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ABSTRACT

Task, Christine Ph.D., Purdue University, May 2015. Privacy-preserving Social Net-
work Analysis. Major Professor: Chris Clifton.

Data privacy in social networks is a growing concern that threatens to limit access

to important information contained in these data structures. Analysis of the graph

structure of social networks can provide valuable information for revenue generation

and social science research, but unfortunately, ensuring this analysis does not violate

individual privacy is difficult. Simply removing obvious identifiers from graphs or even

releasing only aggregate results of analysis may not provide sufficient protection. Dif-

ferential privacy is an alternative privacy model, popular in data-mining over tabular

data, that uses noise to obscure individuals’ contributions to aggregate results and

offers a strong mathematical guarantee that individuals’ presence in the data-set is

hidden. Analyses that were previously vulnerable to identification of individuals and

extraction of private data may be safely released under differential-privacy guaran-

tees. However, existing adaptations of differential privacy to social network analysis

are often complex and have considerable impact on the utility of the results, making

it less likely that they will see widespread adoption in the social network analysis

world. In fact, social scientists still often use the weakest form of privacy protection,

simple anonymization, in their social network analysis publications, [1–6].

We review the existing work in graph-privatization, including the two existing

standards for adapting differential privacy to network data. We then propose

contributor-privacy and partition-privacy, novel standards for differential privacy over

network data, and introduce simple, powerful private algorithms using these stan-

dards for common network analysis techniques that were infeasible to privatize under

previous differential privacy standards. We also ensure that privatized social net-
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work analysis does not violate the level of rigor required in social science research, by

proposing a method of determining statistical significance for paired samples under

differential privacy using the Wilcoxon Signed-Rank Test, which is appropriate for

non-normally distributed data.

Finally, we return to formally consider the case where differential privacy is not

applied to data. Naive, deterministic approaches to privacy protection, including

anonymization and aggregation of data, are often used in real world practice. De-

anonymization research demonstrates that some naive approaches to privacy are

highly vulnerable to reidentification attacks, and none of these approaches offer the

robust guarantee of differential privacy. However, we propose that these methods fall

across a range of protection: Some are better than others. In cases where adding noise

to data is especially problematic, or acceptance and adoption of differential privacy

is especially slow, it is critical to have a formal understanding of the alternatives.

We define De Facto Privacy, a metric for comparing the relative privacy protection

provided by deterministic approaches.
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1. INTRODUCTION

There is tremendous value in the set of relationships among individuals, which touches

on many important areas of scientific inquiry. Social networks are powerful abstrac-

tions of this information, applying a classical graph data-structure representing indi-

viduals as nodes and their relationships as edges. Social network analysis can yield

valuable insights into the behavior of populations. For example, understanding how

well-connected a network is can aid in the development of a word-of-mouth marketing

campaign: How quickly will word of a product spread? Similar analysis is useful in

epidemiology (predicting spread of a disease through connections in a population), or

in learning analytics (studying how students’ interactions impact learning).

However, data about people and their relationships is potentially sensitive and

must be treated with care to preserve privacy. Generally, social network graphs are

anonymized before being made available for analysis. For example, Figure 1.1 depicts

one of the earliest applications of social network analysis to anthropological research;

the beginnings of a schism in a university karate club was detected before the group

decided to split in two, through surveying members about their social interactions.

The graph was published as a simply anonymized network with node labels indicating

subsequent group membership and leadership roles [7].

Unfortunately, releasing anonymized graphs may lead to re-identification of indi-

viduals within the network and disclosure of confidential information, with serious

consequences for those involved. In the karate club network, anyone possessing min-

imal background knowledge of the group would be able to assign names to the two

leader nodes (nodes 1 and 34). Other nodes are distinctive as well: we know from

details in the publication that 2,3 and 33 are likely to be the teaching assistants in

each group, and we know that 9 was the only student to associate closely with leader

A but remain in the group with leader B. A small amount of familiarity with the
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Fig. 1.1.: An anonyzmized social network collected over the 34 members of a university
karate club, shortly before a schism caused the group to split in two.

club would be sufficient to assign names to these nodes. Once one distinctive student

has been identified in the graph, background knowledge about that student will help

us uncover other students. For example, if we knew that Alice was the only student

who split off after being friends with the leader of the original group, then we know

Alice is node 32. Say we know that Bob is friends with both the leader of the new

group and TA 3 in the old group, and we’ve also heard that he has one partner he

practices with privately. Then Bob must be 29 and Alice, node 32, is his previously

private partner. The process of mapping true names to anonymized individual data

entries, in this case graph nodes, is known as ’de-anonymization’. In a de-anonymized

data-set, sensitive information such as private relationship edges, node degrees, and

node or edge properties is made fully public.

Fortunately, the karate club study was published in 1977; the club did not have

a website, and the students were not on Twitter. This limited the public availability

of background information that could be used to identify individuals in the network.

To the best of our knowledge, the karate club network has not been de-anonymized.
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By contrast, in 2007 Netflix released the ’Netflix Prize’ data-set containing

anonymized data about the viewing habits of its members, intended for public anal-

ysis by information retrieval researchers. Within a year, it had been demonstrated

that wide-spread de-anonymization of individuals in the data-set was possible us-

ing publicly available background information from the Internet Movie Database [8].

By 2009, Netflix was involved in a lawsuit with one of its members who had been

victimized by the resulting privacy invasion.

This object lesson about the dangers of publishing simply-anonymized data in

the internet-era appears to not have been well-learned. In March of 2014, the Pub-

lic Library of Science (PLOS), a major publisher of research in the biological and

medical sciences, mandated that researchers make their data fully, publicly available

as a condition for publication [9]. PLOS publications include researchers working on

sensitive epidemiology social networks [10,11]. Restrictions are permitted only in the

case of sensitive human data, but anonymized data has in the past been considered

to be sufficiently protected. In the learning analytics community, researchers still

commonly include complete anonymized networks of students in their published pa-

pers, in a continuation of the practice applied in the 1977 karate club paper [1–6].

These networks may include sensitive node data such as course grades, discussion of

academic difficulties, and private relationships between students. Meanwhile, public

outcry about the privacy risks of educational data-analysis in K-12 schools threatens

to entirely prevent the adoption of these techniques, despite evidence that they have

potential to significantly improve students chances of success [12–14].

My work directly addresses the problem of creating effective, usable privatized

social network analysis tools.
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1.1 Challenges in Graph Privatization

Satisfying this need is non-trivial.

The strength of de-anonymization techniques: Privacy researchers have at-

tempted to improve the security provided by graph anonymization techniques by

adding noise to the node parameters and structure of the graph [15]. However,

even a noisy graph structure with no node parameters whatsoever can be subject

to deanonymization, particularly if an attacker has background knowledge of the net-

work data [16,17]. Knowing the friendship relationships of a few individuals can make

them identifiable in the released graph, leading to identification of their friends (and

disclosure of information, such as other relationships, that those friends might not

want publicly revealed). As global social networks become more broadly accessible,

sources of extensive background knowledge are increasingly available [16].

The complexities of Differential Privacy: Differential privacy is a privacy

standard developed for use on tabular data that provides strong guarantees of privacy

without making assumptions about an attacker’s background knowledge [18]. Differ-

entially private queries inject randomized noise into query results to hide the impact

of adding or removing an arbitrary individual from the data-set. Thus, an attacker

with an arbitrarily high level of background knowledge cannot, with a high degree of

probability, glean any new knowledge about individuals from differentially privatized

results; in fact, the attacker cannot guess whether any given individual is present in

the data at all.

While many of the privacy concerns associated with social-network analysis could

be relieved by applying differential privacy guarantees to common social network

analysis techniques, researchers have struggled to develop suitable adaptations of

these techniques.

Two principal difficulties arise: The adaptation of differential privacy from tabular

data to network data, and the high sensitivity of social-network metrics to relatively

small changes in the network structure. This high sensitivity requires many existing
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differentially private network analysis techniques to add impractically large amounts

of noise when operated on real world data, significantly affecting the utility of the

privatized results [19].

The difficulties in real world adoption: Privacy protection is not a hypotheti-

cal concern for individuals appearing in social science and data-mining data-sets. Pri-

vatization techniques that are very mathematically or algorithmically complex may

be less likely to be adopted by the members of the social science community who are

collecting and studying human data [19–21]. Although this research may provide in-

sightful theoretical solutions to the privacy problems they address, in the real world,

those privacy problems remain.

1.2 Problem Statement

In this work, we will consider the question: ”Is practically usable, privacy-preserving

social network analysis feasible?” We will address this question in three ways:

• We will propose and demonstrate network privatization techniques that adapt

differential privacy to satisfy these requirements for many social network anal-

ysis applications, including the computation of statistical significance on paired

samples under differential privacy.

• We will also demonstrate that some types of analysis are inherently difficult to

privatize.

• We will finally propose a metric for formally comparing the relative privacy

protection provided by deterministic approaches, such as anonymity and ag-

gregation, which have the advantage of not introducing noise to the data, but

which fall short of satisfying the robust guarantee of differential privacy and are

more vulnerable to attack.

A fundamental contribution of this dissertation is the following observation: In

privacy-preserving contexts, it is vital to consider the intended application of the
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sensitive data and to use a data structure which requires no more complexity or de-

tail than absolutely required to successfully achieve the intended objective. In social

network applications the objective is to learn about the population abstracted by the

network, and the network data-structure itself can be an optional intermediate step in

the analysis process. Protecting privacy in a single complete, cohesive network is very

challenging: building the network requires tying together information from thousands

of individuals into a tightly interlinked whole in which any sufficiently pathological

small change might dramatically affect global analysis results, and privatization es-

sentially involves very carefully destroying that same network.

By introducing analyses that do not require a single cohesive network, but rather

consider distributions of unlinked ego-network or sub-graph data, we can offer com-

parable strengths of privacy protection without going through the expensive steps

of first constructing and then privatizing the complete social network graph. We

demonstrate that it is possible to preserve, with high accuracy, the aggregate social

patterns we actually seek to study while using sets of unlinked, relatively insensitive

and naturally privacy-preserving data.

1.3 Contributions

Our first set of contributions involve identifying effective methods of adapting

differential privacy to network data. Previous to our work, two models for applying

differential privacy to social networks have arisen. Node-privacy limits the ability of

an attacker to learn any information about an individual, but at a high cost in added

noise. Edge-privacy protects against learning any particular relationship, but does not

prevent learning information about an individual. This work introduces contributor-

privacy and partition-privacy, models for differential privacy that can provide stronger

protection for individuals than edge privacy while allowing important types of analysis

that are not feasible under node privacy.
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Additionally, we propose De Facto Privacy as a metric for objectively comparing

the privacy provided by deterministic approaches, such as simple anonymity and

aggregation, that fall short of satisfying differential privacy.

Specifically, this work provides:

1. A straightforward introduction to traditional differential privacy and the basics

of social network analysis (Chapter 2);

2. A discussion of existing work in graph-privatization, including work on anonymity,

de-anonymization, and the two existing differential-privacy standards for net-

work data (Chapter 3).

3. The contribution of two new standards, contributor-privacy and partition-privacy,

that provide strong privacy guarantees with the introduction of very small noise.

(Chapters 4,5).

4. The contribution of new, easily implementable, algorithms satisfying contributor-

privacy that use ego-network style analysis to provide useful approximate results

for queries that are too sensitive to perform under previous standards.(Chapter

4).

5. The contribution of easily-implementable algorithms applying partition-privacy

to a variety of contexts; These techniques provide strong privacy guarantees for

analyses which learn correlations from sets of graphs (for example, identifying

patterns of behavior in student collaboration groups). (Chapter 5)

6. Application of these techniques to real world data, including online social net-

works. (Chapters 4,5).

7. A differentially private approach to determining statistical significance on paired-

sample data, using the Wilcoxon Signed-rank Test (which is appropriate for

non-normally distributed social network data). (Chapter 6).
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8. The proposal of De Facto Privacy, a formal measure of the relative protection

provided by deterministic approaches, which do not satisfy differential privacy.

(Chapter 7)

In the next two chapters we will cover necessary background information and

provide a survey of existing research in privatized social network analysis. In chapters

4-5 we will introduce and demonstrate new privacy-preserving algorithms for many

social network applications. In chapter 6 we will propose a differentially private

method for computing statistical significance on paired-sample data. And in chapter

7 we will define De Facto Privacy.



9

2. BACKGROUND

In this chapter, we provide a basic introduction to the two areas of research which

are spanned by this dissertation. We explain the concept of differential privacy and

describe how it has been applied to tabular data and network data, and we review core

analysis techniques in social network analysis that will be referenced in the remainder

of this work.

2.1 Introduction to Differential Privacy

Differential privacy, developed by Cynthia Dwork and her collaborators at Mi-

crosoft Research [22], states a mathematical guarantee of privacy that sufficiently

well-privatized queries can satisfy; it is independent of any specific technique or al-

gorithm. Consider a common sequence of events in social science research: a survey

is distributed to individuals within a population; a subset of the population chooses

to participate in the survey; individual information from the surveys is compiled into

a data-set and some analysis is computed over it; the analysis may be privatized

by the injection of random noise; and the final privatized result is released to the

general public. Differentially-private queries offer a rigorous mathematical guarantee

to survey participants that the released results will not reveal the nature of their

participation in the survey.

We first introduce a few useful notations: I is set of individuals who contribute

information to the data-set DI (e.g., survey participants). The set of all possible

data-sets is D. We use F : D → �k: to refer to the desired non-privatized analysis

performed on a data-set and Q : (D)→ �k to refer to the non-deterministic privatized

implementation of F . Given a specific data-set DI , evaluating the non-deterministic
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function Q(DI) produces a result R ∈ �k which has been privatized for general

publication.

If R is the privatized query results that are released to the public, then R is the

only evidence an attacker has about the nature of DI . We introduce a possible-

worlds model to understand how differential privacy works. We define DI to be true

world from which the analysis was taken. Two closely related variant definitions of

differential privacy are in common use:

In the first variant definition (see Figure 2.1), we define any data-set that differs

by the presence or absence of one individual to be a “neighboring” possible world:

thus DI−Alice is the neighboring possible world of DI in which Alice chose to not

participate in the survey and DI+Fran is the neighboring possible world of DI in

which Fran chose to participate in the survey.

Fig. 2.1.: Differential privacy adds noise to obfuscate individuals’ effect on query
results. In the first definition variant, an individual’s presence in the data is hidden.

In the second variant (see Figure 2.2), we define a neighboring possible world to

be any data-set that differs in the value of one individual: If in DI Bob reports that

he is Sad, then DI(Bob→Happy) is the neighboring possible world of DI in which Bob

responded to the survey by stating that he was Happy. One significant difference

between these variants relates to the number of individuals in the data-set: In the
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first variant the number changes between neighboring worlds while in the second

variant it is fixed.

Fig. 2.2.: Differential privacy adds noise to obfuscate individuals’ effect on query
results. In the second definition variant, an individual’s value in the data is hidden.

In this work, we will most often make use of the first variant definition–it is

the most commonly applied definition in existing privatized social network analysis

research. This may be true in part because altering the ’value’ of an individual in

a network is not intuitively well-defined. If removing all of an individual’s edges is

an allowable alteration, the two variants are in fact equivalent for analyses such as

triangle counts (section 2.3.2). Additionally, because it hides participation in the

data-set entirely, the first variant is more applicable to sensitive social networks (such

as sexual interaction networks) in which presence in the data-set itself is sensitive.

To satisfy differential privacy, we require that an attacker possessing the privatized

results R be unable to determine with high certainty, between any two neighboring

worlds, which world is the true one; R should be a plausible result from any neigh-

boring world of DI . With reference to the first variant definition, this intuitively

implies the attacker is unable to use the privatized published survey results to guess

with high probability whether or not Alice (or any other specific individual) took the

survey, i.e., whether or not R is the result from an analysis of DI or DI−Alice. In the
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second variant, the attacker may be able to use the results to determine that Bob has

taken survey, but he is prevented from learning whether Bob is happy or depressed

(whether the true world is DI or DI(Bob→Happy)).

Formally, we define Differential Privacy as follows:

Definition 2.1 Neighboring World:

Variant I: Two data-sets DI1, DI2 are neighbors if they differ by the addition

or removal of exactly one individual: |I1 ∪ I2− I1 ∩ I2| = 1

Variant II: Two data-sets DI1, DI2 are neighbors if they differ in data provided

by exactly one individual: iff I2 = (I1− i) + j for arbitrary individuals i,j.

Definition 2.2 Differential Privacy: A randomized query

Q : D → �k

satisfies ε-Differential Privacy [18] if, for any two possible neighboring data-sets

D1, D2 and any possible set of query results R ∈ �k:

Pr[Q(D1) ⊆ R]

Pr[Q(D2) ⊆ R]
≤ eε

Here ε is a small, positive value that controls the trade-off between privacy and

accuracy, and is chosen by the person administering the privacy policy. To make the

definition more intuitive, consider that if we set ε = ln(2) , the above states that the

result R is at most twice as likely to be produced by the true world as by any of its

neighbors. Setting a smaller ε will provide greater privacy at the cost of additional

noise, as we will demonstrate below.

The difference between the results from D1 and any neighbor D2 is the difference

the privatization noise will need to obfuscate in order for the privatized results to

not give evidence about whether D1 or D2 is likely to be the true world. The upper

bound of this difference over DI ∈ D is the sensitivity of query F .
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Definition 2.3 Global Sensitivity: The global sensitivity of a function F :

D → Rk = A is 1:

ΔF = max
D1,D2

‖F (D1)− F (D2)‖1

over all pairs of neighboring data-sets D1, D2.

Intuitively, the sensitivity of a query is the greatest possible separation between

two neighboring worlds with respect to the query results. Under the first variant

definition, this is the greatest possible impact that adding or removing an arbitrary

individual from the data-set can have on the query results, over any possible data-set.

Suppose our analysis F asks two questions: “How many people in I are failing?” and

“How many people in I have fewer than 3 friends?” Then both answers can change by

at most 1 when a single individual is added to or removed from I, and ΔF = 2. If our

analysis instead asks: “How many people in I are failing?” and “How many people

in I are passing?” then at most one answer can change by at most 1, and ΔF = 1.

Note that, under this variant, histograms which partition the individuals of the data

set into ”bucket” counts have a sensitivity of 1: removing or adding an individual

will change at most one bucket count by at most 1. This very low sensitivity makes

histograms a useful tool in differentially private data-mining [22–24].

Note that under the second variant definition neighboring worlds are separated by

changing one individual’s value rather than their presence in the dataset, and this can

result in different evaluations of function sensitivities. Consider Figure 2.2: Although

the query here is a histogram, partitioning the students into mutually exclusive Happy

and Depressed counts, altering one individual’s value affects two counts by at most

one, and this results in a slightly higher sensitivity of 2 in this case.

For the remainder of this work we will use the first variant definition; exceptions

will be specifically noted.

We can create a differentially private query Q by adding noise to F that is cali-

brated to cover up ΔF [22]:

1The L1-norm of x ∈ �n is defined as ‖x‖1 = Σn
i=1|xi|.
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Theorem 2.4 If F : D → �k is a k − ary function with sensitivity ΔF then the

function R = F (D) + Lapk(ΔF/ε) is ε-differentially private, where Lapk(λ) is a k-

tuple of values sampled from a Laplacian random variable with standard deviation
√
2λ.

The standard deviation of the Laplacian noise values is
√
2ΔF/ε. Thus the noise

will be large if the function is very sensitive, or if ε is small. If we set ε = ln(2) on

a query with sensitivity ΔF = 2, the standard deviation of our added noise will be

close to 4.

It is important to note that ΔF is an upper bound taken across all possible pairs

of neighboring data-sets; it is independent of the true world. Intuitively, this is nec-

essary because noise values which are dependent on the nature of the true world may

introduce a privacy leak themselves. For example, when querying the diameter of a

social network, if Alice forms the only bridge between otherwise unconnected sub-

graphs in the true world, removing her node and edges from the data-set causes a

difference of∞ in the graph diameter. Noise values calibrated to this true world must

be arbitrarily large (and, in fact, will obliterate the utility of the result). However,

consider a neighboring possible world including Bob, who forms a second bridge be-

tween the subgraphs (see Figure 2.7); if this possible world were the true world, the

difference in diameter caused by adding or removing a node would be finite, and if

we calibrated the noise to that difference, it would be relatively small. If we chose

our noise values based on the true world, an attacker could easily determine whether

or not Bob was in the network: a result of R = 300, 453.23 would imply Bob was

absent, while the result R = 4.23 would indicate that Bob was present. To prevent

this, global sensitivity is based on the worst-case scenario for the query, across all

possible data-sets. In this example, this implies that diameter is a query too sensitive

to be feasibly privatized using traditional differential privacy.
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2.1.1 Smooth Sensitivity

Several sophisticated privatization techniques exist that calibrate noise to the true

data-set, avoiding the worst-case upper-bound offered by global sensitivity. Consider

an actual data-set DJune12; the local sensitivity of a function F on the data DJune12 is

the maximum change in F caused by removing or adding an individual from DJune12,

analogous to computing the global sensitivity with D1, D2 restricted to DJune12 and

its neighboring possible worlds. In the example above, diameter(Gbob)’s local sensi-

tivity is small, while the local sensitivity of its neighbor diameter(Galice) is very high:

this jump in local sensitivities is what causes the threat to privacy described above.

Since Galice is created by removing one individual from Gbob, we will refer to Galice as a

one-step neighbor of Gbob, and consider a k-step neighbor of Gbob to be one created by

adding or removing k individuals from Gbob. Smooth sensitivity is a technique which

computes privatization noise based on both the local sensitivity of the true data-set,

and the local sensitivity of all k-step neighbors scaled inversely by k, for all k [25].

