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ABSTRACT

Svyatkovskiy, Alexey Ph.D., Purdue University, May 2015. Measurement of the
Drell–Yan Differential Cross Section with the CMS Detector at the LHC. Major
Professor: Norbert Neumeister.

This thesis describes precision measurements of electroweak interactions in a new

energy regime and the application of these measurements to improve our understand-

ing of the structure of the proton. The results are based on proton-proton collision

data at
√
s = 7 and 8 TeV recorded with the Compact Muon Solenoid detector at the

CERN Large Hadron Collider during the first years of operation. Measurements of

the differential Drell–Yan cross section in the dimuon and dielectron channels cover-

ing the dilepton mass range of 15 to 2000 GeV and absolute dilepton rapidity from

0 to 2.4 are presented. The Drell–Yan cross section in proton-proton collisions de-

pends on empirical quantities known as parton distribution functions (PDFs) which

parameterize the structure of the proton. In addition to the differential cross sec-

tions, the measurements of ratios of the normalized differential cross sections (double

ratios) at
√
s = 7 and 8 TeV are performed in order to provide further constraints for

PDFs, substantially reducing theoretical systematic uncertainties due to correlations.

These measurements are compared to predictions of perturbative QCD at the next-to-

next-to-leading order computed with various sets of PDFs. The measured differential

cross section and double ratio in bins of absolute rapidity are sufficiently precise to

constrain the proton parton distribution functions. The inclusion of Drell–Yan data

in PDF fits provides substantial constraints for the strange quark and the light sea

quark distribution functions in a region of phase space which has not been accessible

at hadron colliders in the past.
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1. INTRODUCTION

The Standard Model (SM) of particle physics has been successfully tested in a wide

variety of experiments. Despite this striking success, it is conceptually incomplete as

it does not provide consistent answers to several questions. Among the questions that

are still not answered within the SM are the large hierarchy in energy scales [1–3], the

presence of dark matter in the universe [4], and the origin of the many fundamental

parameters [5]. For deeper understanding of the properties of existing elementary

particles and for the discovery of physics beyond the SM high-energy particle acceler-

ators are utilized. In particular, the Large Hadron Collider (LHC) provides collisions

at TeV energies and currently has the highest energy and the highest intensity beams

in the world.

The Compact Muon Solenoid (CMS) experiment is one of two major experiments

at the LHC at CERN. The new energy frontier probed by the LHC and the large data

samples collected made it possible to re-measure the parameters of SM of particle

physics with high precision and to discover new physics. Currently many precision

measurements at the LHC are limited by our knowledge of the structure of the proton,

which is described by so-called parton distribution functions (PDFs). To overcome

this limitation new PDFs based on LHC measurements are needed.

Electroweak boson production is an important benchmark process at hadron col-

liders and events containing W and Z bosons appear as dominant components in

Higgs searches and in most of the searches for physics beyond the SM, either as sig-

nal or as background. The Drell–Yan (DY) lepton pair production is a fundamental

process well established in the SM up to the next-to-next-to-leading order (NNLO)

in perturbative quantum chromodynamics (QCD) [6–9]. At hadron colliders, the DY

dilepton production at tree level is described by s-channel γ∗/Z exchange. The PDFs

provide the essential link between the theoretically calculated partonic cross sections,
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and the experimentally measured physical cross sections involving hadrons. This link

is crucial for incisive tests of the SM, and searches for subtle deviations which might

signal new physics beyond the SM. It is not possible to calculate PDFs within pertur-

bative QCD. The DY process provides valuable information on PDFs in the proton

and may be used to constrain the parton distribution functions in general, and the

strange quark PDF, in particular.

The rapidity and the invariant mass of the dilepton system produced in proton-

proton collisions are related at leading order to the longitudinal momentum fractions

(Bjorken scaling variables) x+ and x− carried by the two interacting partons according

to the formula x± = (m/
√
s)e±y. The high center-of-mass energy at the CERN LHC

permits the study of DY production in regions of the Bjorken scaling variables x± and

the evolution scale Q2 = x+x−s that were not accessible in previous experiments [10–

15]. The present analysis covers the ranges 0.0003 < x± < 1.0 and 600 < Q2 <

750000 GeV2 in the double-differential cross section measurement. The differential

cross section dσ/dm is measured in an even wider range 300 < Q2 < 3000000 GeV2.

It provides between 5–30% smaller statistical uncertainty as compared to the

previous measurements due to large sample sizes collected by CMS, 1–25% reduced

systematic uncertainty achieved by using data-driven analysis techniques, and it is

the most precise measurement of the cross section in the Z peak region at
√
s = 7

and 8 TeV in CMS.

Measuring the DY cross-section provides a way to test and verify the SM predic-

tions at a high level of precision. Besides the PDF constraints, a number of predictions

can be extracted from DY dilepton analysis including the precise transverse momen-

tum, invariant mass measurements and the measurements of angular distributions of

DY dileptons. Measuring the DY differential cross section in bins of invariant mass is

important for various LHC physics analyses. Indeed, DY events pose a major source

of background for processes such as top quark pair production and diboson produc-

tion, as well as for searches for new physics beyond the SM, such as the production

of high-mass dilepton resonances.
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Imperfect knowledge of PDFs is the dominant source of theoretical systematic

uncertainties on the DY cross section predictions at low mass. The corresponding

uncertainty is larger than the achievable experimental precision, making the double-

differential cross section and the double ratio measurements in bins of rapidity an

effective tool for PDF constraints. The current knowledge of the PDFs and the

importance of the LHC measurements are reviewed in [16, 17]. The inclusion of DY

cross section and double ratio data in PDF fits is expected to provide substantial

constraints for the strange quark and the light sea quark PDFs in the small Bjorken

x region (0.001 < x < 0.1).

The increase in the center-of-mass energy at the LHC from 7 to 8 TeV provides

the opportunity to measure the ratios of cross sections and double-differential cross

sections of various hard processes, including the DY process. Measurements of the

DY process in proton-proton collisions depend on various theoretical parameters such

as the QCD running coupling constant, renormalization and factorization scales and

a choice of PDFs. The theoretical systematic uncertainties in the cross section cal-

culations for a given process at different center-of-mass energies are substantial but

correlated, so the ratios of differential cross sections normalized to the Z boson pro-

duction cross section (double ratios) can be predicted very precisely [18].

This thesis presents the measurements of the differential and double-differential

Drell–Yan cross sections, based on proton-proton collision data recorded with the

CMS detector at the LHC. The differential cross section measurements are per-

formed in the dielectron and dimuon channels over the mass range 15 to 1500 GeV

at 7 TeV [19], and the mass range 15 to 2000 GeV at 8 TeV [20] center-of-mass en-

ergy. The double-differential cross section d2σ/dmd|y| is measured in the mass range

20 to 1500 GeV and absolute dilepton rapidity from 0 to 2.4. The measurement in

the dimuon channel only is performed at 7 TeV while both channels are considered

at 8 TeV center-of-mass energy. Integrated luminosities of 4.8 fb−1 (dielectron) and

4.5 fb−1 (dimuon) at
√
s = 7 TeV, and 19.7 fb−1 at

√
s = 8 TeV are used for the
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measurements. In addition, the ratios of the normalized differential cross sections

measured at
√
s = 7 and 8 TeV are presented.

An efficient and robust muon reconstruction is an important prerequisite for per-

forming these measurements. Careful understanding and proper treatment of the

detector misalignment effects and alignment position uncertainties is important for

accurate reconstruction of high-pT muons. A study of the alignment position errors

(APEs) and proper implementation of the full APE covariance matrix in the muon

reconstruction software has been performed.

This thesis is arranged in the following order: after this brief introduction, a

general theoretical background and motivation for high-energy physics research are

presented in Chapters 2-4. The design and performance of the LHC and the CMS

detector are described in Chapter 5. In Chapter 6, the Drell–Yan analysis procedure

and methods are described in detail and the results of the measurements are presented

and discussed. Finally, in Chapter 7 the PDF constraints with DY experimental data

are summarized. A set of appendices is included in the thesis to better document

various aspects of the DY analysis.
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2. STANDARD MODEL OF PARTICLE PHYSICS

2.1 Fundamental Constituents of Matter and Interactions

The fundamental constituents of matter are quarks and leptons. They have a half-

integer spin and are fermions. All known hadrons are constructed from 6 types of

quarks. All the known quarks and leptons form 3 families each containing 4 elemen-

tary particles. The first family contains the building blocks of all ordinary matter

while the second and third families are heavier copies of the first. Each lepton family

together with the corresponding family of quarks forms a multiplet known as genera-

tion. The classification of fermions can be seen in Table 2.1. The SM is based on the

Table 2.1
The three generations of spin

1

2
particles.

charge -1 -2/3 -1/3 0 +1/3 +2/3 +1

1st family e− u d νe, νe d u e+

2nd family µ− c s νµ, νµ s c µ+

3rd family τ− t b ντ , ντ b t µ+

principle of local gauge symmetry under the gauge group SU(3)c × SU(2)L ×U(1)Y .

Leptons all have negative electric unit charge whereas neutrinos carry no electric

charge. Quarks carry fractional electric charge: up, charm and top quarks have an

electric charge equal to 2/3 and down, strange and bottom quarks have an electric

charge equal to -1/3. There is a quantum number called “flavor” associated with

each quark type. Fermion charges related to the strong interactions of the particles

are called colors. Each quark exists in a certain color state, however, the observed

hadrons are always colorless.
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Particles having an integer spin are referred to as bosons. In the Standard Model

of particle physics, the gauge bosons are responsible for mediation of interactions

between fermions, while the scalar Higgs boson H [21] is responsible for providing the

non-zero masses to fermions and W± and Z bosons. The gauge bosons are summarized

in Table 2.2 and the Higgs boson is discussed in Section 2.2.1 in detail.

Table 2.2
The four forces and their associated gauge bosons. Charge is in units of
the proton charge.

Force Boson Charge Mass

Gravitational graviton(G) 0 ?

Electromagnetic photon(γ) 0 0

Weak
W boson(W±) ±1 81 GeV

Z boson(Z) 0 92 GeV

Strong gluon(g) 0 0

Within the SM, elementary particles can participate in strong, electromagnetic and

weak interactions. Gravity is essential only for very massive objects and at very high

energies which cannot be obtained in current laboratory experiments. Each funda-

mental interaction is characterized by its range and is described by a corresponding

gauge theory which determines the particles participating in a given interaction and

the gauge mediators.

2.2 Electroweak Interactions

Quantum Electrodynamics (QED) is a quantum field theory that describes the electro-

magnetic interaction. It is based on the abelian gauge group U(1)EM. The quantum

number in this theory that is conserved is the electric charge Q. Local invariance

under the U(1)EM group leads to a massless vector boson which is the photon.

The theory of electroweak (EW) interactions is the unified theory of two of the

four known fundamental interactions: electromagnetism and the weak interaction. It
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was constructed in the 1960s by S. Glashow, S. Weinberg, A. Salam, M. Veltman

and G. t’Hooft [5, 22–24]. The EW theory is based on the Yang–Mills model with

the non-abelian gauge group SU(2)I ×U(1)Y . The SU(2)I group of weak isospin has

three generators ta = 1
2
τa (where τa with a = 1, 2, 3 are the Pauli matrices) which

satisfy the following commutation and normalization relations:

[ta, tb] = iεabctc, Tr(tatb) =
1

2
δab. (2.1)

The weak hypercharge Y is the generator of the U(1)Y group. The electric charge Q,

the third component of the weak isospin I3, and the hypercharge satisfy the following

equation:

Q = I3 +
Y

2
. (2.2)

The Lagrangian density of the EW theory can be written as a sum of four terms:

L = Lgauge + Lmatter + LHiggs + LYukawa. (2.3)

The part of the Lagrangian describing the gauge fields is given by:

Lgauge = −1

4
Tr(WµνW

µν)− 1

4
BµνB

µν , (2.4)

here, the field tensors Bµν and Wµν are defined as:

Bµν = ∂µBν − ∂νBµ, Wµν = ∂µWν − ∂νWµ − ig[Wµ,Wν ] = W a
µνt

a, (2.5)

where g is the SU(2)I gauge coupling constant.

The real observable particles in the EW theory – the photon, Z and W± bosons

– responsible for mediation of EW interactions, are expressed as linear combinations

of the abelian gauge field Bµ and the non-abelian gauge fields W a
µ (a = 1, 2, 3) as:

photon: Aµ = sinθWW3µ + cosθWBµ, (2.6)

Z: Zµ = −cosθWW3µ + sinθWBµ, (2.7)
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and

W± : W±
µ =

W1µ −W2µ√
2

. (2.8)

The Weinberg angle θW is defined in terms of the EW coupling constants as:

sinθW =
g′√

g′2 + g2
, cosθW =

g√
g′2 + g2

, (2.9)

where g′ is the weak hypercharge coupling constant.

The term in the Lagrangian describing the interactions of the quarks and leptons

reads as (assuming zero neutrino mass):

Lmatter =
∑

generations

[iL̄ /DL+ iQ̄ /DQ+ iūR /DuR + id̄R /DdR + iēR /DeR], (2.10)

where the fields Q and L – for quarks and leptons – belong to fundamental represen-

tations of the gauge group SU(2)I . The fermion fields having negative helicity are

referred to as left-handed (L), while fermions having positive helicity are referred to

as right-handed (R). The fields Q and L are SU(2)I doublets:

Q = ψL =

ψ(u)
L

ψ
′(d)
L

 L = ψL =

ψ′(ν)
L

ψ
(e)
L

 ,

where ψ
(u)
L is the field describing the physical u quark, and ψ

′(d)
L is the linear com-

bination of the fields describing the physical d, s and b quarks obtained via a uni-

tary transformation (performed by the Cabibbo-Kabayashi-Maskawa matrix [25,26]).

Analogously, ψ
′(ν)
L is a linear combination of neutrino states with definite mass, and

the ψ
(e)
L is the field describing the electron. The spinors ūR, uR, d̄R, dR, ēR, and

eR for the right-handed fermions transform as singlets under the action of group the

SU(2)I .

The notation /D = γµDµ is used as a shorthand throughout the text, where Dµ

denotes the covariant derivative defined as:

Dµ = ∂µ − ig
~τ

2
~Wµ − ig′

Y

2
Bµ, (2.11)

here, g and g′ are the gauge coupling constants for the non-abelian and abelian

interactions correspondingly and γµ are the Dirac matrices.
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2.2.1 The Higgs Mechanism

According to the EW theory, W± and Z boson masses appear as a result of the

spontaneous symmetry breaking SU(2)I × U(1)Y → U(1)EM, and fermions acquire

mass as a result of the Yukawa interactions of the corresponding massless fields with

the Higgs boson H [21]. Introducing a mass term in the EW Lagrangian for the

gauge bosons would violate gauge invariance. However, to agree with experimental

observations, some of the gauge bosons must have mass. Introducing the complex

scalar doublet φ, which can be written as:

φ =

ϕ+

ϕ0

 ,

is providing the non-zero masses to fermions and vector bosons with the use of the

Higgs mechanism related to the appearance of its vacuum condensate as a result

of the spontaneous breaking of the SU(2)I × U(1)Y gauge symmetry to the U(1)EM

symmetry [27]. The corresponding scalar fields ϕ+ and ϕ0 have the quantum numbers

as shown in Tab. 2.3.

Table 2.3
Electric charge (Q), isospin (I3), and hypercharge (Y ) of the φ field.

Q I3 Y

ϕ+ 1 1/2 1

ϕ0 0 −1/2 1

The Higgs field is introduced in the Eq. (2.3) using the following term:

LHiggs = |Dµφ|2 + V (φ+φ), (2.12)

Where the potential has the form:

V (φ+φ) = µ2φ+φ− λ(φ+φ)2 (2.13)

and is shown in Fig. 2.1. The parameter λ is the corresponding self-coupling for the
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Figure 2.1. An effective potential, V (φ), leading to the spontaneous
symmetry breaking.

Higgs field.

The last term in the Eq. (2.3) describes the interaction of the (scalar) Higgs field

with the fermions:

LYukawa =
∑

generations

[−λeL̄φeR − λdQ̄φdR − λuεabQ̄aφ
+
b uR + h.c.] (2.14)

where εab is the completely asymmetric tensor with ε12 = 1 (a, b = 1, 2 are the spinor

indices). The parameters λe,d,u are the Yukawa coupling constants of the scalar Higgs

field to products of a right and a left-handed fermion field.

Only left-handed fermion fields interact with the Yang–Mills fields W a
µ , and quarks

and leptons with both helicities interact with the abelian field Bµ.

Three independent linear combinations of these four gauge-boson fields W a
µ and

Bµ acquire mass as a result of the Higgs mechanism of spontaneous symmetry break-

ing, while one remains massless. The three massive gauge bosons are the W± bosons

mediating the charged weak current, and the Z boson mediating the neutral weak

current. The massless boson is identified as the photon of the electromagnetic inter-

action.

The experimental evidence of the EW interactions was obtained with the discovery

of neutral currents in neutrino scattering by the Gargamelle collaboration in 1973 [28,
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29], and the discovery of the W± and Z gauge bosons in proton-antiproton collisions at

the Super Proton Synchrotron in 1983 by the UA1 and the UA2 collaborations [30–32].

The existence of the SM Higgs boson was still not verified at the start up of

the LHC. Direct searches for the Higgs have mostly come from the Large Electron-

Positron Collider (LEP) at CERN and the Tevatron at Fermilab. This search has

been a driving force in high-energy experiments for the last several decades. LEP

preformed direct searches and excluded a Higgs boson with a mass below 114.4 GeV

at a 95% C.L. [33].

The searches of the SM Higgs boson have been continued by the ATLAS and the

CMS collaborations at the LHC considering five decay modes: γγ, ZZ, W+W−, τ+τ−,

and bb. In 2012 an excess of events was observed above the expected background,

with a local significance of 5.0 standard deviations, at a mass near 125 GeV, signaling

the production of the Higgs boson [34,35], as shown in Fig. 2.2. The most significant

excess was observed in the two decay modes with the best mass resolution, γγ and

ZZ.

2.3 Quantum Chromodynamics

Quantum chromodynamics is a theory of strong interactions – the color forces. It

is described by a gauge theory based on the Yang–Mills model with the non-abelian

gauge group SU(3)c of color.

The QCD Lagrangian has the form:

L = −1

4
F a
µνF

µνa +
∑
n

ψ̄n(i /D −mn)ψn, (2.15)

here, n=1,...,6 is a flavor index. The summation runs over the 8 generators of the

corresponding gauge group SU(3)c, and the quark field fermion multiplets ψi,j (i, j =

1, 2, 3) belong to its irreducible representation.

The field strength tensor for the spin-1 gluon fields Aaν is given by:

F a
µν = ∂µA

a
ν − ∂νAaµ − gsfabcAbµAcν (2.16)
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Figure 2.2. The 95% CL limit on the signal strength σ/SM for a
Higgs boson decaying to τ pairs (left) and two b quarks (right), for
the combined 7 and 8 TeV data sets. The symbol σ/SM denotes the
production cross section times the relevant branching fractions, rel-
ative to the SM expectation. The background only expectations are
represented by their median (dashed line) and by the 68% and 95%
CL bands. The dotted curve shows the median expected limit for a
SM Higgs boson with mH = 125 GeV.

where fabc denote the corresponding structure functions. Indices a, b, c run over the

8 color degrees of freedom of the gluon field. The third term gives rise to triple and

quartic gluon self-interactions and ultimately to asymptotic freedom [36].

The covariant derivative is:

Dµ = ∂µ + igsA
a
µt
a, (2.17)

defined by means of the ta matrices in the fundamental representation of SU(3),

which satisfy the commutation relations

[ta, tb] = ifabctc. (2.18)

There is one more gauge invariant term that can be written down in the QCD

Lagrangian Eq. (2.15):

Lθ = θQCD
α2
s

64π2
εµνρσF a

µνF
a
ρσ. (2.19)
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here, εµνρσ is the totally antisymmetric tensor (in four dimensions) and αs ≡ g2s
4π

.

Adding this term to the Lagrangian leads to the so-called strong CP-problem [37].

The θQCD is the vacuum angle parameter, which is a free parameter of QCD.

2.4 Parameters of the Standard Model

The SM has 19 free parameters: three gauge couplings (electromagnetic coupling g′,

strong coupling gs and EW coupling g), 9 fermion masses (3 lepton masses and 6 quark

masses, assuming massless neutrinos), 3 Cabibbo-Kobayashi-Maskawa (CKM) matrix

mixing angles and one CP-violating CKM phase, two parameters to characterize

the Higgs sector that can be taken as the expectation value v corresponding to the

minimum of the Higgs effective potential shown in Fig. 2.1, the Higgs mass mH, and

the non-perturbative QCD vacuum angle parameter θQCD. Tab. 2.4 summarizes these

parameters and gives the current experimentally determined values.

2.5 Open Questions of the Standard Model

The SM of elementary particle interactions is in excellent agreement with all the

experimental data, however, it is conceptually incomplete as it does not provide

consistent answers to several questions. In the following a non exhaustive list of the

main open questions of the SM are presented.

• Can the theory constrain the free parameters in the Lagrangian of the SM (there

are 19 free parameters)?

• Why are there three families of quarks and leptons?

• Why do quarks have fractional charge?

• In the SM, only left-handed particles couple to the charged weak bosons while

right-handed particles do not. Such an asymmetry is described in the SM but

no reason is provided as to the origin of the asymmetry.

• No description of gravitation is present in the SM. The latter needs to be ex-

tended to include the theory of gravitation. There is no quantum theory of

gravitation which has been tested experimentally.
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Table 2.4
Parameters of the SM [38].

Parameter Description Value

me Electron mass 510.99893± 0.00001 keV

mµ Muon mass 105.658372± 0.000004 MeV

mτ Tau mass 1776.82± 0.16 MeV

mu Up quark mass 2.3± 0.7 MeV

md Down quark mass 4.8± 0.5 MeV

ms Strange quark mass 95± 5 MeV

mc Charm quark mass 1.28± 0.03 GeV

mb Bottom quark mass 4.18± 0.03 GeV

mt Top quark mass 173.21± 0.87 GeV

θ12 CKM 12 mixing angle 13.04± 0.05◦

θ23 CKM 23 mixing angle 2.38± 0.06◦

θ13 CKM 13 mixing angle 0.201± 0.011◦

δ CKM CP-violating phase 1.20± 0.08 rad

g′ U(1)Y gauge coupling 0.357± 0.001

g SU(2)I gauge coupling 0.652± 0.001

gs SU(3) gauge coupling 1.221± 0.001

θQCD QCD vacuum angle < 10−10

v Higgs vacuum expectation value 246 GeV

mH Higgs mass 125.7± 0.4 GeV

• The hierarchy mass problem raises the question of the difference of orders of

magnitude between the EW scale and the Planck scale. While the former is
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found to be around 103 GeV, the latter represents the scale at which quantum

gravitational effects become important and is expressed by:

MPl =

√
hc

G
= 1.12× 1019 GeV

• Naturalness problem: in the SM, the Higgs mass is naturally very large, unless

there is a fine tuning calculation between the quadratic radiative corrections

and the bare mass.

The questions listed above indicate that the SM should be viewed only as an

effective low-energy theory and a wider theory embedding the results of the SM may

be discovered at TeV energies accessible at the LHC.
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3. PHYSICS OF PROTON-PROTON COLLISIONS

To measure the properties of elementary particles and to discover physics beyond the

Standard Model large particle accelerators are utilized. New particles are likely to be

produced in collisions with high center-of-mass energy.

The physics of proton-proton collisions is complex and involves various fundamen-

tal processes. At hadron colliders, the parton level cross sections are folded with the

parton distribution functions (PDFs). Any calculation of cross sections with hadrons

in the initial state involves PDFs as an input.

In this chapter, the collision kinematics, the PDF definitions, and currently avail-

able PDF parameterizations are discussed.

3.1 Collision Kinematics

Let P µ
1 = (p1

x, p
1
y, p

1
z, E

1) and P ν
2 = (p2

x, p
2
y, p

2
z, E

2) denote the four momenta of col-

liding protons, which propagate along the z axis in the reference frames considered.

The variables used in the analysis of proton-proton collision experiments are described

below.

Transverse momentum (pT). The transverse momentum is defined as

pT =
√
p2
x + p2

y

and represents the component of the particle momentum transverse to the beamline.

Rapidity (y). Rapidity is defined as

y =
1

2
ln
E + pz
E − pz

,

where E is the energy of the particle and pz is its momentum along the proton

beamline. Rapidity is generally used to present the angular distribution of particles.

The shape of the rapidity distribution is invariant under a relativistic boost along the

z axis, so y is a better choice of a variable than the polar angle θ.
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Pseudorapidity η. Pseudorapidity is approximately equal to the rapidity in the

limit where a particle’s momentum is much greater than its mass. Pseudorapidity is

defined as:

η = −ln(tan(
θ

2
)) =

1

2
ln
|p|+ pz
|p| − pz

where θ is the polar angle with respect to the positive z axis. The advantage of

using pseudorapidity in place of rapidity is that the knowledge about the energy and

momentum of the particle is not needed.

Invariant mass (m). The invariant mass of two particles is defined as

m2 = (P1 + P2)µ(P1 + P2)µ.

It is invariant under Lorentz transformations.

In the high-energy limit, when the particles can be considered massless, one can

write:

m2 = [(p1, 0, 0, p1) + (p2, 0, p2 · sinθ, p2 · cosθ)]2 =

(p1 + p2)2 − p2
2 · sin2θ − (p1 + p2cosθ)2 =

2p1p2(1− cosθ),

(3.1)

analogously, in terms of azimuthal angle and pseudorapidity we get:

m2 = 2p1
Tp

2
T(cosh(η1 − η2)− cos(φ1 − φ2)).

Bjorken scaling variables. The rapidity y and the invariant mass m of the two

particles produced in proton-proton collisions are related at leading order (LO) to the

Bjorken scaling variables defined as the momentum fractions x+ (x−) carried by the

parton in the forward-going (backward-going) proton as described by the formula:

x± = (m/
√
s)e±y, (3.2)

where the forward direction is defined as the positive z direction of the detector

coordinate system.
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Evolution scale Q2. The momentum transfer to the particles in the hard collision

can be written as:

Q2 = x+x−s = m2, (3.3)

where x± are the Bjorken scaling variables corresponding to the colliding partons and

s is the center-of-mass energy squared. The momentum transfer Q2 sets the QCD

renormalization and factorization scales.

3.2 Parton Distribution Functions

The parton distribution functions, fi/p(xi, Q
2), give the probability density to find the

parton of type i with the longitudinal momentum fraction x (Bjorken scaling variable)

at an evolution scale Q2 inside the proton [39]. PDFs are process independent, non-

perturbative quantities which are extracted by means of global analysis at some initial

momentum scale Q2. The Q2
initial scale is set by factorization of the QCD process into

a hard scattering part that can be calculated via perturbative QCD and a soft part

described by the PDFs.

In the naive parton model, the proton is considered as consisting of only three

valence quarks. A more complete QCD framework considers valence quarks embed-

ded in a sea of virtual quark-antiquark pairs generated by the gluons. Within this

framework, a set of 11 different PDFs has to be considered to describe the structure

of the proton:

u, u, d, d, s, s, c, c, b, b, g. (3.4)

Parton distribution functions corresponding to physical quarks consist of valence and

sea contributions:

q = qV + qsea (3.5)
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Only a set of 7 parton distribution functions is independent:

uV = u− u,

dV = d− d,

fsea = 2 · (u + d + s),

s+ = s + s,

s− = s− s,

d − u,

g

(3.6)

The net number of partons of each type inside the proton at a fixed scale Q2 are

given by the sum-rules [40]:∫ 1

0

dxuV (x,Q2) =

∫ 1

0

dx[u(x,Q2)− u(x,Q2)] = 2,∫ 1

0

dxdV (x,Q2) =

∫ 1

0

dx[d(x,Q2)− d(x,Q2)] = 1,∫ 1

0

dxsV (x,Q2) =

∫ 1

0

dx[s(x,Q2)− s(x,Q2)] = 0,

(3.7)

At low Q2 or large x the three valence quarks contributions are dominant in the pro-

ton. At high Q2, more sea quark-antiquark pairs carrying a low momentum fraction

x are produced. Quarks and antiquarks account for only about a half of the proton

momentum, with the remainder being carried by the gluons. The fraction carried by

gluons increases with increasing Q2.

