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ABSTRACT

Acuña Valverde, Luis. PhD, Purdue University, May 2015. Heat trace and heat content
asymptotics for Schrödinger Operators of stable processes/fractional Laplacians. Major
Professor: Rodrigo Bañuelos.

Let V be a bounded and integrable potential over Rd and 0 < α ≤ 2. We show

the existence of an asymptotic expansion by means of Fourier Transform techniques and

probabilistic methods for the following quantities

T (α)
V (t) =

1

p
(α)
t (0)

∫
Rd

(
pHVt (x, x)− p(α)

t (x, x)
)
dx

and

Q
(α)
V (t) =

∫
Rd

∫
Rd

(
pHVt (x, y)− p(α)

t (x, y)
)
dxdy

as t ↓ 0. These quantities are called the heat trace and heat content in Rd with respect to

V , respectively. Here, p(α)
t (x, y) and pHVt (x, y) denote, respectively, the heat kernels of the

heat semigroups with infinitesimal generators given by (−∆)
α
2 and HV = (−∆)

α
2 + V .

The former operator is known as the fractional Laplacian whereas the latter one is known

as the fractional Schrödinger Operator.

The study of the small time behaviour of the above quantities is motivated by the asymp-

totic expansion as t ↓ 0 of the following spectral functions for smooth bounded domains

Ω ⊂ Rd,

Z(α)
Ω (t) =

1

p
(α)
t (0)

∫
Ω

pΩ,α
t (x, x)dx,

Q
(α)
Ω (t) =

∫
Ω

∫
Ω

pΩ,α
t (x, y)dxdy,

where pΩ,α
t (x, y) is the transition density of a stable process killed upon exiting Ω.

The function Z(α)
Ω (t) is known as the heat trace and a second order expansion is pro-

vided in [6] for all 0 < α ≤ 2 forR-smooth boundary domains. In [5] the result is extended
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to bounded domains with Lipschitz boundary. As for the spectral function Q(α)
Ω (t), it is

called the spectral heat content and has only been widely studied for the Brownian motion

case. In fact, a third order asymptotic expansion is provided in [12] for α = 2. In this work,

we will state a conjecture about the second order small time expansion. These expansions

differ accordingly to the ranges 1 < α < 2, α = 1 and 0 < α < 1.
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1. INTRODUCTION

A d–dimensional stochastic process X = {Xt}t≥0 defined on a probability space (N ,P,F)

is said to be a Lévy process started at x ∈ Rd if

(i) X0 = x a.s.

(ii) X has independent and stationary increments. That is, for 0 < s < t, the random

variable Xt+s − Xs is independent of the σ-algebra σ (Xu, 0 ≤ u ≤ s) and has the

same law as Xt.

(iii) X is stochastically continuous. Namely, for all ε > 0 and for all s > 0,

lim
t→s

P(|Xt −Xs| > ε) = 0.

We now proceed to provide some examples of Lévy processes that we are particularly

interested in together with additional properties about their transition densities. We recall

that a Lévy process is completely determined by the Fourier transform of its transition

densities. This is the celebrated Lévy-Khintchine Theorem; see [16] for further details.

Henceforth, P and E will denote the probability and expectation, respectively, of any Lévy

process started at 0.

Example 1.0.1 (rotationally invariant α–stable Processes)

X is said to be an α–stable process, 0 < α ≤ 2 if the Fourier transform (or charac-

teristic function) of its transition densities, denoted throughout this work by p(α)
t (x, y) =

p
(α)
t (x− y), t > 0, x, y ∈ Rd satisfies

e−t|ξ|
α

= E[e−ι̇<ξ,Xt>] =

∫
Rd
e−ι̇<y,ξ>p

(α)
t (y)dy, (1.1)

for all t > 0, ξ ∈ Rd.
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The transition densities p(α)
t (x, y) are only explicit for the cases α = 2 and α = 1.

In fact, when α = 2, X is a Brownian motion at twice speed. The transition density of a

Brownian motion is also called Gaussian kernel and is given by

p
(2)
t (x, y) = (4πt)−d/2e−

|x−y|2
4t , x, y ∈ Rd, t > 0.

As for α = 1, X is called Cauchy process. Its transition density is known as either

Cauchy or Poisson kernel and is given by

p
(1)
t (x, y) =

Γ
(
d+1

2

)
π
d+1

2

t(
t2 + |x− y|2

) d+1
2

, x, y ∈ Rd, t > 0. (1.2)

Example 1.0.2 ( α/2 subordinators)

An α/2–subordinator is a.s non-decreasing [0,∞)-valued Lévy process S = {St}t≥0

starting at 0 and uniquely determined by its Laplace transform

E
[
e−λSt

]
= e−tλ

α/2

, t > 0, λ > 0.

Notice that the last equality implies that for all ξ ∈ Rd,

E
[
e−|ξ|

2St
]

= e−t|ξ|
α

. (1.3)

The reader may consult [19] for additional examples of subordinators.

Example 1.0.3 ( Relativistic stable processes)

Let 0 < α ≤ 2 and m > 0. A relativistic α-stable process Xm on Rd with mass m is a

Lévy process with characteristic function given by

E
[
eι̇<X

m
t ,ξ>

]
= e

−t
(
(λ+m2/α)

α/2
−m

)
, t > 0, ξ ∈ Rd.

These processes Xm = {Xm
t }t≥0 are of great interest because they behave as a Brownian

motion for t large and as a rotationally invariant α-stable process for small t. The inter-

ested reader may consult [23] for additional details about heat kernel estimates associated

to the stochastic process Xm.
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Example 1.0.4 ( Mixed stable processes)

Take 0 < β < α < 2 and a > 0. The process Za = {Za
t }t≥0 with Za

t = Xt + aYt,

where X = {Xt}t≥0 and Y = {Yt}t≥0 are independent rotational invariant α-stable and

β-stable processes, respectively is called the independent sum of the symmetric α-stable

process X and the symmetric β-stable process Y with weight a. This is a Lévy process

with characteristic function satisfying

E
[
eι̇<Z

a
t ,ξ>
]

= e−t(|ξ|
α+aβ |ξ|β), t > 0, ξ ∈ Rd.

We refer the reader to [21, 22] for further results concerning heat kernel estimates for the

stochastic process Za.

We point out that the previous examples of Lévy processes can be constructed by a

subordinated time change of the Brownian motion(see [19] for further details). Since we

are mostly interested in α-stable processes we proceed to illustrate such construction with

them.

Let B = {Bt}t≥0 denote a d–dimensional Brownian motion in a probability space

(N1,
{
FB
t

}
t≥0

,PxB) and let S = {St}t≥0 be an α/2–subordinator started at zero with prob-

ability space (N2,G,PS) and 0 < α ≤ 2. When α = 2, we adopt the convention St = t.

We will consider both processes on the product space N = N1 × N2. In addition, we set

Ft = FB
t × G and Px = PxB × PS. Hence, B is a d-dimensional Ft–Brownian motion and

S is an α/2–subordinator independent of B when they are regarded as stochastic processes

defined in (N ,Px)(see [52] for details). From now on, every process and every random

variable will be defined over N .

The Lévy process X = {Xt}t≥0 defined as Xt = B2St is a rotationally invariant α-

stable process in Rd and it has been constructed as a subordinated time change of the

Brownian motion. For the rest of the thesis, Ex and Px will denote the expectation and the

probability of any process started at x, respectively. We also write Z D
= Y for two random

variables Z, Y with values in Rd to mean that they are equal in distribution or have the

same law. Throughout this work, η(α/2)
t (s) will denote the transition density of the random

variable St.



4

We remark that for 0 < α < 2 the transition densities p(α)
t (x, y) can be written as

subordination of the Gaussian kernel. That is,

p
(α)
t (x, y) = E

[
p

(2)
St

(x, y)
]

=

∫ ∞
0

ds η
(α/2)
t (s) p(2)

s (x, y). (1.4)

It follows from (1.4) that p(α)
t (x) is radial, symmetric and decreasing in x. Moreover,

these functions satisfy the following scaling property and inequality:

p
(α)
t (x) = t−d/αp

(α)
1 (t−1/αx) ≤ t−d/αp

(α)
1 (0), (1.5)

where p(α)
1 (0) = (2π)−dα−1wd Γ(d/α) with wd the surface area of the unit sphere in Rd.

From equation (1.4), we also conclude that

(4π)d/2p
(α)
1 (0) = E

[
S
−d/2
1

]
. (1.6)

Moreover, we claim that for all −∞ < β < α
2

,

E
[
Sβ1

]
=

Γ(1− 2β
α

)

Γ(1− β)
. (1.7)

To see this, we observe that
(
ZS−1

1

)α/2 D
= Z, where Z = exp(1) is an exponential random

variable with parameter 1 independent of S1. In fact, by independence we have

P
((
ZS−1

1

)α/2 ≤ λ
)

=

∫ ∞
0

(∫ λ2/αs

0

e−udu

)
η

(α/2)
1 (s)ds

= 1− E
[
e−λ

2/αS1

]
= 1− e−λ = P(Z ≤ λ).

Hence, it also follows by independence that

E
[
Z−β

]
E
[
Sβ1

]
= E

[
Z−

2β
α

]
,

provided E
[
Z−β

]
and E

[
Z
−2β
α

]
are both finite. But, this only holds when −∞ < β < α

2
,

since

0 < E [Zγ] =

∫ ∞
0

s(γ+1)−1e−sds = Γ(γ + 1) <∞,

when γ + 1 > 0.
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1.1 Infinitesimal Generator of a Stable Process and Schrödinger Operators

Let 0 < α ≤ 2 and consider X = {Xt}t≥0 a rotationally invariant α-stable process as

defined in example 1.0.1 . In order to state our results, we need to take into consideration

both the spectral and integral definition for the infinitesimal generator associated with the

process X, denoted as before by Hα = (−∆)
α
2 . In the spectral theoretic sense, (−∆)

α
2 is a

positive and self–adjoint linear operator with domain
{
f ∈ L2(Rd) : |ξ|α f̂(ξ) ∈ L2(Rd)

}
satisfying

̂(−∆)
α
2 f(ξ) = |ξ|αf̂(ξ), (1.8)

where f̂ denotes the Fourier transform of f . Moreover, for f ∈ S(Rd), where S(Rd) is the

set of rapidly decreasing smooth functions, we have

(−∆)
α
2 f(x) =

d

dt
e−t(−∆)

α
2 f(x)

∣∣∣∣
t=0

,

where

e−t(−∆)
α
2 f(x) = Ex[f(Xt)] =

∫
Rd
p

(α)
t (x, y)f(y)dy

is the heat semigroup generated by X. On the other hand, for 0 < α < 2, (−∆)
α
2 can also

be expressed in the integral form

(−∆)
α
2 f(x) = c̃d,α

∫
Rd

f(x)− f(y)

|x− y|d+α
dy,

where c̃d,α > 0 is a normalizing constant and the integral is understood in the princi-

pal value sense. The last expression allows us to rewrite the Dirichlet form related to

(−∆)
α
2 (see [30] for further details)

Eα(f) = 〈(−∆)
α
2 f, f〉 =

∫
Rd

(−∆)
α
2 f(x)f(x)dx (1.9)

as

Eα(f) =
c̃d,α
2

∫
Rd

∫
Rd

|f(x)− f(y)|2

|x− y|d+α
dxdy. (1.10)

As for the case α = 2, due to integration by parts, we have

E2(f) =

∫
Rd

(−∆f)(x)f(x)dx =

∫
Rd
|∇f(x)|2 dx, (1.11)
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which is the classical Dirichlet form of the Laplacian.

Let V ∈ L∞(Rd) ∩ L1(Rd). The linear operator HV = (−∆)
α
2 + V , known as the

fractional Schrödinger operator, is self-adjoint and defined similarly as the infinitesimal

generator of the heat semigroup,

e−tHV f(x) = Ex[e−
∫ t
0 V (Xs)dsf(Xt)],

for f ∈ S(Rd). The heat kernel of e−tHV is given by the Feynman-Kac formula (see [33],

[36] and [51])

pHVt (x, y) = p
(α)
t (x, y)Etx,y

[
e−

∫ t
0 V (Xs)ds

]
, (1.12)

where Etx,y denotes the expectation with respect to the stable process (bridge) starting at x

and conditioned to be at y at time t. It is worth mentioning here that the formula (1.12) is

also well defined for a wide class of unbounded potentials V (see [36]). In fact, if Ω ⊂ Rd

is a bounded open measurable set and we apply formula (1.12) with

VΩ(x) =

 +∞ if x ∈ Ωc,

0 otherwise,

then the resulting function p
HVΩ
t (x, y), which we denote simply by pΩ,α

t (x, y), is the tran-

sition density for the stable process killed upon exiting Ω. In other words, this is the heat

kernel for the Dirichlet fractional Laplacian. An explicit expression for this is

pΩ,α
t (x, y) = p

(α)
t (x, y)P

(
τ

(α)
Ω > t

∣∣X0 = x,Xt = y
)
, (1.13)

where τ (α)
Ω = inf {s ≥ 0 : Xs ∈ Ωc} is the first exit time from Ω. The vast literature and

relevant results concerning asymptotic expansions of quantities involving the classical heat

kernel pΩ,2
t (x, y) for the Laplacian motivate the many results in this thesis.

With Hα, HV and their heat kernels properly introduced, we now proceed to con-

sider the main quantities studied here. Namely, the heat trace and the heat content for

Schrödinger operators.
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1.2 Heat Trace for Schrödinger Operators on Rd, statement of results

Heat asymptotic results have been widely used in areas of spectral theory and in ap-

plications to scattering theory, statistical and quantum mechanics and in several areas in

geometry. We refer the reader to van den Berg [8] for the computation of the first two

terms in the asymptotic expansion of the trace of the heat kernel of the Schrödinger oper-

ator −∆ + V under Hölder continuity of the potential and to Bañuelos and Sá Barreto [3]

for a more general computation with an explicit formula for all the coefficients for poten-

tials V ∈ S(Rd), and for applications to scattering theory. For applications in statistical

mechanics and quantum theory, we refer the reader to the articles of Lieb [38] and Penrose

and Stell [47] about the second viral coefficient of a hard–sphere gas at low temperature

and sticky spheres, respectively. Heat trace asymptotics for the Laplacian have been of

interest for many years for domains in the Euclidean space Rd and on manifolds where

the coefficients reveal many geometric quantities such as volume, surface area, convexity,

number of holes, etc. For more on this large literature as well as some historical perspec-

tive, we refer the reader to Arendt and Schleich [2, pp 1-71], Bañuelos, Kulczycki and

Siudeja [5, 6], Datchev and Hezari’s [26], Donelly [28], McKean and Moerbeke [41], and

Colin De Verdière [25].

Consider H2 = −∆ and HV = −∆ + V , V ∈ S(Rd). In [3], the existence of an

asymptotic expansion of the heat trace of the operator e−tHV − e−tH2 , as t ↓ 0, is proved.

To make the connection to the fractional Laplacian more clear, consider the heat kernel for

−∆ given by

p
(2)
t (x) = (4πt)−d/2e−

|x|2
4t ,

so that p(2)
t (0) = (4πt)−d/2.

Before continuing, we introduce some notations. Throughout the work, we will say that

f(t) = O(g(t)), as t ↓ 0, to mean that there exist C, δ > 0 such that |f(t)| ≤ C|g(t)|, for

0 < t < δ. Also V̂ will stand for the Fourier transform of V ∈ S(Rd).

Set

Ij =
{
λ = (λ1, ..., λj) ∈ [0, 1]j : 0 < λj < λj−1 < ... < λ1 < 1

}
. (1.14)
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With this notation the result in [3] can be stated as follows. For any integer J ≥ 1,

Tr(e−tHV − e−tH2)

p
(2)
t (0)

=
J∑
`=1

c`(V )t` +O(tJ+1), (1.15)

as t ↓ 0, with

c1(V ) = −
∫
Rd
V (θ)dθ, c`(V ) = (−1)`

∑
j+n=`
j≥2

C
(2)
n,j(V ), Cd,2 = (2π)d,

C
(2)
n,j(V ) =

Cd,2
(2π)jdn!

∫
Ij

∫
R(j−1)d

{
L

(2)
j (λ, θ)

}n
V̂ (−

j−1∑
i=1

θi)

j−1∏
i=1

V̂ (θi)dθidλidλj, and

L
(2)
j (λ, θ) =

j−1∑
k=1

(λk − λk+1)

∣∣∣∣∣
k∑
i=1

θi

∣∣∣∣∣
2

−

∣∣∣∣∣
j−1∑
k=1

(λk − λk+1)
k∑
i=1

θi

∣∣∣∣∣
2

.

In particular, for J = 2, the formula gives

Tr(e−tHV − e−tH2)

p
(2)
t (0)

+ t

∫
Rd
V (θ)dθ − t2

2!

∫
Rd
V 2(θ)dθ = O(t3), (1.16)

as t ↓ 0, which is the van den Berg [8] results under our assumption on V . For J = 3, the

formula gives

Tr(e−tHV − e−tH2)

p
(2)
t (0)

+ t

∫
Rd
V (θ)dθ − t2

2!

∫
Rd
V 2(θ)dθ

+
t3

3!

∫
Rd
V 3(θ)dθ +

t3

12

∫
Rd
|∇V (θ)|2dθ = O(t4), (1.17)

as t ↓ 0.

For d = 1, a recurrent formula for the general coefficients in the expansion was ob-

tained in the seminal paper by McKean-Moerbeke [41] using KdV methods. Using these

techniques, and the symmetry of certain integrals, Colin De Verdière [25] computed the

first four coefficients in R3. The results in this work are motivated by [3] where (1.15)

is proved by Fourier transform methods for all d ≥ 1. Our proof is a combination of

probabilistic arguments and Fourier transform techniques and unfortunately is much more

technical than [3]. These results are also motivated by [4], where an analogue of van den

Berg’s results [8] (the computation of the first two terms) is proved for the fractional Lapla-

cian and other related non-local operators. It is interesting to observe here that according

to (1.11) ∫
Rd
|∇V (θ)|2dθ =

∫
Rd
−∆V (θ)V (θ)dθ = E2(V ),
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is the Dirichlet form of V with respect to the Laplacian. Based on this, it is natural to

conjecture that the third term in the expansion for the fractional Laplacian should involve

the Dirichlet form of V for the operator (−∆)
α
2 . But this is not the case, as we shall see

later, which is somewhat surprising. Throughout this work, when required, we will write

S1,α/2 for S1 to emphasize the α dependence.

As of now, the function

T (α)
V (t) =

1

p
(α)
t (0)

∫
Rd

(
pHVt (x, x)− p(α)

t (x, x)
)
dx =

Tr(e−tHV − e−tHα)

p
(α)
t (0)

(1.18)

will be called the heat trace in Rd with respect to V .

Our result, analogue to (1.15), for the fractional Laplacian (−∆)
α
2 is provided by the

following theorem.

Theorem 1.2.1 Let 0 < α < 2 be given. Suppose V ∈ S(Rd) and denote the fractional

Laplacian and its associated fractional Schrödinger operator by Hα = (−∆)
α
2 and HV =

Hα +V , respectively. Denote the heat kernel for (−∆)
α
2 by p(α)

t (x); see (1.5). Assume that

M ≥ 1 is an integer satisfying M < d+α
2

. Then

(a) Given J ≥ 2, for 0 < t < 1 we have the following expansion

T (α)
V (t) = −t

∫
Rd
V (θ)dθ +

J∑
j=2

M−1∑
n=0

(−1)n+jC
(α)
n,j (V )t

2n
α

+j +R
(α)
J+1(t), (1.19)

where

R
(α)
J+1(t) = O

(
tΦ

(α)
J+1(M)

)
, as t ↓ 0,

with

Φ
(α)
J+1(M) = min

{
J + 1, 2 +

2M

α

}
,

and the constants C(α)
n,j (V ) are given by

C
(α)
n,j (V ) =

Cd,α
(2π)jdn!

∫
Ij

∫
R(j−1)d

E
[
S
−d/2
1,α

2

{
L

(α)
j (λ, θ)

}n]
V̂ (−

j−1∑
i=1

θi)

j−1∏
i=1

V̂ (θi)dθidλidλj,

L
(α)
j (λ, θ) =

j−1∑
k=1

S∗λk−λk+1

∣∣∣∣∣
k∑
i=1

θi

∣∣∣∣∣
2

− 1

S1,α
2

∣∣∣∣∣
j−1∑
k=1

S∗λk−λk+1

k∑
i=1

θi

∣∣∣∣∣
2

, and Cd,α =
πd/2

p
(α)
1 (0)

,
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where the λ′ks are as in (1.14). Moreover, the random variables S∗λ1−λ2
, S∗λ2−λ3

,...,S∗λj−1−λj ,

S∗1−(λ1−λj) are independent and satisfy

S∗1−(λ1−λj) +

j−1∑
k=1

S∗λk−λk+1
= S1,α

2

and S∗l
D
= Sl, for any l ∈ {1− (λ1 − λj), λk − λk+1}j−1

k=1.

(b) For any j ≥ 2 and 1 ≤ n ≤M ,

lim
α↑2

C
(α)
n,j (V ) = C

(2)
n,j(V ).

We note that when α = 2 the last Theorem remains true and S∗λk−λk+1
= λk − λk+1 and

the condition on d and M is not needed. The reason for this is that in the later case, St = t

and then S1,1 = 1. What part (b) in the theorem proves is that our results are robust in the

sense that not only do we recover the Bañuelos and Sá Barreto result when α = 2 but also

as α→ 2 we recover the coefficients for α = 2.

To see the connection to the Bañuelos and Sá Barreto result more clearly, we state

the following theorem which is an immediate consequence of Theorem 1.2.1 and which

resembles (1.15) more closely.

Theorem 1.2.2 Under the same conditions of Theorem 1.2.1, we have

T (α)
V (t) = −t

∫
Rd
V (θ)dθ +

∑
2n
α

+j<Φ
(α)
J+1(M)

2≤j≤J, 0≤n≤M−1

(−1)n+jC
(α)
n,j (V )t

2n
α

+j (1.20)

+ O(tΦ
(α)
J+1(M)),

as t ↓ 0 with T (α)
V (t) as defined in (1.18).

Now, to obtain (1.15) from the last theorem we note again that for α = 2 we have no

restrictions on J and M other than J ≥ 2 and M ≥ 1. Also observe that Φ
(2)
J+1(M) =

min {J + 1,M + 2}. Then, by taking M = J − 1 we conclude Φ
(2)
J+1(J − 1) = J + 1. As

a consequence of (1.20), we arrive at

T (2)
V (t) = −t

∫
Rd
V (θ)dθ +

∑
n+j<J+1

2≤j≤J, 0≤n≤J−2

(−1)n+jC
(2)
n,j(V )tn+j +O(tJ+1),
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as t ↓ 0. But, notice that in this case,

∑
n+j<J+1

2≤j≤J,0≤n≤J−2

(−1)n+jC
(2)
n,j(V )tn+j =

J∑
`=2

c`(V )t`,

and (1.15) follows.

In §2.9, we provide more specific expansion formulas for α′s of the form 2/k, where

k is a positive integer. These examples are the only cases where 2n
α

+ j are integers for all

n, j, because for the particular case n = 1 and j = 2 there exists an integer m0 ≥ 3 such

that 2
α

+ 2 = m0, which implies that α = 2
m0−2

.

The assumption M < d+α
2

in our theorem is sufficient to prove two crucial facts needed

in our expansion. Namely, (1) that the coefficients in Theorem 1.2.1 are finite and (2) that

the remainders that appear in the definition of R(α)
J+1(t) (see §2.2 below) are bounded for

t ∈ (0, 1). We also observe that the conditionM < d+α
2

determines, for a given d, the range

of α’s for which Theorem 1.2.1 holds. Thus, for example whenM = 1 and d = 1, Theorem

1.2.1 only permits the range 1 < α < 2. In §2.5, we will show how a modified version of

this condition (namely M
2
− d

4
< α

2
) can widen the range of α’s for which Theorem 1.2.1

remains true when d = 1, 2, 3 and M = 1, 2.

A particular case of Theorem 1.2.1 and our results in §2.5 is the following corollary

which extends the results in [4] where the second coefficient is computed.

Corollary 1.2.1

(i) For d = 1 ,

T (α)
V (t) + t

∫
R
V (θ)dθ − t2

2!

∫
R
V 2(θ)dθ +

t3

3!

∫
R
V 3(θ)dθ = O(t2+ 2

α ), if α ∈ (1, 2),

O(t4), if α ∈ (1/2, 1],

as t ↓ 0.
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(ii) For d = 1 and 3
2
< α < 2, we have

T (α)
V (t) + t

∫
R
V (θ)dθ − t2

2!

∫
R
V 2(θ)dθ

+
t3

3!

∫
R
V 3(θ)dθ + L1,α t

2+ 2
α

∫
R
|∇V (θ)|2 dθ = O(t4), t ↓ 0.

(iii) For d ≥ 2,

T (α)
V (t) + t

∫
Rd
V (θ)dθ − t2

2!

∫
Rd
V 2(θ)dθ +

t3

3!

∫
Rd
V 3(θ)dθ = O(t2+ 2

α ), if α ∈ (1, 2),

O(t4), if α ∈ (0, 1],

as t ↓ 0.

(iv) For d ≥ 2 and 1 < α < 2,

T (α)
V (t) + t

∫
Rd
V (θ)dθ − t2

2!

∫
Rd
V 2(θ)dθ

+
t3

3!

∫
Rd
V 3(θ)dθ + Ld,α t2+ 2

α

∫
Rd
|∇V (θ)|2 dθ = O(t4), t ↓ 0.

(v) For d ≥ 3, 2
3
< α ≤ 1,

T (α)
V (t) + t

∫
Rd
V (θ)dθ − t2

2!

∫
Rd
V 2(θ)dθ +

t3

3!

∫
Rd
V 3(θ)dθ

− t4

4!

∫
Rd
V 4(θ)dθ + Ld,α t2+ 2

α

∫
Rd
|∇V (θ)|2 dθ = O(t5), t ↓ 0.