The technique ‘smooths’ over the local-sensitivity jumps depicted in the alice-bob

graph example. However, local-sensitivity based techniques satisfy a slightly weaker

definition of differential privacy: (ε, δ)-indistinguishability. Privatization strategies

which satisfy (ε, δ)-indistinguishability produce results R ∈ �k which satisfy a mod-

ified version of Definition 2.2 that includes an additive term: Pr[Q(D1)⊆R]
Pr[Q(D2)⊆R]

≤ eε + δ,

where δ is a negligible function of the data-set size n 2. Additionally, in some cases

computing the amount of noise required to privatize a given DI may be infeasible.

We will primarily focus on techniques which satisfy strict ε-differential privacy in this

work, but we will reference existing smooth-sensitivity techniques where applicable,

and we recommend consulting [26] for more information on this approach.

2A third variant, (ε, δ)-differential privacy, allows a constant value δ
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2.2 Differential Privacy and Network Data

The definitions we introduced above for differential privacy, Definitions 2.1 and

2.2, implicitly assume all information about a data-set participant is provided by the

participant themselves; protecting an individual’s presence or submitted data value in

the data-set then protects all the information regarding them. The situation changes

when we ask survey participants to provide information about other individuals.

Fig. 2.3.: Unlike tabular data, participants in social network studies provide informa-
tion about each other. This information may be incomplete or inconsistent.

We will refer to individuals who contribute their knowledge to the data-set as

participants, and individuals who have information provided about themselves (by

others) as subjects. Traditional differential privacy protects participants only, and

in many cases subject privacy may be unnecessary. To clarify, we return to our

view of a dataset as a survey of the real world: if a survey counts the students who

attended the “Coffee with the Dean” event, the dean’s privacy is probably not an

issue. By contrast, a study that counts students who report having sexual relations

with the football captain exposes extremely sensitive information about its subject.

Social networks are often collected from populations of interest by having participants

list the full names of their friends within the population; these relationships form
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directed network edges leading from the participant’s node to the nodes of each of

her friends [27]. In this case, a participant’s real world friends are subjects of the

participant’s ”survey data”, but the participant herself may also be the subject of

some of her friends’ survey data (if they also participate in the social network). This

presents a complex situation for applying differential privacy. Figure 2.3 illustrates

an example.

The core of the differential privacy guarantee is that the privatized result R is

difficult to attribute to the true world vs. one of its neighboring possible worlds.

Adapting differential privacy to networked data amounts to deciding what we mean

by “neighboring worlds” in this context. There are several possibilities; each one

provides a different level of privacy guarantee and deals with a different type of “gap”

between worlds. As always, there is a trade-off between privacy and utility: in general,

the stronger the privacy guarantee, the more noise will be required to achieve it and

the less useful the privatized results will be. We will describe two network privacy

standards, node-privacy and edge-privacy, that have appeared in the literature.

In subsequent chapters, we will propose two novel standards, contributor-privacy

and partition-privacy, that require less noise than existing standards; give a reason-

ably strong guarantee of privacy similar to traditional differential privacy; and enable

certain queries that under existing standards required levels of noise that rendered

results meaningless.

2.2.1 Node-Privacy

The Alice-Bob graph example referenced in Section 2.1.1 and Figure 2.7 implicitly

assumes this privacy standard: In node privacy, if the true world is a given social

network G, the neighboring possible worlds are ones in which an arbitrary node, and

all edges connected to it, are removed from or added to G. Formally,
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Definition 2.5 Node-Privacy: A privatized query Q satisfies node-privacy if it

satisfies differential privacy for all pairs of graphs G1 = (V1, E1), G2 = (V2, E2) where

V2 = V1 − x and E2 = E1 − {(v1, v2)|v1 = x ∨ v2 = x} for some x ∈ V1

Note the two equivalent interpretations of this definition: G1 is equal to G2 after

the addition of an arbitrary x, or G2 is equal to G1 after the removal of an arbitrary

x.

This privacy guarantee completely protects all individuals, both participants and

subjects. An attacker in possession of R will not be able to determine whether a

person x appears in the population at all. Although this is an natural adaptation of

differential privacy to social networks, it also places extremely severe restrictions on

the queries we are able to compute, as we will demonstrate in Chapter 3, in many

cases, node-privacy may be an unnecessarily strong guarantee. Figure 2.4 depicts

neighboring worlds in a triangle-count (see Section 2.3.2) under node-privacy.

Fig. 2.4.: Node-sensitivity of triangle-counts is a function of n, and thus is unbounded
in general.

2.2.2 Edge-Privacy

In edge-privacy, if the true world is the social network G, neighboring possible

worlds are ones in which k arbitrary edges are added or removed from G. Formally,
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Definition 2.6 Edge-Privacy:

A privatized query Q satisfies edge-privacy if it satisfies differential privacy for

all pairs of graphs G1 = (V1, E1), G2 = (V2, E2) where V1 = V2 and E2 = E1 − Ex

where |Ex| = k

An attacker in possession of R won’t be able to determine with high certainty

whether individuals x and y are friends, and an individual node in the graph can

plausibly deny the existence of up to k of its friendships with other nodes. Single

edge privacy, with k = 1, is the standard most often used in existing literature on

differentially private graph analysis. This is a weaker guarantee than node-privacy:

high-degree nodes may still have an easily identifiable effect on query results, even

though their individual relationships are protected. However, this is a sufficiently

strong privacy guarantee for many contexts, and enables many more types of queries

to be privatized than the severely-restrictive node-privacy. Figure 2.5 depicts neigh-

boring worlds in a degree distribution (see Section 2.3.2) under edge-privacy.

Fig. 2.5.: Edge sensitivity of degree distribution queries is 4: at most four values can
change by one when a node is added or removed.

2.3 Social Network Analysis Background

2.3.1 Introduction

In this section we will review the social network analysis techniques which will be

discussed in the remainder of this work. While we focus primarily on those network
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analysis techniques that have so far proven at least partially amenable to privatization,

we will also briefly sketch the properties of network data that deter the privatization of

other types of analyses. Intuitively, privatizable network characteristics are those that

tend to remain approximately consistent under small changes in the network data;

these are the same characteristics that are robust to small errors in data-collection.

Social networks offer a useful abstract model of individuals (represented as graph

nodes) and the relationships that connect them (represented as edges between nodes).

Social network analysis can be a very important tool, allowing researchers to learn

about populations by identifying meaningful patterns in their social networks. For

example, understanding how well-connected a network is can aid in the development

of word-of-mouth marketing campaign: How quickly will word of a product spread?

Similar analysis is useful in epidemiology, predicting spread of a disease, or in learning

analytics, studying how students interact and collaborate. One of the earliest social

networks used in CS research is given in Figure 2.6, originally published in 1977 [7].

Fig. 2.6.: An anonyzmized social network collected over the 34 members of a university
karate club, shortly before a schism caused the group to split in two.
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2.3.2 Social Network Analysis Review

We now provide a high level introduction to common terminology and techniques

in Social Network Analysis. We divide the field into six broad categories, with respect

to objective and types of computation: Edges and Degrees, Triangle and Subgraph

Counts, Centrality and Path-length Measures, Community Detection, and Graph

Models. For each topic we will define basic terminology, outline common analysis

techniques, and discuss any challenges to privatization. We will reference these cate-

gories throughout the remainder of this work.

It is important to note that social network analysis studies human behavior

through abstract data-structures which encode real word social structures. Objec-

tives include learning about the relative social importance of individuals in the net-

work, how information propagates through a population, and how individuals form

into communities. For each objective, there are a variety of possible analysis tech-

niques; due to the ambiguity inherent in human social behavior, there is often no

single definitive correct result or best analysis technique. We review a selection of the

most commonly-used techniques below.

Edges and Degrees

The degree of a node is the number of edges connecting to it, in a social network

this often represents the number of friends the individual has in the network. If a

graph is directed, edges may be uni-directional arrows pointing from one node to

another (for example, if Amy lists Bob as a friend, but Bob does not return the favor,

the edge will appear in the graph as an arrow leading from Amy to Bob). An edge

leading out from a node is referred to as an outlink, and an edge leading into a node

is an inlink; a mutual edge is undirected and can be counted as both an outlink

and an inlink. The count of a node’s outlinks is its out-degree (in-degree is defined

analogously). In directed graphs, reciprocity metrics measure the extent to which

the edges in the graph tend to be mutual [28]. We see that the karate club graph is
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undirected, and that nodes 1 and 34 have high degree. The edge density of a graph

is the total number of edges divided by the total number of nodes; this is also referred

to as the average degree.

In some graphs, edges are labeled with numbers that indicate the relative ’strength’

of the edge connection (for example: the number of emails exchanged between the

node individuals); these labels are referred to as the weight of the edge. Edges may

also be labeled with relationship properties: In a signed graph, positively labeled

edges may be used to represent friendships while negatively labeled edges represent

enemies. Nodes can be labeled with properties of the individual they represent, such

as gender, career status, or course grade. In graphs with node labels, homophily

metrics measure the extent to which nodes that share label values tend to be con-

nected, relative to nodes that do not share label values [29].

A node i’s neighborhood is the subgraph whose nodes consist of i and i’s friends,

and whose edges consist of all edges that connect these nodes. For example, in

the karate club graph, the neighborhood of node 17 has nodes: 17,6,7, and edges:

(17,7),(17,6),(7,6). This is also sometimes referred to as a node’s ego− network.

The degree distribution of a graph is a histogram partitioning the nodes in the

graph by their degree; it is often used to describe the underlying structure of social

networks for purposes of developing graph models and making similarity comparisons

between graphs [30]. Intuitively, a graph with a few very high degree nodes and very

many low degree nodes will describe a more hierarchical social organization than a

graph with a more egalitarian degree distribution (although almost all large social

networks possess a power-law degree distribution).

Triangle Counts and Subgraph Counts

Triangles, instances in which two of an individual’s friends are themselves mutual

friends, indicate social cohesion in the network. Global triangle counts, a count of
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all the triangles in the network, are often used to study and compare networks and

as parameters in social network models.

Additionally, we can look at patterns with triangles on the local level. An indi-

vidual’s local clustering co-efficient is the ratio between the number of triangles

the node participates in and the maximum possible number of triangles for a node of

that degree [31]. A clique is a graph, or sub-graph, in which all possible edges exist;

in a friendship graph, this implies all nodes in the set are friends with all other nodes

in the set. The local clustering coefficient for individuals in a clique is 1, provided

there are no edges connecting to individuals outside the clique. Distributions of local

clustering coefficients across the network (analogous to degree distributions) can give

more detailed information for comparing networks [32].

Finally, counts of other subgraphs such as stars, or squares, are also used as graph

statistics for graph similarity comparisons between networks [33].

Centrality and Path-length measures

A path is a sequence of edges connecting two nodes; for example a path between

node 27 and node 24 in the karate graph in figure 2.6 is the one comprised of the

two edges (27, 30) and (30, 24). The length of a path is the number of edges

comprising that path (e.g., the length of the given path between nodes 27 and 24 is

2). The shortest path between two nodes is the path between them with minimal

length (e.g., the given path between nodes 27 and 24 is the shortest path between

them). The distance between two nodes is the length of the shortest path connecting

them, so the distance between node 27 and 24 is 2.

Centrality measures attempt to gauge the relative “importance” of specific indi-

viduals within the social network; they may be studied on a per-node basis, identifying

influential members of the community, or as distribution scores providing informa-

tion about the overall behavior of the social network [34]. In the karate club network

(Figure 2.6), the individuals represented by nodes 1 and 34 had high importance in
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Fig. 2.7.: Removing one node or edge from a graph can change path lengths catas-
trophically.

the social group the graph abstracts; They were the leaders of two karate clubs that

formed after the schism. The simplest centrality measure is node degree: nodes with

high degree are more likely to be influential in the network, (note that nodes 1 and

34 have high degree). However, other centrality measures take into account more

detailed information from across the network: betweenness scores individuals by

the number of shortest-paths between other pairs of nodes across the network that

pass through them, and closeness scores nodes by the sum of their distances to all

other nodes in the graph.

The two more complex centrality measures, betweenness and centrality, present

difficulties for traditional approaches to privacy in social networks. Clearly, it is im-

possible to release a named list of influential individuals under anonymity or differ-

ential node-privacy. But even distributions of centrality scores can be very sensitive,

under both differential node- and edge-privacy, due to the role of bridges in the

graph. Removing a node, or edge, that forms the only connection between two other-

wise disconnected subgraphs will have a catastrophic affect on path distances in the

network, causing finite distances to become infinite, and this will drastically alter be-

tweenness and closeness scores (see Figure 2.7). Privatization methods that delete or

add edges to privatize network structure, such as noisy anonymity and k-anonymity

(introduced in the next chapter), may inadvertently add or delete bridges. In general,

privatizing traditional centrality measures, or any metric that relies significantly on
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path lengths, remains a very difficult problem for privacy. However, special cases

exist; we propose practical solutions for several such cases in Chapter 5.

Community Detection

People form social groups naturally, and this is reflected in social networks as

clumps of nodes which are more densely connected to each other than to the outside

network. We refer to these as social communities. For instance, the karate club

network has two distinct social communities; these communities later actually sepa-

rated into two clubs. There are a variety of methods for identifying communities in a

network [35]. Two simpler approaches are: Modularity-based techniques, which in-

volve identifying a subset of nodes that are more strongly attached to each other than

to the outside graph, and the Girvan-Newman algorithm, which splits graphs into

communities by removing bridge nodes (nodes with high betweenness) that connect

them. More complex techniques consider the eigenvalues of the connection matrix for

a network. Community detection is a difficult problem for privatization, similar to the

difficulties found in centrality and path-length analyses (recall that the betweenness

of a node may vary catastrophically with the addition or removal of another node or

edge). However, recent work has made progress here under edge-privacy; we present

an overview of these approaches in Chapter 3.

Graph models

Graph models attempt to abstract the underlying social interaction patterns

that produce networks in populations [36]. In general, a graph model takes in param-

eters that describe a real network (such as the network’s degree distribution, average

degree, or triangle count), and then can be used produce a randomized synthetic

graph that shares these properties. Models enable formal analysis of network prop-

erties by providing a simple, well-defined abstraction which allows for drafting and

proving hypotheses about network properties. They are also useful for producing
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privacy-preserving synthetic data-sets which share similar properties to the real, sen-

sitive data-sets. In theory, these privatized synthetic networks may be safely shared

and studied in place of the real data; in practice, they may lose important properties

from the original graph, such as clustering patterns. Many different graph models

exist, each with advantages and disadvantages. A variety of differentially private

models have been proposed by privacy researchers; we’ll discuss these in Chapter 3.
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3. RELATED WORK

As the field of social network analysis has advanced in the decades since the publi-

cation of the Karate Club graph, the problem of privacy-preserving social network

analysis has received increased attention. A diverse variety of techniques have been

proposed. We summarize these techniques in chronological order, corresponding to

the development of increasingly rigorous privacy guarantees.

We believe that several properties are important for a privatization technique to

be practically usable in real world contexts:

• Guaranteed Privacy: It must provide a well-defined privacy guarantee to

individuals in the data-set.

• Maintain Utility: It must enable privatized analyses to produce results with

a reasonable level of accuracy.

• Practically Adoptable: To encourage adoption it must not impose a signif-

icant burden in computing power or mathematical expertise in comparison to

the non-privatized analysis it replaces.

Many of the existing proposed techniques satisfy one or two of these requirements,

but fail to satisfy all three.

3.1 Simple Anonymity and De-anonymization

Initial attempts to protect the privacy of individuals in social network studies

used simple anonymization, as in the Karate Club graph (figure 2.6). This remains a

common standard in practice in social science research today [1–6]. However, simple

anonymity is subject to de-anonymization attacks when an attacker has access to
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outside information about a population. For instance, knowing how many friends an

individual has may be sufficient to identify their node in a small anonymized graph.

Once a few individuals have been re-identified, some friends of these individuals may

become identifiable, and the de-anonymization proceeds by the same means out across

the graph. Public online social networks (OSN) such as Twitter, IMDB, and Pinterest

help attackers get access to the outside information necessary for these attacks. When

the correct names have been mapped to the nodes in an anonymized graph, any

privacy protection the publisher hoped to provide is invalidated. Attackers may

discover sensitive information in node-labels (such as weight, grade, or disease status),

in edge-labels, and in the existence of previously unknown relationship edges between

individuals (problematic in sensitive data-sets such as sexual relationship networks).

In larger graphs, identifying small unique subgraphs in the anonymized graph is

sufficient to begin the de-anonymization procedure [16].

A simple step to address this vulnerability is to add ’noise’ to the graph structure:

randomly add and delete edges and nodes in the anonymized graph to obfuscate the

true graph structure [37]. However, the effect of this noise is often insufficient to

hide unique structures in the graph. De-anonymization techniques are sufficiently

powerful to attack very large real world graphs, even in the presence of structural

noise and some sophisticated structural anonymization techniques [16, 17, 38]. Mas-

sive de-anonymization attacks have been executed on the Netflix data-set and an

anonymized Twitter graph, uncovering the actual individuals associated with the

anonymous data (with significant negative consequences in the Netflix case). Sim-

ulated de-anonymization attacks have also been demonstrated on the Enron Email

and Facebook data-sets, using synthetic user IDs [8, 16, 17, 38].

3.2 K-anonymity and Related Approaches

De-anonymization attacks demonstrate that individuals with unique social struc-

tures are vulnerable in simply anonymized networks, and may remain vulnerable even
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after random noise is added to the graph structure. K-anonymity is an approach to

privatization, developed by Latanya Sweeney, that restricts the presence of unique

individuals in published data-sets [39]:

Definition 3.1 K-Anonymity: A set of records V with attributes A satisfies k-

anonymity if for every tuple v ∈ V there exist at least k1 other tuples vi1, vi2, ..., vi(k-1) ∈
V such that ∀Aq ∈ A:

vi1.Aq = vi2.Aq = ... = vi(k-1).Aq

where Aq ∈ A is a quasi-identifying attribute.

K-anonymity relies on the data-publisher to decide which attributes of the data

are sensitive (quasi-identifying) and might be used to re-identify individuals. In tab-

ular data, personal information attributes such as zip code or date of birth are often

considered to be quasi-identifying. There are a variety of interpretations for what com-

prises a sensitive attribute in a social network. In general, greater levels of anonymity

protection require more complex algorithms to achieve and have a greater impact on

the utility of the data.

Researchers have looked at k-degree anonymity, ensuring that no node had a

unique degree that could be used to identify it [40]. However, if an attacker had addi-

tional information about an individual’s friends, she might still be able to identify him

by his unique neighborhood graph. Researchers proposed k-neighborhood anonymity

to address this, ensuring that no node had a unique neighborhood 1 graph [41].

Neither of these approaches would guarantee protection if the attacker had posses-

sion of a larger subgraph, such as two friends with a unique pair of degrees, or a

set of several connected neighborhoods which formed a unique subgraph. Thus, even

stronger forms of k-anonymity have been proposed. K-automorphism and k-confusion

anonymity both ensure that each node is indistinguishable from at least k others (in

terms of edges), for an arbitrarily sized subgraph: for example, consider a set of k

1Recall from Chapter 2 that an individual’s neighborhood is comprised by the individual’s node, its

friends (’neighbors’), and all edges that connect these nodes.
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leaf nodes connected to the same central node, or a clique of size k. These approaches

require extremely complex algorithms to achieve and the resulting privatized graphs

do not necessarily share many features with the original data [20,42].

Additionally, the k-anonymity approach to privatization has a few well-known

faults which also apply in the social network analysis context. Consider a graph

tracing the spread of an STD. If an attacker knows that Carl has degree 18, and

every node of degree 18 is labeled as having been infected with syphilis, the fact

that there are at least k nodes of degree 18 in the graph does not provide Carl with

meaningful privacy protection.

One approach that has been proposed to address this weakness is l-diversity [43].

L-diversity requires that each sensitive attribute category also has a diverse set of data

values: at least l different values must be ”well-represented” for each equivalence class

of quasi-identifying attributes. However, l-diversity further decreases the utility of the

analysis by altering the distribution of the data. Additionally, the privatization algo-

rithm may leave a recognizable mark on the data, which can allow the privatization

steps to be undone. Consider an attacker who is aware that a graph has been released

with privacy parameters k = 12, l = 2, and representation-threshold= 3, requiring

that each quasi-identifying category contain at least 12 individuals and both the val-

ues ”syphalitic” and ”healthy” must be represented in the category at least three

times. If the attacker then observes that in the category of degree-18 nodes there are

precisely 9 syphilitic and 3 healthy nodes, she may be able to infer the original true

data values. [15].

3.3 Differential Privacy

Differential privacy offers a formal guarantee of individual participant’s privacy

that is not conditional on the attacker’s background knowledge. As we described in

chapter 2, there are two existing standards of differential privacy on social networks:

edge privacy and node privacy. In edge privacy, neighboring worlds vary by one
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relationship; in node-privacy they vary by one node and all of its edges. In general,

edge-privacy provides a relatively weak privacy guarantee, while the much stronger

node privacy is hard to attain without significantly affecting utility.

Recall that, in contrast to anonymity methods, which attempt to privatize raw

data-sets, differential privacy generally focuses on either privatizing the output of

functions over data or producing entirely synthetic data-sets. In the following sections

we will demonstrate how node-privacy and edge-privacy apply to our categories of

social network applications (as described in Chapter 2), and discuss what has been

accomplished so far in each category. In the subsequent two chapters we will introduce

our own adaptations of differential privacy to social network data, which we refer to as

contributor-privacy and partition-privacy, and we will discuss how these adaptations

resolve several of the difficulties with node-privacy and edge-privacy that are described

below.

3.3.1 Triangle Counting

Node-Privacy

Fig. 3.1.: Node-sensitivity of triangle-counts is a function of n, and thus is unbounded
in general.

Differentially private triangle counts are not feasible under simple node-privacy.

