that is

the maximum capacity needed by MorphStore. Beyond that capacity, there are no

files with positive incremental utility that UDR would replicate further. The other

capacity multiples are chosen arbitrarily to explore the space between no-replication

case and the maximum replication cases.
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Figure 3.6.: Capacity vs Performance: The Pareto Frontier

For the baseline systems, the X-axis effectively shows the inherent replication

capacity used by such systems. For example, when a RAID-1 configuration is used
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with 4-way mirroring, it effectively means that RAID-1 uses 4X the capacity of the

JBOD baseline. Correspondingly, the RAID-1 data point for 4-way mirroring is

plotted with an X-axis value of 4. For the video server, 2-way and 3-way mirrored

RAID-1 configurations are also included; where it is clear that these configurations

are not on the Pareto frontier. As such, we omit the 2-way and 3-way mirrored

RAID-1 configurations from the MongoDB workloads.

Similarly, a RAID-10 configuration is included that uses the same four disk devices

in a 2-way mirrored, 2-way striped (within each mirror) configuration. The RAID-10

configuration is plotted at an X-axis value of 2 because of the 2-way mirroring. Note,

RAID-0 does not replicate any data; consequently, its capacity is identical to that of

JBOD (which is effectively a capacity multiplier of 1).

Ideally, it is desired that systems be in the top-left corner of the space because

this will maximum performance (higher) with the minimal replication (toward the

left). The points on the upward-left facing frontier represent this Pareto-frontier of

the replication-performance tradeoff. The normalized performance (mean file system

throughput) of all systems is shown on the Y-axis. In addition to the practical

configurations, Figure 3.6 includes a data-point for the ideal variant of MorphStore

which is an impractical version of MorphStore with a priori knowledge of read/write

frequencies of files.

One may think that with 4x the number of disk devices, the performance will

also be at 4x. This is true for MongoDB, Figure 3.6(b), as RAID-1 does achieve

slightly better than 4x, as well as RAID-10 (which also has 4 devices). RAID-10

however, only requires 2x the replication capacity where as RAID-1 uses 4x, yet

performs just as well. This is due to the mix of striped and mirrored accesses, which

help aggregate bandwidth, as well as steer accesses. Notice that for video server,

Figure 3.6(a), RAID-1 performance is at around 2.5x, this can be attributed to the

updates (writes, as seen in Figure 3.5(a)) in the video server workload which occupy

all devices for each write.
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Figure 3.7.: Filebench LAAS RO Throughput

UDR’s greedy nature can be observed in the fact that replicating the most bene-

ficial files to take up 20% of replication capacity results in 2.2x performance improve-

ment for the video server workload. The curve settles at 2.5x performance gains

relative to JBOD at 2.2x capacity. This shows that there are diminishing returns on

performance as more and more replication capacity is used. (The trends for the Mon-

goDB workload are similar. They saturate at approximately 4.7X of JBOD at a total

capacity of 2.5X. As with the video server, nearly all of the opportunity is greedily

captured even with a capacity of only 1.25 where MorphStore achieves approximately

4.2X of JBOD’s performance.)

MorphStore outperforms both RAID-0 and RAID-1 by 2.84X and 12% for the

video server workload. The corresponding improvements are 37% and 8% for the

MongoDB workload. Finally, note that MorphStore comes close to the ideal perfor-

mance in both workloads.
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Figure 3.8.: IOStat LAAS RO Throughput
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Figure 3.9.: Filebench LAAS Replication Cost Throughput

3.6.3 Isolating the Effect of LAAS

To isolate the impact of LAAS from UDR, let us revert to using RAID-1 style full

mirroring with MorphStore. For this subset of results, evaluation is limited to the

video server workload.
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Figure 3.10.: IOStat LAAS Replication Cost Throughput

The performance of such a LAAS-only design is captured in Figure 3.9 and Fig-

ure 3.10. Because the disk requests include writes, and because writes interact poorly

with replication, one sees a sharp decline in RAID-1, as the devices are utilized for

mirroring and must also verify writes as redundancy is the design point of RAID-

1. RAID-0 however, weathers the writes much better as writes are not redundant.

MorphStore maintains much better performance than RAID-1 by 71%, and only

slightly less than RAID-0 by 14%.

To further eliminate the effect of writes, a similar configuration but with only

reads is employed.

Figure 3.7 contains the file system characteristics of the following techniques:

JBOD, RAID-0, RAID-1, and MorphStore. Figure 3.8 contains the characteristics at

the device level of the same systems. There are a few key observations that should

be understood from this Figure. Consider JBOD first, one would expect JBOD to

perform better under low load and worse under high load, but clearly JBOD benefits

from a higher load. This is attributed to the ext2 file system block allocation algorithm,
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which attempts to distribute data across the block groups of the file system. JBOD is

able to service more requests at higher load as the block groups span multiple disks.

RAID-0 does exceptionally well under low load and has a sharp decrease as load is

slightly increased, one might expect RAID-0 to gradually decline as the load increases,

but low load is a special case. The RAID-0 system seeks minimally for requests under

low load, thus accesses resemble a sequential access and nearly full throughput can be

seen from the RAID-0 system. One can expect RAID-0 to decrease as load increases

due to the striped reads and the necessity of the disk system proceed as one unit.

RAID-1 behaves as one would expect, at low load there exists minimal opportunity

to utilize mirrored resources, while at high load requests can be serviced from the

mirror disks. While under medium load one can observe the change of performance

of RAID-0 and RAID-1.

The key observation is that RAID-1 overtakes RAID-0 as load increases, and

the opposite (RAID-0 overtakes RAID-1) as load decreases. Finally, MorphStore

demonstrates the ability to track load levels and adapt to use the better of RAID-0

or RAID-1 access strategies. The harmonic mean shows the overall performance of

MorphStore with respect to RAID-0 and RAID-1, in which MorphStore out performs

RAID-1 by 12% and performs equivalently to RAID-0 (RAID-0 is an outlier in the low

load case). The load adaptive access scheduling MorphStore out performs RAID-1

by 21% and RAID-0 by 2% in Figure 3.8.

3.7 Conclusion

Big-data analysis is emerging as an important tool and file system performance

when manipulating large files is a critical aspect of performance for big-data analysis.

Such analysis typically occurs over large collections of data on distributed file systems.