Figure 3.1 shows an example of parton distributions at different scales.

As expected, at small Q2 and x values above 0.1, the u quarks are dominant,

contributing more than twice as much as the d quarks at high x and is much larger

than the heavier quarks (s, c, b, and t). At low x, there are significantly less strange

quarks than up and down quarks due to flavor asymmetry. The charm density is null

below Q=1.5 GeV and increases slowly with energy. As seen from the right plot in

Fig. 3.1, the shape of the quark and gluon distributions changes rapidly at very low x

and high Q2. The sea becomes more flavor symmetric, since at low x the evolution is
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Figure 3.1. Example of the PDFs at Q = 2 GeV (left) and at Q =
100 GeV (right) [39].

flavor-independent, and there are more sea quarks and gluons. The rise of the parton

densities at low x and high Q2 values is an important prediction of QCD [41].

3.2.1 Global Analysis of Parton Distributions

Global analysis of parton distributions makes use of experimental data from various

physical processes and the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evo-

lution equations [42–44] for partons to extract a set of PDFs which best fit the existing

data. These distributions can then be used to predict other physical observables at

energy scales far beyond those used in the derivation.

A typical procedure for global analysis involves the following necessary steps:

• Choose experimental datasets, such that the data can give the best constraints

on PDFs

• Select the factorization scheme

• Choose the parametric form for the input parton distributions at some scale

Q2
initial,
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• Evolve the distributions to any other scales Q2
final

• Use the evolved distributions to calculate global χ2 between theory and data

• Parameterize the final parton distributions at discrete values of Bjorken x and

Q2
final by some analytic functions

Each of these analysis steps is described below in more detail.

Theoretical and Experimental Inputs

Theoretical inputs to the global analyses of parton distributions are the perturba-

tively calculated hard cross sections and the QCD evolution equations which control

the scale dependence of the PDFs. Determined from experimental data at some scale

Q2
initial, the PDFs can be obtained at any scale Q2

final by using the DGLAP evolution

equations, provided that both scales are in the perturbative domain.

Given a variety of experimental data and corresponding theoretical calculations,

it is possible to suggest which new types of data are necessary in order to further

improve the PDF precision. Besides that, with an over-constrained set of PDFs it

becomes possible to explore whether or not the parton-level calculations in pertur-

bative QCD (pQCD) constitute a consistent theoretical framework to account for all

the available experimental data relevant for pQCD studies. This may point to areas

where improved theoretical treatments are required.

Deep-inelastic scattering (DIS), inclusive jet, ν-nucleon, DY, and W charge asym-

metry data are most commonly used in modern global analyses of parton distributions.

The DIS experimental data provides important constraints to the quarks and anti-

quark distributions, as well as to the gluon distributions at medium and small x. DY

data from fixed-target experiments helped improving the understanding of the anti-

quark contributions. The collider vector boson production data helped in constraining

the u/d ratio at high x and the valence quark distributions. The collider inclusive jet

data was particularly important to constrain the high x gluon distribution.
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Fitting Methodology

An important step in the PDF extraction is the choice of the parameterization.

The standard parameterization has the following form:

fi(x,Q
2) = a0x

a1(1− x)a2P (x, a3, a4, ...) (3.8)

where the normalization parameter a0 is typically determined from the sum rules

Eq. (3.6). The factor a1 is motivated by physics in the low x kinematic region. The

factor a2 is constrained by the physics in the limit x → 1. Since the probability to

observe a parton carrying the total momentum of the proton goes to zero, then the

PDFs are supposed to be zero in that region. Finally the function P (x) is a smooth

polynomial function of x which interpolates between the low x and the large-x regions.

The number of free parameters should be large enough to accommodate all the data

used in the fit.

3.2.2 PDF Uncertainties

The uncertainties on PDFs have various theoretical or experimental origins. The ex-

perimental uncertainties are related to the measurement errors as they are extracted

from an experiment. The theoretical uncertainties are related to the PDF parame-

terization used and the model assumptions made.

Several model assumptions are imposed to extract a PDF set. These assumptions

are often intended to reduce the parameter space, which is achieved by assuming

symmetries and neglecting some phenomena. The uncertainties related to the QCD

theoretical framework can be subdivided into the following categories:

• the truncation of the higher-order Feynman diagrams in the theoretical calcu-

lations of hard cross sections,

• the dependency on the choice of the factorization (µF ) and renormalization (µR)

scales,
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• the assumption on the validity of the DGLAP evolution equations in the entire

phase space where PDFs are considered, which is a questionable assumption in

the region of small x (<< 10−3) and small Q2 (∼ 1 GeV2).

3.2.3 PDF Parameterizations

The most widely used PDF sets are: MSTW [45], CTEQ [46], HERAPDF [47],

and NNPDF [48], which make use of the data from H1-ZEUS [10], SLAC [11], FNAL

E665, E772, E866 [12,13,49], CDF and D0 [14,15] experiments. The main differences

between these PDFs are in the data categories used for the fit, the parameterization,

the theoretical assumptions made on the physics behind the parameterization and

the uncertainty estimation methods.

The CT10 PDF set is a general-purpose NLO PDF set with 52 eigenvectors of

the Hessian error matrix [46] that uses a variable strong coupling αs(MZ) in the

range 0.116 – 0.120 and 0.112 – 0.127. The CT10 (NNLO) is also a general purpose

PDF set. It includes a part of the data sample for the D0 W-charge asymmetry

measurement [15] that is not included in the CT10 NLO fit. The W-charge asymmetry

data primarily modifies the slope of the ratio d(x,Q2)/u(x,Q2) at large x. The CT10

(NNLO) PDF set uses a variable strong coupling αs(MZ) in the range of 0.116 –

0.120 and 0.110 – 0.130. The NNPDF2.1 PDF set is another general-purpose NNLO

PDF set, composed of 100 simulated replications and available for a range of values

of the strong coupling αs(mZ). It is based on a global data set including data from

DY fixed-target experiments and W, Z production at the Tevatron that constrain the

quark-antiquark separation (see Section 3.2.3 for more details).

Current parameterizations cover a kinematic range down to x ∼ 10−6 (at small

values of Q2 ∼ 0.1 GeV2, and up to Q2 ∼ 105 GeV2 at large Bjorken x. Current

PDF uncertainties on the cross section are 3–5% and increasing with smaller x. In

the (x,Q2)-region accessible by LHC experiments (as shown in Fig. 3.2), these PDF

sets are not well constrained, and the uncertainties go up to 10%.

Fig. 3.3 summarizes PDF distributions and associated uncertainties obtained with

various modern parameterizations. As seen, all PDF parameterization considered



24

Figure 3.2. Kinematic coverage (x-Q2 plane) of the DIS and collider
experiments in the past and the expected phase space to be covered
by the Large Hadron Collider (LHC) experiments [50].

Figure 3.3. The quark (left) and gluon (right) PDFs at Q2 = 25 GeV2

plotted versus x on a logarithmic scale. The plots show the compari-
son between NNPDF2.3, CT10 and MSTW08 parameterizations. All
PDFs are shown for a common value of αs = 0.118.

show similar distributions in the region of the intermediate longitudinal momenta,

while the difference at low x is rather significant.
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NNPDF Approach

One of the modern approaches to PDF extraction is the neural network parton

distribution function (NNPDF) approach [51]. The NNPDF approach is based on a

combination of a Monte-Carlo method for experimental data sampling with the use

of neural networks as basic interpolating functions [48].

The NNPDF approach can be divided into four main steps:

• Generation of a large sample of MC replications of the original experimental

data, by varying the measured cross section within ±1 · σ and recomputing the

result in each rapidity bin. The value of σ of the random Gaussian is taken to

be the total (statistical and systematic) error per bin.

• Training of a set of PDFs parameterized by neural networks on each of the MC

replications of the data. The neural network training is stopped dynamically

before entering into the over-learning regime.

• As the training of the MC replications has been completed, a set of statisti-

cal estimators is applied to the set of PDFs, in order to assess the statistical

consistency of results.

• The set of replica PDF sets – trained neural networks – is then extracted,

providing a representation of the underlying PDF probability density.

Fig. 3.4 summarizes the NNPDF approach as a block diagram.
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Figure 3.4. General strategy for PDF extraction with NNPDF technique [52].
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4. THE DRELL–YAN PROCESS

The Drell–Yan process is described at leading order by a quark and antiquark an-

nihilation producing a virtual photon or a Z boson, with a subsequent decay into

two oppositely charged leptons. Quark-quark and quark-gluon sub-processes give

contributions to DY production in higher perturbation orders [53,54].

This process was first described by S. Drell and T.M. Yan in 1970 [55]. It had

been experimentally observed in 1968 by a group led by L. Lederman at Brookhaven,

by colliding protons on a fixed uranium target and observing the resulting lepton

pairs [56].

Studies of the DY process have historically been a good probe of the parton distri-

bution functions of the proton and have played an important role in our understanding

of QCD.

4.1 Drell–Yan Production

In hadron collisions, the DY cross section is calculated as a cross section of the hard

process convoluted with PDFs. The schematic diagram for this process is shown in

Fig. 4.1.

4.1.1 Cross Section of Hard Process

The differential cross section is directly proportional to the square of the correspond-

ing scattering amplitude:

|M|2 = |Mγ + MZ|2 = |Mγ|2 + |MZ|2 + 2ReM†ZMγ, (4.1)

including the photon, the Z-exchange contributions, and the corresponding interfer-

ence term 2ReM†ZMγ. Here, M†Z is the complex-conjugated scattering amplitude.

The couplings describing the Zff̄ and γ∗ff̄ interactions within the SU(2)L and

U(1)Y groups are shown in Fig. 4.2. The corresponding analytic expressions are given



28

Figure 4.1. The DY production at hadron colliders.

Figure 4.2. Feynman diagrams illustrating the Zff̄ and γ∗ff̄ vertices
defined by the SU(2) and U(1) groups.

in a compact form by Eq. (4.2):

α(Zff̄) = −iγµ(lPL + rPR),

α(γ∗ff̄) = −ieQγµ,
(4.2)

where e is the positron charge and Q is the electric charge of a fermion in units of

the positron charge e. Whereas for the α(Zff̄) coupling l = e
sWcW

(±1
2
− 2Qs2

W), and

r = −2QesW
cW

. Here, sW and cW denote the sine and cosine of the Weinberg angle.



29

The projection operators are defined as follows:

PL =
1− γ5

2
, PR =

1 + γ5

2
. (4.3)

In the limit of massless fermions (which is a very good approximation at the LHC

for all particles except for the top quark), the scattering amplitude can be written as

M = −iv̄(k2)γµ(lPL + rPR)u(k1)εµ, (4.4)

where k1 and k2 are the momenta of the massless incoming fermion and anti-fermion,

and εµ is the photon polarization vector.

Squaring the above amplitude, for the partonic process qq̄→ γ∗/Z in the unitary

gauge, we obtain:

|M|2 =
∑

spin,polar,color

ū(k1)γν(lPL + rPR)v(k2)v̄(k2)γµ(lPL + rPR)u(k1)εµε
∗
ν =

= NcTr[ /k1γ
ν(lPL + rPr) /k2γ

µ(lPL + rPr)](−gµν +
qµqν
m2

Z

) =

=
Nc

2
(l2 + r2)Tr[ /k1γ

ν /k2γ
µ](−gµν +

qµqν
m2

Z

) =

= 2Nc(l
2 + r2)[kµ1k

ν
2 + kν1k

µ
2 − (k1k2)gµν ](−gµν +

qµqν
m2

Z

) =

= 2Nc(l
2 + r2)[−2(k1k2) + 4(k1k2) + 2

(−k1k2)2

m2
Z

− (k1k2)q2)

m2
Z

] =

= 2Nc(l
2 + r2)q2 = 2Nc(l

2 + r2)M2
Z,

(4.5)

where the color factor Nc accounts for the number of SU(3)c states which can be

combined to form a color singlet like the Z, and the q = −k1 − k2 is the momentum

of outgoing gauge boson.

The following notations are used for the Mandelstam variables of the partons:

s = (k1 + k2)2, t = (k1 − k3)2, u = (k1 − k4)2. (4.6)

The matrix element for the corresponding 2→ 2 process, the process of dilepton

production through s channel γ∗/Z exchange Eq. (4.2), can be written as:

M = (−i)2ū(p1)γν(l
′
PL + r

′
PR)u(k1)

i

q2 −m2
Z

(−gµν +
qµqν
m2

Z

), (4.7)
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where k1, k2, p1 and p2 refer to the four-momenta of the incoming fermion, incoming

anti-fermion, outgoing fermion and outgoing anti-fermion correspondingly. The gauge

boson couplings are l and r for incoming fermions and l
′
and r

′
for outgoing fermions.

Momentum conservation implies k1 + k2 + p1 + p2 = 0.

With intermediate massless photons only, one has: l2 + r2 = 2Q2e2 and l
′2 + r

′2 =

2Q
′2e2 for the outgoing leptons. Since only the lepton final states are discussed one

can put: Q = Q
′
= 1. Eq. (4.5) can then be written as:

|Mγ|2 = 12(2e2)(2e2)
1

q4
[kµ1k

ν
2 + kν1k

µ
2 − (k1k2)gµν ](−gµρ)[pρ1pσ2 + pσ1p

ρ
2−

− (p1p2)gρσ](−gνσ) = 48e4 1

q4
[k1ρk

ν
2 + +kν1k2ρ − (k1k2)gνρ ][pρ1p2ν + p1νp

ρ
2−

− (p1p2)gρν ] = 96e4 1

q4
[(k1p1)(k2p2) + (k1p2)(k2p1)] =

= 96e4 1

s2
[
t2

4
+
u2

4
] = 24e4[1 + 2

t

s
+ 2

t2

s2
],

(4.8)

The two-particle phase space integration of the square of the matrix element

derived in Eq. (4.8) assuming massless particles gives:

s2dσ̂(qq̄→ γ∗ → ll)

dt
=

1

144π
|Mγ|2, (4.9)

where t = s
2
(cosθ − 1). The Nc = 3, considering the qq̄ initial state. Then using

αEM = e2/(4π), we get the following expression for the differential cross section of

the DY process:

dσ̂(qq̄→ γ∗ → ll)

dt
=

1

s2

π

(4π)2

2

3
(4παEM)2(1 + 2

t

s
+ 2

t2

s2
) =

=
1

s2

2πα2
EM

3
(1 + 2

t

s
+ 2

t2

s2
).

(4.10)

Integrating Eq.(4.11) over the Mandelstam variable t gives the total cross section:

σ̂(qq̄→ γ∗ → ll) =
1

s2

2πα2
EM

3

∫ 0

−s
dt(1 + 2

t

s
+ 2

t2

s2
) =

1

s2

2πα2

3
(t+

t2

s
+

2t3

3s2
)0
−s =

1

s

4πα2
EM

9
.

(4.11)
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With intermediate on-shell or off-shell Z boson exchange introduced, we get ad-

ditional terms in the amplitude, including the interference term given by Eq. (4.1).

In the regions where the invariant masses of lepton pairs for both intermediate states

are the same, an interference may occur (which happens in the 60–120 GeV invariant

mass range, mostly pronounced in the tails of the Z peak).

The propagator of the Z boson in the s channel (corresponding to the DY process,

qq̄ → Z→ l+l−) has the form: 1
s−m2

Z+imΓ
, and the corresponding contribution to the

DY cross section is:

σ̂(qq̄→ Z→ l+l−) =
4πα2

EM

3
rftot

s

(s−m2
Z)2 − (m2

ZΓ2
Z)

=

=
12π

m2
Z

ΓeeΓff
Γ2

Z

sΓ2
Z

(s−m2
Z)2 − (m2

ZΓ2
Z)
,

(4.12)

where the rftot = 12
m2

Zα
2
EM

ΓeeΓff and the partial decay width Γff of the Z → ff decay

is given by:

Γff =
αEMmZ

4s2
wc

2
w

[g2
V f + g2

Af ], (4.13)

here gV f = l = I3 − 2Qs2
w and gAf = I3 – Z boson coupling strengths to fermionic

vector and axial-vector currents, respectively.

Finally, the γ∗ − Z interference term can be written as:

σ̂(qq̄→ γ∗/Z→ l+l−) =
4πα2

EM

3
jftot

(s−m2
Z)

(s−m2
Z)2 − (m2

ZΓ2
Z)
, (4.14)

where jtot
f =

3QegV egV f

2s2wc
2
w

. As seen, the interference contribution vanishes in the limit
√
s→ mZ.

Fig. 4.3 shows the contribution of the various terms of the scattering amplitude

corresponding to the DY process discussed above (γ∗-exchange, Z boson exchange

and the interference term). As seen, the Z exchange is the dominant contribution to

the cross section in the Z peak region, while the γ∗ exchange is dominant outside the

Z peak. In the tails of the Breit-Wigner distribution the effect of γ∗ − Z interference

is significant. In the limit of
√
s → ∞ all the terms behave like 1/s. The γ∗ − Z

interference leads to the effect of the so-called forward-backward asymmetry [57].
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Figure 4.3. The total cross section and the contributions arising from
γ∗ exchange, Z exchange, and the γ∗−Z interference shown separately.

Higher Order QCD and EW Effects

The NLO QCD predictions of cross sections have uncertainties of about 10%,

and therefore are insufficient for a precise comparison with data. The NNLO QCD

theoretical predictions must be used. The inclusive O(α2
s) corrections to the Z boson

production are known with 1% theoretical precision [6].

However, in the TeV energy regime, α ∼ α2
s which makes it necessary to take the

NLO electroweak corrections into account along with the NNLO pQCD corrections.

The second order virtual weak radiative corrections are large at high energies, due to

the presence of logarithms of the form (α/π)log2(ŝ/Q2), where ŝ is the squared parton

center-of-mass energy, and Q = m/2 is the renormalization scale, equal to the mass of

the intermediate gauge boson [58]. These logarithms, originating from collinear and
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infrared divergences, are, however, canceled in QED by the corresponding divergences

originating from real photon radiation diagrams [59]. Below, all these corrections are

discussed in more detail.

At the next-to-leading order pQCD, which takes the O(αs) corrections into ac-

count [53,54], the gluon bremsstrahlung and processes with gluons in the initial state

qq̄→ γ∗/Z + g,

g + q(q̄)→ γ∗/Z + q(q̄),
(4.15)

contribute to the DY production cross section. The size of perturbative corrections

depends on the lepton-pair mass and on the overall center-of-mass energy. At low

energies, the correction to the DY cross section is generally large and positive - reach-

ing the value of 10% as shown in Fig. 4.4. The corresponding corrections can reach

as high as 50% if a lepton pT cut is applied to the phase space. In this regime, the

(negative) contribution from the quark-gluon scattering terms is quite small.

The effect of the higher-order corrections can be illustrated with the k-factor. It

is defined as the ratio of the theoretical cross sections calculated at different orders.

Fig. 4.4 shows the various k-factors as a function of dilepton invariant mass.

Figure 4.4. The effect of higher-order QCD corrections. The error
band shows the uncertainty on the k-factor due to the integration.
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The electroweak corrections to the neutral current DY process consist of QED

and pure weak contributions and thus will be discussed separately. For a complete

analysis see [60].

QED radiative corrections consist of the emission of real and virtual photons by

quarks and charged leptons. The O(αEM) QED corrections to the qq̄→ γ∗/Z→ l+l−

can be further split into initial and final state radiation (ISR and FSR) effects. The

initial state radiation effects lead to collinear singularities and can be absorbed by

renormalization of the PDFs in a complete analogy to the calculation of QCD radiative

corrections. This introduces a dependency of parton distribution functions on the

QED factorization scale µ2
QED [61]. The QED induced terms in the DGLAP evolution

equations lead to small negative corrections at the per-mille level in the wide range

of x and µ2
QED. Only at large x>0.5 and large µ2

QED>103 GeV2 do these corrections

reach the level of 1%.

The FSR effect causes the lowering of the invariant mass of observed dileptons

compared to the propagator mass, and subsequently, their migration to the lower

mass. Since the DY cross section around the Z peak is few orders of magnitude

larger as compared to the adjacent mass bins, the mass region just below the Z peak

(40–80 GeV) will experience a large excess of dilepton events migrating in from the 80–

100 GeV mass region. The QED final state radiation correction to the cross section,

reaches up to 80% in that mass region.

Fig. 4.5 shows the ratio of the dilepton yields after the FSR photon emission and

before.

The non-QED corrections consist of self-energy contributions to the photon and

Z propagators, vertex corrections to the γ∗/Z− l+l− and γ∗/Z−qq̄ couplings and the

box diagrams with the massive gauge bosons, see Fig. 4.6-4.7.

It is crucial to take these corrections into account for an accurate description of

the DY production. The NLO differential cross section at the parton level, including

weak O(α) and O(α2) corrections has the form:
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Figure 4.5. The effect of QED final state radiation on the cross section.
Left: dielectron, right: dimuon channel.

Figure 4.6. Diagrams illustrating the weak contributions to qq̄→ γ∗/Z→ l+l−.

Figure 4.7. Box diagrams contributing to qq̄→ γ∗/Z→ l+l−.

dσ̂0+1 = dP2f
1

12

∑
|A(0+1)

γ + A
(0+1)
Z |2(ŝ, t̂, û) + dσ̂box(ŝ, t̂, û). (4.16)

where dσ̂box describes the contribution of the box diagrams, with hatted variables

referring to the partons. This term cannot be absorbed into effective couplings.



36

However, in the Z resonance region, the box diagram can be neglected, and the

dominant contributions to the non-photonic electroweak corrections can be taken

into account by redefining the fine structure function, vertex and self-energy.

Overall, the combined QED and non-QED electroweak corrections are negligibly

small in the wide mass range, but becoming important at high masses and large x

region reaching the value of 10% on average. The QED final state radiation correction

can reach the level of 80% in the Z peak region.

4.1.2 Differential Cross Sections

The parton cross section σ̂(ij → kl), describing the hard scattering of two partons

carrying the longitudinal momentum fractions xi and xj, was derived above. The cross

section of the DY process in proton-proton collisions is expressed by the partonic cross

section folded with the parton distribution functions (see Section 3.2 for more details):

d2σ

dydm2
=
∑
i,j

σ̂(ij → γ∗/Z)σ̂(ij → γ∗/Z)

∫
dxi

∫
dxj×

× fj/p(xj, Q2)fi/p(xi, Q
2)∆ij(xi, xj, x1, x2, Q

2)

(4.17)

where i, j refer to partons participating in the hard collision and the ∆ij is the per-

turbative QCD coefficient function for the DY process, and fi/p,j/p(xi,j, Q
2) denote

the parton distribution functions for a parton of type i, j carrying the longitudinal

momentum fraction xi and xj, respectively.

The coefficient function ∆ij is the convolution kernel for the full perturbative QCD

description of the hard parton-parton collision.

The term ∆ij can be expanded as a power series in the running coupling constant

αs(µ
2) as follows:

∆ij =
∞∑
n=0

(
αs(µ

2)

4π
)n∆(µ2, Q2) (4.18)

In the case of the lowest order perturbative QCD, the coefficient function is given

by

∆
(0)
qq̄ = δ(xi − x1)δ(xj − x2) (4.19)
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The corresponding differential cross section can be obtained by integrating Eq.

(4.17) over the dilepton rapidities:

dσ

dm2
=

∫
dy
∑
i,j

σ̂(ij → γ∗/Z)σ̂(ij → γ∗/Z)

∫
dxi

∫
dxj×

× fj/p(xj, Q2)fi/p(xi, Q
2)∆ij(xi, xj, x1, x2, Q

2)

(4.20)

Double Ratio Measurements

The ratios of cross sections for final states X and Y between different center-of-

mass energies E1,2 =
√
s1,2, are defined as:

RE2/E1(X, Y ) =
σ(X,E2)/σ(Y,E2)

σ(X,E1)/σ(Y,E1)
. (4.21)

Measurements of the DY process in proton-proton collisions depend on various

theoretical parameters such as the QCD running coupling constant, PDFs and renor-

malization and factorization scales. Substantial correlations of the theoretical system-

atic uncertainties in the cross section calculations at different center of mass energies

leads to very precise predictions for the cross section ratios and the normalized cross

section ratios (double ratios) as described in [18].

Angular differential cross section

The general expression for angular distributions of DY dileptons [62] can be fac-

torized as:

d4σ

dPTdydcosθdφ
∝ d2σ

dPTdy
[(1 + cos2θ)+

+
1

2
A0(1− 3cos2θ) + A1sin2θcosθ+

+
1

2
A2sin2θcos2φ+ A3sinθcosφ+

+ A4cosθ + A5sin2θsin2φ+

+ A6sin2θsinφ+ A7sinθsinφ],

(4.22)

where the polar θ and azimuthal φ are the emission angles of the lepton relative to

the quark momentum in the Collins-Soper frame (see Appendix A for more details

on the reference frames). The angular coefficients Ai are in general functions of
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dilepton rapidity y and the transverse momentum PT of the dilepton in the laboratory

frame [63].

Integrating over the dilepton rapidity and transverse momentum yields:

d2σ

dcosθdφ
∝ (1 + cos2θ) +

1

2
A0(1− 3cos2θ) +

1

2
A2sin2θcos2φ+

+ A4cosθ + A5sin2θsin2φ+ A6sin2θsinφ+ A7sinθsinφ,

(4.23)

as the angular coefficients A1 and A3 become vanishingly small after integrating over

y [64]. The expression for the angular DY cross section can be further simplified

taking into account that A5, A6 and A7 are all very close to zero:

d2σ

dcosθdφ
∝ (1 + cos2θ) +

1

2
A0(1− 3cos2θ)+

+
1

2
A2sin2θcos2φ+ A4cosθ,

(4.24)

Integrating over the azimuthal angle, one gets:

dσ

dcosθ
∝ (1 + cos2θ) +

1

2
A0(1− 3cos2θ) + A4cosθ. (4.25)

Considering the quark-antiquark initial state, the A0 term can be ignored, and

the corresponding angular distribution of DY dileptons can be written as:

dσ

dcosθ
∝ (1 + cos2θ) + A4cosθ. (4.26)

The second term in Eq. (4.26) introduces the so-called forward-backward asym-

metry. The forward-backward asymmetry depends on the vector and axial-vector

couplings of the quarks and leptons to the Z boson. The largest asymmetry occurs in

the Z peak region, where it is dominated by the couplings of the Z boson and arises

from the interference of the vector and axial components of its coupling. At high

invariant masses, the asymmetry is dominated by γ∗ − Z interference and is almost

constant independently of invariant mass.

4.2 Measurements in the Past

The DY process has been extensively studied in the past. Various cross sections have

been measured in fixed target and collider experiments for a wide variety of physical
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process and beam energies at FNAL E605, E772, E866, E906, D0, CDF experiments,

and CERN E605, E772, E866, E906, NA3, NA10, UA2 experiments. In general, the

data were in excellent agreement with the predictions of the SM.

The most relevant comparison to the LHC measurements can be made with the

neutral current DY results.

Various experiments to test the predictions of the DY model were performed.

The fixed target experiments, making use of π±, K±, p, p̄, were the earliest [65–67].

The center-of-mass energy for these experiments was limited to 28 GeV for a beam

momentum of 400 GeV.

Since the cross sections of DY production are rapidly falling with invariant mass

(10−38 cm2 GeV−1 nucleon−1 at a mass 10 GeV with 400 GeV protons incident),

most of the fixed target experiments used heavy nuclear targets. In colliding beam

experiments the data rate is normally lower due to the lower luminosity and smaller

cross section at the higher center-of-mass energies.

A large number of predictions for the DY physics were extracted from the past

experiments:

• transverse and invariant mass distributions of DY dileptons,

• PDF constraints,

• the beam and mass number (A) dependence of the cross sections.

The most important predictions of pre-LHC era are discussed in the following.

