
Purdue University
Purdue e-Pubs

Open Access Dissertations Theses and Dissertations

Spring 2015

Stability of machine learning algorithms
Wei Sun
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/open_access_dissertations

Part of the Computer Sciences Commons, and the Statistics and Probability Commons

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Recommended Citation
Sun, Wei, "Stability of machine learning algorithms" (2015). Open Access Dissertations. 563.
https://docs.lib.purdue.edu/open_access_dissertations/563

https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F563&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F563&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/etd?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F563&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F563&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F563&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/208?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F563&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations/563?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F563&utm_medium=PDF&utm_campaign=PDFCoverPages


Graduate School Form 30 
Updated 1/15/2015 

PURDUE UNIVERSITY 
GRADUATE SCHOOL 

Thesis/Dissertation Acceptance 
 
 
This is to certify that the thesis/dissertation prepared 
 
By               
 
Entitled 
 
 
 
 
 
 
 
 
 
For the degree of              
 
 
Is approved by the final examining committee: 
 

              

              

              

              

 
 
 

To the best of my knowledge and as understood by the student in the Thesis/Dissertation  
Agreement, Publication Delay, and Certification Disclaimer (Graduate School Form 32),  
this thesis/dissertation adheres to the provisions of Purdue University’s “Policy of  
Integrity in Research” and the use of copyright material. 
 

Approved by Major Professor(s):        
 
 
 
 
Approved by:              

             Head of the Departmental Graduate Program               Date 

Wei Sun

STABILITY OF MACHINE LEARNING ALGORITHMS

Doctor of Philosophy

Guang Cheng Lingsong Zhang
Chair

Jayanta K. Ghosh
  

Xiao Wang
   

Mark Daniel Ward

Guang Cheng

Jun Xie 4/8/2015





STABILITY OF MACHINE LEARNING ALGORITHMS

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Wei Sun

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

May 2015

Purdue University

West Lafayette, Indiana



ii

To my family.



iii

ACKNOWLEDGMENTS

First and foremost, I would like to extend my sincerest thank to my advisor,

Professor Guang Cheng for his brilliant guidance and inspirational advice. It has been

the most valuable and rewarding experience working with him. As an advisor, Guang

gives me enough freedom to pursue my research interests in machine learning. He

has also provided numerous opportunities for me to attend meetings and collaborate

with faculties from other Universities. He has been not only my advisor, but my role

model as a diligent researcher to pursue important and deep topics. As a friend, he

has been listening to my heart and helping me. He has been and will continue to be

a source of wisdom in my life! Thanks for being a fantastic advisor and friend.

I would also like to express my great gratitude to my collaborators. I am especially

indebted to Professor Junhui Wang for opening the door for me to the world of

machine learning. It was a great pleasure to work with Professor Yufeng Liu at

UNC, who has strongly supported every step I took in the graduate school. I thank

Professor Xingye Qiao from Binghamton University for his valuable suggestions and

helpful discussions on my thesis. I was very lucky to work with extremely intelligent

and hard-working people at Princeton University, namely Zhaoran Wang, Junwei Lu,

and Professor Han Liu. Thank Professor Yixin Fang at NYU for many valuable

discussions. I also give many thanks to Pengyuan Wang and Dawei Yin at Yahoo!

labs for the enjoyable collaborations during my summer internship.

On the other hand, I deeply appreciate the guidance I have received from profes-

sors at Purdue University. Especially, I wish to thank Professor Jayanta K. Ghosh for

his helpful comments on teaching during the period when I was a TA for his STAT528

course. Many thanks go to Professor Xiao Wang for the fruitful discussions on deep

learning and Professor Lingsong Zhang, Professor Mark Ward for serving on my com-

mittee and giving me invaluable comments to improve the thesis. Special thanks go



iv

to Professor Rebecca W. Doerge for her numerous supports on my academic travels

and various award applications. Furthermore, I thank Professors William S. Cleve-

land, Jose Figueroa-Lopez, Sergey Kirshner, Chuanhai Liu, Yuan (Alan) Qi, Thomas

Sellke for inspirational lectures that help a lot in my daily research.

I would like to acknowledge group members of Professor Guang Cheng’s research

group, including Professor Shenchun Kong, Professor Qifan Song, Dr. Zuofeng Shang,

Zhuqing Yu, Ching-Wei Cheng, Meimei Liu, and Botao Hao for many valuable dis-

cussions on research problems over the past four years.

I also deeply appreciate generous helps from friends at Purdue. Fishing with

Qiming Huang and Whitney Huang was a lot of fun. I also enjoyed a lot when we

played cards during fun nights with Longjie Cheng, Xian He, Cheng Li, Chao Pan,

Qiming Huang, and Bingrou (Alice) Zhou. I would also like to thank Yongheng Zhang

and Xia Huang. It was great time to have fun with Terrence. Without the happiness

brought to me by my friends, my life as a PhD student at West Lafayette would be

miserable without a doubt.

Finally, I would like to express my heartfelt gratitude to my family, especially to

my wife, whose love and support has been the driving force of my journey.



v

TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Decision Boundary Instability (DBI) . . . . . . . . . . . . . . . . . 3
1.2 Classification Instability (CIS) . . . . . . . . . . . . . . . . . . . . . 4

2 Decision Boundary Instability . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 Large-Margin Classifiers . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Classifier Selection Algorithm . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Stage 1: Initial Screening via GE . . . . . . . . . . . . . . . 8
2.2.2 Stage 2: Final Selection via DBI . . . . . . . . . . . . . . . . 12
2.2.3 Relationship of DBI with Other Variability Measures . . . . 16
2.2.4 Summary of Classifier Selection Algorithm . . . . . . . . . . 17

2.3 Large-Margin Unified Machines . . . . . . . . . . . . . . . . . . . . 18
2.4 Selection Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5.1 Illustration . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5.2 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.5.3 Real Examples . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.6 Nonlinear Extension . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.7 Technical Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.7.1 Proof of Theorem 2.2.1: . . . . . . . . . . . . . . . . . . . . 31
2.7.2 Proof of Theorem 2.2.2 . . . . . . . . . . . . . . . . . . . . . 33
2.7.3 Calculation of the Transformation Matrix in Section 2.2.2 . . 34
2.7.4 Approximation of DBI . . . . . . . . . . . . . . . . . . . . . 35
2.7.5 Proof of Corollary 1 . . . . . . . . . . . . . . . . . . . . . . 36
2.7.6 Proof of Corollary 2 . . . . . . . . . . . . . . . . . . . . . . 40
2.7.7 Proof of Lemma 1 . . . . . . . . . . . . . . . . . . . . . . . . 41
2.7.8 Proof of Theorem 2.4.1 . . . . . . . . . . . . . . . . . . . . . 42

3 Stabilized Nearest Neighbor Classifier and Its Theoretical Properties . . . 49
3.1 Classification Instability . . . . . . . . . . . . . . . . . . . . . . . . 52
3.2 Stabilized Nearest Neighbor Classifier . . . . . . . . . . . . . . . . . 53



vi

Page
3.2.1 Review of WNN . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2.2 Asymptotically Equivalent Formulation of CIS . . . . . . . . 55
3.2.3 Stabilized Nearest Neighbor Classifier . . . . . . . . . . . . . 57

3.3 Theoretical Properties . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.3.1 A Sharp Rate of CIS . . . . . . . . . . . . . . . . . . . . . . 58
3.3.2 Optimal Convergence Rates of SNN . . . . . . . . . . . . . . 61

3.4 Asymptotic Comparisons . . . . . . . . . . . . . . . . . . . . . . . . 62
3.4.1 CIS Comparison of Existing Methods . . . . . . . . . . . . . 62
3.4.2 Comparisons between SNN and OWNN . . . . . . . . . . . . 64

3.5 Tuning Parameter Selection . . . . . . . . . . . . . . . . . . . . . . 66
3.6 Numerical Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.6.1 Validation of Asymptotically Equivalent Forms . . . . . . . 69
3.6.2 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.6.3 Real Examples . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.7 Technical Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.7.1 Proof of Theorem 3.2.1 . . . . . . . . . . . . . . . . . . . . . 76
3.7.2 Proof of Theorem 3.2.2 . . . . . . . . . . . . . . . . . . . . . 82
3.7.3 Proof of Theorem 3.3.1 . . . . . . . . . . . . . . . . . . . . . 84
3.7.4 Proof of Theorem 3.3.2 . . . . . . . . . . . . . . . . . . . . . 85
3.7.5 Proof of Theorem 3.3.3 . . . . . . . . . . . . . . . . . . . . . 89
3.7.6 Proof of Corollary 3 . . . . . . . . . . . . . . . . . . . . . . 90
3.7.7 Proof of Corollaries 4 and 5 . . . . . . . . . . . . . . . . . . 91
3.7.8 Calculation of B1 in Section 3.6.2 . . . . . . . . . . . . . . . 91

4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100



vii

LIST OF TABLES

Table Page

2.1 The averaged test errors and averaged test DBIs (multiplied by 100) of
all methods: “cv+varcv” is the two-stage approach which selects the loss
with the minimal variance of the K-CV error in Stage 2; “cv+be” is the
two-stage approach which in Stage 2 selects the loss with the minimal
classification stability defined in Bousquet and Elisseeff (2002); “cv+dbi”
is our method. The smallest value in each case is given in bold. Standard
errors are given in subscript. . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 The averaged test errors and averaged test DBIs of all methods in real
example. The smallest value in each case is given in bold. Standard errors
are given in subscript. . . . . . . . . . . . . . . . . . . . . . . . . . . . 28



viii

LIST OF FIGURES

Figure Page

2.1 Two classes are shown in red circles and blue crosses. The black line is
the decision boundary based on the original training sample, and the gray
lines are 100 decision boundaries based on perturbed samples. The top left
(right) panel corresponds to the least square loss (SVM). The perturbed
decision boundaries of SVM after data transformation are shown in the
bottom. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Plots of least square, exponential, logistic, and LUM loss functions with
γ = 0, 0.5, 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Comparison of true and estimated DBIs in Example 6.1 is shown in the left
plot. The true DBIs are denoted as red triangles and the estimated DBIs
from replicated experiments are illustrated by box plots. The sensitivity
of confidence level α to the proportion of potentially good classifiers in
Stage 1 is shown on the right. . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 The K-CV error, the DBI estimate, and the perturbed decision boundaries
in Simulation 1 with flipping rate 15%. The minimal K-CV error and
minimal DBI estimate are indicated with red triangles. The labels Ls, Exp,
Logit, LUM0, LUM0.5, and LUM1 refer to least squares loss, exponential
loss, logistic loss, and LUM loss with index γ = 0, 0.5, 1, respectively. . 26

2.5 The nonlinear perturbed decision boundaries for the least squares loss
(left) and SVM (right) in the bivariate normal example with unequal vari-
ances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1 Regret and CIS of the kNN classifier. From top to bottom, each circle
represents the kNN classifier with k ∈ {1, 2, . . . , 20}. The red square
corresponds to the classifier with the minimal regret and the classifier
depicted by the blue triangle improves it to have a lower CIS. . . . . . 50

3.2 Regret and CIS of kNN, OWNN, and SNN procedures for a bivariate
normal example. The top three lines represent CIS’s of kNN, OWNN, and
SNN. The bottom three lines represent regrets of kNN, SNN, and OWNN.
The sample size shown on the x-axis is in the log10 scale. . . . . . . . . 51

3.3 Pairwise CIS ratios between kNN, BNN and OWNN for different feature
dimension d. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64



ix

Figure Page

3.4 Regret ratio and CIS ratio of SNN over OWNN as functions of B1 and d.
The darker the color, the larger the value. . . . . . . . . . . . . . . . . 66

3.5 Logarithm of relative gain of SNN over OWNN as a function of B1 and
d when λ0 = 1. The grey (white) color represents the case where the
logarithm of relative gain is greater (less) than 0. . . . . . . . . . . . . 67

3.6 Asymptotic CIS (red curve) and estimated CIS (box plots over 100 simu-
lations) for OWNN (left) and SNN (right) procedures. These plots show
that the estimated CIS converges to its asymptotic equivalent value as n
increases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.7 Asymptotic risk (regret + the Bayes risk; red curves) and estimated risk
(black box plots) for OWNN (left) and SNN procedures (right). The blue
horizontal line indicates the Bayes risk, 0.215. These plots show that the
estimated risk converges to its asymptotic version (and also the Bayes risk)
as n increases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.8 Average test errors and CIS’s (with standard error bar marked) of the
kNN, BNN, OWNN, and SNN methods in Simulation 1. The x-axis in-
dicates different settings with various dimensions. Within each setting,
the four methods are horizontally lined up (from the left are kNN, BNN,
OWNN, and SNN). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.9 Average test errors and CIS’s (with standard error bar marked) of the
kNN, BNN, OWNN, and SNN methods in Simulation 2. The ticks on the
x-axis indicate the dimensions and prior class probability π for different
settings. Within each setting, the four methods are horizontally lined up
(from the left are kNN, BNN, OWNN, and SNN). . . . . . . . . . . . . 73

3.10 Average test errors and CIS’s (with standard error bar marked) of the
kNN, BNN, OWNN, and SNN methods in Simulation 3. The ticks on the
x-axis indicate the dimensions and prior class probability π for different
settings. Within each setting, the four methods are horizontally lined up
(from the left are kNN, BNN, OWNN, and SNN). . . . . . . . . . . . . 74

3.11 Average test errors and CIS’s (with standard error bar marked) of the
kNN, BNN, OWNN and SNN methods for four data examples. The ticks
on the x-axis indicate the names of the examples. Within each example,
the four methods are horizontally lined up (from the left are kNN, BNN,
OWNN, and SNN). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75



x

ABBREVIATIONS

BNN Bagged Nearest Neighbor Classifier

CIS Classification Instability

DBI Decision Boundary Instability

GE Generalization Error

kNN k Nearest Neighbor Classifier

OWNN Optimal Weighted Nearest Neighbor Classifier

SNN Stabilized Nearest Neighbor Classifier

WNN Weighted Nearest Neighbor Classifier



xi

ABSTRACT

Sun, Wei PhD, Purdue University, May 2015. Stability of Machine Learning Algo-
rithms. Major Professor: Guang Cheng.