Also for d ≥ 3 and 1
2
≤ α ≤ 2

3
,

T (α)
V (t) + t

∫
Rd
V (θ)dθ − t2

2!

∫
Rd
V 2(θ)dθ +

t3

3!

∫
Rd
V 3(θ)dθ

− t4

4!

∫
Rd
V 4(θ)dθ = O(t5), t ↓ 0.
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(vi) For d ≥ 4 and 0 < α < 1
2
,

T (α)
V (t) + t

∫
Rd
V (θ)dθ − t2

2!

∫
Rd
V 2(θ)dθ +

t3

3!

∫
Rd
V 3(θ)dθ

− t4

4!

∫
Rd
V 4(θ)dθ = O(t5), t ↓ 0.

The constants Ld,α are defined as follows:

Ld,α =
Cd,αK1(d, α)

(2π)d
, Cd,α =

πd/2

p
(α)
1 (0)

,

with

K1(d, α) =

∫ 1

0

∫ λ1

0

E

[
S∗1−wS

∗
w

(S∗1−w + S∗w)1+ d
2

]
dwdλ1.

The question of whether our result holds regardless of the choice of d andM as in (1.15)

remains an interesting open problem which reduces to verifying that the expectations in the

formula for C(α)
n,j (V ) are finite for all n and d.

To gain a better understanding of the applications of the robustness result, part (b), in

Theorem 1.2.1, which is proved by means of weak convergence, consider the following

special case of Corollary 1.2.1. For all d ≥ 1 and 3
2
< α < 2, we have

T (α)
V (t)+t

∫
Rd
V (θ)dθ − t2

2!

∫
Rd
V 2(θ)dθ

+
t3

3!

∫
Rd
V 3(θ)dθ + Ld,α t2+ 2

α

∫
Rd
|∇V (θ)|2 dθ = O(t4),

as t ↓ 0.

Interestingly, due to part (b) we see that Ld,α → 1
12

as α ↑ 2, despite of the fact that

thus far we are only able to provide a representation which enables us to conclude that

the values of Ld,α are finite and strictly positive with no other explicit knowledge for this

quantity.

1.2.1 Extensions to other non–local operators, statement of results

By mimicking the techniques employed in Chapter 2 to establish the heat trace asymp-

totics of α-stable processes we obtain the following results associated to the relativistic
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and mixed stable processes defined in examples 1.0.3 and 1.0.4, respectively. The proof of

these results are omitted.

Theorem 1.2.3 Let HV,m = Hα,m + V with Hα,m = (−∆ + m
2
α )

α
2 − m. Denote by

p
(α,m)
t (x, y) the transition density associated to the relativistic α-stable process with index

m, Xm. Then

Tr(e−HV,mt − e−tHα,m)

p
(α,m)
t (0)

+ t

∫
Rd
V (θ)dθ − t2

2!

∫
Rd
V 2(θ)dθ +

t3

3!

∫
Rd
V 3(θ)dθ =

O(t2+ 2
α ), if α ∈ (1, 2) and d ≥ 1,

O(t4), if α ∈ (1
2
, 1] and d ≥ 1,

O(t4), if α ∈ (0, 1
2
] and d ≥ 2,

as t ↓ 0.

Theorem 1.2.4 Let HV,a = Ha
α,β + V with Ha

α,β = (−∆)
α
2 + a (−∆)

β
2 , 0 < α < β < 2

and a > 0. Denote by p(a)
t (x, y) the transition density associated to the process Za. Then,

(i) Assume d=1 and 1 < α < β < 2. Then,

Tr(e−tHV,a − e−tHa
α,β)

p
(a)
t (0)

+ t

∫
R
V (θ)dθ − t2

2!

∫
R
V 2(θ)dθ +

t3

3!

∫
R
V 3(θ)dθ = O(t2+ 2

β ),

as t ↓ 0.

(ii) Assume d ≥ 2 , 0 < α < β < 2 and 2 + 2
α
− d

(
1
α
− 1

β

)
≥ 0. Then,

Tr(e−tHV,a − e−tHa
α,β)

p
(a)
t (0)

+ t

∫
Rd
V (θ)dθ − t2

2!

∫
Rd
V 2(θ)dθ +

t3

3!

∫
Rd
V 3(θ)dθ = R(t),

where |R(t)| ≤ CtΦd(α,β), for t ∈
(

0,min
{
a

α
β−α , 1

})
and some C > 0. Here,

Φd(α, β) = min

{
4, 2 +

2

α
− d

(
1

α
− 1

β

)}
.

In particular, for d=2, we obtain

Tr(e−tHV,a − e−tHa
α,β)

p
(a)
t (0)

+ t

∫
R2

V (θ)dθ − t2

2!

∫
R2

V 2(θ)dθ +
t2

3!

∫
R2

V 3(θ)dθ = O(t2+ 2
β ), if 1 ≤ β and α < β,

O(t4), if 0 < α < β < 1 .

as t ↓ 0.
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1.3 Heat content for Schrödinger operators on Rd, statement of results

The above mentioned results on the heat trace of Schrödinger operators on Rd has

motivated the study of what we will call “the heat content for Schrödinger semigroups”

and which we define by

Q
(α)
V (t) =

∫
Rd

∫
Rd

(
pHVt (x, y)− p(α)

t (x, y)
)
dxdy (1.21)

=

∫
Rd

∫
Rd
p

(α)
t (x, y)Etx,y

[
e−

∫ t
0 V (Xs)ds − 1

]
dxdy.

Notice that the second equality comes from (1.12). To the best of our knowledge, this

quantity has not been studied in the literature before even in the case of the Laplacian.

Based on the first expression in (1.21), we point out that the function Q(α)
V (t) is intro-

duced to describe, in terms of the potential V , the average difference between pHVt (x, y)

and p(α)
t (x, y), for every t > 0. The second form in (1.21) suggests that a probabilistic

approach involving the paths of the stable bridge should yield a better understanding on

this function. In fact, we use the probabilistic representation and the finite dimensional

distributions of the stable bridge to obtain the small asymptotic expansion for Q(α)
V (t). To

gain further insight into the above expression, consider V (x) = −1Ω(x), where Ω is an

open set with finite volume. The stochastic integral in (1.21) becomes∫ t

0

1Ω(Xs)ds,

which is just the total time spent in Ω up to time t by the stable process. This random

variable appears in many problems in probability related to occupation measures, local

times, conditional gauge theorems and more. See for example [16] and [19]. Therefore,

it should be possible to describe the asymptotic behaviour of Q(α)
−1Ω

(t) by means of the

fluctuations of the paths of the stable process in Ω and Ωc and we expect that geometric

features of the domain Ω, such as volume, surface area of the boundary, capacity, curvature,

etc., should appear in the asymptotics. For instance, Theorem 1.3.1 below shows that

lim
t↓0

t−1Q
(α)
−1Ω

(t) = |Ω|.
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With this potential V , we also have the following inequality

Q
(α)
−1Ω

(t) ≥
∫

Ω

∫
Ω

p
(α)
t (x, y)Etx,y

[
e
∫ t
0 1Ω(Xs)ds − 1, τ

(α)
Ω > t

]
dxdy

= (et − 1)

∫
Ω

∫
Ω

p
(α)
t (x, y)P

(
τ

(α)
Ω > t

∣∣X0 = x,Xt = y
)
dxdy

= (et − 1)Q
(α)
Ω (t),

which gives some additional information on the relationship between Q(α)
−1Ω

(t) and Q(α)
Ω (t).

Here Q(α)
Ω (t) denotes the spectral heat content in Ω for the α–stable process. Namely,

Q
(α)
Ω (t) =

∫
Ω

∫
Ω

pΩ,α
t (x, y)dxdy.

We proceed to state our main results. The first two theorems correspond to the results

for the heat trace proved in [8] for α = 2 and in [4] for 0 < α < 2. The first theorem

provides the first term whereas the second theorem yields a second order expansions under

the assumption of a Hölder continuity on the potential V . Both theorems provide uniform

bounds for the remainder term for all positive times.

Theorem 1.3.1

(i) For V ∈ L∞(Rd) ∩ L1(Rd), we obtain for all t > 0∣∣∣∣Q(α)
V (t) + t

∫
Rd
V (x)dx

∣∣∣∣ ≤ t2||V ||1||V ||∞et||V ||∞ .

(ii) Assume V ∈ L∞(Rd) ∩ L1(Rd). Then if V : Rd → (−∞, 0], we have for all t > 0

that

−t
∫
Rd
V (x)dx ≤ Q

(α)
V (t) ≤ −t

∫
Rd
V (x)dx

(
1 +

1

2
t||V ||∞et||V ||∞

)
.

In particular, under both (i) and (ii),

Q
(α)
V (t) = −t

∫
Rd
V (x)dx+O(t2), t ↓ 0.
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Theorem 1.3.2 Suppose V ∈ L∞(Rd) ∩ L1(Rd). Assume that V is also uniformly Hölder

continuous of order γ. That is, there exists a positive constant M such that

|V (x)− V (y)| ≤M |x− y|γ,

for all x, y ∈ Rd, with 0 < γ < min {1, α} if 0 < α < 2 and 0 < γ ≤ 1 in the case α = 2.

Then, for all t > 0∣∣∣∣Q(α)
V (t) + t

∫
Rd
V (x)dx− t2

2!

∫
Rd
V 2(x)dx

∣∣∣∣ ≤ C(γ, α)||V ||1
(
||V ||2∞et||V ||∞t3 + t

γ
α

+2
)
.

In particular,

Q
(α)
V (t) = −t

∫
Rd
V (x)dx+

t2

2!

∫
Rd
V 2(x)dx+O(t

γ
α

+2), t ↓ 0.

It is interesting to note here that in [4], it is shown that

T (α)
V (t) = −t

∫
Rd
V (θ)dθ +

t2

2!

∫
Rd
V 2(θ)dθ +O(t

γ
α

+2),

as t ↓ 0 under the same conditions of Theorem 1.3.2. Thus, under the assumption of Hölder

continuity we cannot distinguish between Q(α)
V (t) and T (α)

V (t), as t ↓ 0 at the second order

asymptotic expansion. In order to see the difference in these quantities for t ↓ 0, we need

to assume extra regularity conditions on V and go further in the expansion.

Our third result in this section is a general asymptotic expansion in powers of t for

potentials V ∈ S(Rd) with an explicit form for the coefficients. In order to avoid the

introduction of more complicated notation at this point, we postpone the result to Theorem

3.1.1 in §3.1. A special case of Theorem 3.1.1 where we can compute quite explicitly all

the coefficients is the following theorem.

Theorem 1.3.3 Let V ∈ S(Rd) and 0 < α ≤ 2. Then

Q
(α)
V (t) =− t

∫
Rd
V (θ)dθ +

t2

2!

∫
Rd
V 2(θ)dθ − t3

3!

(∫
Rd
V 3(θ)dθ + Eα(V )

)
+
t4

4!

(∫
Rd
V 4(θ)dθ + 2

∫
Rd
V 2(θ)(−∆)

α
2 V (θ)dθ +

∫
Rd

∣∣(−∆)
α
2 V (θ)

∣∣2 dθ)
− t5

5!

(∫
Rd
V 5(θ)dθ + 2

∫
Rd
V 3(θ)(−∆)

α
2 V (θ)dθ + 2

∫
Rd
V 2(θ)(−∆)

α
2
2 V (θ)dθ

+

∫
Rd
V (θ)

∣∣(−∆)
α
2 V (θ)

∣∣2 dθ + Eα
(
(−∆)

α
2 V
)

+ Eα
(
V 2
))

+O(t6),
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as t ↓ 0. Here, Eα is the Dirichlet form as defined in (1.10) and (1.11) whereas (−∆)
α
2
2 is

defined to be (−∆)
α
2 ◦ (−∆)

α
2 .

It is worth mentioning that the techniques employed in Chapter 3 may be used to extend

the foregoing theorems in this section to obtain the small time behaviour of the heat content

for Schrödinger semigroups related to the relativistic and mixed stable processes.

1.4 Heat content for bounded domains, statement of results

As we have previously mentioned, the study of the small time behaviour of the quan-

tities Q(α)
V (t) and T (α)

V (t) has been motivated by the asymptotic expansion as t ↓ 0 of the

following spectral functions for smooth open bounded domains Ω ⊂ Rd,

Z(2)
Ω (t) =

1

p
(2)
t (0)

∫
Ω

pΩ,2
t (x, x)dx and Q

(2)
Ω (t) =

∫
Ω

∫
Ω

pΩ,2
t (x, y)dxdy,

where pΩ,2
t (x, y) is the transition density of a Brownian Motion process killed upon exiting

Ω.

The purpose of this section is to provide an insight of the possible small time behavior

of the spectral function Q(α)
Ω (t) for the cases 0 < α < 2, whose second order expansion is

still unknown. To be more precisely, we show the following.

Theorem 1.4.1 Assume Ω ⊂ Rd, d ≥ 2 is a uniformly C1,1-regular bounded domain.

(i) Let 1 < α < 2. Then, we have

1

π
Γ

(
1− 1

α

)
Hd−1(∂Ω) ≤ lim

t↓0

|Ω| −Q(α)
Ω (t)

t
1
α

≤ lim
t↓0

|Ω| −Q(α)
Ω (t)

t
1
α

≤ 2(3d+1)/2 Γ

(
1− 1

α

)
Hd−1(∂Ω).

(ii) For α = 1, we obtain

1

π
Hd−1(∂Ω) ≤ lim

t↓0

|Ω| −Q(1)
Ω (t)

t ln
(

1
t

)
≤ lim

t↓0

|Ω| −Q(1)
Ω (t)

t ln
(

1
t

) ≤ 2(3d+1)/2 Hd−1(∂Ω).
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(iii) For 0 < α < 1, there exists a positive constant Cd,α such that

Ad,αPα(Ω) ≤ lim
t↓0

|Ω| −Q(α)
Ω (t)

t

≤ lim
t↓0

|Ω| −Q(α)
Ω (t)

t
≤ Cd,α

∫
Ω

dx ρ−αΩ (x),

where ρΩ(x) = inf {|σ − x| : σ ∈ ∂Ω}. Moreover, if Ω satisfies a uniform exterior

volume condition, the quantity
∫

Ω
dx ρ−αΩ (x) can be replaced up to some positive

constant by Pα(Ω). See (4.3) and (4.13) for the definitions of Aα,d and Pα(Ω), re-

spectively.

The lower bounds established in the previous theorem are obtained first by investigating

the small time behavior of the heat content Ω in Rd (see Theorem 4.0.2) which is denoted

by H(α)
Ω (t) and defined as

H(α)
Ω (t) =

∫
Ω

dy

∫
Ω

dx p
(α)
t (x, y)

and secondly, by considering the following inequality between H(α)
Ω (t) and the spectral heat

content Q(α)
Ω (t) which holds for all t > 0,

Q
(α)
Ω (t) ≤ H(α)

Ω (t) = |Ω| −
∫

Ω

dy

∫
Ωc
dx p

(α)
t (x, y).

As for the uppers bounds, we require a more delicate treatment where the α/2-subordinator

S plays a relevant role.

Based on the estimates provided in Chapter 4 below and the above theorem, we state

the following conjecture about the small time behavior of the spectral heat content of Ω.

Conjecture

(i) For 1 < α < 2, there exists Cd,α > 0 such that

Q
(α)
Ω (t) = |Ω| − Cd,αHd−1(∂Ω) t

1
α +O(t), t ↓ 0.

(ii) For α = 1, there exists Cd > 0 such that

Q
(α)
Ω (t) = |Ω| − CdHd−1(∂Ω) t ln

(
1

t

)
+O(t), t ↓ 0.
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(iii) For 0 < α < 1, there exists Cd,α > 0 such that

Q
(α)
Ω (t) = |Ω| − Cd,αPα(Ω) t+ o(t), t ↓ 0.
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2. HEAT TRACE FOR SCHRÖDINGER OPERATORS, PROOFS

2.1 Heat trace in terms of Fourier transform.

Let V̂ denote the Fourier transform of V ∈ S(Rd) with the normalization

V̂ (ξ) =

∫
Rd
e−ι̇<x,ξ> V (x)dx. (2.1)

We note that because of our definition of V̂ , we have

(i) (Inversion formula)

V (x) =
1

(2π)d

∫
Rd
eι̇<x,ξ>V̂ (ξ)dξ.

(ii) For f, g ∈ S(Rd),∫
Rd
e−ι̇<x,ξ>f(x)g(x)dx =

1

(2π)d

∫
Rd
f̂(θ)ĝ(ξ − θ)dθ. (2.2)

Our goal now is to derive a formula for Tr(e−tHV − e−tHα) for the fractional Laplacian

similar to the one in [3] for the Laplacian.

Proposition 2.1.1 Let V ∈ S(Rd), then

Tr(e−tHV − e−tHα) =
1

(2π)d

∫
Rd

(
p̂HVt (ξ,−ξ)− p̂(α)

t (ξ,−ξ)
)
dξ.

Proof For all t > 0 and x, y ∈ Rd, we have

∂tp
(α)
t (x, y) = −(−∆)

α
2
x p

(α)
t (x, y) (2.3)

p
(α)
0 (x, y) = δ(x− y)

and

∂tp
HV
t (x, y) = −[(−∆)

α
2
x + V (x)]pHVt (x, y) (2.4)

pHV0 (x, y) = δ(x− y).
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By taking Fourier transform on R2d, we deduce that

(∂t + |ξ|α)p̂
(α)
t (ξ, η) = 0

p̂
(α)
0 (ξ, η) = (2π)dδ(ξ + η) (2.5)

and that

(∂t + |ξ|α)p̂HVt (ξ, η) = − 1

(2π)d

∫
Rd
V̂ (θ)p̂HVt (ξ − θ, η)dθ

p̂HV0 (ξ, η) = (2π)dδ(η + ξ). (2.6)

Now, by directly solving (2.5) and (2.6) we find that

p̂
(α)
t (ξ, η) = (2π)dδ(η + ξ)e−t|ξ|

α

and that

p̂HVt (ξ, η)− p̂(α)
t (ξ, η) = − 1

(2π)d

∫ t

0

∫
Rd
e−(t−s)|ξ|αV̂ (θ)p̂HVs (ξ − θ, η)dθds. (2.7)

On the other hand, from (2.3), (2.4) and Duhamel’s Principle we see that

pHVt (x, y)− p(α)
t (x, y) = −

∫ t

0

∫
Rd
p

(α)
t−s(x, z)p

HV
s (z, y)V (z)dzds.

Since Tr(e−tHV − e−tHα) is by definition equal to
∫
Rd

(
pHVt (x, x)− p(α)

t (x, x)
)
dx, we

obtain from the above equality that

Tr(e−tHV − e−tHα) = −
∫ t

0

∫
R2d

p
(α)
t−s(x, z)p

HV
s (z, x)V (z)dzdxds. (2.8)

Expressing the right hand side of (2.8) in terms of Fourier transform we arrive at

Tr(e−tHV − e−tHα) = − 1

(2π)2d

∫ t

0

∫
R3d

V̂ (θ)p̂HVs (µ, τ)p̂
(α)
t−s(−µ− θ,−τ)dµdτdθds.

Since

p̂
(α)
t−s(−µ− θ,−τ) = (2π)dδ(τ + θ + µ)e−(t−s)|θ+µ|α ,

we see that

Tr(e−tHV − e−tHα) = − 1

(2π)2d

∫ t

0

∫
R2d

e−(t−s)|τ |α p̂HVs (−τ − θ, τ)V̂ (θ)dτdθds.

The conclusion of the proposition follows by setting ξ = −τ in the last equation, η = ξ

in (2.7) and integrating with respect to ξ.
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If we now iterate the equation (2.7) J-times, we obtain

Corollary 2.1.1 Let V ∈ S(Rd), 0 < α < 2 and set

F
(α)
j (s, ξ, θ) = e

−(t−s1)|ξ|α−
j−1∑
k=1

(sk−sk+1)|ξ−
k∑
i=1

θi|α
,

where s = (s1, ..., sj), sk+1 < sk and θ = (θ1, ..., θj−1). Then for J ≥ 2,

p̂HVt (ξ, η)− p̂(α)
t (ξ, η) = − 1

(2π)d

∫ t

0

∫
Rd
e−(t−s1)|ξ|αV̂ (θ1)p̂

(α)
s1 (ξ − θ1, η)dθ1ds1+

J∑
j=2

(−1)j

(2π)jd

∫ t

0

∫ s1

0

· · ·
∫ sj−1

0

∫
Rjd

F
(α)
j (s, ξ, θ)p̂

(α)
sj (ξ −

j∑
i=1

θi, η)

j∏
i=1

V̂ (θi)dθidsi+

(−1)J+1

(2π)(J+1)d

∫ t

0

∫ s1

0

· · ·
∫ sJ

0

∫
R(J+1)d

F
(α)
J+1(s, ξ, θ)p̂HVsJ+1(ξ −

J+1∑
i=1

θi, η)
J+1∏
i=1

V̂ (θi)dθidsi.

Furthermore, we conclude

Tr(e−tHV − e−tHα) = −tp(α)
t (0)V̂ (0)+ (2.9)

J∑
j=2

(−t)j

(2π)jd

∫ 1

0

∫ λ1

0

· · ·
∫ λj−1

0

∫
Rjd

F
(α)
j (tλ, ξ, θ)e−tλj |ξ|

α

V̂ (−
j−1∑
i=1

θi)

j−1∏
i=1

V̂ (θi)dθidλidλjdξ+

(−t)J+1

(2π)(J+2)d

∫ 1

0

∫ λ1

0

· · ·
∫ λJ

0

∫
R(J+2)d

F
(α)
J+1(tλ, ξ, θ)p̂HVtλJ+1

(ξ −
J+1∑
i=1

θi,−ξ)
J+1∏
i=1

V̂ (θi)dθidλidξ.

2.2 Boundedness of the (J+1)–th term.

Our goal in this section is to provide an upper bound for the absolute value of the last

expression in (2.9) in terms of p(α)
t (0). The following Lemma is a consequence of (2.2),

the inversion formula and induction. Therefore its proof is omitted.

Lemma 2.2.1 Let J ≥ 1 and {pi}Ji=0 ⊂ S(Rd) radial functions. Set ΨJ(ξ) = p̂0(ξ)
J∏
j=1

p̂j(γj−

ξ), where γj ∈ Rd are constant vectors. Then,

Ψ̂J(γ) = (2π)d
∫
RJd

e
−ι̇

J∑
j=1
〈γj ,xj〉

p0(
J∑
j=1

xj − γ)
J∏
j=1

pj(xj)dxj.
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Remark 2.2.1 Consider the function F (α)
J+1 defined as in Corollary 2.1.1. If we set p0 =

p
(α)
t(1−λ1) and pj = p

(α)
t(λj−λj+1) in the last Lemma, with γj =

j∑
k=1

θk, we obtain

F̂
(α)
J+1(tλ, x− y, θ)

(2π)d
=

∫
RJd

e
−ι̇

J∑
j=1
〈γj ,xj〉

p
(α)
t(1−λ1)(

J∑
j=1

xj − (x− y))
J∏
j=1

p
(α)
t(λj−λj+1)(xj)dxj.

(2.10)

Next, it is known that the transition density p(α)
t (x, y) satisfies the Chapman-Kolmogorov

equation, namely, ∫
Rd
p(α)
s (a− z)p

(α)
t (z)dz = p

(α)
t+s(a), (2.11)

for all a ∈ Rd and t, s > 0. With this equality at hand, it easily follows that∫
RJd

p
(α)
t(1−λ1)(

J∑
j=1

xj − (x− y))
J∏
j=1

p
(α)
t(λj−λj+1)(xj)dxj = p

(α)
t(1−λJ+1)(x− y). (2.12)

It can also be proved by means of the inversion formula that

∫
R(J+1)d

e
−ι̇
{
〈x,γJ+1〉+

J∑
j=1
〈γj ,xj〉

}
J+1∏
i=1

V̂ (θi)dθi = (2π)(J+1)dV (−x)
J∏
k=1

V (−
J∑
j=k

xj − x).

(2.13)

Proposition 2.2.1 Assume 0 < t < 1 and define

rJ+1(t) =

∫ 1

0

∫ λ1

0

· · ·
∫ λJ

0

∫
R(J+2)d

F
(α)
J+1(tλ, ξ, θ) p̂HVtλJ+1

(ξ −
J+1∑
i=1

θi,−ξ)
J+1∏
i=1

V̂ (θi)dξdθidλi.

There exists a positive constant C = CJ+1,d,α(V ) such that

|rJ+1(t)| ≤ Cp
(α)
t (0).

Proof Set γj =
j∑
i=1

θi and

p(x− y, {xj}Jj=1) = p
(α)
t(1−λ1)(

J∑
j=1

xj − (x− y))
J∏
j=1

p
(α)
t(λj−λj+1)(xj),

IJ+1(tλ, θ) =

∫
Rd
F

(α)
J+1(tλ, ξ, θ)p̂HVtλJ+1

(ξ − γJ+1,−ξ)dξ.
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Then, by the definition of Fourier transform and (2.10), we have that

IJ+1(tλ, θ) =

∫
Rd
F

(α)
J+1(tλ, ξ, θ)

∫
R2d

e−ι̇{〈ξ,x−y〉+〈−x,γJ+1〉}pHVtλJ+1
(x, y)dxdydξ

=

∫
R2d

pHVtλJ+1
(x, y)e−ι̇{〈−x,γJ+1〉}F̂

(α)
J+1(tλ, x− y, θ)dxdy

= (2π)d
∫
RJd

∫
R2d

e
−ι̇
{
〈−x,γJ+1〉+

J∑
j=1
〈xj ,γj〉

}
pHVtλJ+1

(x, y)p(x− y, {xj}Jj=1)dxdydxj.