In the worst case, adding a node to a complete graph of size n (a graph containing

all possible edges), will introduce
(
n
2

)
new triangles (Figure 3.1). Since the change is
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dependent on the size of the graph, the global sensitivity of the query in general is

unbounded: it is impossible to compute a finite global upper-bound (see Section 2.2).

To address this issue, another approach has been proposed [19], using ideas similar

to the smooth sensitivity approach described in section 2.1.1. If it is publicly known

that the maximum degree of a graph is d, then removing or adding a node can

affect the triangle count by at most
(
d
2

)
. Furthermore, any graph whose maximum

degree is greater than d will have a k-step neighbor, for some k, whose maximum

degree will be d (i.e., high-degree nodes can be removed until the maximum degree

of the graph falls within the threshold). On generally sparse graphs with few nodes

above degree d, the number of triangles in this bounded-degree neighbor graph will

be a close approximation of the correct answer. The operation of finding the low-

degree neighbor incurs its own sensitivity cost, but privacy can be still achieved at

a sensitivity cost in the range O(d2) [19]. While this is untenable for large social

networks, networks with low maximum degrees may successfully apply node-privacy

to their triangle counts using this method.

Edge-Privacy

Fig. 3.2.: Edge-sensitivity of triangle-counts is a function of n, and thus is unbounded
in general.
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For similar reasons to node privacy, edge privacy is also not feasible for triangle-

counts. In the worst case, removing an edge from a graph with n nodes can remove

n− 2 triangles (Figure 3.2). Since the sensitivity is a function of the graph size, it is

unbounded in general.

However, the local sensitivity of this query under edge-privacy, the sensitivity

over a specific data-set, is bounded (even when the maximum degree is unbounded).

Consider two nodes, a and b, that have k wedges (paths of length 2) connecting

them, as in figure 3.2. If G is a graph in which no pair of nodes has more than k

wedges connecting them, then adding an edge to G will create at most k triangles,

and removing an edge will delete at most k triangles. We can apply smooth sensitivity

techniques to take advantage of this in cases where k is not large, and thus attain the

somewhat weaker (ε, δ)-indistinguishable edge-privacy (see Section 2.1.1). However,

real-world social networks are transitive (if two people share a mutual friend, they’re

much more likely to be friends with each other) which can cause large values of k in

practical applications of this technique. When k is large, even instance-based noise

addition may introduce error of a factor of 10 or greater in analysis results [25].

The global clustering coefficient, which has the practical effect of normalizing the

global triangle count using information taken from the degree distribution, can also

be privatized with a careful application of smooth-sensitivity edge-private techniques.

In this context, the effect of the noise is reduced [44].

3.3.2 Additional Approaches

In Chapter 5 we introduce partition-privacy, which considers social network anal-

ysis applications that operate on a set of graphs. Shen et. al. consider a related

context in mining frequent small graph patterns over graph databases, such as those

used in bio-informatics applications. They adapt a tabular-based frequent item-set

approach to the problem, which incidentally satisfies partition-privacy [45].
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3.3.3 Degree Distribution

Node-Privacy

Fig. 3.3.: Node sensitivity of degree distribution queries is a function of n, and thus
is unbounded in general.

Although degree distributions are represented as histograms, the sensitivity is not

small under node-privacy because one node affects multiple counts in the distribution:

removing a node from the graph reduces the degree of all nodes connected to it. A

node with k edges can affect a total of 2k + 1 values of the distribution (Figure 3.3).

In the worst case, adding a node of maximal degree will change 2n + 1 values, and

since this sensitivity is dependent on n, it will be unbounded in general (see Section

2.2).

Edge-Privacy

Edge-privacy is feasible for degree distributions. Removing one edge from the

graph changes the degree of two nodes, and affects at most four counts (Figure 3.4).

Under k-edge-privacy, the sensitivity is 4k. With a sufficiently large graph, this is

a negligible amount of noise, and the utility of this technique has been successfully

demonstrated [24]. Recent work has improved results by considering the set of feasible

degree sequences (ones which can be produced by graphs, without self-loops or multi-

edges) and post-processing privatized results to fall within this set [46].
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Fig. 3.4.: Edge sensitivity of degree distribution queries is 4: at most four values can
change by one when a node is added or removed.

3.3.4 Centrality and Path-length Measures

Social network analyses such as centrality, clustering and path-length measures,

which can be drastically affected by the existence of bridges in the data, are very

challenging to privatize (as described in the previous chapter). Beyond the novel

contributor and partition-privacy techniques we introduce in subsequent chapters,

little existing work addresses the privatization needs of these analyses.

3.3.5 Community Detection

By contrast, progress has been made with attaining edge-privacy in the eigenvalues

of the matrix representation for a graph. Spectral clustering methods use a graph’s

eigenvalues to identify dense clusters of nodes and edges in the graph. Recent work

has allowed researchers to privately publish edge-private approximations of graphs

that preserve clustering structure [21, 47].

3.3.6 Graph Modeling and Social Recommendations

Several researchers have proposed differentially private approaches to creating

graph models: randomized synthetic graphs that are generated to be similar to a true,

private, social network and thus can be studied safely in place of the original graph.
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The Stochastic Kronecker graph model has been privatized under edge-privacy [48],

as have exponential random graphs [49]. Several other groups have developed their

own models that satisfy differential edge-privacy [50–53].

3.4 Summary

Returning to our initial three desired properties for privacy-preserving network

analysis techniques, we note that although considerable research has been done in

this topic in recent years, there still remains room for improvement:

Guaranteed Privacy: Anonymity approaches (including simple anonymity and

k-anonymity) do not provide any broad guarantee of individual privacy which is not

conditional on attacker’s background information. Differential edge-privacy provides

a broad guarantee for a limited amount of individual information (protecting any one

relationship edge), while differential node-privacy provides a very strong guarantee

of individual privacy (protecting all information regarding an individual’s attribute

values or relationships in the network).

Maintain Utility: Simple anonymity, some approaches to k-degree anonymity,

and some applications of differential edge-private analysis produce high-utility results

(in which added noise is non-existent, or has little practical impact on privatized re-

sults). By contrast, more advanced k-anonymity techniques (such as k-confusion),

differential node-privacy, and high-sensitivity edge-private analyses may produce re-

sults with low utility (in which added noise or altered data causes privatized results

to differ significantly from non-privatized data).

Practically Adoptable: Simple anonymity and some approaches to k-degree

anonymity are both easily explained and easily implemented by data analysts with

limited expertise in privacy. By contrast, more advanced k-anonymity techniques

(such as k-confusion) and many differential privacy techniques require complex im-

plementations and may not be efficiently computable.
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In summary, there is a need for easily implemented analysis techniques which both

provide high utility and satisfy robust privacy guarantees. In subsequent chapters we

will introduce a variety of techniques which address this need.
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4. CONTRIBUTOR PRIVACY

We now introduce a new application of differential privacy to network data, contributor-

privacy, which provides a privacy guarantee very similar to the guarantee given to

individuals in tabular data. Contributor-private algorithms use ego-network style

analysis (focusing on nodes and their immediate neighbors [54]) to provide useful

approximate results for queries that are too sensitive to perform under the previous

differential privacy standards, node-privacy and edge-privacy.

Recall from Chapter 2 that we refer to individuals whose knowledge is contributed

to the data-set as survey participants, and individuals who have information provided

about themselves (by participants who have knowledge of them) as subjects. Differen-

tial privacy on tabular data guarantees survey participants that the privatized results

will give very little evidence about whether they participated or not. Contributor-

privacy offers the same guarantee to participants in network data.

4.1 Definition

Define PoI to be the Population of Interest, and C ⊆ PoI to be the set of people

who contribute information to the data-set (the survey participants). Recall that an

ego-network is the vertex-induced subgraph of a node’s neighborhood; it consists of

the node, the node’s direct friendships/friends, as well as the relationships among

those friends.

For i ∈ C, define di = (Info(Egoi), Info(i)) to be the information contributed

by individual i to the data-set. This will include information about themselves,

Info(i), and about others within their ego-network Info(Egoi). Note that while

Egoi ⊆ PoI, it is not necessarily true that Egoi ⊆ C. We use D = {di|i ∈ C} =

{Info(Egoi), Info(i)|i ∈ C} to refer to the set of di comprising the data-set.
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Definition 4.1 Contributor-Privacy: A privatized query

Q : D → �k

satisfies Contributor-Privacy if, for all R ⊆ range(Q), and all pairs of data-sets

D1 = {Info(Egoi), Info(i)|i ∈ C1}, and D2 = {Info(Egoi), Info(i)|i ∈ C2} where

C1 = C2/i, for some i ∈ C1:

Pr[Q(D1) ∈ R]

Pr[Q(D2) ∈ R]
≤ eε

This privacy guarantee protects the data contributed by data-set participants,

using a standard conceptually similar to the definition of differential privacy over

tabular data. If the true world is a social network G and the survey asks each

individual i to list their gender (their node label, Info(i)) and who they believe

is their friend (their outlinks, Info(Egoi)), then the neighboring possible worlds

are ones in which an arbitrary node and all of the information it contributed to

the network (its node label and its outlinks) are removed from or added to G. An

attacker in possession of the privatized results R won’t be able to determine whether

a person i supplied their data (submitted a survey) to help produce the graph. This

privacy guarantee is strictly weaker than node privacy, but compares well with single

edge privacy for many queries. Any participant can plausibly deny its out-links, or,

equivalently, any participant can plausibly deny one in-link from another participant

node. Analogous to k-edge-privacy, we can also provide k-contributor-privacy by

considering neighboring worlds that differ from the true world by the information-

contribution of up to k members of the graph. With the di above, 2-contributor-

privacy allows two nodes to simultaneously deny all out-links, and as a result, this

enables a complete mutual edge to be protected (providing single-edge privacy in

addition to out-link privacy). In general, a k-level privacy guarantee can be satisfied

by scaling the added noise by k.
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However, contributor-privacy can also be generalized to cases in which di includes

information beyond a simple list of i’s perceived friends; any information that i

can contribute to help us learn about PoI can be collected and privatized under

contributor-privacy. We provide several practical examples below.

4.1.1 Privacy Analysis

Contributor-privacy guarantees that a participant submitting their survey to the

data-set will have this contribution obfuscated in the results of any privatized query.

However, in the context of network data, individuals customarily provide informa-

tion about other individuals as well as themselves. If an edge or a node in a graph

is well-known, what level of protection is offered by contributor-privacy? As de-

scribed in Chapter 2: traditional differential privacy does not protect subjects, node-

privacy does protect subjects, and edge-privacy offers very limited protection to sub-

jects. In this section we will briefly discuss the protection offered to subjects by

contributor-privacy, first examining the extremes of contributor-privacy protection

and then briefly outlining an important factor in the general case. For a detailed

understanding of subject privacy, we note that the obfuscation provided to subject

data in noisy contributor-private algorithms is strictly greater than the obfuscation

provided by deterministic algorithms that publish true data values. In Chapter 7, we

will propose and demonstrate a metric for measuring the relative privacy provided by

deterministic data analysis algorithms.

In the worst case, contributor-privacy may provide very little protection to an ex-

tremely well-known piece of network data. For example, a population of high school

students is likely to be well-informed about a relationship edge between the school’s

head cheerleader and the football team captain. Surveying these students about the

existence of this edge, and then adding to the result laplacian noise with parameter

(1/ε), will produce a publishable result which satisfies contributor-privacy. This re-

sult protects the survey-takers, allowing any student to deny having reported on the
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relationship. However, as the magnitude of noise added will likely be much smaller

than the number of students surveyed, the result will provide very little privacy pro-

tection for the two star athletes who serve as the survey’s subjects. In this worst case,

we might argue that this relationship information was already in the public sphere

before the survey was conducted; privacy protection for the subjects would be of little

value. However, publicly publishing this data will allow the information to be shared

beyond the scope of the original population, where it may be less well-known. This

presents an ethical issue that must be considered in any data-mining context: pri-

vatized data-mining allows aggregate facts about populations to be published while

protecting individual data, but if the aggregate facts themselves are considered sensi-

tive (for example: rates of drug-use in a particular university dorm, or rates of AIDS

infection within a small neighborhood), then the data-mining results should not be

published.

In the best case, contributor-privacy will provide strong protection for subject

data that is not well known. In our previous example of a high school student popu-

lation, we might posit a secret tryst between the indicated persons, which they alone

report. In this case, contributor-privacy is effective at subject protection. In fact,

analyses which satisfy 2-contributor-privacy will completely protect this edge in the

data (standard 1-contributor private analyses will provide subject protection with

parameter εsubject = 2εparticipant).

The above covers two extreme cases, in which a subject data element is either

completely private or publicly known. To understand the general case, we consider

the effect of an attacker’s level of certainty about the true data-set. Contributor-

privacy represents social network data as collected from individuals in a population

by means of a survey, a realistic scenario for many social science applications. When

survey data are collected in this fashion, it’s likely that the data will not form a single

consistent social network. There will likely be people in the population who do not

submit a survey; there may be disagreement about the existence of edges (see Figure

4.1).
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Fig. 4.1.: Unlike tabular data, participants in social network studies provide informa-
tion about each other. This information may be incomplete or inconsistent.

Incomplete or inconsistent data may not negatively effect analysis utility. As we

demonstrate below, a monolithic, consistent social network isn’t requisite for use-

ful analyses such as degree distributions or local clustering-coefficient distributions.

In fact, imposing mutual friendship edges may produce a less accurate view of the

network; some relationships are simply ambiguous or one-sided.

Additionally, this inherent ambiguity is an advantage for providing subject privacy.

Consider ’subject data’ to be nodes, edges or other information about the network

which may be reported in survey participants’ contributed information. Given a data-

set and a specific set of subject data,ds, we can examine the effects of the presence or

absence of this data on the analysis results. Analogous to local function sensitivity,

we define this impact as follows:
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Definition 4.2 Subject Data Sensitivity (δF (ds)): Given a deterministic (non-

privatized) function F : D → Rk = A, and a set of subject data ds, the Subject

Data Sensitivity of F (ds) is
1:

δF (ds) = max
D1,D2

‖F (D1)− F (D2)‖1

over all pairs of neighboring data-sets D1, D2 such that D1 = D2/ds.

Because noise added to protect contributor data does not satisfy any explicit

protection guarantee for subject data, we consider, as a lower bound on subject

privacy, the context in which raw analysis results are published without the addition

of any privatization noise. In Chapter 7 we introduce De Facto Privacy, which provides

a formal metric for analyzing the degree to which a deterministic data analysis and

publication scheme magnifies the impact of an attacker’s uncertainty about the data.

Below we provide a brief illustrative example of the fundamental concept.

When the results are published, δF (ds) is the only information the results provide

an attacker about the existence of ds in the network. However, due to the choice of

publication schemes, the ambiguity in the collected survey data, and the attacker’s

own potential uncertainty about the collected network, the existence of ds may not

the only possible explanation for the effect δF (ds).

Consider a survey question: ”How many people in the Purdue CS Department are

you friends with?” Summing the data collected from this and dividing by two gives

us an estimate of the number of friendships in the department, where one-sided edges

and edges leading to non-surveyed individuals will be counted as half-edges. Define

edge-count(G) = |E|/2.
Consider the friendship between Prof. Alice and Prof. Bob, ds = edge(A,B).

If both individuals submit surveys and report on this friendship in their tally, they

will collectively increase the total count by 2, ie δF (ds) = |edge-count(G) − edge-

count(G/ds)| = 2.

1The L1-norm of x ∈ �n is defined as ‖x‖1 = Σn
i=1|xi|.
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However, if instead Alice and Bob were each friends with two outside individuals

(Diane and Ed) who did not submit surveys, this would also increase the total count

by 2. Note that |{edge(A,D) + edge(A,E) + edge(B,D) + edge(B,E)}|/2 = 2 =

δF (ds), thus edge-count(G) = edge-count(G+ {D,E}/ds).
Additionally, if non-participating individual Carla had remembered to submit

her survey counting her four friends Alice, Bob, Fran and George (who had al-

ready submitted their surveys), that would also increase the total count by 2. Thus,

|{edge(C,A) + edge(C,B) + edge(C, F ) + edge(C,G)}|/2 = 2.

By itself, δF (ds) does nothing to indicate which of the many possible explanations

is correct, thus offering some protection for the privacy of the subject data. Intuitively,

the difficulty of ruling out alternate explanations, as described above, will cause

analyses that possess low subject-sensitivity and are performed over large data-sets

to impose a significant burden on an attacker attempting to use background knowledge

to target a specific individual. A formal exploration of these concepts will be presented

in Chapter 7 of this work.

Finally, we include a theoretical result regarding the identifiability of the network

as whole. Given a analysis set A with total sensitivity ΔA, we note the following

implication of the definition of contributor-privacy.

Theorem 4.3 If R is the complete contributor-privatized results of analysis set A

over true graph G, then there exists at least two networks G1, G2 such that G1 �= G2

and Prob[A(G1)=R]
Prob[A(G2)=R]

≤ e2ε. Thus, an attacker cannot use R to determine with certainty

the true original graph G.

Proof: WLOG, we will assume that G1 is the true original graph. We create G2

by adding one ’leaf ’ node l which has a single edge connecting it to another, arbitrary,

node a in G1. Because l has only one neighbor, this new (l, a) edge is observed in the

ego-networks of only two nodes: l and a. 1-Contributor-privacy protects data that is

contributed by one node, ensuring that regardless of the analysis being performed, the

guarantee in Definition 4.1 will hold. We want to protect the information contributed
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by two nodes, (2-contributor-privacy), which would cover the existence of the edge

(l, a).

Consider an intermediate data structure G1−2 which contains a’s observation of

l but does not contain l’s ego-net information (possibly because l did not participate

in the data-set themselves). Then we have that, under contributor-privacy, G1 is a

1-step neighboring world of G1−2 and G1−2 is a 1-step neighboring world of G2. So,

for any R, we have: Prob[A(G1)=R]
Prob[A(G1−2)=R]

≤ eε and Prob[A(G1−2)=R]
Prob[A(G2)=R]

≤ eε.

Thus:

Prob[A(G1)=R]
Prob[A(G1−2)=R]

× Prob[A(G1−2)=R]
Prob[A(G2)=R]

≤ (eε)2

Prob[A(G1)=R]
Prob[A(G2)=R]

≤ e2ε

Note that because the choice of a was arbitrary, there will be many possible instan-

tiations of graph G2, and thus for any given published privatized analysis set R there

will be a (possibly quite large) pool of possible original networks G.

Subject sensitivity is dependent on the choice of analysis, but the above protec-

tion, which is based on amounts of contributed information, holds regardless of the

analysis set. In general under contributor-privacy, network features which fall within

many individual’s ego-networks (and thus are directly observable by many individ-

uals) may be visible in the privatized results, depending on the choice of analysis.

Thus, as with edge-privacy, the overall effect of high-degree nodes in the network

may not be protected. However, less observed nodes are guaranteed more protection,

and choosing analyses with lower subject-sensitivity will provide better protection

for higher-degree nodes (we will discuss De Facto protection in Chapter 7). In the

remainder of this chapter, we will demonstrate a number of contexts and analyses

for which contributor-privacy protection is appropriate. For more sensitive contexts,

partition-privacy (if applicable) can provide very strong protection while still enabling

high-utility analysis. Partition-privacy is introduced in Chapter 5.
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4.2 Basic Algorithms

In this section we will present several easy-to-use algorithmic tools that can enable

social network researchers to learn about populations while guaranteeing contributor-

privacy. In the next section we will demonstrate the practical application of contributor-

private analysis on a diverse set of real world social network data-sets.

4.2.1 Subgraph Counts

Fig. 4.2.: The triangle distribution allows us to present clustering information with
an contributor-sensitivity of 1.

We propose a method for privatizing information about triangle counts and clus-

tering coefficients under contributor-privacy, using a modified version of the query

that more closely mimics the information gathered from a social network survey.

To do this, we introduce a simple, powerful method that can be applied to gather

privatized estimates of a variety of useful statistics over nodes in the graph.

By focusing on protecting the knowledge each individual has about their role with

respect to the network, contributor-privacy fits naturally with the techniques of ego-

network analysis, an approach to social network analysis that considers the network

as viewed by the individuals belonging to it [54]. In ego-network analysis, a network

with n members is broken into n overlapping ego-network subgraphs, each consisting

of a individual ‘ego’ node and his or her immediate neighborhood of friends (referred
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to as alters). Algorithm 1 presents survey collecting information about the triangles

in an individual’s ego-network.

Algorithm 1 A survey gathering information about triangles.

function TriangleQuery

friendlist← Query(“Who are your friends?”)
friendpairs← CrossProduct(friendlist, friendlist)
outdegree← Size(friendlist)

triangles ← Query(“Which of these pairs are friends with each other?”,
friendpairs)

trianglecount← Size(triangles)
return (outdegree, trianglecount)

end function

The only data that is retained by the researcher is, for each individual x: out-

degree(x), the number of friends the individual has, and trianglecount(x), the num-

ber of triangles the individual participates in. These statistics are sufficient to deter-

mine the local clustering co-efficient of the node: the ratio between the number of

triangles the node participates in and the maximum possible number of triangles for

a node of that degree [31].

Out-degree and local clustering data from this survey can be collected into a two-

dimensional histogram that provides detailed information about the patterns of social

cohesion of the graph and has a very low sensitivity under contributor-privacy (see

Figure 4.2): removing or adding an individual’s survey data to the histogram only

alters one partition count by at most one, and thus the noise required to privatize

this data-structure would be very small. Histograms with fewer partitions and larger

count values in each partition are less sensitive to added noise; we propose Algorithm

2 that produces a very flexible, robust, and safely privatized representation of the

social cohesion patterns in the network using local triangle counts.