However, such distributed file systems are overlaid on underlying single-node local file

systems. This chapter focuses on the challenge of providing high performance for big

file manipulation on local file systems.
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My design — MorphStore — uses two key innovations to improve performance

over static one-size fits all approaches to replication and access scheduling. First,

MorphStore uses load-aware access scheduling (LAAS) to dynamically capture the

benefits of striping at low loads while also capturing read-parallelism across replicas

at high loads. Second, MorphStore customizes replication on a per-file basis based on

the expected utility. Our utility measure reflects the intuitive notion that popularly

read blocks benefit (positive utility) from replication and that heavily written blocks

have a cost (negative utility) due to replication. For any given replication capacity,

MorphStore’s utility-driven replication (UDR) strategy maximizes the benefits by

greedily selecting files for replication that yield the most utility.

In combination, the two features enable MorphStore to extend the Pareto frontier

in the replication-capacity vs. performance trade-off; implying that MorphStore can

offer higher performance at lower replication cost than prior designs. For example,

for a video-server workload, MorphStore with 2.2X replication cost achieves 12% and

2.84x higher file system throughput than RAID-1 and RAID-0, respectively. In con-

clusion, MorphStore combines the benefits of both striping and mirroring via dynamic

replication to advance the Pareto frontier and provide dynamic design alternatives to

existing static techniques.
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4. LEVERAGING INTRA-NODE REPLICATION FOR A

BETTER BARGAIN WHEN TRADING CAPACITY FOR

PERFORMANCE IN MAPREDUCE

4.1 Introduction

MapReduce [9] and other data analysis frameworks such as Dryad [11] and Spark [12]

have emerged as a powerful tools that offer the twin benefits of easy programmabil-

ity and automatic orchestration of large scale computation over large collections of

servers. Such frameworks focus on computations that span a very broad range of

behavior; some reorganize data (e.g., sort, reverse index), some summarize data (e.g.,

word-count, grep). Although my technique is broadly applicable to these frameworks,

I focus on the MapReduce framework for the remainder of this chapter for ease of

exposition.

MapReduce uses an underlying global file system (e.g., GFS, HDFS) which is built

on top of the local file systems on individual servers. The global file system offers two

key benefits that are important for MapReduce. First, the global file system allows

for transparent replication of files across multiple nodes’ local file systems. Such

replication offers the twin benefits of improved data availability on server failure

and improved performance by maximizing the opportunity to co-locate computation

with data. Second, the global file system ensures that all files are accessible from

all nodes which enables remote execution of map-tasks. Remote execution of tasks,

although uncommon, is important because it maximizes server utilization by avoiding

the situation wherein a task must wait to be executed even though a node is idle.

The interaction of MapReduce computation with the underlying global file system

(e.g., GFS, or HDFS) creates an interesting tradeoff between replication/capacity on

the one hand, and performance and availability, on the other. Using a higher degree of
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Figure 4.1.: Inter-node vs. Intra-node Replication (Deep Stack of Map Tasks on

Each Node)

inter-node replication in HDFS offers two benefits: (1) performance benefits, because

it reduces the probability of (slower) remote tasks, and (2) availability of data when

servers fail, because data is present on additional servers. Both these benefits exhibit

a pattern of diminishing returns because high task locality and high availability can be

achieved with a modest number of inter-node replicas (e.g., 3 replicas achieves 99+%

local task execution). Such diminishing returns reduces the incentive to tradeoff

storage capacity for increased performance and reliability.

Consider the challenge of performance and reliability separately. For performance,

the key challenge with the above tradeoff is that it expends storage resources to

improve the performance of the uncommon case – i.e., remote tasks are a small

fraction of the total number of tasks. Large fractions of map tasks are typically local

tasks. In this chapter, I detail a design to overcome this drawback by using intra-

node replication (instead of HDFS’ inter-node replication) to target and boost the

performance of the common case – i.e., the performance of tasks that were already
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local. BoostDFS leverages the additional intra-node replicas to achieve higher disk

bandwidth, which baseline systems (e.g., based on JBOD) cannot fully capture.

Figure 4.1 illustrates the above tradeoff. The top graph in Figure 4.1 shows the

map task execution times (Y-axis) for a set of five machines (X-axis) for a baseline

Hadoop run. For each machine, local tasks (LTs) – tasks that execute on a node

that holds the data they operates on, and remote tasks (RTs) – a task that must

fetch data from a remote node before it can begin map computation are shown as

stacked boxes. Figure 4.1 includes the impact on performance due to traditional

HDFS replication (middle graph) and our BoostDFS replication (bottom graph). Even

though the traditional replication scheme may reduce the execution time of the remote

map task by leveraging the additional replicas to achieve local execution, the overall

improvement is minimal because only a small fraction of execution time is reduced.

In contrast, BoostDFS reduces the execution time of a large fraction of LTs. Even

though BoostDFS does not decrease the number of remote tasks, it achieves better

overall performance because the common case performance is optimized.

One may think that the traditional approach of targeting remote tasks is appropri-

ate because it targets the slowest map tasks. As shown in Figure 4.2, if one considers

a tail-latency effect wherein the overall map completion time is determined by the re-

mote tasks, indeed speeding up the local tasks does not result in any improvement in

overall map time. However, if Hadoop is configured with an adequate number of map

tasks (e.g., the original MapReduce paper [9] recommends 100 times as many map

tasks as number of compute nodes), combined with dynamic load balancing inherent

in Hadoop, speeding up local tasks reduces overall execution time.

To that end, I propose BoostDFS– a distributed file system organization with an

intra-node replication strategy to enable higher performance for local tasks which

are the common case. The first contribution is an analytical model that quantifies

the nature of the capacity/performance tradeoff. This model provides intuition that

guides the BoostDFS design. BoostDFS uses intra-node replication to boost the avail-

able disk bandwidth for local tasks which are the common case. This increase in disk
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Figure 4.2.: Inter-node vs. Intra-node Replication (Shallow Wavefront of Map

Tasks)

bandwidth reduces the execution time of disk-bound map tasks. Because BoostDFS

focuses primarily on boosting local disk bandwidth, it does not offer any improvement

for compute-bound map tasks.