Now, because of (2.13) with x replaced by −x, (2.12) and the fact that pHVtλJ+1
(x, y) ≤

et||V ||L∞(Rd)p
(α)
tλJ+1

(x, y) (which follows from (1.12)), we obtain from the last equality that∣∣∣∣∣
∫
R(J+1)d

IJ+1(tλ, θ)
J+1∏
i=1

V̂ (θi)dθi

∣∣∣∣∣ =∣∣∣∣∣(2π)(J+2)d

∫
R(J+2)d

V (x)
J∏
i=1

V (−
J∑
j=i

xj + x)pHVtλJ+1
(x, y)p(x− y, {xj}Jj=1)dxdydxj

∣∣∣∣∣ ≤
(2π)(J+2)d||V ||JL∞(Rd)e

t||V ||
L∞(Rd)

∫
Rd
|V (x)|

∫
Rd
p

(α)
t(1−λJ+1)(x− y)p

(α)
tλJ+1

(x− y)dydx.

It follows from (2.11) that

|rJ+1(t)| ≤ (2π)(J+2)dp
(α)
t (0)

(J + 1)!
||V ||JL∞(Rd)e

t||V ||
L∞(Rd)||V ||L1(Rd).

As a consequence, by setting

RJ+1(t) =
rJ+1(t)

(2π)(J+2)dp
(α)
t (0)

, (2.14)

we have proved that RJ+1(t) is bounded for t ∈ (0, 1).

2.3 Heat trace computation by means of subordinators.

In this section we further investigate formula (2.9) involving Tr(e−tHV − e−tHα). We

start by integrating the function

F
(α)
j (tλ, ξ, θ)e−tλj |ξ|

α

= e
−t(1−[λ1−λj ])|ξ|α−t

j−1∑
k=1

(λk−λk+1)|ξ−
k∑
i=1

θi|α
(2.15)
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with respect to ξ over Rd. The integral could be easily computed when α = 2 using two

elementary facts. Namely, for any γ ∈ Rd,

|ξ + γ|2 = |ξ|2 + 2 < ξ, γ > +|γ|2 (2.16)

and ∫
Rd
e−t|ξ−γ|

2

dξ = πd/2t−d/2. (2.17)

Unfortunately, we cannot calculate (2.15) in the same way because there is not a close

form for |ξ + γ|α, when 0 < α < 2. Instead, we will follow a probabilistic approach by

means of α/2–subordinators and their Laplace transform given in §1.0.2 that relates | · |α to

| · |2 to find the value of the integral involving the quantity in (2.15). We begin by observing

that (1.3) implies that for all c > 0 and t > 0,

e−tc|ξ|
α

= E
[
e−t

2
α Sc|ξ|2

]
. (2.18)

In addition, for any sequence of numbers {λk}jk=1, j ≥ 2, satisfying

0 < λj < λj−1 < ... < λ2 < λ1 < 1, (2.19)

we have

S1 = S(1−(λ1−λj))+λ1−λj − Sλ1−λj +

j−1∑
k=1

(
Sλk−λk+1+(λk+1−λj) − Sλk+1−λj

)
.

For 1 ≤ k ≤ j − 1 consider the random variables

S∗λk−λk+1
= Sλk−λk+1+(λk+1−λj) − Sλk+1−λj and

S∗1−(λ1−λj) = S1−(λ1−λj)+λ1−λj − Sλ1−λj .

Since the process S has independent and stationary increments, we see that the random

variables
{
S∗λk−λk+1

, S∗1−(λ1−λj)

}j−1

k=1
are independent and furthermore,

S∗λk−λk+1

D
= Sλk−λk+1

S∗1−(λ1−λj)
D
= S1−(λ1−λj). (2.20)
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We also have, of course, that

S∗1−(λ1−λj) +

j−1∑
k=1

S∗λk−λk+1
= S1. (2.21)

As before let us denote, for simplicity, γk =
k∑
i=1

θi. It follows from (2.18), (2.20), (2.21)

and the independence of
{
S∗λk−λk+1

, S∗1−(λ1−λj)

}j−1

k=1
that

e−t(1−[λ1−λj ])|ξ|α
j−1∏
k=1

e−t(λk−λk+1)|ξ−γk|α =

E
[
exp

(
−t2/αS∗1−(λ1−λj)|ξ|

2
)]

E

[
exp

(
−t2/α

j−1∑
k=1

S∗λk−λk+1
|ξ − γk|2

)]
=

E

[
exp

(
−t2/α

{
S∗1−(λ1−λj)|ξ|

2 +

j−1∑
k=1

S∗λk−λk+1
|ξ − γk|2

})]
. (2.22)

Next, consider the random variable defined as follows

L
(α)
j (λ, θ) =

j−1∑
k=1

S∗λk−λk+1
|γk|2 −

1

S1

∣∣∣∣∣
j−1∑
k=1

S∗λk−λk+1
γk

∣∣∣∣∣
2

, (2.23)

where λ = (λ1, ..., λj) satisfies (2.19). By (2.16), (2.21) and completing squares we easily

get that

S∗1−(λ1−λj)|ξ|
2 +

j−1∑
k=1

S∗λk−λk+1
|ξ − γk|2 = S1

∣∣∣∣∣ξ − 1

S1

j−1∑
k=1

S∗λk−λk+1
γk

∣∣∣∣∣
2

+ L
(α)
j (λ, θ).

Also, observe that by (2.17) and the scaling property (1.5) we have∫
Rd

exp

−t2/αS1

∣∣∣∣∣ξ − 1

S1

j−1∑
k=1

S∗λk−λk+1
γk

∣∣∣∣∣
2
 dξ = πd/2t−d/αS

−d/2
1

= Cd,αp
(α)
t (0)S

−d/2
1 , (2.24)

over the the set where 0 < S1 <∞. Here,

Cd,α =
πd/2

p
(α)
1 (0)

. (2.25)

We now combine these calculations to find the value of the desired integral. More

precisely, we have
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Lemma 2.3.1 Let λ = (λ1, ..., λj) satisfy (2.19), γk =
k∑
i=1

θi and θ = (θ1, ..., θj−1). Then,

L
(α)
j (λ, θ) ≥ 0, a.s.

and ∫
Rd
F

(α)
j (tλ, ξ, θ)e−tλj |ξ|

α

dξ = Cd,αp
(α)
t (0)E

[
S
−d/2
1,α

2
e−t

2/αL
(α)
j (λ,θ)

]
. (2.26)

Proof Assume γk = (b1,k, ..., bd,k). By the Cauchy-Schwarz inequality and (2.21)∣∣∣∣∣
j−1∑
k=1

S∗λk−λk+1
γk

∣∣∣∣∣
2

=
d∑

m=1

{
j−1∑
k=1

S∗λk−λk+1
bm,k

}2

=
d∑

m=1

{
j−1∑
k=1

{
S∗λk−λk+1

} 1
2
bm,k

{
S∗λk−λk+1

} 1
2

}2

≤
d∑

m=1

{
j−1∑
k=1

S∗λk−λk+1
b2
m,k

}
j−1∑
k=1

S∗λk−λk+1
≤ S1

j−1∑
k=1

S∗λk−λk+1
|γk|2.

In fact, under the convention that
0∑
r=1

= 0, we have for j ≥ 2,

L
(α)
j (λ, θ) = S−1

1

[
S∗1−(λ1−λj)

j−1∑
k=1

S∗λk−λk+1
|γk|2 +

j−2∑
r=1

j−1∑
s=r+1

S∗λr−λr+1
S∗λs−λs+1

|γr − γs|2
]
.

(2.27)

On the other hand, (2.26) follows by integrating (2.22) with respect to ξ, applying Fubini’s

Theorem to (2.22) and using (2.24).

Remark 2.3.1 We note that from (4.21) and the fact that 0 < S1 <∞, a.s,

0 < E
[
S
−d/2
1,α/2e

−t2/αL(α)
j (λ,θ)

]
≤ E

[
S
−d/2
1,α/2

]
<∞. (2.28)

In fact, all the above results are true for α = 2 in which case S1,1 = 1 and all our

calculation considerably simplify.

2.4 Bounds for remainders and coefficients.

We observe that the exponential function is involved in (2.26) and that this term is

part of the expression for Tr(e−tHV − e−tHα) in (2.9). Our next step is to use a Taylor

expansion of the exponential function with a particular remainder to obtain a finer estimate
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for the trace. This implies, as the reader may note, that in (2.26) we will have to deal

with expectations. Hence our goal in this section is to give conditions to guarantee the

finiteness of these expectations. Once this is done, it will follow easily that the coefficients

and remainders to appear in (2.9) are also finite and bounded, respectively.

We recall the well known expansion for the exponential function

e−x =
m−1∑
n=0

(−1)n

n!
xn +

(−1)m

m!
xme−xβm(x) (2.29)

valid for every x ≥ 0 and m ≥ 1, where we call βm(x) ∈ (0, 1) the remainder of order m.

With this expansion at hand, we now introduce two functions from which we will obtain

the desired finer estimates in the trace formula (2.9). For j ≥ 2,

Td(j, t) =

∫ 1

0

∫ λ1

0

· · ·
∫ λj−1

0

∫
Rjd

F
(α)
j (tλ, ξ, θ)e−tλj |ξ|

α

V̂ (−
j−1∑
i=1

θi)

j−1∏
i=1

V̂ (θi)dθidλidξdλj =

(2.30)

Cd,αp
(α)
t (0)

∫ 1

0

∫ λ1

0

· · ·
∫ λj−1

0

∫
R(j−1)d

E
[
S
−d/2
1,α/2e

−t
2
αL

(α)
j (λ,θ)

]
V̂ (−

j−1∑
i=1

θi)

j−1∏
i=1

V̂ (θi)dθidλidλj.

The remainder function is

R
(m)
j,d (t) =

Cd,α
m!(2π)jd

∫ 1

0

∫ λ1

0

· · ·
∫ λj−1

0

∫
R(j−1)d

E
[
S
−d/2
1,α/2

{
L

(α)
j (λ, θ)

}m
e−β

∗
m,j(t)

]
×V̂ (−

j−1∑
i=1

θi)

j−1∏
i=1

V̂ (θi)dθidλidλj, (2.31)

where the random functions β∗m,j(t) = t2/αL
(α)
j (λ, θ)βm(−t2/αL(α)

j (λ, θ)) are nonnegative.

Remark 2.4.1 We note by (2.28) and (2.30) that

∣∣∣∣∣ Td(j, t)

(2π)jdp
(α)
t (0)

∣∣∣∣∣ ≤ Cd,αE
[
S
−d/2
1,α/2

]
j!(2π)jd

∫
R(j−1)d

∣∣∣∣∣V̂ (−
j−1∑
i=1

θi)

j−1∏
i=1

V̂ (θi)

∣∣∣∣∣ dθi,
for all j ≥ 2, d ≥ 1. Observe that the right hand side is finite since V ∈ S(Rd), proving at

the same time the finiteness of Td(j, t), for all t > 0.

We now proceed to prove the finiteness of the remainder-functions in (2.31) and define

the coefficients given in Theorem 1.2.1.
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Lemma 2.4.1 Assume M ≥ 1 is an integer satisfying M < α+d
2

. Then, for all t ≥ 0 and

j ≥ 2,

∣∣∣R(M)
j,d (t)

∣∣∣ ≤ Cj,d,M

∫
R(j−1)d

(
j−1∑
k=1

|γk|2
)M ∣∣∣∣∣V̂ (−

j−1∑
i=1

θi)

j−1∏
i=1

V̂ (θi)

∣∣∣∣∣ dθi,
where

Cj,d,M =
Cd,αE

[
S
M−d/2
1,α/2

]
j!M !(2π)jd

, γk =
k∑
i=1

θi.

Furthermore,

(a) for all integers n ≤M ,

0 ≤ E
[
S
−d/2
1,α

2

{
L

(α)
j (λ, θ)

}n]
<∞,

(b) and for all j ≥ 2,

Td(j, t)

(2π)jdp
(α)
t (0)

=
M−1∑
n=0

(−1)nC
(α)
n,j (V )t

2n
α + (−1)M t

2M
α R

(M)
j,d (t),

where

C
(α)
n,j (V ) =

Cd,α
(2π)jdn!

∫ 1

0

∫ λ1

0

· · ·
∫ λj−1

0

∫
R(j−1)d

×

E
[
S
−d/2
1,α/2

{
L

(α)
j (λ, θ)

}n]
V̂ (−

j−1∑
i=1

θi)

j−1∏
i=1

V̂ (θi)dθidλidλj.

Proof We start by observing that the conditionM < d+α
2

guarantees that 0 ≤ E
[
S
n−d/2
1,α

2

]
<

∞ for all integers n ≤ M , according to (4.21). From this we proceed to prove (a) as fol-

lows. Recall that

S∗1−(λ1−λj) +

j−1∑
k=1

S∗λk−λk+1
= S1,α/2.

It follows from (2.23) and the last equality that

0 < L
(α)
j (λ, θ) ≤

j−1∑
k=1

S∗λk−λk+1
|γk|2 ≤ S1,α/2

j−1∑
k=1

|γk|2.
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Then, from the last inequality we conclude that for all integer n ≤M ,

E
[
S
−d/2
1,α/2

{
L

(α)
j (λ, θ)

}n]
≤ E

[
S
n−d/2
1,α/2

]( j−1∑
k=1

|γk|2
)n

.

Thus (a) now follows easily from the last inequality. On the other hand, (b) follows

from the Taylor expansion (3.17) applied to (2.30). We remark that C(α)
n,j (V ) = R

(n)
j,d (0).

Therefore the last expression is finite, according to (2.4.1).

Remark 2.4.2 Lemma 2.4.1 allows us to bound the remainders by a constant for all t ≥ 0

and shows the finiteness of both the remainders and the coefficients C(α)
n,j (V ) by proving the

finiteness of the expectations under the condition n ≤ M < d+α
2

. Indeed, this condition

is introduced to make sense of the Taylor expansion of order M when it is applied to the

function (2.28). As a consequence our results are dimensional dependent. The reason why

this does not happen when α = 2 is that in this case the time change is trivial, St,1 =

t, and L
(2)
j is nonrandom function. These two facts considerably reduce all the above

computations, thereby the dimension only appearing in the integrals involving V̂ , which

are finite since V ∈ S(Rd).

2.5 An improvement for dimension d = 1, 2, 3.

We recall the basic inequality(
j−1∑
k=1

ak

)M

≤ (j − 1)M−1

j−1∑
k=1

aMk ,

valid for all j ≥ 2 and positive numbers {ak}j−1
k=1 .

From the last inequality and (2.27), it follows for all integer M ≥ 1 that there exists a

constant Cj,M > 0 such that

C−1
j,ME

[
S
−d/2
1

{
L

(α)
j (λ, θ)

}M]
≤

j−1∑
k=1

E
[(
S∗1−(λ1−λj)S

∗
λk−λk+1

)M
S
−M− d

2
1

]
|γk|2M+

j−2∑
r=1

j−1∑
s=r+1

E
[
(S∗λr−λr+1

S∗λs−λs+1
)MS

−M− d
2

1

]
|γr − γs|2M ,

(2.32)
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whenever the expectations involved in the last expression are finite. The purpose of this

section is to provide conditions under which these last expectations are finite for dimension

d = 1, 2 and 3.

We proved in §2.3 that

S∗1−(λ1−λj) +

j−1∑
k=1

S∗λk−λk+1
= S1,

for {λk}Jk=1 satisfying (2.19) and where the random variables on the left hand side of the

last equality are independent. In particular, it follows that S1 ≥ S∗l0 + S∗l1 for any distinct

l0, l1 ∈ {1− (λ1 − λj), λk − λk+1}j−1
k=1. Now, observe that each expectation in (2.32) can

be written as E
[
(S∗l1S

∗
l0

)MS
−M− d

2
1

]
, and these expectations satisfy

E

[
(S∗l1S

∗
l0

)M

S
M+ d

2
1

]
≤ E

[
(S∗l1S

∗
l0

)M

(S∗l1 + S∗l0)M+ d
2

]
.

Lemma 2.5.1 Let j ≥ 2 and {λk}jk=1 satisfying (2.19). Let l0, l1 be two distinct numbers

in {1− (λ1 − λj), λk − λk+1}j−1
k=1. Then,

0 ≤ E
[

(S∗l0S
∗
l1

)M

(S∗l0 + S∗l1)M+d/2

]
<∞,

provided that M/2− d/4 < α/2.

In particular, when

i) M=1, if 2−d
2
< α.

ii) M=2, if 4−d
2
< α.

Proof Because of the inequality 2(ab)1/2 ≤ a+ b, for any a, b ≥ 0, we have that

E
[

(S∗l0S
∗
l1

)M

(S∗l0 + S∗l1)M+d/2

]
≤ 2−M−d/2E

[
(S∗l0S

∗
l1

)M

(S∗l0S
∗
l1

)M/2+d/4

]
.

Now, recall that S∗l0 and S∗l1 are independent and S∗li
D
= l

2/α
i S1,α/2 . Therefore,

E
[

(S∗l0S
∗
l1

)M

(S∗l0S
∗
l1

)M/2+d/4

]
= (l0l1)

2
α{M2 − d4}

(
E
[
S
M
2
− d

4

1,α
2

])2

. (2.33)

The result follows from the inequality M/2 − d/4 < α/2 which guarantees the finite-

ness of the last expectation.
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As an application of Lemma 2.5.1, we have

Corollary 2.5.1 Assume j ≥ 2.

(i) For 1
2
< α < 2 and d = 1, we have

E
[
S
−1/2
1,α

2
L

(α)
j (λ, θ)

]
<∞.

(ii) For d = 1 and 3
2
< α < 2, d = 2 and 1 < α < 2, d = 3 and 1

2
< α < 2, we have

E
[
S
−d/2
1,α

2

{
L

(α)
j (λ, θ)

}2
]
<∞.

The following is a version of Lemma 2.4.1 for dimension 1, 2, and 3 where the condition

M < d+α
2

is replaced by M/2− d/4 < α/2.

Lemma 2.5.2

(i) For d=1, and M=1, we have for all 1
2
< α < 2 and j ≥ 2 that

T1(j, t)

(2π)jp
(α)
t (0)

= C
(α)
0,j (V )− t

2
αR

(1)
j,1 (t).

(ii) For M=2 and j ≥ 2, we have

Td(j, t)

(2π)djp
(α)
t (0)

=
1∑

n=0

(−1)nC
(α)
n,j (V )t

2n
α + t

4
αR

(2)
j,d(t),

when d = 1 and 3
2
< α < 2, d = 2 and 1 < α < 2, or d = 3 and 1

2
< α < 2,

where the remainders R(2)
j,d(t) are bounded in absolute value by a constant for all t ≥ 0,

according to Corollary 2.5.1 and the fact that M/2 − d/4 > −1 for all M,d as stated

above.

Proof We start by recalling that for any j ≥ 2

Ij := {λ = (λ1, ..., λj) : 0 < λj < λj−1 < ... < λ1 < 1} .
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Next, under the notation given in Lemma 2.4.1 and because of (2.31), we have that∣∣∣C(α)
1,j (V )

∣∣∣ and
∣∣∣R(M)

j,d (t)
∣∣∣, M = 1, 2 are bounded by

∫
Ij

∫
R(j−1)d

E
[
S
−d/2
1

{
L

(α)
j (λ, θ)

}M] ∣∣∣∣∣V̂ (−
j−1∑
i=1

θi)

j−1∏
i=1

V̂ (θi)

∣∣∣∣∣ dλjdλidθi.
This last expression is also bounded, based on (2.33) and the facts given at the beginning

of this section, up to some positive constant by terms of the form∫
Ij

(l0l1)
2
α

(M
2
− d

4
)dλjdλi

(
E
[
S
M
2
− d

4

1,α
2

])2
∫
R(j−1)d

j−1∑
k=1

|γk|2M
∣∣∣∣∣V̂ (−

j−1∑
i=1

θi)

j−1∏
i=1

V̂ (θi)

∣∣∣∣∣ dθi
where l0 = l0(λ) and l1 = l1(λ) are two distinct numbers in {1− (λ1 − λj), λk − λk+1}j−1

k=1.

Now the term∫
Ij

(l0l1)
2
α

(M
2
− d

4
)dλjdλi =

∫ 1

0

∫ λ1

0

...

∫ λj−1

0

(l0l1)
2
α

(M
2
− d

4
)dλj...dλ1

is clearly finite when M/2−d/4 ≥ 0, which is the case for M = 1, 2, d = 1, 2 and M = 2,

d = 3. But, when M = 1 and d = 3, we obtain −1 < M/2 − d/4 = 1/2 − 3/4 = −1/4

and this case deserves special attention.

We observe that for all 1 ≥ λi > λk+1 we have∫ λi

0

λk+1(λi − λk+1)−
1

2αdλk+1 ≤
∫ λi

0

(λi − λk+1)−
1

2αdλk+1 ≤
∫ 1

0

w−
1

2αdw =
2α

2α− 1

and ∫ λj−1

0

(1− λ1 + λj)
− 1

2α (λj−1 − λj)−
1

2αdλj ≤ (1− λ1)−
1

2α
2α

2α− 1

provided that α > 1
2
. Then, it is not difficult to see that∫

Ij

(l0l1)−
1

2αdλjdλi ≤
(

2α

2α− 1

)2

.

2.6 Proof of Theorem 1.2.1 and Theorem 1.2.2.

Proof of part (a): Recall that, for J ≥ 2, we have defined
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RJ+1(t) =
rJ+1(t)

(2π)(J+2)dp
(α)
t (0)

and also showed, according to Proposition 2.2.1, that this remainder is bounded by a con-

stant for 0 ≤ t < 1. Also M < d+α
2

implies that R(M)
2,d (t), ..., R

(M)
J,d (t) are, according to

Lemma 2.4.1, bounded by a constant for 0 < t.

Next, (a) follows by substituting the terms found in Lemma 2.4.1 into (2.9). More

precisely,

T (α)
V (t) = −t

∫
Rd
V (θ)dθ +

J∑
j=2

M−1∑
n=0

(−1)n+jC
(α)
n,j (V )t

2n
α

+j

(−t)J+1RJ+1(t) +
J∑
j=2

(−1)j+M tj+
2M
α R

(M)
j,d (t). (2.34)

Therefore, by defining

R
(α)
J+1(t) = (−t)J+1RJ+1(t) +

J∑
j=2

(−1)j+M tj+
2M
α R

(M)
j,d (t), (2.35)

(which is the sum of all the remainders obtained by applying the expansion found in (2.9)

together with those provided by the Taylor expansion of the exponential function), we

conclude due to the facts given at the start of this section, that there exists a constant C > 0

such that ∣∣∣R(α)
J+1(t)

∣∣∣ ≤ CtΦ
(α)
J+1(M), (2.36)

for 0 ≤ t < 1, where Φ
(α)
J+1(M) = min

{
J + 1, 2 + 2M

α

}
and this completes the proof of

part (a) in Theorem 1.2.1.

By taking into consideration the equations (2.34), (2.35) and (2.36), we proceed at this

point to give the proof of Theorem 1.2.2 which follows by noticing that

J∑
j=2

M−1∑
n=0

(−1)n+jC
(α)
n,j (V )t

2n
α

+j =
∑

2n
α

+j<Φ
(α)
J+1(M)

2≤j≤J, 0≤n≤M−1

(−1)n+jC
(α)
n,j (V )t

2n
α

+j

+
∑

2n
α

+j≥Φ
(α)
J+1(M)

2≤j≤J, 0≤n≤M−1

(−1)n+jC
(α)
n,j (V )t

2n
α

+j
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and

t
2n
α

+j = O(tΦ
(α)
J+1(M)),

as t ↓ 0, provided that 2n
α

+ j ≥ Φ
(α)
J+1(M).

Proof of part (b): In the proof, we will appeal to the elementary properties of weak

convergence that can be found in [17]. Since we are only interested in α’s close to 2, it

suffices to prove that if n, d ≥ 1 are positive integers satisfying n ≤ 1+d
2

, then for all j ≥ 2

we have

lim
r→∞

C
(αr)
n,j (V ) = C

(2)
n,j(V ),

for any sequence {αr}r∈N satisfying 3
2
< αr < 2 and αr ↑ 2.

To prove the last statement, we need to introduce some notation. Recall that Ij ⊂ Rj

has been defined as

Ij = {λ = (λ1, ..., λj) : 0 < λj < λj−1 < ... < λ1 < 1} .

We also set

Xr(λ) = (S∗1−(λ1−λj),αr2
, S∗λj−1−λj ,αr2

, ..., S∗λ1−λ2,
αr
2

),

X(λ) = (1− (λ1 − λj), λj−1 − λj, ..., λ1 − λ2),

θ = (θ1, ..., θj−1) ∈ R(j−1)d,

γk =
k∑
i=1

θi ∈ Rd, k ∈ {1, ..., j − 1} ,

hn,d(x0, x1, ..., xj) =



(
x0

j−1∑
k=1

xk|γk|2+
j−2∑
m=1

j−1∑
s=m+1

xmxs|γm−γs|
)n

(
j−1∑
k=0

xk

)n+ d
2

, for x0 > 0,..., xj > 0,

0, otherwise.
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With this notation,

hn,d(Xr(λ)) = S
−d/2
1,αr

2

{
L

(αr)
j (λ, θ)

}n
,

hn,d(X(λ)) =
{
L

(2)
j (λ, θ)

}n
.

We now divide our proof into 5 steps.

Step 1. Xr(λ)⇒ X(λ).

To see this, we recall that for t ∈ {1− (λ1 − λj), λk − λk+1}j−1
k=1 and λ > 0,

E
[
e−λS

∗
t,αr/2

]
= e−tλ

αr/2

.

This expectation corresponds to the Laplace transform of S∗t,αr/2 and uniquely determines

its distribution. We conclude that

lim
r→+∞

E
[
e−λS

∗
t,αr/2

]
= e−tλ.

Thus, S∗t,αr/2 ⇒ t.

On the other hand, due to the independence of S∗1−(λ1−λj),αr/2, S∗λj−1−λj ,αr/2,. . . ,

S∗λ1−λ2,αr/2
, the fact that the real and imaginary part of f(z) = eι̇z are bounded and continu-

ous functions over R together with Theorem 25.8 in [17], we also obtain for every v ∈ Rj+1

that

E
[
e−ι̇<v,Xr(λ)>

]
→ E

[
e−ι̇<v,X(λ)>

]
.

as r →∞. Therefore, the result follows by appealing to Theorem 29.4 in [17].