Algorithm 2 takes as input two node-degree threshold values, deglow, degmed and

uses these to partition the (outdegree, trianglecount) data-points collected from the
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Algorithm 2 Privatizing local clustering coefficient distribution data.

function PrivateClustering(deglow, degmed, data)
Initialize(bins[][])
for all (nodeDegree, triangleCount) ∈ data do

degBin←Partition(nodeDegree, deglow, degmed)
localCluster ← triangleCount/(nodeDegree ∗ (nodeDegree− 1))
triBin←Partition(localCluster, 1/3, 2/3)
bin[degBin][triBin]← bin[degBin][triBin] + 1

end for
for i = 0→ 2, j = 0→ 2 do

bins[i][j]← bins[i][j]+ LaplacianNoise(1)
end for
return bins

end function



49

TriangleQuery survey into low, medium and high degree nodes. The algorithm then

computes the local clustering coefficient of each node and further partitions nodes by

these values, creating a histogram with nine partitions (see Figure 4.2). Laplacian

noise sufficient to cover a function sensitivity of 1 is added to each partition, and

the privatized result may be released. We can consider the effect of this noise in

terms of how many of the noisy, privatized partition counts can be expected to differ

measurably from their true values. With only nine counts and a sensitivity of 1, the

expected number of privatized partition counts that will differ from their true values

by more than 3 is less than 0.25. The released histogram accurately captures useful

information about the distribution of local patterns across the graph.

The same approach can be used to collect and privatize any information available

within an ego-network by restructuring the survey as needed. For example, replacing

question 2 in Algorithm 1 by the question “For each of your friends, add a check mark

if the two of you share at least one additional, mutual friend” will collect information

about the probability that an edge participates in a triangle. The question “Are you

part of a group of at least k friends who are all mutual friends with each other?”

collects statistics about cliques in the graph.

4.2.2 Degree Distribution

Fig. 4.3.: Contributor sensitivity = 1. Protecting the out-edges of a node provides
privacy with relatively little effect on the degree distribution.
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Although edge-privacy requires comparatively little noise to protect individuals in

degree-distribution analyses (see Figure 3.4), contributor-privacy requires even less

noise. Here, we consider just the distribution of out-degrees, the result of asking

participants, “How many friends do you have?” Removing one node and its out-links

from the graph affects only one value in the degree distribution (Figure 4.3). Un-

der contributor-privacy, a high-degree node may still leave evidence of its presence

in the data-set through the out-degrees of its friends. However, this may not signif-

icantly compromise subject privacy. The set of possible explanations for a slightly

higher-than-expected degree among nodes in the graph is large: they may represent

additional friendships among the nodes, or outside friendships with individuals who

were non-participants in the survey. Exploiting this vulnerability to guess the pres-

ence of a high-degree node with any certainty would require an attacker to possess

extensive information about the true social network and survey participation. We

will explore this concept in more detail in Chapter 7.

4.2.3 Edge Properties

We now propose a method for collecting privatized information about a class of

network statistics that can be characterized as propositions on network edges. Assume

we are given a node n with edge-set En = {(n, a)|a ∈ neighborhood(n)}, node labels nl

and {al|a ∈ neighborhood(n)}, and edge labels {el|e ∈ En}. Within this framework,

we can define propositions that capture useful information about individual edges.

Edge Propositions (e ∈ En)

• Mutual(e): Pmutual((n, b)) = [(b, n) ∈ Eb]

• MutSigned(e): Pmutsigned((n, b)) = [((b, n) ∈ Eb) and sign(n, b) = sign(b, n)]

• Friend-Type(e): For example, PFemale(n, b) = [Female?(b)]

• Same-Type(e): Psame−type(n, b) = [nl = bl]
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In this section we describe how such edge information can be aggregated at the

node level, then contributed to aggregate network statistics, and privatized under

contributor-privacy as a distribution with low sensitivity. Individuals can be expected

to be familiar with basic information about their relationships and their friends. Algo-

rithm 3 describes a general approach to collecting edge information from an individual

that may be implemented with any of the edge propositions listed above. EdgeProper-

tyQuery(Mutual()) asks individuals for the proportion of their network edges that are

mutual (for instance, whether someone they follow is also one of their own followers);

this collects information about the node’s reciprocity. EdgePropertyQuery(Same-

Type()) asks individuals for the proportion of their friends are similar to them (for

example, whether their friends share their race); this collects information about the

node’s degree of homophily (see Section 2.3.2).

Algorithm 3 A survey gathering information about the properties of friendship
edges.

function EdgePropertyQuery (PROPERTY)

outdegree← Query(“How many friends do you have within the PoI?”)
positivecount ← Query(“How many of your friendships have PROP-

ERTY?”)
return (outdegree, positivecount)

end function

Once this information is collected at the node level, it can be aggregated into a dis-

tribution across the network (see Figure 4.4). Contributor-privacy requires that each

node’s contributed information be protected. Because the information is collected

into a histogram, as in the degree distribution, the contributor-privacy sensitivity is

1 and the distribution can be privatized with relatively little noise. The complete

procedure for creating and privatizing the distribution is given in Algorithm 4.

Privatized edge-property distributions can be applied to a variety of social net-

work analysis contexts. For example, data collected from EdgePropertyQuery(Same-

TypeGrades()) would provide information about the extent to which students associate
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Algorithm 4 Privatizing edge property distribution data.

function PrivateEdgePropertyDistribution(data, precision)
Initialize (bins = [] ∗ (10precision + 1))
binLabels← [”0/10precision”, ”1/(10precision − 1)”, ...”10precision/0”]
for all (outDegree, positiveCount) ∈ data do

ratio← positiveCount/outDegree
binNum← round(10precision ∗ (ratio))
bins[binNum]← bins[binNum] + 1

end for
for i = 0→ 10precision + 1 do

bins[i]← bins[i]+ LaplacianNoise(1)
end for
return bins, binLabels

end function
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Fig. 4.4.: Contributor sensitivity = 1. Information about prevalence of edge proper-
ties such as reciprocity, homophily, or prevalence of particular edge labels (such as
friend/enemy labels), can be collected from nodes with low sensitivity.

with others at the same level of academic proficiency. The data collected from Edge-

PropertyQuery (Mutual-Signed()) would provide information about the extent to

which positive and negative edges are reciprocated in kind (see Section 4.4.2).

4.2.4 Centrality: Popularity Graph

We propose a very different approach for collecting and privatizing information

about influential nodes within a network; one that satisfies contributor-privacy (by

protecting individuals’ data contributions) and leverages individuals’ knowledge about

their community. Recall that viable centrality analyses beyond degree-distributions

do not currently exist for the edge-privacy or node-privacy standards. We define

a popularity graph: a synthetic network that represents the social structure among

influential community members (Algorithm 5).
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Fig. 4.5.: A Popularity Graph with edge thickness indicating edge-weight

Given a population of interest in which the number of individuals in the total

population set is public information, 2, the algorithm proceeds as follows. Individuals

in the population are asked to: “list your three most popular friends within the

specified population group”. The algorithm proceeds in two steps: a data aggregation

and privatization step, followed by a post-processing step which uses the privatized

data to produce the popularity graph. The sensitivity of the first step is 3, while the

second step manipulates only privatized data and thus incurs no sensitivity cost.

The first step in the algorithm builds a social network across as follows: A base

graph is created containing sufficient nodes for all members of the population of

interest, and undirected edges of weight 0 are added between all pairs of nodes. The

data collected from the survey is then added to the graph: when two popular people

are listed on the same survey, the weight of the edge connecting them is incremented.

Thus, each individual’s data increments the weight of the three edges connecting the

three ’popular’ nodes contributed by that individual. The sensitivity of the popularity

graph is 3, since a maximum 3 edge-weight values can change if a participant adds or

retracts their data.

To privatize the data, appropriate Laplacian noise to cover a function sensitivity

of 3 is added to all edge-weights. Then the post-processing step is applied: edges

with low weight are eliminated, and the graph is anonymized. The resulting weighted

2Note that this is not the number of individuals who contribute their information to the data-set,

which is protected under contributor-privacy
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Algorithm 5 Privatizing centrality data.

function PrivateCentrality(importanceT, dataI)
V ← N
E[i][j]← 0 ∀i, j ∈ V
for all i ∈ I do
∀pj, pk∈dataI [i], E[pj, pk]←E[pj, pk] + 1

end for
for all i, j ∈ popular − population do

E[i, j]← E[i, j]+ LaplacianNoise(3)
if E[i, j] < importanceT then

E[i, j]← 0
end if

end for
return PopularityGraph = (V,E)

end function
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popularity graph is published (Figure 4.5). This graph can be used to understand

the underlying social influence structure of the population, identifying social clusters

and the bridges between them. The privacy of data provided by the query partici-

pants is fully protected; however, the subjects who appear as popular nodes in the

graph will clearly be less secure and this analysis may not be appropriate in all con-

texts (in a sexual relationship network, for example, analyses with greater subject

privacy would be preferable). However, for many populations though, the popu-

larity graph should be sufficient protection: anonymity, noisy edges, and the fact

that the artificially-constructed graph will lack detailed substructures often used for

re-identification attacks, will all contribute to protecting the privacy of the query

subjects.

4.3 Utility Analysis

The basic contributor-privacy algorithms we have presented above have low sen-

sitivity: Triangle counts, degree distributions, edge-property distributions each have

a sensitivity of 1, while popularity graphs have a sensitivity of 3. In this section we’ll

discuss the relationship between sensitivity and utility.

Recall from section 2.1 that the sensitivity of a set of analyses over a single data-

set is equal to the sum of their individual sensitivities. Furthermore, if an analysis

is performed over two disjoint data-sets such that an individual can contribute to

at most one set of analysis results, the sensitivity of the two analyses is computed

independently. A standard social network analysis scenario involves performing a

set of analyses across several networks and then comparing the results; for example,

we might perform a degree-distribution and two edge-property distribution analyses

across four different networks. The sensitivity of the analysis for each network is

equal to 3 (a sensitivity cost of 1 for the degree-distribution, and a total cost of 2 for

the two edge-property distributions). In order to privatize this analysis set, laplacian
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noise sufficient to privatize a sensitivity of 3 must be added to each analysis (the

degree-distribution and both edge-property distributions) across all four networks.

The effect of this noise on analysis results is dependent on two factors: the size

of the data-set and the size of the output structure being privatized (the number of

noise samples taken). Because privatization noise must be added to every ’bucket’ of

histogram-formatted data, privatized data-structures with more bucket counts have

a higher probability of sampling at least one large value of noise: A LCC distribution

with 10 counts has a very low probability of sampling a large noise value during

privatization, in contrast to a Popularity Graph with 500,000 edge weights. Whether a

sampled noise value is sufficiently large to obscure the true data patterns is dependent

on the size of the data-set: In a data-set with 100 individuals, a sampled noise value

of 10 may be large enough to overwhelm the true value of a histogram count. In a

data-set with 10,000 individuals, the effect of a noise value of 10 on the aggregate

data patterns is less significant. Figure 4.6 gives the expected number of large noise

values sampled depending on the output data-structure size and analysis sensitivity

(with ε = ln(2)).

Fig. 4.6.: Expected number of high noise values given function sensitivity and number
of noise samples taken, with ε = ln(2).

Our hypothetical analysis set above (assuming a degree-distribution cut-off of 80

and an edge-property range of 11) has a total of 4∗(80+22) = 408 histogram buckets
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across the four network analyses, and a total sensitivity of 3. To compute the expected

number of large noise values, we use the cumulative probability distribution of the

laplacian distribution, given in Lemma 4.4. In our example, the expected number of

noise values larger than 10 appearing across the entire four network analysis set is

19.84, and the expected number of noise values larger than 35 is 0.06. In real world

networks with tens of thousands of nodes, such as the ones we investigate in the next

section, this amount of noise is unlikely to have a significant impact on results utility.

We will demonstrate this empirically. In much smaller networks, it may be necessary

to reduce the analysis output space (for example, a researcher may choose a smaller

degree-distribution cut-off in smaller networks), increase ε (and accept the reduced

level of privacy protection), or perform fewer analyses.

Lemma 4.4 Expected Large Noise Values: Given an analysis with sensitivity

ΔF and an output of size H (requiring H noise samples to privatize), a privacy

parameter ε, the expected number of Laplacian noise values sampled larger than k is:

E[#Lap(
ΔF

ε
) > k|H] = H ∗ 0.5e−k/ΔF

ε

4.4 Practical Application

The contributor-private analysis techniques described in this chapter are carefully

designed to minimize analysis sensitivity and output size, such that privacy can be

achieved with relatively little added noise. We believe that these algorithms present

an effective tool-set for easily implemented, high-utility, privacy-preserving social net-

work analysis.

As evidence of this, we now give a in-depth practical demonstration of contributor-

private network analysis techniques on real world social networks. For our experi-

ments we use the networks provided by an widely-used social network analysis re-

source: the Stanford Large Network Dataset Collection (SNAP) [55]. These networks

have been published online as anonymized edge and node sets, and have been refer-
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enced by many researchers working across the social network analysis field. We will

thus assume that any privacy risks inherent in the simply-annonymized data predate

this thesis due to their public availability, and we will include both privatized and

non-privatized analysis results for comparison purposes.

To demonstrate the range of contributor-private analyses, we perform three anal-

ysis sets across three different categories of networks. In the first two categories, we

compare analysis results across pairs of networks that possess the same data-structure

format but are drawn from very different populations. In the third category, we ex-

plore a challenging privacy scenario by demonstrating a higher sensitivity analysis

against a smaller data-set with a large output space:

• Directed Networks: Enron Email Network, WikiVote Network

• Signed Directed Networks: Slashdot Zoo Enemy/Friend Network, Epinions

Trust Network

• Small Undirected Network: Facebook Ego-Network

Recall from Section 4.3 that sensitivity is computed across the entire analysis set

for each graph. In our first two analysis sets, both the total analysis sensitivity and the

data-output size are relatively small in comparison to the size of the data, resulting in

a very small effect on utility that is generally not visible when the analysis results are

graphed. For these analyses we also include truncated graphs with reduced ranges

such that the privatization noise is visible, as well as a record of the noise values

added to each distribution. In the third analysis set the data-set is much smaller

and our output space is much larger; thus, the effect of noise is more significant. In

all other analyses in this dissertation, we use a default parameter of ε = ln(2)–Note

that, given Definition 2.2, a choice of ε = ln(2) provides the privacy guarantee that

no result will be more than twice as likely to be produced by one data-set as by its

neighbor. In the third analysis set in this section, we will demonstrate the effect of

an increased ε on privatized results. Increasing ε weakens the privacy guarantee, but

increases the utility of privatized results.
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To compare results between networks of different sizes, we first normalize the dis-

tributions. This is a post-processing step that occurs after privatization and incurs no

sensitivity cost. We use a natural definition for the privatized normalized distribution,

as follows:

Definition 4.5 Privatized Normalization: Given a distribution Hpriv with pri-

vatized (noisy) counts: p1, p2...pk, we define the privatized normalization as:

Hpriv−norm = p1/npriv, p1/npriv..pk/npriv

With npriv = Σipi.

4.4.1 Directed Networks: Voting and Email Data

In our first analysis set, we investigate two directed networks.

Data-sets

Our first data-set is the Enron Email network. During the Federal Energy Regula-

tory Commission’s investigation of the company, about a half million of the company’s

internal emails were posted publicly online. A social network data-set has been drawn

from this data by including nodes for each individual and adding directed edges to

represent email exchanges (ie, an edge is added leading from node i to node j if in-

dividual i sent at least one email to individual j). The resulting graph has 36,692

nodes and 183,831 edges (ie, an average degree of 5). In this graph, contributor data

consists of the emails sent by one individual, along with email relationships between

individuals in the contributor’s neighborhood (presumed to be potentially observable

by the individual).

Our second data-set is taken from a procedure that occurs in Wikipedia’s editor

community. Content on Wikipedia is composed, edited and monitored by volunteers,

and a subset of especially dedicated volunteers are given ’administrator’ status with a
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higher level of access privileges. Administrator positions are awarded as the result of a

community deliberation process that involves a voting round: fellow volunteers (both

common volunteers and current administrators) vote on administrator candidates.

A social network is drawn from this data by including nodes for every voter and

candidate, and adding directed edges to indicate votes (ie, an edge is added leading

from node i to node j if individual i voted in support of individual j). Note that this

is not a bipartite graph: candidates can and often do cast votes for other candidates.

The resulting graph has 7,115 nodes and 103,689 edges (an average degree of 14.5). In

this graph, contributor data consists of all the votes cast by one individual, along with

votes exchanged between individuals in the contributor’s neighborhood (presumed to

be potentially observable by the individual).

In analyzing these graphs, we will investigate the following questions:

1. Does the email network or voting network have higher transitivity? Transitiv-

ity in the voting network indicates groups of individuals mutually supporting

each other’s bids for administratorship. Transitivity in the email network may

indicate collaboration networks among groups of coworkers.

2. Does the email network or voting network have a more hierarchical structure

(many low and few high degree nodes)? Low degree nodes in the voting network

indicate individuals who cast few votes, while low degree nodes in the email

network indicate individuals who sent emails to only a few coworkers.

Privatized Analysis

For this analysis set we will collect a local clustering coefficient (LCC) distribution

and a degree distribution from each network, and then privatize the results using

laplacian noise, as described in the previous section. Because we are interested in

the distribution of LCC values across the network as a whole, rather than binned by

degree, for this experiment we use a one-dimensional LCC histogram in place of the

two-dimensional histogram presented in Figure 4.2.
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The total sensitivity of this analysis set is 2, with each analysis incurring a sen-

sitivity cost of 1. Laplacian noise sufficient to cover this sensitivity is added to each

output count in each analysis to produce the privatized results. The following two

figures, Figure 4.7 and 4.8, display the output of the analysis set. Because the of the

low sensitivity of these analyses, the privatization noise is very small in comparison to

the scale of the data; we include plots with truncated axes in which the effect of the

noise is visible. In general, the privatized results in this analysis set provide, literally,

no visible loss in utility.

Privatized Results Comparison

To perform a privacy-preserving comparative analysis of two networks, we normal-

ize the privatized results according to Definition 4.5. The resulting plots are presented

in Figure 4.9 and 4.10.

To demonstrate that privatized social network analysis can provide useful insights

into the populations and social dynamics being studied, we now return to the two

questions we proposed above.

First, does the email network or the voting network show higher transitivity?

Looking at the privatized LCC distribution data across both networks (see Figure 4.9)

we see that most individuals in the network have a low clustering coefficient, while

many individuals in the email network have a very high clustering coefficient: groups

of individuals in the Wikipedia administrator candidate pool were less likely to trade

votes amongst each other than employees at Enron were likely to collaborate in clique-

like groups through email exchanges with their coworkers. This seems reasonably

intuitive. Interestingly, we note that the Enron distribution also has some weight at

a relatively lower LCC range of 0.2-0.6; potentially this represents individuals
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(a) Wiki-Vote LCC Distribution (b) Enron Email Network LCC Distribution

(c) Wiki-Vote truncated to show noise (d) Enron Email truncated to show noise

(e) Wiki-Vote privatization noise (f) Enron Email privatization noise

Fig. 4.7.: Local Clustering Coefficient (LCC) distribution data for the Enron Email
and Wiki-Vote networks, privatized under contributor-privacy.
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(a) Wiki-Vote Network Degree Distribution (b) Enron Email Degree Distribution

(c) Wiki-Vote truncated to show noise (d) Enron Email truncated to show noise

(e) Wiki-Vote privatization noise (f) Enron Email privatization noise

Fig. 4.8.: Degree Distribution Data for the Enron Email and Wiki-Vote networks,
privatized under contributor-privacy
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Fig. 4.9.: Comparison of normalized privatized local clustering coefficient distribution
between Wiki-Vote and Enron Email networks.

Fig. 4.10.: Comparison of normalized privatized degree distribution between Wiki-
Vote and Enron Email networks.

in administrative staff positions or leadership positions who distributed email

across disparate organizational groups that were not otherwise well-connected. We

also note the small increase at LCC = 1 in the voting distribution; this suggests that
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some portion of administrator candidates did form voting cliques to mutually support

each other’s bids for administratorship.

Next, we investigate whether the email network or voting network showed a more

hierarchical degree distribution (see Figure 4.10) . Privatization noise and the degree

cut-off of 60 reduces the level of detail available about the few individuals in each

graph with very high degree (this is a natural consequence of protecting these dis-

tinctive individuals’ privacy). However, looking at trends across both populations as

a whole, we see the distribution curves are very similar for both for very low degree

nodes and higher degree nodes. We also note, though, that the email network presents

a distinctive behavior around degree 3: There are many nodes in the Enron graph

that have only one or two email partners, and there is a another large set of nodes

that has between four and eight email partners. This may be evidence of collabo-

ration substructures specific to the company organization. If node labels specifying

position type were added to the network data, we could explore this question further

in a two-dimensional privatized histogram (similar to the histogram recording degree

and LCC presented in Figure 4.2).

4.4.2 Signed Networks: Friend/Enemy and Trust Graphs

In our second analyses set, we move onto two directed networks with signed edges

that are labeled as either positive or negative.

Data-set

Epinions is a consumer review site that allows users to report trust (or distrust)

relationships with other reviewers. This information is combined into a single network

referred to as the Web of Trust, which is then used to algorithmically determine which

reviews are displayed to a user in the future. A signed, directed social network is

drawn from this data by including a node for each user and a signed directed edge

for every trust relationship (ie, when user i registers a trust relationship with user j,
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a directed edge from i to j is added with label +1; for distrust relationships a −1
label is used). The complete network has 75,879 nodes and 508,837 edges, with an

average degree of 6.7. Contributor data in this network is the set of trust and distrust

relationships submitted by the user, and the set of trust and distrust relationships as

received and observed by the user.

Slashdot is a technology-related news aggregater and forum with a very active

community. The Slashdot Zoo, introduced in 2002, allows users to tag other users

as either ”friend” or ”foe”. A signed, directed network is drawn from this data by

including a node for every user who participates in the Zoo, along with directed

signed edges indicating friend and foe tags (when user i tags user j as a ”foe”, a

directed edge with label −1 is added from i to j; friendship edges are labeled +1).