Invariant Mass Distributions of Drell–Yan Dileptons

The basic information on the shape of the DY continuum can be extracted from

studying the dσ/dm cross section. There are a number of dσ/dm cross section mea-

surements performed in the past in the dielectron and dilepton channels. The most

recent and the most precise measurements were performed by the CDF and D0 col-

laborations. The corresponding CDF measurement [68] was performed in the mass

range from 40 GeV to 1 TeV. The measurement is dominated by systematic uncer-

tainties at low masses and in the Z peak region, where the total uncertainty is 3–20%
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at low masses, and 2–8% in the Z peak region. At high masses (m >120 GeV), the

measurement is dominated by statistical uncertainties, where the total uncertainty

is 15–100%. The additional overall luminosity error is 3.9%. The corresponding D0

measurement [69] was performed in the mass range from to 120 GeV to 1 TeV. It

is dominated by systematic uncertainties. The total uncertainty is 22–74% in the

120–400 GeV mass range. No events were observed with the mass m >400 GeV. In

that region (the 3 highest mass bins), the 95% confidence level (CL) upper limits on

the cross section were quoted.

PDF Constraints

Another relevant use of the DY data is to constrain the PDFs. Depending on the

energy, double-differential cross sections d2σ/dmdx, d2σ/dmpT and d2σ/dmdy can be

used to constrain various kinematic regions and to be later combined in the global fit

(see section (3.2)).

Most of the parton distribution functions were significantly influenced by the fixed

target DY experimental data. It is mainly the FNAL experiments using the 800 GeV

proton beams and different targets, such as hydrogen (E-866), copper (E-605) and

deuterium (E-772, E-866). The center-of-mass energy of the DY process for these

three experiments was 38.8 GeV. These experiments therefore cover a broad range of

dilepton invariant mass and Bjorken x: m ≤ 20 GeV and x > 0.01.

Later, high statistics W-charge asymmetry measurements at the Tevatron exper-

iments D0 and CDF provided the latest constraint for the u and d quark distribu-

tions, specifically the slope of the d(x)/u(x) ratio in the x range down to as low as

0.007 [70, 71]. The agreement between data and theory calculated using the corre-

sponding PDFs was improved by up to 5% in the low-x region.

4.3 Standard Model Cross Sections

The DY process has one of the largest SM cross sections for leptonic final states.

Fig. 4.8 shows the cross sections of various physics processes and the total inclusive

cross section as a function of the center-of-mass energy
√
s.
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Figure 4.8. Standard Model cross sections at the LHC [72].

As seen, with an instantaneous luminosity of L = 1034 cm−2s−1 at the LHC

energies (7–8 TeV), the total cross section reaches 100 mb. The DY cross section

through the Z boson exchange, σZ, is reaching 3000 pb (and is about 5000 pb if the

virtual photon contribution is included, considering the invariant masses m > 20

GeV), making up to 0.2% of the total cross section (which is a significant increase

compared to 0.05% at the Tevatron energy). At
√
s = 8 TeV, the DY cross section

is about 15% larger than at
√
s = 7 TeV, mainly due to the enhanced contribution

from heavy quarks.



42

The most significant backgrounds to the DY process − QCD multijets, top quark

decays into leptons and the Z decays into τ lepton-pairs − all have smaller yet signifi-

cant contributions to the total cross section. Note, that both inclusive cross section of

the top quark production and the jet cross section are rapidly increasing with center

of mass energy (by 2 and 3 orders of magnitude respectively). The cross sections of

the new physics processes are suppressed by few orders of magnitude, although are

rapidly increasing with the collision energy.

At the LHC, multiple proton bunches (order of 1000 bunches) are colliding at

ultra-relativistic energies (7 − 8 TeV). In this regime, a multiple parton scattering

effect on the DY production is not negligible, and must be taken into account. A

process with multiple hard parton scattering occurs when an outgoing state from one

scattering becomes the incoming state of another. At LHC energies, the probability

of a minimum-bias single re-scattering event is about 20%; the probability of double

re-scattering is still relatively low: ∼ 0.5% [73]. The effect of multiple hard parton

scattering is implemented in the Monte-Carlo simulation software used for this thesis.
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5. EXPERIMENTAL APPARATUS

5.1 The Large Hadron Collider

The Large Hadron Collider (LHC) is designed to probe physics at the high energy

frontier. The LHC is a proton-proton accelerator at CERN located on the French-

Swiss border near Geneva. It is the largest and most powerful particle accelerator in

the world [74].

The LHC has generated first proton-proton collisions on November 23, 2009. After

a set of runs at 450 GeV and 1.18 TeV beam energies, the first 7 TeV center-of-mass

energies have been achieved on March 30, 2010. In 2010, approximately 47 fb−1 of in-

tegrated luminosity was delivered at
√
s = 7 TeV (see Fig. 5.1), with an instantaneous

luminosity of 2× 1032cm−2s−1.

The LHC machine was collecting data for almost the entire year 2011. The total

integrated luminosity delivered in 2011 was 5.7 fb−1 (see Fig. 5.1). In 2012 the beam

energy was increased to 4 TeV and the LHC continued to perform smoothly, delivering

over 23 fb−1 of integrated luminosity (see Figure 5.1).

In the coming years the LHC will continue to increase its energy and instanta-

neous luminosity, eventually reaching the collision energy of around 13 TeV and an

instantaneous luminosity of 1034cm−2s−1.

5.2 The Compact Muon Solenoid Detector

The central feature of the CMS detector is a superconducting solenoid of 6 m internal

diameter, providing a magnetic field of 3.8 T. Within the superconducting solenoid

volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic

calorimeter (ECAL), and a brass and scintillator hadron calorimeter (HCAL), each

composed of a barrel and two endcap sections. Muons are measured in gas-ionization

detectors embedded in the steel flux-return yoke outside the solenoid. Extensive
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Figure 5.1. Integrated luminosity delivered by the LHC experiments
in 2010-2012 [75].

forward calorimetry complements the coverage provided by the barrel and endcap

detectors. Fig. 5.2 shows the rφ-view of the CMS detector slice.

5.2.1 The Tracker

The inner tracking detectors are designed to reconstruct charged particles with good

momentum resolution and high efficiencies in the range of |η| < 2.5.
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Figure 5.2. The rφ-view of a slice of the CMS detector.

The most important aim of the pixel detector is to precisely reconstruct the pri-

mary interaction vertex and secondary vertices from the decay of short flight-path

particles. The primary and secondary vertices can be distinguished by measuring the

impact parameter of particles. The pixel detector is the innermost subdetector of the

CMS and is composed of three barrel layers and two endcap disks at each endcap.

The barrel layers have a length of 53 cm and are located at cylinders with mean radii

of 4.4 cm, 7.3 cm, and 10.2 cm respectively. The endcap layers are arranged in a

turbine-like shape with a 20◦ tilt, covering the radius from 6 to 15 cm and are placed

at |z| = 34.5 cm and 46.5 cm. The design of the pixel detector allows the measure-

ment of tracks originating within 2 m from the interaction point in the |η| < 2.2

region.

The silicon strip tracker (see Fig. 5.3) is located just outside the pixel tracker.

There are four inner barrel layers called the tracker inner barrel (TIB) and six outer

barrel layers called the tracker outer barrel (TOB). At each endcap side, there are

three inner layers called tracker inner disks (TID) and nine outer layers called tracker

endcap (TEC). The first two TIB layers and the first two TOB layers are made of

double-sided (stereo) modules, composed of two modules mounted back-to-back with

their strips tilted by 100 mrad. The rest of the TIB and TOB are made of single-sided
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(mono) modules. The silicon tracker has 10 million channels with an active area close

to 198 m2.

Figure 5.3. View of the CMS tracker in the rz-plane. Each line in the
strip tracker represents a silicon strip detector, whereas lines in the
pixel detector represent ladders and petals on which the detectors are
mounted in the barrel and endcaps, respectively.

5.2.2 The Calorimeters

The purpose of the electromagnetic calorimeter (ECAL) is to measure the energy of

electrons and photons.

The ECAL is a hermetic homogeneous calorimeter made of lead-tungstate (PbWO4)

crystals and is placed inside the magnetic coil. Lead tungstate has the property of

excellent radiation hardness. Lead tungstate crystals have a short radiation length

(X0 = 0.89 cm) and a small Moliere radius (RM = 2.2 cm). The ECAL is composed

of 61200 crystals in the central barrel part, and 7324 crystals in each endcap.

In the barrel region, silicon avalanche photodiodes (APDs) are employed, while

vacuum phototriodes (VPTs) are used in the endcaps. The temperature of the system

is kept stable at 0.15◦C by a water cooling system since both the crystals and the

APDs response are sensitive to temperature changes. The barrel region of the ECAL

covers the pseudorapidity region up to η < 1.479. The barrel part has an inner radius

of 129 cm and is composed of 36 supermodules, each containing 1700 crystals. The
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barrel crystals have a front face cross section of 2222 mm2 and a length of 230 mm

corresponding to 25.8X0. The endcaps cover the η region from 1.48 to 3.0. The

endcap crystals have dimensions of 28.6 × 28.6 × 220 mm2. A preshower device is

located in front of the endcaps. Two planes of silicon strip detectors are placed behind

disks of lead absorber at depths of 2X0 and 3X0. The energy resolution for electrons

from Z boson decays is better than 2% in the central region of the ECAL barrel and is

2-5% elsewhere. The derived energy resolution for photons varies from 1.1% to 2.6%

in the barrel and from 2.2% to 5% in the endcaps [76].

The hadron calorimeter (HCAL) is placed outside the electromagnetic calorimeter

and inside the superconducting coil. The HCAL is designed to reconstruct jets and

missing energy (missing ET) with high precision. The HCAL barrel region covers

an η range up to 1.74, and the endcaps cover an η region up to 3. The HCAL is

composed of brass layers as absorbers, interleaved by thick plastic scintillator layers.

The brass layers have thicknesses of 60 mm in the barrel and 80 mm in the endcaps.

The scintillator layers are 4 mm thick. The light is collected by wavelength shifters.

The scintillator in each layer is divided into tiles with a granularity matching the

granularity of the ECAL trigger towers.

5.2.3 The Solenoid

The remarkable feature of the CMS detector is its strong magnetic field provided by

its 13 m long superconducting cylindrical Niobium-Titanium coil. This coil has a

diameter of 5.9 m with a uniform magnetic field of 3.8 T at its center. The magnetic

flux is returned by a double duty iron yoke support structure [77].

5.2.4 The Muon System

The muon system is designed to identify muons and to accurately measure their mo-

menta. It is one of the most important subdetectors used for the Drell–Yan analysis.

The detector design allows to reconstruct muons with high efficiency and measure

their momenta with high accuracy. The muon system is the outermost part of the

CMS detector. The muon chambers are instrumented in the magnetic iron return

yoke. The magnetic field inside the plates of the yoke is used to bend the parti-
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cles which allows the measurement of the momenta from the measurement of their

curvature. The muon system is composed of three independent subsystems. In the

barrel region (|η| < 1.0) Drift Tube (DT) detectors are installed, and Cathode Strip

Chambers (CSC) are used in the endcap regions (0.8 < |η| < 2.4). Resistive Plate

Chambers (RPC) are installed in the |η| < 1.6 region, covering both the barrel and

the endcaps. RPCs have limited spatial resolution, but good time resolution thus can

provide excellent bunch crossing identification. The muon pT resolution is between

0.8% and 3% depending on η and in good agreement with the simulation [78].

The Drift Tube Chambers

The barrel muon system consists of five wheels placed along the z axis, each

one divided into 12 sectors and four stations called MB1, MB2, MB3, MB4 from

the inside out. Each sector covers a 30◦ region in φ. Each station consists of 12

chambers, except for MB4, which has 14 chambers. Each DT chamber consists of

two or three superlayers, one or two superlayers measure the rφ coordinate, and

the remaining orthogonal superlayer measures the rz coordinate. Each superlayer

is composed of four layers of parallel cells. The most basic element is a drift tube

cell, with dimensions of 42 × 13 mm2. A layer of cells is placed in between two

parallel aluminum planes with I-shaped aluminum beams defining their boundaries

and also serving as cathodes. The anode is a 50 meter stainless steel wire placed

in the center of the cell. The distance of the track from the wire is measured by

the drift time of electrons. To improve the distance-time linearity, additional field

shaping is obtained with two positively-biased insulated strips, glued on the planes

in correspondence to the wire. Typical voltages are +3600 V, +1800 V and −1200 V

for the wires, the strips and the cathodes, respectively. The gas used is an 85%/15%

mixture of Ar/CO2, which provides good quenching properties and a drift velocity of

about 5.6 cm/s.

The Cathode Strip Chambers

The endcap muon system is located at both ends of the barrel cylinder having

four stations at each side. They are numbered from ME1 to ME4 ordered based
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on their distances from the center of the detector. The innermost CSC stations are

composed of three concentric rings (ME1/1, ME1/2, ME1/3), while the other stations

are composed of two disks only (MEn/1 and MEn/2).

Each ring consists of 18 or 36 trapezoidal chambers overlapping in φ. Each CSC

chamber is composed of six layers. Each of which consists of an array of anode wires

bound between two cathode planes. Strips are intended to measure the φ coordi-

nate, and are arranged in the radial direction. Wires are arranged in the orthogonal

direction and measure the r coordinate.

5.2.5 The Trigger System

At the LHC design luminosity, the total event rate is expected to be about 1 GHz.

However it is impossible to record all events. Therefore the trigger system must reduce

the input rate down to a few hundred Hz as well as maintain high efficiencies on the

potentially interesting events by selecting events based on their physics signatures.

The online filtering process consists of two main steps: the Level-1 (L1) trigger and

the High-Level trigger (HLT).

The L1 trigger is implemented in dedicated programmable hardware. It uses

information from the calorimeters and muon system to reduce the overall event rate

to less than 100 kHz. The L1 trigger has to make an accept-reject decision of an event

within 3.2 µs to allow more time for more sophisticated algorithms in the HLT. The L1

trigger is organized into a calorimeter trigger and a muon trigger and the information

is transferred to the Global Trigger (GT) which makes the final accept-reject decision.

Upon receipt of a L1 trigger accept, the data are transferred to the front-end

readout buffers. The HLT processes all events triggered by the L1 trigger and reduces

the rate down to a few hundred Hz. The HLT rate is controlled by the trigger

menu, which is designed with a target luminosity in mind to keep the overall rate

under control. The CPU usage of the HLT is optimized by the concept of regional

reconstruction and by rejecting events as early as possible. The basic strategy is to

reconstruct each physics object in different subsystems which can be used to make

decisions first and then involve information from more subsystems and make decisions
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at a higher level. HLT paths are usually divided into several virtual levels, each level

involves more information than its previous level, and reduces the event rate from

its previous level. A more detailed description of the CMS detector, together with a

definition of the coordinate system used and the relevant kinematic variables, can be

found in [74].
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6. DRELL–YAN CROSS SECTION MEASUREMENT

Measuring the DY cross section is one way to test and verify the predictions of the

Standard Model of particle physics at high level of precision. The DY differential

cross section in bins of invariant mass allows to assess both the absolute value and

the shape of the DY spectrum. The rapidity distributions are particularly important

as they are sensitive to the PDFs of the interacting partons. The measurements

of the DY differential cross section dσ/dm, and the double-differential cross section

d2σ/dmd|y| in the dimuon and dielectron channels are presented. It is crucial to

perform the DY analysis in two individual channels in order to avoid possible biases

in the measurement results and to verify the correctness of the analysis techniques

in each decay channel. The DY analysis in the dimuon and dielectron channels

relies on different parts of the CMS detector, and uses independent online and offline

selection criteria. Performing the measurement using dimuons allows the extraction of

a cleaner signal at low and high invariant masses providing higher signal significance

after event selection. The muon momentum resolution degrades as the momentum

increases, which requires special care to be taken of the migration effects in the high-

mass region. A major reason for carrying out the DY cross section measurement

with dielectrons is to take advantage of the electron energy resolution at high mass,

which allows a precise measurement up to TeV scale invariant masses. In addition,

a fundamental SM principle – lepton universality – can be tested. After carrying

out the measurements in the individual lepton channels and checking consistency a

combination is performed to achieve a higher precision. Since the initial-state parton

configuration is symmetric in the proton-proton collisions, as shown in Fig. 6.1, the

resulting rapidity distribution of DY dileptons is also symmetric. As a result, the

dσ/dy differential cross section is symmetric around zero in a given dilepton invariant
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Figure 6.1. The relationship of the Bjorken scaling variables of the
initial-state partons (x±) and the dilepton rapidity y.

mass region [79]. Thus, we consider only the differential cross section in |y| in order

to reduce the statistical errors.

The measurement dσ/dm was first performed with 7 TeV data in the mass range

15 < m < 1500 GeV [19]. Dominated by statistical uncertainties above 160 GeV, it

has provided very precise measurement at the Z peak and low mass. A more precise

and complete measurement was then performed at 8 TeV, extending the mass range

to 2000 GeV [20]. The double-differential cross section d2σ/dmd|y| are performed in

the mass range 20 < m < 1500 GeV and absolute dilepton rapidity from 0 to 2.4

at 7 and 8 TeV center-of-mass energies. Almost 5 times as large an amount of data

available in the 8 TeV dataset had lead to a significant reduction of statistical uncer-

tainties and made it possible to apply data-driven methods for a larger set of analysis

steps. The 8 TeV measurement is dominated by systematic uncertainties up to around

320 GeV and statistically dominated at higher masses. The dσ/dm measurements at

7 and 8 TeV are performed in dimuon and dielectron channels. The d2σ/dmd|y| mea-

surements at 7 TeV are performed in the dimuon channel only, because adding the
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dielectron cross section did not increase the overall precision of the combined mea-

surement. However, both dimuon and dielectron channels are considered at 8 TeV.

The increase in the center-of-mass energy at the LHC from 7 to 8 TeV provides

the opportunity to measure the ratios of normalized DY cross sections – the double

ratios. The double ratios predicted at 7 and 8 TeV are presented, providing substantial

cancellations of theoretical systematic uncertainties.

The measurements are based on a data sample of proton-proton collisions collected

with the CMS detector and corresponding to integrated luminosities of 4.8 fb−1 (di-

electron) and 4.5 fb−1 (dimuon) at
√
s = 7 TeV and 19.7 fb−1 at

√
s = 8 TeV.

6.1 Analysis Procedure

The first step of the analysis is the event selection. A set of features is identified

and combined into a classifier in order to increase the signal significance and suppress

backgrounds. After event selection, the remaining backgrounds are estimated. Next,

the observed background-subtracted yield is corrected for the effects of the migra-

tion of events among bins of mass and rapidity due to the detector resolution. The

acceptance and the efficiency corrections are then applied. Finally, the migration of

events due to FSR is corrected. Systematic uncertainties associated with each of the

analysis steps are evaluated.

Monte Carlo (MC) samples are used in the analysis for determining efficiencies,

acceptances, and for the determination of systematic errors. Data-driven methods

are applied to determine efficiency correction factors and backgrounds. MC event

samples have been generated using a variety of generators discussed in Appendix D.

The Powheg simulated sample is based on NLO calculations, and a correction

is applied to take into account higher-order QCD and electroweak (EW) effects. The

correction factors binned in dilepton rapidity y and transverse momentum pT are

determined in each invariant-mass bin to be the ratio of the double-differential cross

sections calculated at NNLO QCD and NLO EW with Fewz and at NLO with

Powheg, as described in Appendix C. The corresponding higher-order effects de-

pend on the dilepton kinematic variables. Higher-order EW corrections are small in
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comparison to FSR corrections. They increase for invariant masses in the TeV re-

gion [80], but are insignificant compared to the experimental precision for the whole

mass range under study. It is important to apply this correction because NNLO

QCD effects are rather important in the low-mass region (below 40 GeV). Namely,

the effect of the NNLO kinematic correction factors on the acceptance reaches up to

50% in the low-mass region, although it is almost negligible in the high-mass region

(above 200 GeV).

Fig. 6.2 summarizes the analysis procedure for the dσ/dm and d2σ/dmd|y| differ-

ential cross section measurements.

Figure 6.2. The analysis procedure for the dσ/dm and d2σ/dmd|y|
differential cross section measurements.

The measured cross sections are calculated using the following formula:

dσ

dv
=

Nu

A · ε · ρ · Lint

, (6.1)

where v is a variable in which bins the measurement is performed (for instance,

invariant mass or absolute rapidity), Nu denotes the background-subtracted yield
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obtained using a matrix inversion unfolding technique to correct for the effects of the

migration of events in mass due to the detector resolution. The acceptance A and

the efficiency ε are both estimated from simulation, while ρ, the correction (scale)

factor accounting for the differences in the efficiency between data and simulation, is

extracted using a technique described in Appendix F.

The double-differential cross section measurement is performed within the detector

acceptance in order to reduce model dependence and increase the sensitivity to PDFs.

The correction for FSR is performed to facilitate the comparison to the theoretical

predictions and to properly combine the measurements in the dielectron and dimuon

channels. The FSR correction is estimated separately from the detector resolution

correction by means of the same unfolding technique.

The differential cross sections are normalized to the Z peak region (60 < m <

120 GeV) and thus the integrated luminosity Lint is only used for the Z boson pro-

duction cross section discussed in Section 6.8.

The differential dσ/dm cross section measurement is carried out in a number of

bins sufficient to measure the shape of the distribution. However, there is a number

of competing factors setting a lower bound on the size of the analysis bin. Namely:

the mass resolution scale, the number of events, and the size of the systematic uncer-

tainties. As a result, 41 mass bins with the following boundaries are considered for

the measurement:

15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 64, 68, 72, 76, 81, 86, 91,

96, 101, 106, 110, 115, 120, 126, 133, 141, 150, 160, 171, 185,

200, 220, 243, 273, 320, 380, 440, 510, 600, 1000, 1500, 2000 GeV

(6.2)

The measurement at 7 TeV center-of-mass energy was performed up to 1500 GeV. The

mass range have been extended to 2000 GeV as more statistics become available at

high mass at 8 TeV.

The binning for the double-differential d2σ/dmd|y| cross section is chosen in or-

der to maximize the sensitivity of the measurements for the PDF constraints. It

is essential to measure the rapidity dependence of the cross section with high accu-
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racy in order to increase the PDF constraining power. Thus, the double-differential

d2σ/dmd|y| measurement is performed in only 6 invariant mass bins using bin edges:

20, 30, 45, 60, 120, 200, 1500 GeV. This choice of mass bins splits the low-mass re-

gion, FSR region, Z peak region and the high-mass region providing sufficient statistics

in each mass region to allow for a very precise measurement of rapidity distribution.

For each mass bin, 24 bins of absolute dilepton rapidity are defined, except for the

highest mass bin, where only 12 absolute dilepton rapidity bins are used (see Table

6.1). The differential cross sections are first measured separately for both lepton

Table 6.1

Dilepton rapidity–invariant mass binning for the d2σ/dmd|y| cross
section measurement.

Mass bin (GeV) Number of equidistant rapidity bins Rapidity range

20-30 24 |y| < 2.4

30-45 24 |y| < 2.4

45-60 24 |y| < 2.4

60-120 24 |y| < 2.4

120-200 24 |y| < 2.4

200-1500 12 |y| < 2.4

flavors and found to be in agreement. The combined cross section measurement is

then compared to the NNLO QCD predictions as computed with Fewz [81] using

the CT10 NNLO PDF. The d2σ/dmd|y| measurement is compared to the NNLO the-

oretical predictions as computed with Fewz using CT10, NNPDF2.1, MSTW2008,

HERAPDF15, JR09, ABKM09, and CT10W PDFs [47,52,82–85].
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6.2 Event Selection

The experimental signature of the DY production is two isolated and oppositely

charged leptons originating from the same primary vertex. The analysis presented in

this thesis is based on the dilepton data samples selected by inclusive double-lepton

triggers.

6.2.1 Muon Selection

The first step in the muon selection is the trigger. The choice of the L1 and HLT

trigger path is intended to maximize the number of events collected for further offline

analysis. Two alternative strategies are considered: (1) select events containing at

least one muon having pT above a certain threshold (single muon triggers), and (2)

select events containing at least two muons, each having pT above a certain threshold

(dimuon triggers). The corresponding pT thresholds are set in the trigger-menu for

each data-taking period to keep trigger input rates suitable for storage. The dimuon

trigger strategy is selected for the DY analysis because it allows to achieve larger

statistics gains in low-mass region. A combination of the lowest pT threshold un-

prescaled dimuon triggers without isolation requirement is used to select events for

further offline analysis. The triggers selecting events for the data samples are sum-

marized in Table 6.2. Thus, at 7 TeV a combination of lowest pT-threshold dimuon

Table 6.2
Summary of the triggers used in the 7 and 8 TeV analyses.

Trigger path 7 TeV 8 TeV

HLT DoubleMu6 Runs 160403-164236

HLT Mu13 Mu8 Runs 165088-180252

HLT Mu13 TkMu8 Runs 190645-208686

triggers is used while at 8 TeV the single dimuon trigger path is used for the entire

data-taking period.
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Each muon is required to be within the acceptance of the muon subsystem (|η| <

2.4). The leading muon in the event is required to have a transverse momentum

pT > 14 GeV (pT > 20 GeV) and the trailing muon pT > 9 GeV (pT > 10 GeV) in

the 7 TeV (8 TeV) analyses respectively, allowing to operate on the plateau region of

the trigger efficiency.

The muons are required to pass the standard CMS muon identification and qual-

ity control criteria that are based on the number of hits found in the tracker, the

response of the muon chambers, and a set of matching criteria between the muon

track parameters as measured by the CMS tracker and those measured in the muon

chambers [78]. Both muons are required to match the HLT trigger objects. Cosmic

ray muons that traverse the CMS detector close to the interaction point can appear as

back-to-back dimuons; these are removed by requiring both muons to have an impact

parameter in the transverse plane of less than 2 mm with respect to the center of the

interaction region and the opening angle between the two muons to differ from π by

more than 5 mrad. In order to reject muons from pion and kaon decays, a common

vertex for the two muons is required. An event is rejected if the dimuon vertex prob-

ability is smaller than 2%. More details on muon reconstruction and identification

can be found in [78].

To suppress the background contributions due to muons originating from heavy-

quark decays and non-prompt muons from hadron decays, both muons are required

to be isolated from other tracks within a cone of size ∆R = 0.3, with ∆R =√
(∆η)2 + (∆φ)2. The relative combined isolation of the muon, based on the CMS

particle-flow algorithm [86, 87] is used. The isolation variable is defined as Icomb
rel =∑

∆R<0.3(ET+pT)/pT(µ), where the sum is over the transverse energy ET as measured

in the electromagnetic and hadron calorimeters and the transverse momentum pT of

charged tracks excluding the muon candidate as measured in the tracker subsystem.

The isolation is defined relative to the muon candidate transverse momentum pT(µ).

The e−γ energy deposits have been excluded from the isolation definition in the 7 TeV

analysis to avoid large pileup effect. In the 8 TeV analysis, the contribution due to
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pileup was explicitly subtracted from the isolation variable. The muons are required

to satisfy Icomb
rel < 0.2 (0.15) in the 7 TeV (8 TeV) analyses correspondingly. The

isolation threshold was changed compared to the 7 TeV measurement [19] to achieve

optimum performance in terms of signal efficiency and background misidentification

rate.

Events are selected for further analysis if they contain opposite-charge muon pairs

meeting the above requirements. If more than one dimuon candidate passes these

selections, the pair with the highest χ2 probability for a kinematic fit to the dimuon

vertex is selected.

Table 6.3 summarizes the selection cuts used in the differential and double-differential

cross section measurements in the dimuon channel.

Table 6.3
Summary of the event selection cuts in the dimuon analysis.

Selection cut 7 TeV 8 TeV

Kinematic acceptance pT > 9, 14 GeV pT > 10, 20 GeV

Geometric acceptance |η| < 2.4

Muon identification Each muon reconstructed as Global and Tracker Muon

Global χ2/Ndof < 10

Npixel > 0

Nmuon > 0

Nsegments matched > 1

Ntrk. layers > 5

|dxy(PV )| < 2 mm

Isolation
∑

i(I
ch
had + Ineut

had )/pµT < 0.2
∑

i(Ie−γ + Ich
had + Ineut

had )/pµT < 0.15

Angle between muon tracks α3D = arccos ((~p1
track, ~p2

track)/ptrack
1 /ptrack

2 ) < 5 mrad

Vertex Probability Vertex Probability (dimuon) > 0.02

Fig. 6.8-6.11 show the distributions for each of the variables listed in Tab. 6.3.
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Figure 6.3. Distributions for the variables used to discriminate be-
tween signal and various backgrounds in the 7 TeV analysis (as listed
in Tab. 6.3), not including the cut on the variable plotted.
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Figure 6.4. Distributions for the variables used to discriminate be-
tween signal and various backgrounds in the 7 TeV analysis (as listed
in Tab. 6.3), not including the cut on the variable plotted.
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Figure 6.5. Distributions for the variables used to discriminate be-
tween signal and various backgrounds in the 8 TeV analysis (as listed
in Tab. 6.3), not including the cut on the variable plotted.