Recall that reliability was the other metric affected by replication. Any repli-

cation/redundancy offers protection against certain classes of failures. For exam-

ple, intra-node replication (e.g., RAID 1) protects against disk failures whereas and

HDFS’s inter-node replication protects against server failure. Intra-node replication

offers no protection against data-loss under server failure. However, one can interpret

BoostDFS as enabling the option of improving performance by trading off replication

capacity (for intra-node replication) even under identical availability.

Evaluations using the PUMA benchmarks [32] on a small testbed reveals that

BoostDFS achieves 14% performance improvement for disk-bound benchmarks and

does not hurt the performance of compute-bound benchmarks. Disk-bandwidth mea-

surements confirm that BoostDFS’s key advantage is the improved bandwidth it offers

for a large fraction of map tasks.
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The rest of the chapter is organized as follows. Section 4.3 describes an analytical

model to reason about the diminishing performance returns for Hadoop applications

from increasing inter-node replication in HDFS. Section 4.4 describes the basic archi-

tecture of BoostDFS and extends the analysis from Section 4.3 to provide intuition

as to why BoostDFS improves performance beyond what is possible by inter-node

replication alone. Section 4.4.2 explains the implementation details. I present my

evaluation methodology and experimental results in Section 4.5 and Section 4.7, re-

spectively. Section 4.8 discusses related work. Finally, I conclude this chapter with

Section 4.9 which discusses the impact of BoostDFS.

4.2 Background

Disk-bound map reductions MapReduce computation computes over large sets

of data. Broadly, they may be classified into two classes: those that summarize (e.g.,

computing/counting frequency of patterns, distributions, maximums) and those that

reorganize (e.g., sorting, reverse indexing).

Hadoop/HDFS operation and replication/performance tradeoffs First, I

offer a brief background of Hadoop operation and the key replication, availability,and

performance tradeoffs to anchor the discussion in the remainder of the paper.

Consider the basic HDFS and Hadoop architecture shown in Figure 4.3, which

illustrates a small cluster of three nodes, each with its own local file system. The

local file system may include multiple disk drives; Figure 4.3 shows 2 disk drives at

each node.

The HDFS provides a shared file system abstraction across all nodes. For ease

of exposition, it is assumed that the dataset includes three files – A, B, and C –

that must each be processed by a map task. Further, it is assumed that HDFS

uses a replication factor of 2 because of which, each file is replicated on exactly two

randomly chosen nodes in the system (e.g., file A is present on Node 0 and Node

1). Note, because of random file placement, the files may not be evenly distributed
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Figure 4.3.: HDFS with 2-way Replication

even though our example shows even distribution. Given the above file placement,

the map task assignment shown in Figure 4.3 results in two map tasks enjoying local

file access (A and C). Unfortunately, the map task processing file B must access its

data remotely.

Now, consider an alternative configuration where the HDFS replication is in-

creased to 3 (i.e., each file is now on 3 nodes, see Figure 4.4). In general, the additional

replica increases the probability of local map task execution. In this small example,

(with three nodes and three replicas), it guarantees that all map tasks are local as

shown in Figure 4.4.

The above examples leads to two observations.

• Increasing the replication leads to improved performance because of fewer re-

mote tasks. However, increased replication incurs two overheads. First, it

incurs capacity cost for storing additional replicas, which may not result in

any increased capital expenditure if there were spare disk drive capacity. Sec-

ond, it also incurs increased write cost to produce the additional replica. (This

additional write cost is incurred by the upstream process which produces the

dataset.)



45

Local Filesystem

A, C B

Local Filesystem

C A, B

Local Filesystem

B, A C

HDFS

Local Map 
Task (A)

Local Map 
Task (B)

Local Map 
Task (C)

Node 0 Node 1 Node 2
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• In general, additional replicas result in improved data availability under server

failure, which is assumed to be independent. With two replicas, both servers

must fail for a file to become unavailable. Clearly, the probability of n indepen-

dent failures diminishes with increasing n (
∏n

i=1 P (faili)). No attempt is made

to quantify data availability under server failure. Instead, replication is used

as an experimental control to equalize availability. For example two configura-

tions where data is present on an identical number of servers is said to achieve

equivalent data availability.

4.3 Hadoop Performance Analysis and Design Insight

Let us first develop an analytical model that accounts for the tradeoff between

replication and map task performance. The insights gleaned from this model are used

to guide the BoostDFS design, which aims to make the common case fast.

4.3.1 Modeling the Remote Map Task Fraction (RMTF)

The key bottleneck to address is map task execution. Several simplifying assump-

tions are made in developing an analytical model for the remote map task fraction.
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Table 4.1.: Parameters for Model of Remote Task Execution Fraction

Param. Description

f Number of files in input dataset

N Number of compute nodes in

Hadoop cluster

k Ratio of files to servers (f/N). [9]

recommends k = 100.

r Degree of replication in HDFS (r =

1 implies single copies with no ad-

ditional replicas)

RMTF Remote map tasks (as fraction of

total map tasks)

Specifically, no attempt is made to model the variable map task latency and instead

assume that each map task takes a unit time to complete. Second, it is assumed

static and perfect load balance of task execution (realistic random file placement is

modeled). In practice, with a large number of map tasks, and dynamic load balanc-

ing, the load balance is close to perfect with any imbalance being limited to the last

wavefront of map tasks.

Let k be the ratio of files to servers, and thus k is the number of files each server

will be required to serve. In the absence of replication (r = 1), the shortfall is defined

at a server; as the difference between k and the number of files actually stored at that

server. Because it is assumed that file placement is random, the distribution of files

is not even. The shortfall is a random variable for each server.

When shortfall at a server is positive, with the assumption of perfect load balance

of map tasks, the shortfall is a lower bound on the number of tasks that must be

accessed remotely by the map tasks that run on that server. When summed over

servers with positive shortfall, the total shortfall is the number of map tasks that
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must be served remotely. The total shortfall gives a lower bound on the remote

service. Remote service will actually be more than this lower bound due to imperfect

choices in assigning files for remote service, especially with a low value for k and

without replication.