In the literature, the predictive accuracy is often the primary criterion for evaluat-

ing a learning algorithm. In this thesis, I will introduce novel concepts of stability into

the machine learning community. A learning algorithm is said to be stable if it pro-

duces consistent predictions with respect to small perturbation of training samples.

Stability is an important aspect of a learning procedure because unstable predictions

can potentially reduce users’ trust in the system and also harm the reproducibility of

scientific conclusions. As a prototypical example, stability of the classification proce-

dure will be discussed extensively. In particular, I will present two new concepts of

classification stability.

The first one is the decision boundary instability (DBI) which measures the vari-

ability of linear decision boundaries generated from homogenous training samples.

Incorporating DBI with the generalization error (GE), we propose a two-stage algo-

rithm for selecting the most accurate and stable classifier. The proposed classifier se-

lection method introduces the statistical inference thinking into the machine learning

society. Our selection method is shown to be consistent in the sense that the optimal

classifier simultaneously achieves the minimal GE and the minimal DBI. Various sim-

ulations and real examples further demonstrate the superiority of our method over

several alternative approaches.

The second one is the classification instability (CIS). CIS is a general measure of

stability and generalizes DBI to nonlinear classifiers. This allows us to establish a

sharp convergence rate of CIS for general plug-in classifiers under a low-noise con-

dition. As one of the simplest plug-in classifiers, the nearest neighbor classifier is



xii

extensively studied. Motivated by an asymptotic expansion formula of the CIS of

the weighted nearest neighbor classifier, we propose a new classifier called stabilized

nearest neighbor (SNN) classifier. Our theoretical developments further push the

frontier of statistical theory in machine learning. In particular, we prove that SNN

attains the minimax optimal convergence rate in the risk, and the established sharp

convergence rate in CIS. Extensive simulation and real experiments demonstrate that

SNN achieves a considerable improvement in stability over existing classifiers with no

sacrifice of predictive accuracy.
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1. INTRODUCTION

The predictive accuracy is often the primary criterion for evaluating a machine learn-

ing algorithm. Recently, researchers have started to explore alternative measures to

evaluate the performance of a learning algorithm. For instance, besides prediction ac-

curacy, computational complexity, robustness, interpretability, and variable selection

performance have been considered in the literature. Our work follows this research

line since we believe there are other critical properties (other than accuracy) of a

machine learning algorithm that have been overlooked in the research community. In

this thesis, I will introduce novel concepts of stability into the machine learning com-

munity. A learning algorithm is said to be stable if it produces consistent predictions

with respect to small perturbation of training samples.

Stability is an important aspect of a learning algorithm. Data analyses have

become a driving force for much scientific research work. As datasets get bigger and

analysis methods become more complex, the need for reproducibility has increased

significantly [1]. Many experiments are being conducted and conclusions are being

made with the aid of statistical analyses. Those with great potential impacts must

be scrutinized before being accepted. An initial scrutiny involves reproducing the

result. A minimal requirement is that one can reach the same conclusion by applying

the described analyses to the same data, a notion some refer to as replicability. A

more general requirement is that one can reach a similar result based on independently

generated datasets. The issue of reproducibility has drawn much attention in statistics

[2], biostatistics [3, 4], computational science [5] and other scientific communities [6].

Recent discussions can be found in a special issue of Nature1). Moreover, Marcia

McNutt, the Editor-in-Chief of Science, pointed out that “reproducing an experiment

is one important approach that scientists use to gain confidence in their conclusions.”

1at http://www.nature.com/nature/focus/reproducibility/
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That is, if conclusions can not be reproduced, the credit of the researchers, along with

the scientific conclusions themselves, will be in jeopardy.

Throughout the whole scientific research process, there are many ways statistics

as a subject can help improve reproducibility. One particular aspect we stress in this

thesis is the stability of the statistical procedure used in the analysis. According to [2],

scientific conclusions should be stable with respect to small perturbation of data. The

danger of an unstable statistical method is that a correct scientific conclusion may not

be recognized and could be falsely discredited, simply because an unstable statistical

method was used.

Moreover, stability can be very important in some practical domains. Customers

often evaluate a service based on their experience for a small sample, where the accu-

racy is either hard to perceive (due to the lack of ground truth), or does not appear to

differ between different services (due to data inadequacy); on the other hand, stability

is often more perceptible and hence can be an important criterion. For example, In-

ternet streaming service provider Netflix has a movie recommendation system based

on complex learning algorithms. Viewers either can not promptly perceive the inac-

curacy because they themselves do not know which film is the best for them, or are

quite tolerable even if a sub-optimal recommendation is given. However, if two con-

secutively recommended movies are from two totally different genres, the customer

can immediately perceive such instability, and have a bad user experience with the

service. Furthermore, providing a stable prediction plays a crucial role on users’ trust

of the classification system. In the psychology literature, it has been shown that

advice-giving agents with a lager variability in past opinions are considered less infor-

mative and less helpful than those with a more consistent pattern of opinions [7, 8].

Therefore, a machine learning system may be distrusted by users if it generates highly

unstable predictions simply due to the randomness of training samples.

It is worth mentioning that stability has indeed received much attention in statis-

tics. For example, in clustering problems, [9] introduced the clustering instability to

assess the quality of a clustering algorithm; [10] used the clustering instability as a
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criterion to select the number of clusters. In high-dimensional regression, [11] and [12]

proposed stability selection procedures for variable selection, and [13] and [14] applied

stability for tuning parameter selection. For more applications, see the use of sta-

bility in model selection [15], analyzing the effect of bagging [16], and deriving the

generalization error bound [17, 18]. However, many of these works view stability as

a tool for other purposes. In literature, few work has emphasized the importance of

stability itself.

As a prototypical example, in this thesis we will discuss extensively the stability

of a classification procedure. Classification aims to identify the class label of a new

subject using a classifier constructed from training data whose class memberships

are given. It has been widely used in diverse fields, e.g., medical diagnosis, fraud

detection, and computer vision. In the literature, much of the research focuses on im-

proving the accuracy of classifiers. Recently, alternative criteria have been explored,

such as computational complexity and training time [19], the robustness [20], among

others. Our work focuses on another critical property of classifiers, namely stabil-

ity, that has been somewhat overlooked. A classification procedure with more stable

prediction performance is preferred when researchers aim to reproduce the reported

results from randomly generated samples. Consequently, aside from high prediction

accuracy, high stability is another crucial factor to consider when evaluating the per-

formance of a classification procedure. Our work tries to fill this gap by presenting

two new concepts of classification stability.

1.1 Decision Boundary Instability (DBI)

In Section 2, I will introduce the decision boundary instability (DBI) to capture

the variability of decision boundaries arose from homogenous training samples. Incor-

porating DBI with the generalization error (GE), we propose a two-stage algorithm

for selecting the most accurate and stable classifier: Stage (i) eliminate the classifiers

whose GEs are significantly larger than the minimal one among all the candidate
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classifiers; Stage (ii) select the optimal classifier as that with the most stable deci-

sion boundary, i.e., the minimal DBI, among the remaining classifiers. Our selection

method is shown to be consistent in the sense that the optimal classifier simultane-

ously achieves the minimal GE and the minimal DBI. Various simulations and real

examples further demonstrate the superiority of our method over several alternative

approaches.

1.2 Classification Instability (CIS)

In Section 3, I will introduce the classification instability (CIS) which character-

izes the sampling variability of the yielded prediction. CIS is a general measure of

stability for both linear and nonlinear classifiers. This allows us to establish a sharp

convergence rate of CIS for general plug-in classifiers under a low-noise condition.

This sharp rate is slower than but approaching n−1, which is shown by adapting the

theoretical framework of [21]. As one of the simplest plug-in classifiers, the nearest

neighbor classifier is extensively studied. An important result we find is that the CIS

of a weighted nearest neighbor (WNN) classifier procedure is asymptotically propor-

tional to the Euclidean norm of the weight vector. This rather concise form allows us

to propose a new classifier called stabilized nearest neighbor (SNN) classifier, which

is the optimal solution by minimizing the CIS of a WNN procedure over an accept-

able region of the weight where the regret is small. In theory, we prove that SNN

attains the minimax optimal convergence rate in the risk, and the established sharp

convergence rate in CIS. Extensive simulation and real experiments demonstrate that

SNN achieves a considerable improvement in stability over existing classifiers with no

sacrifice of predictive accuracy.
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2. DECISION BOUNDARY INSTABILITY

Classification aims to identify the class label of a new subject using a classifier con-

structed from training data whose class memberships are given. It has been widely

used in diverse fields, e.g., medical diagnosis, fraud detection, and natural language

processing. Numerous classification methods have been successfully developed with

classical approaches such as Fisher’s linear discriminant analysis (LDA), quadratic

discriminant analysis (QDA), and logistic regression [22], and modern approaches

such as support vector machine (SVM) [23], boosting [24], distance weighted dis-

crimination (DWD) [25], classification based on the reject option [26], and optimal

weighted nearest neighbor classifiers [27]. In a recent paper, [28] proposed a platform,

large-margin unified machines (LUM), for unifying various large margin classifiers

ranging from soft to hard.

In the literature, much of the research has focused on improving the predictive ac-

curacy of classifiers and hence generalization error (GE) is often the primary criterion

for selecting the optimal one from the rich pool of existing classifiers; see [29] and [30].

Recently, researchers have started to explore alternative measures to evaluate the

performance of classifiers. For instance, besides prediction accuracy, computational

complexity and training time of classifiers are considered in [19]. Moreover, [20] pro-

posed the robust truncated hinge loss SVM to improve the robustness of the standard

SVM. [31] and [32] investigated several measures of cost-sensitive weighted general-

ization errors for highly unbalanced classification tasks since, in this case, GE itself

is not very informative. Our work follows this research line since we believe there are

other critical properties (other than accuracy) of classifiers that have been overlooked

in the research community. In this article, we introduce a notion of decision bound-

ary instability (DBI) to assess the stability [15] of a classification procedure arising
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from the randomness of training samples. Aside from high prediction accuracy, high

stability is another crucial factor to consider in the classifier selection.

In this paper, we attempt to select the most accurate and stable classifier by incor-

porating DBI into our selection process. Specifically, we suggest a two-stage selection

procedure: (i) eliminate the classifiers whose GEs are significantly larger than the

minimal one among all the candidate classifiers; (ii) select the optimal classifier as

that with the most stable decision boundary, i.e., the minimal DBI, among the re-

maining classifiers. In the first stage, we show that the cross-validation estimator for

the difference of GEs induced from two large-margin classifiers asymptotically follows

a Gaussian distribution, which enables us to construct a confidence interval for the

GE difference. If this confidence interval contains 0, these two classifiers are consid-

ered indistinguishable in terms of GE. By applying the above approach, we can obtain

a collection of potentially good classifiers whose GEs are close enough to the minimal

value. The uncertainty quantification of the cross-validation estimator is crucially

important considering that only limited samples are available in practice. In fact,

experiments indicate that for certain problems many classifiers do not significantly

differ in their estimated GEs, and the corresponding absolute differences are mainly

due to random noise.