As seen, the data and simulation agree well at both the 7 and 8 TeV center-of-mass

energies, which is an indication that most of the detector hardware, reconstruction

software, and simulation is well understood. The simulated QCD sample has lim-

ited statistics after the selection (especially at 8 TeV), which results in fluctuations in

some distributions and a discrepancy in the tail of the isolation distribution. These

fluctuations do not affect the measurements as the data-driven estimated is used.

The difference between pT distributions at the low transverse momentum region be-

tween the two center-of-mass energies is expected due to the change in the online pT

requirements.

6.2.2 Electron Selection

Dielectron events at 8 TeV are selected by triggering on two electrons with minimum

ET requirements of 17 GeV for one of the electrons and 8 GeV for the other. This

approach provides the lowest-ET dielectrons so that one can probe the lowest possible

dielectron invariant masses.
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Figure 6.6. Distributions for the variables used to discriminate be-
tween signal and various backgrounds in the 8 TeV analysis (as listed
in Tab. 6.3), not including the cut on the variable plotted.

The dielectron candidates are selected online by requiring two clusters in the

ECAL. The offline reconstruction of the electrons starts by building super-clusters [88]

in the ECAL in order to collect the energy radiated by bremsstrahlung in the tracker

material. A specialized tracking algorithm is used to accommodate changes of the

curvature caused by the bremsstrahlung. The super-clusters are then matched to
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Figure 6.7. Distributions for the variables used to discriminate be-
tween signal and various backgrounds in the 8 TeV analysis (as listed
in Tab. 6.3), not including the cut on the variable plotted.

the electron tracks. The electron candidates are required to have a minimum ET of

10 GeV after the correction for the ECAL energy scale.

The reconstruction of an electron is based on the CMS particle-flow algorithm [86,

87]. The electrons are identified by means of shower shape variables while the elec-

tron isolation criterion is based on a variable that combines tracker and calorimeter
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information. For isolation, the transverse momenta of the particles within a cone

of ∆R < 0.3 are summed, excluding the electron candidate itself. The ratio of the

summed transverse momenta (IPF) to the transverse momentum of the electron can-

didate (IPF/pT) is required to be less than 0.15 for all the electrons, except for those

with ET < 20 GeV in the endcaps, where the requirement is tightened to be less than

0.10. The contribution due to pileup is subtracted from the isolation variable. The

isolation criteria are optimized to maximize the rejection of misidentified electrons

from QCD multijet production and the non-isolated electrons from the semileptonic

decays of heavy quarks. The electron candidates are required to be consistent with

particles originating from the primary vertex in the event. The electrons originating

from photon conversions are suppressed by requiring that there be not more than 1

expected inner tracker hits on the reconstructed track matched to the electron, and

also by rejecting a candidate if it forms a pair with a nearby track that is consistent

with a conversion. Additional details on electron reconstruction and identification

can be found in [88].

Both electrons are selected with the impact parameter requirements |dxy| < 0.02 cm

and |dz| < 0.1 cm with respect to the primary vertex. The leading electron candidate

in an event is required to have a transverse momentum of pT > 20 GeV, while the

trailing electron candidate must have pT > 10 GeV. As with muons, electrons are

required to match HLT trigger objects, but no charge requirement is imposed on the

electron pairs to avoid efficiency loss due to non-negligible charge misidentification.

In case there are multiple dielectron pairs passing the selection cuts, a lepton pair

with the highest invariant mass is kept for further analysis. Nevertheless, the fraction

of events with multiple dielectron candidates is rather small: 0.02% of observed events

and 0.1% of events in the signal MC sample.

Table 6.4 summarizes the selection cuts used in the differential and double-differential

cross section measurement in the dielectron channels.

Fig. 6.8-6.12 show the distributions of the variables listed in Table 6.4. As seen, the

distributions for the variables used in the selection are well reproduced in simulation
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Table 6.4
Summary of the event selection cuts in dielectron analysis. Values in
the brackets denote the cut thresholds in the endcaps.

Selection cut Cut threshold

Kinematic acceptance pT > 10, 20 GeV

Geometric acceptance |η| < 2.4

Electron identification Medium Working point

Track-cluster matching in η-direction, dηIn < 0.004(0.007)

Track-cluster matching in φ-direction, dφIn < 0.06(0.03)

Lateral shower shape, σiηiη < 0.01(0.03)

Relative hadronic activity, H/E < 0.12(0.10)

Conversion rejection requirement

Not more than 1 expected inner tracker hits

Vertex: d0 < 0.02(0.02)

Vertex: dz < 0.1(0.1)

|1/E − 1/p| < 0.05(0.05)

PF Isolation IPF/pT < 0.15 in barrel

In endcap, IPF/pT < 0.15 when pT > 20 GeV,

and IPF/pT < 0.10 when pT < 20 GeV

in the dielectron analysis as well. The QCD simulated sample has low statistics after

the selection and appears in the plots as a set of peaks in the isolated bins. However,

this does not affect the analysis as the data-driven QCD background estimate is used

in the measurement.



67

Figure 6.8. Electron supercluster ET (left) and pseudorapidity (right)
distributions for data and simulation in the 8 TeV analysis, not includ-
ing the cut on the variable plotted.
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Figure 6.9. Distributions for the variables used to discriminate be-
tween signal and various backgrounds in the dielectron channel in the
8 TeV analysis (as listed in Tab. 6.4), not including the cut on the
variable plotted. Central pseudorapidity region (|η| < 0.8) is plotted.
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Figure 6.10. Distributions for the variables used to discriminate be-
tween signal and various backgrounds in the dielectron channel in
the 8 TeV analysis (as listed in Tab. 6.4), not including the cut on
the variable plotted. Peripheral pseudorapidity region (|η| > 0.8) is
plotted.
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Figure 6.11. Distributions for the variables used to discriminate be-
tween signal and various backgrounds in the dielectron channel in the
8 TeV analysis (as listed in Tab. 6.4), not including the cut on the
variable plotted. Central pseudorapidity region (|η| < 0.8) is plotted.

Figure 6.12. Distributions for the variables used to discriminate be-
tween signal and various backgrounds in the dielectron channel in
the 8 TeV analysis (as listed in Tab. 6.4), not including the cut on
the variable plotted. Peripheral pseudorapidity region (|η| > 0.8) is
plotted.
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6.3 Background Estimation

The major background contributions in the dielectron channel arise from τ+τ− and

tt processes in the low-mass region and from QCD events with multiple jets at high

invariant mass. The background composition is somewhat different in the dimuon

final state. Multijet events and DY production of τ+τ− pairs are the dominant

sources of background in the dimuon channel at low invariant mass and in the region

just below the Z peak. Diboson and tt production followed by leptonic decays are the

dominant sources of background at high invariant mass. Lepton pair production in γγ-

initiated processes, where both initial-state protons radiate a photon, is significant at

high mass. The contribution from this channel is treated as an irreducible background

and is estimated with Fewz [89]. To correct for this background, a bin-by-bin ratio of

the DY cross sections with and without the photon induced contribution is calculated

(see Appendix E for details). This bin-by-bin correction is applied after the mass

resolution unfolding step, whereas other backgrounds for which we have simulated

events are corrected for before. This background correction is negligible at low mass

and in the Z peak region, rising to approximately 20% in the highest mass bin.

In the dielectron channel, the QCD multijet background is estimated with a data

sample collected with the trigger requirement of a single electromagnetic cluster in the

event. Non-QCD events such as DY are removed from the data sample using event

selection and event subtraction using simulation, leaving a sample of QCD events

with characteristics similar to those in the analysis data sample. This sample is used

to estimate the probability for a jet to pass the requirements of the electromagnetic

trigger and to be falsely reconstructed as an electron. This probability is then applied

to a sample of events with one electron and one jet to estimate the background

contribution from an electron and a jet passing electron selection requirements. As

the contribution from two jets passing the electron selections is considered twice in

the previous method, the contribution from a sample with two jets multiplied by the

square of the probability for jets passing the electron selection requirements is further

subtracted.
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The QCD multijet background in the dimuon channel is evaluated by selecting

a control data sample before the isolation and charge sign requirements are applied,

following the method described in [90].

The largest of the backgrounds consist of final states with particles decaying by

EW interaction, producing electron or muon pairs, for example, tt, τ+τ−, and WW.

Notably, these final states contain electron-muon pairs at twice the rate of electron

or muon pairs. These electron-muon pairs can be cleanly identified from data and

properly scaled (taking into account the detector acceptance and efficiency) in order

to calculate the background contribution to the dielectron and dimuon channels.

Background yields estimated from an eµ data sample are used to reduce the sys-

tematic uncertainty due to the limited theoretical knowledge of the cross sections of

the SM processes. The residual differences between background contributions esti-

mated from data and simulation are taken into account in the systematic uncertainty

assignment, as detailed in Section 6.7.

The background estimation methods are discussed in Appendix F in detail.

The dilepton yields for data and simulated events at 7 TeV center of mass energy

in bins of invariant mass are reported in Fig. 6.13. As shown in the figure, the QCD

multijet process is the dominant background in the low-mass region, contributing

up to about 10% in the dimuon rapidity distribution. In the high-mass regions, tt

and single-top-quark (tW) production processes are dominant and collectively con-

tribute up to about 20%. The photon induced background is absorbed in the signal

distribution, no correction is applied at this stage.

The expected shapes and relative dimuon yields from data and MC events in bins

of dimuon rapidity, per invariant mass bin, can be seen in Fig. 6.14.

The expected shapes and relative dimuon an dielectron yields from data and MC

events at 8 TeV center of mass energy in bins of invariant mass can be seen in Fig. 6.15.

As shown in the figure, the background contribution at low mass is no larger than

5% in both decay channels. In the high-mass region, background contamination
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Figure 6.13. The observed dimuon invariant mass spectrum for data
and MC events and the corresponding ratios of observed to expected
yields. The QCD multijet and tt background yields are predicted us-
ing control samples in data. The EW histogram indicates the diboson
and W+jets production. The NNLO reweighted Powheg MC sig-
nal sample is used. No other corrections are applied. Error bars are
statistical only.

is more significant, reaching approximately 50% (30%) in the dielectron (dimuon)

distributions.

The expected shapes and relative dilepton yields from data and Monte Carlo

events in bins of dilepton rapidity per invariant mass slice can be seen in Fig. 6.16.

As shown in the figure, QCD background is dominating in the low mass regions and

it contributes up to about 10% in the dimuon rapidity distribution of the regions. In

the high mass regions, tt and single top backgrounds are dominating and contributing

up to about 20% to the total yield.



74

E
nt

rie
s 

pe
r 

bi
n

2000

4000

6000

8000

10000
 = 7 TeV, 20 < m < 30 GeVs at  -1 Ldt = 4.5 fb∫CMS, 

Data   
   µµ→*/Z γ

   ττ→*/Z γ
EW  

W   t+tW+tt
QCD   

 = 7 TeV, 20 < m < 30 GeVs at  -1 Ldt = 4.5 fb∫CMS, 

E
nt

rie
s 

pe
r 

bi
n

2000

4000

6000

8000

10000

Absolute dimuon rapidity, |y|
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

D
at

a/
M

C

0.7
0.8
0.9

1
1.1
1.2
1.3

E
nt

rie
s 

pe
r 

bi
n

0

2000

4000

6000

8000

10000

12000

14000

16000
 = 7 TeV, 30 < m < 45 GeVs at  -1 Ldt = 4.5 fb∫CMS, 

Data   
   µµ→*/Z γ

   ττ→*/Z γ
EW  

W   t+tW+tt
QCD   

 = 7 TeV, 30 < m < 45 GeVs at  -1 Ldt = 4.5 fb∫CMS, 

E
nt

rie
s 

pe
r 

bi
n

0

2000

4000

6000

8000

10000

12000

14000

16000

Absolute dimuon rapidity, |y|
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

D
at

a/
M

C

0.7
0.8
0.9

1
1.1
1.2
1.3

E
nt

rie
s 

pe
r 

bi
n

0

1000

2000

3000

4000

5000

6000

7000

8000  = 7 TeV, 45 < m < 60 GeVs at  -1 Ldt = 4.5 fb∫CMS, 

Data   
   µµ→*/Z γ

   ττ→*/Z γ
EW  

W   t+tW+tt
QCD   

 = 7 TeV, 45 < m < 60 GeVs at  -1 Ldt = 4.5 fb∫CMS, 

E
nt

rie
s 

pe
r 

bi
n

0

1000

2000

3000

4000

5000

6000

7000

8000

Absolute dimuon rapidity, |y|
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

D
at

a/
M

C

0.7
0.8
0.9

1
1.1
1.2
1.3

E
nt

rie
s 

pe
r 

bi
n

0

20

40

60

80

100

120

140

160

310×

 = 7 TeV, 60 < m < 120 GeVs at  
-1

 Ldt = 4.5 fb∫CMS, 

Data   
   µµ→*/Z γ

   ττ→*/Z γ
EW  

W   t+tW+tt
QCD   

 = 7 TeV, 60 < m < 120 GeVs at  
-1

 Ldt = 4.5 fb∫CMS, 

E
nt

rie
s 

pe
r 

bi
n

0

20

40

60

80

100

120

140

160

310×

Absolute dimuon rapidity, |y|
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

D
at

a/
M

C

0.7
0.8
0.9

1
1.1
1.2
1.3

E
nt

rie
s 

pe
r 

bi
n

0

200

400

600

800

1000

1200

1400

1600

1800

2000  = 7 TeV, 120 < m < 200 GeVs at  -1 Ldt = 4.5 fb∫CMS, 

Data   
   µµ→*/Z γ

   ττ→*/Z γ
EW  

W   t+tW+tt
QCD   

 = 7 TeV, 120 < m < 200 GeVs at  -1 Ldt = 4.5 fb∫CMS, 

E
nt

rie
s 

pe
r 

bi
n

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Absolute dimuon rapidity, |y|
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

D
at

a/
M

C

0.6
0.8

1
1.2
1.4

E
nt

rie
s 

pe
r 

bi
n

0

100

200

300

400

500

600

700

800  = 7 TeV, 200 < m < 1500 GeVs at  -1 Ldt = 4.5 fb∫CMS, 

Data   
   µµ→*/Z γ

   ττ→*/Z γ
EW  

W   t+tW+tt
QCD   

 = 7 TeV, 200 < m < 1500 GeVs at  -1 Ldt = 4.5 fb∫CMS, 

E
nt

rie
s 

pe
r 

bi
n

0

100

200

300

400

500

600

700

800

Absolute dimuon rapidity, |y|
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

D
at

a/
M

C

0.6
0.8

1
1.2
1.4

Figure 6.14. The observed dimuon rapidity spectra per invariant mass
bin for data and MC events. There are six mass bins between 20 and
1500 GeV, from left to right and from top to bottom. The NNLO
reweighted Powheg MC signal sample is used. The EW histogram
indicates the diboson and W+jets production. The normalization
factors are determined using the number of events in data in the Z-
peak region, and they are applied to all of the mass bins. Error bars
are statistical only.
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Figure 6.16. The observed dimuon rapidity spectra per invariant mass
bin for data and MC events. There are six mass bins between 20
and 1500 GeV, from top left to bottom right. The NNLO reweighted
Powheg MC signal sample is used. The normalization factors are
determined using the number of events in data in the Z peak region,
and they are applied to all of the mass bins. Error bars are statistical
only.
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6.4 Resolution and Scale Corrections

Lepton energy and momentum mismeasurements can directly affect the reconstructed

dilepton invariant mass and are, therefore, important in obtaining a correct differential

cross section. Table 6.5 summarizes the dilepton mass resolutions as a function of

mass for the CMS detector.

Table 6.5
Dilepton mass resolution as a function of dilepton invariant mass.

mll Dimuon mass resol. Dielectron mass resol.

10 GeV 1.0% 7.2%

100 GeV 2.1% 3.5%

1000 GeV 6.5% 1.7%

The momentum resolution of muons with pT < 200 GeV is dominated by the

measurements in the silicon tracker. A residual misalignment remains in the tracker

that is not fully reproduced by the simulation. This misalignment leads to a bias in the

reconstructed muon momenta which is removed using a momentum scale correction.

The corrections to muon momenta are extracted separately for positively and neg-

atively charged muons using the average of the 1/pT spectra of muons and dimuon

mass from Z boson decays in bins of muon charge, the polar angle θ, and the az-

imuthal angle φ. The same procedure is followed for both data and MC samples.

The correction to 1/pT has two components; an additive component which removes

the bias that originates from tracker misalignment; and a multiplicative component

that corrects for residual mismodeling of the magnetic field. For a 40 GeV muon, the

additive correction varies from 0.4 % at small |η| to 9 % at large |η|.

The average reconstructed Z boson mass is found to be independent of φ. The

position of the Z boson mass peak in the corrected distribution is different from the

expected Z boson mass [91] by only (0.10 ± 0.01)% in data and (0.00 ± 0.01)% in

simulation. The small remaining shift in data is corrected by an additional overall
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scale correction. The detailed description of the correction for the muon momentum

is given in [92].

The correction to muon momenta is estimated for 2011 runs A and B separately,

while a combined estimate is used for 2012 runs A, B, C, and D as no significant

run dependency is observed during the latter data-taking period (details about data

taking periods are summarized in the Appendix C). Fig. 6.17 shows the comparison

between 7 TeV data and DY Powheg MC in the Z peak region after correction to

muon momenta are applied.
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Figure 6.17. Comparison between 2011 data and DY Powheg MC
in the Z peak region after the momentum scale correction. Left: 2011
run A, right: 2011 run B.

Fig. 6.18 shows the comparison between data and DY Powheg MC in the Z peak

region after corrections applied for 2012 runs A, B, C, and D. As seen, the agreement

between the yields from data and simulated after the momentum scale correction is

excellent for both the 7 and 8 TeV data taking periods.

The electron energy is derived primarily from the measurements of the energy de-

posited by the electrons in the ECAL [88]. The electron energy deposits as measured

in the ECAL are subject to a set of corrections involving information both from the
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Figure 6.18. Comparison between 2012 data and DY Powheg MC in
the Z peak region after the momentum scale correction. From top left
to bottom right: barrel-barrel, barrel-endcap, endcap-endcap event
classes.

ECAL and the tracker, following the standard CMS procedures for the 8 TeV data

set [93]. The final electron energy scale correction that goes beyond the standard set

of corrections is derived from the analysis of the Z → e+e− peak according to the
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procedure described in [90], and is a simple multiplicative factor of ∼0.1% applied to

the electron energy.

Fig. 6.19 shows the comparison between the data and MC yields before the accep-

tance and efficiency corrections for before (left) and after (right) energy scale correc-

tions. The agreement between data and simulation after the correction is improved,
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Figure 6.19. Comparison between 2012 data and DY Powheg MC
in the Z peak region after the electron energy scale correction. From
top left to bottom right: barrel-barrel, barrel-endcap, endcap-endcap
event classes.

however, there is some bias on the lower side of the Z peak in the endcap-endcap

event category after the electron energy scale correction.

Fig. 6.21 shows the ratio of pre-unfolded and unfolded yields in the bins of invariant

mass and mass-rapidity in the dimuon channel in 7 TeV and 8 TeV analyses.

The detector resolution effects that cause a migration of events among the analysis

bins are corrected through an iterative unfolding procedure [94]. This procedure maps
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Figure 6.20. Ratio of observed yields before and after detector res-
olution unfolding as a function of dimuon invariant mass. Left plot:
7 TeV, right plot: 8 TeV.

Figure 6.21. Ratio of observed yields before and after detector res-
olution unfolding as a function of dimuon invariant mass-absolute
rapidity. Left plot: 7 TeV, right plot: 8 TeV.

the measured lepton distribution onto the true one, while taking into account the

migration of events in and out of the mass and rapidity range of this measurement.

Fig. 6.22 shows the ratio of pre-unfolded and unfolded yields in bins of invariant

mass in the dielectron channel, and Fig. 6.23 and 6.24 show the corresponding ratios

in bins of invariant mass-rapidity in the dielectron channel.

The size of the effect of migration due to mass resolution effects is similar in the

7 and 8 TeV data. In the dimuon channel, the largest effect is in the peak region and

at high masses, reaching up to 20%. In the dielectron channel, the size of the effect
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Figure 6.22. Ratio of observed yields before and after detector reso-
lution unfolding as a function of dielectron invariant mass at 8 TeV.

of unfolding is generally more significant, reaching up to 40% in the FSR region and

up to 30% in the Z peak region.
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Figure 6.23. Ratio of observed yields before and after detector reso-
lution unfolding as a function of dielectron absolute rapidity in 20–
30 GeV, 30–45 GeV 45–60 GeV and 60–120 GeV invariant mass region
at 8 TeV (from top left to bottom right).
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6.5 Acceptance and Efficiency

The acceptance (A) is the fraction of events passing the nominal geometric and kine-

matic cuts for an analysis. The signal event selection efficiency per mass bin ε is the

fraction of events inside the acceptance that pass the full selection. The following

equation holds:

A× ε ≡ NA

Ngen
· N

ε

NA
=

N ε

Ngen
, (6.3)

where Ngen is the number of generated signal events in a given invariant mass bin,

NA is the number of events inside the geometrical and kinematic acceptance, and N ε

is the number of events passing the analysis selection. The acceptance and efficiency

are estimated using the NNLO reweighted Powheg simulation.

The acceptance calculation depends on higher-order QCD corrections and the

choice of PDFs. The use of an NNLO signal MC is essential, especially in the low-

mass region where the difference between the NLO and NNLO predictions is sizable.

Fig. 6.25 shows the acceptance, the event efficiency, and A× ε as functions of the

dimuon invariant mass at 7 TeV. The DY acceptance is obtained from simulation.
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In the lowest mass bin it is only about 1%, rapidly increasing to 60% in the Z peak

region and reaching over 90% at high mass.

The efficiency is factorized into the reconstruction, identification, and isolation

efficiencies, and the event trigger efficiency. The factorization procedure takes into

account the asymmetric pT selections for the two legs of the dilepton trigger. The

efficiency is obtained from simulation, re-scaled with a correction factor which takes

into account differences between data and simulation. The efficiency correction factor

is determined in bins of lepton pT and η using Z→ µ+µ− events in data and simulation

with the tag-and-probe method [90] and is then applied as a weight to simulated events

on a per-lepton basis (see Appendix F for details). The dimuon event efficiency is

75–80% throughout the entire mass range.

Fig. 6.26 shows the acceptance, the event efficiency, and A× ε as functions of the

dimuon and dielectron invariant mass at 8 TeV. The DY acceptance in the lowest
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Figure 6.26. The DY acceptance, efficiency, and their product per
invariant mass bin in the dielectron (left) and the dimuon channel
(right) at 8 TeV, where m(post-FSR) means dielectron invariant mass
after the FSR.

mass bin it is only about 0.5%, rapidly increasing to 50% in the Z peak region and

reaching over 90% at high mass.

The dimuon event efficiency is typically 70–80% throughout the entire mass range.

In the dielectron channel, the efficiency at low mass is only 20–40% because of tighter
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lepton identification requirements, and reaches 65% at high mass. The trigger effi-

ciency for events within the geometrical acceptance is greater than 98% (93%) for

the dielectron (dimuon) signal. There is an event efficiency dip in the mass range

30–40 GeV, as seen in Fig. 6.26, that is caused by the combination of two factors.

From one side, the lepton reconstruction and identification efficiencies decrease as

the lepton pT decreases. From the other side, the kinematic acceptance requirements

preferentially select DY events produced beyond the leading order, which results in

higher pT leptons with higher reconstruction and identification efficiencies, in the

mass range below 30–40 GeV. The effect is more pronounced for dielectrons than

for dimuons because the electron reconstruction and identification efficiencies depend

more strongly on pT. The efficiency is significantly affected by the pileup in the

event. The effect on the isolation efficiency is up to 5% (about 1%) in the dielectron

(dimuon) channel.

All electrons with pseudorapidity values from 0.0 to 2.4 are used in this measure-

ment. The lower reconstruction efficiency for electrons found in the barrel-endcap

transition region (i.e. 1.442 ≤ |η| ≤ 1.556) is taken into account in computation

of the event efficiency and event efficiency correction. The identical pseudorapidity

acceptance definition for electrons and muons facilitates comparing and combining

the cross section results for the two channels.

Fig. 6.27 shows the effect of the ECAL gap on MC truth efficiency as a function

of dielectron rapidity per invariant mass region.

A significant, mass dependent effect on event efficiency is observed. The proba-

bility for an electron to fall within an ECAL gap is just about 4% as estimated from

the generator level pseudorapidity distribution, independent on the invariant mass.

The loss of events due to the pseudorapidity cut on the reconstructed level is about

3.5–4.5%.
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Figure 6.27. MC truth efficiency as a function of the dielectron ra-
pidity per invariant mass region with and without ECAL gap super-
imposed.
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6.6 Final State QED Radiation Effects

Leptons can radiate nearly collinear photons in a process referred to as final state elec-

tromagnetic radiation (FSR). This FSR effect changes the observed invariant mass,

computed from the 4-momenta of the two muons. If final state photons with sizable

energy are emitted, the observed mass can be substantially lower than the propaga-

tor in the hard interaction. As a result of the FSR, the events are shifted towards

lower masses. The FSR effect is most pronounced just below the Z peak. Indeed,

the number of events in the Z peak region is significantly larger than away from the

resonance. Thus, the migration of events originating in the Z peak is larger than the

migration out of the 40–80 GeV region, creating an excess of events after the FSR.

The correction for FSR effects is performed separately from the correction for the

detector resolution effects. The FSR correction procedure is performed in three steps:

• Bin-by-bin correction is used for the events in which pre-FSR leptons fail the

acceptance cuts, while post-FSR leptons pass (type A events). FSR will always

downshift the pT , so it will not happen because of the pT cuts. But FSR could

change the direction of the lepton in such a way that it ends up passing η cuts

while before FSR it was failing them. This correction is applied before the FSR

unfolding, in a similar manner as the MC truth efficiency correction.

• An unfolding procedure is used for the events in which both pre-FSR and post-

FSR leptons pass the acceptance cuts (type B events). The resulting invariant

mass and rapidity at the pre-FSR or post-FSR level may or may not be in the

range of interest, and if not, the event is properly taken care of by the underflow

and overflow bins.

• A bin-by-bin correction is used for the events in which pre-FSR leptons pass the

acceptance cuts (type C events), but post-FSR leptons fail those cuts. These

events normally do not enter the response matrix, but they need to be accounted

for. This correction is applied after the FSR unfolding.
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The correction for the type A dimuon events is summarized in Fig. 6.28 for 7 and

8 TeV simulation. As seen, the effect of correction is almost negligible, reaching its
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Figure 6.28. FSR correction for the type A events as a function of
dilepton invariant mass for dimuon channel at 7 TeV (top left), for
dimuon channel at 8 TeV (top right) and for dielectron channel at
8 TeV (bottom) simulation.

maximum of 1% right below the Z peak, similarly for both center-of-mass energies

considered and both channels. Even though the probability for a lepton to emit a

photon is not strongly mass dependent, the presence of an excess of events in the Z

peak leads to a larger multiplicity of FSR photons in the 40–80 GeV region, forming

a peak. The exact position of the peak is determined by the average mass shift for a

dilepton due to FSR.

The correction for type B events is performed using the unfolding procedure, as

for the detector resolution correction, described in Appendix G.
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The response matrix is again derived from the Drell–Yan POWHEG MC sample,

using the pre-FSR and post-FSR yields. This is shown in Fig. 6.29-6.30. The response

matrix is also produced separately for Run2011A and Run2011B. Since there is no

visible difference between them the figure shows only the matrix for Run2011A.