The closed form of this can be derived via the intuition in Appendix A. It models

the shortfall of the expected value of blocks per node in the cluster. This analysis

simplifies to the following equation:

1/
√

2kπ (4.1)

When one generalizes Equation 4.1 to include r, the model can be represented as:

1/
√

2rkπ (4.2)

The model represented by Equation 4.2 is validated using a 20 node cluster with a

value of k = 32 and falls within 1% - 4%, and averaged over all runs falls within 1% of

the model, dependent on the initial distribution of files on the cluster. A Monte Carlo

simulations with randomized file (block) placement is also used to further validate

the model. Map tasks were schedule with a priority for local execution and were

assigned for remote tasks only if nodes were idle and tasks were available (similar to

Hadoop’s scheduling policy). These simulations help confirm that the remote-served

fraction does not depend on the number of servers n, but only on the ratio k and the

replication factor r as shown in the analysis above. To do this, the number of nodes

are varied between 10 and 5000 while keeping k and r constant. Figure 4.5 compares

the model-predicted RMTF to one obtained by Monte Carlo simulation of Hadoop

task assignment. For varying values of k (curve groups along X-axis), Figure 4.5 plots

the percentage of local tasks (Y-axis) for various replication factors (X-axis).

From this analysis come four key observations from Figure 4.5. First, in the region

of interest (r > 1 and k > 50, which is typical for MapReduce), the analytical model

is within 2% of simulations. Second, it tends to underestimate the local map task

fraction. Third, even in the case of r = 1, the number of local map tasks is above
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Figure 4.5.: Model Predictions vs. Simulation

90%. While r = 1 is not typical for Hadoop, this property will be exploited in the

design of BoostDFS. Finally, note that the reduction in local map task fraction because

of increasing replication is fairly modest, especially for the typical configuration of

k ≥ 50. This confirms the earlier claim of diminishing locality returns from Hadoop

replication.

4.3.2 Modeling Map Task Performance by Leveraging the RMTF (ρ)

Model

The RMTF model enables estimation of the number of remote map tasks. How-

ever, it offers no guidance as to what the slowdowns for remote tasks are. There is

a wide range of slowdowns reported in the literature from scheduling [33–35] to slot

contention [36] to spills [37,38] and shuffles [39]. Some have also reported asymmetric

slowdowns wherein the source of the remote data incurs the slowdown than the map

task that consumes the remote data [40]. In practice, the slowdown due to map task

is hard to predict as it may depend on multiple factors such as disk utilization and

network bisection. To avoid a dependence on map task slow downs, the slowdown

ratio is varied as an independent parameter in this model. For a given replication
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ratio, the map task slowdown is computed as a weighted average of local tasks with

unit speedup and remote tasks with parametric slowdown, as shown below.

Assuming unit completion times for local map tasks and a slowdown factor of

sremote for remote tasks, the overall execution time (relative to an imaginary run in

which all tasks are local tasks is a weighted ρsremote + (1 − ρ). This formulation

lends itself to Amdahl’s law analysis given that ρ is typically under 3% for MapRe-

duce’s region of operation (k > 50, r > 2). This implies that attempting to improve

performance by increasing inter-node replication is not an attractive tradeoff.

4.4 BoostDFS Design

BoostDFS proposes the use of intra-node replication as the basic mechanism to

boost performance of MapReduce. Consider the advantages of intra-node replication

as shown in Figure 4.6. File/Block A is present on two different disk spindles on Node

0. Such mirroring can be used to achieve higher disk bandwidth. Beyond the simple

illustrative example, it is shown that with a single dataset replica; 80+% of map task

locality is able to be captured. Consequently, one could speedup the common case of

local tasks by making them faster than local — or “superlocal”.

Effectively, among the r copies of r-way replication, where HDFS would spread

the copies on r different nodes, BoostDFS spreads them on r − 1 servers resulting in

at least one server enjoying an additional intra-node replica.

One may think that a baseline JBOD-based (or any other concatenation) system,

which also uses multiple devices, can fully utilize the bandwidth of its individual disks.

However, there remains some unexploited bandwidth because of JBOD’s fundamen-

tal constraints. First, JBOD cannot guarantee parallel access across the two disks

because the two files being accessed are on the same device. (In contrast, BoostDFS’s

replication offers the guarantee of parallel disk access.) Second, because of seek min-

imization, files may be clustered (e.g., after disk defragmentation) which can limit

disk parallelism when files from the same cluster are accessed. In contrast, BoostDFS
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Figure 4.6.: BoostDFS with 3-way Replication (Compare to Figure 4.4)

enables us to simultaneously support clustered layout for seek minimization via the

local file system and exploit all available disk parallelism via BoostDFS’s intra-node

replication.

To ensure that BoostDFS’s bandwidth advantage is exploited by the vast majority

of map tasks, it is necessary to alter the map task scheduling policy in BoostDFS.

BoostDFS treats the map tasks assigned to files on the intra-node replicated file system

as superlocal. With one replica in the replicated local file system, and with the Hadoop

modification that prefers superlocal copies over local copies, the number of superlocal

tasks is expected to be the same as indicated by the RMTF analysis for one replica.

For the above design, assuming a superlocal speedup of ssuperlocal and a remote

slowdown of sremote, the following three term expression can be derived for overall

execution time corresponding to superlocal tasks, local tasks, and remote tasks re-

spectively (ρr is used to mean the RMTF for r = k).

(1− ρ1)/ssuperlocal + (ρl − ρr) + ρrsremote (4.3)

Figure 4.8 plots the speedup predicted by the model expressed by Equation 4.2

of BoostDFS over a regular HDFS-based Hadoop for various k and r values. This

model proves the opportunity by showing 12% to 19% speedups from BoostDFS for

the same capacity utilization. Figure 4.9 plots the speedup predicted by the model of
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BoostDFS over HDFS-based Hadoop, similar to above, except at similar availability

(i.e., incurs a capacity overhead).

4.4.1 Capacity Costs and Headroom

It would be unreasonable to assume that a cluster is provisioned with no spare

capacity. This would lead to the inability to generate intermediate data, or output a

result, or even grow the input data-set. Consider the total capacity as a multiple (say

C) of baseline replicated input data size. We refer to this multiplicative factor (C) as

capacity headroom. Capacity costs from intra-node replication will be paid from this

capacity headroom.

The capacity overhead cost, under same availability, for a superlocal copy r → r+1

is a fraction 1/r of the replicated input data size. Further, from our definition of

capacity headroom, the overhead relative to total capacity can be modeled as follows:

1/(Cheadroomr) (4.4)

For example, assuming 10x capacity headroom over the baseline replicated input size,

at r = 3 that would be about a 3% capacity overhead for an intra-node replica using

Equation 4.4. Figure 4.7 illustrates the cost of this extra intra-node replica for r

values of 2 and 3, by varying the capacity headroom between 5× and 50×. As one

would expect, the more capacity headroom that exists in the system, the less overhead

cost replicas incur. The overhead can range from just over 6% on a cluster with very

minimal headroom, to under 1% on a cluster that is provisioned with extra headroom

for an availability of r = 2.