The complete network has 82,168 nodes and 948,464 edges, with an average degree

of 11.5. Contributor data in this network is the set of friend and foe tags registered

by the user, and the set of friend and foe tags as received and observed by the user.

In this analysis set, we’ll investigate the following questions:

1. In signed networks, individuals’ outdegree can be broken into counts of positive

and negative edges. If the individual participates more in negative relationships

than positive ones, their negative outdegree will be greater relative to their

positive outdegree. Do individuals tend to be more negative in the social Zoo

network where ’foe’ relationships may not be intended seriously? Or do they

tend to be more negative in the trust network, where negative edges have a

serious meaning and actual consequences on future interactions?

2. Are individuals more likely to receive responses (form mutual relationships,

regardless of sign), to the social relationships extended in the Zoo network or

the trust relationships extended in the Epinions network?

3. Considering sign, are individuals more likely to recieve responses in kind to

relationship edges extended in the Zoo network or the trust network? How likely

are people to indulge in mutual friendships and foe-ships in each network?
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For this analysis set we will collect four types of edge-property information across

the two networks. We collect two edge property ratio distributions: the first counting

the ratio of positive to negative edges that a node participates in, and the second

counting the ratio of mutual edges (regardless of sign) that a node participates in.

Each of these distributions has a sensitivity of 1. We also collect statistics about

individuals’ tendency to have their extended edges reciprocated in kind: we collect

counts of the number of individuals who received positive responses to more than half

of their extended positive edges (and the complementary count of those who did not),

as well as a count of the number of individuals who received negative responses to more

than half of their extended negative edges (and the complementary count of those

who did not). Each pair of complementary counts can be represented as a two-bin

histogram, which we then privatized and normalized to attain privatized estimates

of the probability that a random node received in-kind responses to a majority of

its positive and negative edges. Note that the same individual may contribute to

both count pairs (eg, an individual whose positive edges are all reciprocated but

whose negative edges are not reciprocated will contribute to the primary count of the

positive count pair and the complementary count of the negative count pair). Thus,

these analyses incur a sensitivity cost of 2, and the sensitivity of the full analysis set

is 4. Laplacian noise sufficient to cover this sensitivity is added to each output count

in each analysis to produce the privatized results.

The following three figures, Figure 4.11, Figure 4.12 and Figure 4.4.2, display the

output of the analysis set. Because the privatization noise is very small in comparison

to the scale of the data and the analyses have been carefully designed to incur minimal

sensitivity cost, the effect of privatization noise on the results is again negligible. In

the first two analyses, we include plots with truncated axes in which the effect of the

noise is visible, and in the third figure we extend the precision to three decimal place

in order to ensure the effect of added noise is clear. In general, we can see that the

privatization noise in this second analysis set also has negligible effect on utility.
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(a) Epinion P/N Edge Ratio Distribution (b) Slashdot P/N Edge Ratio Distribution

(c) Epinion results truncated to show noise (d) Slashdot results truncated to show noise

(e) Epinion privatization noise (f) Slashdot privatization noise

Fig. 4.11.: Positive/Negative Edge Ratio (P/N) Distribution data for the Slashdot
Zoo and Epinion Web of Trust networks, privatized under contributor-privacy

Privatized Results Comparisons

To perform a privacy-preserving comparative analysis of two networks, we nor-

malize the privatized results of the first two analyses according to Definition 4.5. The
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(a) Epinion ME Ratio Distribution (b) Slashdot ME Ratio Distribution

(c) Epinion results truncated to show noise (d) Slashdot results truncated to show noise

(e) Epinion privatization noise (f) Slashdot privatization noise

Fig. 4.12.: Mutual Edge Ratio (ME) Distribution data for the Slashdot Zoo and
Epinion Web of Trust networks, privatized under contributor-privacy

resulting plots are presented in Figure 4.14 and 4.15. Results from the third analysis

appear in Figure 4.4.2.
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Fig. 4.13.: Percentages of individuals who received responses In kind To a majority
of their extended positive and negative edges

Fig. 4.14.: Comparison of normalized privatized positive/negative edge ratio distri-
bution between Epinion and Slashdot networks.

To demonstrate that privatized social network analysis can provide useful insights

into the social dynamics of signed networks, we now address the three questions we

proposed above.

First, we consider whether individuals are likely to be more positive (listing more

friends than enemies) or negative (listing more enemies than friends) in each network

(see Figure 4.14). Interestingly, the positive/negative edge ratio distributions from
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Fig. 4.15.: Comparison of normalized privatized mutual edge ratio distribution be-
tween Epinion and Slashdot networks.

both the trust and the social networks have a very similar overall structure: A few

individuals list only negative relationships (distrusted reviewers and foes); a bump in

the distributions at 50/50 indicates that another group of individuals precisely splits

their edges between positive and negative labels; a gradual increase in the second half

of the distribution indicates that many people list more friends than foes; and a final

sharp rise indicates that very many people list only positive edges. The fact that these

basic patterns hold in the distributions of both networks implies that even though the

edges are given with different intent across different populations, lighthearted ’friend’

and ’foe’ status assigned in the Slashdot Zoo network and serious trust/distrust status

registered in the Epinions Web of Trust, individuals have a similar overall approach

to positive and negative relationships in both contexts. However, we note that the

Epinions distribution is slightly more extreme, with more individuals listing only

distrust or only trust, while the Slashdot network has slightly more weight in the

middle of the distribution.

Our second question related to the relative reciprocity of the networks: were

individuals extending an edge in the social network or in the trust network more
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likely to receive a mutual edge in response? In this analysis we did not consider

the sign of the edge; reciprocity with respect to relationship sign will be considered

in the third analysis. Again, the two distributions are strikingly similar, with two

exceptions: First, we note that individuals in the Epinions network were more likely

to participate in zero mutual edges (declining to rate anyone who had rated them)(see

Figure 4.15). Recall that in the contributor-privacy framework, data is only collected

from individuals who participate in the data-set, and thus all of the individuals in the

Epinions distribution have submitted at least one trust rating for another reviewer.

When an Epinions member in our data-set reciprocates 0% of her received edges,

she is still actively participating in the network by extending trust relationships to

others, while ignoring her own received trust relationships. Potentially this set of

users is interacting with the network more as a rating system (ensuring that the

reviewers they like are promoted in their feeds) than as a traditional social network

(forming networks of mutual relationships with other members). We also note that the

Slashdot network, by contrast, has a greater percentage of nodes which reciprocate

only a small percentage, 10%-20%, of their received edges. One possibility is that

this indicates a group of individuals who participate both in a few small clusters

of reciprocating friendships/foeships and also extend many unreciprocated edges out

beyond their friend group (possibly to a few high centrality nodes, or to random

individuals of passing interest). As in the degree distribution, expanding this analysis

into a two-dimensional histogram would allow us to explore this question further,

without increasing sensitivity. Dimensions we might explore include the number of

local (within the ego-network) communities each node participates in, or the number

of high-degree nodes among each node’s neighbors.

Finally, we consider reciprocity with respect to edge sign (see Figure ). Here we

see that people who extended positive edges were more likely to have a majority

of those edges reciprocated in the Epinions network than in the Slashdot network,

while those that extended negative links were more likely to have a majority of those

links reciprocated in the Slashdot network than in the Epinions network. A plausible
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explanation for this behavior arises from the networks’ distinct link semantics: a

friend extending a ’foe’ edge to an associate in jest on Slashdot may be likely to have

it reciprocated in kind, while distrust ratings in the Epinion network may be ignored

(especially if the distrusted users are false ”astroturf” reviewers who are reimbursed by

the sites they review and may be unlikely to participate in the trust web themselves).

By contrast, mutual trust (positive) relationships may be actively encouraged by a

Web of Trust network that gives trusted reviews high priority in a user’s information

feed.

4.4.3 Small Undirected Network: Facebook Ego-network

In our third analysis set, we look at a smaller, undirected network and a set of

analyses that require greater privatization noise.

Data-sets

Our last data-set is an anonymized ego-network taken from the Facebook social

network, with the ego-node itself omitted: Given a specific anonymous member of

Facebook, this network was created by adding a node for each of the member’s friends

(but not the individual himself/herself), and then including all edges that connect

the member’s friends. All edges are undirected in the Facebook network because

Facebook’s policy enforces mutual friendships. This produces a relatively small net-

work with 534 nodes and 9,626 edges (an average degree of 18). Contributors in this

context are the individual nodes in the network (this excludes the original ego-node

which was used to create the sampled graph), and the contributor data we will focus

on in this analysis will be each node’s knowledge of the relative popularity of their

neighbors (represented by node degree).
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Privatized Analysis

In this analysis we will explore a harder to privatize social network analysis sce-

nario. To demonstrate the effect of output size on analysis privatizability we perform

two independent analyses (without summing total sensitivity) over the same set of

contributor data; our second analysis has output size quadratic relative to the first

analysis’ output size. In order to produce results with good utility, we vary our privacy

parameter ε (we use ε = ln(2) ≈ 0.69 up to this point in Chapter 4, and throughout

Chapter 5). We consider two choices for this increase: ε = (3/2)(ln2) ≈ 1.04 and

ε = 3(ln2) ≈ 2.08. We note that larger values of ε appear in existing differentially

private social network analysis literature [47], [19].

Both analyses draw on the same information from contributors: a list of each con-

tributor’s three most popular (highest degree) friends. Each analysis has a sensitivity

of 3.

The first analysis compiles this information into a ’popularity distribution’ which

counts the number of times each node was included in a contributor’s list. The priva-

tized results are then post-processed, removing all nodes with a privatized popularity

count below the threshold of 20 and forming a simple anonymous list of the popular

individuals. This anonymous list by itself provides relatively little information about

the underlying social network, beyond an estimate of the number of nodes with high

centrality.

We can instead produce more detailed information from this data, at the cost of

a large output size, by applying the Popularity Graph algorithm (which is described

in detail in Section 4.2.4). The resulting, post-processed popularity graph gives ad-

ditional structural information about the connectedness (Ie, the number of mutual

friends) between the high centrality nodes that are submitted by contributors.

We reiterate that this analysis is not appropriate for all privacy contexts; the sub-

ject data sensitivity is quite large in this analysis (δF (s) ∈ O(n), a function of the

maximum number of votes that may be cast across all edges in the popularity graph
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that include subject s). Contributor-privacy protects the friendship information sub-

mitted by individual members of the network, but the set of high-centrality nodes

(that the contributors identify communally) may be re-indentifiable in the anony-

mous popularity graph. As always, although privacy-preserving data-mining protects

individuals’ contributed data, the consequences of releasing the aggregate results is

an ethical question that must also be considered. A popularity graph of a sexual rela-

tionship network would not be appropriate. One example of an appropriate use-case

would be a popularity graph of a corporate office, where individual’s reported rela-

tionships with their immediate coworkers require protection, but results identifying

the most influential individuals are not problematic.

Discussion of Results

Figure 4.16 displays the results (both raw and post-processed) at both values of

epsilon. The post-processing cut-off threshold is represented by the horizontal black

bar at y = 20. Recall that, although the analysis set in previous section was performed

with ΔF
ε

= 4 which is greater that the current analysis, the visible effect of the noise

on privatized results was much smaller. As we discussed in Section 4.3 (see Table

4.6), output size has a significant effect on the degree to which laplacian noise effects

analysis utility; the greater output size combined with a smaller data-set (reducing

the scale of the output values) is the cause of the increase in perceptible noise in these

plots.

However, although the popularity distribution results are noisier than previous

analysis sets, we are still able to learn about the population of interest. The post-

processing eliminates most noise values, and preserves all large true data-values. At

the greater epsilon value, we see that the privatized popularity list (the set of nodes

whose popularity vote bars fall above the threshold line) is nearly identical to the non-

privatized data; the privatized list includes two additional nodes, 3836 and 3680, that

would have fallen slightly below the threshold without the addition of noise. At the
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lower value of epsilon, the privatized list includes seven values that would have fallen

below the threshold without additional noise (and in fact two nodes, 3743 and 3759,

would have fallen well below the popularity threshold without assistance); however

again, all large true data values are preserved and nodes with very large popularity

in the true data are easily recognizable in the privatized distribution.

Although the privatized data-sets contain some false-positives (values that would

have fallen below the cut-off threshold without the addition of significant positive

noise), there are no false-negatives (values that would have fallen above the threshold

without the addition of significant negative noise). Our proposed social network

analyses fall into two broad categories: Analyses such as LCC distributions that

require small output sizes and see small impact from noise addition, and analyses

such as degree-distributions that have larger output sizes but contain only a sparse

set of large positive values in the non-privatized data. Because noise values are

sampled independently of each other, there is a low probability that the few large

negative values sampled from the noise distribution will occur at the same locations

as the small, sparse set of significantly large true values. The lower probability of

false-negatives in these analyses is demonstrated empirically in this analysis-set and

in the analysis sets of Chapter 5.

Figures 4.17 displays the results of the popularity graph analysis (ie, the popularity

graph’s edge weights) at the two values of epsilon. Again, the horizontal black line

indicates the post-processing cut-off threshold. Note that with the smaller value of

epsilon, the increased output size requires sufficiently many noise samples such that

many very large values are sampled, overwhelming the original data. However, with

the higher value of epsilon, our post-processed results are very similar to the non-

privatized data. The popularity graph itself is depicted in Figure 4.18 with edge

color indicating edge weight. Lightweight edges represent connections between high

centrality nodes which were observed by fewer individuals; these edges indicate weaker

connections in the true network and are also more susceptible to privatization noise

(for example, a small amount of negative noise might remove (3442,3455) from the
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privatized graph. However, the strong edges in the non-privatized graph are also

strong in the privatized graph. The popularity graph shows three clusters of popular

nodes; the second cluster is dominated by two strong edges connecting popular node

3596 with nodes 3545 and 3830. These three nodes all appear among the nodes with

high weights in the popularity list of the previous analysis, however the popularity

graph offers insight into their relationships with each other.
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(a) Popularity Distribution (ΔF
ε = 1) (b) Popularity Distribution (ΔF

ε = 2)

(c) Post-processed Popularity List (ΔF
ε = 1)

(d) Post-processed Popularity List (ΔF
ε = 2)

Fig. 4.16.: Popularity Distribution results for Facebook Ego-Network
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(a) Popularity Graph (ΔF
ε = 1) (b) Popularity Graph (ΔF

ε = 2)

(c) Post-processed Popularity Graph(ΔF
ε = 1)

(d) Post-processed Popularity Graph(ΔF
ε = 2)

Fig. 4.17.: Popularity Graph results for Facebook Ego-Network
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Fig. 4.18.: Privatized Popularity graph from Facebook Ego-Network: Higher edge-
weights are represented by darker edge colors.
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5. PARTITION PRIVACY

Many questions about social structures are naturally asked over a collection of graphs

rather than one monolithic social network. Social scientists studying interpersonal

interaction run experiments over large collections of small social groups, collecting

social networks for each distinct group [56,57]. Collections of disjoint social networks

can be implicit in larger graphs as well. Node properties such as dormitory, major,

university, or geographical location can be used to partition large graphs into mean-

ingful sets of disjoint local social networks [58]. Partition-privacy applies differential

privacy to sets of graphs.

5.1 Definition

In partition-privacy, neighboring possible worlds are ones in which one subgraph

is added or removed from the set of disjoint subgraphs comprising the data-set.

Definition 5.1 Partition-Privacy: Define a partitioned graph to be comprised of

separate components such that G = {gi} for disjoint subgraphs gi. A privatized query

Q satisfies partition-privacy if, for all R ⊆ range(Q), and all pairs of graphs G1, G2

where G1 = G2 − gi for some gi ∈ G1:

Pr[Q(D1) ∈ R]

Pr[Q(D2) ∈ R]
≤ eε

Partition-privacy applies when researchers wish to perform tests of hypotheses

about social behavior across groups, such as “Is clustering coefficient correlated with

gender in dormitory friendship structures?”. We will demonstrate in this chapter that

this useful sub-class of analyses is especially amenable to privatization.



83

5.1.1 Privacy Analysis

Partition-privacy provides broader protection than single node-privacy: it provides

protection at the level of entire social groups rather than individuals.

For functions whose sensitivity under Differential Privacy Variant 2 (see Definition

2.1) is less than or equal to their sensitivity under Differential Privacy Variant 1,

partition-privacy implies k-node-privacy for nodes belonging to the same partition:

Given a function F across a set of network partitions, adding or removing a set of nodes

belonging to a single partition produces one of three effects: it alters the function

value in at most one partition, it results in the removal of a partition from the set (if

partition was comprised entirely of k nodes that were removed), or it results in the

addition of a partition to the set (if k added nodes comprise a new partition). Which

of these three cases produces the greater impact on the analysis results depends on the

function being computed. Partition-privacy sensitivity is computed as the function

value change under the addition or removal of one network partition, analogous to

traditional differential privacy variant 1. In cases where this sensitivity is greater than

the sensitivity computed under variant 2 (in which one partition changes its function

value arbitrarily), partition-privacy will provide k-node privacy for any set of k nodes

belonging to the same partition.

Recall from Section 2.1 that the sensitivity of histograms in particular is 1 under

variant 1, and 2 under variant 2: When an entity is added or removed from the

histogram (as in variant 1), one histogram count changes by at most 1 producing a

sensitivity cost of 1. Alternatively when an entity’s value is changed (as in variant

2), one histogram count increases by at most 1 and one histogram count decreases

by at most 1, as the entity changes which count it appears in in the histogram; this

produces a sensitivity cost of 2. Because the partition-private analyses in this chapter

are based on histograms, they will provide k-node privacy (for nodes belonging in the

same partition) with privacy-parameter εnode = 2εpartition.
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Note that the broader protection provided by partition-privacy is important in

real world scenarios in which group-level data is sensitive. For example, under degree-

restricted node-privacy [19], researchers could choose to publish data that assigned an

average sexual promiscuity rating to each high school in a given state, using privatized

node degree data from the sexual interaction networks of students in each school. This

could be seen an invasion of the students’ privacy, even though no individual student’s

information would be distinguishable in the privatized results. With partition-privacy,

each of the school networks would be protected, and only aggregate information about

the distribution across the state would be publishable.

Furthermore, while existing node-private algorithms require the addition of con-

siderable amounts of noise and provide relatively little utility in high-degree graphs

(recall Section 3.3.1), partition-private analyses can require very little noise to im-

plement. We will present a diverse selection of analyses that can be easily privatized

under partition-privacy.

5.2 Basic Algorithms

In this section we will present several easy-to-use algorithmic tools that can enable

social network researchers to learn about populations while guaranteeing partition-

privacy. In the next section we will demonstrate the practical application of partition-

private analysis on a diverse set of real world social network data-sets.

5.2.1 Triangle Count

In applications that require a collection of disjoint social networks, even more

detailed privatized analysis is possible. Partition-privacy allows arbitrary analysis of

disjoint subgraphs in the data-set and then privatizes the aggregation of the inde-

pendent results. Assume an analysis has been performed on each disjoint subgraph,

producing either a numerical result with a publicly known range (e.g., the global

clustering coefficient of the graph), a category result (the gender of the dorm repre-
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sented by the graph), or any combination of numerical and categorical results. The

collection of graphs may now be viewed as a collection of multi-attribute data points.

Removing or adding one graph from the collection is equivalent to removing or adding

one of these data points; we can apply traditional differential privacy techniques to

this set of independent data points as though we were working with tabular data

over individuals. Two low-sensitivity techniques are very useful here: histograms and

privatized means. We will demonstrate the application of these techniques in the

examples below, beginning with an application of partition-privacy to triangle-count

data.

The global clustering coefficient is the proportion of wedges in the graph (where

one person has a two friends) that are closed to form a triangle (i.e., the two friends

are also friends with each other); formally, CC(G) = 3∗[number of triangles in G]
[number of wedges in G]

. A

graph with no triangles has a clustering coefficient of 0; a clique has a clustering

coefficient of 1. The clustering coefficient of a graph is a useful normalized measure

of its social cohesion. However, it is difficult to draw meaningful conclusions about

the population being studied using one piece of data in isolation. Given a collection

of social networks, we can identify meaningful patterns of behavior by comparing

clustering coefficients across networks.

Assume we want to examine how attribute X of a social group affects its degree

of social cohesion. For example, we could study the relationship between the gender

of a college dormitory and the clustering coefficient of the social network within the

dorm. Given a data-set consisting of a collection of social networks for each possible

value of X (a set of male, female and co-ed dorms), we first compute the global

clustering coefficient over each individual network. We can then compute the mean

of the clustering coefficients for each value of the attribute X, add noise to privatize

the result, and release the privatized means (see Figure 5.1).

The mean of a set of bounded numerical values has low sensitivity when the

number of values is publicly known. Consider the mean MaleDormsClustering =

M/N where M = ΣG∈MaleDormsclustering coefficient(G) and N is the number of
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Fig. 5.1.: Two collections of networks (blue and green) and their clustering-
coefficients: Removing or altering one graph from the partitioned graph set only
affects the numerator of one collection’s mean by one.

male-only dorms in the data-set. If N is publicly known (for instance, because each

university’s dorms are listed on their website) we can safely skip adding noise to this

value and focus on privatizing only the numerator M without reducing the privacy

of the result [59]. Since M is a sum of clustering coefficients that have values in the

bounded range [0,1], adding, removing or altering one clustering coefficient will alter

the sum M by at most 1. Thus the sensitivity of the sum M is 1, and the value

M+Lap(1/ε)
N

will be differentially private. Note that the noise added to the true values

of MaleDormsClustering has a standard deviation of only Lap(1/ε)/N .

5.2.2 Degree Distribution

Partition-privacy can also enable privatized analysis of degree distribution data.