A natural follow-up question is whether the collection of potentially good classifiers

also perform well in terms of their stability. Interestingly, we observe that the decision

boundary generated by the classifier with the minimal GE estimator sometimes has

unstable behavior given a small perturbation of the training samples. This observation

motivates us to propose a further selection criterion in the second stage: DBI. This

new measure can precisely reflect the visual variability in the decision boundaries due

to the perturbed training samples.

Our two-stage selection algorithm is shown to be consistent in the sense that the

selected optimal classifier simultaneously achieves the minimal GE and the minimal

DBI. The proof is nontrivial because of the stochastic nature of the two-stage al-

gorithm. Note that our method is distinguished from the bias-variance analysis in
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classification since the latter focuses on the decomposition of GE, e.g., [33]. Our DBI

is also conceptually different from the stability-oriented measure introduced in [17],

which was defined as the maximal difference of the decision functions trained from

the original datasets and the leave-one-out datasets. In addition, their variability

measure suffers from the transformation variant issue since a scale transformation of

the decision function coefficients will greatly affect their variability measure. Our DBI

overcomes this problem via a rescaling scheme since DBI can be viewed as a weighted

version of the asymptotic variance of the decision function. In the end, extensive

experiments illustrate the advantage of our selection algorithm compared with the

alternative approaches in terms of both classification accuracy and stability.

2.1 Large-Margin Classifiers

This section briefly reviews large-margin classifiers, which serve as prototypical

examples to illustrate our two-stage classifier selection technique.

Let (X, Y ) ∈ Rd × {1,−1} be random variables from an underlying distribu-

tion P(X, Y ). Denote the conditional probability of class Y = 1 given X = x as

p(x) = P (Y = 1|X = x), where p(x) ∈ (0, 1) to exclude the degenerate case. Let

the input variable be x = (x1, . . . , xd)
T , x̃ = (1, x1, . . . , xd)

T , with coefficient w =

(w1, . . . , wd)
T and parameter θ = (b,wT )T . The linear decision function is defined as

f(x;θ) = b+xTw = x̃Tθ, and the decision boundary is S(x;θ) = {x : f(x;θ) = 0}.

The performance of the classifier sign{f(x;θ)} is measured by the classification risk

E[I{Y 6=sign{f(X;θ)}}], where the expectation is with respect to P(X, Y ). Since the di-

rect minimization of the above risk is NP hard [34], various convex surrogate loss

functions L(·) have been proposed to deal with this computational issue. Denote the

surrogate risk as RL(θ) = E[L(Y f(X;θ))], and assume that the minimizer of RL(θ)

is obtained at θ0L = (b0L,w
T
0L)T . Here θ0L depends on the loss function L.
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Given the training sample Dn = {(xi, yi); i = 1, . . . , n} drawn from P(X, Y ), a

large-margin classifier minimizes the empirical risk OnL(θ) defined as

OnL(θ) =
1

n

n∑
i=1

L
(
yi(w

Txi + b)
)

+
λn
2
wTw, (2.1)

where λn is some positive tuning parameter. The estimator minimizing OnL(θ) is

denoted as θ̂L = (̂bL, ŵ
T
L)T . Common large-margin classifiers include the squared loss

L(u) = (1−u)2, the exponential loss L(u) = e−u, the logistic loss L(u) = log(1+e−u),

and the hinge loss L(u) = (1 − u)+. Unfortunately, there seems to be no general

guideline for selecting these loss functions in practice except the cross validation

error. Ideally if we had access to an arbitrarily large test set, we would just choose

the classifier for which the test error is the smallest. However, in reality where only

limited samples are available, the commonly used cross validation error may not be

able to accurately approximate the testing error. The main goal of this paper is to

establish a practically useful selection criterion by incorporating DBI with the cross

validation error.

2.2 Classifier Selection Algorithm

In this section, we propose a two-stage classifier selection algorithm: (i) we se-

lect candidate classifiers whose estimated GEs are relatively small; (ii) the optimal

classifier is that with the minimal DBI among those selected in Stage (i).

2.2.1 Stage 1: Initial Screening via GE

In this subsection, we show that the difference of the cross-validation errors ob-

tained from two large-margin classifiers asymptotically follows a Gaussian distribu-

tion, which enables us to construct a confidence interval for their GE difference. We

further propose a perturbation-based resampling approach to construct this confi-

dence interval.
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Given a new input (X0, Y0) from P(X, Y ), we define the GE induced by the loss

function L as

D0L =
1

2
E|Y0 − sign{f(X0; θ̂L)}|, (2.2)

where θ̂L is based on the training sample Dn, and the expectation is with respect to

both Dn and (X0, Y0). In practice, the GE, which depends on the underlying distri-

bution P(X, Y ), needs to be estimated using Dn. One possible estimate is the em-

pirical generalization error defined as D̂L ≡ D̂(θ̂L), where D̂(θ) = (2n)−1
∑n

i=1 |yi −

sign{f(xi;θ)}|. However, the above estimate suffers from the problem of overfit-

ting [35]. Hence, one can use the K-fold cross-validation procedure to estimate the

GE; this can significantly reduce the bias [36]. Specifically, we randomly split Dn
into K disjoint subgroups and denote the kth subgroup as Ik. For k = 1, . . . , K, we

obtain the estimator θ̂L(−k) from all the data except those in Ik, and calculate the

empirical average D̂(θ̂L(−k)) based only on Ik, i.e., D̂(θ̂L(−k)) = (2|Ik|)−1
∑

i∈Ik |yi −

sign{f(xi; θ̂L(−k))}| with |Ik| being the cardinality of Ik. The K-fold cross-validation

(K-CV) error is thus computed as

D̂L = K−1

K∑
k=1

D̂(θ̂L(−k)). (2.3)

We set K = 5 for our numerical experiments.

We establish the asymptotic normality of the K-CV error D̂L under the following

regularity conditions:

(L1) The probability distribution function of X and the conditional probability p(x)

are both continuously differentiable.

(L2) The parameter θ0L is bounded and unique.

(L3) The map θ 7→ L(yf(x;θ)) is convex.

(L4) The map θ 7→ L(yf(x;θ)) is differentiable at θ = θ0L a.s.. Furthermore, G(θ0L)

is element-wisely bounded, where

G(θ0L) = E
[
OθL(Y f(X;θ))OθL(Y f(X;θ))T

]∣∣∣
θ=θ0L

.
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(L5) The surrogate risk RL(θ) is bounded and twice differentiable at θ = θ0L with

the positive definite Hessian matrix H(θ0L) = O2
θRL(θ)|θ=θ0L .

Assumption (L1) ensures that the GE is continuously differentiable with respect to

θ so that the uniform law of large numbers can be applied. Assumption (L3) ensures

that the uniform convergence theorem for convex functions [37] can be applied, and

it is satisfied by all the large-margin loss functions considered in this paper. As-

sumptions (L4) and (L5) are required to obtain the local quadratic approximation to

the surrogate risk function around θ0L. Assumptions (L2)–(L5) were previously used

by [38] to prove the asymptotic normality of θ̂L.

Theorem 2.2.1 below establishes the asymptotic normality of the K-CV error D̂L
for any large-margin classifier, which generalizes the result for the SVM in [36].

Theorem 2.2.1 Suppose Assumptions (L1)–(L5) hold and λn = o(n−1/2). Then for

any fixed K,

WL =
√
n
(
D̂L −D0L

)
d−→ N

(
0, E(ψ2

1)
)

as n→∞, (2.4)

where ψ1 = 1
2
|Y1 − sign{f(X1;θ0L)}| −D0L − ḋ(θ0L)TH(θ0L)−1M1(θ0L) with ḋ(θ) =

OθE(D̂(θ)), and M1(θ) = OθL(Y1f(X1;θ)).

An immediate application of Theorem 2.2.1 is to compare two competing classifiers

L1 and L2. Define their GE difference ∆12 and its consistent estimate ∆̂12 to be

D02−D01 and D̂2−D̂1, respectively. To test whether the GEs induced by L1 and L2 are

significantly different, we need to establish an approximate confidence interval for ∆12

based on the distribution ofW∆12 ≡ W2−W1 = n1/2(∆̂12−∆12). In practice, we apply

the perturbation-based resampling procedure [39] to approximate the distribution of

W∆12 . This procedure was also employed by [36] to construct the confidence interval

of SVM’s GE. Specifically, let {Gi}ni=1 be i.i.d. random variables drawn from the

exponential distribution with unit mean and unit variance. Denote

θ̂
∗
j = arg min

b,w

{
1

n

n∑
i=1

GiLj

(
yi(w

Txi + b)
)

+
λn
2
wTw

}
. (2.5)
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Conditionally on Dn, the randomness of θ̂
∗
j merely comes from that of G1, . . . , Gn.

Denote W ∗
∆12

= W ∗
2 −W ∗

1 with

W ∗
j = n−1/2

n∑
i=1

{1

2

∣∣∣yi − sign{f(xi, θ̂
∗
j)}
∣∣∣− D̂j

}
Gi. (2.6)

By repeatedly generating a set of random variables {Gi, i = 1, . . . , n}, we can obtain

a large number of realizations of W ∗
∆12

to approximate the distribution of W∆12 . In

Theorem 2.2.2 below, we prove that this approximation is valid.

Theorem 2.2.2 Suppose the assumptions in Theorem 2.2.1 hold, we have

W∆12

d−→ N
(

0, V ar(ψ12 − ψ11)
)
,

as n→∞, where ψ11 and ψ12 are defined in Appendix A.3, and

W ∗
∆12

d
=⇒ N

(
0, V ar(ψ12 − ψ11)

)
conditional on Dn,

where “=⇒” means conditional weak convergence in the sense of [40].

Algorithm 1 below summarizes the resampling procedure for establishing the con-

fidence interval of the GE difference ∆12.

Algorithm 1 (Generalization Error Comparison Algorithm)

Input: Training sample Dn and two candidate classifiers L1 and L2.

• Step 1. Calculate K-CV errors D̂1 and D̂2 of classifiers L1 and L2, respectively.

• Step 2. For r = 1, . . . , N , repeat the following steps:

(a) Generate i.i.d. samples {G(r)
i }ni=1 from Exp(1);

(b) Find θ̂
∗(r)
j via (2.5) and W

∗(r)
j via (2.6), and calculate W

∗(r)
∆12

= W
∗(r)
2 −

W
∗(r)
1 .

• Step 3. Construct the 100(1− α)% confidence interval for ∆12 as[
∆̂12 − n−1/2φ1,2;α/2, ∆̂12 − n−1/2φ1,2;1−α/2

]
,

where ∆̂12 = D̂2−D̂1 and φ1,2;α is the αth upper percentile of {W ∗(1)
∆12

, . . . ,W
∗(N)
∆12
}.
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In our experiments, we repeated the resampling procedure 100 times, i.e., N = 100

in Step 2, and fix α = 0.1. The effect of the choice of α will be discussed at the end

of Section 2.2.4.

The GEs of two classifiers L1 and L2 are significantly different if the confidence

interval established in Step 3 does not contain 0. Hence, we can apply Algorithm 1

to eliminate the classifiers whose GEs are significantly different from the minimal GE

of a set of candidate classifiers.

It is worth noting that employing statistical testing for classifier comparison has

been successfully applied in practice [41, 42]. In particular, [42] reviewed several

statistical tests in comparing two classifiers on multiple data sets and recommended

the Wilcoxon sign rank test, which examined whether two classifiers are significantly

different by calculating the relative rank of their corresponding performance scores

on multiple data sets. Their result relies on an ideal assumption that there is no

sampling variability of the measured performance score in each individual data set.

Compared to the Wilcoxon sign rank test, our perturbed cross validation estimator

has the advantages that it is theoretically justified and it does not rely on the ideal

assumption of each performance score.

The remaining classifiers from Algorithm 1 are potentially good. As will be seen

in the next section, the decision boundaries of potentially good classifiers may change

dramatically following a small perturbation of the training sample. This indicates

that the prediction stability of the classifiers can be different although their GEs

are fairly close. Motivated by this observation, in the next section we introduce the

DBI to capture the prediction instability and embed it into our classifier selection

algorithm.