BoostDFS creates the superlocal copies statically. Alternately, one may configure

a system where a superlocal copy is dynamically created on a node when there ex-

ists sufficient disk bandwidth (i.e., the task has some computational overhead). In

the disk-bound PUMA benchmarks, however, there was no bandwidth slack to facil-

itate such on-the-fly replica creation. However, if other applications/contexts have

bandwidth slack, one could use this alternative model to dynamically create/destroy
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Figure 4.8.: Model-predicted BoostDFS Speedup Over HDFS Same Capacity

replicas. Note, such dynamic replicas may be deleted at will if space is needed. In

the worst case, if a job arrives assuming superlocal performance, but the intra-node

replica has been deleted, it will run as a regular local copy.

4.4.2 BoostDFS Implementation

BoostDFS is designed around the Hadoop [10] MapReduce framework. Care is

taken to minimally modify the existing design, this is done to limit the impact of
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the modifications. Primarily, I focus on the distributed file system and the locality

scheduler. The two design goals of this implementation are (1) to provide transparent

intra-node replication of storage to support high bandwidth access, and (2) to provide

a mechanism to enable replication-aware scheduling of map tasks.

4.4.3 Replicated Storage Types

The Hadoop Distributed File System (HDFS) [3] supports custom-defined stor-

age policies and storage types. While the main purpose is to facilitate hierarchical

storage, I leverage these storage types and policies to augment HDFS with the abil-

ity to a support a new REPLICATED storage type. The REPLICATED storage type has

the following behavior. The storage type is defined over two disk spindles with a

Morphstore [41] file system that supports automatic replication on two disks. The

original Morphstore uses a load-adaptive policy that dynamically chooses striped or

mirrored accesses at low and high loads, respectively. In practice, because MapRe-

duce runs see a heavy load on the disks, this implementation did not use dynamic

load-adaptation.
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To ensure that Hadoop preserves the total number of replicas in the system, I

ensure that each block placed on a REPLICATED storage type counts as two replicas

as far as Hadoop’s replication is concerned. However, when it comes to scheduling,

Hadoop treats the replicated storage type as a single high-bandwidth copy rather

than as two independent replicas. I extend the capabilities of the existing map task

scheduling to support such intra-node replicated blocks. The existing implementation

tracks the presence of blocks on hosts. Specifically, when a block is accessed, the

hostnames of nodes which contain local copies are communicated along with the

block information. To support replication-aware scheduling, I further bifurcate the

set of hosts containing local copies into two sets. Let us define a superlocal copy as

a copy which resides on a REPLICATED disk. A subset of the hosts is created with

copies on REPLICATED disks; these are called superlocal hosts. HDFS is augmented

to communicate this list of superlocal hosts and the local hosts along with the block

information. This allows other components of the MapReduce framework to interact

with local or superlocal blocks, appropriately.

Superlocal Storage Policy

It is also necessary to create a storage policy called SUPERLOCAL which helps au-

tomate the placement based on storage types, and to accurately account for the

replication factor. To that end, it must be ensured that REPLICATED storage is sup-

ported only when the replication factor exceeds 1. Moreover, the replication factor

is reduced by 1 when a block is placed on a REPLICATED storage type to account for

the transparent mirroring within the storage type. This study is limited to using two

intra-node replicas at most. In general, one could communicate the maximum replica-

tion factor of the REPLICATED disk to the DFS so that it may modify the distributed

replication factor accordingly.
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Map Task Locality Scheduling

In the baseline Hadoop implementation, when a map task is scheduled, the re-

source allocation checks if the map task can be scheduled in a slot on any node which

contains a local copy of that block. Failing to find an available node with a local copy,

the same rack is checked for an available slot, and failing this the task is scheduled

in a any available free slot. The resource scheduler for the MapReduce framework

gathers this information based on a list of hostnames which contain a local copy of

the map block (obtained from the DFS).

For BoostDFS, as mentioned in section Section 4.4.3 I augment this information

to include the superlocal hosts as well. Because superlocal data hosts are a subset

of local data hosts, no extra work is required to include super local hosts in the

scheduling flow. The assignment of a map task to a node is modified to ensure that

the assignment to a super local node is attempted before the block is assigned to a

local node. The new scheduling proceeds as follows: First, the super local nodes are

checked for available slots, failing to find one the local nodes are checked. Should

both of those fail, rack local nodes are checked for a free slot, and finally the map

task is placed in any free slot.

4.5 Evaluation Methodology

I use the open source MapReduce framework, Hadoop [10], as the base platform

for evaluating BoostDFS. The 2.6.0 version of Hadoop is used as both the basis for

this evaluation and comparison. Because this evaluation requires intrusive changes

to the servers (custom file system, custom disk drive organization with three spindles

– two for data and one for the OS partition), the evaluation platform is limited in

scale. The testbed MapReduce cluster consists of four datanodes and a namenode

server. The network is gigabit ethernet, with all nodes connected to a single switch.
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Table 4.2.: Data Node Resources

Memory 12GB DDR2 1639MHz (6GB swap)

Processor 2x Dual-Core AMD Opteron(tm)

Processor 2222

Disk 3 7200RPM SATA HDDs (457GB

total capacity)

Network Intel 82571EB Gigabit Ethernet

Controller

4.5.1 Machine Configuration

The machines in the cluster share identical hardware configurations, as shown in

in Table 4.2. All the machines run Linux with a 3.3 kernel with iostat version 10.2.1

[42] installed. The iostat tool is used to gather disk bandwidth statistics for the

results. The disks are configured in a ’Just a Bunch of Disks’ (JBOD) configuration

with the kernel software raid. The baseline configuration uses an ext2 file system

on the JBOD drive, while the experimental configuration uses an approach similar

to the MorphStore [41] local file system with two way replication tuned for heavy

load (additional details of MorphStore are discussed in Chapter 3). Note, I omit

RAID-0 because of its known performance limitations at high loads (see Section 3.2)

– MapReduce computations typically operate in the high-load region.