Consider the context in which a researcher performs an experiment to directly study

behavior patterns in small social groups. A common technique is to assign people to

small groups where they must work cooperatively to solve problems [56, 57]. Inter-

personal communications in each group are monitored and analyzed. Raw communi-

cation data can be transformed into social network graphs by adding edges between

nodes that communicate frequently. In small groups, different degree distributions

will indicate different patterns of cooperation; for example, groups may have one
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Fig. 5.2.: Removing or adding one graph only affects the count in one histogram
category by one.

high-degree ’leader’ centralizing communication, or they might cooperate equitably

together producing a near clique graph (see Figure 5.2). These degree-distribution

categories may be affected by the group’s context (e.g., working in person, or online),

and they may affect the group’s performance on the assigned task. When degree-

distributions help us attach a meaningful category label to individual networks, we

can use a privatized histogram to safely release the distribution of these labels across

the set of networks. If desired, we can further partition this histogram using prop-

erties such as the group’s context or performance score to create more informative

multi-dimensional histograms (for an example of a multi-dimensional histogram, see

Figure 5.3). As described in section 2.1, histograms have a sensitivity of only 1 and

may be safely released by adding Laplacian noise calibrated to that sensitivity to each

count.

5.2.3 Path-length Queries

A noteworthy property of partition-privacy is that it does not exhibit the high

sensitivity to path length queries that constrains other forms of graph privacy. Al-

though removing a bridge will drastically affect path lengths in a given network, it

will only affect one network in the collection of small disjoint networks that comprises
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Fig. 5.3.: With a set of graphs, histograms can be used to release information about
the relationships between multiple variables, including path lengths, with low sensi-
tivity.

the data-set for a partition-privacy application. This enables privatized analysis for

a wide variety of graph properties that are otherwise too revealing to be released.

The average shortest-path distance for a network is a measure of its connected-

ness. Given a collection of networks, we can find the average shortest-path length

for each network and aggregate the results into a histogram, giving us information

about the patterns of graph-connectedness across our data-set (see Figure 5.3). As

the sensitivity of a histogram is just 1, the results can be privatized by adding a

relatively small amount of noise to each count. The same technique can be used

on any numerical or categorical graph property: we can privatize the distribution of

maximum centrality scores, number of bridges per graph, or even graph diameters.

This flexibility of application is one of the primary advantages of partition-privacy.
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5.3 Utility Analysis

We note that, as in the previous chapter, the basic analysis algorithms proposed

above have low sensitivity. Thus, the general utility analysis presented in Section 4.3

applies to partition-private analysis tools as well as contributor-private tools, and we

direct the reader to the previous discussion. The empirical work in the subsequent

section demonstrates analysis utility for a diverse set of four analyses over three

moderately-sized sets of partitioned networks.

5.4 Practical Application

The partition-private analysis techniques described in this chapter have been de-

signed to minimize analysis sensitivity and output size, such that privacy can be

achieved with relatively little added noise. Additionally, partition-privacy itself pro-

vides a strong privacy guarantee, protecting entire subgraphs rather than solely nodes

or edges, while simultaneously enabling privatized implementations of analyses such

as community-detection and path-length metrics too sensitive to be performed un-

der previous edge-privacy and node-privacy standards. To demonstrate the utility of

partition-private techniques we now perform an in-depth analysis set on three parti-

tioned networks.

Through this analysis set, we will explore one interesting question: What hap-

pened to Friendster?

5.4.1 Data-Sets

We will investigate this question through the three network partition sets 1, taken

from the Stanford Large Network Dataset Collection [55]. These networks are avail-

able publicly online as anonymized edge and node sets and have been referenced in a

wide body of social network research. Because they have been previously published in

1Where the original data was not a strict partition, we preprocessed the data by assigning nodes

that appeared in several groups to a single, randomly selected group in that set.
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simply-anonymized form, we will include both privatized and non-privatized analysis

results for comparison purposes.

For these experiments we work with partition sets taken from three large networks:

The DBLP online bibliography of publications in Computer Science, as well as two

online social networks (OSN)–LiveJournal and Friendster. Although LiveJournal lost

popularity in the United States in the mid-2000’s during the rise of Facebook, it con-

tinues to be in widespread use internationally. Friendster, by contrast, was dismantled

as social network in 2011 and continues today only as an online gaming website. The

Friendster partition set was collected near the end of the OSN’s lifespan. From each

network, we consider the largest 5000 ’ground-truth’ communities, defined as follows:

Data-Sets: DBLP:

• Network: Extensive database of publications in Computer Science, including

authors and venues (conferences or journals). A network is drawn from this data

by including a node for each author appearing in the data-base and adding

edges between individuals who have appeared together as co-authors on the

same work. Edges in this network edges reflect real world collaboration efforts.

• Groups: Ground-truth communities in this network are defined by connected

networks of authors that have published in the same venue.

Friendster:

• Network: Online social network launched in 2002 which gathered over 8 million

users before being abandoned and finally dismantled in 2011. This network data

was collected shortly before the OSN was shut down. Nodes indicate members,

and edges between them indicate OSN friendships.

• Groups: Ground-truth communities in this network are user-defined groups:

Friendster allowed members to create groups which other members could join.

The semantics of these groups is diverse: they might reflect broadly shared

interests or hobbies, or particular groups of friends.
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LiveJournal:

• Network: Online social network launched in 1999; current usage includes ap-

proximately 1.8 million active users and 39.6 million total accounts. Nodes

indicate members, and edges between them indicate OSN friendships.

• Groups: Ground-truth communities in this network are user-defined groups:

LiveJournal allowed members to create groups which other members could join.

The semantics of these groups is diverse: they might reflect broadly shared

interests or hobbies, or particular groups of friends.

5.4.2 Privatized Analysis

We performed the following four analyses across each of the three networks. Each

analysis incurs a sensitivity cost of 1, producing a total sensitivity of 4; laplacian

noise sufficient to obfuscate this sensitivity was added to every output value. The

parameter ε = ln(2) was used throughout this analysis. Distribution cut-offs are

chosen independently of the data-set to ensure no additional sensitivity cost.

Analyses

• Average Shortest Path Distribution: We computed the average shortest

path (the mean of the set of distances computed between every pair of nodes

in the group) for each group in the network, and aggregated this data into

a distribution with a cut-off of 8. Recall from Chapter 3 that path-length

information is not generally privatizable under edge-privacy or node-privacy

standards; however, partition-privacy offers a high-privacy and low-sensitivity

tool for studying these network properties. Smaller average shortest path values

indicate groups in which nodes are more tightly interconnected. Results for all

three networks are presented in Figure 5.4.

• Average Local Clustering Coefficient Distribution: We computed the

average local clustering coefficient (the mean of the set of LCC’s taken across
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all of the nodes in the group) for each group in the network, and aggregated this

data into a distribution with a precision of 0.1. Larger average local clustering

coefficient values indicate groups with high transitivity: groups in which any

two friends of an individual are likely to also be friends with each other. These

groups tend to be more socially cohesive. Results for all three networks are

presented in Figure 5.5.

• Edge Density Distibution: We computed the edge density (the total num-

ber of edges in the group divided by the number of nodes; also known as the

’average degree’) for each group in the network, and aggregated this data into

a distribution with a cut-off of 30. Large edge density values indicate groups in

which nodes extend a greater number of edges to other individuals. Results for

all three networks are presented in Figure 5.6.

• Community Count Distribution: Using an implementation of the Lou-

vain Community Detection method [60] (a popular modularity-based commu-

nity detection method) provided in the community.py python library, we com-

puted the number of independent (partitioned) community substructures in

each group. We then aggregated this data into a distribution with a cut-off of

150. Community-detection has not been previously achieved with node-privacy

in existing work, but partition-privacy provides a tool which allows us to study

this network property with very low sensitivity and a privacy guarantee that is

stronger than node-privacy. As with the schism visible in the Karate Graph,

well-defined sub-communities existing within a larger group indicate the group

is less unified. Results for all three networks are presented in Figure 5.7.

In general, we can see that noise had relatively little visible effect in the privatized

output for this analysis set; this is a result of the low sensitivity, constrained output

size, and the size of the data-sets (the number of partition groups from each network).

One exception is the community count distributions for the Friendster and, to a lesser

extent, the LiveJournal partition set (see Figure 5.7). Note that the scale of the y-
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axis, indicating the size of the plotted data, is reduced for these distribution: both

partition sets had a portion of groups with large and diverse community counts,

extending the tail of their distributions beyond the cut-off, and allowing the effect of

the additive noise to be more significant relative to the scale of the output counts.

One step to improve the level of detail available on the tails of these distributions

would be to increase ’bucket-widths’: reduce the granularity of the x-axis into ranges

of size 10 or 20. By increasing the size of the counts that fall into each range, this

would reduce the impact of noise addition (which is relative to the size of the data).

However, we will retain the original axes for comparison purposes in this analysis set.

Note that, although the Friendster distribution plot displays more noise, because the

noise is added independently to each output the underlying curve of the distribution

remains visible.

5.4.3 Conclusions

We now return to address our original question: In what ways does the Friendster

group partition set differ from the more successful and longer lived networks?

We use privatized normalized distributions for comparison between networks, us-

ing the approach given in Definition 4.5 in the previous chapter.

Throughout these analysis results we see that the distributions from the longer

lived LiveJournal network bear a greater similarity to the real-world collaboration

DBLP network than the failed OSN Friendster.

In terms of average shortest path (see Figure 5.8), we see that both DBLP and

LiveJournal distributions have considerable weight on very small AvgSP lengths (1-

1.2), while the Friendster distribution has its greatest weight at a longer path length

(1.5-1.6). This indicates that a majority of the Friendster groups were less tightly

connected than groups in the DBLP and LiveJournal networks. It’s interesting to note

that the DBLP distribution also had some weight at 1.5, in a bimodal distribution:
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(a) DBLP AvgSP Distribution (b) DBLP privatization noise

(c) LiveJournal AvgSP Distribution (d) LiveJournal privatization noise

(e) Friendster AvgSP Distribution (f) Friendster privatization noise

Fig. 5.4.: Results of the partition-private average shortest path distributions for the
DBLP, LiveJournal and Friendster group networks
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(a) DBLP AvgLCC Distribution (b) DBLP privatization noise

(c) LiveJournal AvgLCC Distribution (d) LiveJournal privatization noise

(e) Friendster AvgLCC Distribution (f) Friendster privatization noise

Fig. 5.5.: Results of the partition-private average local clustering coefficient distribu-
tions for the DBLP, LiveJournal and Friendster group networks
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(a) DBLP Edge Density Distribution (b) DBLP privatization noise

(c) LiveJournal Edge Density Distribution (d) LiveJournal privatization noise

(e) Friendster Edge Density Distribution (f) Friendster privatization noise

Fig. 5.6.: Results of the partition-private edge density distributions for the DBLP,
LiveJournal and Friendster group networks
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(a) DBLP CCnt Distribution (b) DBLP privatization noise

(c) LiveJournal CCnt Distribution (d) LiveJournal privatization noise

(e) Friendster CCnt Distribution (f) Friendster privatization noise

Fig. 5.7.: Results of the partition-private community count distributions for the
DBLP, LiveJournal and Friendster group networks
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Fig. 5.8.: Comparison of normalized privatized average shortest path distributions.

this might represent the case in which a small number of distinct collaboration groups

at one venue are connected by one or two bridge nodes who work with both.

In terms of average LCC (see Figure 5.9), we see that both the DBLP and Live-

Journal network distributions have most of their weight at high LCC values (0.8-1.0),

while the majority of groups in the Friendster network showed less transitivity, with

average LCC values in the 0.5-0.8 range. This implies that both the groups reflecting

the real world DBLP relationships and the groups reflecting online relationships in

LiveJournal tended to be more socially cohesive than the groups in Friendster.

In terms of edge-density (see Figure 5.10), we see that many groups in both

LiveJournal and DBLP had a less dense edge-set with peaks falling in the 1-5 aver-

age degree range (and a longer tail on the LiveJournal distribution). By contrast,

the Friendster network showed a bimodal distribution with considerable weight at a

higher edge density of 9-10. This is interesting in light of the fact that, although

groups in Friendster tended to have a greater edge-density, the previous distribution
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Fig. 5.9.: Comparison of normalized privatized average local clustering coefficient
distributions.

Fig. 5.10.: Comparison of normalized privatized edge density distributions.
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indicates that they had less transitivity: these added edges weren’t necessarily form-

ing cohesive friendship groups. Similarly, the average shortest path results indicate

that the additional edges in Friendster were not increasing the small-world property

of the network by bringing outlier nodes or poorly connected subgroups into better

connection with the network (and thus reducing path length).

Fig. 5.11.: Comparison of normalized privatized community count distributions.

In terms of community count (see Figure 5.11), we see similar peaks in all three

distributions, focused on the 5-15 range, with different weights on those peaks vrs.

the tails of the distributions. The vast majority of the groups in the DBLP network

had fewer than ten subgroups, while the Friendster groups were much more likely

to have many (more than 20) distinct sub-communities. LiveJournal fell in between

these two distributions, with more weight falling in the 1-30 range. This indicates

less unity in the OSN’s, with groups in Friendster being especially divided (again,

despite having a greater edge density).

Overall, although this analysis set does not necessarily support causal inferences,

we can hypothesize from this evidence that by the time of its demise Friendster had
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begun to lack many of the properties that are inherent in real world social networks:

groups in Friendster had a glut of edges that did not form transitive communities,

did not tightly connect nodes within the group (reducing path length), and did not

unify groups (reducing the sub-community count). These edges would have had a

significant presence in their members’ profiles without necessarily offering the same

benefits as real world relationships, acting more like random edges than social ties

into well-defined communities. If time-series data were available, it might be very

informative to see how these properties evolved as the Friendster OSN declined.
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6. STATISTICAL SIGNIFICANCE

6.1 Introduction

The ability to perform statistical significance testing is vital in real world social

science applications. In order to draw reliable inferences from data analysis results it

is necessary to distinguish between when an observed difference in two sampled data

distributions is the result of a fundamental difference in the two underlying random

variables being sampled, and when it is more likely the result of random sampling

error (or, in our case, added privatization noise).

We now consider one real world application of social network analysis–intervention

in organizational networks. An organization, such as a large corporation or univer-

sity, may collect data on the relationships between their members, and use research

on the correlation between network properties and individal/organizational success

to determine the overall ’health’ of their network. For example, certain network prop-

erties have been shown to be significant in predicting women’s ability to resist the

negative effects of sexism in corporate environments [61], [62]. The organization’s

leadership may then introduce programs to address any observed concerns, such as

activities intended to foster tighter relationships or more diverse relationships among

organization members. And finally, a second network is collected over the same set of

individuals in order to determine the effectiveness of the intervention program. This

produces two sets of sampled data over the same set of individuals, a ’before’ network

and an ’after’ network, or a ’paired-sample’ data-set.

In this chapter we present a differentially privatized approach to determining sta-

tistical significance on paired-sample data, using the Wilcoxon Signed-Rank test [63].

In addition to being applicable to the paired-sample data generated by the network

interventions described above, this test is well-suited to social network analysis be-
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cause, unlike the widely-used Student’s T-test, the Wilcoxon Signed-Rank Test does

not require the underlying data to have a normal distribution. As can be observed in

the empirical results of the preceding two chapters, social network data does not in

general produce a normal distribution.

6.2 Background: Wilcoxon Signed-Rank Test

Fig. 6.1.: Demonstration of the non-privatized Wilcoxon Signed Rank Test procedure

The Wilcoxon Signed-Rank Test was proposed by Frank Wilcoxon in 1945 [64].

It takes as input a set of paired samples, generated by the same set of individuals

measured before and after the administration of a ’treatment’, and produces a statis-

tic that can be used to determine whether the distribution after the treatment is

significantly distinct from the distribution before treatment. The test assumes that
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the individuals included in the statistic are selected independently of each other, and

that the measure being studied is continuous rather than discrete.

6.2.1 Test Procedure

Given a set of N individuals i ∈ I and paired data samples (pi1, pi2) for each

individual i, the Wilcoxon Signed-Rank Test statistic is computed as follows [63] (see

Figure 6.1):

Wilcoxon Signed-Rank Test Procedure

[1] The difference di = (pi2 − pi1) is computed for each individual i ∈ I

[2] All i with di = 0 are removed. The remaining non-zero differences comprise

a difference-set D. We use the notation NR = |D| to refer to the ’reduced N ’

size of the non-zero difference-set.

[3] The difference-set is sorted into increasing order by absolute value:

[d1, d2, d3...dNR
], such that i < j ⇒ |di| ≤ |dj|

[4] Ranks are assigned to values in the list of differences in increasing order such

that ri = rank(di) = i (with one exception: If there exists a tie between two

differences, such that di = di+1, both values are assigned the rank (i+ i+1)/2;

In general, in a tie of size k, di = d1+1 = ...di+k−1 all elements are assigned their

average rank 1
k
Σk−1

i j.)

[5] The absolute value of the signed rank sum W = |Wraw| = |ΣNR
1 sign(di) ∗ ri|

is computed

[6] The denominator σ(NR) =
1√

NR(NR+1)(2NR+1)

6

is computed

[7] The test statistic Z = W−0.5
σ(NR)

is computed

[8] If NR ≥ 10 the value Z is compared against a normal Zcrit table, otherwise

the value is compared against a table explicitly computed for ranked-sums. [63]
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6.3 Privatization

6.3.1 Computing Sensitivity

We now compute the function sensitivity of the Wilcoxon Signed-Rank test under

contributor-privacy, using a second-variant definition of neighboring worlds: ie, the

total number NR of individuals in the difference set is static, but the value di of a

single individual may vary arbitrarily among non-zero values (see Definition 2.1).

Theorem 6.1 The sensitivity of the statistic ZNR
produced by the Wilcoxon Signed-

Rank test with fixed difference-set size NR is 2NR/σ(NR) =
2NR√

NR(NR+1)(2NR+1)

6

Proof: We alter the value of individual j as follows: (rj = v1) → (rj′ = v2), for

v1, v2 �= 0. When the value of j is altered such that its signed rank rj changes from v1

to v2, the value of the raw rank sum (before the absolute value) changes by (v2 − v1).

Because the number of non-zero differences (NR) has not been altered, the value of

the denominator σ(NR) remains unchanged. WLOG, the change in the numerator is

maximized for v1 = −NR, v2 = NR (j is changed from the greatest positive difference

value to the greatest negative difference value).

Note that:

W−0.5+2NR

σ(NR)
= W−0.5

σ(NR)
+ 2NR

σ(NR)
= ZNR

+ 2NR

σ(NR)

Thus the total change to the statistic ZNR
is 2NR

σ(NR)
.

Sensitivity:ΔZNR
= 2NR/σ(NR)

Given this sensitivity as a function of NR, we note the following useful fact:

Corollary 6.2 Laplacian privatization noise generated with parameter 2NR1

σ(NR1)ε
, which

is sufficient to privatize a Wilcoxon Signed-Rank Test(WSRT) statistic ZNR1
with

difference-set size NR1, will also be sufficient to privatize any WSRT statistic ZNR2

with a larger difference-set size NR2 > NR1.
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Proof: We’ll show that NR2 > NR1 implies that ΔZNR2
≤ ΔZNR1

, and thus noise

added to privatize ZNR1
will be more than enough to privatize ZNR2

:

2NR

σ(NR)
≥ 2(NR+k)

σ(NR+k)

2NRσ(NR+k)
σ(NR)σ(NR+k)

≥ 2(NR+k)σ(NR)
σ(NR+k)σ(NR)

2NRσ(NR + k) ≥ 2(NR + k)σ(NR)

2NR

√
(NR+k)(NR+k+1)(2NR+2k+1)

6
≥ 2(NR + k)

√
(NR)(NR+1)(2NR+1)

6√
4N2

R(NR+k)(NR+k+1)(2NR+2k+1)√
6

≥
√

4(NR+k)2(NR)(NR+1)(2NR+1)√
6√

4N2
R(NR+k)(NR+k+1)(2NR+2k+1)

1
≥
√

4(NR+k)2NR(NR+1)(2NR+1)

1

4N2
R(NR + k)(NR + k + 1)(2NR + 2k + 1) ≥ 4(NR + k)2(NR)(NR + 1)(2NR + 1)

NR(NR + k + 1)(2NR + 2k + 1) ≥ (NR + k)(NR + 1)(2NR + 1)

(N2
R +NR(k + 1))(2NR + 2k + 1) ≥ (N2

R + (k + 1)NR + k)(2NR + 1)

2N3
R+2(k+1)N2

R+(2k+1)N2
R+(2k+1)(k+1)NR ≥ 2N3

R+2(k+1)N2
R+2kNR+

N2
R + (k + 1)NR + k

2(k+1)N2
R+(2k+1)N2

R+(2k+1)(k+1)NR ≥ 2(k+1)N2
R+N2

R+2kNR+(k+1)NR+k

(4k + 3)N2
R + (2k + 1)(k + 1)NR ≥ (2k + 3)N2

R + (3k + 1)NR + k

2kN2
R + (2k2 + 3k + 1)NR ≥ (3k + 1)NR + k

2kN2
R + 2k2NR ≥ k

2kN2
R + 2k2NR − k ≥ 0

2N2
R + 2kNR − 1 ≥ 0

2N2
R + 2kNR ≥ 1

Which clearly holds for k,NR ≥ 1

We now address the fact that this sensitivity is a function of NR, the number of

people who were affected by the treatment in some fashion (either large or small,

positive or negative) by the treatment. The value NR itself may be sensitive infor-

mation that cannot be published or used as a parameter in privatized analysis. The

Wilcoxon Signed-Rank Test assumes data sets with continuous values in which very

small difference values may be common, but zeros are relatively rare (similar to the

hypothetical data in Figure 6.1). Social network statistics such as local clustering
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coefficients, or an individual’s average edge strength over homophilous links 1 (e.g.,

characterized in terms of amount of email exchanged, or number of meetings), pro-

duce this type of continuous data-set. In these continuous data-sets, small levels

of variation are common and the fact that di > 0 may not constitute particularly

privacy-invasive information about i: this fact does not reveal either the size or the

sign of di, leaving the possibility that di is very small and due to random fluctuations

rather than any specific reaction to the treatment. We provide a High-Utility variant

of our Privatized Wilcoxon Signed-Rank test that assumes limited information about

NR can safely be made public.