2.2.2 Stage 2: Final Selection via DBI

In this section, we define the DBI and then provide an efficient way to estimate

it in practice.
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Toy Example: To motivate the DBI, we start with a simulated example using

two classifiers: the squared loss L1 and the hinge loss L2. Specifically, we generate

100 observations from a mixture of two Gaussian distributions with equal probability:

N((−0.5,−0.5)T , I2) and N((0.5, 0.5)T , I2) with I2 an identity matrix of dimension

two. In Figure 2.2.2, we plot the decision boundary S(x; θ̂j) (in black) based on Dn,

and 100 perturbed decision boundaries {S(x; θ̂
∗(1)

j ), . . . , S(x; θ̂
∗(100)

j )} (in gray) for

j = 1, 2; see Step 2 of Algorithm 1. Figure 2.2.2 reveals that the perturbed decision

boundaries of the squared loss are more stable than those of the SVM given a small

perturbation of the training sample. Hence, it is desirable to quantify the variability

of the perturbed decision boundaries with respect to the original unperturbed deci-

sion boundary S(x; θ̂j). This is a nontrivial task since the boundaries spread over a

d-dimensional space, e.g., d = 2 in Figure 2.2.2. Therefore, we transform the data

in such a way that the above variability can be fully measured in a single dimen-

sion. Specifically, we find a d × d transformation matrix RL, which is orthogonal

with determinant 1, such that the decision boundary based on the transformed data

D†n = {(x†i , yi), i = 1, . . . , n} with x†i = RLxi is parallel to the X1, . . . ,Xd−1 axes;

see Section 2.7.3 for the calculation of RL. The variability of the perturbed decision

boundaries with respect to the original unperturbed decision boundary then reduces

to the variability along the last axis Xd. For illustration purposes, we next apply the

above data-transformation idea to the SVM plotted in the top right plot of Figure

2.2.2. From the bottom plot in Figure 2.2.2, we observe that the variability of the

transformed perturbed decision boundaries (in gray) with respect to the transformed

unperturbed decision boundary (in black) now reduces to the variability along the

X2 axis only. This is because the transformed unperturbed decision boundary is par-

allel to the X1 axis. Note that the choice of data transformation is not unique. For

example, we could also transform the data such that the transformed unperturbed

decision boundary is parallel to the X2 axis and then measure the variability along

the X1 axis. Fortunately, the DBI measure we will introduce yields exactly the same

value under any transformation, i.e., it is transformation invariant.
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Figure 2.1. Two classes are shown in red circles and blue crosses.
The black line is the decision boundary based on the original training
sample, and the gray lines are 100 decision boundaries based on per-
turbed samples. The top left (right) panel corresponds to the least
square loss (SVM). The perturbed decision boundaries of SVM after
data transformation are shown in the bottom.

Now we are ready to define DBI. Given the loss function L, we define the coefficient

estimator based on transformed data D†n as θ̂
†
L and the coefficient estimator based on
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the perturbed samples of D†n as θ̂
†∗
L . In addition, we find the following relationship

through the transformation matrix RL:

θ̂L ≡

 b̂L

ŵL

⇒ θ̂
†
L ≡

 b̂L

RLŵL

 and θ̂
∗
L ≡

 b̂∗L

ŵ∗L

⇒ θ̂
†∗
L ≡

 b̂∗L

RLŵ
∗
L

 ,

which can be shown by replacing xi with RLxi in (2.1) and (2.5) and using the

property of RL.

DBI is defined as the variability of the transformed perturbed decision boundary

S(X; θ̂
†∗
L ) with respect to the transformed unperturbed decision boundary S(X; θ̂

†
L)

along the direction Xd.

Definition 1 The decision boundary instability (DBI) of S(x; θ̂L) is defined to be

DBI
(
S(X; θ̂L)

)
= E

[
V ar

(
Sd|X†(−d)

)]
, (2.7)

where Sd is the dth dimension of S(X; θ̂
†∗
L ) and X†(−d) = (X†1, . . . , X

†
d−1)T .

Remark 1 The conditional variance V ar(Sd|X†(−d)) in (2.7) captures the variability

of the transformed perturbed decision boundary along the dth dimension based on

a given sample. Note that, after data transformation, the transformed unperturbed

decision boundary is parallel to the X1, . . . ,Xd−1 axes. Therefore, this conditional

variance precisely measures the variability of the perturbed decision boundary with

respect to the unperturbed decision boundary conditioned on the given sample. The

expectation in (2.7) then averages out the randomness in the sample.

Toy Example Continuation: We next give an illustration of (2.7) via the 2-

dimensional toy example shown in the bottom plot of Figure 2.2.2. For each sample,

the conditional variance in (2.7) is estimated via the sample variability of the projected

X2 values on the perturbed decision boundary (in gray). Then the final DBI is

estimated by averaging over all samples.

In Section 2.7.4, we demonstrate an efficient way to simplify (2.7) by approximat-

ing the conditional variance via the weighted variance of θ̂
†
L. Specifically, we show

that

DBI
(
S(X; θ̂L)

)
≈ (w†L,d)

−2E
[
X̃
†T
(−d)

(
n−1Σ†0L,(−d)

)
X̃
†
(−d)

]
, (2.8)
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where w†L,d is the last entry of the transformed coefficient θ†0L, and n−1Σ†0L,(−d) is the

asymptotic variance of the first d dimensions of θ̂
†
L. Therefore, DBI can be viewed as

a proxy measure of the asymptotic variance of the decision function.

We next propose a plug-in estimate for the approximate version of DBI in (2.8).

Direct estimation of DBI in (2.7) is possible, but it requires perturbing the trans-

formed data. To reduce the computational cost, we can take advantage of our resam-

pling results in Stage 1 based on the relationship between Σ†0L and Σ0L. Specifically,

we can estimate Σ†0L by

Σ̂†L =

 Σ̂b Σ̂b,wR
T
L

RLΣ̂w,b RLΣ̂wR
T
L

 given that Σ̂L =

 Σ̂b Σ̂b,w

Σ̂w,b Σ̂w

 , (2.9)

where Σ̂L is the sample variance of θ̂
∗
L obtained from Stage 1 as a byproduct. Hence,

combining (2.8) and (2.9), we propose the following DBI estimate:

D̂BI
(
S(X; θ̂L)

)
=

∑n
i=1 x̃i

†T
(−d)Σ̂

†
L,(−d)x̃i

†
(−d)

(nŵ†L,d)
2

, (2.10)

where ŵ†L,d is the last entry of θ̂
†
L, and Σ̂†L,(−d) is obtained by removing the last row

and last column of Σ̂†L defined in (2.9). The DBI estimate in (2.10) is the one we will

use in the numerical experiments.

2.2.3 Relationship of DBI with Other Variability Measures

In this subsection, we discuss the relationship of DBI with two alternative vari-

ability measures.

DBI may appear to be related to the asymptotic variance of the K-CV error, i.e.,

E(ψ1)2 in Theorem 1. However, we want to point out that these two quantities are

quite different. For example, when data are nearly separable, reasonable perturba-

tions to the data may only lead to a small variation in the K-CV error. On the other

hand, small changes in the data (especially those support points near the decision

boundary) may lead to a large variation in the decision boundary which implies a
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large DBI. This is mainly because DBI is conceptually different from the K-CV error.

In Section 2.5, we provide concrete examples to show that these two variation mea-

sures generally lead to different choices of loss functions, and the loss function with

the smallest DBI often corresponds to the classifier that is more accurate and stable.

Moreover, DBI shares similar spirit of the stability-oriented measure introduced

in [17]. They defined theoretical stability measures for the purpose of deriving the

generalization error bound. Their stability of a classification algorithm is defined as

the maximal difference of the decision functions trained from the original dataset and

the leave-one-out dataset. Their stability measure mainly focuses on the variability

of the decision function and hence suffers from the transformation variant issue since

a scale transformation of the decision function coefficients will greatly affect the value

of a decision function. On the other hand, our DBI focuses on the variability of the

decision boundary and is transformation invariant.

In the experiments, we will compare our classifier selection algorithm with ap-

proaches using these two alternative variability measures. Our method achieves su-

perior performance in both classification accuracy and stability.

2.2.4 Summary of Classifier Selection Algorithm

In this section, we summarize our two-stage classifier selection algorithm.

Algorithm 2 (Two-Stage Classifier Selection Procedure):

Input: Training sample Dn and a collection of candidate classifiers {Lj : j ∈ J}.

• Step 1. Obtain the K-CV errors D̂j for each j ∈ J , and let the minimal value

be D̂t.

• Step 2. Apply Algorithm 1 to establish the pairwise confidence interval for each

GE difference ∆tj. Eliminate the classifier Lj if the corresponding confidence

interval does not cover zero. Specifically, the set of potentially good classifiers

is defined to be

Λ =
{
j ∈ J : ∆̂tj − n−1/2φt,j;α/2 ≤ 0

}
,
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where ∆̂tj and φt,j;α/2 are defined in Step 3 of Algorithm 1.

• Step 3. Estimate DBI for each Lj with j ∈ Λ using (2.10). The optimal classifier

is Lj∗ with

j∗ = arg min
j∈Λ

D̂BI
(
S(X; θ̂j)

)
. (2.11)

In Step 2, we fix the confidence level α = 0.1 since it provides a sufficient but not

too stringent confidence level. Our experiment in Section 6.1 further shows that the

set Λ is quite stable against α within a reasonable range around 0.1. The optimal

classifier Lj∗ selected in (2.11) is not necessarily unique. However, according to our

experiments, multiple optimal classifiers are quite uncommon. Although in principle

we can also perform an additional significance test for DBI in Step 3, the related

computational cost is high given that DBI is already a second-moment measure.

Hence, we choose not to include this test in our algorithm.

2.3 Large-Margin Unified Machines

This section illustrates our classifier selection algorithm using the LUM [43] as an

example. The LUM offers a platform unifying various large margin classifiers ranging

from soft ones to hard ones. A soft classifier estimates the class conditional probabil-

ities explicitly and makes the class prediction via the largest estimated probability,

while a hard classifier directly estimates the classification boundary without a class-

probability estimation [44]. For simplicity of presentation, we rewrite the class of

LUM loss functions as

Lγ(u) =

 1− u if u < γ

(1− γ)2( 1
u−2γ+1

) if u ≥ γ,
(2.12)

where the index parameter γ ∈ [0, 1]. As shown by [43], when γ = 1 the LUM loss

reduces to the hinge loss of SVM, which is a typical example of hard classification;

when γ = 0.5 the LUM loss is equivalent to the DWD classifier, which can be viewed

as a classifier that is between hard and soft; and when γ = 0 the LUM loss becomes a
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soft classifier that has an interesting connection with the logistic loss. Therefore, the

LUM framework approximates many of the soft and hard classifiers in the literature.

Figure 2.3 displays LUM loss functions for various values of γ and compares them

with some commonly used loss functions.
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LUM: γ=0

LUM: γ=0.5

LUM: γ=1
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Figure 2.2. Plots of least square, exponential, logistic, and LUM loss
functions with γ = 0, 0.5, 1.

In the LUM framework, we denote the true risk as Rγ(θ) = E[Lγ(yf(x;θ))], the

true parameter as θ0γ = arg minθRγ(θ), the GE as D0γ, the empirical generalization

error as D̂γ, and the K-CV error as D̂γ. In practice, given data Dn, LUM solves

θ̂γ = arg min
b,w

{
1

n

n∑
i=1

Lγ

(
yi(w

Txi + b)
)

+
λnw

Tw

2

}
. (2.13)

We next establish the asymptotic normality of D̂γ and θ̂γ (with more explicit

forms of the asymptotic variances) by verifying the conditions in Theorem 2.2.1, i.e.,

(L1)–(L5). In particular, we provide a set of sufficient conditions for the LUM, i.e.,

(L1) and (A1) below.

(A1) Var(X|Y ) ∈ Rd×d is a positive definite matrix for Y ∈ {1,−1}.
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Assumption (A1) is needed to guarantee the uniqueness of the true minimizer θ0γ. It

is worth pointing out that the asymptotic normality of the estimated coefficients for

SVM has also been established by Koo et al. (2008) under another set of assumptions.

Corollary 1 Suppose that Assumptions (L1) and (A1) hold and λn = o(n−1/2). We

have, for each fixed γ ∈ [0, 1],

√
n(θ̂γ − θ0γ)

d−→ N(0,Σ0γ) as n→∞, (2.14)

where Σ0γ = H(θ0γ)
−1G(θ0γ)H(θ0γ)

−1 with G(θ0γ) and H(θ0γ) defined in (2.31) and

(2.33) in Section 2.7.5.

In practice, direct estimation of Σ0γ in (2.14) is difficult because of the involvement

of the Dirac delta function; see Section 2.7.5 for details. Instead, we find that the

perturbation-based resampling procedure proposed in Stage 1 works well.

Next we establish the asymptotic normality of D̂γ.