4.5.2 Hadoop Configuration

The cluster is configured with Hadoop version 2.6.0 with ‘high availability’1 dis-

abled. I configured HDFS, Yarn, and Map/Reduce tasks for the cluster. First, the

distributed file system configuration,Table 4.5, has two configurations: (1) the base

1High availability in Hadoop uses a redundant namenode to prevent the single namenode from
becoming a single point of failure. Because it has nothing to do with data replication – the focus of
this work, this feature is disabled.
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Table 4.3.: MapReduce Configuration

Framework yarn

Slowstart Completed Maps 0.90

Shuffle Parallel Copies 16

Reduce Input Buffer 0.70

Merge Threshold 0

Sort Memory(MB) 400

Map Memory(MB) 1024

Map Java-opts -Xmx820m

Reduce Memory(MB) 3072

Reduce Java-opts -Xmx2457m

AppMaster Memory(MB) 2048

AppMaster Command-opts -Xmx1638m

AppMaster CPU-vcores 2

Table 4.4.: Yarn Configuration

CPU-vcores 8

Maximum Allocation-vcores 8

Minimum Allocation-vcores 1

Memory(MB) 8192

Maximum Allocation(MB) 8192

Minimum Allocation(MB) 1024

HDFS configuration, and (2) the BoostDFS configuration. I define two storage types

and policies to ensure comparable behavior. The first storage type – REPLICATED– is

used for the BoostDFS configurations and it ensures that blocks placed on this storage

type are replicated within the same node. The base configuration uses the second –
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Table 4.5.: HDFS Configuration

Replication Factor 1

Block Size(MB) 128

Base Config NONREPLICATED, HDD

Boost Config REPLICATED, HDD

NONREPLICATED – storage type to ensure there is at most one copy per node. It also

asserts that the JBOD drive will not carry a local replica of the blocks placed on it

and that the replication factor will be used normally. BoostDFS, however will have a

replica of blocks locally on the MorphStore drive.

Yarn [43] is the resource management framework used to coordinate hardware

resources among the different jobs and tasks. I configured Yarn,Table 4.4, based on

the hardware resources available to the cluster, Table 4.2. The number of virtual

cores is set to 2 ∗ physicalCores and 4GB of memory is reserved for OS/system use.

The minimum allocation size is set to 1GB, as this is the smallest amount of memory

a task will request. The maximum is set at the total resources available for the

framework, 8GB, this allows a container to be allocated anywhere from 1GB to 8GB

of memory [44,45].

The MapReduce parameters are shown in Table 4.3, these apply to the Map,

Shuffle, and Reduce phases of the MapReduce framework. The framework is set

to Yarn, this specifies that the new MapReduce 2 framework (this primarily deals

with resource management) is what will be used to for these tests. Based on the

hardware resources, Table 4.2, I tune the MapReduce parameters for a reasonable

configuration. The intermediate data which each map outputs needs to be aggregated

on a host; the Slowstart Completed Maps parameter will allow this data to begin

copying after 90% of the map tasks have completed, this prevents copy from interfering

with map data reads on local and remote hosts. Similarly the Shuffle Parallel

Copies parameter limits the threads for aggregating intermediate data, as to not
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Table 4.6.: Shuffle Light Benchmarks

Benchmark Input Size Dataset

classification 8GB Movie Ratings

grep 8GB Wikipedia

histogrammovies 8GB Movie Ratings

histogramratings 8GB Movie Ratings

wordcount 8GB Wikipedia

overburden the system. I make an effort to utilize as much of memory, as would a

production system, to limit spills to disk. Memory pressure is allowed to dictate when

map outputs are merged, and the amount of memory for sorting is increased, as this

reduces spills. I also allow reduce tasks to keep a percentage of the map outputs in

memory, otherwise all data would be spilled to disk and need to be read again for

the reduce task. Map and reduce tasks are specifically sized for the cluster. I set the

memory size of map tasks to 1GB, reduce tasks to 3GB and the application master

to 2GB. The size of the heap is increased to 80% of the allocated memory size for

each task. This is done to increase the use of memory and again, avoid spills as much

as possible. Finally, a separate server is used as the namenode, this is to allow the

datanodes to focus entirely on compute, and not necessitate the memory pressure the

namenode services require.

The default resource calculator used when allocating node resources does not take

into consideration the number of vcores. It solely provisions based on the memory

constraints. This is switched to the dominant resource calculator to better manage

resources [35].
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Table 4.7.: Shuffle Heavy Benchmarks

Benchmark Input Size Dataset

adjacencylist (adjlist) 8GB Synthetic

invertedindex 8GB Wikipedia

kmeans 8GB Movie Ratings

selfjoin 8GB Synthetic

terasort 8GB Random

termvector 8GB Wikipedia

4.5.3 Benchmarks and Data Sets

The workloads used to evaluate BoostDFS are from the PUMA Benchmark Suite [32,

39]. These are benchmarks which represent realistic classes of MapReduce workloads.

These are listed in Table 4.6 and Table 4.7, as well as the dataset and input size for

each benchmark. The shuffle heavy workloads have a reduce time that is significantly

larger than the map time.

Input sizes of 8GB and 50GB (selectively) are used, as this will maintain the high

block to node locality ratio of as discussed in Section 4.3. the larger input is used to

verify the benchmarks, and show the sensitivity of input sizes, as these two dataset

points encompass the bounds of our model.

4.5.4 Evaluation

BoostDFS is evaluated with the benchmarks listed in Table 4.6 and Table 4.7.

Input sizes of 16x and 100x (as input sensitivity) are select, with the smaller of the

two used as the primary input size, this allows the evaluation of the model with a

modest cluster configuration.

This evaluation occurs with a real system and is thus subject to artifacts such as

OS, page cache, network stack, and run time fluctuations. To mimic the effects of
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large data sets that do not fit in caches, the caches are dropped between executions

of a benchmark, as well as after moving data to the cluster. To alleviate the effects of

other artifacts, benchmarks are run for 3 iterations and averaged. To keep execution

times manageable on this modestly sized cluster, benchmarks are only simulated at

the 16x input size. Replication is determined by setting the MorphStore drive to

default to a replication factor of 2 and setting the default Hadoop replication factor

to 2 and increasing that to a total replication factor of 4. The base case is run from

a replication factor of 2 to 4 as well. This is done to compare MapReduce with

MorphStore. The base case replication factor of 1 is used to normalize speedups and

verify the model in Section 4.3.1. Before each workload is run, it is ensured that the

storage policy of the input directory is set to SUPERLOCAL so that only one copy of

the block will get placed on a device with storage type REPLICATED. The BoostDFS

configuration provides each datanode with one REPLICATED disk.