Step 2. hn,d(Xr(λ))⇒ hn,d(X(λ)).

We note that each component of the vector X(λ) is positive. Thus, by our definition of

hn,d, it is clear that X(λ) belongs to the set of continuity points of hn,d. Then, P(X(λ) ∈

Dhn,d) = 0 and the result follows from Theorem 29.2 in [17].

Step 3. {hn,d(Xr)}r∈N is uniformly integrable.

We shall show that there exist a p > 1 and a function C(n, d, p, θ) > 0 such that
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sup
r

E [{hn,d(Xr(λ))}p] ≤ C(n, d, p, θ). (2.37)

To do this, we consider two cases to determine a proper p.

Case 1. Suppose n− d
2
≤ 0. In the proof of Lemma 2.4.1, we proved that

hn,d(Xr(λ)) ≤ S
n− d

2

1,αr
2

(
j−1∑
k=1

|γk|2
)n

.

To prove (2.37), it suffices to show that sup
r

E
[
S
p(n− d2)
1,αr

2

]
is bounded for some p > 1.

Recall that

0 < E
[
S
p(n− d2)
1,αr

2

]
=

Γ(1− 2p
αr

(
n− d

2

)
)

Γ(1− p
(
n− d

2

)
)
<∞, (2.38)

provided that

p

(
n− d

2

)
<
αr
2
< 1. (2.39)

If n− d
2

= 0, we take C(n, d, p, θ) =

(
j−1∑
k=1

|γk|2
)pn

and any p > 1, since clearly in this

case E
[
S
p(n− d2)
1,αr

2

]
= 1.

If n − d
2
< 0, it is clear that (2.39) is satisfied for any p > 1. But, we wish to pick p

so that (2.38) is uniformly bounded in r. To do this in a suitable manner, we require the

following well-known property of the the gamma function(see [50]). There exists µ0 ∈

(1, 2) such that Γ(z) is decreasing on (0, µ0] and increasing over (µ0,+∞). Now, from

the last property and the fact that each αr satisfies 1 < 2
αr

< 2, it follows that for any

p > max
{

1, 1
d
2
−n

}
,

Γ(2) ≤ Γ

(
1 +

2p

αr

(
d

2
− n

))
≤ Γ

(
1 + 2p

(
d

2
− n

))
. (2.40)

Therefore,

sup
r

E [{hn,d(Xr(λ))}p] ≤
Γ(1− 2p

(
n− d

2

)
)

Γ(1− p
(
n− d

2

)
)

(
j−1∑
k=1

|γk|2
)pn

= C(n, d, p, θ).

Case 2. Suppose n − d
2
> 0. Because of the inequality 0 < n − d

2
≤ 1

2
, which is

equivalent to 0 < 2n − d ≤ 1, we conclude that d = 2n − 1, since d and n are positive
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integers. Therefore n− d
2

= 1
2
. In this case, from the tools we developed in §2.5 we obtain

that 0 ≤ hn,d(Xr(λ)) is bounded, up to some positive constant, by a finite sum containing

terms of the form
j−1∑
k=1

|γk|2n
(
S∗l0,αr/2S

∗
l1,αr/2

)(n2− d4)
, (2.41)

for any two distinct numbers l0, l1 in {1− (λ1 − λj), λk − λk+1}j−1
k=1.

Next, due to the fact that S∗li,αr2 , i = 0, 1 are independent and have law l
2
αr
i S1,αr/2,

0 < li < 1 and n − d
2

= 1
2
, we conclude that E [hn,d(Xr(λ))2] is bounded up to some

positive constant by (
E
[
S

1
2

1,αr
2

] j−1∑
k=1

|γk|2n
)2

.

We also know that

E
[
S

1/2
1,αr/2

]
=

Γ(1− 1
αr

)

Γ(1
2
)

.

On the other hand, the function Γ(z) is decreasing over (0,1). Next, we observe that

each αr satisfies
1

3
≤ 1− 1

αr
≤ 1

2
,

which yields

E
[
S

1/2
1,αr/2

]
≤

Γ(1
3
)

Γ(1
2
)
.

For this,

C(n, d, 2, θ) = C

(
Γ(1

3
)

Γ(1
2
)

j−1∑
k=1

|γk|2n
)2

,

for some C > 0.

Step 4. lim
r→+∞

E [hn,d(Xr(λ))] = E [hn,d(X)].

This is a consequence of Steps 2, 3 and Theorem 25.12 in [17].

Step 5. Notice that by the Hölder’s inequality and Step 3, we have proved that for some

p > 1,

sup
r

E [hn,d(Xr(λ))] ≤ sup
r

(E [hn,d(Xr(λ))p])
1
p ≤ {C(n, d, p, θ)}

1
p , (2.42)
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where {C(n, d, p, θ)}
1
p > 0 is, indeed, a polynomial function in the variable θ. Using the

fact V ∈ S(Rd) and the bounds in Step 3, we have∫
Ij

∫
R(j−1)d

{C(n, d, p, θ)}
1
p

∣∣∣∣∣V̂ (−
j−1∑
i=1

θi)

j−1∏
i=1

V̂ (θi)

∣∣∣∣∣ dθidλidλj < +∞.

Therefore, by (2.42), Step 4, and the dominated convergence theorem, we arrive at the

desired result and this completes the proof of part (b).

2.7 Explicit form of some coefficients.

In this section, we compute some coefficients explicitly and again show their finiteness

by applying some basic inequalities arising from Lemmas 2.4.1 and 2.5.1.

We start with the simplest case n = 0. Observe that an inducting argument together

with Inversion formula (2.2) yield

C
(α)
0,j+1(V ) =

Cd,αE
[
S
−d/2
1,α

2

]
(2π)(j+1)d

∫ 1

0

∫ λ1

0

· · ·
∫ λj

0

∫
Rjd

V̂ (−
j∑
i=1

θi)

j∏
i=1

V̂ (θi)dθidλidλj

=
1

(j + 1)!

∫
Rd
V j+1(θ)dθ,

for every j ≥ 1. Here, we have also used that (4π)d/2p
(α)
1 (0) = E

[
S
−d/2
1,α

2

]
and Cd,α =

πd/2

p
(α)
1 (0)

.

The following Lemma will be useful to prove that the constants appearing in Corollary

1.2.1 are strictly positive. Part of the following proof can be found in [37].

Lemma 2.7.1 Given 0 < α < 2, there exists Nα > 1 such that

1− e−vα
2

≤ P(1 < S1,α
2
< Nα),

where vα = (2− α)α
α

2−α2
−2

2−α .

Proof Let a > 0 be fixed and observe that S1,α
2
≤ a if and only if e−λS1, α2 ≥ e−λa, for any

λ > 0.
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Therefore, Chebyshev inequality tells us that

P(S1,α
2
≤ a) ≤ inf

λ>0
e(aλ−λ

α
2 ) = e

(
−a

α
α−2 vα

)
.

On the other hand, lim
n→+∞

P(S1,α
2
< n) = 1 implies that given ε > 0, there exists a

positive integer N such that

1− P(S1,α
2
< n) ≤ ε, for all n ≥ N .

It follows then that for ε = 1−e−vα
2

, there exists Nα > 1 such that

1− P(S1,α
2
< Nα) ≤ 1− e−vα

2
or P(S1,α

2
< Nα) ≥ 1 + e−vα

2
.

Now use the above facts with a = 1, to obtain that

P(1 < S1,α
2
< Nα) = P(S1,α

2
< Nα)− P(S1,α

2
≤ 1)

≥ 1 + e−vα

2
− e−vα

=
1− e−vα

2
,

as desired.

Remark 2.7.1 Before proceeding, we give an explicit expression for Nα when α = 1.

Observe that v1 = −1
4
. The 1/2–subordinator S can be expressed as the first hitting time

for the standard one-dimensional Brownian motion {Wt}t≥0. More precisely,

St = inf

{
s > 0 : Ws =

t√
2

}
.

It is also known (See [1, pp 23-24] for details) that its density is given by

η
(1/2)
t (s) =

t

2
√
π
s−3/2e−t

2/4s.

Therefore, it is not difficult to see that for any N > 1,

P(1 < S1, 1
2
< N) =

1

2
√
π

∫ N

1

s−3/2e−1/4sds ≥ e−1/4

2
√
π

∫ N

1

s−3/2ds =
e−1/4

√
π

(1−N−1/2).

We can take then
e−1/4

√
π

(1−N−1/2
1 ) =

1− e−1/4

2

or equivalently, N1 =
{

1−
√
π

2
(e1/4 − 1)

}−2

which is approximately 1.786.
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Let us now consider the case n = 1 and j = 2 . We recall that

S∗1−(λ1−λ2) + S∗λ1−λ2
= S1, (2.43)

provided 0 < λ2 < λ1 < 1. In addition, S∗1−(λ1−λ2) and S∗λ1−λ2
are independent random

variables. Then, it follows by Lemma 2.4.1 that

C
(α)
1,2 (V ) =

Cd,αK1(d, α)

(2π)d
〈−∆V, V 〉 =

Cd,αK1(d, α)

(2π)d

∫
Rd
|∇V (θ)|2 dθ, (2.44)

where we have replaced S1 by the left hand side of (2.43) to obtain that

K1(d, α) =

∫ 1

0

∫ λ1

0

E

[
S∗1−(λ1−λ2)S

∗
λ1−λ2

(S∗1−(λ1−λ2) + S∗λ1−λ2
)1+ d

2

]
dλ2dλ1

=

∫ 1

0

∫ λ1

0

E

[
S∗1−wS

∗
w

(S∗1−w + S∗w)1+ d
2

]
dwdλ1.

We now claim that K1(d, α) is both finite and strictly positive when either d = 1 and
1
2
< α < 2, or d ≥ 2 and 0 < α < 2 as follows.

We start with d = 1 and 1
2
< α < 2. By Lemma 2.5.1, we obtain in this case that

0 ≤ K1(1, α) ≤ 2−3/2E
[
S

1/4
1,α/2

] ∫ 1

0

∫ λ1

0

{(1− w)w}
1

2α dwdλ1.

On the other hand, when d ≥ 2 we have

0 ≤ K1(d, α) ≤ 1

2

∫ 1

0

∫ λ1

0

E
[
(S∗1−w + S∗w)1−d/2] dwdλ1 =

E
[
S

1−d/2
1,α/2

]
4

(2.45)

where we have used the basic inequality

ab

(a+ b)d/2+1
=

ab

(a+ b)d/2−1(a+ b)2
≤ 1

2
(a+ b)1−d/2,

valid for all a, b > 0. The expectation in (2.45) is finite for all α since 1 − d
2
≤ 0 < α

2
.

Therefore K1(d, α) is finite in the cases stated above.

Next, we prove thatK1(d, α) is strictly positive. We note that (1.3) implies that St
D
= t

2
αS1.

Therefore, we can write

S∗1−w
D
= (1− w)

2
αX1, S∗w

D
= w

2
αX2,



43

where X1, X2 are independent copies of S1. That is, X1
D
= S1

D
= X2. Thus, for any 0 <

w < 1, we have

E

[
S∗1−wS

∗
w

(S∗1−w + S∗w)1+ d
2

]
= E

[
(1− w)

2
αw2/αX1X2

((1− w)2/αX1 + w2/αX2)1+ d
2

]

≥ (1− w)
2
αw

2
αE

[
X1X2

(X1 +X2)1+ d
2

; 1 < X1, X2 ≤ Nα

]

≥ (1− w)
2
αw

2
α

(2Nα)1+ d
2

P(1 < S1,α
2
≤ Nα)2.

From Lemma 2.7.1 and the last inequality, we conclude that

K1(d, α) ≥ (1− e−vα)2

4(2Nα)1+ d
2

∫ 1

0

∫ λ1

0

(1− w)
2
αw

2
αdw dλ1 > 0.

Similarly, for either all α ∈ (1, 2) and d ≥ 2, or for d ≥ 4 and α ∈ (0, 2), we have

C
(α)
2,2 (V ) =

Cd,αK2(d, α)

2(2π)d

∫
Rd
|∆V (θ)|2 dθ,

where

K2(d, α) =

∫ 1

0

∫ λ1

0

E

[
(S∗1−(λ1−λ2)S

∗
λ1−λ2

)2

(S∗1−(λ1−λ2) + S∗λ1−λ2
)2+ d

2

]
dλ2 dλ1.

By applying the same argument as above, we have the following

(i) α ∈ (1, 2) and d ≥ 3 or for d ≥ 4 and α ∈ (0, 2), we obtain

0 <
(1− e−vα)2

4(2Nα)2+ d
2

∫ 1

0

∫ λ1

0

(1− w)
4
αw

4
αdw dλ1 ≤ K2(d, α) ≤

E
[
S

2−d/2
1,α

2

]
12

.

(ii) α ∈ (1, 2) and d = 2, we have the same lower bound as in (i), but by Lemma 2.5.2

we obtain

K2(2, α) ≤ 2−3E
[
S

1/2
1,α/2

] ∫ 1

0

∫ λ1

0

{w(1− w)}
1
α dwdλ1.

Likewise, it is not hard to prove that

C
(α)
1,3 (V ) =

Cd,αK3(d, α)

(2π)d

∫
Rd
V (θ) |∇V (θ)|2 dθ,
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where

K3(d, α) =

∫ 1

0

∫ λ1

0

∫ λ2

0

E

[
S∗1−(λ1−λ3)S

∗
λ1−λ2

+ S∗1−(λ1−λ3)S
∗
λ2−λ3

+ S∗λ1−λ2
S∗λ2−λ3

(S∗1−(λ1−λ3) + S∗λ1−λ2
+ S∗λ2−λ3

)1+d/2

]
dλ3dλ2dλ1,

is positive and finite provided that either d ≥ 2 and 0 < α < 2 or d = 1 and 1
2
< α < 2.

For the rest of the paper, we will use the following notation for the constants given

above,

Md,α =
Cd,αK3(d, α)

(2π)d
and Nd,α =

Cd,αK2(d, α)

2(2π)d
.

Remark 2.7.2 Based on the computations in [3] and part (b) of Theorem 1.2.1, we have

under the conditions stated above that

lim
α↑2
Nd,α =

1

120
and lim

α↑2
Md,α =

1

12
.

2.8 Proof of Corollary 1.2.1.

The proof uses a combination of Theorem 1.2.1 and Lemma 2.5.2.

Case M=1.

1) When d ≥ 2, we invoke Theorem 1.2.1 with J = 3. We have in this case 1 − d
2
≤

0 < α
2

. Therefore, we can consider, according to Lemma 2.4.1, any α on the right

hand side of the next expression,

T (α)
V (t) + t

∫
Rd
V (θ)dθ − t2

2

∫
Rd
V 2(θ)dθ +

t3

3!

∫
Rd
V 3(θ)dθ = R

(α)
4 (t), (2.46)

where

R
(α)
4 (t) = O(tφ

(α)
4 (1)),

as t ↓ 0, and

φ
(α)
4 (1) = min

{
4, 2 +

2

α

}
.

Hence, (iii) follows by noticing that

2 +
2

α
< 4 < 3 +

2

α
, when α ∈ (1, 2)

4 ≤ 2 +
2

α
< 3 +

2

α
, when α ∈ (0, 1].
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2) For the case d = 1, we use Lemma 2.5.2 which guarantees that (2.46) is still true for
1
2
< α < 1. Thus (i) holds.

Case M=2. We apply Theorem 1.2.1 with J = 4 and 2− d
2
< α

2
to obtain

T (α)
V (t) + t

∫
Rd
V (θ)dθ − t2

2

∫
Rd
V 2(θ)dθ + C

(α)
1,2 (V )t2+ 2

α +
t3

3!

∫
Rd
V 3(θ)dθ

− C(α)
1,3 (V )t3+ 2

α − t4

4!

∫
Rd
V 4(θ)dθ + C

(α)
1,4 (V )t4+ 2

α = R
(α)
5 (t), (2.47)

with

R
(α)
5 (t) = O(tφ

(α)
5 (2)),

as t ↓ 0, and

φ
(α)
5 (2) = min

{
5, 2 +

2 · 2
α

}
.

1) (iv), (v) and (vi) when d ≥ 4.

We have 2 − d
2
≤ 0 < α

2
and then any α can be considered. For α ∈ (0, 1], we have

2 ≤ 2
α
, which implies that all the powers of t containing α are larger than 5 except

2 + 2
α

. Comparing 2 + 2
α

with 5 yields (v) and (vi). Notice that (iv) also follows

since all the power of t containing α in (2.47) are larger than 4 (simply use the fact

that 1 < 2
α

) except 2 + 2
α

which is less than 4 whenever 1 < α < 2.

In addition, by Lemma 2.5.2 we obtain that (2.47) remains true in the following cases

2) When d = 3 and 1
2
< α < 2. Hence, (iv) and (v) holds by part 1).

3) When d = 2, 0 < α < 1. Then, (iv) also holds for d = 2.

4) When d = 1, 3
2
< α < 2. Thus, (ii) holds.

This covers all the cases and completes the proof of Corollary 1.2.1.
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2.9 Explicit expansion for α = 2/k, k ≥ 2 integer and α close to 2

In this section we want to provide to the reader a better insight of the Theorem 1.2.2 by

providing the expansion formula of the trace when α = 2
k

with k ≥ 2 an integer and for

values of α near 2, of course, under the condition that 2M − d < α, which is equivalent

to 2M − d ≤ 0 when 0 < α ≤ 1. We also give examples as an application to the results

given below. We refer to the reader to the end of §2.7 for the definition of the constants

Ld,α,Md,α and Nd,α.

Theorem 2.9.1 Let α = 1 and 2M − d ≤ 0. Then, for any 2 ≤ J ≤ 2M ,

T (1)
V (t) + t

∫
Rd
V (θ)dθ −

J∑
`=2

t`

 ∑
2n+j=`,
j≥2

(−1)n+jC
(1)
n,j(V )

 = O(tJ+1), (2.48)

as t ↓ 0.

Proof We apply Theorem 1.2.2 with α = 1 and J + 1 ≤ 2M + 1, so that

Φ
(1)
J+1(M) = min {J + 1, 2M + 2} = J + 1.

Therefore, we obtain as t ↓ 0 that

T (1)
V (t) + t

∫
Rd
V (θ)dθ −

∑
j+2n≤J,

2≤j≤J, 0≤n≤M−1

(−1)n+jC
(1)
n,j(V )t2n+j = O(tJ+1).

Notice that for any ` ∈ {2, ..., J}, the set

{(j, n) ∈ {2, ..., J} × {0, ...,M − 1} : 2n+ j = `}

is not empty since 2 ≤ 2n+ j ≤ 2(M − 1) + J. On the other hand, if 2n+ j = ` for some

` ∈ {2, ..., J} and j ≥ 2, then

n =
`− j

2
≤ J − 2

2
≤ 2M − 2

2
= M − 1.

Thus, we have shown

{(j, n) ∈ {2, ..., J} × {0, ...,M − 1} : 2n+ j ≤ J} =
J⋃
`=2

{(j, n) ∈ N× N : j ≥ 2, 2n+ j = `} .
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Then, we conclude that

∑
j+2n≤J,

2≤j≤J, 0≤n≤M−1

(−1)n+jC
(1)
n,j(V )t2n+j =

J∑
`=2

t`

 ∑
2n+j=`,
j≥2

(−1)n+jC
(1)
n,j(V )

 .

Example 2.9.1 When M = 3 and d ≥ 6, we have 2 · 3 − d ≤ 0 . Then, Theorem 2.9.1

holds for any 2 ≤ J ≤ 6. Therefore, for the particular case J = 5, we obtain

T (1)
V (t)+t

∫
Rd
V (θ)dθ − t2

2!

∫
Rd
V 2(θ)dθ

+
t3

3!

∫
Rd
V 3(θ)dθ − t4

4!

(∫
Rd
V 4(θ)dθ + 4!Ld,1

∫
Rd
|∇V (θ)|2dθ

)
+
t5

5!

(∫
Rd
V 5(θ)dθ − 5!Md,1

∫
Rd
V (θ) |∇V (θ)|2 dθ

)
= O(t6), (2.49)

as t ↓ 0. Notice that part of this expansion is obtained by applying (v) of Corollary 1.2.1 to

the specific case α = 1.

By mimicking the proof for the case α = 1, we conclude that

Theorem 2.9.2 Let α = 2
k

with k ≥ 3 a positive integer. Assume also 2M − d ≤ 0. Then,

for any 2 ≤ J ≤ k(M − 1) + 2, we have as t ↓ 0 that

T ( 2
k

)

V (t) + t

∫
Rd
V (θ)dθ −

J∑
`=2

t`

 ∑
kn+j=`,
j≥2

(−1)n+jC
( 2
k

)

n,j (V )

 = O(tJ+1), (2.50)

Example 2.9.2 Consider k = 3, M = 2 and d ≥ 4. Then, Theorem 1.2.2 holds for

2 ≤ J ≤ 5. The particular case J = 5 yields

T ( 2
3

)

V (t) + t

∫
Rd
V (θ)dθ − t2

2!

∫
Rd
V 2(θ)dθ +

t3

3!

∫
Rd
V 3(θ)dθ

− t4

4!

∫
Rd
V 4(θ)dθ +

t5

5!

(∫
Rd
V 5(θ)dθ + 5!Ld, 2

3

∫
Rd
|∇V (θ)|2dθ

)
= O(t6), (2.51)

as t ↓ 0.
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Let us consider for J ≥ 2 the following J−1×J−1 matrix which contains all the power

of t with the form 2n
α

+ j that may appear in the expansion of the trace, AJ(α) = (ar,s)

with 1 ≤ r ≤ J − 1 and

ar,s =

 r − s+ 2 + 2
α

(s− 1) if s ≤ r,

0 otherwise.
(2.52)

In this matrix, n = r − s+ 2 and j = s− 1. Observe that n+ j = r + 1 and

ar,s−1 < ar,s,

for any s ≤ r. Thus,

Example 2.9.3 For α = 1,

A6(α) =



2 . . . .

3 2 + 1 · 2
α

. . .

4 3 + 1 · 2
α

2 + 2 · 2
α

. .

5 4 + 1 · 2
α

3 + 2 · 2
α

2 + 3 · 2
α

.

6 5 + 1 · 2
α

4 + 2 · 2
α

3 + 3 · 2
α

2 + 4 · 2
α



=



2 . . . .

3 4 . . .

4 5 6 . .

5 6 7 8 .

6 7 8 9 10


We have set the two matrices together to match entry by entry. As an example, we conclude

that there are two coefficients related to t5. Namely, C(1)
0,5(V ) and C(1)

3,1(V ). The reader can

verify this conclusion from (2.49).

Likewise, for α = 2
3

we obtain

A7(2/3) =



2 . . . . .

3 5 . . . .

4 6 8 . . .

5 7 9 11 . .

6 8 10 12 14 .

7 9 11 13 15 17


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We can deduce then that the next two terms in the expansion given in (2.51) are

−t6
{

(−1)6C
( 2

3
)

0,6 (V ) + (−1)3+1C
( 2

3
)

3,1 (V )
}
− t7

{
(−1)7C

( 2
3

)

0,7 (V ) + (−1)4+1C
( 2

3
)

4,1 (V )
}
.

We point out that for any 0 < α < 2, we always have 2 < 3 < 2 + 2
α

which implies

that the influence of the α in the expansion of the trace is expected to be seen in some place

after the term C
(α)
0,3 (V )t3.

Notice that for every J ≥ 2 we have

AJ(2) =



2 . . . .

3 3 . . .

4 4 4 . .

5 5 5 5 .

. . . . .

J J J J ... J


(2.53)

which says, for example, that in the expansion (1.15) there are three coefficients associated

with t4. Namely, C(2)
0,4(V ), C

(2)
1,3(V ) and C(2)

2,2(V ).

Theorem 2.9.3 Assume J ≥ 4 and 2(J − 2) − d ≤ 1. Then, for all α ∈ (2(J−3)
J−2

, 2) we

have

T (α)
V (t) + t

∫
Rd
V (θ)dθ −

J−1∑
`=2

∑
n+j=`,
j≥2

(−1)n+jC
(α)
n,j (V )t

2n
α

+j = O(tJ), t ↓ 0.

Proof In Theorem 1.2.1, we take M = J − 2 so that

Φ
(α)
J+1(M) = Φ

(α)
J+1(J − 2) = min

{
J + 1, 2 +

2(J − 2)

α

}
> J,

since 2
α
> 1.

As we observed in (2.52), we know that ar,s−1 ≤ ar,s for any s ≤ r. Now we want to

choose α such that ar,r < ar+1,1 for all r ∈ {2, ..., J − 2}, which is equivalent to choosing

α > 2(r−1)
r

. Thus, it suffices to consider 2(J−3)
J−2

< α since

max

{
2(r − 1)

r
: r ∈ {2, ..., J}

}
=

2(J − 3)

J − 2
,
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and this in turn implies that all the entries of AJ(α) are increasing for these α‘s. In other

words, we have the following arrangement

2

≤ 3 ≤ 2 +
2

α
(2.54)

≤ 4 ≤ 3 +
2

α
≤ 2 + 2 · 2

α

....

≤ J − 1 ≤ (J − 2) +
2

α
≤ ... ≤ 2 + (J − 3) · 2

α
< J.

Then by Theorem 1.2.1,

T (α)
V (t) + t

∫
Rd
V (θ)dθ −

∑
j+ 2n

α
<J

2≤j≤J−1, 0≤n≤J−3

(−1)n+jC
(1)
n,j(V )t

2n
α

+j =

R
(α)
J+1(t) +

∑
j+ 2n

α
≥J

2≤j≤J−1, 0≤n≤J−3

(−1)n+jC
(1)
n,j(V )t

2n
α

+j. (2.55)

We observe that the right hand side of (2.55) isO(tJ) as t ↓ 0, due to ΦJ+1(J−2) > J .