Corollary 2 Suppose that the assumptions in Corollary 1 hold. We have, as n→∞,

√
n(D̂γ −D0γ)

d−→ N
(

0, E(ψ2
1γ)
)
, (2.15)

where ψ1γ = 1
2
|Y1 − sign{f(X1;θ0γ)}| − D0γ − ḋ(θ0γ)

TH(θ0γ)
−1M1(θ0γ), ḋ(θ) =

OθE(D̂γ(θ)), and

M1(θ0γ) = −Y1X̃1I{Y1f(X1;θ0γ)<γ} −
(1− γ)2Y1X̃1I{Y1f(X1;θ0γ)≥γ}(
Y1f(X1;θ0γ)− 2γ + 1

)2 .

Corollary 2 demonstrates that the K-CV error induced from each LUM loss func-

tion yields the desirable asymptotic property under Assumptions (L1) and (A1). It

can be applied to justify the perturbation-based resampling procedure for LUM as

shown in Theorem 2.2.2.

2.4 Selection Consistency

This section investigates the selection consistency of our two-stage classifier se-

lection algorithm. Selection consistency means that the selected classifier achieves
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the minimal GE and minimal DBI asymptotically. We focus on the selection consis-

tency of the LUM loss functions in this section; the extension to other large-margin

classifiers is straightforward.

For the LUM class, we define the set of potentially good classifiers as

Λ̂0 =
{
γ ∈ [0, 1] : D̂γ ≤ D̂γ̂∗0 + n−1/2φγ,γ̂∗0 ;α/2

}
, (2.16)

where γ̂∗0 = arg minγ∈[0,1] D̂γ, based on Dn. Its population version is thus defined as

those classifiers achieving the minimal GE, denoted

Λ0 =
{
γ ∈ [0, 1] : D0γ = D0γ∗0

}
, (2.17)

where γ∗0 = arg minγ∈[0,1]D0γ. Literally, γ̂∗0 and γ∗0 may not be unique. To show

the selection consistency, we require an additional assumption on the Hessian matrix

defined in Corollary 1:

(B1) The smallest eigenvalue of the true Hessian matrix λmin(H(θ0γ)) ≥ c1, and the

largest eigenvalue of the true Hessian matrix λmax(H(θ0γ)) ≤ c2, where the

positive constants c1, c2 do not depend on γ.

As seen in the proof of Corollary 1, the true Hessian matrix H(θ0γ) is positive

definite for any fixed γ ∈ [0, 1] under Assumptions (L1) and (A1). Therefore, As-

sumption (B1) is slightly stronger in the uniform sense. It is required to guarantee

the uniform convergence results, i.e., (2.38) and (2.40), in Appendix A.1.

Our Lemma 1 first ensures that the minimum K-CV error converges to the mini-

mum GE at a root-n rate.

Lemma 1 Suppose that Assumptions (L1),(A1), and (B1) hold. We have, if λn =

o(n−1/2), ∣∣∣D̂γ̂∗0 −D0γ∗0

∣∣∣ = OP (n−1/2). (2.18)

In the second stage, we denote the index of the selected optimal classifier as

γ̂0 = arg min
γ∈Λ̂0

D̂BI
(
S(X; θ̂γ)

)
, (2.19)
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and its population version as

γ0 = arg min
γ∈Λ0

DBI
(
S(X; θ̂γ)

)
. (2.20)

Again, γ̂0 and γ0 are not necessarily unique.

Theorem 2.4.1 Suppose the assumptions in Lemma 1 hold, we have, as N →∞,∣∣∣D̂BI(S(X; θ̂γ̂0)
)
−DBI

(
S(X; θ̂γ0)

)∣∣∣ = oP (n−1). (2.21)

Recall that N is the number of resamplings defined in Step 2 of Algorithm 1.

Theorem 2.4.1 implies that the estimated DBI of the selected classifier converges

to the DBI of the true optimal classifier, which has the smallest DBI. Therefore,

the proposed two-stage algorithm is able to select the classifier with the minimal

DBI among those classifiers having the minimal GE. It is not uncommon to have

several classifiers obtain the same minimal GE, especially when the two classes are

well separable. In summary, we have shown that the selected optimal classifier has

achieved the minimal GE and the minimal DBI asymptotically.

2.5 Experiments

In this section, we first demonstrate the DBI estimation procedure introduced in

Section 2.2.2, and then illustrate the applicability of our classifier selection method

in various simulated and real examples. In all experiments, we compare our selection

procedure, denoted as “cv+dbi”, with two alternative methods: 1) “cv+varcv” which

is the two-stage approach selecting the loss with the minimal variance of the K-CV

error in Stage 2, and 2) “cv+be” which is the two-stage approach selecting the loss

with the minimal classification stability defined in Bousquet and Elisseeff (2002) in

Stage 2. Stage 1 of each alternative approach is the same as ours. We consider six

large-margin classifier candidates: least squares loss, exponential loss, logistic loss,

and LUM with γ = 0, 0.5, 1. Recall that LUM with γ = 0.5 (γ = 1) is equivalent to

DWD (SVM). In all the large-margin classifiers, the tuning parameter λn is selected

via cross-validation.
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2.5.1 Illustration

This subsection demonstrates the DBI estimation procedure and checks the sen-

sitivity of the confidence level α in Algorithm 2.

We generated labels y ∈ {−1, 1} with equal probability. Given Y = y, the predic-

tor vector (x1, x2) was generated from a bivariate normal N((µy, µy)T , I2) with the

signal level µ = 0.8.

We first illustrate the DBI estimation procedure in Section 2.2.2 by comparing the

estimated DBIs with the true DBIs for various sample sizes. We varied the sample

size n among 50, 100, 200, 500, and 1000. The classifier with the least squares

loss was investigated due to its simplicity. Simple algebra implied that the true

parameter θ0L = (0, 0.351, 0.351) and the transformed parameter θ†0L = (0, 0, 0.429).

Furthermore, the covariance matrix Σ0L and the transformed covariance matrix Σ†0L

were computed as

Σ0L =


0.439 0 0

0 0.268 −0.170

0 −0.170 0.268

 and Σ†0L =


0.439 0 0

0 0.439 0

0 0 0.098

 ,

given the transformation matrix

RL =

 −√2
2

√
2

2
√

2
2

√
2

2

 .

Finally, plugging all these terms into (2.8) led to

DBI
(
S(X; θ̂L)

)
≈ 3.563

n
. (2.22)

The left plot of Figure 2.5.1 compares the estimated DBIs in (2.10) with the

true DBIs in (2.22). Clearly, they match very well for various sample sizes and their

difference vanishes as the sample size increases. This experiment empirically validates

the estimation procedure in Section 2.2.2.

In order to show the sensitivity of the confidence level α to the set Λ in Algorithm 2,

we randomly selected one replication and display the proportion of potentially good
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Figure 2.3. Comparison of true and estimated DBIs in Example 6.1
is shown in the left plot. The true DBIs are denoted as red triangles
and the estimated DBIs from replicated experiments are illustrated
by box plots. The sensitivity of confidence level α to the proportion
of potentially good classifiers in Stage 1 is shown on the right.

classifiers over all six classifiers. Note that as α increases, the confidence interval

for the difference of GEs will be narrower, and hence the size of Λ will be smaller.

Therefore, the change of the proportion reflects exactly the change of Λ since Λ is

monotone with respect to α. For each α ∈ { l
100

; l = 0, . . . , 50}, we computed the

proportion of potentially good classifiers. As shown in the right plot of Figure 2.5.1,

the proportion is stable in a reasonable range around 0.1.

2.5.2 Simulations

In this section, we illustrate the superior performance of our method using four

simulated examples. These simulations were previously studied by [45] and [43]. In

all of the simulations, the size of training data sets was 100 and that of testing data

sets was 1000. All the procedures were repeated 100 times and the averaged test

errors and averaged test DBIs of the selected classifier were reported.



25

Simulation 1: Two predictors were uniformly generated over {(x1, x2) : x2
1+x2

2 ≤

1}. The class label y was 1 when x2 ≥ 0 and −1 otherwise. We generated 100

samples and then contaminated the data by randomly flipping the labels of 15% of

the instances.

Simulation 2: The setting was the same as Simulation 1 except that we contam-

inated the data by randomly flipping the labels of 25% of the instances.

Simulation 3: The setting was the same as Simulation 1 except that we con-

taminated the data by randomly flipping the labels of 80% of the instances whose

|x2| ≥ 0.7.

Simulation 4: Two predictors were uniformly generated over {(x1, x2) : |x1| +

|x2| ≤ 2}. Conditionally on X1 = x1 and X2 = x2, the class label y took 1 with

probability e3(x1+x2)/(1 + e3(x1+x2)) and −1 otherwise.

We first demonstrate the mechanism of our proposed method for one repetition

of Simulation 1. As shown in the upper left plot of Figure 2.5.2, exponential loss and

LUMs with γ = 0.5 or 1 are potentially good classifiers in Stage 1; they happen to

have the same K-CV error. Their corresponding DBIs are compared in the second

stage. As shown in the upper right plot of Figure 2.5.2, LUM with γ = 0.5 gives

the minimal DBI and is selected as the final classifier. In this example, although

exponential loss also gives the minimal K-CV error, its decision boundary is unstable

compared to that of LUM with γ = 0.5. This shows that the K-CV estimate itself is

not sufficient for classifier comparison, since it ignores the variation in the classifier.

To show that our DBI estimation is reasonable, we display the perturbed decision

boundaries for these three potentially good classifiers on the bottom of Figure 2.5.2.

The relationship among their instabilities is precisely captured by our DBI estimate:

compared with the exponential loss and LUM with γ = 1, LUM with γ = 0.5 is more

stable.

We report the averaged test errors and averaged test DBIs of the classifier selected

from our method as well as two alternative approaches, see Table 2.1. In all four sim-

ulated examples, our “cv+dbi” achieves the smallest test errors, while the difference
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Figure 2.4. The K-CV error, the DBI estimate, and the perturbed
decision boundaries in Simulation 1 with flipping rate 15%. The min-
imal K-CV error and minimal DBI estimate are indicated with red
triangles. The labels Ls, Exp, Logit, LUM0, LUM0.5, and LUM1 re-
fer to least squares loss, exponential loss, logistic loss, and LUM loss
with index γ = 0, 0.5, 1, respectively.

among test errors of all algorithms is generally not significant. This phenomenon

of indistinguishable test errors agrees with the fact that all methods are the same

during the first stage and those left from Stage 1 are all potentially good in terms of

classification accuracy. However, our “cv+dbi” is able to choose the classifiers with

minimal test DBIs in all simulations and the improvements over other algorithms

are significant. Overall, our method is able to choose the classifier with outstanding

performance in both classification accuracy and stability.

2.5.3 Real Examples

In this subsection, we compare our method with the alternatives on two real

datasets in the UCI Machine Learning Repository [46].
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Table 2.1.
The averaged test errors and averaged test DBIs (multiplied by 100)
of all methods: “cv+varcv” is the two-stage approach which selects
the loss with the minimal variance of the K-CV error in Stage 2;
“cv+be” is the two-stage approach which in Stage 2 selects the loss
with the minimal classification stability defined in Bousquet and Elis-
seeff (2002); “cv+dbi” is our method. The smallest value in each case
is given in bold. Standard errors are given in subscript.

Simulations cv+varcv cv+be cv+dbi

Sim 1 Error 0.1910.002 0.1940.002 0.1900.002

DBI 0.1390.043 0.1350.019 0.0810.002

Sim 2 Error 0.2960.002 0.3030.003 0.2950.002

DBI 0.2910.044 0.3180.036 0.2290.012

Sim 3 Error 0.2180.006 0.2340.006 0.2090.004

DBI 0.1240.008 0.2910.037 0.1070.003

Sim 4 Error 0.1200.001 0.1210.001 0.1190.001

DBI 0.8840.207 0.4140.106 0.2350.038

The first data set is the liver disorders data set (liver) which consists of 345

samples with 6 variables of blood test measurements. The class label splits the data

into 2 classes with sizes 145 and 200. The second data set is the breast cancer

data set (breast) which consists of 683 samples after removing missing values [47].

Each sample has 10 experimental measurement variables and one binary class label

indicating whether the sample is benign or malignant. These 683 samples arrived

periodically as Dr. Wolberg reported his clinical cases. In total, there are 8 groups of

samples which reflect the chronological order of the data. It is expected that a good

classification procedure should generate a classifier that is stable across these groups

of samples.

For each dataset, we randomly split the data into 2/3 training samples and 1/3

testing samples, and reported the averaged test errors and averaged test DBIs based
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on all classifier selection algorithms over 50 replications, see Table 2.2. Compared with

the alternatives, our “cv+dbi” method obtains significant improvements in DBIs and

simultaneously attains minimal test errors in both real data sets. This indicates that

the proposed method could serve as a practical tool for selecting a most accurate and

stable classifier.

Table 2.2.
The averaged test errors and averaged test DBIs of all methods in real
example. The smallest value in each case is given in bold. Standard
errors are given in subscript.