4.6 PUMA Benchmarks

The PUMA benchmark suite is available for an older version of Hadoop. This

suite has been updated to the new MapReduce v2 API. This allows for current work

to continue using the latest version of the Hadoop MapReduce framework. The

benchmarks were extensively evaluated to ensure that the update modifications did

not alter the benchmark algorithm. This new version will be available online, and

possibly merged into the Hadoop project as part of the base example suite. At the

very least, a downloadable package will be distributed online so that others may use

this benchmark to evaluate their work.

4.7 Results

The key findings of this paper are as follows:
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Figure 4.10.: Overall Performance Same Capacity

• It is shown that under identical total replication, BoostDFS outperforms baseline

Hadoop by 14%, on average (geometric mean), for disk-bound map reductions.

The geometric mean across all benchmarks is 6%. Conversely, under iden-

tical availability, BoostDFS achieves 14% higher performance for disk-bound-

applications at the cost of an additional replica. This corresponds to about a

3% capacity overhead at an availability of 2 inter-node replicas and one super-

local replica.

• BoostDFS does not hurt the performance of compute-bound benchmarks.

• It is confirmed through direct file IO measurement that BoostDFS significantly

increases available bandwidth, which results in superior map task performance.

The above results are discussed at detail in the remainder of this section.

4.7.1 Overall Performance

Figure 4.10 illustrates the speedup (relative to HDFS with a single copy of the

dataset, Y-axis) of various benchmarks (groups of bars on the X-axis) using the same

Capacity. The benchmarks are sorted with disk-bound benchmarks on the left and

compute-bound benchmarks on the right. For each benchmark, Figure 4.10 shows the

performance of six configurations. These are the BoostDFS and HDFS configurations

with 2, 3, and 4 replicas. In addition to the bars for individual benchmarks, two
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Figure 4.11.: Overall Performance Same Availability

set of bars are included that show the geometric mean (GM) of speedup across (1)

the disk-bound benchmarks, and (2) all benchmarks. For some benchmarks one will

notice that increasing replication factors are not necessarily monotonically increasing.

These perturbations are run-to-run variations which are caused by changes in the

numbers and placement of remote map tasks, and other system jitter. Such run-to-

run variations are within 3% of total execution time, and do not reflect any systemic

performance issues.

First, consider the disk-bound benchmarks. Comparing pairs of BoostDFS and

HDFS bars with the same replication factor, it is observed that BoostDFS achieves

higher performance than HDFS for disk-bound benchmarks. This comparison isolates

the availability-performance tradeoff under the same replication factor (Capacity) be-

cause BoostDFS achieves higher performance by concentrating the r replicas on r− 1

nodes. The speedups vary between 5% and 23%, on average, for the disk-bound appli-

cations. On the other hand by comparing BoostDFS with r replication against HDFS

with r − 1 replication, it can also be observed that BoostDFS trades off the capacity

cost of the additional replica for better performance under the same availability. To

facilitate an understanding of this comparison, Figure 4.11, illustrates the speedup

(relative to HDFS with availability r, Y-axis) of the same puma benchmarks, this

time with availability r. This means Hadoop has r inter-node replicas, and BoostDFS

has r inter-node and 1 intra-node replica (i.e., incurs a capacity overhead). The



64

speedup for disk-bound applications averages around 14%, and 5% on average for all

applications.

Effectively, the recommended use case for BoostDFS is when system designers

know that the availability requirements are satisfied with a minimum replication

factor of (say) r. If the system has spare additional capacity beyond the r copies,

one may use it to add a BoostDFS replica which provides a better bargain in the

capacity/performance tradeoff than the default tradeoff of increasing the number of

HDFS replicas.

Finally, BoostDFS is within 2% of the performance of compute-bound benchmarks.

This is not surprising because compute-bound applications are insensitive to the band-

width penalty for remote map tasks. The combined geometric mean speedup is 6%

even after averaging in the compute-bound benchmarks.

These experiments also revealed that the fraction of superlocal tasks for all but one

benchmark was higher than 90%. The remote map task fraction is 1% at r > 2. The

sole exception was terasort for which the number of superlocal tasks were 80%. Note,

the number of superlocal tasks is higher than the model predictions because each

node is capable of executing multiple map tasks in these runs, this allows scheduling

flexibility for each node.

4.7.2 Disk Bandwidth Utilization

Figure 4.12 illustrates a single server’s time-varying disk bandwidth utilization

(Y-axis, in MB/s as measured by iostat) for a node running a map-only Hadoop

microbenchmark for two different configurations (two curves). It is ensured that all

map tasks run in superlocal mode for one of the configurations and in local mode for

the other. Each configuration uses 16 map tasks per node.

The first 60 seconds reveal little activity as the Hadoop runtime attends to one-

time application startup issues. Disk activity ramps up beginning at approximately

the 60 second mark. The superlocal configuration is able to achieve a significantly
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higher bandwidth which results in quicker completion. In contrast, the local-only con-

figuration saturates the achieved bandwidth which causes the map task data reading

to continue over a longer stretch of time. This is precisely BoostDFS’s main advantage;

BoostDFS offers such high disk bandwidth to a large fraction of map tasks.

4.7.3 Input Size Sensitivity

The main results were measured with an 8GB dataset. To confirm that BoostDFS’s

performance advantage is more broadly applicable, the performance is verified using

two benchmarks – grep and word-count – with a larger (50GB) dataset. The two

benchmarks were chosen as representatives of the disk-bound and compute-bound

class of benchmarks. Figure 4.13 plots the performance of BoostDFS and HDFS

for the seven configurations for 8GB and 50GB dataset sizes. The performance of

each benchmark at each dataset size is normalized to that of the same benchmark

running on HDFS with 1-way replication (i.e., single copy). The two key conclusions

continue to hold: BoostDFS improves the performance of disk-bound map-reductions
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and BoostDFS does not hurt the performance of compute-bound map-reductions.