On the other hand, it is easy to see by the definition of AJ(α) that the only powers of t

satisfying 2n
α

+ j < J are those in the arrangement given in (2.54). Therefore, due to this

arrangement we can also rewrite the third term in the left hand side of (2.55) as follows

∑
j+ 2n

α
<J

2≤j≤J−1, 0≤n≤J−3

(−1)n+jC
(α)
n,j (V )t

2n
α

+j =
J−1∑
`=2

∑
n+j=`,
j≥2

(−1)n+jC
(α)
n,j (V )t

2n
α

+j. (2.56)

Example 2.9.4 We take J = 4 and d ≥ 3 so that 2 · 2− d ≤ 1. Then, according to the last

theorem for all α ∈ (1, 2) we have

T (α)
V (t) + t

∫
Rd
V (θ)dθ − t2

2!

∫
Rd
V 2(θ)dθ

+
t3

3!

∫
Rd
V 3(θ)dθ + Ld,αt2+ 2

α

∫
Rd
|∇V (θ)|2 = O(t4),
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as t ↓ 0. Notice that this result is already given in Corollary 1.2.1.

Let us now consider J = 5 and d ≥ 5. Then, for all α ∈ (4
3
, 2) we obtain

T (α)
V (t) + t

∫
Rd
V (θ)dθ − t2

2!

∫
Rd
V 2(θ)dθ +

(
t3

3!

∫
Rd
V 3(θ)dθ + Ld,αt2+ 2

α

∫
Rd
|∇V (θ)|2

)
−
(
t4

4!

∫
Rd
V 4(θ)dθ +Md,αt

3+ 2
α

∫
Rd
V (θ) |∇V (θ)|2 dθ +Nd,αt2+ 2·2

α

∫
Rd
|(−∆V )(θ)|2 dθ

)
= O(t5), t ↓ 0.
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3. HEAT CONTENT FOR SCHRÖDINGER OPERATORS, PROOFS

We start this section by proving thatQ(α)
V (t) given by (1.21) is a well defined function for all

t ≥ 0 as long as V is bounded and integrable. We begin by observing that the elementary

inequality |ez − 1| ≤ |z| e|z| gives∣∣∣Q(α)
V (t)

∣∣∣ ≤ et||V ||∞
∫
R2d

p
(α)
t (x, y)Etx,y

[∫ t

0

|V (Xs)|ds
]
dxdy.

Next, by Fubini’s theorem and the properties of the stable bridge (see [4], [16] and (3.7)

below) the integral term in the right hand side of the above inequality equals∫
R2d

p
(α)
t (x, y)

(∫ t

0

∫
Rd
|V (z)|

p
(α)
t−s(x, z)p

(α)
s (z, y)

p
(α)
t (x, y)

dzds

)
dxdy = (3.1)∫ t

0

∫
Rd
|V (z)|

(∫
Rd
p

(α)
t−s(x, z)dx

∫
Rd
p(α)
s (z, y)dy

)
dzds = t||V ||1,

where we have used the well known facts that for all x, z ∈ Rd and t > 0, p(α)
t (x, z) =

p
(α)
t (z, x) and

∫
Rd p

(α)
t (x, z)dx = 1. Thus, we conclude that the heat content satisfies∣∣∣Q(α)

V (t)
∣∣∣ ≤ t||V ||1et||V ||∞ . (3.2)

Therefore, Q(α)
V (t) is well defined for all t ≥ 0 and bounded on any interval (0, T ], T > 0,

provided V ∈ L∞(Rd) ∩ L1(Rd). It is also worth noting here that the previous argument

together with the Taylor expansion of the exponential function (see (3.17) below) show that

Q
(α)
V (t) =

∞∑
k=0

(−1)k

k!

∫
R2d

p
(α)
t (x, y)Etx,y

[(∫ t

0

V (Xs)ds

)k]
dxdy, (3.3)

where the sum is absolutely convergent for all t > 0.

It is advantageous at this point to give a different expression for the equation (3.3)

in terms of the stable bridge in order to obtain further formulas for the coefficients and
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estimates for the remainders in the forthcoming sections. Before proceeding, we introduce

some notation to conveniently express our formulas below. For k ∈ N, we set

Ik =
{
λ(k) = (λk, λk−1, ...λ1) ∈ [0, 1]k : 0 < λk < λk−1 < ... < λ1 < 1

}
, (3.4)

dλ(k) = dλkdλk−1...dλ1, z(k) = (z1, ..., zk) ∈ Rkd, dz(k) = dzk...dz1,

Vk
(
z(k)
)

= Vk(z1, ..., zk) =
k∏
i=1

V (zi), p
(
t, z(k)

)
=

k−1∏
j=1

p
(α)
t(λj−λj+1)(zj, zj+1).

It is well known [54] that(∫ 1

0

Ṽ (s)ds

)k
= k!

∫
Ik

k∏
i=1

Ṽ (λi)dλ
(k), (3.5)

for any Ṽ : [0, 1]→ R integrable.

Lemma 3.0.1 For any t > 0 and J ≥ 2,

Q
(α)
V (t) = −t

∫
Rd
V (θ)dθ +

J∑
k=2

(−t)k
∫
Ik

∫
Rkd

Vk
(
z(k)
)
p
(
t, z(k)

)
dz(k)dλ(k) +RJ+1(t),

where

|RJ+1(t)| ≤ tJ+1||V ||1||V ||J∞et||V ||∞ . (3.6)

Proof Set

RJ+1(t) =
∞∑

k=J+1

(−1)k

k!

∫
R2d

p
(α)
t (x, y)Etx,y

[(∫ t

0

V (Xs)ds

)k]
dxdy.

It is clear by (3.1) that

|RJ+1(t)| ≤
∞∑

k=J+1

(t||V ||∞)k−1

k!

∫
R2d

p
(α)
t (x, y)Etx,y

[∫ t

0

|V (Xs)| ds
]
dxdy

≤ t||V ||1
∞∑

k=J+1

(t||V ||∞)k−1

k!
≤ tJ+1||V ||1||V ||J∞et||V ||∞ .
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On the other hand, by making a suitable change of variables and appealing to (3.5) we

observe that

Etx,y

[(∫ t

0

V (Xs)ds

)k]
= tk Etx,y

[(∫ 1

0

V (Xts)ds

)k]

= k! tk Etx,y
[∫

Ik

V (Xtλ1)...V (Xtλk)dλ
(k)

]
.

We recall that the finite dimensional distributions of the stable bridge (see [4], [16] and

references therein for details) are given by

Ptx,y (Xtλ1 ∈ dz1, Xtλ2 ∈ dz2, ..., Xtλk ∈ dzk) (3.7)

=
1

p
(α)
t (x, y)

k∏
j=0

p
(α)
t(λj−λj+1)(zj, zj+1)dz(k),

where z0 = x, zk+1 = y, λ0 = 1, and λk+1 = 0. Hence, using the fact that∫
Rd
p

(α)
t(1−λ1)(x, z1)dx =

∫
Rd
p

(α)
tλk

(zk, y)dy = 1,

the notation given in (3.4) and the finite distributions for the stable bridge given above, we

conclude by Fubini’s theorem that∫
R2d

p
(α)
t (x, y)Etx,y

[(∫ t

0

V (Xs)ds

)k]
dxdy (3.8)

= k!tk
∫
Ik

∫
Rkd

k∏
i=1

V (zi)
k−1∏
j=1

p
(α)
t(λj−λj+1)(zj, zj+1)dz(k)dλ(k)

= k!tk
∫
Ik

∫
Rkd

Vk
(
z(k)
)
p
(
t, z(k)

)
dz(k)dλ(k).

Therefore, the lemma follows from equation (3.3).

Proof of Theorem 1.3.1: The inequality in (i) is an easy consequence of (3.1) and

(3.3), since we have∣∣∣∣Q(α)
V (t) + t

∫
Rd
V (x)dx

∣∣∣∣ ≤ ∞∑
k=2

1

k!

∫
R2d

p
(α)
t (x, y)Etx,y

[(∫ t

0

|V (Xs)| ds
)k]

dxdy

≤ t||V ||1
∞∑
k=2

1

k!
tk−1||V ||k−1

∞ ≤ t2||V ||1||V ||∞et||V ||∞ .
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Next, we proceed to show (ii). Assume V ≤ 0. By setting a =
∫ t

0
V (Xs)ds and

b = t||V ||∞, we observe that −b ≤ a < 0. We use the elementary inequality

−a ≤ e−a − 1 ≤ −a
(

1 +
1

2
beb
)
,

to obtain

−
∫ t

0

V (Xs)ds ≤ e−
∫ t
0 V (Xs)ds − 1 ≤ −

∫ t

0

V (Xs)ds

(
1 +

1

2
t||V ||∞et||V ||∞

)
. (3.9)

By taking expectations Etx,y at both sides of (3.9), multiplying through by p(α)
t (x, y), in-

tegrating on R2d with respect to x and y and appealing to (3.1) where |V | is replaced by

−V ≥ 0, we arrive at

−t
∫
Rd
V (x)dx ≤ Q

(α)
V (t) ≤ −t

∫
Rd
V (x)dx

(
1 +

1

2
t||V ||∞et||V ||∞

)
,

and this completes the proof.

Proof of Theorem 1.3.2: We start by recalling two basic facts about the α-stable pro-

cess X, 0 < α ≤ 2. First,

E0 [|X1|γ] <∞, (3.10)

for all 0 < γ < α < 2. As for the case α = 2, the above fact is also true for all 0 < γ ≤ 1.

Secondly,

Xt
D
= t1/αX1, (3.11)

as we can see from the characteristic function (1.1).

The Hölder continuity assumption on V , as we shall see in the next lemma, enables us

to estimate the second term in (3.3).

Lemma 3.0.2 Under the same assumptions on the potential V given in Theorem 1.3.2, we

have for all t > 0 that∫
R2d

p
(α)
t (x, y)Etx,y

[(∫ t

0

V (Xs)ds

)2
]
dxdy = t2

∫
Rd
V 2(x)dx+R(t),

where the remainder R(t) satisfies

|R(t)| ≤ C0(α, γ)||V ||1t
γ
α

+2.
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Proof We start by applying (3.8) with k = 2, so that

∫
R2d

p
(α)
t (x, y)Etx,y

[(∫ t

0

V (Xs)ds

)2
]
dxdy =

2t2
∫ 1

0

∫ λ1

0

∫
R2d

V (z1)V (z2)p
(α)
t(λ1−λ2)(z2, z1)dz2dz1dλ2dλ1.

Now, ∫
R2d

V (z1)V (z2)p
(α)
t(λ1−λ2)(z2, z1)dz1dz2 = (3.12)∫

R2d

(V (z1)− V (z2))V (z2)p
(α)
t(λ1−λ2)(z2, z1)dz1dz2

+

∫
R2d

V 2(z2)p
(α)
t(λ1−λ2)(z2, z1)dz1dz2.

The second term on the right hand side of equality (3.12) equals
∫
Rd V

2(x)dx, whereas

for the first term, by using (3.10), (3.11) and the Hölder continuity assumption on V , we

have ∣∣∣∣∫
R2d

(V (z1)− V (z2))V (z2)p
(α)
t(λ1−λ2)(z2, z1)dz1dz2

∣∣∣∣ (3.13)

≤M

∫
R2d

|z1 − z2|γ|V (z2)|p(α)
t(λ1−λ2)(z2, z1)dz1dz2

= M

∫
Rd

(∫
Rd
|z1 − z2|γp(α)

t(λ1−λ2)(z2, z1)dz1

)
|V (z2)| dz2

= M ||V ||1 E0[
∣∣Xt(λ1−λ2)

∣∣γ ]

= M ||V ||1 (t(λ1 − λ2))
γ
α E0[ |X1|γ ].

Thus, by using the fact that∫ 1

0

∫ λ1

0

(λ1 − λ2)γ/α dλ2dλ1 =
(γ
α

+ 2
)−1 (γ

α
+ 1
)−1

,

we obtain that the conclusion of the lemma follows from (3.13), (3.12) by setting

R(t) = 2t2
∫ 1

0

∫ λ1

0

∫
R2d

(V (z1)− V (z2))V (z2)p
(α)
t(λ1−λ2)(z2, z1)dz1dz2dλ1dλ2.
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Therefore, using that t3 ≤ t2+ γ
α for t ∈ (0, 1), we have that Theorem 1.3.2 is a consequence

of applying Lemma 3.0.2 to the following expression obtained in Lemma 3.0.1 when J = 2,

Q
(α)
V (t) = −t

∫
Rd
V (x)dx+

1

2

∫
R2d

p
(α)
t (x, y)Et

x,y

[(∫ t

0

V (Xs)ds

)2
]
dxdy +R3(t),

where we already know that

|R3(t)| ≤ t3||V ||1||V ||2∞et||V ||∞ .

3.1 General expansion for rapidly decreasing smooth potential

We have already seen in the previous section that by adding an extra regularity condition

on the potential V , namely, Hölder continuity and using Xt
D
= t1/αX1 , we have been able

to extract a second term in the expansion of Q(α)
V (t). In this section, we will obtain more

terms and find explicit expressions for these which as before will depend on the potential

V .

Let V ∈ S(Rd) and denote by V̂ the Fourier transform. In what follows, we set d̄ξ =

(2π)−ddξ.

The fact that V ∈ S(Rd) will allow us to apply the inversion formula to each summand

in Lemma 3.0.1 which in turn will provide the terms obtained in Theorem 1.3.3. To do this,

we need the following proposition.

Proposition 3.1.1 For any k ≥ 2,∫
Rkd

k∏
i=1

V (zi)
k−1∏
j=1

p
(α)
t(λj−λj+1)(zj, zj+1)dzk...dz1 = (3.14)

∫
R(k−1)d

V̂ (−
k−1∑
i=1

θi)
k−1∏
i=1

V̂ (θi) exp

(
−t

k−1∑
r=1

(λr − λr+1)

∣∣∣∣∣
r∑

m=1

θm

∣∣∣∣∣
α)

d̄θk−1...d̄θ1.

Proof Under the notation given in (3.4) we have

Vk
(
z(k)
)

= Vk(z1, ..., zk) =
k∏
i=1

V (zi);

p
(
t, z(k)

)
=

k−1∏
r=1

p
(α)
t(λr−λr+1)(zr, zr+1).
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By applying Fourier transform in Rkd and Plancherel’s identity, we obtain∫
Rkd

Vk
(
z(k)
)
p
(
t, z(k)

)
dz(k) =

∫
Rkd

V̂k
(
θ(k)
)
p̂
(
t,−θ(k)

)
d̄θ(k). (3.15)

Next, it follows easily that if θ(k) = (θ1, ...θk), θi ∈ Rd, then

V̂k(θ
(k)) =

k∏
i=1

V̂ (θi).

On the other hand, we claim that

p̂(t,−θ(k)) = (2π)dδ

(
k∑
i=1

θi

)
exp

(
−t

k−1∑
r=1

(λr − λr+1)

∣∣∣∣∣
r∑

m=1

θm

∣∣∣∣∣
α)

. (3.16)

To see this, we observe by (2.1) that

p̂(t,−θ(k)) =

∫
Rkd

exp

(
ι̇

k∑
j=1

ξj · θj

)
k−1∏
r=1

p
(α)
t(λr−λr+1)(ξr − ξr+1)dξ(k).

By considering the substitutions zr = ξr − ξr+1, r ∈ {1, ..., k − 1}, we have for any

j ∈ {1, ..., k − 1} that

ξj = ξk +
k−1∑
r=j

zr.

Therefore, we obtain after interchanging the order of summation that

k−1∑
j=1

ξj · θj =
k−1∑
r=1

zr ·

(
r∑

m=1

θm

)
+ ξk ·

k−1∑
i=1

θi.

Thus, (3.16) follows by using that

p̂
(α)
t (ξ) = e−t|ξ|

α

,∫
Rd

exp

(
ι̇ξk ·

k∑
i=1

θi

)
dξk = (2π)dδ

(
k∑
i=1

θi

)
,

and

p̂(t,−θ(k)) =

∫
Rkd

exp

(
ι̇

k−1∑
r=1

zr ·

(
r∑

m=1

θm

)
+ ι̇ξk ·

k∑
i=1

θi

)

×
k−1∏
r=1

p
(α)
t(λr−λr+1)(zr)dz

(k−1)dξk.

Consequently, the conclusion of the proposition follows from (3.15) and (3.16).
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We next recall the Taylor expansion of the exponential function

e−x =
M∑
n=0

(−1)n

n!
xn +

(−1)M+1

(M + 1)!
xM+1e−xβM+1(x), (3.17)

valid for every x ≥ 0 and integer M ≥ 0, where we call βM+1(x) ∈ (0, 1) the remainder

of order M + 1.

We also recall that for k ≥ 2 integer, the Binomial theorem asserts that

(x1 + x2 + · · ·+ xk−1)n =
∑

(`1,...,`k−1) ∈ Nk−1,
`1+`2+...+`k−1=n

(
n

`1, `2, . . . , `k−1

)
x`11 x

`2
2 · · ·x

`k−1

k−1 .

Next, bearing in mind the notation given in (3.4), we set γr =
r∑

m=1

θm,

`(k−1) = (`1, ... , `k−1) ∈ Nk−1,

A(n, `(k−1)) =

(
n

`1, `2, . . . , `k−1

)∫
Ik

k−1∏
i=1

(λi − λi+1)`idλ(k),

and

Tk(t) =

∫
Ik

∫
R(k−1)d

k−1∏
i=1

V̂ (θi)V̂ (−
k−1∑
i=1

θi) (3.18)

× exp

(
−t

k−1∑
r=1

(λr − λr+1)

∣∣∣∣∣
r∑

m=1

θm

∣∣∣∣∣
α)

d̄θ(k−1)dλ(k).

Therefore, under this notation, we obtain the following expansion for the term Tk(t).

Corollary 3.1.1 Let M ≥ 0 and k ≥ 2 be integers. Then

Tk(t) =
M∑
n=0

(−t)n

n!
Cn,k(V ) +R

(k)
M+1(t),

where

R
(k)
M+1(t) =

(−t)M+1

(M + 1)!

∫
Ik

∫
R(k−1)d

k−1∏
i=1

V̂ (θi)V̂ (−
k−1∑
i=1

θi)

×

(
k−1∑
r=1

(λr − λr+1)|γr|α
)M+1

e−Υd̄θ(k−1)dλ(k),
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for some non-negative function Υ = Υ(t, λ(k), θ(k−1),M + 1). The remainder satisfies

R
(k)
M+1(t) = O(tM+1), (3.19)

as t ↓ 0. Moreover, the coefficients are given by

Cn,k(V ) =
∑

(`1,...,`k−1) ∈ Nk−1,
`1+`2+...+`k−1=n

A(n, `(k−1))

∫
R(k−1)d

V̂ (−
k−1∑
i=1

θi)
k−1∏
i=1

V̂ (θi)

×

∣∣∣∣∣
i∑

m=1

θm

∣∣∣∣∣
α`i

d̄θ(k−1).

Proof The formula for the coefficients is obtained by applying the Taylor expansion of the

exponential function and the Binomial theorem to our expression of Tk(t) in (3.18).

Next, we proceed to show our claim about the remainder. In order to do so, we point

out that V ∈ S(Rd) implies that all quantities to appear below are finite. Also, the constant

C below will depend on k,M and α and its value may change from line to line. It is easy

to observe that for some C > 0, we have(
k−1∑
r=1

(λr − λr+1)|γr|α
)M+1

≤ C max
m=1,..,k−1

|θm|α(M+1).

In particular, if we let Λr =

{
θ(k−1) ∈ Rd(k−1) : max

m=1,..,k−1
|θm| = |θr|

}
, we arrive at

∣∣∣R(k)
M+1(t)

∣∣∣ ≤ CtM+1

k−1∑
r=1

∫
Λr

|V̂ |(−γk−1)|V̂ (θr)|θr|α(M+1)|
k−1∏

i=1,i 6=r

|V̂ |(θi)d̄θ(k−1)

≤ CtM+1||V̂ ||∞||
̂

(−∆)
α
2
M+1V ||1||V̂ ||

k−2
1 .

Here, (−∆)
α
2
M+1 stands for the composition of (−∆)

α
2 with itself M + 1–times and this

completes the proof.

With Corollary 3.1.1 at hand, we carry on showing the existence of a general expansion for

Q
(α)
V (t) for small time.
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Theorem 3.1.1 For any integer N ≥ 2,

Q
(α)
V (t) = −t

∫
Rd
V (θ)dθ +

N∑
`=2

(−t)`C`(V ) +O(tN+1), (3.20)

as t ↓ 0. Here,

C`(V ) =
∑
n+k=`

0≤n, 2≤k

1

n!
Cn,k(V ),

where Cn,k(V ) is as defined in Corollary 3.1.1.

Proof As a result of Lemma 3.0.1, Corollary 3.1.1 and (3.14), we have for any integers

J ≥ 2 and M ≥ 0 that

Q
(α)
V (t) = −t

∫
Rd
V (θ)dθ +

J∑
k=2

M∑
n=0

(−t)k+n

n!
Cn,k(V ) +RM+1,J+1(t), (3.21)

where

RM+1,J+1(t) = RJ+1(t) +
J∑
k=2

(−t)kR(k)
M+1.

In other words, RJ+1,M+1(t) is the sum of all those remainders provided by Lemma 3.0.1

and Corollary 3.1.1. We also point out that due to (3.6) and (3.19), we conclude

RM+1,J+1(t) = O
(
tmin{J+1,M+3}) ,

as t ↓ 0.

Since M and J are arbitrary, given N ≥ 2, we may choose M and J as large as we

desire so that

min {J + 1,M + 3} ≥ N + 1

and such that formula (3.21) can be decomposed as follows

Q
(α)
V (t) = −t

∫
Rd
V (θ)dθ +

∑
2≤n+k≤N

2≤k

(−t)k+n

n!
Cn,k(V ) + R̃N+1(t), (3.22)

where R̃N+1(t) is defined to be∑
n+k≥N+1

2≤k

(−t)k+n

n!
Cn,k(V ) +RM+1,J+1(t).
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Thus, it is easy to observe that R̃N+1(t) = O(tN+1) as t ↓ 0.

The conclusion of the theorem follows by noticing that the second terms on the right

hand side of both (3.22) and (3.20) are the same under our definition of C`(V ).

Before proceeding, we give an application concerning the coefficients C`(V ). The

corollary roughly says that we can characterize the potential V from the coefficients under

some extra assumptions. This corollary should be compared to the result for the trace (case

α = 2 ) given in [3, Corollary 2.1].

Corollary 3.1.2 Let V ∈ S(Rd) be such that V̂ ≥ 0. If C`(V ) = 0 for some ` ≥ 2, then

we must have V (x) = 0 for all x ∈ Rd.

Proof By Theorem 3.1.1 and Corollary 3.1.1, we see that C`(V ) ≥ 0 for all ` ≥ 2 when

V̂ ≥ 0. In particular, the condition C`(V ) = 0 for some ` ≥ 2 implies that

C`−2,2(V ) =

(
`− 2

`− 2

)∫
I2

(λ1 − λ2)`−2dλ(2)

∫
Rd
V̂ (−θ1)V̂ (θ1) |θ1|α(`−2) d̄θ1 = 0.

Therefore, we must have V̂ (−θ1)V̂ (θ1) = 0 for all θ1 ∈ Rd. Now, by applying Plancherel’s

identity, we have ∫
Rd
|V (x)|2dx =

∫
Rd
V̂ (−θ1)V̂ (θ1)d̄θ1 = 0

and this gives the claimed result.

3.2 Computation of coefficients

In this section, we write down explicitly the first five coefficients of the asymptotic

expansion given in (3.20). This also proves Theorem 1.3.3. All the results in the previous

section also hold for α = 2. Therefore, we will consider 0 < α ≤ 2.

In order to find the coefficients C3(V ), C4(V ) and C5(V ), we will resort to Lemma

3.2.1 below. We start by observing that by means of the inversion formula, it follows easily

that

C0,k(V ) =
1

k!

∫
Rd
V k(θ)dθ, (3.23)

for any integer k ≥ 2.
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Lemma 3.2.1 Let k ≥ 2 be an integer. Assume that {`i, i ∈ {1, ..., k − 1}} is a sequence

of non-negative real numbers satisfying

k−1∑
i=1

`i = n, (3.24)

for some positive real number n. Then

(a) If k = 2, we have ∫
I2

(λ1 − λ2)ndλ(2) =
1

(1 + n)(2 + n)
.

(b) If k ≥ 3, we obtain

∫
Ik

k−1∏
i=1

(λi − λi+1)`idλ(k) =
1

(k + n)(`k−1 + 1)

k−2∏
i=1

∫ 1

0

(1− s)`is
k+n−(i+1+

i∑
j=1

`j)

ds.

Proof We only need to prove (b). Let λ1 ∈ (0, 1) be fixed. Consider the following change

of variables

λi+1 = λisi,

for i ∈ {1, ..., k − 1}. Using the fact that 0 < λi+1 < λi we must have that si ∈ (0, 1).

Notice that this change of variables yields

λi+1 = λ1

i∏
j=1

sj. (3.25)

Thus, the Jacobian associated to this change of variables is the determinant of an upper

triangular matrix and it is given explicitly by the following formula.

∂(λ2, ..., λk)

∂(s1, ..., sk−1)
= λk−1

1

k−2∏
i=1

s
k−(i+1)
i .

Observe that by (3.25) and (3.24) we have

k−1∏
i=2

λ`ii =
k−1∏
i=2

(
λ1

i−1∏
j=1

sj

)`i

= λ

k−2∑
j=2

`j

1

k−2∏
i=1

s

k−1∑
j=i+1

`j

i

 = λn−`11

k−2∏
i=1

s
n−

i∑
j=1

`j

i .
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From this we conclude that
k−1∏
i=1

(λi − λi+1)`i =
k−1∏
i=1

λ`ii (1− si)`i = λ`11 (1− sk−1)`k−1

k−2∏
i=1

(1− si)`i
k−1∏
i=2

λ`ii

= λn1 (1− sk−1)`k−1

k−2∏
i=1

(1− si)`i
k−2∏
i=1

s
n−

i∑
j=1

`j

i .