Data cv+varcv cv+be cv+dbi

Liver Error 0.3310.006 0.3350.006 0.3270.006

DBI 0.1400.013 0.1570.024 0.1130.012

Breast Error 0.0380.002 0.0380.002 0.0380.002

DBI 0.3880.066 0.1520.028 0.1240.023

2.6 Nonlinear Extension

The extension of our two-stage algorithm to nonlinear classifiers contains two

aspects: (1) asymptotic normality of the K-CV error in Stage 1; (2) the application

of DBI in Stage 2. The former is still valid due to [48], and the latter is feasible

by mapping the nonlinear decision boundaries to a higher dimensional space where

the projected decision boundaries are linear. Details of these two extensions are as

follows.

Extension of Stage 1: We first modify several key concepts. The loss L : X ×

Y×R→ [0,∞) is convex if it is convex in its third argument for every (x, y) ∈ X ×Y .

A reproducing kernel Hilbert space (RKHS) H is a space of functions f : X → R which

is generated by a kernel k : X × X → R. Here the kernel k could be a linear kernel,

a Gaussian RBF kernel, or a polynomial kernel.
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Given i.i.d training samples Dn = {(xi, yi); i = 1, . . . , n} drawn from P = (X, Y ),

the empirical function fL,Dn,λn solves

min
f∈H

1

n

n∑
i=1

L(xi, yi, f(xi)) + λn‖f‖2
H.

In the nonparametric case, the optimization problem of minimizing population

risk is ill-posed because a solution is not necessarily unique, and small changes in P

may have large effects on the solution. Therefore it is common to impose a bound

on the complexity of the predictor and estimate a smoother approximation to the

population version [48]. For a fixed λ0 ∈ (0,∞), we denote fL,P,λ0 as the population

function which solves

min
f∈H

∫
L(x, y, f(x))P (d(x, y)) + λ0‖f‖2

H.

The following conditions are assumed in [48] to prove the asymptotic normality

of the estimated kernel decision function.

(N1) The loss L is a convex, P-square-integrable Nemitski loss function of order

p ∈ [1,∞). That is, there is a P-square-integrable function b : X × Y → R such that

|L(x, y, t)| ≤ b(x, y) + |t|p for every (x, y, t) ∈ X × Y × R.

(N2) The partial derivatives L
′
(x, y, t) := ∂L

∂t
(x, y, t) and L

′′
(x, y, t) := ∂2L

∂2t
(x, y, t)

exist for every (x, y, t) ∈ X × Y × R and are continuous.

(N3) For every a ∈ (0,∞), there is b
′
a ∈ L2(P ) and b

′′
a ∈ [0,∞) such that, for every

(x, y) ∈ X × Y , supt∈[−a,a] |L
′
(x, y, t)| ≤ b

′
a(x, y) and supt∈[−a,a] |L

′′
(x, y, t)| ≤ b

′′
a.

Proposition 1 (Theorem 3.1, [48]) Under Assumptions (N1)-(N3) and λn = λ0 +

o(n−1/2), for every λ0 ∈ (0,∞), there is a tight, Borel-measurable Gaussian process

H : Ω→ H such that
√
n
(
fL,Dn,λn − fL,P,λ0

)
→ H.

Remark 2 Among the loss functions considered in this paper, the least squares, ex-

ponential, and logistic losses all satisfy the assumptions (N1)-(N3), while the LUM

loss is not differentiable and does not satisfy Assumption (N2). However, [48] showed

that any Lipschitz-continuous loss function (e.g. LUM loss) can always be modified as
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a differentiable ε−version of the loss function such that the assumptions (N1)-(N3)

are satisfied; see Remark 3.5 in [48].

In the nonlinear case, the GE D0L and the K-CV error D̂L are modified accord-

ingly. The asymptotic normality of WL =
√
n(D̂L − D0L) follows from Proposition

1, Corollary 3.3 in [49], and a slight modification of the proof of our Theorem 1.

Then a perturbation-based resampling approach can be constructed analogously to

Algorithm 1.

Extension of Stage 2: The concept of DBI is defined for linear decision bound-

aries. In order to measure the instability of nonlinear decision boundaries, we can map

the nonlinear decision boundaries to a higher dimensional space where the projected

decision boundaries are linear.
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Figure 2.5. The nonlinear perturbed decision boundaries for the least
squares loss (left) and SVM (right) in the bivariate normal example
with unequal variances.

Here we illustrate the estimation procedure via a bivariate normal example with

sample size n = 400. Assume the underlying distributions of the two classes are

f1 = N((−1,−1)T , I2) and f2 = N((1, 1)T , 2I2) with equal prior probability. We

map the input {x1, x2} to the polynomial basis {x1, x2, x1x2, x
2
1, x

2
2} and fit the linear
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large-margin classifiers using the expanded inputs. The instability of the original

nonlinear decision boundary boils down to the instability of the linear boundaries

in the expanded space. Figure 2.6 demonstrates 100 nonlinear perturbed decision

boundaries for the least squares and SVM losses, where the former is visually more

stable than the latter. Indeed, their corresponding DBI estimations in the expanded

space capture this relationship in that the estimated DBI of the former is 0.017 and

that of the latter is 0.354. �

2.7 Technical Proofs

In the section, we provide proofs of all theorems, calculation of transformation

matrix, and detailed estimation of DBI.

2.7.1 Proof of Theorem 2.2.1:

Before we prove Theorem 2.2.1, we show an intermediate result in Lemma 2.

Lemma 2 Suppose Assumptions (L1)–(L3) hold and λn = o(n−1/2). Then we have

θ̂L
P−→ θ0L and D̂L

P−→ D0L as n→∞.

To show θ̂L → θ0L, we apply Theorem 5.7 of van der Vaart (1998). Firstly,

we show that, uniformly in θ, the empirical risk OnL(θ) converges to the true risk

RL(θ) in probability. Assumption (L3) guarantees that the loss function L(yf(x;θ))

is convex in θ, and it is easy to see that OnL(θ) converges to RL(θ) for each θ. Then

we have supθ |OnL(θ)−RL(θ)| → 0 in probability by uniform convergence Theorem

for convex functions in Pollard (1991). Secondly, according to assumption (L2), we

have that RL(θ) has a unique minimizer θ0L. Therefore, we know that θ̂L converges

to θ0L in probability. The consistency of D̂(θ̂L) can be obtained by the uniform law

of large numbers. According to Assumption (L1), p(x) is continuously differentiable,

and hence |y − sign{f(x;θ)}| = |y − sign{x̃Tθ}| is continuous in each θ for almost

all x. This together with |y − sign{f(x;θ)}| ≤ 2 leads to uniform convergence
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supθ |D̂(θ) − 1
2
E|y0 − sign{f(x0;θ)}|| → 0. Therefore, we have D̂(θ̂L) → D0L in

probability. This concludes the proof of Lemma 2. �

Proof of Theorem 2.2.1:

We next prove (2.4) in three steps. Let Mi(θ0L) = OθL(Yif(X i;θ))|θ=θ0L . In step

1, we show that

√
n(θ̂L − θ0L) = −n−1/2H(θ0L)−1

n∑
i=1

Mi(θ0L) + oP (1) (2.23)

by applying Theorem 2.1 in Hjort and Pollard (1993). Denote Z = (XT , Y ) and

∆θ = (∆b,∆wT )T . Taylor expansion leads to

L(Y f(X;θ0L + ∆θ))− L(Y f(X;θ0L)) = M(θ0L)T∆θ +R(Z,∆θ), (2.24)

where

M(θ0L) = OθL(Y f(X;θ))
∣∣∣
θ=θ0L

R(Z,∆θ) =
(∆θ)T

(
O2
θL(Y f(X;θ))

∣∣∣
θ=θ0L

)
∆θ

2
+ o(‖∆θ‖2).

According to Assumption (L1), it is easy to check that E(M(θ0L)) = OθRL(θ)|θ=θ0L =

0, and

E[R(Z,∆θ)] =
1

2
(∆θ)TH(θ0L)(∆θ) + o(‖∆θ‖2); E[R2(Z,∆θ)] = o(‖∆θ‖3).

Denote s = (bs,w
T
s )T , Zi = (XT

i , Yi), and

An(s) =
n∑
i=1

{
L(Yif(X i;θ0L + s/

√
n))− L(Yif(X i;θ0L))

}
+ λn(w0L +ws/

√
n)T (w0L +ws/

√
n)− λnwT

0Lw0L.

Note that An(s) is minimized when s =
√
n(θ̂L − θ0L) and nE[R(Z, s/

√
n)] =

1
2
sTH(θ0L)s+ o(‖s‖2). Based on the above Taylor expansion (2.24), we have

An(s) =
n∑
i=1

{
Mi(θ0L)T s/

√
n+R(Zi, s/

√
n)− ER(Zi, s/

√
n)
}

+ nE[R(Z, s/
√
n)]

+ λnw
T
sws

= UT
n s+

1

2
sTH(θ0L)s+ o(‖s‖2) +

n∑
i=1

{
R(Zi, s/

√
n)− ER(Zi, s/

√
n)
}

+ λnw
T
sws,
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where Un = n−1/2
∑n

i=1Mi(θ0L). Note that
∑n

i=1{R(Zi, s/
√
n)−ER(Zi, s/

√
n)} → 0,

and λnw
T
sws → 0 since λn → 0 and ws is bounded. In addition, Hessian matrix

H(θ0L) is positive definite due to Assumption (L5). Therefore, we can conclude that

(2.23) holds by Theorem 2.1 in Hjort and Pollard (1993).

In step 2, we show that WL =
√
n{D̂(θ̂L) − D0L} → N(0, E(ψ2

1)). As shown in

Jiang et al. (2008), the class of functions Gθ(δ) =
{
|Y −sign{f(X;θ)}| : ‖θ−θ0L‖ ≤

δ
}

is a P-Donsker class for any fixed 0 < δ < ∞. This together with (2.23) and

consistency of θ̂L implies that

√
n
(
D̂(θ̂L)−D0L

)
=
√
n
(
D̂(θ̂L)− D̂(θ0L)

)
+
√
n
(
D̂(θ0L)−D0L

)
d
=
√
nḋ(θ0L)T (θ̂L − θ0L) +

√
n
(
D̂(θ0L)−D0L

)
d
= n−1/2

n∑
i=1

{1

2
|Yi − sign{f(X i;θ0L)}| −D0L − ḋ(θ0L)TH(θ0L)−1M1(θ0L)

}
= n−1/2

n∑
i=1

ψi
d−→ N(0, E(ψ2

1)),

where “
d
= ” means asymptotical equivalence in the distributional sense.

In step 3, the distribution of WL = n1/2{D̂L −D0L} is asymptotically equivalent

to that of WL as shown in Theorem 3 in Jiang et al. (2008). This concludes the proof

of Theorem 2.2.1. �

2.7.2 Proof of Theorem 2.2.2

According to Appendix D in Jiang et al. (2008), we have

W ∗
1

d
= n−1/2

n∑
i=1

ψi1(Gi − 1) and W ∗
2

d
= n−1/2

n∑
i=1

ψi2(Gi − 1),

where ψij = 1
2
|Yi − sign{f(X i;θ0j)}| − D0j − ḋ(θ0j)

TH(θ0j)
−1Mi(θ0j), for j = 1, 2.

Recall that “
d
= ” means the distributional equivalence. As shown in Jiang et al.
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(2008), conditional on the data, W ∗
j converges to a normal with mean 0 and variance

n−1
∑n

i=1 ψ
2
ij for j = 1, 2. Note that

W ∗
2 −W ∗

1
d
= n−1/2

n∑
i=1

(ψi2 − ψi1)(Gi − 1).

Here, (ψi2 − ψi1)’s, i = 1, . . . , n, are i.i.d random vectors with E(ψi2 − ψi1) = 0 and

E|ψi2 − ψi1|2 < ∞. Independent of (ψi2 − ψi1), (Gi − 1)’s are i.i.d random variables

with mean 0 and variance 1. Since (ψi2−ψi1) depends on the sample (xi, yi), Lemma

2.9.5 in van der Vaart and Wellner (1996) implies that, conditional on the data,

n−1/2

n∑
i=1

(ψi2 − ψi1)(Gi − 1)
d

=⇒ N(0, V ar(ψ12 − ψ11)). (2.25)

Next, as shown in Theorem 2.2.1, W1
d
= n−1/2

∑n
i=1 ψi1 and W2

d
= n−1/2

∑n
i=1 ψi2,

therefore,

W2 −W1
d
= n−1/2

n∑
i=1

(ψi2 − ψi1)
d−→ N(0, V ar(ψ12 − ψ11)).