However, in high privacy-risk contexts NR may be a sensitive value that requires

protection. For example, a set of average edge weights in a sexual-interaction network,

taken before and after a sexual education class, would require careful privacy protec-

tion. We also provide a High-Privacy variant of our privatized Wilcoxon Signed-Rank

Test that controls disclosure about NR. Importantly, although they may produce false

negatives on smaller data-sets or when privatizing lower significance values, neither

technique introduces new (unaccounted for) false positives into the privatized signif-

icance testing results.

Two Variants of the Privatized Wilcoxon Signed-Rank Test

• High Utility: This privatization procedure assumes that data-owners are com-

fortable publishing this statement: ”Our data-set contains at least N > 30

individuals, and if more than 30% of our data-set shows precisely zero

reaction to the treatment, we will assume the treatment effect was

insignificant and will not publish our results.” The privatized analysis as-

sumes NR ≥ 0.3N , computes the non-privatized statistic Z, and adds laplacian

noise accordingly (see Theorem 6.1) to satisfy differential privacy.

• High Privacy: This privatization procedure assumes that data-owners are

not comfortable publishing any information regarding NR. The privatization

1The strength of a woman’s network connections to other women has been shown to predict career

success for women in corporate organizations. [61]
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scheme obfuscates the true value of NR by first ’priming’ the difference set

with 2k synthetic values, to ensure a minimum value of NR. Laplacian noise

sufficient to obfuscate a statistic with NR ≥ 2k is then added (see Theorem

6.1), satisfying differential privacy. This approach is explained in detail in the

next section.

6.3.2 Priming D for High-Risk Applications

In cases where privacy risk is high, we provide a method for ensuring a known

minimum value of NR without revealing any information about the true original

value of NR. Intuitively, this requires ’priming’ the difference set by a inserting a

small amount of synthetic data into the difference-set before beginning the Wilcoxon

Signed Rank Test procedure. Given a data-set with difference-set D of size NR, we

take the following steps to prime D with 2k initial values:

Priming Procedure

[1] Because D is finite, there exists a number � such that � > di, ∀i. (The

actual value of this number is not significant, so no privacy leaks are induced

by this observation).

[2] Create a new difference-set D′ by adding to D: k values of size � and k

values of size −�.

[3] Compute the statistic Z ′ over the primed D′. Note that NR′ > 2k+NR > 2k

[4] It is now possible, by Corollary 6.2, to privatize Z ′ by adding laplacian noise

sufficient for sensitivity 2(2k)/σ(2k) without needing to know the true value of

NR.
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We now consider the effect priming has on the value of the test statistic Z.

Lemma 6.3 Priming does not alter the value of the signed rank-sum W

Proof: Note that the priming −�,� values, which form a tie of size 2k, will

all be assigned the same rank: r� = (NR + 2k)/2k. Because they are at the top of

the ranking, their inclusion will not alter the rankings for any of the differences in

the original difference-set 2. And because the two groups of k priming values have

opposing signs, they cancel each other out in the sum: kr�+−kr� = 0, producing no

effect on the signed rank-sum W .

Given this result, it is trivial to show that priming does not introduce false posi-

tives in statistical significance tests:

Theorem 6.4 Priming does not increase the value of test statistic Z, and thus does

not introduce false positives (which appear significant when the original statistic was

not large enough to be significant):

Proof: Using Lemma 6.3, we see that priming does not alter the numerator (W −
0.5) of Z. Priming does however, increase the value of the denominator, as σ(NR +

2k) > σ(NR). This decreases the value of the test statistic. Test statistics which show

significance with priming will show significance without priming.

Although priming does not introduce false positives, it may cause false negatives:

test values which would have appeared just above the significance threshold but which

were reduced below the threshold by the effect of priming (increasing denominator of

the statistic). This reduction in detail is a natural consequence of the high-privacy

context. However, we note that the effect diminishes as the data-set increases: the

impact of priming on the value of the test statistic goes to zero as the size of the

difference-set goes to infinity.

2Inserting an element into the bottom of the difference set naturally increases the rank of all the

other, larger elements by 1
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Theorem 6.5 limNR→inf [
W−0.5
σ(NR)

− W−0.5
σ(NR+2k)

= 0]

Proof:

limNR→inf [
W−0.5
σ(NR)

− W−0.5
σ(NR+2k)

] =

limNR→inf [(W − 0.5)( 1
σ(NR)

− 1
σ(NR+2k)

)] =

limNR→inf [(W − 0.5)] ∗ [limNR→inf(
1

σ(NR)
)− limNR→inf(

1
σ(NR+2k)

)] =

limNR→inf [(W − 0.5)] ∗ [0− 0] =

limNR→inf [(W − 0.5)] ∗ 0 = 0

6.3.3 Recalibrating the Critical Value Table

Now we address the critical value table. In a non-privatized context, this table is

used to determine whether a given test statistic value is sufficiently large to indicate

a fundamental difference in the distributions being compared, rather than spurious

sampling error. For values of NR > 10, the WSRT statistic can be compared against

the same critical value table that belongs to the more widely-used T-Test over normal

distributions (see Figure 6.3). However, in addition to sampling error, we will now

need to account for error introduced by our privatization noise. We will modify the

critical value table such that added noise does not introduce unexpected false-positives

(statistics which appear significant solely due to the effect of added privatization

noise).

For simplicity, we will use ε = 1 as our privacy parameter for the remainder of

this chapter. We begin by deriving the following two results relevant to recalibrating

the critical value table.



111

Lemma 6.6 Given a positive privatized value X, which was privatized by the addition

of noise taken from the laplacian(W ) distribution: The probability that the true value

V , before noise addition, was greater or equal to positive threshold T is: (1/2)e
X−T
W .

Proof: Note that: X = V + noise(W ), and thus if noise(W ) < (X − T ), then

V > T . The CDF for the Laplacian Distribution is: (1/2)e
x−μ
b . Plugging in the

appropriate values (μ = 0, b = W,x = (X − T )) gives the desired result.

Theorem 6.7 Given a privatized test statistic X such that: (1) There is a t% chance

that the true, original value Z was greater than T , and (2) There is a p% chance that

a value of T or greater indicates a significant difference between the two distributions

being tested, then the total probability that X indicates a significant difference between

the two distributions is p%× t%.

Proof: This follows trivially from the laws of probability: given two independent

events A,B: P (A ∧B) = P (A)P (B)

Given Theorem 6.7 and Lemma 6.6, we can now alter the critical value table to take

added privatization noise into account (see Figure 6.2). Recall that the magnitude

of noise added to the WSRT statistic is dependent on the size of the difference-set.

Following Lemma 6.6 we compute for each NR a 99% effective upper-bound for noise

values sampled according to a laplacian distribution with parameter ( 2NR

σ(NR)
); with

99% probability the added noise at these values of NR will have magnitude smaller

than these upper-bounds. We then modify both the a values and the Zcrit thresholds

in the the traditional critical value table (Figure 6.3) to take into account the effect

of this added noise, according to Theorem 6.7.

The revised table is used as follows: The difference-set minimum size indexes the

rows, and the probability of significance (revised a-values) indexes the columns. For

a given difference-set of size equal to or larger than NR (with noise added based on a

sensitivity of NR or larger), and significance probability 1 − a, the value in location

(NR, a) gives appropriate revised Zcrit value.
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Fig. 6.2.: Recalibrated critical value table. For each of the given NR−min values, the
99%-effective upper bound for sampled noise values is listed, along with adjusted a
values (for both directed and undirected hypotheses) and Zcrit thresholds.

Fig. 6.3.: Original (non-privatized) Critical Value Table

6.3.4 Complete Algorithm

We now summarize the complete privatized Wilcoxon Signed-Rank Test procedure

as described in the previous sections.

[1a] High-Privacy Prime the difference-set with 2k values to achieve a mini-

mum difference-set size NR ≥ NR−min = 2k (see Section 6.3.2).
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[1b] High-Utility Assert that at least 30% of the data-set of size N has non-

zero difference values, producing a minimum difference-set size NR ≥ NR−min >

.3N

[2] Compute the true Wilcoxon Signed Rank Statistic Z (see the procedure in

Section 6.2.1).

[3] Sample a noise value from the laplacian( 2NR−min

σ(2NR−min)
) distribution, and add

this to Z (this assumes ε = 1). This produces a publishable value Zpriv =

Z + noise.

[4] Compare the resulting privatized statistic Zpriv for significance, against the

revised Zcrit table (see Figure 6.2).

6.4 Practical Application

Finally, we demonstrate the application of the privatized Wilcoxon Signed-Rank

Test to several queries over the New York City Taxi Data-set [65]. This simply-

anonymized data-set was originally collected in 2013 and contains very detailed in-

formation including, for every cab driver, a log of all trips: trip origin, destination,

date, time, fare, number of passengers, distance, and tips. The data-set was publicly

released as the result of a Freedom Of Information Law request in 2014, and has

been shown to be extremely susceptible to de-anonymization attacks [66]. However,

because this data-set has already been made publicly available, we will include both

privatized and non-privatized results for comparison purposes.

To demonstrate the need for a privatized statistical significance test, in cases where

underlying patterns in the data may not be self-evident, we also include privatized

means for each of the three queries. Under variant 2 sensitivity (with fixed N), a

differentially privatized mean may be computed as follows:
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Definition 6.8 Privatized Average: Given a data-set D = {di} of size n, with

upper bound b (such that di ≤ b∀i), we define the privatized average (under neigh-

boring world variant two) as:

Avgpriv = (
1

n

∑
di) +

laplacian(b/ε)

n

6.4.1 Data-set

We look at two days from the data-set, January 1st (New Years Day, including

trips taken after midnight on New Years Eve) and January 2nd (a Wednesday). A

total of 17,069 cab drivers drove on both of these days. For the cab drivers in our

data-set we consider how three pieces of data differ between these days:

Queries (Change comparison from 1/1/2013 to 1/2/2013)

• Car-pooling: Average number of passengers per trip

• Duration: Average time per trip (in seconds)

• Distance: Average distance per trip (in miles)

We will protect the privacy of the cab-drivers whose data was contributed to the

set. Note that although this data-set was originally presented in tabular form, it

has a natural network interpretation as a graph of cab trips (multi-edges) between

locations (nodes) in New York City. In this interpretation, the data contributed by

each cab driver forms a subgraph of the network, consisting of the trips taken by that

driver. The queries we consider above reference edge-properties in this graph.

To demonstrate the impact of data-set size on privatization and significance esti-

mation, we will run each query over a small data set consisting of 100 drivers, and a

large data-set consisting of 1000 drivers. Figure 6.4 shows the raw difference-set data

for our three queries across the two data-set sizes.
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(a) 100 Cabs Passenger Data (b) 1000 Cabs Passenger Data

(c) 100 Cabs Time Data (d) 1000 Cabs Time Data

(e) 100 Cabs Distance Data (f) 1000 Cabs Distance Data

Fig. 6.4.: Sorted raw distance-sets for each of our three queries. Without statistical
analysis, it is difficult to draw meaningful conclusions about this data.

6.4.2 Privatized Analysis

For each query and each data-set size, we computed the following statistics:
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Statistics

• True mean of the difference-set

• Privatized mean of the difference-set

• True Wilcoxon Signed-Rank Test statistic Z

• Privatized Wilcoxon Signed-Rank Test statistic (stating NR ≥ .3N)

• Primed, Privatized Wilcoxon Signed-Rank Test statistic (using a priming set of

size 2× 15 to produce NR ≥ 30)

For a significance threshold, we used a = .02 for the non-privatized statistics, and

a = 0.0199 (from the recalibrated significance table, Figure 6.2) for the privatized

values, placing a very slightly more rigorous requirement on the privatized compu-

tations. Results can be seen in Figure 6.5 with significant statistics highlighted in

red.

In this analysis set, each query was computed independently, without summing

total sensitivity as in the previous chapters; in practice, publishing this complete

analysis set would provide reduced ε/6 protection for each individual cab driver.

However, there is an alternative: In this context it is possible to run each query over

a distinct (disjoint) sample of cab drivers, such that no cab driver contributes to more

than one analysis. Our total analysis set requires data from 3,300 cab drivers, while

our data-set over these two days contains over 17,000 cab drivers, allowing space for

further analyses if desired, without increasing sensitivity.

We are using ε = 1 for simplicity of calculation. This is slightly larger than our

previous default value of ε = ln(2), and thus will provide a slightly weaker privacy

guarantee (see Definition 2.2).

6.4.3 Discussion of Results

First, we note that the mean difference values (both privatized and non) are not

very informative. The largest mean difference occurs in the duration query (with
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(a) Results for Car-pooling Query (average number of passengers/car)

(b) Results for Time per Trip Query

(c) Results for Distance per Trip Query

Fig. 6.5.: Results of the statistical analysis for our three queries. Highlighted values
indicate significance.

drivers on January 2nd having, on average, average trip durations 30 seconds shorter

than they experienced on January 1st). However, the distributions for the two dates

are not statistically significantly different. By contrast, the car-pooling query has a

very small mean difference value, but a significant difference between the distributions

overall. Recall that mean computations may be influenced by a few large outlying

values that are not characteristic of the underlying distribution; this effect is negated
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by the signed-rank sum strategy used in the WRST. Privatized means cannot replace

the functionality of privatized statistical significance tests.

Returning to the significance results themselves, we see clear evidence of a sig-

nificant difference in car-pooling across the two dates: Individuals were more likely

to share a cab on New Years Day (and returning home after midnight, from cele-

brations on New Years Eve). This seems reasonably intuitive: friends might share a

cab home after a party or event; tourists might share a cab to the airport as they

return home on New Year’s Day. We see that privatization noise does not effect

the significance computation in this case. For the analyses with NR−min = 30 (the

high-utility small data-set and the two high-privacy sets) the critical threshold for

undirected hypotheses with a = 0.0199 is 3.006. For the large high-utility data-set,

which has NR−min = .3× 1000 = 300, the significance threshold is . Both the primed

and non-primed privatized analyses show significance on both sizes of data-set.

By contrast, we see that the duration of trips did not vary significantly between

the two dates (possibly reflecting similar traffic conditions). Due to the very small

Z value, the effect of priming, and negative added noise–the smaller primed statistic

has a negative value: this can be set as zero before public release of the results, to

reduce confusion.

Finally, the results pertaining to distance are interesting. We do not see a sig-

nificant difference in distances on the smaller data-set, but the larger data-set offers

enough detail to see a small significant difference: the true statistic falls above the

2.326 threshold necessary to indicate significance for an undirected hypothesis with

a = 0.02, and the high-utility privatized statistic falls just above the threshold for

NR−min = 300, which is 2.716. However, the high-privacy statistic, with a smaller

NR−min = 30 does not fall above its critical threshold 3.006. This is an example of

the higher-privacy context introducing a false negative result. On large data-sets, the

choice of a somewhat larger priming set will increase NR−min and reduce the mag-

nitude of added noise; this will reduce the likelihood of false negatives somewhat.
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However, the privatized WSRT should not be used for conclusively accepting the

null-hypothesis when results are near the significance threshold.

In general, the privatized Wilcoxon Signed-Rank Test provides both a robust

privacy guarantee and a robust statistical analysis tool: privatized results which have

been shown to be significant are as trustworthy as the original, non-privatized results.
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7. DE FACTO PRIVACY

7.1 Introduction

The primary objective of privacy-preserving data mining is to untangle aggregate

facts about a population of interest from specific, sensitive facts attached to particular

individuals. In Chapter 4 and Chapter 5, we demonstrated three factors that effect

differentially private data-mining with Laplacian noise: the sensitivity of the function,

the size of the output data-structure, and the size of the data-set. We showed that

given a low sensitivity function, a small output space, and a large amount of data,

the effect of the noise was nearly undetectable. This begs the question of whether

noise addition is necessary at all in these conditions.

We note that added noise is not necessarily the only factor obfuscating a target

individual’s sensitive contribution to a data-set. Consider the following example:

A survey on bullying is distributed to students at a school; it is then aggregated

into a count of the number of students who reported having been victimized by

bullying, and the total count is posted on a school bulletin board to draw attention

to the problem. This count does not satisfy differential privacy: given (n + 1) total

students, an attacker who knows with certainty the responses for n students will be

able to accurately determine the response for the (n + 1)th student. However, for a

given data-set and aggregation, we want to formally understand how much outside

information about the data-set is required for an attacker to feel confident that he

will be able to learn the data-value of an unknown individual. We will assume a

very strong attacker who has at least some knowledge (either certain or guessed)

about every individual in the data-set with the exception of a single unknown target

person. We are interested in the attacker’s beliefs about his own chances of success in

uncovering the truth about this unknown person. Our goal is to develop a metric to
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measure the relative level of ’De Facto Privacy’ provided by commonly-used ad-hoc

privacy protections such as simple deterministic aggregation.

7.2 Motivating Exmples

Fig. 7.1.: An example of a simple Yes—No survey

Returning to our bullying survey (see Figure 7.1), assume our attacker is famil-

iar with the students in the school and so, with exception of the target individual,

the attacker has a series of guesses about the students’ likely responses. He is using

”outside knowledge” and has not seen the actual submitted survey papers. He does

not have certainty: it’s possible that a bullied student lied on the survey, or that an

apparently safe student is experiencing bullying where the attacker does not witness

it. The attacker believes his guesses are true with probability pcorrect = 0.9. He

imagines a scenario where the published totals are: bullied = [6], nonbullied = [15].
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It appears, from his guesses, that the target individual has been bullied. But, there

is another possible explanation for these totals: the target individual was not bul-

lied, and instead an individual the attacker had guessed was safe was instead bullied.

This alternate scenario produces output identical to the scenario in which the target

individual is bullied, and by the attacker’s own estimation, it will occur with proba-

bility [numberofnonbullied]× p
[N−1]
correct(1− pcorrect). In our hypothetical example, that

amounts to: 15 × (0.9)19(0.1) ≈ 0.20, (which we can compare to the 0.920 ≈ 0.12

chance that all of the attackers guesses were correct.)

Similarly, the attacker might imagine the complementary scenario, in which the

published totals are: bullied = [5], nonbullied = [16], and the target individual ap-

pears not to be bullied. However, an alternate explanation is that the target individ-

ual was, in fact bullied, and a bullied individual lied on their survey. The attacker

believes this will occur with probability [number of Bullied] ×p[N−1]
correct(1 − pcorrect)

= 5 × (0.9)19(0.1) = .07. Because the bullied set is smaller than the nonbullied set,

the attacker believes a mistake in this scenario is less likely than in the previous

scenario. So, of the two possible mistakes, [Target appears Bullied → Target is Non-

bullied] and [Target appears Nonbullied → Target is Bullied], the least likely mistake

has probability .07 relative to a fully correct guess. In general, the probability of mis-

take [Target appears X → Target is Y] is [number of X]×p[N−1]
correct(1− pcorrect)/p

N
correct

relative to a fully correct guess.

We can see the effect of one of our privacy factors in these results: as the data

set size increases, and the number of students in both the Bullied and Nonbullied

categories increases, the probability of a mistake increases. With a very large data-

set an attacker will have very little confidence in his inference about the target. We

will consider one more illustrative example before formally introducing our model.

We now increase the output size of the query from two disjoint counts to four dis-

joint counts. A very sensitive survey collects information about high school students’

experiences with two facets of the traditional trio: Sex and Drugs 1 (see Figure 7.2).

1Enjoying Rock-n-Roll music is not as sensitive as it once was.
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The data submitted by each individual student falls into one of four categories: Sex,

Drugs, Both(Sex And Drugs) or Neither. Our first aggregation scheme over this

data simply publishes the total counts for each of these four categories. Again, our at-

tacker has a guess for the true value of each student, which he believes to be accurate

with probability pcorrect = 0.9. When his guess for a student’s data value is incorrect,

we make the simplifying assumption that the attacker believes all alternative values

are equally probable (if the attacker guesses that categoryJ = Sex, then the attacker

believes with probability 0.9 that categoryJ = Sex, and with probability (0.1)(1/3)

that categoryJ = Neither, or categoryJ = Both, or categoryJ = Drugs).

There are four possible scenarios when the data is published–the target might

appear to be in each of the four categories. However, again, there are possible al-

ternate explanations: For example, if the target appears to be in the Both category,

it’s possible that the target was actually in the Neither category, and an individual

the attacker guessed was in the Neither category was, in truth, quietly in the Both

category. The attacker estimates the probability of a [Target appears Both → Target

is Neither] mistake to be [Number of People in Neither ]×(0.9)n−1(.01)(1/3) ≈ 0.04].

In our example, this comes to ≈ 0.04/.12 relative to the probability of a fully correct

guess.

There are 4×3 = 12 total possible swapping mistakes, across all four data publish-

ing scenarios. The least likely mistake, [Target appears X→ Target is Both], produces

a 3×(0.9)n−1(.01)(1/3) ≈ .01 probability for a mistake, relative to the probability of a

fully correct guess. In general, [Target appears X → Target is Y] mistakes occur with

probability [size of category Y]×(0.9)n−1(.01)(1/3)/(0.9n) , relative to the probability

of a fully correct guess.

Here we see the impact of another privacy factor, a larger output space. This re-

duces the attacker’s estimated likelihood of any particular mistake by increasing the

number of possible alternative categories (introducing the (1/3) factor in the analy-

ses above). It also spreads the data across more categories, reducing the number of

individuals in each category (and thus reducing the probability of any guessing-error
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Fig. 7.2.: An example of a simple two question survey

that involves those categories). A data-set with very many categories and few indi-

viduals will tend to have many singleton categories, consisting of uniquely identifiable

individuals, and will have many very low-probability mistakes.