Further, from this limited sensitivity study, one can see that the benefits are further

magnified at larger dataset sizes (the speedup of the disk bound benchmark increases

from 14%, 15%, and 13% to 24%, 23% and 24%, respectively. I conjecture that the

growth in speedup is because of some remaining bandwidth headroom in BoostDFS

that the 8GB datasets did not fully utilize. However, because this is a single data-

point, it may require broader validation with the full suite of benchmarks.

4.8 Related Work

To the best of my knowledge, this work is the first to propose replacing some inter-

node replication with intra-node replication to achieve higher bandwidth disk access.

There is a large body of MapReduce performance optimizations that target various op-

portunities other than storage (e.g., heterogeneous clusters [46–49], overlapping shuffle

with computation [39], better handling of stragglers [36, 50, 51], multi-tenancy [52],

cache-aware scheduling for small map reductions [53]). Such schemes that are unre-

lated to storage performance are orthogonal to BoostDFS. There is additional work
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that has looked at using heterogeneous storage architectures with solid-state drives

for MapReduce [19]. While one could use SSDs as a form of ”superlocal” storage, that

tradeoff is more complicated as the hardware costs are different (because of SSDs)

from that of the baseline Hadoop. In contrast, BoostDFS uses the same hardware as

baseline Hadoop with the only assumption being that there are multiple disk spindles

per node and that there is spare capacity. Others [20, 54] propose using DRAM as

the storage medium for data copy placement and storage. These techniques offer

improvements to performance, but workloads are limited by the amount of RAM, as

well as system expense.

4.9 Conclusion

The traditional use of replication, in the distributed file systems used in MapRe-

duce (e.g., GFS [25], HDFS [3]), offers diminishing returns in both performance and

reliability with increased inter-node replication. The key reason for the diminishing

returns on performance is that added inter-node replication helps reduce the number

of remote map tasks – which is an uncommon event. In contrast, this design – Boost-

DFS – targets the common case and further boosts the disk bandwidth available to

a large fraction of local map tasks via intra-node replication.

BoostDFS uses well-known mirroring techniques to boost disk bandwidth [41,55].

But the innovation is to make this visible to Hadoop through our DFS such that

Hadoop’s job scheduler can aggressively seek to maximize super-local map tasks –

tasks that read their inputs from the replicated file system.

BoostDFS improves the replication/performance/availability tradeoffs in the fol-

lowing ways. At the same replication factor, BoostDFS can boost the performance

of Hadoop as it gains more performance by exploiting higher disk bandwidth on a

large fraction map tasks than the traditional approach, which achieves marginal gains.

However, to achieve such a performance gain, BoostDFS trades off availability under

server failure as BoostDFS concentrates the same number of replicas as Hadoop on
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fewer servers. An alternate view of BoostDFS is that it outperforms baseline Hadoop

under the same availability by using more replication. In this view, the number of

servers with replicas is the same in both BoostDFS and traditional Hadoop (which

leads to identical availability under server failure); however BoostDFS uses additional

replicas on the same servers to boost performance. In this view, BoostDFS trades

off spare disk capacity to improve performance. Note all the above tradeoffs are with

identical hardware; i.e., the comparisons are iso-cost.
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5. SUMMARY

I present two techniques that improve performance of file systems, both local and dis-

tributed, by using replication as a mechanism for an improved capacity-performance

tradeoff. At the local file system, throughput of the underlying storage devices is im-

proved by adapting to the load level of the system, and identifying files that provide

the most utility. An improvement in the scheduler is also proposed that provides a

mix of striping and steering based on the accesses to replicated files. The distributed

file system benefits from using changing an inter-node replica to an intra-node replica

and improving performance of the common case.

All of these techniques culminate in the improvement of large file accesses for

systems that work over large data-sets. The impact is that while the storage layer may

be the lowest and slowest in the hierarchy, providing performance improvements aids

the other layers and the overall system performance. These techniques use replication

to provide better aggregation of throughput for the storage devices, thus providing

administrators a capacity tradeoff that can be used for availability and performance

alike, with minimal overhead costs. All of the techniques discussed in this work are

agnostic to any specific file system, local or distributed, and can be incorporated into

any variant of the a framework that is targeted for large file accesses.
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A. REMOTE MAP TASK FRACTION CLOSED FORM

The closed form of the remote map task fraction model is provided by Prof. Robert

Givan.

A.1 Closed Form Intuition

The expected total shortfall can be computed theoretically. Shortfall at a par-

ticular server is a zero-mean random variable that is well approximated by a normal

distribution for reasonable numbers of files and servers, by the central limit theorem.

Given the linearity of expectation, summing the positive shortfall values must give

exactly the same magnitude as summing the negative shortfall values. Thus, sum-

ming the absolute-value of the shortfall variables gives exactly twice the desired total

shortfall. Consequently, the expected total shortfall is half the expected absolute-

value of the sum of the shortfall variables. The absolute-value of a zero-mean normal

random variable is given by
√

2σ2/π. Here, the variance σ2 can be computed to

be approximately k (exactly k(1 − 1/n) for n servers). A detailed explanation is

omitted as the result is a well-known identity that is used to analyze the complexity

of bucket sort [56]. The expected remote service fraction is thus lower-bounded by

approximately
√

2k/π/(2k), dividing by 2 because it is expected that at least half

the absolute value, as stated above, is remote-served, and by k as the target number

of files to serve.

Equation 4.1 can be generalized in this analysis to replication values of r greater

than 1 by observing that by symmetry, a given replica of a file has a probability

1/r of being the one served to the consuming map task. Thus, it is necessary to

compute the expected shortfall at each server after each file located there is removed

with probability (r − 1)/r. This expectation can be computed with a very similar
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approach to the r = 1 analysis. The total shortfall of placing r replicas of kn files on

n servers is computed by :
n∑

i=1

(|rk − filesi|/r) (A.1)

Equation A.1 is a summation of half of the absolute value of the difference between

rk and the number of files stored locally for each server, and then dividing by r to

reflect the probability that each stored file is served elsewhere. The total shortfall

again depends on the variance, which when placing rkn files on n servers is
√

2rk/π,

which is derived again by an analysis like that of bucket sort. The expected remote

fraction is thus lower-bounded by approximately
√

2rk/π/(2rk), dividing by 2 and k

as for r = 1 above, and by r to account for replicas served elsewhere as just discussed.
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