This together with (2.25) and the asymptotic equivalence of WL andWL (Jiang et al.

2008) lead to the asymptotic equivalence between W∆12 and W ∗
∆12

, which concludes

the proof. �

2.7.3 Calculation of the Transformation Matrix in Section 2.2.2

Given a d dimensional hyperplane f(x;θ) = b + w1x1 + · · · + wdxd = 0, we

aim to find a transformation matrix R ∈ Rd×d such that the transformed hyperplane

f(x;θ†) = b†+w†1x1+· · ·+w†dxd = 0 is parallel to X1, . . . ,Xd−1, where (w†1, · · · , w
†
d)
T =

R(w1, · · · , wd)T and b† = b. Here, we implicitly assume that wd 6= 0.

We construct a class of linearly independent vectors spanning the hyperplane:

1

0
...

0

−w1

wd





0

1
...

0

−w2

wd

 · · ·



0

0
...

1

−wd−1

wd


.
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Denote these vectors as v1, v2,...,vd−1. Then, by Gram-Schmidt process, we can

produce the following orthogonal vectors v̄1, v̄2,..., v̄d−1:

v̄1 = v1,

v̄2 = v2 − <v2,v̄1>
<v̄1,v̄1>

v̄1,

v̄d−1 = vd−1 − <vd−1,v̄1>

<v̄1,v̄1>
v̄1 − · · · − <vd−1,v̄d−2>

<v̄d−2,v̄d−2>
v̄d−2,

where the inner product < u, v >=
∑d

i=1 uivi for u = (u1, . . . , ud) and v = (v1, . . . , vd).

Denote v̄d = [w1, · · · , wd]T , which is orthogonal to every v̄i, i = 1, · · · , d − 1 by the

above construction. In the end, we normalize ui = v̄i‖v̄i‖−1 for i = 1, · · · , d, and

define the orthogonal transformation matrix R as [u1, . . . , ud]
T . By some elementary

calculation, we can verify that that w†i = 0 for i = 1, · · · , d − 1 but w†d 6= 0 under

the above construction. Therefore, the transformed hyperplane f(x;θ†) is parallel to

X1, . . . ,Xd−1. �

2.7.4 Approximation of DBI

We propose an approximate version of DBI, i.e., (2.8), which can be easily esti-

mated in practice.

According to (2.7), we can calculate DBI(S(X; θ̂L)) as

E
[
X̃
†T
(−d)V ar

(
η̂†∗L |X

†
(−d)

)
X̃
†
(−d)

]
, (2.26)

where X̃
†
(−d) = (1,X†T(−d))

T and η̂†∗L =
(
− b̂†∗L /ŵ

†∗
L,d,−ŵ

†∗
L,1/ŵ

†∗
L,d . . . ,−ŵ

†∗
L,d−1/ŵ

†∗
L,d

)
.

To further simplify (2.26), we need the following theorem as an intermediate step.

Theorem 2.7.1 Suppose that Assumptions (L1)–(L5) hold and λn = o(n−1/2). We

have, as n→∞,

√
n(θ̂L − θ0L)

d−→ N(0,Σ0L), (2.27)

√
n(θ̂

∗
L − θ̂L)

d
=⇒ N(0,Σ0L) conditional on Dn, (2.28)



36

where Σ0L = H(θ0L)−1G(θ0L)H(θ0L)−1. After data transformation, we have, as

n→∞,

√
n(θ̂

†
L − θ

†
0L)

d−→ N(0,Σ†0L), (2.29)

√
n(θ̂

†∗
L − θ̂

†
L)

d
=⇒ N(0,Σ†0L) conditional on D†n, (2.30)

where θ†0L = (b0L,w
T
0LR

T
L)T and

Σ†0L =

 Σb Σb,wR
T
L

RLΣw,b RLΣwR
T
L

 if we partition Σ0L as

 Σb Σb,w

Σw,b Σw

 .

We omit the proof of Theorem 2.7.1 since (2.27) and (2.28) directly follow from (2.23)

and Appendix D in Jiang et al. (2008), and (2.29) and (2.30) follow from the Delta

method.

Let η̂†L =
(
− b̂†L/ŵ

†
L,d,−ŵ

†
L,1/ŵ

†
L,d . . . ,−ŵ

†
L,d−1/ŵ

†
L,d

)
. According to (2.29) and

(2.30), we know that V ar(η̂†∗L |X
†
(−d)) is a consistent estimate of V ar(η̂†L) because η̂†∗L

and η̂†L can be written as the same function of θ̂
†∗
L and θ̂

†
L, respectively. Hence, we

claim that

DBI
(
S(X; θ̂L)

)
≈ E

(
X̃
†T
(−d)V ar(η̂

†
L)X̃

†
(−d)

)
.

Furthermore, we can approximate V ar(η̂†L) by (w†L,d)
−2[n−1Σ†0L,(−d)], where n−1Σ†0L,(−d)

is the asymptotic variance of the first d dimensions of θ̂
†
L, since ŵ†L,d asymptotically

follows a normal distribution with mean w†L,d and variance converging to 0 as n grows

(Hinkley, 1969). Finally, we get the desirable approximation (2.8) for DBI. �

2.7.5 Proof of Corollary 1

It suffices to show that (A1) and (L1) imply Assumptions (L2)-(L5).

(L2). We first show that the minimizer θ0γ exists for each fixed γ. It is easy to

see that Rγ(θ) is continuous w.r.t. θ. We next show that, for any large enough M ,

the closed set S(M) =
{
θ ∈ Rd : Rγ(θ) ≤ M

}
is bounded. When yf(x,θ) < γ,

we need to show S(M) =
{
θ ∈ Rd : E[1 − Y f(X;θ)] ≤ M

}
is contained in a

box around the origin. Denote ej as the vector with one in the j-th component
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and zero otherwise. Motivated by Rocha et al. (2009), we can show that, for any

M , there exists a αj,M such that any θ satisfying | < θ, ej > | > αj,M leads to

E[(1−Y f(X;θ)I(Y f(X;θ)<γ))] > M . Similarly, when yf(x,θ) ≥ γ, S(M) is contained

in a sphere around the origin, that is, for any M , there exists a σ such that any θ

satisfying | < θ,θ > | > σ leads to E[ (1−γ)2

Y f(X;θ)−2γ+1
I(Y f(X;θ)≥γ))] > M . These imply

the existence of θ0γ. The uniqueness of θ0γ is implied by the positive definiteness of

Hessian matrix as verified in (L5) below.

(L3). The loss function Lγ(yf(x;θ)) is convex by noting that two segments of

Lγ(yf(x;θ)) are convex, and the sum of convex functions is convex.

(L4). The loss function Lγ(yf(x;θ)) is not differentiable only on the set {x :

x̃Tθ = γ or x̃Tθ = −γ}, which is assumed to be a zero probability event. Therefore,

with probability one, it is differentiable with

OθLγ(yf(x;θ)) = −x̃yI(yx̃T θ<γ) −
(1− γ)2x̃y

(yx̃Tθ − 2γ + 1)2
I(yx̃T θ≥γ),

and hence

G(θ0γ) = E
[
OθLγ(Y f(X;θ))OθLγ(Y f(X;θ))T |θ=θ0γ

]
= E

{
X̃X̃

T
Y 2I

(Y X̃
T
θ0γ<γ)

+
(1− γ)4X̃X̃

T
Y 2

(Y X̃
T
θ0γ − 2γ + 1)4

I
(Y X̃

T
θ0γ≥γ)

}
= E

{
X̃X̃

T
[
p(X)A(X,θ0γ) + (1− p(X))B(X,θ0γ)

]}
, (2.31)

where A(X,θ0γ) and B(X,θ0γ) are defined as

A(X,θ0γ) = I
(X̃

T
θ0γ<γ)

+
(1− γ)4

(X̃
T
θ0γ − 2γ + 1)4

I
(X̃

T
θ0γ≥γ)

;

B(X,θ0γ) = I
(−X̃T

θ0γ<γ)
+

(1− γ)4

(X̃
T
θ0γ + 2γ − 1)4

I
(−X̃T

θ0γ≥γ)
.

Obviously, |A(X,θ0γ)| and |B(X,θ0γ)| are both bounded by one. Therefore, G(θ0γ) <

∞ based on the moment condition of X.
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(L5). We prove it in three steps. First, we show the risk Rγ(θ) is bounded. For

each fixed γ ∈ [0, 1],

Rγ(θ) ≤ E
∣∣∣Lγ(Y f(X;θ))

∣∣∣
= E

∣∣∣(1− Y X̃T
θ)I

(Y X̃
T
θ<γ)

+
(1− γ)2

Y X̃
T
θ − 2γ + 1

I
(Y X̃

T
θ≥γ)

∣∣∣
≤ E

∣∣∣(1− Y X̃T
θ)I

(Y X̃
T
θ<γ)

∣∣∣+ E
∣∣∣ (1− γ)2

Y X̃
T
θ − 2γ + 1

I
(Y X̃

T
θ≥γ)

∣∣∣
≤ E

∣∣∣(1− Y X̃T
θ)I

(Y X̃
T
θ<1)

∣∣∣+ |1− γ| <∞, (2.32)

where the first term in (2.32) was shown to be bounded in Rocha et al. (2009).

Next, we derive the form of Hessian matrix. The moment assumption of x and the

inequality (yx̃Tθ−2γ+1)2 ≤ (1−γ)2 lead to E|OθLγ(Y f(X;θ))| ≤ E|−X̃Y |+E|−

X̃Y | ≤ 2E|X̃| <∞. Then, dominated convergence theorem implies that OθRγ(θ) =

E[OθLγ(Y f(X;θ))]. Hence, the Hessian matrix equals OθE[OθLγ(Y f(X;θ))]. We

next derive the form of E[OθLγ(Y f(X;θ))]. Note that

E[OθLγ(Y f(X;θ))]

= E
[
− X̃Y I{Y X̃T

θ<γ} −
(1− γ)2X̃Y

(Y X̃
T
θ − 2γ + 1)2

I{Y X̃T
θ≥γ}

]
= E

{
I{Y=1}

[
− X̃I{X̃T

θ<γ} −
(1− γ)2X̃

(X̃
T
θ − 2γ + 1)2

I{X̃T
θ≥γ}

]
+ I{Y=−1}

[
X̃I{−X̃T

θ<γ} +
(1− γ)2X̃

(X̃
T
θ + 2γ − 1)2

I{−X̃T
θ≥γ}

]}
= E

{
p(X)

[
− X̃I{X̃T

θ<γ} −
(1− γ)2X̃

(X̃
T
θ − 2γ + 1)2

I{X̃T
θ≥γ}

]}
+ E

{
(1− p(X))

[
X̃I{−X̃T

θ<γ} +
(1− γ)2X̃

(X̃
T
θ + 2γ − 1)2

I{−X̃T
θ≥γ}

]}
= E1(θ) + E2(θ).

After tedious algebra, we can show

OθE1(θ)|θ=θ0γ = E
{
X̃X̃

T
p(X)C(X,θ0γ)

}
,

OθE2(θ)|θ=θ0γ = E
{
X̃X̃

T
(1− p(X))D(X,θ0γ)

}
,
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where

C(X,θ0γ) = δ(γ − X̃T
θ0γ)−

(1− γ)2δ(X̃
T
θ0γ − γ)

(X̃
T
θ0γ − 2γ + 1)2

+
2(1− γ)2I

(X̃
T
θ0γ≥γ)

(X̃
T
θ0γ − 2γ + 1)3

,

D(X,θ0γ) = δ(γ + X̃
T
θ0γ)−

(1− γ)2δ(X̃
T
θ0γ + γ)

(X̃
T
θ0γ + 2γ − 1)2

−
2(1− γ)2I

(−X̃T
θ0γ≥γ)

(X̃
T
θ0γ + 2γ − 1)3

,

and δ(·) is the Dirac delta function. Hence, we can write the Hessian matrix as

H(θ0γ) = E
{
X̃X̃

T
[
p(X)C(X,θ0γ) + (1− p(X))D(X,θ0γ)

]}
. (2.33)

Finally, we establish the positive definiteness of H(θ0γ). We write H(θ0γ) =

R1(θ0γ) +R2(θ0γ) with

R1(θ0γ) = E

{
X̃X̃

T
[
p(X)δ(γ − X̃T

θ0γ) + (1− p(X))δ(γ + X̃
T
θ0γ)

]}
,

R2(θ0γ) = E

{
X̃X̃

T
[
(1− p(X))

( δ(γ + X̃
T
θ0γ)

(X̃
T
θ0γ + 2γ − 1)2

−
2I

(−X̃T
θ0γ≥γ)

(X̃
T
θ0γ + 2γ − 1)3

)
− p(X)

( δ(X̃
T
θ0γ − γ)

(X̃
T
θ0γ − 2γ + 1)2

−
2I

(X̃
T
θ0γ≤γ)

(X̃
T
θ0γ − 2γ + 1)3

)]}
(1− γ)2.