In the two previous examples, a mistake of type [Target appears X → Target

is Y, requires that the attacker’s guess was incorrect such that [G was guessed Y

→ G is X]. In other words, the target must swap places with an incorrectly guessed

person. To compute the probability of the mistake, we compute the probability of the

complementary incorrect guess. We’ll refer to the publication schema demonstrated in

these two examples as radio-button schemas, adopting the terminology from webform

interfaces: individuals answering a radio-button question can choose precisely one

option. By contrast, individuals answering a check-box question can check as many

options as they like, or no options at all. We next discuss a check-box schema.
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For the second publication scheme on this data, we will reduce the output size

by de-linking individual student’s responses for the two queries, Sex and Drugs; this

produces two counts totaling the number of people who responded Sex and the number

of people who responded Drugs. This is a check-box publication scheme: Individuals

in the category ’Both’ will check both boxes and contribute to both counts, and

individuals in the category ’Neither’ will check no boxes and contribute to neither

count.

We now consider the effect of this change on our mistake probability computations.

For the mistake [Target appears Neither → Target is Both, there is the swapping

explanation we saw previously: [G was guessed Both → G is Neither]. However,

there are now additional possible guess-errors that may account for the attacker’s

guess having miscounted one extra D and S. For example: [G1 was guessed D and

G2 was guessed S, → G1 and G2 are Neither], and [G1 and G2 were guessed Both, →
G1 is S and G2 is D]. Because these additional guess-error explanations each have

non-zero probability, the total probability for any [Target appears X → Target is Y]

mistake in the check-box schema is greater than or equal to the probability for the

same mistake in the radio-button schema over the same raw data-set.

7.3 Defacto Privacy Metric

We now have sufficient background to introduce our formal model and derive a

useful set of theoretical results.

7.3.1 Framework

We begin with a raw data set, which we will represent as the data collected over a

set of individuals I using a series of questions Q, such that question qj has aj possible

answer values. Note that it is possible to expand this question set into k = Σjaj

binary questions of the form: ”Did the individual choose answer aj,l to question qj:

(Y/N)?” Considering the complete response submitted by one individual to the k
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binary questions, we can see that there are a total of at most 2k possible data values

that an individual might have, or 2k possible categories of individuals. We note that

if |I| < 2k, at least one category must be empty. Categories which represent invalid

of response-sets to binary questions (for instance, answering ”Yes” to two mutually

exclusive questions such as ”GPA = A: (Y/N)”? and ”GPA = B: (Y/N)?”) will also

be empty. In general, we will not attempt to distinguish these two cases, implicitly

assuming that empty categories represent values of either zero or negligible likelihood.

For all but one individual in I, the attacker has ”guessed” a category value

(guessed(i) = categoryj)
2 These guesses form a guess-set G. The attacker believes

each of his guesses to be true with probability pcorrect. If an individual is guessed to

be guessed(i) = categoryj, then for every other categoryx �= categoryj the attacker

believes guessed(i) = categoryx with equal probability (1−pcorrect)
2k−1 . For the target

individual, the attacker has no information.

In addition to his guesses G, the attacker has access to the published information

about the raw data-set. This published information is deterministic; it reflects the

true data-set with no added noise. We refer to the format of the published information

as a publication schema, S.

Intuitively, we want to measure the attacker’s relative self-confidence about his

ability to correctly infer categorytarget, given guess-set G and schema S, assuming

the best-case scenario for the published information: the published information does

not contradict the hypothesis that all of the attacker’s guesses are correct, so that

the target’s value appears to be the difference between the published data and the

guessed values. Schemas that provide better privacy will decrease the attacker’s self-

confidence, even in this best-case scenario.

We emphasize that we are not claiming to provide a computation of the attacker’s

true probability of correctly inferring a target individual’s data value (in determin-

istic settings, we feel that this is dependent on an infeasible number of contextual

2In a realistic scenario, it is possible the attacker knows the true values of some portion of the

data-set with absolute certainty, because he has been able to get partial access to the true data-set.

WLOG, we assume that I is the portion of the data set which is not known with certainty.
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factors). Instead, we hope to provide a useful abstraction for characterizing the ways

in which publication schemas work to magnify uncertainty. This can be used to make

a well-founded comparison of the relative privacy provided by different publication

schemas, and it can provide a mathematical framework for more formally understand-

ing common intuitive notions about privacy.

We mathematically abstract the attacker’s fear of his own fallibility as follows:

Given his guesses G, and a hypothetical set of published information in which the

target appears to have value categoryt, the attacker considers mistakes of the form

[Target appears X → Target is Y]. For any hypothetical set of published information,

there are 2k−1 possible mistakes, producing a total of 2k × (2k−1) possible mistakes

total over all possible cases (we refer to this as the mistake-set, M). We compute the

probability of a mistake as the combined probability of possible simple guess-errors

which could cause the mistake to occur. To normalize for data-set size, we consider

the probability of a mistake relative to the probability of a fully correct guess-set,

(pNcorrect). Note that the probability of a fully correct guess-set is constant for a given

data-set, the probability of a mistake is dependent on the guessed distribution of

the data across the possible categories (G), the size of the question set (k), and the

publication schema (S).

Schemas

In this chapter we will consider two basic publication schemas:

Definition 7.1 Radio-Button Schema: A Radio-Button Schema publishes infor-

mation about the data-set by listing the total counts in each of the 2k possible categories

that have non-zero counts (note that if the data-set does not include individual names,

this is functionally equivalent to publishing a simply-anonymized data-set).

Definition 7.2 Check-Box Schema: A Check-Box Publication Schema publishes

information about the data-set by listing the total counts for each of the k binary

questions. One individual can affect up to k of these counts.
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7.3.2 Theoretical Results

We now present a series of theoretical results regarding radio-button and check-

box schemas. We begin with a formal summary of several facts about Radio-Button

schemas that were observed in our motivating examples. We consider the effect of

the schema on the probability of every mistake in the mistake-set M (all 2k × (2k−1)

mistakes of the form [Target appears X → Target is Y]).

Theorem 7.3 In the Radio-Button schema, the probability of mistake [Target ap-

pears X → Target is Y] is |categoryY | × (pcorrect)
n−1(.01)( 1

2k−1 )

Proof: In the Radio-Button schema, a mistake [Target appears X→ Target is Y]

requires a guessing-error [Target guessed Y→ Target is X]. This error requires one in-

correct guess in categoryY and correct answers for the remainder of the data-set. The

probability of an incorrect guess in categoryY is |categoryY |×(pcorrect)n−1(.01), and the

probability that the incorrectly guessed person is actually in categoryX is 1
2k−1 . Thus

the total probability of this mistake is as stated, |categoryY | × (pcorrect)
n−1(.01)( 1

2k−1 )

Corollary 7.4 In the Radio-Button Schema, increasing the size of the data-set will

monotonically increase the probability of the mistakes in M (if |I1| ≥ |I2|, then

∀minM , prob(m|I1) ≥ prob(m|I2) )

Proof: Adding any individual i to the data-set will increase the size of

categoryguessed(i). This will increase the probability of mistakes of the form [Target

appears X → Target is categoryguessed(i)]. Because adding an individual will not de-

crease the size of any category and will not increase the number of binary questions,

it will not decrease the probability of any mistake. By induction, adding any set of in-

dividuals {i} will monotonically increase the probability of mistakes in M as described.
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Theorem 7.5 In the Radio-Button Schema, increasing the number of binary ques-

tions (by adding either additional questions or additional possible answer values) will

decrease both the average probability of mistakes in M .

Proof: Increasing the value of k by 1 by including the question: ”Does i have

property A (T/F)?”, will have the effect of splitting each mistake [Target appears X

→ Target is Y] into four cases: [Target appears XT → Target is YT ], [Target appears

XT → Target is YF ], [Target appears XF → Target is YT ], and [Target appears XF →
Target is YF ].

Note that |categoryY | = |categoryYF
| + |categoryYT

|, and thus |categoryYF
| ≤

|categoryY | and |categoryYF
| ≤ |categoryY |. We simplify notation by defining

probError(n, k) = (pcorrect)
n−1(.01)( 1

2(k+1)−1 ). Note that probError(n, (k + 1)) =

(1/2)probError(n, k).

Thus, the probability of any mistake in our new set of four mistakes (for ex-

ample, [Target appears XT → Target is YF ], whose probability is |categoryYF
| ×

probError(n, k + 1)) will be less than or equal to the probability of our original mis-

take |categoryY | × probError(n, k), with equality holding only when |categoryY | = 0.

And the average probability of these four mistakes will necessarily be smaller than the

probability of the original mistake. Expanding the result over the entire mistake set,

we see that if the data-set is non-empty, then the overall average mistake probability

is decreased by the addition of any binary question, and by induction any increase to

the question-set will decrease the average mistake probability. 3

We now look at the relationship between the Check-Box schema and the Radio-

Button schema.

Theorem 7.6 For each mistake m ∈M , a Check-Box schema will produce a mistake

probability greater than or equal to that produced by a Radio-Button schema over the

same data-set.

3Interestingly, it can be shown that the sum of the the probabilities in the mistake-set is unchanged
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Proof: Given a mistake [Target appears X → Target is Y], a guessing-error of

type [Guessed(categoryi) = Y → categoryi is X] will account for this mistake in both

the Radio-Button and the Check-Box schemas; this establishes equality. However,

the CheckBox schema can introduce additional guessing-error explanations for many

mistakes.

We will formally describe one class of introduced guessing-errors: For a given

category Y , we will use TY to refer to the set of binary questions answered positively.

Consider TY−part = {t1, t2...tm} to be any partitioning of TY into subsets. Note that

for each of these subsets tj there exists a category Xj such that TXj
= tj. If possible

(if all categories Xj that are referenced in the partition are non-empty), choose an

arbitrary individual ij ∈ Xj for each Xj. Then the increased guess-error set includes

[
∧

j(guessed(category(ij)) = Xj)→ ∀ij, category(ij) isX∅], where X∅ is the category

such that TX∅ = 0. All combinations of individuals in all non-empty partitioning

schemes for T will introduce new possible guess-errors for this mistake.

We note with interest that our third privacy factor, sensitivity, behaves differently

in our model than in the differentially private analyses. Although the Check-Box

schema increases the sensitivity in comparison to the Radio-Button schema (by in-

creasing the number of published values that one individual can contribute to), it also

increases the number of possible interpretations for any observed pattern in the data.

This effect isn’t apparent in sensitivity costs, which are computed using worst-case

hypothetical data-sets and an implicit assumption that an attacker knows with cer-

tainty the values for n − 1 individuals. Differential privacy gives a robust, absolute

guarantee of individual privacy, but our De Facto model is able to capture a few

interesting properties that emerge in less extreme cases.

We now look at an ad hoc privacy measure that is often used in real world de-

terministic publication schemas: grouping together distinct attribute values into a

single joint value. For example, in the Check-Box schema from our Sex/Drugs survey

example, we might choose to instead group the two separate S,D counts into a single

Risk = S ∨D count that would simply count the total number of students who fell
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into the group categorySex ∪ categoryDrugs ∪ categoryBoth. Intuitively this increases

the privacy of the students to some degree; we can observe this effect formally in our

model.

Corollary 7.7 In a Radio-Button schema, grouping sets of categories (replacing a

set of categories {C1, C2, ...Cj} with one category CGroup =
⋃
Ci) will monotonically

increase the average probability of mistakes. 4

Proof: This is in fact the inverse operation of the splitting procedure (by inclusion

of additional binary questions) discussed in Theorem 7.5. Removing categories is

equivalent to removing binary-questions, thus this result follows from the previous

Theorem.

Corollary 7.8 A degree distribution with a cut-off and a published count of individ-

uals falling above the cut-off, is an example of a Grouped Radio-Button schema.

Proof: If the raw data-set is the social network (the guess-set G consists of friend-

ship lists for each individual in the network and a category is a specific set of friends),

the count for degree d in the the degree distribution is the count of a joint category

that groups together all friends-list categories of size d. A cut-off with a published

count is equivalent to grouping all individuals in the categories that fall above the

cut-off. Other network distributions we have discussed in previous chapters (such as

LCC distributions) will behave analogously. DeFacto privacy in these distributions

depends on the amount of data, the number of small count categories (which will pro-

duce low-probability mistakes), and number of histogram buckets (which determines

the number of binary questions asked).

We also note that results that pertain to Radio-Button schemas have implications

for Check-Box schemas as well:

4Note that Grouping is distinct from a Check-Box Schema in that a Grouped Radio-Button schema

is still a partitioning of the data-set: no individual can contribute to more than one group.



132

Corollary 7.9 Both Grouping and increasing the size of the data-set will increase

the average probability of mistakes in Check-Box schemas.

Proof: This follows from our previous results. Since both Grouping and increasing

the data-set size increase the base probability of mistakes in the foundational Radio-

Button schema (Corollary 7.7 and Corollary 7.4 respectively), and the Check-Box

schema preserves those increased probabilities in addition to adding new possible ex-

planations to the guess-error sets (Theorem 7.6), Check-Box schema mistake proba-

bilities will also be increased by these steps.

Finally, we will briefly discuss the relationship between low-probability mistakes

and factors that have been observed to increase the likelihood of re-identification

in real world data-sets. Looking at the mistake probabilities in the Radio-Button

schema (Theorem 7.3), we see that in a data-set of size n, a very low (but non-zero)

probability mistake [Target appears X → Target is Y] arises from two factors:

• The size of category Y is small (possibly even a singleton). This means that

individuals in this category are rare and may stand out in the data.

• The question set is large (k is large). This means that more information is

collected about each individual. This additional information may make it easier

to identify an individual in the data-set (even with less complete prior guesses

than we assume in De Facto privacy).

An individual i who is unique in the data-set and who has a large set of attributes

will introduce a set of very low probability mistakes [Target appears X → Target is

categoryi]. A data-set with a large number of low-probability possible mistakes is a

concern for privacy.

Relevant to this, we note the following result with respect to k-anonymity:

Theorem 7.10 In the Radio-Button Schema, enforcing k-anonymity over all at-

tributes of a data-set with q binary questions will result in a lower-bound of
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k(pcorrect)
n−1(.01)( 1

2q−1 ) on mistake probability. However, only enforcing k-anonymity

over a subset of ’quasi-identifying’ attributes will not provide this lower-bound on mis-

take probability.

Proof: Following from Theorem 7.3, we know that the probability of a mistake

[Target appears X → Target is Y] is |categoryY | × (pcorrect)
n−1(.01)( 1

2k−1 ). If all

categories have a minimum size of k, the result follows. However, if only a subset of

’quasi-identifying’ attributes are considered in the k-anonymity rule, then singleton

categories (split by attributes that are considered not to be quasi-identifying) are still

possible, and low-probability mistakes may exist.5

7.4 Practical Example

We will now briefly illustrate the De Facto model’s interpretation of a real world

controversy over deterministic data publication.

Fig. 7.3.: Distribution of frequent GPS locations across all trips on 1/1/2013-1/2/2013

In Chapter 6, we referenced the New York City Taxi Data set [65]. This data

was collected in 2013, published in a simply-anonymized data-set in response to a

Freedom of Information Law request in 2014, and was de-anonymized very shortly

5Recall that l-diversity ensures that there are several different non-quasi-identifying attribute values

appearing in each quasi-identifying category; it does not ensure that every possible category of

individual (ie, considering all attributes) is well-populated.
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thereafter [66]. As a result of the de-anonymization, sensitive data such as the tipping

habits and evening destinations of celebrities became public knowledge. The data-set

included (among other data), for every cab driver, a log of all trips: trip origin and

destination (in GPS coordinates accurate to 1 meter), date, time, fare, number of

passengers, distance, and tips.

In late 2014, taxi competitor Uber offered to release their own New York City

data-set, in what they felt was a more privacy-preserving format [67]. Their proposed

data-set would consist of a set of independent trips, including the time of the trip

and the origin and destination as zip codes. There would be no information on cab

driver which could be used to link trips.

In the original NYC taxi data-set there are over 20,000 unique drivers with an

average of approximately 20 trips per day. The distribution of locations (within 10m

precision) that were visited at least 30 times over January 1st and 2nd is given in

Figure 7.3; the vast majority of locations were visited less than 30 times.

Under the De Facto model, the NYC Taxi data set is a Radio-Button schema with

an incredibly large question set. Consider the number of categories present in one

day’s data: Assuming there are d distinct drivable GPS locations in NYC (within a

granularity of 1 meter), then there are d2 possible trips, and there are approximately

d40 possible series of 20 trips. Assuming cabs generally take 1-3 passengers, there

are d40× 320 possible trip series with car-pooling information included. Adding miles

traveled (which depends on route), departure and arrival times, and tip amount, re-

sults in a data-set in which essentially every category is a singleton and k is extremely

large. We would expect this data-set to have a high-probability of de-anonymization.

Alternatively, with respect to the Taxi data, the Uber proposal introduced both

Grouping (by zip code, car-pool, and tip), and a Check-Box schema (in which a

cab driver’s trips were de-linked). This would significantly decrease the number of

low-probability mistakes by decreasing the number of categories (and thus the total

number of mistakes), and increasing the probability of any given mistake (by increas-

ing the set of guess-errors which could induce a given mistake). Unfortunately, Uber’s
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proposal was denied and Uber has been required by the New York City government

to submit a data-set in the same format as the 2013 Taxi data-set; the full Uber data

may now also be accessible by Freedom of Information Law requests [68].

7.5 Summary

The De Facto model provides a method for estimating the degree to which a

given data-set and publication schema magnify an attacker’s uncertainty about the

population, inhibiting his ability to use outside information to correct infer the true

value of a target individual; we demonstrated that, in the Radio-Button schema, a

very large and evenly distributed data-set with a very small question-set (small value

of k) requires the attacker to possess a potentially infeasible degree of certainty about

all of the individuals in the data-set in order to have a high probability of correctly

uncovering their target individual. We have additionally demonstrated that our De

Facto model provides a mathematical framework that captures the following intuitive

ideas about privacy in deterministic settings:

• Privacy increases as the data-set size increases (Theorems 7.4 and 7.9)

• Privacy decreases as the output space (and the amount of information collected

about each individual) increases (Theorem 7.5).

• Privacy increases as attribute precision is reduced. (Theorems 7.7 and 7.9)

• Privacy increases as records are de-linked. (Theorem 7.6)

• K-anonymity provides privacy protection, but the effectiveness of this protection

is reduced if attributes are designated as not quasi-identifying. (Theorem 7.10)
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8. CONCLUSIONS

This work proposed to address the question: ”Is practically usable, privacy-preserving

social network analysis feasible?” We began by stating several properties that are

important for a privatization technique to be practically usable in real world contexts:

• Guaranteed Privacy: It must provide a well-defined privacy guarantee to

individuals in the data-set.

• Maintain Utility: It must enable privatized analyses to produce results with

a reasonable level of accuracy.

• Practically Adoptable: To encourage adoption it must not impose a signif-

icant burden in computing power or mathematical expertise in comparison to

the non-privatized analysis it replaces.

We described existing work in simple anonymity, k-anonymity, differential edge-

privacy and node-privacy which did not concurrently achieve all three goals (Chapter

3). We then introduced two new adaptations of differential privacy to social net-

work data: Contributor-Privacy (Definition 4.1), which protects the information each

individual contributes to the analysis, and Partition-Privacy (Definition 5.1), which

protects entire disjoint subgraphs.

These new adaptations of differential privacy enabled us to design privacy-

preserving social network techniques which provide robust guarantees of individual

privacy while producing high utility results. We demonstrated the ability of our pri-

vatized approach to easily and safely gather information for the following network

analyses:
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Privacy-preserving Social Network Analysis

• Local Clustering Coefficients (with node-level information) [Section 4.4.1]

• Degree Distributions (with node-level information) [Section 4.4.1]

• Reciprocity [Section 4.4.2]

• Homophily [Section 4.2.3]

• Edge Properties [Section 4.2.3]

• Centrality/Community Structure [Section 4.2.4]

• Degree Distributions (with subgraph-level information) [Section 5.2.2]

• Local Clustering Coefficients (with subgraph-level information) [Section 5.4.2]

• Average Shortest Path Length [Section 5.4.2]

• Edge Density [Section 5.4.2]

• Community Counts [Section 5.4.2]

Additionally, to ensure that privatized analysis provides the level of rigor required

for social science research (especially research that may be used to inform policy

decisions), we introduced a method of determining statistical significance for paired

samples under differential privacy using the Wilcoxon Signed-Rank Test, which is

appropriate for non-normally distributed data such as social network analysis metrics.

(Chapter 6)

This work provides a significant body of evidence to support the claim that our

original question can be answered affirmatively: Practically usable, privacy-preserving

social network analysis is feasible, in many cases. This result is due both to our novel

adaptations of differential privacy to network data, and to our design of high-utility

privatized distributions for network analysis.
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In our final contribution, we looked one step further to consider the mechanisms

that enable our privatized distributions to provide some level of privacy protection,

even before the addition of noise required to achieve differential privacy. We defined

the De Facto privacy model for formally comparing the relative privacy of determin-

istic data publication schemas, and proved results related to two schemas, the Radio-

Button and Check-Box schemas. (Chapter 7) We demonstrated that our choice of

distributions for publishing social network data contributes significantly to the privacy

protection offered by our analyses (Theorem 7.8).

We hope that this foundational work will provide future social network analysts

with an array of possible options for easily, effectively, and safely analyzing, sharing

and publishing sensitive social network data.



LIST OF REFERENCES



139

LIST OF REFERENCES

[1] A. Mart́ınez, Y. Dimitriadis, B. Rubia, E. Gómez, and P. de la Fuente, “Combin-
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