As a result, integrating both sides of the above identity, we see that (b) is a consequence of

the following equality.∫
Ik

k−1∏
i=1

(λi − λi+1)`idλ(k) =

∫ 1

0

λn+k−1
1 dλ1

∫ 1

0

(1− sk−1)`k−1dsk−1

×
∫

[0,1]k−2

k−2∏
i=1

(1− si)`is
n+k−(i+1+

i∑
j=1

`j)

i ds(k−2).

For the computations to be performed below is worth recalling that

Eα(V ) =

∫
Rd

(−∆)
α
2 V (θ)V (θ)dθ =

∫
Rd
V̂ (−θ)V̂ (θ)|θ|αd̄θ =

∫
Rd
|V̂ (θ)|2|θ|αd̄θ.

Lemma 3.2.2

C3(V ) =
1

3!

(∫
Rd
V 3(θ)dθ + Eα(V )

)
.

Proof By Theorem 3.1.1, we have

C3(V ) = C0,3(V ) + C1,2(V ).

From (3.23), it suffices to computeC1,2(V ). Following Corollary 3.1.1, we have, by Plancherel’s

Theorem and (1.8), that

C1,2(V ) = A(1, 1)

∫
Rd
V̂ (−θ1)V̂ (θ1)|θ1|αd̄θ1 =

1

6

∫
Rd
V (θ)(−∆)

α
2 V (θ)dθ,

which gives the formula above.

Lemma 3.2.3

C4(V ) =
1

4!

(∫
Rd
V 4(θ)dθ + 2

∫
Rd
V 2(θ)(−∆)

α
2 V (θ)dθ +

∫
Rd

∣∣(−∆)
α
2 V (θ)

∣∣2 dθ) .
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Proof By Theorem 3.1.1,

C4(V ) = C0,4(V ) + C1,3(V ) +
1

2!
C2,2(V ).

By Corollary 3.1.1 with n = 1 and k = 3, we have

C1,3(V ) =A(1, (1, 0))

∫
R2d

V̂ (θ2)V̂ (θ1)V̂ (−θ1 − θ2)|θ1|αd̄θ2d̄θ1

+A(1, (0, 1))

∫
R2d

V̂ (θ2)V̂ (θ1)V̂ (−θ1 − θ2)|θ1 + θ2|αd̄θ2d̄θ1.

From Lemma 3.2.1, we obtain

A (1, (1, 0)) =

(
1

1, 0

)
1

4

∫ 1

0

(1− s)sds =
1

4!
,

A (1, (0, 1)) =

(
1

0, 1

)
1

4 · 2

∫ 1

0

s2ds =
1

4!
.

On the other hand, due to the basic properties of the Fourier transform,∫
R2d

V̂ (θ2)V̂ (θ1)V̂ (−θ1 − θ2)|θ1 + θ2|αd̄θ2d̄θ1

=

∫
Rd

(∫
Rd
V̂ (θ2) ̂(−∆)

α
2 V (−θ1 − θ2)d̄θ2

)
V̂ (θ1)d̄θ1

=

∫
Rd

(∫
Rd
eι̇θ·θ1V (θ)(−∆)

α
2 V (θ)dθ

)
V̂ (θ1)d̄θ1

=

∫
Rd
V 2(θ)(−∆)

α
2 V (θ)dθ.

A similar argument yields∫
R2d

V̂ (θ2)V̂ (θ1)V̂ (−θ1 − θ2)|θ1|αd̄θ2d̄θ1

=

∫
Rd
|θ1|αV̂ (θ1)

(∫
Rd
V̂ (−θ1 − θ2)V̂ (θ2)d̄θ2

)
d̄θ1

=

∫
Rd
|θ1|αV̂ (θ1)

(∫
Rd
eι̇θ1·θV 2(θ)dθ

)
d̄θ1

=

∫
Rd
V 2(θ)(−∆)

α
2 V (θ)dθ.

Thus, we arrive at

C1,3(V ) =
2

4!

∫
Rd
V 2(θ)(−∆)

α
2 V (θ)dθ.
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Next,

C2,2(V ) = A(2, 2)

∫
Rd
V̂ (−θ1)V̂ (θ1)|θ1|2αd̄θ1 =

2!

4!

∫
Rd

∣∣(−∆)
α
2 V (θ)

∣∣2 dθ.
Therefore, the announced formula for C4(V ) follows from the above identities.

Lemma 3.2.4

C5(V ) =
1

5!

(∫
Rd
V 5(θ)dθ + 2

∫
Rd
V 3(θ)(−∆)

α
2 V (θ)dθ

+ 2

∫
Rd
V 2(θ)(−∆)

α
2
2 V (θ)dθ

+

∫
Rd
V (θ)

∣∣(−∆)
α
2 V (θ)

∣∣2 dθ + Eα
(
(−∆)

α
2 V
)

+ Eα
(
V 2
))
,

where (−∆)
α
2
2 denotes the composition of (−∆)

α
2 with itself.

Proof Once again, Theorem 3.1.1 gives

C5(V ) = C0,5(V ) + C1,4(V ) +
1

2!
C2,3(V ) +

1

3!
C3,2(V ).

The first term C0,5(V ) follows from (3.23). From Corollary 3.1.1 with n = 1 and k = 4,

we have

C1,4(V ) = A(1, (1, 0, 0))

∫
R3d

V̂ (−
3∑
i=1

θi)
3∏
i=1

V̂ (θi)|θ1|αd̄θ(3) (3.26)

+ A(1, (0, 1, 0))

∫
R3d

V̂ (−
3∑
i=1

θi)
3∏
i=1

V̂ (θi)

∣∣∣∣∣
2∑

m=1

θm

∣∣∣∣∣
α

d̄θ(3) (3.27)

+ A(1, (0, 0, 1))

∫
R3d

V̂ (−
3∑
i=1

θi)
3∏
i=1

V̂ (θi)

∣∣∣∣∣
3∑

m=1

θm

∣∣∣∣∣
α

d̄θ(3). (3.28)

The most difficult term to compute in the above equality is the one appearing in (3.27)

and we proceed to deal with this one first. By integrating first with respect to θ3 and

applying Plancherel’s formula we obtain∫
R3d

V̂ (−
3∑
i=1

θi)
3∏
i=1

V̂ (θi)

∣∣∣∣∣
2∑

m=1

θm

∣∣∣∣∣
α

d̄θ(3) (3.29)

=

∫
Rd
V 2(θ)

(∫
R2d

V̂ (θ1)V̂ (θ2) |θ1 + θ2|α eι̇θ·(θ1+θ2)d̄θ1d̄θ2

)
dθ.
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Consider the change of variable θ2 = z − θ1, where the independent variable is θ2. Then,

the integral in (3.29) between parenthesis equals∫
R2d

V̂ (θ1)V̂ (z − θ1) |z|α eι̇θ·zd̄θ1d̄z.

Thus, integrating the last expression with respect to θ1 gives∫
Rd
|z|α eι̇θ·z

(∫
Rd
e−ι̇η·zV 2(η)dη

)
d̄z =

∫
Rd
|z|α eι̇θ·zV̂ 2(z)d̄z = (−∆)

α
2 V 2(θ).

In other words, we have shown that∫
R3d

V̂ (−
3∑
i=1

θi)
3∏
i=1

V̂ (θi)

∣∣∣∣∣
2∑

m=1

θm

∣∣∣∣∣
α

d̄θ(3) = Eα(V 2).

Next, we claim that the other two integral terms in (3.28) equal∫
Rd
V 3(θ)(−∆)

α
2 V (θ)dθ.

To see this, it suffices to consider the following equalities.∫
R2d

(∫
Rd
V̂ (−θ1 − θ2 − θ3) |θ1 + θ2 + θ3|α V̂ (θ3)d̄θ3

)
V̂ (θ1)V̂ (θ2)d̄θ1d̄θ2

=

∫
R2d

(∫
Rd
eι̇θ·(θ1+θ2)V (θ)(−∆)

α
2 V (θ)dθ

)
V̂ (θ1)V̂ (θ2)d̄θ1d̄θ2

=

∫
Rd

(∫
R2d

eι̇θ·(θ1+θ2)V̂ (θ1)V̂ (θ2)d̄θ1d̄θ2

)
V (θ)(−∆)

α
2 V (θ)dθ

=

∫
Rd
V 3(θ)(−∆)

α
2 V (θ)dθ,

and ∫
R2d

(∫
Rd
V̂ (−θ1 − θ2 − θ3)V̂ (θ3)d̄θ3

)
|θ1|α V̂ (θ1)V̂ (θ2)d̄θ1d̄θ2

=

∫
R2d

(∫
Rd
eι̇θ·(θ1+θ2)V 2(θ)dθ

)
̂(−∆)

α
2 V (θ1)V̂ (θ2)d̄θ1d̄θ2

=

∫
Rd
V 3(θ)(−∆)

α
2 V (θ)dθ.

As far for the quantities, A(1, (1, 0, 0)), A(1, (0, 1, 0)) and A(1, (0, 0, 1)) we have

A(1, (1, 0, 0)) =
1

5

∫ 1

0

(1− s)s2ds

∫ 1

0

sds =
1

5!

A(1, (0, 1, 0)) =
1

5

∫ 1

0

s3ds

∫ 1

0

(1− s)sds =
1

5!

A(1, (0, 0, 1)) =
1

5
· 1

2

∫ 1

0

s3ds

∫ 1

0

s2ds =
1

5!
.
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Therefore, we conclude that

C1,4(V ) =
1

5!

(
2

∫
Rd
V 3(θ)(−∆)

α
2 V (θ)dθ + Eα(V 2)

)
. (3.30)

Next, we compute C2,3(V ). This time we have

C2,3(V ) = A(2, (1, 1))

∫
R2d

V̂ (−θ1 − θ2)V̂ (θ1)V̂ (θ2)|θ1|α|θ1 + θ2|αd̄θ(2) (3.31)

+ A(2, (2, 0))

∫
R2d

V̂ (−θ1 − θ2)V̂ (θ1)V̂ (θ2)|θ1|2αd̄θ(2)

+ A(2, (0, 2))

∫
R2d

V̂ (−θ1 − θ2)V̂ (θ1)V̂ (θ2)|θ1 + θ2|2αd̄θ(2).

The first integral term in the right hand side of above equality equals∫
Rd
|θ1|αV̂ (θ1)

(∫
Rd
V̂ (−θ1 − θ2)|θ1 + θ2|αV̂ (θ2)d̄θ2

)
d̄θ1

=

∫
Rd
|θ1|αV̂ (θ1)

(∫
Rd
eι̇θ·θ1V (θ)(−∆)

α
2 V (θ)dθ

)
d̄θ1

=

∫
Rd
V (θ)

∣∣(−∆)
α
2 V (θ)

∣∣2 dθ.
As for the other two integral terms in (3.31), we claim they both equal∫

Rd
V 2(θ)(−∆)

α
2
2 V (θ)dθ,

since the third integral term equals∫
Rd
V̂ (θ1)

(∫
Rd
V̂ (θ2)V̂ (−θ1 − θ2)|θ1 + θ2|2αd̄θ2

)
d̄θ1

=

∫
Rd
V̂ (θ1)

(∫
Rd
eι̇θ·θ1V (θ)(−∆)

α
2
2 V (θ)dθ

)
d̄θ1,

whereas the second one equals∫
Rd
|θ1|2αV̂ (θ1)

(∫
Rd
V̂ (θ2)V̂ (−θ1 − θ2)d̄θ2

)
d̄θ1

=

∫
Rd
|θ1|2αV̂ (θ1)

(∫
Rd
eι̇θ·θ1V 2(θ)dθ

)
d̄θ1.

As for the coefficients in front of the integral terms, we have

A(2, (1, 1)) =

(
2

1, 1

)
1

5 · 2

∫ 1

0

(1− s)s2ds =
2

5!

A(2, (2, 0)) =

(
2

2, 0

)
1

5

∫ 1

0

(1− s)2sds =
2

5!

A(2, (0, 2)) =

(
2

0, 2

)
1

5 · 3

∫ 1

0

s3ds =
2

5!
.



69

Therefore,

C2,3(V ) =
2!

5!

∫
Rd
V (θ)|(−∆)

α
2 V (θ)|2dθ +

2 · 2!

5!

∫
Rd
V 2(θ)(−∆)

α
2
2 V (θ)dθ. (3.32)

Likewise, we obtain

C3,2(V ) = A(3, 3)

∫
Rd
V̂ (−θ1)V̂ (θ1)|θ1|3αd̄θ1 (3.33)

=
1

20

∫
Rd

(−∆)
α
2 V (θ)(−∆)

α
2
2 V (θ)dθ =

3!

5!
Eα
(
(−∆)

α
2 V
)
.

Combining (3.23), (3.30), (3.32), and (3.33), we obtain our expression for C5(V ).

In the case of the Laplacian α = 2, the signs of the coefficients can be used to give in-

formation on the poles on the meromorphic extension of the resolvent of the operator HV ;

see for example [3, Theorem 4.1]. In particular, it is shown in [3] that the first five coeffi-

cients in the trace expansion are non-negative provided the potential is non-negative. Our

computations above yield a similar result for the first five coefficients of the heat content.

More precisely, we have

Corollary 3.2.1 Suppose V ∈ S(Rd), V ≥ 0. Then C`(V ) ≥ 0, for 1 ≤ ` ≤ 5.

Proof With

C1(V ) =

∫
Rd
V (θ)dθ, C2(V ) =

1

2

∫
Rd
V 2(θ)dθ,

and

C3(V ) =
1

3!

(∫
Rd
V 3(θ)dθ + Eα(V )

)
,

the assertion trivially holds for these coefficients.

We can rewrite the expression in Lemma 3.2.3 for C4(V ) as

C4(V ) =
1

4!

∫
Rd

(
V 4(θ) + 2V 2(θ)(−∆)

α
2 V (θ) +

∣∣(−∆)
α
2 V (θ)

∣∣2) dθ
=

1

4!

∫
Rd

∣∣V 2(θ) + (−∆)
α
2 V (θ)

∣∣2 dθ
and this shows that C4(V ) ≥ 0.
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For C5(V ), we re-group the expression given by Lemma 3.2.4 as follows.

C5(V ) =
1

5!

∫
Rd
V (θ)

(
V 4(θ) + 2V 2(θ)(−∆)

α
2 V (θ) +

∣∣(−∆)
α
2 V (θ)

∣∣2) dθ
+

1

5!

(
Eα
(
(−∆)

α
2 V
)

+ 2

∫
Rd
V 2(θ)(−∆)

α
2
2 V (θ)dθ + Eα

(
V 2
))

=
1

5!

∫
Rd
V (θ)

∣∣V 2(θ) + (−∆)
α
2 V (θ)

∣∣2 dθ
+

1

5!

(
Eα
(
(−∆)

α
2 V
)

+ 2

∫
Rd
V 2(θ)(−∆)

α
2
2 V (θ)dθ + Eα

(
V 2
))
.

If V is non-negative the first of the last two terms above is clearly non-negative. We claim

the last term is also non-negative. To show this, we use Plancherel’s identity for the second

term and write the Dirichlet form in terms of the Fourier transform. However, we need to

be a little careful here since the Fourier transform of a real valued function may be complex

valued. Below we write Re(z) for the real part of the complex number z and use the fact

that for real valued functions, V̂ (−θ) = V̂ (θ). We write

2

∫
Rd
V 2(θ)(−∆)

α
2
2 V (θ)dθ =

∫
Rd
V̂ 2(−θ)|θ|2αV̂ (θ)d̄θ +

∫
Rd
V̂ 2(θ)|θ|2αV̂ (−θ)d̄θ

=

∫
Rd
V̂ 2(θ)|θ|2αV̂ (θ)d̄θ +

∫
Rd
V̂ 2(θ)|θ|2αV̂ (θ)d̄θ

= 2

∫
Rd
|θ|2αRe

(
V̂ 2(θ)V̂ (θ)

)
d̄θ.

Similarly,

Eα
(
V 2
)

=

∫
Rd
|θ|α|V̂ 2(θ)|2d̄θ and Eα

(
(−∆)

α
2 V
)

=

∫
Rd
|θ|3α|V̂ (θ)|2d̄θ.

Putting these identities together gives

Eα
(
(−∆)

α
2 V
)

+ 2

∫
Rd
V 2(θ)(−∆)

α
2
2 V (θ)dθ + Eα

(
V 2
)

=

∫
Rd

(
|θ|2α|V̂ (θ)|2 + 2|θ|αRe

(
V̂ 2(θ)V̂ (θ)

)
+ |V̂ 2(θ)|2

)
|θ|αd̄θ

=

∫
Rd

∣∣∣|θ|αV̂ (θ) + V̂ 2(θ)
∣∣∣2 |θ|αd̄θ.

This together with our previous estimates show that C5(V ) ≥ 0, for V ≥ 0.
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Remark 3.2.1 It is interesting to observe that for all V ∈ S(Rd) (regardless of the sign),

C2(V ) and C4(V ) are non-negative. Whether or not this pattern remains as we move up

along the even integers is an interesting question. With some patience one may be able to

test this for C6(V ) and perhaps even C8(V ) but the general term is not clear at all.
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4. HEAT CONTENT FOR SMOOTH DOMAINS, PROOFS

For the purposes of this chapter, we need to make use of the following two facts about

p
(α)
t (x, y) for all 0 < α < 2. First, there exists cα,d > 0 such that

c−1
α,d min

{
t−d/α,

t

|x− y|d+α

}
≤ p

(α)
t (x− y) ≤ cα,d min

{
t−d/α,

t

|x− y|d+α

}
, (4.1)

for all x, y ∈ Rd and t > 0. Secondly, in [18], R. M. Blumenthal and R. K. Getoor proved

that

lim
t↓0

p
(α)
t (x− y)

t
=

Aα,d

|x− y|d+α
, (4.2)

for all x 6= y. Here,

Aα,d = α 2α−1 π−1− d
2 sin

(πα
2

)
Γ

(
d+ α

2

)
Γ
(α

2

)
. (4.3)

With all the necessary facts about the transition densities p(α)
t (x, y) being properly recalled,

we proceed to introduce the geometric objects where the stable processes will be studied.

In order to do so, some additional notation and definitions need to be set.

Let Ω ⊂ Rd satisfy the following assumptions according to the dimension d under

consideration. If d = 1, Ω will be an open interval (a, b), −∞ < a < b < ∞ whose

length b − a will be denoted by |Ω|. As for d ≥ 2, the set Ω will represent a uniformly

C1,1-regular bounded domain where |Ω| and ∂Ω stand for the Lebesgue measure of Ω in

Rd and its boundary, respectively. We recall that

Definition 4.0.1 Ω ⊂ Rd, d ≥ 2 with either finite or infinite Lebesgue measure and non–

empty boundary ∂Ω is said to be a uniformlyC1,1-regular set if there are constants r, L > 0

such that for every σ ∈ ∂Ω, the set ∂Ω ∩ Br(σ) is the graph of a C1,1 function Λ with

||∇Λ||∞ ≤ L. Here and for the remainder of the paper, Br(σ) will represent the open ball

about σ with radius r.
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We point out that uniformly C1,1–regular bounded domains are also R-smooth bound-

ary domains (see [53, p.350]). That is, for every σ ∈ ∂Ω, there are two open balls B1 and

B2 with radii R such that B1 ⊂ Ω, B2 ⊂ Rd \ Ω̄ and ∂B1 ∩ ∂B2 = σ. Henceforth, for any

Ω ⊂ Rd, we set

Hd−1(∂Ω) =

 Hausdorff measure of the boundary of Ω, if d ≥ 2,

# {x ∈ R : x ∈ ∂Ω} , if d = 1.
(4.4)

Of course, for C1,1–domains as above, this is just the surface area of the boundary of the

domain.

Let us consider for any Borel measurable sets Ω,Ω0 in Rd, the following quantity

H(α)
Ω,Ω0

(t) =

∫
Ω

dx Px (Xt ∈ Ω0) =

∫
Ω

dx

∫
Ω0

dy p
(α)
t (x, y), (4.5)

which turns out to be well defined for example when either Ω or Ω0 has finite Lebesgue

measure. When Ω = Ω0, we simply denote H(α)
Ω,Ω(t) by H(α)

Ω (t).

One of the goals of this paper is to study the small time behavior of the function H(α)
Ω (t),

which is equivalent to analyzing the behavior of H(α)
Ω,Ωc(t) as t ↓ 0 since

H(α)
Ω (t) = |Ω| −H(α)

Ω,Ωc(t). (4.6)

We note that the function u(t, x) =
∫

Ω
dy p

(α)
t (x, y) is the unique weak solution to the

initial value problem

du

dt
= −(−∆)

α
2 u(t, x), (t, x) ∈ (0,∞)× Rd, (4.7)

u(0, x) = 1Ω(x).

In other words, the initial value problem (4.7) exactly says that H(α)
Ω (t) represents the

amount of heat in Ω, if Ω is at initial temperature 1 and if Ωc is at initial temperature 0.

In [10], M. van den Berg called H(2)
Ω (t) the heat content of Ω in Rd and analyzed its behav-

ior when the domain is a horn-shaped domain. Following the terminology introduced by

M. van den Berg, we will also call H(α)
Ω (t) the heat content of Ω in Rd.

We now proceed to interpret H(α)
Ω,Ωc(t) and discuss its connections with a spectral func-

tion and the heat semi-group. From definition (4.5), we observe that H(α)
Ω,Ωc(t) describes
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how fast in average the underlying stochastic process X, when started at some point inside

of Ω, escape from Ω. When α = 2, as mentioned previously, the process X is the Brownian

motion at twice speed whose paths are continuous, whereas for 0 < α < 2, the paths of X

are only càdlàg. Thus, H(α)
Ω,Ωc(t), by definition, is related to the jumps or the fluctuation of

the paths up to time t of the corresponding process under consideration.

The interest in studying H(α)
Ω,Ωc(t) derives from the results known about H(2)

Ω,Ωc(t) in

higher dimensions which we proceed to mention. We consider the heat semi-group acting

on L2(Rd) associated with the process X. Namely,

T
(α)
t (f)(x) =

∫
Rd
dy f(y) p

(α)
t (x− y) = E [f(x−Xt)] . (4.8)

Therefore, it follows from (4.5) that

H(α)
Ω,Ωc(t) =

〈
T

(α)
t (1Ω),1Ωc

〉
, (4.9)

where 〈·, ·〉 denotes the standard inner product in L2(Rd). In [45] and [48], Miranda, Pal-

lora, Paronnetto and Preunkert have investigated for the Brownian motion case α = 2

the connections between H(2)
Ω,Ωc(t), functions of bounded variation and the isoperimetric

inequality by means of analytic tools when d ≥ 2 for not only uniformly C1,1-regular

bounded domains but also bounded Cacciopoli sets. In fact, it is shown in [48, Prop. 8] that

H(2)
Ω,Ωc(t)

t
1
2

≤ 1√
π
Hd−1(∂Ω) (4.10)

for all t > 0, while in [45, Th 2.4] is proved that

lim
t↓0

H(2)
Ω,Ωc(t)

t
1
2

=
1√
π
Hd−1(∂Ω). (4.11)

Consequently, the preceding limit and (4.6) yield the following asymptotic expansion for

such domains,

H(2)
Ω (t) = |Ω| − 1√

π
Hd−1(∂Ω) t

1
2 + o(t

1
2 ), t ↓ 0.

The main observation here is that we are able to recover a geometry feature of the set Ω in

addition to its volume from the small asymptotic expansion of H(2)
Ω (t), namely, the surface

area of its boundary ∂Ω. At this point, it is natural to ask:
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Question 4.0.1 Is there a function fα(t), 0 < α < 2 such that

lim
t↓0

H(α)
Ω,Ωc(t)

fα(t)

exists? And, what geometry quantities of Ω can we recover from this limit?

The answer to the first question is affirmative and we have explicit expressions for

fα(t) by investigating the one dimensional case. Regarding the second question, we will

see later that we recover the surface area of the boundary if 1 ≤ α < 2 and the fractional

α–perimeter when 0 < α < 1, (see (4.13) below).

For d = 1, our main result is the following.

Theorem 4.0.1 Let Ω = (a, b), −∞ < a < b <∞ and |Ω| = b− a.

(i) For 1 < α ≤ 2 and all t > 0, we have

H(α)
Ω,Ωc(t) =

2

π
Γ

(
1− 1

α

)
t

1
α +Rα(t),

with

|Rα(t)| ≤ C
(
t1(1,2)(α) + t3/2 1{2}(α)

)
.

(ii) For α = 1 and all t > 0, the following equality holds.

H(1)
Ω,Ωc(t) =

2

π
t ln

(
1

t

)
+

2

π

(
|Ω| arctan

(
t

|Ω|

)
+

1

2
t ln

(
t2 + |Ω|2

))
,

(iii) Let 0 < α < 1 and 0 < t < min {|Ω|α , e−1}. We obtain the subsequent expansions

according to the following sub-cases.

(iv) If 1/α /∈ N, then there is a constant Cα independent of Ω such that

H(α)
Ω,Ωc(t) =

2

π

[ 1
α ]∑

n=1

(−1)n−1 Γ(nα)

(1− nα)n!
|Ω|1−nα sin

(πnα
2

)
tn + Cα t

1
α +Rα(t),

with |Rα(t)| ≤ C t[
1
α ]+1.
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(v) If α = 1/N , for some N ∈ N, then there is a constant CN(Ω) such that

H(1/N)
Ω,Ωc (t) =

2

π

N−1∑
n=1

(−1)n−1 Γ(n/N)

(1− n/N)n!
|Ω|1−n/N sin

( πn
2N

)
tn

+ (−1)N−1 2

π(N − 1)!
tN ln

(
1

t

)
+ CN(Ω) tN +R1/N(t),

with
∣∣R1/N(t)

∣∣ ≤ C tN+1.