Figure 6.29. The response matrix from 7 TeV simulation for dσ/dm
measurement in the dimuon channel.
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measurement. Left plot: dielectron channel, right plot: dimuon chan-
nel.
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Finally, the bin-by-bin correction for type C dimuon and dielectron events is sum-

marized in Fig. 6.31. As seen, the correction is significant at low mass reaching its
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Figure 6.31. FSR correction for the type C events as a function of
dilepton invariant mass for dimuon channel at 7 TeV (top left), for
dimuon channel at 8 TeV (top right) and for dielectron channel at
8 TeV (bottom) simulation.

maximum nearly 25% in the lowest mass bin, decreasing to negligible levels in the

peak region. The size of the correction is similar at both 7 and 8 TeV center-of-mass

energies and for both decay channels. The same FSR correction method is applied to

the 2D measurement.
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6.7 Systematic Uncertainties

In this section, the evaluation of the systematic uncertainties is discussed. The sys-

tematic uncertainty tables are summarized in Appendix H for both the differential

and the double-differential cross section measurements.

Acceptance uncertainty. The dominant uncertainty sources pertaining to the

acceptance are (1) the theoretical uncertainty from imperfect knowledge of the non-

perturbative PDFs participating in the hard scattering and (2) the uncertainty in

modeling of higher order QCD and EW effects. The latter comes from the proce-

dure to apply weights to the NLO simulated sample in order to reproduce NNLO

kinematics and affects mostly the acceptance calculations at very low invariant mass.

The PDF uncertainties for the differential and double-differential cross section mea-

surements are calculated using the Lhaglue interface to the PDF library Lhapdf

5.8.7 [95, 96] by applying a reweighting technique with asymmetric uncertainties as

described in [97]. These contributions are largest at low and high masses (4-5%) and

decrease to less than 1% for masses at the Z peak.

Efficiency uncertainty. The systematic uncertainty in the efficiency estimation

consists of two components: the uncertainty in the efficiency correction factor esti-

mation and the uncertainty related to the number of simulated events. The efficiency

correction factor reflects systematic deviations between data and simulation. It varies

up to 10 (7)% for the dielectron (dimuon) channel. As discussed in Section 6.5, single-

lepton efficiencies of several types are measured with the tag-and-probe procedure and

are combined into efficiency correction factors. The tag-and-probe procedure provides

the efficiency for each lepton type and the associated statistical uncertainties. A vari-

ety of possible systematic biases in the tag-and-probe procedure has been taken into

account, such as the dependence on binning in single-lepton pT and η, dependence on

the assumed shape of signal and background in the fit model, and the effect of pileup.

In the dielectron channel, this uncertainty is as large as 3.2% at low mass, and 6% at

high rapidity in the 200–1500 GeV region. The uncertainty in the dimuon channel is

about 1% in most of the bins, reaching up to 4% at high rapidity in the 200–1500 GeV
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mass region. The contribution from the dimuon vertex selection is small because its

efficiency correction factor is consistent with being constant.

Muon momentum scale. The uncertainty in the muon momentum scale causes

uncertainties in the efficiency estimation and background subtraction and affects the

detector resolution correction. The muon momentum scale is calibrated to a precision

of 0.02%. The systematic uncertainty in the measured cross sections is determined

by varying the muon momentum scale within its uncertainty. The largest effect on

the final results is observed in the detector resolution unfolding step, reaching 2%.

Detector resolution. For both e+e− and µ+µ− channels, the simulation of the

CMS detector, used for detector resolution unfolding, provides a reliable description

of the data. Possible small systematic errors in the unfolding are related to effects

such as differences in the electron energy scale and muon momentum scale, uncertain-

ties in FSR simulation and in simulated pileup. The impact of each of these effects on

the measurements is studied separately. The detector resolution unfolding procedure

itself has been thoroughly validated, including a variety of closure tests and compar-

isons between different event generators; the systematic uncertainty assigned to the

unfolding procedure is based on the finite size of the simulated samples and a con-

tribution due to the systematic difference in data and simulation (the latter must be

taken into account because the response matrix is fully determined from simulation).

Background uncertainty. The background estimation uncertainties are evalu-

ated in the same way in both the dielectron and the dimuon channels. The uncertainty

in background is comprised of the Poissonian statistical uncertainty of predicted back-

grounds and the difference between the predictions from data and simulation. The

two components are combined in quadrature. The uncertainty in the estimated back-

ground is no larger than 3.0% (1.0%) at low mass, reaching 16.3% (4.6%) in the

highest mass bin in the dielectron (dimuon) channel. The uncertainty in the correc-

tion for γγ-initiated processes is estimated using Fewz 3.1 with the NNPDF2.3QED

PDF and consists of the statistical and PDF uncertainty contributions combined in

quadrature.
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FSR simulation. The systematic uncertainty due to the model-dependent FSR

simulation is estimated using two reweighting techniques as described in [19] with the

same procedure in both decay channels. The systematic uncertainty from modeling

the FSR effects is as large as 2.5% (1.1%) in the dielectron (dimuon) channel in

the 45–60 GeV region. The systematic uncertainties related to the FSR simulation

in the electron channel primarily affect the detector resolution unfolding procedure.

The impact of these uncertainties is greater for the electron channel than for the

muon channel because of the partial recovery of FSR photons during the clustering

of electron energy in the ECAL. The effect of the FSR simulation on other analysis

steps for the electron channel is negligible in comparison to other systematic effects

associated with those steps.

Electron energy scale. In the dielectron channel, one of the leading system-

atic uncertainties is associated with the energy scale corrections for individual elec-

trons. The corrections affect both the placement of a given candidate in a particular

invariant-mass bin and the likelihood of surviving the kinematic selection. The energy

scale corrections are calibrated to a precision of 0.1–0.2%. The systematic uncertain-

ties in the measured cross sections are estimated by varying the electron energy scale

by 0.2%. The uncertainty is relatively small at low masses and reaches up to 6.2%

in the Z peak region where the mass bins are the narrowest and the variation of the

cross section with mass is the largest.

Luminosity. The luminosity measurement is based on pixel cluster counting from

the silicon pixel detector. Its absolute calibration has been determined by means of

Van der Meer scans which together with detector operational features give rise to the

estimated integrated luminosity uncertainty of 2.2% for the 7 TeV and 2.6% for the

8 TeV data-taking period.

6.7.1 Covariance Matrix

A covariance matrix summarizing uncertainties on the measurements together with

their correlations is calculated between the analysis bins and different systematic

sources.
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First, the observed yield is unfolded, which redistributes the signal and back-

ground events according to the unfolding matrix T−1. The total uncertainty before

the unfolding is given by a diagonal matrix VI . The mathematical description of the

procedure to obtain the covariance matrix VUNF associated with the unfolding is:

VUNF = T−1VIT
−1T . (6.4)

The normalization to the Z boson peak does not change the results of the unfolding

procedure.

After the unfolding, the resulting yield is corrected for detector and reconstruction

efficiencies. The largest effect in the uncertainty comes from the efficiency corrections

for the single leptons, which are estimated with the tag-and-probe method. A large

part of this uncertainty comes from systematic effects related to data/MC variations,

together with statistical limitations. The efficiency covariance and correlations are

trivially related by the efficiency correction uncertainties (i.e., by the square roots of

the diagonal elements of the efficiency covariance matrix). The efficiency covariance

matrix is denoted by VEFF.

The last step in the procedure is to apply FSR corrections to the measurement. As

described earlier, it is based on the FSR unfolding matrix and additional bin-by-bin

corrections. There are associated uncertainties in the FSR description. As in the first

step, the correlations induced by this procedure are described by the FSR unfolding

matrix alone and the covariance matrix VFSR is given by Eq. (6.4), but with the FSR

related inputs.

The total covariance matrix Vtot is simply the sum of the three uncorrelated

sources:

Vtot = VUNF + VEFF + VFSR. (6.5)

The total uncertainty in the signal yield is propagated through the detector resolution

unfolding matrix, as given by Eq. (6.4). Then the uncertainty is increased by contri-

butions due to the statistical inaccuracy of the unfolding matrix elements as well as

additional sources of systematic uncertainty associated with the resolution unfolding
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(e.g., the electron energy scale uncertainty and FSR). The covariance of the efficiency

correction factors is evaluated using pseudo-experiments as described for the muon

channel analysis. In this case, efficiency correction factors contribute significantly to

correlations in the low-mass region. The diagonal covariance of each MC efficiency

factor is obtained from the statistical uncertainty. The covariance of the pre-FSR

cross section is obtained from the covariance of the post-FSR cross section via error

propagation. After the FSR unfolding some covariances with the Z boson peak re-

gion become negative. The contribution from the statistical uncertainty of the FSR

unfolding matrix is negligible.

6.7.2 Double Ratio Uncertainties

In the double ratio measurements most of the theoretical uncertainties and some

experimental uncertainties are reduced.

Special care needs to be taken to estimate the correlated systematic uncertainties.

For each correlated systematic source si, the relative uncertainty δρsi/ρsi on the cross

section ratio is calculated as:

δρsi
ρsi

=
1 + δsi(8 TeV)

1 + δsi(7 TeV)
− 1, (6.6)

where δsi(7 TeV) and δsi(8 TeV) are relative uncertainties caused by a source si in the

cross section measurements at 7 and 8 TeV, respectively. The uncorrelated systematic

uncertainties between the two center-of-mass energies are added in quadrature.

Most of the experimental systematic uncertainties are considered to be uncor-

related between the two measurements. Exceptions are the modeling uncertainty

which is fully correlated between the 7 and 8 TeV measurements and the systematic

uncertainty in the acceptance, which originates mainly from the PDFs.

The uncertainty in the luminosity measurement is also treated as uncorrelated,

resulting in an uncertainty of 3.4%.
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6.8 Results and Interpretation

6.8.1 Differential Cross Section dσ/dm Measurement

Z peak Cross Section Measurement

Measuring the pre-FSR cross section is particularly important, because it facil-

itates the comparisons with various theoretical tools. The absolute cross section

measurement in the Z peak region is a way to verify the correctness of the analysis

procedure and an important prerequisite for the differential and double-differential

measurements. The pre-FSR Z boson production cross section in the peak region

(60 < m < 120 GeV) is calculated as:

σZ, pre−FSR =
Nnorm

u

AnormεnormL
, (6.7)

where Nnorm
u is the number of events after background subtraction and the unfolding

procedure for the detector resolution and FSR correction, Anorm is the acceptance,

εnorm is the efficiency in the Z peak region, and L is the total integrated luminosity.

The total cross section in the Z peak region is necessary to calculate the normal-

ized differential cross section, and it is also used as a cross check against existing

measurements.

The peak cross section measurements at 7 and 8 TeV are summarized in Tab. 6.6-

6.7. The measurements are in good agreement with NNLO predictions for the full

phase space (e.g. a typical NNLO prediction is 1009±32 pb at 7 TeV and 1137±36 pb

at 8 TeV center-of-mass energy) and also with previous CMS measurements [90, 98].

The measurements reported have smaller statistical, and luminosity uncertainties as

compared to [90, 98], making it the most precise Z boson production cross section

measurement with CMS data at 7 and 8 TeV.
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Table 6.6
Absolute cross section measurements in the Z peak region (60 < m <
120 GeV) with associated uncertainties at 7 TeV.

Muon channel Cross section in the Z peak region

pre-FSR full acc. 990± 10(exp)± 22(theor)± 22(lumi) pb

post-FSR full acc. 975± 9(exp)± 22(theor)± 21(lumi) pb

pre-FSR detector acc. 525± 5(exp)± 1(theor)± 12(lumi) pb

post-FSR detector acc. 517± 5(exp)± 1(theor)± 11(lumi) pb

Table 6.7
Absolute cross section measurements in the Z peak region (60 < m <
120 GeV) with associated uncertainties at 8 TeV.

Muon channel Cross section in the Z peak region

pre-FSR full acc. 1135± 11(exp)± 25(theor)± 30(lumi) pb

post-FSR full acc. 1115± 11(exp)± 25(theor)± 29(lumi) pb

pre-FSR detector acc. 571± 6(exp)± 1(theor)± 15(lumi) pb

post-FSR detector acc. 558± 6(exp)± 1(theor)± 15(lumi) pb

Electron channel

pre-FSR full acc. 1141± 11(exp)± 25(theor)± 30(lumi) pb

post-FSR full acc. 1101± 11(exp)± 26(theor)± 29(lumi) pb

pre-FSR detector acc. 572± 6(exp)± 1(theor)± 15(lumi) pb

post-FSR detector acc. 551± 6(exp)± 1(theor)± 14(lumi) pb

Normalized Cross Section dσ/dm Measurement

In order to reduce systematic uncertainties, the Drell–Yan dσ/dm differential cross

section is normalized to the cross section in the Z peak region (60 < m < 120 GeV).

The result of the measurement is calculated as the ratio

Ri
pre−FSR =

N i
u

Aiεiρi

/
Nnorm

u

Anormεnormρnorm
, (6.8)
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where N i
u is the number of events after background subtraction and the unfolding

procedure for the detector resolution and FSR correction, Ai is the acceptance, εi is

the efficiency, and ρi is the correction estimated from data in a given invariant mass

bin i as defined earlier. Nnorm
u , Anorm, εnorm, and ρnorm refer to the Z peak region.

The DY dσ/dm differential cross section is normalized to the cross section in the Z

peak region (60 < m < 120 GeV). The results are also divided by the invariant

mass bin widths, ∆mi, defining the shape ri = Ri/∆mi.

The results of the DY cross section measurement at 7 TeV are presented in Fig. 6.32,

and the results of the DY cross section measurement at 8 TeV are presented in Fig. 6.33

for both the dielectron and dimuon channels. Since this is a shape measurement, and

the normalization of the spectrum is defined by the number of events in the Z peak

region, the uncertainty is calculated for the ratio of yields between each mass bin

and the Z peak. The 8 TeV differential cross section measurement is a significant

improvement as compared to the 7 TeV result. First of all, the mass range covered

by the 8 TeV measurement extends to 2 TeV. Secondly, the statistical uncertainties

are reduced by a factor of 2 on average due to the larger sample available for the

analysis. Systematic uncertainties in the 8 TeV measurement have been reduced as

compared to the 7 TeV measurement because of the scaling of uncertainties on the

quantities estimated from data with the sample size, and as a result of switching to

data-driven background estimation methods for all the non-QCD backgrounds. The

8 TeV measurement is dominated by systematic uncertainties up to around 320 GeV

and statistically dominated at higher masses. In the highest-mass bin, the statistical

uncertainty is about 3 times larger than theoretic uncertainty.

The uncertainties in the theoretical predictions due to the imprecise knowledge of

the PDFs are calculated with the Lhaglue interface to the PDF library Lhapdf,

using a reweighting technique with asymmetric uncertainties. The scale variation

uncertainty of up to 2% is included in the theoretical error band.

The result of the 7 and 8 TeV measurements are in good agreement with the

NNLO theoretical predictions as computed with Fewz using the CT10 PDF set.
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Figure 6.32. The DY dimuon invariant-mass spectrum normalized
to the Z boson production cross section (1/σZ dσ/dm), as measured
and predicted by Fewz+CT10 NNLO calculations, for the full phase
space. The vertical error bars for the measurement indicate the
experimental (statistical and systematic) uncertainties summed in
quadrature with the theoretical uncertainty resulting from the model-
dependent kinematic distributions inside each bin. The shaded un-
certainty band for the theoretical calculation includes the statistical
uncertainty from the Fewz calculation and the 68% confidence level
uncertainty from PDFs combined in quadrature. The effect of NLO
EW correction including γγ-initiated processes (LO EW correction
only) is shown in the middle (bottom) plot. The data point abscissas
are computed according to Eq. (6) in Ref. [99].

The uncertainty bands of the theoretical calculation include the statistical uncertainty

from the Fewz calculation and the 68% confidence level (CL) uncertainty from PDFs

combined in quadrature.
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Figure 6.33. The DY dielectron (top) and dimuon (bottom) invariant-
mass spectrum normalized to the Z boson production cross section
(1/σZ dσ/dm), as measured and predicted by Fewz+CT10 NNLO
calculations, for the full phase space. The vertical error bars for the
measurement indicate the experimental (statistical and systematic)
uncertainties summed in quadrature with the theoretical uncertainty
resulting from the model-dependent kinematic distributions inside
each bin. The shaded uncertainty band for the theoretical calcula-
tion includes the statistical uncertainty from the Fewz calculation
and the 68% confidence level uncertainty from PDFs combined in
quadrature.
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The effect of the higher-order EW correction computed with Fewz (described

above) is included as an additional correction factor and the ratio between data and

the theoretical prediction is shown in the middle of Fig. 6.32. Differences between

NLO and NNLO values in the theoretical expectations are significant in the low-mass

region, as reported in [100]. Although this measurement is sensitive to NNLO effects,

it does not provide sufficient sensitivity to distinguish between different PDF sets.

The combination of the dimuon and dielectron channels is discussed in Section 6.8.3.

6.8.2 Double-differential Cross Section d2σ/dmd|y| Measurement

Z peak Cross Section Measurement for |y| < 2.4

The absolute cross sections in the Z peak region for |y| < 2.4, corresponding

to the geometrical acceptance of the double-differential cross section measurement

calculated following Eq. 6.7, is shown in Tab. 6.8-6.9.

Table 6.8
The cross section measurements at 7 TeV center-of-mass energy in the
Z peak region (60 < m < 120 GeV and |y| < 2.4) and the detector
acceptance for the dimuon channel. The uncertainty in the theoreti-
cal cross sections indicates the statistical calculation uncertainty and
PDF uncertainty in Fewz.

Cross section in the Z peak region

(60 < m < 120 GeV, |y| < 2.4)

data 526 ± 2 (syst) ± 12 (lumi) pb

CT10 NNLO 534.29 ± 0.36 pb

NNPDF2.1 NNLO 524.76 ± 0.68 pb

MSTW2008 NNLO 524.02 ± 0.38 pb

JR09 NNLO 514.16 ± 0.22 pb

ABKM NNLO 534.69 ± 0.43 pb

HERA NNLO 531.92 ± 0.23 pb
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The result of the 7 TeV cross section measurement is in agreement with the NNLO

theoretical predictions as computed with Fewz taking into account the PDF uncer-

tainty.

Table 6.9
The cross section measurements at 8 TeV center-of-mass energy in the
Z peak region (60 < m < 120 GeV and |y| < 2.4) and the detector
acceptance for the dimuon and dielectron channels. The uncertainty
in the theoretical cross sections indicates the statistical calculation
uncertainty and PDF uncertainty in Fewz.

Cross section in the Z peak region in the detector acceptance

(60 < m < 120 GeV, |y| < 2.4)

CT10 NNLO 569.7 ± 0.4 (stat) ± 17.7 (PDF) pb

NNPDF2.1 NNLO 559.3 ± 0.5 (stat) ± 6.8 (PDF) pb

Muon channel 571± 6(exp)± 1(theor)± 15(lumi) pb

Electron channel 572± 6(exp)± 1(theor)± 15(lumi) pb

At 8 TeV, the cross section measurement is in agreement with the NNLO theo-

retical predictions computed with Fewz using CT10 NNLO and NNPDF2.1 NNLO

PDFs.

Normalized Cross Section d2σ/dmd|y| Measurement

The pre-FSR cross sections in bins of the dilepton invariant mass and the absolute

value of the dilepton rapidity are measured according to:

σijdet =
N ij

u

εijL
, (6.9)

The quantities N ij
u , εij are defined in a given bin (i, j), with i corresponding to the

binning in dilepton invariant mass, and j corresponding to the binning in absolute

rapidity. L denotes the total integrated luminosity. The cross sections are divided by
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the dilepton absolute rapidity bin widths, ∆yj, defining the shape Rij = σij/(∆yj).

An acceptance correction to the full phase space would not increase the sensitivity to

PDFs. Therefore, the main measurement is performed within the detector acceptance

in order to reduce model dependence.

Figure 6.34 shows the results of the double-differential cross section at 7 TeV

center-of-mass energy, which are compared to the Fewz theoretical calculation ob-

tained using the CT10 NLO and NNLO PDFs. The results of the measurement are

in better agreement with CT10 NNLO predictions than with CT10 NLO predictions.

The CT10 (NLO) and CT10 (NNLO) have been chosen to compare with the mea-

surement in Fig. 6.34 because the CT10 (NLO) have been used for the Powheg

MC signal sample. The uncertainty bands in the theoretical expectations include the

statistical and the PDF uncertainties from the Fewz calculations summed in quadra-

ture (shaded band). The statistical uncertainty (solid band) is smaller than the PDF

uncertainty and the latter is the dominant uncertainty in the Fewz calculations. In

general, the PDF uncertainty assignment is different for each PDF set. For instance,

CT10 (NLO) and CT10 (NNLO) PDF uncertainties correspond to a 90% CL, so, to

get a consistent comparison to other PDF sets the uncertainties are scaled to the 68%

CL.

In the low-mass region and the Z peak region, we observe good agreement between

data and theory. The NNLO effects are more significant in the low-mass region. The

corrections for the γγ-initiated processes calculated with Fewz are negligible in the

double-differential cross section measurement, because the effects are approximately

constant over the investigated rapidity range and statistical fluctuations or other

systematic uncertainties are much larger across the invariant-mass range of the mea-

surement.

In order to assess the sensitivity of the double-differential cross section measure-

ment to the PDF uncertainties, we perform a comparison with the theoretical ex-

pectations calculated with various PDF sets. Figure 6.35 shows the comparison with
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currently available NNLO PDF sets, most of which are from the pre-LHC era: CT10,

CT10W, NNPDF2.1, HERAPDF15, MSTW2008, JR09, and ABKM09.

As seen in Fig. 6.35, the predictions of various existing PDF sets are rather dif-

ferent, especially in the low- and high-mass regions. Given the uncertainties, the

measurements provide sufficient sensitivity to differentiate between different PDFs

and can be used to calculate a new generation of PDFs. The uncertainty bands in

the theoretical expectations in the figure indicate the statistical uncertainty from the

Fewz calculation.

In the low-mass region (20–45 GeV), the values of the double-differential cross sec-

tion calculated with the NNPDF2.1 are higher than the values calculated with other

PDF sets. The NNPDF2.1 calculation shows good agreement with the measurement

result in the 20 – 30 GeV region, but it deviates from the measurement in the 30 –

45 GeV region by about 10%. In the peak region, all predictions are relatively close

to each other and agree well with the measurements. At high mass the JR09 PDF

calculation predicts significantly larger values than other PDF sets. The statistical

uncertainties in the measurements for m > 200 GeV are of the order of the spread in

the theoretical predictions.

The 8 TeV double-differential cross section measurements are shown in Fig. 6.37-

6.36. The figures show the DY rapidity spectrum normalized to the Z peak region

(1/σZd
2σ/dmd|y|), plotted for different mass regions within the detector acceptance

in the dielectron and dimuon channels.

The uncertainty bands in the theoretical expectations include the statistical and

the PDF uncertainties from the Fewz calculations summed in quadrature. The sta-

tistical uncertainty is significantly smaller than the PDF uncertainty and the latter is

the dominant uncertainty in the Fewz calculations. In general, the PDF uncertainty

assignment is different for each PDF set. The CT10 PDF uncertainties correspond

to 90% CL; to permit a consistent comparison with NNPDF2.1 the uncertainties are

therefore scaled to 68% CL. The scale variation uncertainty of up to 2% is included

in the theoretical error band.
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Figure 6.34. The DY rapidity spectrum normalized to the Z peak re-
gion (1/σZ d

2σ/d|y|), plotted for different mass regions within the de-
tector acceptance, as measured and predicted by NLO Fewz+CT10
PDF and NNLO Fewz+CT10 PDF calculations. There are six mass
bins between 20 and 1500 GeV, from left to right and from top to
bottom. The uncertainty bands in the theoretical predictions com-
bine the statistical and the PDF uncertainties (shaded bands). The
statistical component is negligible.
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Figure 6.35. The DY rapidity spectrum normalized to the Z peak re-
gion (1/σZ d

2σ/d|y|), compared to theoretical expectations using var-
ious PDF sets. The uncertainty bands in the theoretical predictions
indicate the statistical uncertainty only. The error bars include the
experimental uncertainty in the data and statistical uncertainty in the
theoretical expectation, combined quadratically.
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Figure 6.36. The DY dielectron rapidity spectrum with the photon
induced contribution subtracted, normalized to the Z peak region,
plotted for different mass regions within the detector acceptance,
as measured and predicted by NLO Fewz+CT10 PDF and NNLO
Fewz+CT10 PDF calculations. There are six mass bins between 20
and 1500 GeV, from left to right and from top to bottom. The uncer-
tainty bands in the theoretical predictions combine the statistical and
the PDF uncertainties (shaded bands). The statistical component is
negligible.
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Figure 6.37. The DY dimuon rapidity spectrum with the photon
induced contribution subtracted, normalized to the Z peak region
(1/σZd

2σ/dmd|y|), plotted for different mass regions within the de-
tector acceptance, as measured and predicted by NLO Fewz+CT10
PDF and NNLO Fewz+CT10 PDF calculations. There are six mass
bins between 20 and 1500 GeV, from left to right and from top to
bottom. The uncertainty bands in the theoretical predictions com-
bine the statistical and the PDF uncertainties (shaded bands). The
statistical component is negligible.
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In the low mass region, the results of the measurement are in better agreement

with the NNPDF2.1 NNLO calculation. The CT10 NNLO calculation is systemat-

ically lower than NNPDF2.1 NNLO in that region. The normalized χ2 calculated

with total uncertainties on the combined results is 1.3 (1.8) between data and the

theoretical expectation calculated with NNPDF2.1 (CT10) NNLO PDFs, with 41

degrees of freedom. In the Z peak region, the two predictions are relatively close to

each other and agree well with the measurements. The statistical uncertainties in the

measurements in the highest mass region are of the order of the PDF uncertainty.

6.8.3 Combination of the e+e− and µ+µ− Cross Section Measurements

To assess the level of compatibility between the dimuon and dielectron measurements

χ2 tests are performed.

As seen in Fig. 6.38, the ratios of differential cross section measurements for the

dimuon and dielectron channels are in good agreement.

Figure 6.38. The ratio of the DY pre-FSR full acceptance cross section
measurements in the dimuon and dielectron channels at 7 TeV.

The χ2 values calculated between the cross section measurements in the dimuon

and dielectron channels at 7 TeV are less than 2 for most of the bins, and all the

values are less than 3. The combined χ2/ndf = 1.06 considering no correlations.

The largest deviations between the cross sections in two channels are observed in the
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bins 115–120 GeV and 200–220 GeV. Notice here, that the modeling uncertainties on

acceptance are considered between the two channels. The combined χ2/ndf = 0.87

considering no bin-to-bin correlations and χ2/ndf = 1.07 with the full correlation ma-

trix taken into account. Overall, the DY cross section measurements in the dielectron

and dimuon channels are in good agreement.

Fig. 6.39 shows the ratio of differential cross section measurements in the dimuon

and dielectron channels at 8 TeV center-of-mass energy. As seen, the results are in

agreement within associated errors.

Figure 6.39. Drell–Yan pre-FSR full acceptance cross section mea-
surement with the photon induced contribution subtracted, in the
dimuon and dielectron channels at 8 TeV center-of-mass energy.

At 8 TeV, all the χ2 values calculated between the cross section measurements in

the dimuon and dielectron channels are less than 2.5, with the highest value of 2.1 at

around 300 GeV. Agreement between the two measurements just below the Z peak

is the best. The total χ2/ndf = 0.62, considering no bin-to-bin correlations. Overall,
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the results in the two channels are in good agreement for 8 TeV measurement as well

and, therefore, can be combined for greater precision.

Similar tests were repeated for the double-differential cross section measurements.

Fig. 6.40 shows the ratio of double-differential cross section measurements in the

dimuon and dielectron channels. An agreement between the results in the two chan-

nels within associated errors have been observed in all the mass bins. Deviations in

the high-rapidity region are generally larger.

The χ2/ndf values between dielectron and dimuon cross section measurements

are less than 1.5 in all the mass regions. Generally, the agreement between the two

measurements is very good. However, the pull values in the high-rapidity region are

larger as the deviations are more significant. It can be concluded that the double-

differential cross section measurements in the two channels are in good agreement

and can be combined for greater precision.

The cross section measurements in the two channels are combined using the pro-

cedure defined in [101]. Given the results in the dimuon and dielectron channels, and

their symmetric and positive definite covariance matrices, the estimates of the true

cross section values are found as unbiased linear combinations of the input measure-

ments having a minimum variance, a full covariance matrix for the uncertainties is

also extracted with this method.

The uncertainties are considered to be uncorrelated between the two channels.

Exceptions are the modeling uncertainty which is 100% correlated and the uncer-

tainty in the acceptance, which originates mainly from the PDFs. The acceptance is

almost identical between the two channels and the differences in uncertainties between

them are negligible. Thus, when combining the measurements the uncertainty in the

acceptance is added (in quadrature) to the total uncertainty after the combination

is done. The acceptance uncertainty does not include correlations between analysis

bins.

Fig. 6.41-6.42 show the Drell–Yan cross section measurements in the dimuon and

dielectron channels combined normalized to the Z resonance region with the FSR
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Figure 6.40. The absolute DY dilepton rapidity spectra d2σ/dmd|y|
with the photon induced contribution subtracted, plotted for different
mass regions within the detector acceptance, as measured in dielec-
tron and dimuon channels superimposed. There are six mass bins
between 20 and 1500 GeV, from left to right and from top to bot-
tom. The uncertainty bands in the theoretical predictions combine
the statistical and systematic uncertainties.
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effect taken into account at 7 and 8 TeV center-of-mass energy. The χ2
ndf is 1.1 between
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Figure 6.41. Drell–Yan cross section measurement in dimuon and
dielectron channels combined normalized to the Z resonance region at
7 TeV with the FSR effect taken into account.

7 TeV data and theory expectation, which takes into account the correlations.

The result of the combined measurement is in agreement with the NNLO theoret-

ical predictions as computed with Fewz using CT10 NNLO. The χ2
ndf is 1.0 between

8 TeV data and theory expectation, which takes into account the correlations.

6.8.4 Double Ratio Measurements

The ratios of the normalized differential and double-differential cross sections for the

DY process at the center-of-mass energies of 7 and 8 TeV in bins of dilepton invariant

mass and dilepton absolute rapidity are presented. The pre-FSR double ratio in bins

of invariant mass is calculated according to

R(→ γ∗/Z→ l+l−) =
(1/σZ

dσ
dm

)(8 TeV)

(1/σZ
dσ
dm

)(7 TeV)
,
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Figure 6.42. Drell–Yan cross section measurement in dimuon and
dielectron channels combined normalized to the Z resonance region at
8 TeV with the FSR effect taken into account.

while the pre-FSR double ratio in bins of mass and rapidity is calculated as

Rdet(→ γ∗/Z→ l+l−) =
(1/σZ

d2σ
dmd|y|)(8 TeV, pT > 10, 20 GeV)

(1/σZ
d2σ

dmd|y|)(7 TeV, pT > 9, 14 GeV)
,

where σZ is the cross section in the Z peak region; l denotes e or µ. The same binning

is used for differential measurements at 7 and 8 TeV in order to compute the ratios

consistently.

The double ratio measurements provide a high sensitivity to NNLO QCD effects

and could potentially yield precise constraints on the PDFs, as the theoretical system-

atic uncertainties in the cross section calculations at different center-of-mass energies

have substantial correlations. Tab. 6.10 summarizes the uncertainty sources that

cancel out in the double ratio measurements.
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Figure 6.43. The absolute DY dilepton rapidity spectrum d2σ/dmd|y|
with the photon induced contribution subtracted, in the combined
channel, plotted for different mass regions within the detector accep-
tance, as measured and predicted by NLO Fewz+CT10 PDF and
NNLO Fewz+CT10 PDF calculations. There are six mass bins be-
tween 20 and 1500 GeV, from left to right and from top to bottom.
The uncertainty bands in the theoretical predictions combine the sta-
tistical and the PDF uncertainties (shaded bands). The statistical
component is negligible.
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Table 6.10
Summary of the uncertainty sources that cancel out in the double
ratio measurements.

Uncertainty source dσ/dm d2σ/dmd|y|

PDF Cancels Cancels

Acc. Mod. Cancels –

FSR Cancels Cancels

Fig. 6.44 shows the results of the DY cross section double ratio measurement in

the dimuon channel. The theoretical prediction for the double ratio is calculated

using Fewz with the CT10 NNLO PDF set. The shape of the distribution is defined

entirely by the
√
s and the Bjorken x dependencies of the PDFs, as the dependency

on the hard scattering process cross section is canceled out. In the Z peak region, the

expected double ratio is close to 1 by definition. It increases linearly as a function of

the logarithm of the invariant mass in the region below 200 GeV, where partons with

small Bjorken x (0.001 < x < 0.1) contribute the most. At high mass, a high x region

is probed (x > 0.3). The PDFs at smaller
√
s fall more steeply at large x, leading to

an exponential growth of the double ratio as a function of mass above 200 GeV.

The uncertainty bands in the theoretical prediction of the double ratio include the

statistical and the PDF uncertainties from the Fewz calculations summed in quadra-

ture. The experimental systematic uncertainty calculation is described in Section 6.7.

The scale variation uncertainty of up to 2% is included in the theoretical error band.

Agreement is observed between the double ratio measurement and the CT10

NNLO PDF theoretical prediction within uncertainties. The χ2 probability from

a comparison of the predicted and measured double ratios is 87% with 40 degrees of

freedom, calculated with the total uncertainties. At high mass, the statistical compo-

nent of the uncertainty becomes significant, primarily from the 7 TeV measurements.
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Figure 6.44. Measured ratio of DY normalized differential cross sec-
tions at center-of-mass energies of 7 and 8 TeV in the dimuon (top) and
combined dilepton channels (bottom) as compared to NNLO Fewz
calculations obtained with CT10 NNLO PDF. The uncertainty bands
in the theoretical predictions combine the statistical and PDF uncer-
tainties (shaded bands); the latter contributions are dominant.

The double ratio predictions calculated with the CT10 NNLO and NNPDF2.1

NNLO PDFs agree with the measurements. Below the Z peak, NNPDF2.1 NNLO
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Figure 6.45. Measured ratio of DY normalized differential cross sec-
tions, within the detector acceptance, at center-of-mass energies of 7
and 8 TeV in the dimuon channel, plotted for different mass regions
and compared to NNLO Fewz calculations obtained with the CT10
PDFs. There are six mass bins between 20 and 1500 GeV, from left to
right and from top to bottom. The uncertainty bands in the theoreti-
cal predictions combine the statistical and PDF uncertainties (shaded
bands); the latter contributions are dominant.

PDF theoretical predictions are in a closer agreement with the measurement. In the

Z peak region, a difference in the slope of both theoretical predictions as compared
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to the measurement is observed in the central absolute rapidity region. In the high-

rapidity and high-mass regions, the effect of the limited number of events in the 7 TeV

measurement is significant. In the 120–200 GeV region, the measurement is at the

lower edge of the uncertainty band of the theory predictions.

Fig. 6.46 shows the combined double ratio measurement as a function of rapidity

in various invariant mass regions. The shape of the theoretical prediction of the

double ratio is nearly independent of the dilepton rapidity at low mass, showing an

increase as a function of rapidity by up to 20% in the Z peak region and at high mass,

and a significant dependence on rapidity in the 30–60 GeV region. The uncertainty

bands in the theoretical predictions of the double ratio include the statistical and the

PDF uncertainties from the Fewz calculations summed in quadrature. The estimated

uncertainties related to QCD renormalization and factorization scale dependence (up

to 2%) are included in the theoretical error band.

The double ratio predictions calculated with the CT10 NNLO and NNPDF2.1

NNLO PDFs agree with the measurements. Below the Z peak, NNPDF2.1 NNLO

PDF theoretical predictions are in a closer agreement with the measurement. In the

Z peak region, a difference in the slope of both theoretical predictions as compared

to the measurement is observed in the central absolute rapidity region. In the high-

rapidity and high-mass regions, the effect of the limited number of events in the 7 TeV

measurement is significant. In the 120–200 GeV region, the measurement is at the

lower edge of the uncertainty band of the theory predictions.

The DY differential cross section has been measured by the CDF, D0, ATLAS,

and CMS experiments [19, 68, 69, 102–104]. The current measurement of the Drell–

Yan differential dσ/dm cross section extends the mass coverage range from 1.5 TeV

reported in the latest CMS and ATLAS measurements up to 2 TeV and improve the

precision of the cross section measurement at low mass and the Z peak region due

to larger statistics samples and the reduction of experimental systematic uncertain-

ties as a result of the application of data-driven techniques. The double-differential

d2σ/dmd|y| distributions are determined not only in the Z peak region as in the
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Figure 6.46. Measured ratio of DY normalized differential cross sec-
tions, within the detector acceptance, at center-of-mass energies of 7
and 8 TeV in the combined dilepton channel, plotted for different mass
regions and compared to NNLO Fewz calculations obtained with the
CT10 PDFs. There are six mass bins between 20 and 1500 GeV, from
left to right and from top to bottom. The uncertainty bands in the
theoretical predictions combine the statistical and PDF uncertainties
(shaded bands); the latter contributions are dominant.

measurements with Tevatron data, but also at low and high masses, therefore, signif-

icantly improving the potential for PDF constraints with DY data. The DY analysis
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presented covers the ranges 0.0003 < x < 0.5 and 500 < Q2 < 90000 GeV2 in Bjorken

x scaling variable and evolution scale Q2. The current measurements appear to be in

agreement with the previous measurements. One of the novel additions of the present

DY analysis is the first double ratio measurement with Drell–Yan data, which is a

tool for the reduction of PDF uncertainties due to the cancellation of theoretical

systematic uncertainties between measurements at various data-taking periods.
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6.9 PDF Constraints with Drell–Yan Data

Drell–Yan data provides an important input for modern PDF fits. Most of the cur-

rently available PDFs are significantly influenced by the fixed-target DY experimental

data. The data used for the constraints is in the mass range of 50 < m < 600 GeV

and the absolute rapidity range of |y| < 2.2. At the LHC, a small x and high Q2

kinematic region is probed, where the contribution of parton sub-processes involving

light sea and especially strange sea quarks is significantly increased which motivates

the use of the CMS DY data as an input for PDF fits.

The rapidity distributions of the gauge bosons γ∗/Z are sensitive to the parton

content of the proton, and the very high energy of the LHC allows the PDFs to be

probed in a wide region of Bjorken x and Q2: 0.0003 < x < 0.5 and 500 < Q2 <

90000 GeV2. Since the y distribution is symmetric around zero in proton-proton

collisions, only the differential cross section in |y| is normally considered in order to

reduce the statistical errors.

The measurements of the double-differential cross section d2σ/dmd|y| in DY pro-

duction are used in the following to provide direct quantitative tests of perturbative

QCD and help to constrain the quark, antiquark and gluon content of the proton.

The NNPDF approach described in Section 3.2.3 is used as a framework for the

calculations. The prior PDF distributions are calculated using the NNPDF2.1 NNLO

PDF set composed of 100 simulated replications. The χ2 values estimated between

the theoretical cross sections and the DY cross section measurement per degree of

freedom are used as an input for the NNPDF reweighting procedure. The correlations

among analysis bins are taken into account. Various combinations of input data are

considered.

Fig. 6.47 shows the impact of the 7 TeV DY double-differential cross section mea-

surement on the total valence and gluon parton distributions. As seen, some reduction

of the PDF uncertainty band is observed on the total valence quark PDF in the low

and high-x region. The effect of DY data on the gluon distributions is insignificant.
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Figure 6.47. Impact of the 7 TeV DY double-differential cross sec-
tion measurement on the total valence (left) and gluon (right) parton
distributions in NNPDF 3.0 fit.

Fig. 6.48 illustrates the impact of the 7 TeV DY double-differential cross section

measurement on the NNPDF fit, using the HERA input data only. As seen, a signif-
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Figure 6.48. Impact of the 7 TeV DY double-differential cross sec-
tion measurement on the up (left) and down (right) valence quark
distributions in NNPDF 3.0 fit using the HERA input data.

icant impact on the u and d quark distributions is observed in the low, intermediate

and high-x regions. The reduction of systematic uncertainties by up to 30% is ob-

served.

Fig. 6.49-6.50 show the impact of the DY double-differential cross section mea-

surement at 8 TeV on the individual quark, antiquark and gluon distributions.
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Figure 6.49. Impact of the 8 TeV DY double-differential cross sec-
tion measurement on the individual quark and gluon distributions in
NNPDF fit. From top left to bottom right: u quark, d quark, s quark
and gluon PDFs.

As seen, the effect of the 8 TeV data on the parton distributions in the NNPDF

fit is significant. Inclusion of the DY double-differential cross section data causes

a reduction of error and also shifts the central values of the PDF. The effect is

particularly pronounced on the poorly known s quark and antiquark PDFs This is

expected, since at the LHC the relative contributions of different parton sub-processes

to the DY production are significantly different from the past experiments, with the

dominant contribution shifted from first generation quarks (u and d) to strange quarks

and antiquarks, carrying 15–20% of the proton momentum.

Finally, the impact of the DY normalized differential cross section ratios at center-

of-mass energies of 7 and 8 TeV on PDF fits is quantified. Fig. 6.51-6.52 show the
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Figure 6.50. Impact of the DY double-differential cross section mea-
surement on the individual antiquark parton distributions in NNPDF
fit. From top left to bottom right: u antiquark, d antiquark and s
antiquark PDFs.

impact of the DY double ratios on the individual parton distributions in NNPDF fit.

The results observed with double ratio measurements are quite impressive: the

reduction of PDF errors is even larger than for the absolute cross sections, because

of the cancellation of theoretical systematic uncertainties between 7 and 8 TeV. As

seen, the reduction of the uncertainties is between 5–40% and the shift of the central

values is up to 10% with the DY double ratio data included.
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Figure 6.51. Impact of the DY normalized differential cross section
ratios, at center-of-mass energies of 7 and 8 TeV on the individual
quark parton distributions in NNPDF fit. From top left to bottom
right: u quark, d quark, s quark and gluon PDFs.
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Figure 6.52. Impact of the DY normalized differential cross section
ratios, at center-of-mass energies of 7 and 8 TeV on the individual
antiquark parton distributions in NNPDF fit. From top left to bottom
right: u antiquark, d antiquark and s antiquark PDFs.
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7. SUMMARY AND CONCLUSIONS

The main result of this thesis is the precision measurement of the Drell–Yan cross

section in order to constrain the parton distribution functions (PDFs). The three fol-

lowing measurements are presented: the Drell–Yan differential cross section dσ/dm

measurement in the dielectron and dimuon channels, the double-differential cross sec-

tion d2σ/dmd|y| in the dielectron and dimuon channels, and the first measurement

of the ratio of the normalized differential cross sections at 7 and 8 TeV. The mea-

surements are carried out with proton-proton collision data collected using the CMS

detector at the LHC with integrated luminosities of 4.8 fb−1 (dielectron) and 4.5 fb−1

(dimuon) at
√
s = 7 TeV, and 19.7 fb−1 at

√
s = 8 TeV center-of-mass energy.

The dσ/dm and d2σ/dmd|y| measurements are in agreement with the NNLO

theoretical predictions, as computed with Fewz [81] using the CT10, NNPDF2.1,

MSTW2008, HERAPDF15, JR09, ABKM09, and CT10W PDFs. The double ra-

tio measurement agrees with the theory prediction within the systematic and PDF

uncertainties.

Given the uncertainties of the double-differential cross section and the double ratio

measurements presented, they provide sufficient sensitivity to constrain PDFs. The

Z boson production cross section presented is the most precise measurement of that

type perfromed with CMS data.

The effects of inclusion of DY data in the PDF fits have been explored using the

neural network PDF framework [52]. An effect of reduction of PDF uncertainty of

5–40% and a shift of the central values of the PDF by a similar amount has been

observed. Using the double ratio measurement resulted in a reduction of uncertainties

even larger as compared to the absolute cross sections, because of the cancellation of

theoretical systematic uncertainties between 7 and 8 TeV. The effect is particularly
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pronounced on the poorly known strange quark PDF, as well as the light sea quarks

at small values of longitudinal momentum fractions carried by a parton.



APPENDICES
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A. REFERENCE FRAMES

Various reference frames are used to describe the kinematics of proton-proton colli-

sions. The most commonly used reference frames are discussed.

In the following, the 4-momentum of the gauge boson is denoted by qµ = (Q,q),

where Q is the energy and q is the 3-momentum of the boson.

A.1 Laboratory Frame

The laboratory frame is a frame of reference attached to the laboratory in which the

experiment is performed (for example, the particle detector). This is the reference

frame in which the laboratory is at rest. In this reference frame the 4-vector qµ has

the components qµ = (Q,q) = (ν, 0, 0, |q|). The vector q in the laboratory-system is

directed along the z axis.

A.2 Center-of-mass Frame

The center-of-mass frame (CM frame) is a coordinate system in which the center-

of-mass is at rest. Also, the total linear momentum is zero and the total energy of

the system is equal to the minimal energy as seen from all possible inertial reference

frames.

A.3 Breit Frame

In the Breit reference frame [105] colliding protons are assumed to be moving fast,

the quark and antiquark involved in the hard process are assumed to carry fractions

x1 and x2 of the proton momenta, respectively.

Let us denote the 4-momentum of the gauge boson in the Breit frame by q
′µ =

(Q
′
,q′). This coordinate system is defined by the condition that the energy transfer

is zero: Q
′

= 0. Thus, it is only the momentum that is transferred to partons in

the Breit frame. We can establish that such a coordinate system exists, if we recall

that the 4-momentum q
′µ is space-like: q

′µq
′
µ = −q

′2 < 0. Therefore, the laboratory
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system is related to the Breit frame by relativistic transformation. The energy of the

4-vector q
′µ in the Breit frame is connected with that in the laboratory-system by:

Q
′
=
ν − (q · ν)

(1− ν2)1/2
= 0, (A.1)

where ν is the velocity of the laboratory-system relative to the Breit frame, and ν is

the energy in the laboratory frame. It follows from the previous equation that the

magnitude of ν is:

ν = ν/q|| = ν(ν2 − q2 − q2
⊥)1/2, (A.2)

where q|| denotes the component of the vector q parallel to ν, and q⊥ is the transverse

component of the vector q. From Eq. (A.1) it follows that q|| > 0. The relativistic

transformation for the longitudinal component of the vector q
′

has the form:

q
′

|| =
q|| − νν

(1− ν2)1/2
. (A.3)

Under the assumption that q⊥ 6= 0 and q⊥ = 0 one gets also:

ν = νq/|q|2 (A.4)

A.4 Collins-Soper Frame

In the Collins-Soper (CS) frame [106] the gauge boson is at rest, meaning qµ =

(Q, 0, 0, 0). The frame is characterized by two properties. First, the y axis is per-

pendicular to the plane spanned by the two hadron momenta P1 and P2 and second,

the z axis cuts the angle between P1 and P2 into two equal halves, see Fig. A.1 for

details.
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Figure A.1. The Collins-Soper frame: the z axis cuts the angle be-
tween P1 and P2 into halves (the half angle is called the Collins-Soper
angle CS) while the x axis is perpendicular to P1 and P2. The direc-
tion of one lepton momentum l1 can then be given by the angles φ
and θ.
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B. PILEUP REWEIGHTING

The effect of multiple proton-proton interactions per bunch crossing is referred to as

pileup. Pileup effects are taken into account in MC samples which are generated with

the inclusion of multiple proton-proton interactions that have timing and multiplicity

distributions similar to those expected in data. To match the observed instantaneous

luminosity profile of the LHC, the simulated events are reweighted to yield the same

distribution of the mean number of proton-proton interactions per bunch crossing as

observed in data.

The number of pileup events in data and MC simulated with Poissonian out-of-

time scenario (referred to as S10 scenario in the note, see [107] for details) is shown

in Fig. B.1.

Following the official CMS recipe described in [107], MC samples are reweighted

using the simulation truth instead of the number of pileup interactions. The target

pileup distribution for data is derived by using the per-bunch-crossing-per-luminosity

section instantaneous luminosity from the LumiDB together with the total inelastic

cross section to generate an expected pileup distribution, correctly weighted by the

per-bunch-crossing-per-luminosity section integrated luminosity over the entire data-

taking period.

The average weight distribution corresponding to this reweighting procedure is

shown in Fig. B.2. The average pileup weight in MC is 1.01.

Pileup affects the Drell–Yan analysis mainly through the lepton isolation effi-

ciency. The effect of pileup interactions on efficiencies was inspected. For that, the

reconstruction and identification, and isolation efficiencies were studied as a function

of the number of reconstructed primary vertexes in an event. Fig. B.3 summarizes the

effect of pileup on the muon and electron efficiencies respectively. At 7 TeV, the effect

of pileup was less significant (yielding 9 interactions per bunch crossing on average
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Figure B.1. The pileup distribution in 8 TeV data and MC simulated
with S10 scenario.

Figure B.2. The average pileup weight distribution in signal MC at 8 TeV.
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Figure B.3. The muon reconstruction and identification, and muon
isolation efficiencies (from left to right) as a function of the number
of reconstructed primary vertexes in an event.

as compared to 18 interactions at 8 TeV) affecting primarily the electron isolation

efficiency (up to 5% effect) and leading to the effect on the muon isolation efficiency

of less than 1%.
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C. DATA AND MONTE CARLO SAMPLES

C.1 Data and Monte Carlo Samples

The measurements of the differential and double-differential cross sections reported

are based on data recorded in 2012 with the CMS detector at the LHC at
√
s = 8 TeV,

corresponding to an integrated luminosity of 19.7 fb−1 in both the dielectron and

dimuon channels. For the double ratio calculations, the
√
s = 7 TeV data set recorded

in 2011 corresponding to an integrated luminosity of 4.5 fb−1 (dimuon) and 4.8 fb−1

(dielectron) is used. Tables C.1 and C.2 summarize the details of the data samples.

Table C.1
Details of the 7 TeV datasets.

Run Dataset Run range

A /DoubleMu/Run2011A-May10ReReco-v1/AOD 160404-163869

A /DoubleMu/Run2011A-PromptReco-v4/AOD 165071-166922

A /DoubleMu/Run2011A-05Aug2011-v1/AOD 170053-172619

A /DoubleMu/Run2011A-PromptReco-v6/AOD 172620-175770

B /DoubleMu/Run2011B-PromptReco-v1/AOD 175832-180296

A /SingleMu/Run2011A-08Nov2011-v1/AOD 160404-173692

B /SingleMu/Run2011B-19Nov2011-v1/AOD 178420-180296

The dilepton datasets used for most of the analysis steps. Single muon datasets

are used for the efficiency estimation purposes only. MuEG and SinglePhoton primary

datasets are used for the fake-lepton background estimates.
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Table C.2
Details of the 8 TeV datasets.

Run Dataset Run range

A /DoubleMu/Run2012A-22Jan2013-v1/AOD 190645-193621

A /DoubleElectron/Run2012A-22Jan2013-v1/AOD

B /DoubleMuParked/Run2012B-22Jan2013-v1/AOD 193834-196531

B /DoubleElectron/Run2012B-22Jan2013-v1/AOD

C /DoubleMuParked/Run2012C-22Jan2013-v1/AOD 198049-203742

C /DoubleElectron/Run2012C-22Jan2013-v1/AOD

D /DoubleMuParked/Run2012D-22Jan2013-v1/AOD 203777-208686

D /DoubleElectron/Run2012D-22Jan2013-v1/AOD

A /SingleMu/Run2012A-22Jan2013-v1/AOD 190645-193621

B /SingleMu/Run2012B-22Jan2013-v1/AOD 193834-196531

C /SingleMu/Run2012C-22Jan2013-v1/AOD 198049-203742

D /SingleMu/Run2012D-22Jan2013-v1/AOD 203777-208686

A /MuEG/Run2012A-22Jan2013-v1/AOD

B /MuEG/Run2012B-22Jan2013-v1/AOD

C /MuEG/Run2012C-22Jan2013-v1/AOD

D /MuEG/Run2012D-22Jan2013-v1/AOD

A /Photon/Run2012A-22Jan2013-v1/AOD

B /SinglePhoton/Run2012B-22Jan2013-v1/AOD

C /SinglePhoton/Run2012C-22Jan2013-v1/AOD

D /SinglePhotonParked/Run2012D-22Jan2013-v1/AOD

The measurement relies on the official JSON files. Only the luminosity sections

certified as having all the CMS sub-detectors functioning are used for the measure-

ment.
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Monte Carlo (MC) samples are used in the analysis for determining efficiencies,

acceptances, and for the determination of systematic errors. Data-driven methods

are applied to determine efficiency correction factors and backgrounds. Although we

partially rely on MC in data-driven methods, the purpose of applying such techniques

is not to depend on the precise agreement between data and MC. MC event samples

have been generated using a variety of generators. All MC samples are processed

with the full CMS detector simulation based on Geant4 [108] and include trigger

simulation and the full chain of CMS event reconstruction.

The Drell–Yan signal samples are generated with the NLO generator Powheg

interfaced with the Pythia v6.4.24 [109] parton-shower generator (referred to as the

Powheg MC). Both tt decays to jet final states and single top samples are produced

with the MadGraph generator [110] at leading order (LO). The tau decays and

inclusive tt samples were performed with Tauola generator [111]. The tt sample

is re-scaled to the NLO cross section of 263.1 pb. Diboson samples (WW/WZ/ZZ)

were produced with a combination of MadGraph and Tauola generators, and

QCD background events are produced with Pythia. The proton structure is defined

using the CT10 [82] parton distribution functions. All samples are generated using

the Pythia Z2 tune [112] to model the underlying event.

Pileup effects are taken into account in MC samples which are generated with the

inclusion of multiple proton-proton interactions (average of 18 interactions per bunch

crossing) that have timing and multiplicity distributions similar to those expected in

data.

The Powheg MC is based on NLO calculations and a correction is added to

take NNLO effects into account (see Appendix C). The NNLO effects alter the cross

section as a function of the dilepton kinematic variables and are important in the

low-mass region and in renormalizing the cross section.
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D. KINEMATICS REWEIGHTING

D.1 Kinematics Reweighting

The Powheg is a dedicated parton-level generator [113]. By design, it allows to

include higher-order QCD corrections in the calculation. Including the NNLO QCD

effects is, however, computationally expensive provided that a large statistics sample

is required for an accurate measurement. Therefore, the Powheg MC sample is

generated based on NLO and an additional correction is further applied to take the

NNLO effects into account. It is essential to promote the simulated signal samples to

NNLO in order to properly describe the low-mass region (m < 40 GeV).

The correction is determined from the ratio between the double-differential cross

sections (binned in rapidity and PT) calculated at NNLO with Fewz [81] and at

NLO with the Powheg MC. For a given mass range it is defined in bins of dilepton

rapidity y and dilepton transverse momentum PT:

ω(PT, y) =
(d2σ/dPTdy)FEWZ

(d2σ/dPTdy)Powheg

(D.1)

Below, the NNLO kinematics correction procedure of the signal MC is described.

The NNLO kinematics correction factors are first derived in the bins of dilepton

PT and rapidity. The distribution in rapidity is rather monotonous and does not

require a lot of bins, therefore, the PT binning optimization is the most important.

The PT binning is optimized taking into account the shape of the k-factor dis-

tribution as a function of dilepton transverse momentum in a given mass region.

Fig. D.1-D.4 show the PT dependencies of the k-factors in various mass ranges.

As seen, at low mass the k-factor grows significantly with transverse momentum

suggesting that a large number of bins should be used.
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Figure D.1. The NNLO/NLO k-factor as a function of dilepton PT.
From top left to bottom right: 15–20 GeV, 20–30 GeV, 30–45 GeV,
and 45–60 GeV mass regions.
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Figure D.2. The NNLO/NLO k-factor as a function of dilepton PT.
From top left to bottom right: 60–72 GeV, 72–106 GeV mass region.
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Figure D.3. The NNLO/NLO k-factor as a function of dilepton PT.
From top left to bottom right: 106–120 GeV, 120–133 GeV, 133–150
GeV, and 150–171 GeV mass regions.

In the Z peak region, the distribution flattens and becomes nearly independent

on PT at high mass. Based on that, following binning was suggested:

• 15− 64 GeV mass region

|y|: 0, 0.7, 1.1, 1.9, 2.4, 1000.0

PT: 0, 20, 30, 35, 40, 45, 50, 60, 90, 200, 1000 GeV

• 64− 106 GeV mass region

|y|: 0, 0.7, 1.9, 1000.0

PT: 0, 20, 30, 35, 40, 45, 50, 60, 90, 200, 1000 GeV

• Mass greater than 120 GeV
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Figure D.4. The NNLO/NLO k-factor as a function of dilepton PT.
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PT: 0, 20, 100, 1000 GeV
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D.2 Validation

A set of tests was performed to validate and assert the correctness of the reweighting

procedure, focusing primarily on the binning, normalization and the residual differ-

ences between the mass spectra before and after the reweighting.