In all the above statements, C > 0 depends only on α and Ω.

We notice that Theorem 4.0.1 ensures on one hand the existence of a non-zero function

hα(t) such that

lim
t↓0

H(α)
Ω,Ωc(t)− hα(t)

t
1
α

(4.12)

exists for all 0 < α ≤ 1. On the other hand, for 1 < α ≤ 2 the above limit also exists with

hα(t) = 0.

The upcoming Theorem 4.0.2 will show that the preceding limit (4.12) also exists in

higher dimensions for 1 < α < 2 whereas for 0 < α ≤ 1 we are only able to obtain a

weaker version of the statements (ii) and (iii) provided in Theorem 4.0.1. For α = 1, it is

worth noting that Theorems 4.0.1 and 4.0.2 indicate that h1(t) should be equal to

π−1 Hd−1(∂Ω) t ln

(
1

t

)
.

The main difficulty here would consist in identifying the limit (4.12).

We now continue to elaborate further in the observation previously made. We point

out that the factor 2 which appears in the first term of each expansion in Theorem 4.0.1

comes from the boundary points of the interval (a, b) and by definition (4.4), we have

H0(∂(a, b)) = 2. With simple observation, we notice that part (i) can be restated as

lim
t↓0

H(α)
Ω,Ωc(t)

t
1
α

=
1

π
Γ

(
1− 1

α

)
H0(∂Ω).

For α = 2, the above limit is the one-dimensional analogue of (4.11) with the same constant

which is not unusual since when dealing with a d-dimensional Brownian motion most of
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the computations reduce to the one dimensional setting due to the independence of the

components. However, for 0 < α < 2 the components are no longer independent and an

approach involving estimates of the heat kernels is required.

Because of the last considerations, we are led to conjecture that in higher dimensions

we should expect to recover, with the first term of each expansion, the Hausdorff measure

of the boundary. Our Theorem 4.0.2 asserts that the conjecture is correct when 1 < α < 2

with the same constant as in part (i) of Theorem 4.0.1. As for α = 1, we are also able to

recover the Hausdorff measure of the boundary but the constant is dimensional dependent,

as it is to be expected. For 0 < α < 1, the fractional α-perimeter Pα (Ω), defined to be

Pα (Ω) =

∫
Ω

∫
Ωc

dx dy

|x− y|d+α
, (4.13)

is recovered. The above quantity turns out to be linked with celebrated Hardy inequalities.

We refer the reader to the papers of Z.Q Chen, R. Song [24] and R.L. Frank, R. Seiringer

[29] for further results involving this quantity. In fact, it is shown in [29] that there exists

Cd,α > 0 such that

|Ω|(d−α)/d ≤ Cd,αPα (Ω)

with equality if and only if Ω is a ball. It is also proved in [31] that

lim
α↓0

αPα(Ω) = d |B1(0)| |Ω|,

lim
α↑1

(1− α)Pα(Ω) = Kd Hd−1(∂Ω),

for some Kd > 0.

It is interesting to notice that the last limit intuitively gives an insight that the surface

area of the boundary should be recovered when considering the small time behavior of the

function H(1)
Ω,Ωc(t)(Cauchy process, α = 1) which is exactly what our next result shows.

Theorem 4.0.2 Assume Ω ⊂ Rd, d ≥ 2 is a uniformly C1,1-regular bounded domain.

(i) For 1 < α < 2, we have

H(α)
Ω,Ωc(t) ≤

1

π
Γ

(
1− 1

α

)
Hd−1(∂Ω) t

1
α (4.14)
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for all t > 0. Moreover,

lim
t↓0

H(α)
Ω,Ωc(t)

t
1
α

=
1

π
Γ

(
1− 1

α

)
Hd−1(∂Ω). (4.15)

(ii) For α = 1,

lim
t↓0

H(1)
Ω,Ωc(t)

t ln
(

1
t

) =
1

π
Hd−1(∂Ω).

(iii) For 0 < α < 1,

lim
t↓0

H(α)
Ω,Ωc(t)

t
= Aα,d Pα(Ω),

with Aα,d and Pα(Ω) as defined in (4.3) and (4.13), respectively.

The proof of (i) is a consequence of the Lebesgue Dominated Convergence Theorem and

subordination techniques. Part (iii) is obtained by combining once again the Lebesgue

Dominated Convergence Theorem with (4.2). The case α = 1 requires a more elaborate

approach.

We next state some connections between H(α)
Ω,Ωc(t) and the spectral heat content of Ω

which has been widely studied only for the Brownian motion case. We recall that

τ
(α)
Ω = inf {s ≥ 0 : Xs ∈ Ωc}

is the first exit time from Ω. The spectral heat content of Ω, denoted by Q(α)
Ω (t), is defined

as

Q
(α)
Ω (t) =

∫
Ω

dx

∫
Ω

dy pΩ,α
t (x, y), (4.16)

where pΩ,α
t (x, y) is the transition density for the stable process killed upon exiting Ω. More

precisely, this is the heat kernel for the Dirichlet fractional Laplacian. Recall by (1.13) that

pΩ,α
t (x, y) = p

(α)
t (x, y) P

(
τ

(α)
Ω > t | X0 = x, Xt = y

)
.

The name spectral heat content given to Q(α)
Ω (t) comes from the fact that pΩ,α

t (x, y) can be

written in terms of the eigenvalues and eigenfunctions of the domain Ω. That is, when |Ω| <
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∞, it is known ( [27]) that there exists an orthonormal basis of eigenfunctions {φn}n∈N for

L2(Ω) with corresponding eigenvalues {λn}n∈N satisfying 0 < λ1 < λ2 ≤ λ3 ≤ ... and

λn →∞ as n→∞ such that

pΩ,α
t (x, y) =

∞∑
n=1

e−tλn φn(x)φn(y). (4.17)

Notice that due to (4.16) and the last equality, we obtain an expression for Q(α)
Ω (t)

involving both the spectrum {λn}n∈N and eigenfunctions {φn}n∈N. Namely,

Q
(α)
Ω (t) =

∞∑
n=1

e−tλn
(∫

Ω

dx φn(x)

)2

.

We remark for the sake of completeness that by mimicking the proof provided in [12,

Prop 1.4], we have

Q
(α)
Ω (t) = e−λ1 t

(
||φ1||21 +O(t−d/α)

)
, t ↑ ∞.

Henceforth, we will only be concerned about the behavior of Q(α)
Ω (t) as t ↓ 0.

The study of the small time behavior of the spectral heat content Q(α)
Ω (t) arises from

the results associated with the asymptotic expansion of the heat trace for smooth domains.

The heat trace of a bounded domain Ω is defined to be

Z (α)
Ω (t) =

1

p
(α)
t (0)

∫
Ω

dx pΩ,α
t (x, x) =

1

p
(α)
t (0)

∞∑
n=1

e−λn t,

where the second equality is obtained by means of (4.17). In [6], R. Bañuelos and T.

Kulczycki provide the following second order expansion of the heat trace for R-smooth

boundary domains which holds every 0 < α ≤ 2 (the case α = 2 was proved in [14] by M.

van der Berg).

Z (α)
Ω (t) = |Ω| − Cd,αHd−1(∂Ω) t

1
α +O(t

2
α ), (4.18)

as t ↓ 0, where Cd,α > 0 admits a probabilistic representation in terms of the exit time

from the upper half–plane of the underlying α–stable process. This result was extended

by Bañuelos, Kulczycki and Siudeja to domains with Lipschitz boundaries in [7]. It is

interesting to note that the above expansion for 0 < α < 2 was motivated by scaling and
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keeping in mind the behavior of the heat trace for the Brownian motion. Based on this, it

is natural to predict the second order expansion of Q(α)
Ω (t) by considering as a model the

spectral heat content of the Brownian motion Q(2)
Ω (t). To our surprise, Q(2)

Ω (t) only models

the behavior of Q(α)
Ω (t) for the cases 1 < α < 2.

The small time asymptotic behavior of Q(α)
Ω (t) is known so far only for α = 2. In fact,

the following result was proved by van den Berg and Le Gall in [12] for smooth domains

Ω ⊂ Rd, d ≥ 2.

Q
(2)
Ω (t) = |Ω| − 2√

π
Hd−1(∂Ω) t

1
2 +

(
2−1(d− 1)

∫
∂Ω

M(σ)dσ

)
t+O(t

3
2 ), (4.19)

as t ↓ 0. Here,M(σ) denotes the mean curvature at the point σ ∈ ∂Ω. For more on the heat

content asymptotics and its connections to the eigenvalues (spectrum) of the Laplacian in

the domain Ω, we direct the reader to Gilkey’s monograph [32] and to van den Berg, Dryden

and Kappeler [9] and the many references to the literature contained therein. We also refer

the reader to [15] for matters related to the spectral heat content and Brownian motion for

regions with a fractal boundary.

According to [20, Corollary 1], for Ω a uniformly C1,1–regular bounded domain is

known that there exists c > 0 such that

c−1 min

{
1,
ρ
α/2
Ω (x)√
t

}
≤
∫

Ω

dy pΩ,α
t (x, y) ≤ cmin

{
1,
ρ
α/2
Ω (x)√
t

}

for all x ∈ Ω and 0 < t ≤ 1. Here, ρΩ(x) represents the distance from x to the boundary

of Ω. Therefore, for bounded domains Ω with smooth boundary ∂Ω, it is possible to prove

by using the techniques developed in [12] that∫
Ω

dx min

{
1,
ρ
α/2
Ω (x)√
t

}
= |Ω| − CαHd−1(∂Ω) t

1
α +O(t

2
α ), (4.20)

as t ↓ 0 for some Cα > 0. Hence, based on the preceding expansion and the small time ex-

pansion (4.19) for the Brownian motion, we are led to conjecture that a similar asymptotic

expansion to the right hand side of (4.20) should also hold for Q(α)
Ω (t). However, Theorem

1.4.1 asserts that such a conjecture may only hold for 1 < α < 2.
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4.1 Proof of theorem 4.0.1

We will begin this section by presenting some fundamental properties about the α/2–

subordinator S = {St}t≥0.

Proposition 4.1.1

(i) For all λ, t > 0,

E [exp (−λSt)] = exp
(
−tλα/2

)
.

(ii) For all −∞ < β < α
2

,

E
[
Sβ1

]
=

∫ ∞
0

ds sβ η
(α/2)
1 (s) =

Γ(1− 2β
α

)

Γ(1− β)
. (4.21)

(iii) Let κ > 0. Then, there exists Cα > 0 such that

E
[
exp

(
−κ

2

S1

)]
≤ Cα κ

−α. (4.22)

Proof (i) and (ii) are standard facts already established in (1.6) and example 1.0.2.

Regarding (iii), it is known (see [19, p 97]) that η(α/2)
1 (s) ≤ C0(α) min

{
1, s−1−α

2

}
for

some C0(α) > 0. Hence, after a suitable change of variables, we arrive at

E
[
exp

(
−κ

2

S1

)]
≤ C0(α)

∫ ∞
0

exp
(
−κ2/s

)
min

{
1, s−1−α

2

}
ds

≤ C0(α)κ2

∫ ∞
0

exp (−w)
{ w
κ2

}1+α
2 dw

w2
=
C0(α)Γ(α/2)

κα
.

Thus, the proof is complete by taking Cα = C0(α)Γ(α/2).

In what follows, we shall assume that Ω = (a, b), a < b with length b − a = |Ω|.

We start by expressing H(α)
Ω,Ωc(t) in a more convenient form. For this purpose, we require

the following two fundamental identities concerning the process X which can be easily

deduced from the characteristic function (1.1).

Px (Xt ∈ A) = P
(
x− t

1
αX1 ∈ A

)
P (Xt ∈ A) = P (−Xt ∈ A) ,
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for all t > 0, x ∈ Rd and A Borel measurable set in Rd. In particular, when d = 1, we

obtain

Px (Xt ≤ a) = P
(

(x− a)t−
1
α ≤ X1

)
,

Px (b ≤ Xt) = P
(

(b− x)t−
1
α ≤ X1

)
,

for all x, a, b ∈ R and t > 0. The last identities in turn imply that

H(α)
Ω,Ωc(t) =

∫ b

a

dx [Px (Xt ≤ a) + Px (b ≤ Xt)]

=

∫ b

a

dx P
(

(x− a)t−
1
α ≤ X1

)
+

∫ b

a

dx P
(

(b− x)t−
1
α ≤ X1

)
.

Next, a simple change of variables yields

H(α)
Ω,Ωc(t) = 2 t

1
α

∫ |Ω|t− 1
α

0

dw P (w ≤ X1) ,

which shows that H(α)
Ω,Ωc(t) is related to the tail behavior of the process X.

We set

`α(t) =

∫ |Ω|t− 1
α

0

dw P (w ≤ X1) . (4.23)

Proof of Theorem 4.0.1: Since the tail behavior of the Brownian motion and stable

processes have an exponential and an algebraic decay at infinity, respectively, we need to

treat the cases 1 < α ≤ 2, α = 1 and 0 < α < 1 separately.

Case 1 < α ≤ 2: We rewrite `α(t) as a double integral as follows.

`α(t) =

∫ |Ω|t− 1
α

0

dw

∫ ∞
w

dz p
(α)
1 (z).

Thus, by interchanging the order of integration, we arrive at

`α(t) =

∫ |Ω|t− 1
α

0

dz p
(α)
1 (z)

∫ z

0

dw +

∫ ∞
|Ω|t−

1
α

dz p
(α)
1 (z)

∫ |Ω|t− 1
α

0

dw

=

∫ |Ω|t− 1
α

0

dz z p
(α)
1 (z) + |Ω| t−

1
α

∫ ∞
|Ω|t−

1
α

dz p
(α)
1 (z).
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In probabilistic terms, we have shown that

`α(t) = E
[
X1, 0 ≤ X1 ≤ |Ω| t−

1
α

]
+ |Ω| t−

1
α P
(
|Ω| t−

1
α < X1

)
= E [X1, 0 ≤ X1]− E

[
X1, |Ω| t−

1
α < X1

]
+ |Ω| t−

1
α P
(
|Ω| t−

1
α < X1

)
.

Let us denote

jα(t) = E
[
X1, |Ω| t−

1
α < X1

]
(4.24)

and observe that

jα(t) ≥ |Ω| t−
1
α P
(
|Ω| t−

1
α < X1

)
.

Thus, the remainder function Rα(t) to be defined as follows

Rα(t) = 2t
1
α

(
−E

[
X1, |Ω| t−

1
α < X1

]
+ |Ω| t−

1
α P
(
|Ω| t−

1
α ≤ X1

))
,

satisfies |Rα(t)| ≤ 4 t
1
α jα(t). Therefore, to finish the proof of part (i) of Theorem 4.0.1,

it suffices to obtain upper bounds for the function jα(t) according to the cases α = 2 and

1 < α < 2.

Case α = 2: It is clear from (4.24) that

j2(t) = (4π)−1/2

∫ ∞
|Ω|t−

1
2

dz z exp

(
−z

2

4

)
= π−1/2 exp

(
−|Ω|

2

4t

)
.

Next, by applying the elementary inequality

exp(−x) ≤ x−1, x > 0,

we conclude that j2(t) ≤ 4π−1/2 |Ω|−2 t. Hence, we have shown that

H(2)
Ω,Ωc(t) = 2E [X1, 0 ≤ X1] t

1
2 +R2(t),

with |R2(t)| ≤ C t
3
2 for all t > 0.
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Case 1 < α < 2: We observe due to (4.1) that for all z ∈ R \ {0} we have

p
(α)
1 (z) ≤ cα,1 |z|−1−α

so that

jα(t) ≤ cα,1

∫ ∞
|Ω|t−

1
α

dz z−1−α z = cα,1(α− 1)−1 |Ω|1−α t1−
1
α .

Thus, we arrive at

H(α)
Ω,Ωc(t) = 2E [X1, 0 ≤ X1] t

1
α +Rα(t),

with |Rα(t)| ≤ C t for all t > 0.

Remark 4.1.1 By combining (1.4) and Fubini’s Theorem, we obtain for all 1 < α ≤ 2

that

E [X1, 0 ≤ X1] =

∫ ∞
0

dz z E
[
p

(2)
S1

(z)
]

= E
[∫ ∞

0

dz z p
(2)
S1

(z)

]
=

1√
π

E
[
S

1/2
1

]
=

1

π
Γ

(
1− 1

α

)
,

where in the last equality we have appealed to formula (4.21).

We proceed to deal with Cauchy processes.

Case α = 1: We begin by recalling some elementary calculus identities.

arctan(w) + arctan

(
1

w

)
=
π

2
(4.25)∫

dw arctan(w) = w arctan(w)− 1

2
ln
(
1 + w2

)
+ C. (4.26)

By appealing to the above identities, the explicit expression of the Cauchy heat kernel

(1.2) and (4.23), we have

`1(t) =

∫ |Ω|t−1

0

dw

∫ ∞
w

dz

π(1 + z2)

=
1

π

(
π

2
|Ω| t−1 −

∫ |Ω| t−1

0

dw arctan(w)

)

=
1

π

(
π

2
|Ω| t−1 −

[
|Ω| t−1 arctan(|Ω| t−1)− 1

2
ln

(
1 +
|Ω|2

t2

)])

=
1

π
ln

(
1

t

)
+

1

π

(
|Ω| t−1 arctan

(
t

|Ω|

)
+

1

2
ln
(
t2 + |Ω|2

))
.
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Therefore, it follows from the above expression that

H(1)
Ω,Ωc(t) =

2

π
t ln

(
1

t

)
+

2

π

(
|Ω| arctan

(
t

|Ω|

)
+

1

2
t ln

(
t2 + |Ω|2

))
,

for all t > 0 and this completes the proof of part (ii) of Theorem 4.0.1.

Case 0 < α < 1: Assume 0 < t ≤ min {|Ω|α , e−1}. In [49, p. 88], the following

power series representation is provided for the one dimensional density function p(α)
1 (z)

for any z > 0, 0 < α < 1.

p
(α)
1 (z) =

∞∑
n=1

an(α)z−1−nα

with

an(α) = (−1)n−1 Γ (nα + 1)

π n!
sin
(π nα

2

)
.

Notice that by applying Fubini’s Theorem, we obtain for w > 0∫ ∞
w

dz

(
∞∑
n=1

|an(α)| z−1−nα

)
=
∞∑
n=1

|an(α)|
nα

(
1

wα

)n
. (4.27)

By appealing to the following estimate

Γ(t+ 1) v
√

2πt(te−1)t, t→∞, (4.28)

we can prove that the series on the right hand side of the (4.27) is well defined for all w > 0

since its radius of convergence is infinity. To see this, we note that

|an(α)| ≤ Γ (nα + 1)

n!
, (4.29)

so that by (4.28) we arrive at

lim
n→∞

(
Γ (nα + 1)

nn!

)1/n

= lim
n→∞

(√
α

n

)1/n
ααe1−α

n1−α = 0, (4.30)

whenever 0 < α < 1. Therefore, by using once more Fubini’s Theorem, we have for w > 0∫ ∞
w

dz p
(α)
1 (z) =

∞∑
n=1

an(α)

nα

(
1

wα

)n
. (4.31)
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Next, it is easy to show that∫ |Ω|t− 1
α

1

dw

∫ ∞
w

dz z−1−nα =

(
n ln

(
1

t

)
+ ln (|Ω|)

)
· 1{nα=1} (4.32)

+

(
|Ω|1−nα tn−

1
α − 1

nα (1− nα)

)
· 1{nα6=1}.

Before continuing, let us introduce some notation to simplify the formulas to appear

below. For m ∈ N ∪ {∞}, t > 0 and 1/α /∈ N, we set

sm(t) =
m∑
n=1

an(α) |Ω|1−nα tn

nα(1− nα)
, rm(t) =

m∑
n=1

an(α) tn

nα(1− nα)
, (4.33)

s̃m(t) =
∞∑
n=m

an(α) |Ω|1−nα tn

nα(1− nα)
, r̃m(t) =

∞∑
n=m

an(α) tn

nα(1− nα)
.

These series are well defined for all t > 0 since by using (4.29) and (4.30), we obtain

that

lim
n→∞

(
|an(α)| |Ω|1−nα

nα |1− nα|

)1/n

= lim
n→∞

(
|an(α)|

nα |1− nα|

)1/n

= 0

for all 0 < α < 1 and 1/α /∈ N.

As a result of the preceding facts and the elementary tools of calculus, we are allowed

to interchange in (4.31) the sum with the integral sign over any compact set contained in

(0,∞). Thus, if 1/α /∈ N, we conclude by (4.32) and (4.33) that∫ |Ω|t− 1
α

1

dw

∫ ∞
w

dz p
(α)
1 (z) = t−

1
α s∞(t)− r∞(1) (4.34)

= t−
1
α s[ 1

α ](t)− r∞(1) + t−
1
α s̃[ 1

α ]+1(t),

where [1/α] denotes the integer part of 1/α. On the other hand, if α = 1/N for some

N ∈ N, we obtain∫ |Ω|t−N
1

dw

∫ ∞
w

dz p
(1/N)
1 (z) = t−N sN−1(t)− rN−1(1) + aN(1/N)N ln

(
1

t

)
(4.35)

+ aN(1/N) ln(|Ω|) + t−N s̃N+1(t)− r̃N+1(1)

= t−N sN−1(t) + aN(1/N)N ln

(
1

t

)
+ C∗N(Ω) + t−N s̃N+1(t)
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where

C∗N(Ω) = aN (1/N) ln(|Ω|)− rN−1(1)− r̃N+1(1). (4.36)

We rewrite `α(t) given in (4.23) as follows.

`α(t) =

∫ 1

0

dw P (w ≤ X1) +

∫ |Ω|t− 1
α

1

dw

∫ ∞
w

dz p
(α)
1 (z).

Then, by using the last equality and the identities (4.34) and (4.35), we arrive at

H(α)
Ω,Ωc(t) = 2 s[ 1

α ](t) + Cα t
1
α + 2 s̃[ 1

α ]+1(t)

for 1/α /∈ N. Here,

Cα = 2

(∫ 1

0

dw P (w ≤ X1)− r∞(1)

)
.

As for the case α = 1/N , some N ∈ N, we have

H(1/N)
Ω,Ωc (t) = 2 sN−1(t) + 2N aN(1/N) tN ln

(
1

t

)
+ CN(Ω) tN + 2 s̃N+1(t)

with

CN(Ω) = 2

(∫ 1

0

dw P (w ≤ X1) + C∗N(Ω)

)
and C∗N(Ω) as defined in (4.36). Hence, the proof of part (iii) in Theorem 4.0.1 is complete

by taking Rα(t) = 2 s̃[ 1
α ]+1(t) and observing that

|Rα(t)| ≤ C t[
1
α ]+1, 0 < t ≤ min

{
|Ω|α , e−1

}
,

for some C > 0.

4.2 Proof of Theorem 4.0.2

We start by recalling equation (1.4) which allows us to write the transition densities

p
(α)
t (x, y) by subordination of the Gaussian kernel. Therefore, an application of Fubini’s

Theorem yields

H(α)
Ω,Ωc(t) =

∫
Ω

dx

∫
Ωc
dy p

(α)
t (x− y) (4.37)

=

∫
Ω

dx

∫
Ωc
dy E

[
p

(2)
St

(x− y)
]

= E
[
H(2)

Ω,Ωc(St)
]
.
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Proof of part (i): Assume 1 < α < 2. With the aid of the inequality (4.10) which is

valid for all positive time, equality (4.37), the fact that St
D
= t2/αS1 and formula (4.21), it

easily follows that

H(α)
Ω,Ωc(t) ≤

Hd−1(∂Ω)√
π

E
[
S

1/2
t

]
=

1

π
Γ

(
1− 1

α

)
Hd−1(∂Ω) t

1
α (4.38)

for all t > 0 and with this we have proved (4.14).

On the other hand, by using once more (4.37) and St
D
= t2/αS1, we obtain

H(α)
Ω,Ωc(t)

t
1
αHd−1(∂Ω)

=

∫ ∞
0

ds

(
H(2)

Ω,Ωc(t
2/αs)

t
1
αHd−1(∂Ω)

)
η

(α/2)
1 (s) (4.39)

=

∫ ∞
0

ds G(s, t),

with

G(s, t) = s1/2

(
H(2)

Ω,Ωc(s t
2/α)

(s t2/α)
1/2Hd−1(∂Ω)

)
η

(α/2)
1 (s).

We now observe two facts. First, by (4.11) we have

lim
t↓0

G(s, t) =
1√
π
s1/2 η

(α/2)
1 (s).

Secondly, by (4.10)

0 ≤ G(s, t) ≤ 1√
π
s1/2 η

(α/2)
1 (s)

for all t, s > 0, with s1/2 η
(α/2)
1 (s) ∈ L1((0,+∞)) because of (4.21). Hence, the assertion

(4.15) is an easy consequence of the Lebesgue Dominated Convergence Theorem and the

identity (4.39).

We now continue with the proof of (ii) of Theorem (4.0.2). This requires a much more

delicate approach. In order to make this presentation as clear as possible, we devote the

next section to it.

4.3 Cauchy processes in higher dimension

In this section, we will adapt the techniques used in [45] for the Gaussian heat ker-

nel. This requires some additional considerations since as we have already pointed out
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the Gaussian kernel has an exponential decay whereas the Cauchy heat kernel p(1)
t (x, y)

defined in (1.2) has a polynomial decay.

From now on, we write every vector x ∈ Rd as x = (x̄, xd) with x̄ = (x1, ..., xd−1) ∈

Rd−1.

Lemma 4.3.1 Let H =
{

(x̄, xd) ∈ Rd : xd < 0
}

and δ, ε > 0. Set Hδ = Rd−1× (0, δ) and

Hε = Rd−1 × (−ε, 0). Assume ϕ ∈ C1
c (Rd) and consider the compact set

K =
{
x̄ ∈ Rd−1 : ∃xd ∈ R such that (x̄, xd) ∈ supp(ϕ)

}
. (4.40)

Then, there exists a function R(t) such that∫
Hδ

dxϕ(x)

∫
Hε

dy p
(1)
t (x, y) =

1

π

(∫
K

dx̄ ϕ(x̄, 0)

)
t ln

(
1

t

)
+R(t), (4.41)

with

|R(t)| ≤ Cε,δ,ϕ t (4.42)

for all 0 < t < e−1.

Proof We first note that the integral on the left hand side of (4.41) equals∫
Hδ

dx ϕ(x)

∫ 0

−ε
dyd

∫
Rd−1

Γ
(
d+1

2

)
π
d+1

2

· t dȳ(
t2 + |xd − yd|2 + |x̄− ȳ|2

)(d+1)/2
.

By considering the change of variable

ȳ = x̄−
√(

t2 + |xd − yd|2
)
w,

we reduce the last integral to

γd t

∫
Rd−1

dx̄

∫ δ

0

dxd ϕ(x̄, xd)

∫ 0

−ε

dyd

t2 + |xd − yd|2
, (4.43)

where

γd = Γ

(
d+ 1

2

)
π−

(d+1)
2

∫
Rd−1

dw (1 + |w|2)−
(d+1)

2 .

Notice that by appealing to spherical coordinates, properties of the Gamma funtion and the

following fact ∫
dr rd−2(1 + r2)−

d+1
2 =

rd−1

(d− 1)(1 + r2)
d−1

2

+ C,
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we have γd = π−1 for all d ≥ 2.

Next, by making the new change of variables xd − yd = tz in the integral expression

(4.43), we arrive at∫
Hδ

dxϕ(x)

∫
Hε

dy p
(1)
t (x, y) = π−1

∫
Rd−1

dx̄

∫ δ

0

dxd ϕ(x̄, xd) Ft(xd, ε) (4.44)

with

Ft(xd, ε) = arctan

(
xd + ε

t

)
− arctan

(xd
t

)
= arctan

(
t

xd

)
− arctan

(
t

xd + ε

)
. (4.45)

Let us set at this point

h(x̄, xd) = ϕ(x̄, xd)− ϕ(x̄, 0). (4.46)

Notice that according to (4.40), we have

ϕ(x̄, xd) = h(x̄, xd) = 0 (4.47)

for all (x̄, xd) ∈ Kc × R. Since ϕ(x) is compactly supported with continuous partial

derivatives it follows from the Taylor expansion that

|h(x̄, xd)| =
∣∣∣∣∫ 1

0

∇ϕ((x̄, xd)− s(x̄, 0)) · (0, xd)ds
∣∣∣∣ ≤ ||∇ϕ||∞|xd|. (4.48)

We next consider the continuous function Π : Rd → Rd−1 defined by Π(x̄, xd) = x̄.

Then

K = {Π(x̄, xd) : (x̄, xd) ∈ supp(ϕ)} .

Thus, because of the continuity of Π, K is a compact set in Rd−1 whose finite Lebesgue

measure will be denoted in what follows by |K|.

Now, by appealing to (4.44), (4.46) and (4.47), we find that∫
Hδ

dxϕ(x)

∫
Hε

dy p
(1)
t (x, y) = π−1

∫
K

dx̄

∫ δ

0

dxd ϕ(x̄, 0)Ft(xd, ε) +R2(t) (4.49)

with

R2(t) = π−1

∫
K

dx̄

∫ δ

0

dxd h(x̄, xd)Ft(xd, ε). (4.50)
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As for the first integral term on the right hand side of the equation (4.49), we have by using

the elementary identities (4.25) and (4.26) that it is equal to

π−1

(∫
K

dx̄ ϕ(x̄, 0)

)(
t ln

(
1

t

)
+R1(t)

)
,

with

R1(t) = ε arctan

(
t

ε

)
+ δ arctan

(
t

δ

)
− (δ + ε) arctan

(
t

δ + ε

)
+
t

2
ln

(
(t2 + ε2)(t2 + δ2)

t2 + (δ + ε)2

)
.

We remark that due to the inequality arctan(x) ≤ x for x > 0 and the fact that 0 < t < e−1,

we obtain that |R1(t)| ≤ Cδ,ε t.

As for R2(t), we first observe due to (4.45) that for t, xd > 0, we have

0 ≤ Ft(xd, ε) ≤
t

xd
. (4.51)

Therefore, by combining (4.48), (4.50) and (4.51), we have

|R2(t)| ≤ π−1

∫
K

dx̄

∫ δ

0

dxd |h(x̄, xd)|Ft(xd, ε) ≤ π−1 δ ||∇ϕ||∞|K| t.

Now by setting R(t) = π−1
(∫

K
dx̄ ϕ(x̄, 0)

)
R1(t) + R2(t) and putting together all the

estimates given above we conclude (4.42) and this finishes the proof of Lemma 4.3.1.

Before proceeding, we comment further on the last result. In probabilistic terms, we

have ∫
Hδ

dx ϕ(x)

∫
Hε

dy p
(1)
t (x, y) =

∫
Hδ

dx ϕ(x) Px (Xt ∈ Hε) .

The goal of the last integral is to understand how the paths of the Cauchy process

“perceive” the boundary of H . The above lemma says that when ϕ(x) ∈ C1
c (Rd), the

process “feels” the influence of the boundary ∂H = Rd−1 × {0} by means of the term∫
K⊂Rd−1

dx̄ ϕ(x̄, 0).

For a bounded domain with smooth boundary Ω, the paths conditioned to start in Ω and

exit at time t should “view” the boundary as a half-plane. Therefore, it is expected that we
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can replace
∫
K
dx̄ ϕ(x̄, 0) with

∫
∂Ω
ϕ(σ) dHd−1(σ). To this aim, we recall some definitions

and geometric properties on uniformly C1,1-regular domains. We refer the reader to [45],

[55] and references therein for details and further considerations on the topic.

We set ρΩ(x) = inf {|x− σ| : σ ∈ ∂Ω} and for δ, ε > 0 we define

Ωδ = {x ∈ Ωc : ρΩ(x) < δ} , (4.52)

Ωε = {x ∈ Ω : ρΩ(x) < ε} .

Proposition 4.3.1 Let Ω ⊂ Rd be a uniformly C1,1-regular bounded domain. Then,

(a) there exists ε, δ > 0 such that the maps

J : ∂Ω × [0, δ]→ Ωδ, J(σ, r) = σ + r ν(σ),

J̃ : ∂Ω × [0, ε]→ Ωε, J̃(σ, r) = σ − r ν(σ), (4.53)

where ν(σ) is the outward unit normal to ∂Ω at σ, are C1,1-diffeomorphisms.

(b) Given η > 0, there exists a finite covering V = {Vi} of ∂Ω andC1,1–diffeomorphisms

ψi : Ki → Vi, with Ki open subset of Rd−1 such that if we set

Ψi(ξ, ρ) = ψi(ξ) + ρ ν(ψi(ξ)), ξ ∈ Ki, ρ ∈ (−ε, δ),

then the family of open sets U = {Ui} with Ui = Ψi (Ki × (−ε, δ)) covers Ωε ∪ Ωδ

with Jacobians satisfying

|DΨi(ξ, ρ)| = 1 +O(η), ξ ∈ Ki, ρ ∈ (−ε, δ), (4.54)

|DΨ−1
i (x)| = 1 +O(η), x ∈ Ui

|Dψ−1
i (x)| = 1 +O(η), x ∈ Vi.

Also

|Ψi(z, r)−Ψi(ξ, ρ)|2 = |(z, r)− (ξ, ρ)|2 (1 +O(η)) , (4.55)
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for all ξ, z ∈ Ki and ρ, r ∈ (−ε, δ). Here, we use the notation O(η) to mean a

function which is upper bounded in absolute value by Cη, where the constant C

depends only on Ω, ε, δ.

The main result of this section is the following.

Theorem 4.3.1 Let Ω ⊂ Rd be a uniformly C1,1-regular bounded domain. Consider Ωε

and Ωδ the inner and outer tubular neighbourhoods of ∂Ω defined in (4.52). Then, for every

ϕ ∈ C1
c (Rd) we have

lim
t↓0

1

t ln
(

1
t

) ∫
Ωδ
dxϕ(x)

∫
Ωε

dy p
(1)
t (x, y) = π−1

∫
∂Ω

ϕ(σ) dHd−1(σ). (4.56)

Proof Let η > 0 and consider the finite family of open sets U = {Ui} provided by part (b)

in the last proposition. Now, let {χi} be a smooth partition of the unity subordinated to the

covering U (see [55, Th 1.2]). We assume without loss of generality that supp(χi) ⊂ Ui.

Therefore, by using the fact that
∑
i

χi(x) = 1 for every x ∈ ∪Ui, we have

∫
Ωδ
dxϕ(x)

∫
Ωε

dy p
(1)
t (x, y) =

∑
i

(
Ii + Ĩi

)
with

Ii =

∫
Ωδ∩supp(χi)

dxϕ(x)χi(x)

∫
Ωε∩Ui

dy p
(1)
t (x, y),

Ĩi =

∫
Ωδ∩supp(χi)

dxϕ(x)χi(x)

∫
Ωε\Ui

dy p
(1)
t (x, y).

Observe that supp(χi) ⊂ Ui is compact and also disjoint from the compact set Ωε \ Ui,

then

inf
{
|x− y| : x ∈ supp(χi), y ∈ Ωε \ Ui

}
= µi > 0.

Thus, by appealing to the explicit form of the Cauchy heat kernel and the fact 0 ≤ χi ≤ 1

for every i, we conclude

lim
t↓0

∣∣∣∣∣ 1

t ln
(

1
t

)∑
i

Ĩi

∣∣∣∣∣ ≤ lim
t↓0

Cd

ln
(

1
t

) (∑
i

µ
−(d+1)
i

)
|Ω|
∫

Ωδ
dx |ϕ(x)| = 0.
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Now, we proceed to deal with the term Ii. We start by expressing every x ∈ Ωδ ∩

supp(χi) and y ∈ Ωε∩Ui under the new variables introduced in Proposition 4.3.1. Namely,

y = Ψ(z, r), z ∈ Ki, r ∈ [−ε, 0],

x = Ψ(ξ, ρ), ξ ∈ Ki, ρ ∈ [0, δ].

Then, using these equalities, we obtain

Ii =

∫
Ki×(0,δ)

dξ dρ χi (Ψ(ξ, ρ))ϕ (Ψ(ξ, ρ))

∫
Ki×(−ε,0)

dz dr pt((z, r), (ξ, ρ)),

where we have set

pt((z, r), (ξ, ρ)) = p
(1)
t (Ψ(z, r),Ψ(ξ, ρ)) |DΨ(z, r)| |DΨ(ξ, ρ)| .

Define gt(x, y) = |x−y|2
t2+|x−y|2 with x, y ∈ Rd+1 and t > 0. Hence, by using the estimates

given in (4.54) and (4.55), we find that

pt((z, r), (ξ, ρ)) = p
(1)
t ((z, r), (ξ, ρ))

[
1 +O(η)

(1 + gt(ξ − z, ρ− r)O(η))(d+1)/2

]
.

We now observe by using that 0 ≤ gt ≤ 1 and the above expression, we can chose η very

small but arbitrary such that

pt((z, r), (ξ, ρ)) = p
(1)
t ((z, r), (ξ, ρ)) (1 +O(η)) . (4.57)

Therefore, we conclude by Proposition 4.3.1 and (4.54) that

lim
t↓0

1

t ln
(

1
t

)∑
i

Ii = (1 +O(η))π−1
∑
i

∫
Ki

χi (Ψi(ξ, 0))ϕ (Ψi(ξ, 0)) dξ

= (1 +O(η))π−1
∑
i

∫
Vi

χi (σ)ϕ (σ)
∣∣DΨ−1

i (σ)
∣∣ dHd−1(σ)

= (1 +O(η))π−1

∫
∂Ω

(∑
i

χi(σ)1Vi∩supp(χi)(σ)

)
ϕ (σ) dHd−1(σ)

= (1 +O(η))π−1

∫
∂Ω

ϕ (σ) dHd−1(σ).

The proof is complete by letting η go to zero.



95

Remark 4.3.1 Let Ω ⊂ Rd be a uniformly C1,1-regular bounded domain and ε, δ as given

in Proposition 4.3.1. It is clear because of the boundedness of Ω that Ωδ ∪ Ωε is contained

in some open ball. Thus, by Corollary 1.2 in [55, p. 8], there exists an infinitely differen-

tiable and compactly supported function ϕ such that

Ωδ ∪ Ωε ⊂ {x ∈ supp(ϕ) : ϕ(x) = 1} .

Therefore, as an application of Theorem 4.3.1, we conclude

lim
t↓0

H(1)

Ωε,Ωδ
(t)

t ln
(

1
t

) = π−1Hd−1(∂Ω).

We observe that for every δ, ε > 0, we have

H(1)
Ω,Ωc(t) = H(1)

Ω\Ωε,Ωc(t) + H(1)

Ωε,Ωδ
(t) + H(1)

Ωε,Ωc\Ωδ(t),

so that in order to prove part (ii) of Theorem 4.0.2, we still need to show the following.

Lemma 4.3.2 Let Ω ⊂ Rd be a bounded domain and consider Ωε and Ωδ the inner and

outer tubular neighbourhoods of ∂Ω defined in (4.52). Then,

lim
t↓0

H(1)
Ω\Ωε,Ωc(t)

t ln
(

1
t

) = lim
t↓0

H(1)

Ωε,Ωc\Ωδ(t)

t ln
(

1
t

) = 0.

Proof Along the proof, Cd will denote the constant π−(d+1)/2Γ
(
d+1

2

)
. We begin by ob-

serving that

H(1)
Ω\Ωε,Ωc(t) = Cd t

∫
Ω\Ωε

dx

∫
Ωc

dy

(t2 + |x− y|2)
d+1

2

≤ Cd t

∫
Ω\Ωε

dx

∫
Ωc
dy |x− y|−d−1

≤ Cd t

∫
Ω\Ωε

dx

∫
Bc
ρΩ(x)

(x)

dy |x− y|−d−1 (4.58)

= Cd tHd−1(∂B1(0))

∫
Ω\Ωε

dx ρ−1
Ω (x)

≤ CdHd−1(∂B1(0)) ε−1 |Ω| t,
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where in the last inequality we have used that Ω \ Ωε = {x ∈ Ω : ρΩ(x) ≥ ε} , whereas to

compute the integral term in (4.58) we have employed spherical coordinates.

Next, since Ω̄ is compact, we have

0 < rΩ = sup
x∈Ω
|x| <∞. (4.59)

Choose any r > rΩ and notice that Ω ⊂ Br(0). Thus, we find that∫
Ωε

dx

∫
Ωc\Ωδ

dy |x− y|−d−1 =

∫
Ωε

dx

∫
(Ωc\Ωδ)∩Br(0)

dy |x− y|−d−1

+

∫
Ωε

dx

∫
(Ωc\Ωδ)∩Bcr(0)

dy |x− y|−d−1.

Note that for all x ∈ Ω and y ∈ Ωc \ Ωδ, we have the following inequality δ ≤ ρΩ(y) ≤

|x−y|. Thus the first integral term on the right hand side of the previous equality is bounded

above by δ−d−1|Ω||Br(0)|. As far as the second integral is concerned, we have for all x ∈

Ωε, by (4.59), that

|y − x| ≥ |y| − |x| ≥ |y| − rΩ.

Thus, ∫
Ωε

dx

∫
(Ωc\Ωδ)∩Bcr(0)

dy |x− y|−d−1 ≤ |Ω|
∫
Bcr(0)

dy (|y| − rΩ)−d−1

for all r > rΩ. By appealing to spherical coordinates, we obtain∫
Bcr(0)

dy (|y| − rΩ)−d−1 = Hd−1(∂B1(0))

∫ ∞
r−rΩ

dp (p+ rΩ)d−1 p−d−1

= Hd−1(∂B1(0))
d−1∑
j=0

(
d− 1

j

)
r jΩ

(j + 1)(r − rΩ)j+1
<∞.

Hence, we have shown that

H(1)

Ωε,Ωc\Ωδ(t) ≤ Cδ,Ω,εt.

Finally, the assertion of the Lemma follows by combining all the estimates given above.
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Proof of part (iii) of Theorem 4.0.2 As before, we notice that Ωc ⊂ Bc
ρΩ(x)(x) for

every x ∈ Ω so that∫
Ωε

dx

∫
Ωc
|x− y|−d−α ≤

∫
Ωε

dx

∫
Bc
ρΩ(x)

(0)

dz |z|−d−α

= Hd−1(∂B1(0))α−1

∫
Ωε

dx ρ−αΩ (x). (4.60)

Since uniformly C1,1 bounded domains are alsoR–smooth boundary domains, we have

according to Corollary 2.14 in [6] that there exists ε > 0 (this ε might not be the same

provided in Proposition 4.3.1, however we can choose the smaller of them) such that

Hd−1(∂Ωr) ≤ 2d−1Hd−1(∂Ω), (4.61)

for all 0 < r < ε. Hence, by the co–area formula, we obtain∫
Ωε

dx ρ−αΩ (x) =

∫ ε

0

dr r−αHd−1(∂Ωr) ≤ 2d−1 (1− α)−1Hd−1(∂Ω) ε1−α <∞. (4.62)

Likewise, as in (4.60)∫
Ω\Ωε

dx

∫
Ωc
dy |x− y|−d−α ≤ Hd−1(∂B1(0))α−1

∫
Ω\Ωε

dx ρ−αΩ (x)

≤ Hd−1(∂B1(0))α−1 |Ω| ε−α. (4.63)

We have shown with (4.60) and (4.63) that

Pα(Ω) =

∫
Ω

dx

∫
Ωc
dy|x− y|−d−α <∞

provided that 0 < α < 1. Thus, by combining the finiteness of the last integral with

(4.1) and (4.2), we conclude part (iii) of Theorem 4.0.2 by an application of the Lebesgue

Dominated Convergence Theorem.

4.4 Upper bounds in Theorem 1.4.1

Let Ω be a bounded domain. Then, it is clear that for every x ∈ Ω, we have

τ
(α)
BρΩ(x)(x) ≤ τ

(α)
Ω
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which implies

Px
(
τ

(α)
Ω < t

)
≤ Px

(
τ

(α)
BρΩ(x)(x) < t

)
= P

(
τ

(α)
BρΩ(x)(0) < t

)
(4.64)

for all t > 0. Therefore, we conclude that

Q
(α)
Ω (t) =

∫
Ω

dxPx
(
τ

(α)
Ω ≥ t

)
= |Ω| −

∫
Ω

dxPx
(
τ

(α)
Ω < t

)
satisfies for all t > 0 the following inequality

|Ω| −Q(α)
Ω (t) ≤

∫
Ω

dxP
(
τ

(α)
BρΩ(x)(0) < t

)
. (4.65)

We now turn to the following result whose proof and applications to Subordinate Killed

Brownian motion in a domain can be found in [52, Prop. 2.1].

Proposition 4.4.1 Assume D is a bounded domain satisfying an exterior cone condition.

Then, there exists C ∈ (0, 1) such that

(1− C)Px(τ (2)
D ≤ St) ≤ Px(τ (α)

D ≤ t) ≤ Px(τ (2)
D ≤ St),

for all t > 0 and x ∈ D.

In particular, by appealing to the last Proposition with D = BρΩ(x)(0) and (4.65), we find

that

|Ω| −Q(α)
Ω (t) ≤

∫
Ω

dx P
(
τ

(2)
BρΩ(x)(0) < St

)
. (4.66)

Next, the independence between the Brownian Motion B and α/2-subordinator S as stated

in the introduction yields

P
(
τ

(2)
BρΩ(x)(0) < St

)
= P

(
τ

(2)
BρΩ(x)(0) < t2/αS1

)
(4.67)

=

∫ ∞
0

ds η
(α/2)
1 (s)PB

(
τ

(2)
BρΩ(x)(0) < t2/αs

)
.

In [12, Lemma 3.3], it is shown that

PB

(
τ

(2)
BρΩ(x)(0) < t2/αs

)
≤ 2(d+2)/2 exp

(
− ρ2

Ω(x)

8 t2/α s

)
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so that by using the last inequality, (4.66) and (4.67), we arrive at

|Ω| −Q(α)
Ω (t) ≤ 2(d+2)/2

∫
Ω

dxE
[
exp

(
− ρ2

Ω(x)

8 t2/α S1

)]
. (4.68)

We split the foregoing integral as follows∫
Ω

dxE
[
exp

(
− ρ2

Ω(x)

8 t2/α S1

)]
= Iα(t) + IIα(t)

with

Iα(t) =

∫
Ωε

dxE
[
exp

(
− ρ2

Ω(x)

8 t2/α S1

)]
,

IIα(t) =

∫
Ω\Ωε

dxE
[
exp

(
− ρ2

Ω(x)

8 t2/α S1

)]
and observe by (4.22) with κ = ρΩ(x) 8−1/2 t−

1
α , we obtain

IIα(t) ≤ Cα |Ω| 8α/2ε−α t

and by (4.61) and co–area formula, we also have

Iα(t) =

∫ ε

0

drE
[
exp

(
− r2

8 t2/α S1

)]
Hd−1(∂Ωr) (4.69)

≤ 2d−1Hd−1(∂Ω)

∫ ε

0

drE
[
exp

(
− r2

8 t2/α S1

)]
= 2(2d+1)/2Hd−1(∂Ω) t

1
α

∫ ε 8−1/2 t−
1
α

0

dwE
[
exp

(
−w

2

S1

)]
for all 0 < α < 2 and t > 0.

In order to obtain upper bounds it suffices to deal with the integral in the above inequal-

ity. As before, we divide this into various cases according to α.

Case 1 < α < 2: By appealing to the identity∫ ∞
0

dw exp

(
−w

2

s

)
= 2−1 π1/2 s1/2

and Fubini’s Theorem, we arrive at∫ ∞
0

dwE
[
exp

(
−w

2

S1

)]
= 2−1 π1/2 E

[
S

1/2
1

]
= 2−1Γ

(
1− 1

α

)
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so that by (4.69)

Iα(t) ≤ 2(2d−1)/2Hd−1 (∂Ω) t
1
α Γ

(
1− 1

α

)
.

By putting together the preceding estimates and the inequality (4.68), we obtain for all

t > 0 that

|Ω| −Q(α)
Ω (t) ≤ 2(d+2)/2

(
Cα |Ω| 8α/2ε−α t+ 2(2d−1)/2Hd−1(∂Ω) Γ

(
1− 1

α

)
t

1
α

)
.

It easily follows that

lim
t↓0

|Ω| −Q(α)
Ω (t)

t
1
α

≤ 2(3d+1)/2 Γ

(
1− 1

α

)
Hd−1(∂Ω).

Case α = 1: The 1/2–subordinator S can be expressed as the first hitting time for the

standard one-dimensional Brownian motion {Wt}t≥0. More precisely, St = inf
{
s > 0 : Ws = t√

2

}
.

It is known (see [1] for details) that its transition density is given by

η
(1/2)
t (s) =

t

2
√
π
s−3/2e−t

2/4s.

A simple computation yields

E
[
exp

(
−w

2

S1

)]
=

1√
4w2 + 1

,∫ ε8−1/2 t−1

0

dw√
4w2 + 1

=
1

2
ln

(
1

t

)
+

1

2
ln

(
ε√
2

+

√
ε2

2
+ t2

)
.

Therefore, (4.68) and the previous calculations show that |Ω| − Q(1)
Ω (t) is bounded above

by

2(d+2)/2

(
Cα |Ω|

√
8ε−1 t+ 2(2d−1)/2Hd−1(∂Ω) t

[
ln

(
1

t

)
+ ln

(
ε√
2

+

√
ε2

2
+ t2

)])

which in turn implies

lim
t↓0

|Ω| −Q(1)
Ω (t)

t ln
(

1
t

) ≤ 2(3d+1)/2 Hd−1(∂Ω).
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Case 0 < α < 1: By applying again to (4.22) with κ = ρΩ(x) 8−1/2 t−
1
α , we have∫

Ω

dxE
[
exp

(
− ρ2

Ω(x)

8 t2/α S1

)]
≤ 8α/2Cα

(∫
Ω

dx ρ−αΩ (x)

)
t.

The integral term at the right hand side turns out to be finite because of (4.62) and the fact∫
Ω\Ωε

dx ρ−αΩ (x) ≤ ε−α |Ω|.

Therefore, we find that

lim
t↓0

|Ω| −Q(α)
Ω (t)

t
≤ 2(d+2+3α)/2Cα

∫
Ω

dx ρ−αΩ (x).

Assume now that Ω also satisfies a uniform exterior volume condition. That is, there

exists c > 0 such that for any σ ∈ ∂Ω and any r > 0 we have |Br(σ) ∩ Ωc| ≥ c rd. Then,

we claim that

c

2d+α
ρ−αΩ (x) ≤

∫
Ωc

dy

|x− y|d+α
, x ∈ Ω. (4.70)

To see this, let x ∈ Ω and choose σx ∈ ∂Ω such that ρΩ(x) = |σx − x| . Thus, for any y

belonging to BρΩ(x)(σx) ∩ Ωc, we obtain

|x− y| ≤ |x− σx|+ |σx − y| ≤ 2 ρΩ(x).

Thus, it follows from the last inequality that∫
Ωc

dy

|x− y|d+α
≥
∫
BρΩ(x)(σx)∩Ωc

dy

|x− y|d+α

≥ 1

2d+α

∣∣BρΩ(x)(σx) ∩ Ωc
∣∣ ρΩ(x)−d−α ≥ c

2d+α
ρ−αΩ (x).

In other words, for bounded domains Ω with smooth boundary and 0 < α < 1, the

small time behavior of t−1
(
|Ω| −Q(α)

Ω (t)
)

and the fractional α-perimeter Pα(Ω) defined

in (4.13) are related and this completes the proof of Theorem 1.4.1.
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[6] R. Bañuelos, T. Kulczycki, Trace estimates for stable processes. Prob.Theory Relat.
Fields, 142, 313-338, (2008).
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