The absolute cross section calculated with Fewz is compared to the signal MC

truth pre-FSR cross section after reweighting. It is clear, that after reweighting we

should obtain the absolute cross section equal to that from Fewz by construction,

and the only deviations would be possible due to binning effects, MC statistics and

Fewz integration precision. One can expect binning effect to become negligible if an

infinitesimally fine binning in PT and rapidity is used, provided the statistics in MC

is infinitely large. Fig. D.5 shows the absolute cross section calculated with Fewz

compared to the signal MC truth pre-FSR cross section after reweighting. As seen,

Figure D.5. The absolute cross section calculated with Fewz com-
pared to the signal MC truth pre-FSR cross section after reweighting,
left plot: logarithmic scale on y axis, right plot: linear scale on y axis.

the agreement is very good.

The ratio of absolute cross sections calculated with Powheg and Fewz before

and after the NNLO kinematics reweighting is shown in Fig. D.6. As seen, the ratio of

Powheg after the NNLO kinematics reweighting and Fewz absolute cross sections

is in agreement within errors.
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Figure D.6. The ratio of absolute cross sections calculated with
Powheg and Fewz before and after the NNLO kinematics reweight-
ing applied to the Powheg MC sample.

The modeling error, reflecting a residual disagreement between the MC truth

pre-FSR quantities after reweighting and Fewz quantities, is evaluated as relative

difference between the pre-FSR Fewz corrected acceptances calculated with Fewz

and Powheg:
δA

A
= |A

Powheg
NNLO − AFEWZ

APowheg
NNLO

| (D.2)

Fig. D.7 shows the modeling error as a function of dilepton invariant mass. As seen,

due to a smart choice of the binning it was possible to reduce the modeling error down

to 2% at low mass, around 0.1% in the peak region and within 1% at high mass.

With the nominal binning considered, we expect an average weight distribution

to have a mean value consistent with the k-factor obtained with single bin calculation

within errors. The RMS is an estimator of the magnitude of a varying quantity. In

our case, the weight is not a random variable, however it is subject to random noise

(due to limited statistics in Fewz and MC). Thus, RMS would not go to zero even

if statistics was infinite (both in Fewz and MC). RMS in this case is an estimator

for two effects: (1) PT dependency of the k-factor (systematic effect) (2) statistics



147

llM
20 30 40 210 210×2 310

R
el

at
iv

e 
un

ce
rt

ai
nt

y

0

0.005

0.01

0.015

0.02

0.025

Figure D.7. The modeling error as a function of dilepton invariant mass at 8 TeV.

in MC sample (random Gaussian effect). Note, the k-factor is defined as the ratio

of NNLO QCD, NLO EW to NLO QCD, NLO EW cross sections, where the EW

correction include the weak contribution, but do not include any QED (FSR, ISR

and interference-type terms) or photon induced contributions.
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E. BACKGROUND ESTIMATION

E.1 Background Estimation Methods

A combination of techniques is used to determine contributions from various back-

ground processes. Wherever feasible, the background rates are estimated from data,

reducing the uncertainties related to simulation of these sources.

E.1.1 True Dilepton Backgrounds

Non-QCD backgrounds in both the dimuon and dielectron channels are estimated

using the data-driven e µ method. The relationship between the number of estimated

l+l− (µ+µ− or e+e−) and observed e µ events can be expressed as:

N ll
est = N

eµ
obs/N

eµ
MC ·N

ll
MC (E.1)

where N
eµ
MC includes decay channels that can lead to both the eµ and l+l− final states:

tt, tW, WW, WZ, ZZ, and the Z→ τ+τ−. The expected fraction of events decaying

to eµ and l+l− is 2, but in realistic conditions (e.g. proton collision at the LHC) some

deviations are observed because of leptons from QCD (15-40 GeV) and final state

radiation effect (40–60 GeV).

Below 40 GeV, leptons in jets arise primarily from semileptonic decays of heavy

quarks. It is difficult to model this background process using Monte Carlo because

the trigger and Drell–Yan selection efficiency is very low. Nevertheless, events of that

type remain in both the eµ and dilepton samples after the selection.

Any possible excess of the observed same-sign eµ and l+l− yields over those cal-

culated for electroweak background sources must be due to decays of b-quarks. The

expected heavy flavor background in the opposite-sign dilepton sample can be esti-

mated from the following ratio:

N l±l± =
N l+l+ +N l−l−

R
. (E.2)
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The constant, R, can be calculated from the time-integrated b mixing probability,

which represents the fraction of events in which one b-quark forms a neutral B-

meson, oscillates to its anti-particle state and decays, while the b-antiquark in the

event decays in its original flavor state.

To validate the correctness of the method the closure test was performed on MC

events.

Fig. E.1 shows the results of the closure tests in the bins of mass and mass-rapidity.
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Figure E.1. Total non-QCD background as estimated from MC and
as predicted by the data-driven eµ method applied to MC (closure
test). Left: estimated in the bins of invariant mass, right: estimated
in the invariant mass-rapidity bins.

As seen, there is a perfect agreement in the closure test validating the correctness

of the method.

Fig. E.2 shows the non-QCD background in the bins of invariant mass as predicted

with the data-driven eµ method and as estimated with MC. Fig. E.3 shows the non-

QCD background in the bins of invariant mass-rapidity (2D) as predicted with the

data-driven eµ method and as estimated with MC.

As seen, the results agree well within the uncertainties. With the data-driven

technique, we assign the systematic uncertainty based on two sources:

• Poissonian statistical uncertainty of predicted backgrounds (which is treated as

systematic),
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Figure E.2. Total non-QCD background in the bins of invariant mass
as estimated from MC and as predicted by the data-driven eµ method.
The bottom pad shows the corresponding ratio with associated errors.
The vertical error bars include the total statistical and systematic un-
certainties. The ratio plot includes the total uncertainty on the data-
driven and MC based estimates combined in quadrature assuming no
correlations.

• Deviation of the data-driven prediction from the arithmetic mean (Naverage) of

the data-driven prediction and corresponding MC expectation.

The resulting uncertainty is a combination of these two sources in quadrature:

δNbg

Nu

=

√
(
(Ndata driven −Naverage)

Nu

)2 + (

√
Ndata driven

Nu

)2. (E.3)

here, Ndata driven denotes the data-driven background prediction. In case of a MC

based estimation, the systematic uncertainty on the background estimation consists

of two components:

• Poissonian statistical uncertainty from the MC sample (which is treated as

systematic),

• Systematic uncertainty due to the knowledge of the theoretical cross section,

the two components are combined in quadrature:

δNbg/Nu =

√
(δσtheor)2 + (

√
NMC

Nu

)2. (E.4)
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Figure E.3. Total non-QCD background in the bins of invariant mass-
rapidity as estimated from MC and as predicted by the data-driven
eµ method. The vertical error bars include the total statistical and
systematic uncertainties. The ratio plots include the total uncertainty
on the data-driven and MC based estimates combined in quadrature
assuming no correlations.

where NMC is the MC based background estimate. MC samples are very limited

in statistics at high mass so the corresponding statistical uncertainty is very large.

Therefore, this method provides a very conservative systematic uncertainty estima-
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tion. The uncertainty from data-driven estimated is smaller than the MC based

estimated in majority of the mass-rapidity bins.

E.1.2 Fake Lepton Backgrounds

In addition to the true dilepton events from electroweak processes, there are events

in which reconstructed objects are falsely identified as electrons or muons. These can

be QCD multijet events where two jets pass the lepton selection criteria or W+jets

events where the W boson decays to a lepton and a neutrino, and a jet is misidentified

as a lepton.

Fake muon background estimation with ABCD method

The QCD background in the dimuon channel is evaluated using a data-driven

technique. The method uses both the muon isolation and the sign of the charge as

two independent discriminant variables to identify a signal region and three back-

ground regions in the two dimensional muon charge sign-isolation feature space. The

background estimate is then based on the ratio between the number of events in the

different regions [90].

Fig. E.4 shows two dimensional plots for the variables of the ABCD method, muon

isolation on the x axis and the sign of the dimuon candidate on the y axis. The left

plot is for QCD background and the right plot is for DY Powheg signal. As shown,

region A is a signal region and the most of the signal events are in the region (minimal

contribution in region B, C and D). QCD has a significant contribution in regions C

and D, therefore using the ratio of A and B and the ratio of C and D in QCD, we can

reduce the QCD contamination in region A. We use the data sample to determine

events in region B, C and D. A small correction is applied to correct the correlation

between variables and take into account signal contamination.

Fake electron background estimation with fake rates method

The QCD background in the dielectron channel is evaluated using a data-driven

technique. The probability for a reconstructed object to pass the requirements of an

electromagnetic trigger and to be falsely reconstructed as an electron is determined

from a specially selected sample of these objects. This sample of events is taken
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Figure E.4. Two dimensional plot for the variables of ABCD method
in QCD (top) and DY Powheg (bottom).

from the same double-electron trigger used to select Drell–Yan events, but with the

number of real electrons significantly reduced. To identify the background from real

electrons events, only events with two electron candidates are selected. If one electron

candidate passes the full electron selection or the invariant mass of the pair of electron

candidates is greater than 150 GeV, the event is rejected. This significantly reduces
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the background from real Drell–Yan events. The remaining background from Drell–

Yan, tt and real dielectron events is then subtracted using Monte Carlo. Using this

sample of events the probability of an object being misidentified as an electron is

measured as a function of object ET and absolute pseudorapidity |η|.

The number of e+e− background events is then determined from a sample of events

collected with the double-electron trigger in which at least one electron candidate fails

the full electron selection of the analysis. The events from this sample are assigned

weights based on the expected misidentification probability for the failing electron

candidates, and the sum of the weights yields the prediction for the background from

this source. Since events in this double-electron trigger sample with at least one

electron failing the full selection contain a fraction of genuine dielectron events, the

contribution of the latter is subtracted using simulation.

The expected shapes and the relative yields of dielectron events from data and

simulation in bins of invariant mass are shown in Fig. E.5 in the same format as the

dimuon channel. The genuine electron background is largest in high-mass regions,

where it reaches up to 15–20% of the observed yields due to tt events. At the lowest

masses, the genuine electron background level, which is dominated by the DY →

τ+τ− contribution, becomes significant at ∼50 GeV, where it ranges up to 10%. In

other mass ranges the genuine electron background is typically a few percent and, in

particular, it is very small (less than 0.5%) in the Z peak region. The background

associated with falsely identified electrons is relatively small in the full mass range.

E.1.3 Photon Induced Background

The lepton pair production in γγ-initiated processes, where both initial-state protons

radiate a photon, is significant at high and low masses, outside the Z peak region.

The contribution from this channel is treated as an irreducible background, and is

estimated with Fewz and the NNPDF2.3QED PDF set.

The multiplicative correction to the in-acceptance cross section is estimated as:

σDY, meas = σDY, th/σDY+PI, th · σDY+PI, meas, (E.5)
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Figure E.5. The estimated dielectron fake electron background invari-
ant mass spectra. Estimated using the measured rate of fake electron
production.

and is applied bin-by-bin to the measured cross section.

It is essential to apply a multiplicative correction rather than additive as the

cross section is corrected for PI background before the acceptance correction. Thus,

applying the acceptance correction derived from DY only, would properly correct

the DY component of the observed yields while strongly under-correcting the photon

induced (PI) component.

Fig. E.6-E.7 show the contribution of the photon induced background in bins of

mass and rapidity.

The contribution in the 20–30 GeV bin is not shown as it is negligible. As seen, the

effect of the photon-induced background on the 1D result is up to 40% increasing with

mass. The effect on the 2D result is up to 8%, decreasing with rapidity, consistent

with the 1D calculation.
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Figure E.6. The ratio of the cross section of γγ-initiated processes
to the measured Drell–Yan cross section in bins of mass estimated
with Fewz and NNPDF2.3QED PDF set.
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Figure E.7. The ratio of the cross section of γγ-initiated processes
to the measured Drell–Yan cross section in bins of mass-rapidity as
estimated with Fewz and NNPDF2.3QED PDF set. The vertical
error bar includes the statistical and the PDF systematic uncertainty.
The statistical uncertainty is negligible.
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F. DATA-DRIVEN EFFICIENCY CORRECTIONS

F.1 Data-driven Efficiency Corrections

The event efficiency from simulation is corrected by an efficiency scale factor ρ, which

takes into account differences between data and simulation. The procedures outlined

below are used to extract the efficiency corrections for both the dσ/dm and the

d2σ/dmd|y| cross section measurements in the dielectron and dimuon channels.

The scale factor ρ reflects both the single-lepton and the dilepton selections. The

single-lepton properties (including the trigger) are determined using Z→ l+l− events

in data and simulation, where one lepton, the tag, satisfies the tight selection re-

quirements, and the selection criteria are applied to the other lepton as a probe

(tag-and-probe method [90]). An event sample with a single-lepton trigger (the tag)

is used to evaluate this scale factor. A simultaneous fit to the invariant mass spectra

for passing and failing probes in both dielectron and dimuon channels is performed

using identical signal shape and appropriate background shapes; the efficiency is then

computed from the normalizations of the signal shapes in the two spectra.

The total event selection efficiency in the dimuon channel is factorized in the

following way:

ε = εreco+id · εiso · εtrig, (F.1)

and in the following way in the dielectron channel:

ε = εreco · εid+iso · εtrig, (F.2)

see [19] for more details on the factorization.

Both dielectron and dimuon analyses use double-lepton triggers with asymmetric

pT selections for each leg and, therefore, the efficiency for a lepton to trigger the

high-pT leg (leg 1) is different from the efficiency for a lepton to trigger the low-pT leg

(leg 2). We define single-leg efficiencies where ε(l, trig1) is the efficiency of a lepton
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selected offline to be matched to one leg of the double-lepton trigger, and ε(l, trig2) is

the efficiency of a lepton selected offline to be matched to the other leg of the double-

lepton trigger. The efficiency factor ε(l, trig1) corresponds to a lepton matched to the

leg of the double-lepton trigger that has the higher pT threshold. The double-lepton

trigger efficiency can then be factorized with single-lepton trigger efficiencies in the

following way, which takes into account the different efficiencies for the two legs:

ε(event, trig) = 1− P (one leg, failed)− P (two legs, failed)

= ε(l1, trig1) · ε(l2, trig2) + ε(l1, trig2) · ε(l2, trig1)

− ε(l1, trig1) · ε(l2, trig1),

(F.3)

where

• P (one leg, failed) is the probability that exactly one lepton fails to trigger a leg,

i.e. ε(l1, trig1) · (1− ε(l2, trig2)) + ε(l2, trig1) · (1− ε(l1, trig2));

• P (two legs, failed) is the probability that both leptons fail to trigger a leg, i.e.

(1− ε(l1, trig1)) · (1− ε(l2, trig1)).

For MC, counting is appropriate efficiency estimation technique for all the effi-

ciency types as there is no background. For data, fitting technique is essential to

estimate the number of probes in the kinematic regions where background is signifi-

cant. It is particularly important for the reconstruction, identification and isolation

efficiencies. The counting is sufficient for trigger efficiency calculation in data because

after the full selection, even before trigger matching of the probe, the sample of Z

bosons is very clean. The background in this case is less than 10% in both dielectron

and dimuon channels, and even that background comes primarily from events with

true dileptons (such as WW/WZ/ZZ), tt or Z→ τ+τ−).

Fitting approach is used to estimate all the individual efficiencies in data and

simulated samples in the dimuon channel. In the dielectron channel, a combined

approach is invoked as summarized in Tab. F.1. The mass range for both the count

and fit techniques is taken from 60 to 120 GeV.
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Table F.1

Techniques used to find the pass and fail counts in the tag and probe
method in the dielectron channel.

Efficiency type data MC

εreco fit count

εid fit count

εHLT count count

F.1.1 Details on the Fit Hypothesis

The fit hypothesis is optimized to model the signal and background shapes. A combi-

nation of a Voigtian and a Crystal Ball fit functions is used to model the signal shape

in the dimuon case. The motivation to use the Crystal Ball function is to properly

take the FSR effect into account. As a result of FSR, the peak shape becomes asym-

metric at the low-mass side. For the background, comparisons between exponential

and Chebychev quadratic polynomial probability density functions were performed.

It was observed, that the background shapes were significantly different depending

on the value of the probe transverse momentum (which is defined by the signal and

background content). For the background, a combination of the exponential and

Chebychev quadratic polynomial fit functions is used. The former is used at low pT

up to 20 GeV and the latter is used for pT > 20 GeV region.

In the dielectron channel, the signal for both pass and fail categories is modeled by

a template extracted from signal MC for the corresponding kinematics and selection.

The template is smeared by convoluting with a Gaussian resolution function because

MC does not model resolution perfectly. The parameters of the Gaussian smearing

(mean and width) are free parameters of the model. The background probability

density function is an exponential.
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The goodness of the fit was evaluated using the pulls, comparing the data and the

model probability density functions. The pull is calculated as:

Pull =
Ndata −Nmodel

σmodel

(F.4)

The comparison of the one-leg trigger (Mu8) efficiencies as a function of probe

pT obtained using the various model probability density functions is illustrated in

Fig. F.1.

Figure F.1. The one-leg trigger efficiency as a function of probe pT

extracted with optimum fit hypotheses: double Voigtian signal and
exponential or Chebychev background, a combination of a Voigtian
and a Crystal Ball signal and exponential or Chebychev background.
Only central values with band showing the spread are shown.

As seen, negligible differences in the efficiency values are observed in most of the

bins, except for a few bins in the region of 30–60 GeV. This region is expected to

be affected by the FSR effect the most. Some difference in the error assignment is

observed at high pT.

F.1.2 Electron Efficiencies and Scale Factors

The electron efficiencies estimated using the tag-and-probe method are presented in

Fig. F.2-F.5. The approach is described in [20] in a greater detail. The electron ET
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regions are subdivided into 6 regions by values 10, 15, 20, 30, 40, 50, and 500 GeV.

Here we used a modified binning in |η|. The 6 division points are 0., 0.8. 1.444,

1.566, 2.0, and 2.4. Lowering of the |η| value for the last bin from 2.5 to 2.4 improved

the efficiency in the last bin. This is due to the lower efficiency on the edge of the

detector acceptance, as exemplified in

Figure F.2. Tag-and-probe electron reconstruction efficiencies.

Fig. F.6-F.7 show the electron event efficiency scale factors as a function of in-

variant mass and rapidity for reconstruction, identification and isolation, and trigger

efficiencies.

F.1.3 Muon Efficiencies and Scale Factors

The muon efficiencies estimated using the tag-and-probe method in bins of probe

muon pT and η. The following pT bin edges are used:

• Identification efficiency: 10, 17, 30, 40, 50, 70, 250, 1000 GeV

• Isolation efficiency: 10, 17, 22, 30, 40, 50, 65, 250, 1000 GeV

• Trigger efficiency: 10, 20, 25, 30, 40, 50, 65, 250, 1000 GeV

Following η bin edges are used:



163

Figure F.3. Tag-and-probe electron identification efficiencies.

Figure F.4. Tag-and-probe electron HLT efficiencies of a higher-pT leg.

• Identification efficiency: −2.4, − 2.1, − 1.9, − 1.5, − 1.1, − 0.9, − 0.7, −

0.5, − 0.3, − 0.1, 0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.5, 1.9, 2.1, 2.4

• Isolation, trigger efficiency: −2.4, −2.1, −1.9, −1.7, −1.5, −1.1, −0.9, −

0.7, − 0.5, 0.5, 0.7, 0.9, 1.1, 1.5, 1.7, 1.9, 2.1, 2.4
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Figure F.5. Tag-and-probe electron HLT efficiencies of a lower-pT leg.

Fig. F.8 shows the reconstruction and identification as a function of probe muon

pT and η for various data taking periods from data and simulation at 7 and 8 TeV.

As seen, the efficiencies obtained on MC sample are generally larger than data. No

significant run dependency is observed in the muon reconstruction and identification

efficiencies. However, the efficiencies from 2012 run D are the smallest and the effi-

ciencies from runs A+B are the largest with the spread of less than 0.5% between the

two.

Fig. F.9 shows the reconstruction and identification as a function of probe muon

pT and η for various data taking periods from data and simulation at 7 and 8 TeV.

The muon isolation efficiencies obtained on MC and data samples are generally very

close, so a very small values of efficiency correction factors are expected. The turn on

region in pT is up to around 40 GeV, which is similar to the values observed in 2011

studies. No significant run dependency is observed in the muon isolation efficiencies

in both data-taking periods.

Fig. F.10-F.11 shows the trigger efficiency as a function of probe muon pT and η

for various data taking periods from data and simulation at 7 and 8 TeV. In general,

we observe a good agreement between the trigger efficiencies extracted from data and
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Figure F.6. The electron event efficiency scale factors in 1D for re-
construction, identification and isolation, and trigger efficiencies.

the signal MC sample. However, for the Mu8 trigger efficiency, the turn on curve has

a different shape, having about 1% higher efficiencies at low pT and lower efficiencies

in the high pT region for the data sample.

The muon trigger efficiencies obtained on MC are generally lower as compared to

data. These deviations are more pronounced in the endcap region, increasing with
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Figure F.7. The electron event efficiency scale factors in 2D for re-
construction, identification and isolation, and trigger efficiencies.

pseudorapidity. Therefore, large scaling factor is expected in the high dimuon rapidity

region. No significant run dependency is observed in the muon trigger efficiencies.

In the dimuon channel, the size of the correction at low mass is the largest, reaching

up to 6%. In the Z peak region and high-mass the efficiency correction is just about

2%.
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Figure F.8. Muon reconstruction and identification efficiencies as a
function of probe muon η for various data taking periods, estimated
with data-driven T&P method from 7 (left) and 8 TeV (right) data
and simulation.

Figure F.9. Muon isolation efficiencies as a function of probe muon
η for various data taking periods, estimated with data-driven T&P
method from 7 (left) and 8 TeV (right) data and simulation.

F.1.4 Uncertainty in Efficiency Correction

Various sources of uncertainty affecting the efficiency correction estimation in the

dimuon channel are evaluated. This includes the uncertainty in line shape modeling,

uncertainty in binning of correction maps and other sources described below.

• Uncertainty in line shape modeling. This uncertainty is estimated by comparing

two (or more) alternative fit hypotheses in the simultaneous maximum likeli-
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Figure F.10. Muon trigger efficiencies as a function of probe muon
pT and η for various data taking periods, estimated with data-driven
T&P method from 7 TeV data and simulation. Top row: soft-leg
efficiencies, bottom row: tight-leg efficiencies.

hood fit. The efficiencies extracted with 2 signal hypotheses: (1) double Voigtian

and (2) combination of a Voigtian and a Crystal Ball fit function are compared.

For the background, an exponential and a quadratic polynomial hypotheses are

compared. This uncertainty is evaluated to be up to 1% for identification, up

to 0.5% for isolation, and rather small for trigger: 0.2%, reaching its maximum

in the low pT bins. The Voigtian and Crystal Ball fit functions are chosen be-

cause they are better in describing the signal shape (especially in the tails of

the peak distribution) than a Voigtian or a double Voigtian. The motivation to

use the Crystal Ball function is to properly take the FSR effect into account.

As a result of FSR, the peak shape becomes asymmetric at the low mass side.

For the background, it is observed that the shapes are significantly different
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Figure F.11. Muon trigger efficiencies as a function of probe muon
pT and η for various data taking periods, estimated with data-driven
T&P method from 8 TeV data and simulation. Top row: soft-leg
efficiencies, bottom row: tight-leg efficiencies.

depending on the value of the probe transverse momentum. As a result, an

exponential appears to perform better in the low-pT region (pT < 30 GeV) and

the Chebychev quadratic polynomial is better for higher pT. See Appendix F

for more details.

• Uncertainty due to the binning of the correction maps in probe pT and η. Effi-

ciency correction factors are applied to weight the MC events. Thus, averaging

the correction factor can introduce a bias, especially in the bins of η since the

muon identification efficiency is rapidly changing with η in the regions close to

wheel gaps in the muon system. This source of uncertainty was also considered
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in [78], and is estimated there to be up to 1% for Z→ µ+µ− (the corresponding

effect is smaller if the binning is finer).

This uncertainty is evaluated by repeating the tag-and-probe efficiency scale

factor estimation procedure with various bin choices (coarse and fine) and then

repeating the reweighting procedure to propagate the weights to the MC yield.

This uncertainty is evaluated to be within 0.5% for identification efficiency scale

factors, and almost negligible for isolation (0.1%) and trigger efficiency scale

factors (0.2%). The uncertainty is larger in the cases when one of the muons is

in the η neighborhood of wheel gaps (the corresponding difference in efficiency

values per eta bin may reach up to 3%). This source of uncertainty is weakly

dependent on statistics.

• Other sources of uncertainties. Other sources of uncertainty in the efficiency

correction factor, including pileup, dimuon candidate selection are considered.

We assign a flat uncertainty of 0.3% for identification and 0.2% for the isolation

and trigger efficiency scale factors to take these effects into account.

These uncertainties are evaluated by recomputing the final result multiple times

using an ensemble of the single-muon efficiency maps where the entries are modified

randomly within ±1 standard deviation of the combined statistical and systematic

uncertainties in the pT−η map bins. A hundred efficiency correction map replications

are obtained with the map variation technique, and the MC yield with efficiency

corrections applied as weights is calculated for each map replication. The root-mean-

square (RMS) characterizing the spread of these yields is calculated per mass bin,

and the value of RMS normalized to the number of replicas is used as an estimate for

the corresponding uncertainty.

The contribution from the dimuon vertex selection is small because its efficiency

scale factor is consistent with being constant; the statistical fluctuations are treated

as systematic.
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G. RESOLUTION UNFOLDING

The effect of detector resolution leads to a migration of events from bin i of the true

invariant mass distribution to bin k of the reconstructed mass distribution. For a

better comparison of observed dilepton spectra with theory, this effect of migration

is corrected through unfolding. The procedure uses the yield distribution determined

from simulation by mapping it onto the measured one to obtain the true distribu-

tion. The unfolding procedures for differential and double-differential cross section

calculations are described below.

G.1 dσ/dm Differential Cross Section Measurement

The true event count distribution NT,i is related to the observed reconstructed dis-

tribution Nobs,i through:

Ndata
obs,k =

∑
i

TikN
data
T,i , (G.1)

where Tik is the probability for event originating in the bin i to be found in the

observed array in the bin k, and T is a square, nearly diagonal matrix with almost

all the off-diagonal elements normally less than 0.1 as shown in Fig. G.1.

The elements of the T matrix are computed as

Tik =
Nobs,ik

NT,i

(G.2)

where the counts N come from a calibration Monte Carlo sample, Nobs,ik is the count

of events originating in the true bin i and observed in the bin k, while the NT,i is the

total number of events in the true bin i.

In the case when the histogram represents a spectrum of a physical observable,

such as an invariant mass spectrum, with each bin corresponding to a range of in-

variant mass, it is possible that some observed events, or some true events, will be

outside of the range of interest. In this case, overflow and underflow bins are added

to both of the histograms, and the summation goes over N + 2 bins, where N is the
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number of bins defined for the Drell–Yan cross section measurement in the range from

15 GeV to 1500 GeV and two more bins for histogram underflow and overflow. The

scheme itself remains unchanged. A few significant off-diagonal elements are located

Figure G.1. The response matrices from simulation for dσ/dm mea-
surement. Left: NxN response matrix, right: (N + 2)x(N + 2) re-
sponse matrix with overflow and underflow bins included.

adjacent to the main diagonal. Both response matrices are invertible.

The validity of the unfolding method is tested on the pure signal MC (the closure

test). The resulting unfolding yields are in perfect agreement with the true distri-

bution for both the case with underflow and overflow bins included and without as

shown in Fig. G.4. The underflow and overflow bins are included in both the response

matrix and the true and measured invariant mass distributions.

The comparison of the unfolded observed yields to the true distribution are shown

in Fig. G.3.

G.1.1 Alternative Unfolding Methods

The standard ROOT implementation of the Gauss-Jordan matrix inversion technique

with full pivoting and including the underflow and overflow bins is used in the 7 TeV

analysis. In the 8 TeV analysis, the calculations are performed using the iterative

Bayesian approach [94] implemented in the RooUnfold package [114].

The validity of the unfolding method using the iterative Bayesian approach is also

tested on the pure signal MC (closure test). The resulting unfolding yields are found



173

Figure G.2. The comparison of the unfolded yields from MC to the
true distribution in bins of dimuon invariant mass (the closure test).

Figure G.3. The comparison of the observed yield after unfolding to
the true distribution in bins of dimuon invariant mass.

in perfect agreement with the true distribution for both the case with underflow and

overflow bins included and without as shown in Fig. G.4.
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Figure G.4. The comparison of the unfolded yields from MC to the
true distribution in bins of dilepton invariant mass (closure test). Di-
electron channel (left) and the dimuon channel (right).

Fig. G.5 shows the comparison of the cross section calculated using the matrix

inversion and the Bayesian iterative approach in the dielectron channel. As seen, the
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techniques: matrix inversion with no regularization (right) and the
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effect the difference is rather large in the Z peak region. The corresponding effect in

the dimuon channel is negligibly small.

G.2 d2σ/dmd|y| Double-differential Cross Section Measurement

For the double-differential cross section measurement a dedicated procedure has been

developed in order to take into account the effect of migration in bins of dilepton

rapidity. The typical scale of the effect of migration between rapidity bins is defined

by the rapidity resolution in a given invariant mass region, which varies from ∆y/y =

0.002 at low mass and low rapidity to ∆y/y = 0.05 at high masses.

To minimize the effect of migration in rapidity bins, the rapidity bin size was

restricted to 0.1 in the region m < 200 GeV and 0.2 in the highest mass bin (200–

1500 GeV). The corresponding rapidity bin size is considerably greater then the ra-

pidity resolution scale in a given mass range.

Within the framework of the unfolding method for the double-differential cross

section measurement, a two dimensional yield distribution in bins of dimuon invari-

ant mass and rapidity is mapped onto a one dimensional vector. Once the flattened

distribution is obtained, the unfolding procedure follows closely the standard tech-

nique for the differential dσ/dm measurement described above.

The unfolding response matrix Tik, giving the fraction of events from bin i of the

true (post-FSR) distribution that end up reconstructed in bin k is calculated from

the Monte Carlo simulation according to:

Nobs,i =
∑
k

TikNtrue,k, (G.3)

here, the indices correspond to the flattened yield vector. The response matrix derived

from the yields in bins of dilepton invariant mass and rapidity is shown in Fig. G.6.

Notice, that the structure of the response matrix is quite different from the corre-

sponding matrix derived using the yields binned in invariant mass only. The matrix

consists of three diagonal-dominated blocks with each block corresponding to a given

generated and reconstructed invariant mass bin. There are two types of off-diagonal

elements in this response matrix. The elements adjacent to the main diagonal, orig-
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Figure G.6. The response matrix from simulation for the d2σ/dmd|y| measurement.

inate due to migration between rapidity bins within the same mass slice. Two addi-

tional sets of diagonal dominated blocks originate as a result of migration between

mass slices.

The response matrix is inverted and used to unfold the flattened spectrum:

Nu,k = Ntrue,k =
∑
i

(T−1)kiNobs,i. (G.4)

Finally, the unfolded distribution is inflated back to the two dimensional invariant

mass-rapidity distribution by performing index transformation.

The comparison of the observed yields before and after unfolding is shown in

Fig. G.7.

A set of tests is performed to validate and justify this unfolding procedure as

shown in Fig. G.8. A closure test confirmed the arithmetic validity of the procedure,

and the stability and robustness of the method with respect to statistical fluctuations

in the matrix elements was established with an ensemble of pseudo-experiments. The
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Figure G.7. The comparison of the observed yields in bins of dimuon
rapidity-invariant mass before and after unfolding.

tests show that the conventional unfolding procedure described above is applicable

for the unfolding of the dilepton rapidity-invariant mass yields.
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Figure G.8. Results for a set of tests: closure test (top), pull mean
distribution from ensemble test (middle), and toy MC test (bottom).
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H. SYSTEMATIC UNCERTYAINTY TABLES

H.1 Summary of the Systematic Uncertainties

The systematic uncertainties at 7 TeV in the dimuon channel are summarized in Tables

H.1 and H2. for the dσ/dm differential cross section measurement and Tables H.3-H.8

for d2σ/dmd|y| double-differential cross section measurement.

The systematic uncertainties at 8 TeV in the dielectron and dimuon channels are

summarized in Tables H.9-H.12.
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Table H.1
Summary of the systematic uncertainties for the dimuon channel
dσ/dm measurement (15–150 GeV). The “Total” is a quadratic sum
of all sources except for the Acc.+PDF and Modeling.

m Eff. ρ Det. res. Bkg. est. FSR Total Acc.+PDF Model.

(GeV) (%) (%) (%) (%) (%) (%) (%)

15–20 1.90 0.03 0.28 0.54 2.09 2.29 9.70

20–25 2.31 0.24 0.63 0.47 2.47 3.15 3.10

25–30 2.26 0.27 2.95 0.40 3.76 2.73 1.90

30–35 1.48 0.17 1.94 0.46 2.50 2.59 0.70

35–40 1.19 0.09 1.26 0.66 1.88 2.61 0.50

40–45 1.12 0.07 0.97 0.30 1.54 2.49 0.30

45–50 1.10 0.07 0.86 0.44 1.50 2.51 0.10

50–55 1.07 0.10 0.67 0.58 1.42 2.44 0.10

55–60 1.07 0.15 0.69 0.77 1.52 2.36 0.20

60–64 1.06 0.19 0.35 0.94 1.50 2.27 0.20

64–68 1.06 0.22 0.24 1.06 1.55 2.22 0.30

68–72 1.06 0.30 0.20 1.13 1.60 2.20 0.20

72–76 1.05 0.51 0.15 1.13 1.65 2.18 0.20

76–81 1.06 0.94 0.25 1.01 1.77 2.15 0.20

81–86 1.11 1.56 0.10 0.69 2.06 2.18 0.10

86–91 1.07 2.21 0.01 0.23 2.48 2.12 0.20

91–96 1.08 2.55 0.01 0.12 2.78 2.14 0.20

96–101 1.29 2.32 0.08 0.15 2.68 2.12 0.30

101–106 1.31 1.69 0.14 0.19 2.17 2.07 0.30

106–110 1.32 1.05 0.28 0.22 1.76 2.01 0.50

110–115 1.34 0.65 0.34 0.25 1.59 1.97 0.60

115–120 1.33 0.47 0.43 0.27 1.55 1.95 0.60

120–126 1.36 0.37 0.56 0.29 1.60 1.91 0.50

126–133 1.35 0.33 0.70 0.30 1.65 1.88 0.60

133–141 1.31 0.42 0.90 0.32 1.75 1.85 0.70

141–150 1.29 0.64 1.08 0.35 1.91 1.81 1.00
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Table H.2
Summary of the systematic uncertainties for the dimuon channel
dσ/dm measurement (150–1500 GeV). The “Total” is a quadratic
sum of all sources except for the Acc.+PDF and Modeling.

m Eff. ρ Det. res. Bkg. est. FSR Total Acc.+PDF Model.

(GeV) (%) (%) (%) (%) (%) (%) (%)

150–160 1.36 0.87 1.20 0.39 2.13 1.82 1.10

160–171 1.42 0.99 1.48 0.39 2.39 1.82 1.10

171–185 1.53 0.96 1.72 0.41 2.61 1.75 1.10

185–200 1.60 0.77 1.80 0.51 2.67 1.75 1.10

200–220 1.71 0.52 1.82 0.42 2.64 1.53 1.00

220–243 1.75 0.39 2.28 0.44 3.01 1.48 1.50

243–273 1.86 0.49 2.46 0.46 3.23 1.40 1.40

273–320 1.90 0.72 2.37 0.50 3.24 1.31 1.30

320–380 1.90 0.96 2.88 0.57 3.73 1.28 1.50

380–440 1.93 1.31 3.54 0.57 4.44 1.45 1.20

440–510 1.97 1.74 4.64 0.57 5.50 1.60 1.30

510–600 2.02 1.79 4.48 0.57 5.28 0.50 2.10

600–1000 2.01 1.13 5.07 0.57 5.61 0.41 2.40

1000–1500 2.14 0.48 15.34 0.57 15.51 0.24 3.10
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Table H.3
Summary of systematic uncertainties in the dimuon channel for 20 <
m < 30 GeV bin as a function of |y|. The “Total” is a quadratic sum
of all sources.

|y| Eff. ρ Det. res. Bkg. est. FSR Total

(%) (%) (%) (%) (%)

20 < m < 30 GeV

0.0–0.1 6.21 0.29 0.57 0.76 6.29

0.1–0.2 6.01 0.37 0.56 0.58 6.07

0.2–0.3 6.01 0.33 0.55 1.15 6.15

0.3–0.4 5.57 0.41 0.48 0.57 5.63

0.4–0.5 5.21 0.45 0.56 0.70 5.31

0.5–0.6 4.87 0.32 0.57 0.54 4.94

0.6–0.7 4.51 0.33 0.52 0.64 4.60

0.7–0.8 3.89 0.38 0.55 0.42 3.97

0.8–0.9 3.42 0.31 0.54 0.57 3.52

0.9–1.0 3.14 0.26 0.53 0.77 3.29

1.0–1.1 2.92 0.49 0.53 0.61 3.07

1.1–1.2 2.87 0.50 0.58 0.47 3.01

1.2–1.3 3.09 0.44 0.51 0.46 3.20

1.3–1.4 3.62 0.37 0.62 0.47 3.72

1.4–1.5 3.87 0.50 0.60 0.92 4.05

1.5–1.6 4.12 0.55 0.59 0.44 4.22

1.6–1.7 4.40 0.62 0.66 0.48 4.52

1.7–1.8 4.76 0.51 0.65 0.45 4.85

1.8–1.9 4.82 0.76 0.71 0.69 4.98

1.9–2.0 4.88 0.60 0.69 0.56 4.99

2.0–2.1 4.84 0.46 0.72 1.26 5.07

2.1–2.2 5.22 0.67 0.89 1.68 5.59

2.2–2.3 6.84 1.16 1.02 3.37 7.78

2.3–2.4 8.40 1.14 1.56 4.96 9.94
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Table H.4
Summary of systematic uncertainties in the dimuon channel for 30 <
m < 45 GeV bin as a function of |y|. The “Total” is a quadratic sum
of all sources.

|y| Eff. ρ Det. res. Bkg. est. FSR Total

(%) (%) (%) (%) (%)

30 < m < 45 GeV

0.0–0.1 3.03 0.08 0.36 0.88 3.18

0.1–0.2 2.72 0.03 0.38 0.82 2.87

0.2–0.3 2.50 0.07 0.42 0.98 2.71

0.3–0.4 2.30 0.03 0.38 1.13 2.59

0.4–0.5 2.21 0.11 0.38 1.03 2.47

0.5–0.6 2.25 0.10 0.34 0.74 2.39

0.6–0.7 2.39 0.05 0.37 0.69 2.51

0.7–0.8 2.46 0.05 0.40 0.89 2.65

0.8–0.9 2.48 0.05 0.37 0.63 2.58

0.9–1.0 2.39 0.05 0.38 0.74 2.53

1.0–1.1 2.32 0.11 0.39 0.80 2.48

1.1–1.2 2.18 0.03 0.40 0.58 2.29

1.2–1.3 2.12 0.06 0.44 0.71 2.28

1.3–1.4 2.04 0.04 0.34 0.53 2.13

1.4–1.5 2.03 0.04 0.37 0.63 2.16

1.5–1.6 2.02 0.07 0.39 0.66 2.16

1.6–1.7 2.02 0.12 0.36 0.87 2.24

1.7–1.8 2.14 0.06 0.33 0.80 2.31

1.8–1.9 2.47 0.10 0.45 1.13 2.75

1.9–2.0 2.74 0.20 0.45 1.08 2.99

2.0–2.1 3.21 0.20 0.53 1.67 3.66

2.1–2.2 3.86 0.19 0.71 2.52 4.67

2.2–2.3 5.36 0.21 2.30 2.88 6.51

2.3–2.4 6.71 0.09 2.38 6.30 9.51
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Table H.5
Summary of systematic uncertainties in the dimuon channel for 45 <
m < 60 GeV bin as a function of |y|. The “Total” is a quadratic sum
of all sources.

|y| Eff. ρ Det. res. Bkg. est. FSR Total

(%) (%) (%) (%) (%)

45 < m < 60 GeV

0.0–0.1 1.75 0.02 0.48 0.93 2.04

0.1–0.2 1.70 0.15 0.49 1.19 2.14

0.2–0.3 1.64 0.05 0.54 1.74 2.45

0.3–0.4 1.52 0.07 0.50 1.60 2.26

0.4–0.5 1.45 0.04 0.54 3.12 3.48

0.5–0.6 1.37 0.08 0.47 0.71 1.61

0.6–0.7 1.38 0.04 0.50 1.09 1.83

0.7–0.8 1.38 0.05 0.56 1.71 2.27

0.8–0.9 1.39 0.02 0.49 0.62 1.60

0.9–1.0 1.44 0.07 0.54 0.70 1.69

1.0–1.1 1.44 0.02 0.48 1.07 1.86

1.1–1.2 1.53 0.08 0.42 1.92 2.50

1.2–1.3 1.63 0.10 0.47 1.25 2.11

1.3–1.4 1.55 0.03 0.38 0.72 1.75

1.4–1.5 1.40 0.23 0.38 0.77 1.65

1.5–1.6 1.31 0.03 0.33 2.29 2.66

1.6–1.7 1.34 0.11 0.39 1.37 1.96

1.7–1.8 1.41 0.04 0.70 1.17 1.96

1.8–1.9 1.52 0.07 0.30 3.04 3.42

1.9–2.0 1.69 0.02 0.31 4.16 4.50

2.0–2.1 1.78 0.06 0.55 5.31 5.63

2.1–2.2 2.21 0.31 1.27 4.42 5.11

2.2–2.3 2.96 0.11 0.62 9.98 10.4

2.3–2.4 4.76 0.11 0.26 15.1 15.8
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Table H.6
Summary of systematic uncertainties in the dimuon channel for 60 <
m < 120 GeV bin as a function of |y|. The “Total” is a quadratic
sum of all sources.

|y| Eff. ρ Det. res. Bkg. est. FSR Total

(%) (%) (%) (%) (%)

60 < m < 120 GeV

0.0–0.1 0.83 0.004 0.04 0.29 0.88

0.1–0.2 0.83 0.01 0.04 0.29 0.88

0.2–0.3 0.84 0.01 0.04 0.29 0.89

0.3–0.4 0.87 0.01 0.04 0.29 0.92

0.4–0.5 0.89 0.01 0.04 0.29 0.94

0.5–0.6 0.90 0.01 0.04 0.29 0.94

0.6–0.7 0.89 0.01 0.04 0.29 0.94

0.7–0.8 0.89 0.02 0.04 0.29 0.94

0.8–0.9 0.92 0.01 0.03 0.29 0.97

0.9–1.0 0.97 0.02 0.03 0.34 1.03

1.0–1.1 1.03 0.03 0.04 0.30 1.08

1.1–1.2 1.10 0.02 0.03 0.29 1.13

1.2–1.3 1.16 0.02 0.03 0.31 1.20

1.3–1.4 1.20 0.04 0.03 0.32 1.24

1.4–1.5 1.23 0.03 0.05 0.32 1.27

1.5–1.6 1.29 0.01 0.05 0.33 1.33

1.6–1.7 1.40 0.02 0.08 0.43 1.47

1.7–1.8 1.53 0.02 0.08 0.43 1.59

1.8–1.9 1.67 0.03 0.05 0.46 1.73

1.9–2.0 2.06 0.04 0.05 0.36 2.09

2.0–2.1 2.78 0.01 0.14 0.62 2.86

2.1–2.2 3.87 0.04 0.07 0.70 3.94

2.2–2.3 5.34 0.02 0.02 0.91 5.41

2.3–2.4 6.41 0.06 0.04 2.08 6.74



186

Table H.7
Summary of systematic uncertainties in the dimuon channel for 120 <
m < 200 GeV bin as a function of |y|. The “Total” is a quadratic
sum of all sources.

|y| Eff. ρ Det. res. Bkg. est. FSR Total

(%) (%) (%) (%) (%)

120 < m < 200 GeV

0.0–0.1 1.68 0.28 2.17 0.56 2.81

0.1–0.2 1.60 0.16 2.03 0.72 2.68

0.2–0.3 1.56 0.26 2.09 1.05 2.82

0.3–0.4 1.57 0.53 1.89 0.78 2.63

0.4–0.5 1.49 0.27 1.67 0.67 2.35

0.5–0.6 1.47 0.25 1.69 0.38 2.29

0.6–0.7 1.57 0.33 1.97 0.54 2.60

0.7–0.8 1.43 0.39 1.62 0.37 2.22

0.8–0.9 1.42 0.07 1.92 0.52 2.44

0.9–1.0 1.35 0.48 1.53 0.37 2.13

1.0–1.1 1.31 0.16 1.37 0.41 1.94

1.1–1.2 1.34 0.36 1.39 0.45 2.02

1.2–1.3 1.51 0.45 1.35 0.57 2.15

1.3–1.4 1.82 0.06 1.26 0.40 2.25

1.4–1.5 2.17 0.85 1.04 0.44 2.59

1.5–1.6 2.76 0.14 1.08 0.43 3.00

1.6–1.7 3.44 0.30 0.83 0.39 3.57

1.7–1.8 4.09 0.41 0.94 1.02 4.34

1.8–1.9 5.37 0.17 1.03 1.09 5.57

1.9–2.0 6.62 0.10 0.84 1.20 6.78

2.0–2.1 8.52 0.16 0.89 0.60 8.58

2.1–2.2 12.3 0.85 0.70 0.51 12.3

2.2–2.3 16.8 0.41 0.95 1.91 16.9

2.3–2.4 20.2 0.51 1.91 1.26 20.4
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Table H.8
Summary of systematic uncertainties in the dimuon channel for 200 <
m < 1500 GeV bin as a function of |y|. The “Total” is a quadratic
sum of all sources.

|y| Eff. ρ Det. res. Bkg. est. FSR Total

(%) (%) (%) (%) (%)

200 < m < 1500 GeV

0.0–0.2 2.18 0.30 7.51 0.56 7.85

0.2–0.4 1.84 0.04 5.31 0.47 5.64

0.4–0.6 1.68 0.32 4.33 0.53 4.69

0.6–0.8 1.70 0.07 4.57 0.58 4.91

0.8–1.0 1.83 0.12 3.47 0.66 3.99

1.0–1.2 2.28 0.44 3.10 0.66 3.93

1.2–1.4 3.50 0.08 1.92 0.59 4.03

1.4–1.6 5.28 0.65 2.15 0.56 5.77

1.6–1.8 7.14 0.19 2.11 0.98 7.51

1.8–2.0 10.4 0.86 2.17 0.61 10.6

2.0–2.2 17.8 0.15 0.99 0.98 17.8

2.2–2.4 28.8 0.42 1.99 1.36 28.9
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Table H.9
Summary of the systematic uncertainties for the dimuon channel
dσ/dm measurement (15–150 GeV). The “Total” is a quadratic sum
of all sources except for the Acc.+PDF and Modeling.

m Mom. scale Eff.ρ Det. res. Bkg. est. FSR Total Acc.+PDF Model.

(GeV) (%) (%) (%) (%) (%) (%) (%) (%)

15-20 0.02 1.35 0.43 0.51 0.43 1.57 4.00 2.01

20-25 0.15 0.99 0.62 1.01 0.37 1.60 3.78 1.65

25-30 0.19 0.81 0.44 1.21 0.34 1.57 3.57 1.31

30-35 0.15 0.69 0.35 1.30 0.33 1.56 3.35 1.00

35-40 0.09 0.56 0.31 1.27 0.26 1.45 3.12 0.72

40-45 0.05 0.56 0.32 1.14 0.25 1.33 2.90 0.49

45-50 0.06 0.51 0.46 1.10 0.34 1.34 2.68 0.30

50-55 0.08 0.42 0.64 1.02 0.47 1.36 2.46 0.17

55-60 0.12 0.38 0.96 1.00 0.60 1.57 2.26 0.08

60-64 0.14 0.35 1.68 1.13 0.78 2.20 2.08 0.02

64-68 0.17 0.32 2.17 0.90 0.99 2.58 1.92 0.00

68-72 0.24 0.31 2.74 0.65 1.11 3.05 1.80 0.00

72-76 0.43 0.30 2.55 0.43 1.05 2.84 1.70 0.01

76-81 0.79 0.30 1.90 0.18 0.83 2.25 1.64 0.03

81-86 1.28 0.32 1.49 0.07 0.53 2.06 1.61 0.06

86-91 1.74 0.38 1.75 0.01 0.24 2.51 1.60 0.10

91-96 1.96 0.40 1.96 0.01 0.10 2.80 1.62 0.14

96-101 1.81 0.40 1.85 0.06 0.11 2.62 1.66 0.18

101-106 1.38 0.39 1.57 0.18 0.15 2.14 1.72 0.23

106-110 0.90 0.38 1.72 0.38 0.18 2.02 1.80 0.27

110-115 0.55 0.39 1.46 0.45 0.20 1.68 1.89 0.32

115-120 0.36 0.39 1.66 0.50 0.22 1.83 1.99 0.37

120-126 0.28 0.42 1.51 0.55 0.23 1.70 2.10 0.41

126-133 0.28 0.45 1.52 0.58 0.24 1.73 2.23 0.46

133-141 0.36 0.43 1.56 0.86 0.26 1.89 2.37 0.49

141-150 0.52 0.42 1.64 0.92 0.28 2.01 2.53 0.53
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Table H.10
Summary of the systematic uncertainties for the dimuon channel
dσ/dm measurement (150–2000 GeV). The “Total” is a quadratic
sum of all sources except for the Acc.+PDF and Modeling.

m Mom. scale Eff.ρ Det. res. Bkg. est. FSR Total Acc.+PDF Model.

(GeV) (%) (%) (%) (%) (%) (%) (%) (%)

150-160 0.68 0.46 1.78 0.95 0.31 2.20 2.69 0.56

160-171 0.78 0.49 1.84 1.26 0.32 2.44 2.86 0.59

171-185 0.74 0.52 1.71 1.32 0.33 2.37 3.03 0.61

185-200 0.60 0.55 1.69 1.75 0.33 2.59 3.19 0.65

200-220 0.44 1.10 1.19 1.71 0.34 2.42 3.44 0.70

220-243 0.36 1.25 1.06 2.09 0.35 2.70 3.62 0.76

243-273 0.42 1.34 1.11 2.14 0.37 2.82 3.80 0.85

273-320 0.59 1.53 1.07 2.18 0.40 2.96 3.97 0.96

320-380 0.80 1.87 1.31 3.31 0.45 4.12 4.23 1.10

380-440 1.02 1.23 1.58 4.66 0.46 5.20 4.19 1.28

440-510 1.22 1.36 1.37 5.15 0.46 5.65 4.40 1.48

510-600 1.38 1.56 1.62 5.34 0.45 5.97 4.65 1.70

600-1000 1.55 1.77 1.60 4.62 0.46 5.44 4.92 1.95

1000-1500 1.76 2.39 1.94 13.89 0.46 14.34 5.33 2.20

1500-2000 2.17 3.39 2.30 59.31 0.46 59.50 5.62 2.42
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Table H.11
Summary of the systematic uncertainties for the dielectron channel
dσ/dm measurement (15–150 GeV). The “Total” is a quadratic sum
of all sources except for the Acc.+PDF and Modeling.

m E−scale Eff.ρ Det. res. Bkg. est. FSR Coll. CS Total Acc.+PDF Model.

(GeV) (%) (%) (%) (%) (%) (%) (%) (%) (%)

15-20 0.16 3.44 0.51 1.69 0.38 1.06 4.03 4.24 2.01

20-25 0.23 2.85 0.63 2.16 0.38 1.67 4.02 3.82 1.65

25-30 0.08 3.39 0.49 2.89 0.52 2.08 4.97 3.60 1.31

30-35 0.18 4.34 0.40 2.88 0.54 2.41 5.78 3.36 1.00

35-40 0.20 3.54 0.35 0.85 0.47 2.30 4.35 3.13 0.72

40-45 0.11 2.95 0.34 0.89 0.39 1.94 3.68 2.91 0.49

45-50 0.05 2.38 0.40 1.04 0.30 1.72 3.15 2.69 0.30

50-55 0.06 2.02 0.50 1.07 0.21 1.48 2.78 2.48 0.17

55-60 0.03 1.78 0.63 1.13 0.25 1.30 2.57 2.29 0.08

60-64 0.09 1.65 0.84 0.95 0.48 1.14 2.42 2.13 0.02

64-68 0.35 1.51 0.94 0.76 0.75 1.14 2.40 1.99 0.00

68-72 0.73 1.40 1.02 0.67 1.01 0.84 2.39 1.87 0.00

72-76 1.70 1.23 0.95 0.43 1.22 0.94 2.80 1.77 0.01

76-81 3.43 0.93 0.65 0.22 1.15 0.88 3.90 1.67 0.03

81-86 6.19 0.68 0.34 0.09 0.65 0.89 6.34 1.62 0.06

86-91 2.37 0.49 0.06 0.02 0.25 0.67 2.52 1.60 0.10

91-96 1.99 0.45 0.05 0.02 0.50 0.45 2.15 1.62 0.14

96-101 4.88 0.44 0.21 0.05 0.59 0.05 4.94 1.67 0.18

101-106 3.38 0.48 0.35 0.13 0.53 0.14 3.48 1.74 0.23

106-110 2.20 0.60 0.60 0.20 0.51 0.38 2.45 1.83 0.27

110-115 1.59 0.63 0.61 0.30 0.50 0.19 1.92 1.93 0.32

115-120 1.35 0.72 0.73 0.43 0.52 0.13 1.83 2.04 0.37

120-126 1.10 0.76 0.78 0.57 0.53 0.16 1.74 2.16 0.41

126-133 0.89 0.85 0.84 0.74 0.55 0.02 1.75 2.31 0.46

133-141 0.87 0.90 0.91 0.89 0.57 0.45 1.92 2.45 0.49

141-150 0.85 0.98 0.99 1.12 0.58 0.32 2.09 2.62 0.53
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Table H.12
Summary of the systematic uncertainties for the dielectron channel
dσ/dm measurement (150–2000 GeV). The “Total” is a quadratic
sum of all sources except for the Acc.+PDF and Modeling.

m E−scale Eff.ρ Det. res. Bkg. est. FSR Coll. CS Total Acc.+PDF Model.

(GeV) (%) (%) (%) (%) (%) (%) (%) (%) (%)

150-160 0.52 1.08 1.07 1.33 0.67 0.18 2.20 2.80 0.56

160-171 0.76 1.17 1.21 1.53 0.70 0.34 2.52 2.98 0.59

171-185 0.55 1.18 1.12 1.82 0.72 0.19 2.61 3.14 0.61

185-200 0.78 1.30 1.19 2.15 0.71 0.41 3.00 3.34 0.65

200-220 0.84 0.94 0.86 2.62 0.54 0.02 3.09 3.41 0.70

220-243 0.42 1.01 0.86 2.74 0.60 0.01 3.14 3.57 0.76

243-273 0.72 1.08 0.87 3.19 0.65 0.01 3.61 3.74 0.85

273-320 0.71 1.10 0.86 3.67 0.64 0.37 4.06 3.89 0.96

320-380 0.99 1.19 0.93 3.75 0.73 0.01 4.22 4.07 1.10

380-440 0.51 1.13 1.02 5.42 0.76 0.10 5.70 4.24 1.28

440-510 0.60 0.82 0.48 6.33 0.44 0.13 6.45 4.41 1.48

510-600 1.14 0.78 0.74 7.90 0.43 0.37 8.07 4.65 1.70

600-1000 2.01 0.74 0.35 13.79 0.34 0.12 13.97 4.91 1.95

1000-1500 3.23 0.75 0.38 39.86 0.20 0.33 40.00 5.20 2.20

1500-2000 4.78 0.77 0.41 237.35 0.33 0.23 237.40 5.50 2.42
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