Next we show the positive definiteness of R1(θ0γ). Let fx be the density of x̃Tθ0γ.

According to Lemma 9 in Rocha et al. (2009), Assumption (L1) implies that fx(γ) >

0, fx(−γ) > 0, P (Y = 1|X̃T
θ0γ = γ) > 0, and P (Y = −1|X̃T

θ0γ = −γ) > 0. Note

that R1(θ0γ) can be rewritten as

R1(θ0γ) = E
[
X̃X̃

T |Y = 1, X̃
T
θ0γ = γ

]
P (Y = 1|X̃T

θ0γ = γ)fX(γ)

+ E
[
X̃X̃

T |Y = −1, X̃
T
θ0γ = −γ

]
P (Y = −1|X̃T

θ0γ = −γ)fX(−γ).

In order to show R1(θ0γ) is positive definite, it remains to show that E
[
X̃X̃

T |Y =

1, X̃
T
θ0γ = γ

]
or E

[
X̃X̃

T |Y = −1, X̃
T
θ0γ = −γ

]
is strictly positive definite. Rocha

et al. (2009) showed that

E
[
X̃X̃

T |Y, X̃T
θ0γ = γ

]
= E

[
X̃X̃

T |Y,XTvw0γ =
γ − b0γ

‖w0γ‖

]
�

(γ − b0γ

‖w0γ‖

)2

(vw0γv
T
w0γ

) + V ar
(
X|Y,XTvw0γ =

γ − b0γ

‖w0γ‖

)
, (2.34)
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where S1 � S2 means S1 − S2 is positive semi-definite, and vw0γ = w0γ

‖w0γ‖ . By as-

sumption (A1), V ar(X|Y ) is non-singular, and hence V ar
(
X|Y,XTvw0γ = γ−b0γ

‖w0γ‖

)
has rank (d − 1) . Therefore, the right hand side of (2.34) is strictly positive def-

inite when γ 6= b0γ. Similarly, E
[
X̃X̃

T |Y, X̃T
θ0γ = −γ

]
is strictly positive def-

inite when γ 6= −b0γ. Therefore, either E
[
X̃X̃

T |Y = 1,XTw0γ + b0γ = γ
]

or

E
[
X̃X̃

T |Y = −1,XTw0γ + b0γ = −γ
]

will be strictly positive definite at θ0γ. This

leads to the positive definiteness of R1(θ0γ).

In addition, similar argument implies that R2(θ0γ) is positive definite at θ0γ.

This is due to the fact that (X̃
T
θ0γ + 2γ − 1)3 < 0 when X̃

T
θ0γ + γ ≤ 0, and

(X̃
T
θ0γ − 2γ + 1)3 > 0 when X̃

T
θ0γ − γ ≥ 0. Therefore, the Hessian matrix H(θ0γ)

is strictly positive definite for any γ ∈ [0, 1]. This concludes Corollary 1. �

2.7.6 Proof of Corollary 2

Following the proof of Theorem 2.2.1, we only need to show that

√
n(θ̂γ − θ0γ) = −n−1/2H(θ0γ)

−1

n∑
i=1

Mi(θ0γ) + oP (1),

where

Mi(θ0γ) = −YiX̃ iI{Yif(Xi;θ0γ)<γ} −
(1− γ)2YiX̃ iI{Yif(Xi;θ0γ)≥γ}(
Yif(X i;θ0γ)− 2γ + 1

)2 .

Similarly, we denote Z = (XT , Y ) and t = (bt,w
T
t )T , and write the difference of the

loss function according to their definitions,

Lγ(Y f(X;θ0γ + t))− Lγ(Y f(X;θ0γ))

= (1− Y X̃T
(θ0γ + t))I{Y X̃T

(θ0γ+t)<γ} +
(1− γ)2

Y X̃
T

(θ0γ + t)− 2γ + 1
I{Y X̃T

(θ0γ+t)≥γ}

− (1− Y X̃T
θ0γ)I{Y X̃T

θ0γ<γ}
− (1− γ)2

Y X̃
T
θ0γ − 2γ + 1

I{Y X̃T
θ0γ≥γ}

= M(θ0γ)
T t+R(Z, t).
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Here we reorganize the complicated terms into two parts M(θ0γ)
T t which is linear in

t and R(Z, t) which contains higher-order functions of t. In particular, we denote

M(θ0γ) = −Y X̃T
I{Y f(X̃

T
;θ0γ)<γ} −

(1− γ)2Y X̃
T

(Y f(X̃
T

;θ0γ)− 2γ + 1)2
I{Y f(X̃

T
;θ0γ)≥γ};

R(Z, t) =
(

1− Y f(X;θ0γ + t)
)[
I{Y f(X̃

T
;θ0γ+t)<γ} − I{Y f(X̃

T
;θ0γ)<γ}

]
+

(1− γ)2I{Y f(X̃
T

;θ0γ+t)≥γ}

Y f(X̃
T

;θ0γ + t)− 2γ + 1

−

[
(1− γ)2

Y f(X̃
T

;θ0γ)− 2γ + 1
− (1− γ)2Y f(X, t)

Y f(X̃
T

;θ0γ)− 2γ + 1

]
I{Y f(X̃

T
;θ0γ)≥γ}.

It is easy to check that E(M(θ0γ)) = OθRγ(θ)|θ=θ0γ ,

E[R(Z, t)] =
1

2
tTH(θ0γ)t+ o(‖t‖2) and E[R2(Z, t)] = O(‖t‖3).

The remaining arguments follow exactly from the proof of Theorem 2.2.1. �

2.7.7 Proof of Lemma 1

In the proof of Corollary 2, we showed that for any γ ∈ [0, 1],

√
n(θ̂γ − θ0γ) = −n−1/2H(θ0γ)

−1

n∑
i=1

Mi(θ0γ) + oP (1); (2.35)

√
n(D̂γ −D0γ) = n−1/2

n∑
i=1

ψiγ + oP (1), (2.36)

where ψiγ = 1
2
|Yi − sign{f(X i;θ0γ)}| −D0γ − ḋ(θ0γ)

TH(θ0γ)
−1Mi(θ0γ). In addition,

(2.35) and (2.36) converge to normal distributions.

Next, we show that the right hand sides of (2.35) and (2.36) are uniformly bounded

over γ ∈ [0, 1]. Denoting the L1 norm as ‖ · ‖1, we have

sup
γ∈[0,1]

∥∥∥Mi(θ0γ)
∥∥∥

1

≤ sup
γ∈[0,1]

∥∥∥− YiX̃ iI(Yif(Xi;θ0γ)<γ)

∥∥∥
1

+ sup
γ∈[0,1]

∥∥∥∥∥∥∥
(1− γ)2YiX̃ iI(Yif(Xi;θ0γ)≥γ)(
Yif(X i;θ0γ)− 2γ + 1

)2

∥∥∥∥∥∥∥
1

≤ 2
∥∥∥X̃ i

∥∥∥
1
. (2.37)
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In addition, λmax(H(θ0γ)) ≤ c2 in Assumption (B1) implies that each component

of the Hessian matrix is uniformly bounded since ‖H(θ0γ)‖max ≤ ‖H(θ0γ)‖2 =

λmax(H(θ0γ)). This combining with (2.37) and Central Limit Theorem leads to

sup
γ∈[0,1]

∥∥∥√n(θ̂γ − θ0γ)
∥∥∥

1
= OP (1). (2.38)

Similarly,

sup
γ∈[0,1]

∣∣∣ψiγ∣∣∣
≤ sup

γ∈[0,1]

1

2
|Yi − sign(X̃

T

i θ0γ)|+ sup
γ∈[0,1]

|D0γ|+ sup
γ∈[0,1]

∣∣∣ḋ(θ0γ)
TH(θ0γ)

−1Mi(θ0γ)
∣∣∣

≤ 1 + 1 + sup
γ∈[0,1]

∥∥∥ḋ(θ0γ)
∥∥∥

1
sup
γ∈[0,1]

∥∥∥H(θ0γ)
−1
∥∥∥

max
sup
γ∈[0,1]

∥∥∥Mi(θ0γ)
∥∥∥

1

≤ 2 + c3‖X̃ i‖1, (2.39)

where c3 in (2.39) is a constant according to ‖H(θ0γ)
−1‖max ≤ ‖H(θ0γ)

−1‖2 =

1/λmin(H(θ0γ)) ≤ 1/c1 from Assumption (B1), and

‖ḋ(θ0γ)‖1 ≤ 4
∥∥∥OE(I(Yif(Xi;θ0γ)<0)

)∥∥∥
1
≤ 4δ(−YiθT0γX̃ i)‖X̃ i‖1 = 0 a.s.

with δ(z) = 0 for z 6= 0 and ∞ at z = 0. So (2.39) leads to

sup
γ∈[0,1]

√
n
∣∣∣D̂γ −D0γ

∣∣∣ = OP (1). (2.40)

In the end, the definitions of γ∗0 and γ̂∗0 imply that

D0γ∗0
−D0γ̂∗0

≤ 0 and D̂γ̂∗0 − D̂γ∗0 ≤ 0. (2.41)

Therefore, we have D0γ∗0
−D̂γ̂∗0 = D0γ∗0

−D0γ̂∗0
+D0γ̂∗0

−D̂γ̂∗0 ≤ D0γ̂∗0
−D̂γ̂∗0 = OP (n−1/2)

based on (2.40) and (2.41). Using similar arguments, we have D̂γ̂∗0−D0γ∗0
≤ OP (n−1/2).

The above discussions imply that
∣∣∣D̂γ̂∗0−D0γ∗0

∣∣∣ = OP (n−1/2). This concludes the proof

of Lemma 1. �

2.7.8 Proof of Theorem 2.4.1

Before we prove Theorem 2.4.1, we introduce two useful lemmas.
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Lemma 3 The generalization error D0γ = 1
2
E|Y0−sign{X̃T

0 θ̂γ}| is continuous w.r.t.

γ a.s.

Proof of Lemma 3: The discontinuity of sign function happens only at X̃
T

0 θ̂γ = 0,

which is assumed to have probability zero. Hence, it is sufficient to show θ̂γ is contin-

uous in γ by dominated convergence theorem. Recall that θ̂γ = arg minθ∈Rd+1 Onγ(θ)

with

Onγ(θ) =
1

n

n∑
i=1

Lγ

(
yi(w

Txi + b)
)

+
λnw

Tw

2
.

Note that Onγ(θ) is continuous w.r.t. γ due to the continuity of Lγ(u) w.r.t. γ.

Then, for any sequence γn → γ00 with γ00 ∈ [0, 1], continuous mapping theorem

implies that |Onγn(θ) − Onγ00(θ)| < δ for any δ > 0 when n is sufficiently large.

Denote θ̂γ00 = arg minθ Onγ00(θ) and G = {θ : ‖θ − θ̂γ00‖ ≤ ε}. For each fixed ε, we

construct

δ =
minθ∈Rd+1\G Onγ00(θ)−Onγ00(θ̂γ00)

2
.

Then we have

Onγ00(θ̂γ00) = min
θ∈Rd+1\G

Onγ00(θ)− 2δ

< min
θ∈Rd+1\G

Onγ00(θ) +Onγn(θ)−Onγ00(θ)− δ

≤ Onγn(θ)− δ,

which is true for any θ ∈ Rd+1. Therefore,

Onγ00(θ̂γ00) < min
θ∈Rd+1\G

Onγn(θ)− δ. (2.42)

On the other hand, |Onγn(θ)−Onγ00(θ)| < δ implies that Onγn(θ̂γ00)−Onγ00(θ̂γ00) < δ

and hence minθ∈Rd+1 Onγn(θ) < Onγ00(θ̂γ00) + δ. This combining with (2.42) leads to

min
θ∈Rd+1

Onγn(θ) < min
θ∈Rd+1\G

Onγn(θ).

Therefore, arg minθ∈Rd+1 Onγn(θ) ∈ G, and hence θ̂γ is continuous at γ00. Note that

ε can be made arbitrarily small and γ00 is an arbitrary element within [0, 1]. This

concludes Lemma 3. �
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The following Lemma 4 shows the (element-wise) asymptotic equivalence between

Λ0 and Λ̂0.

Lemma 4 Suppose that the assumptions in Lemma 1 hold. We have, as n→∞, (i)

for any γ̂ ∈ Λ̂0, there exists a γ ∈ Λ0 such that γ̂
P→ γ; (ii) for any γ ∈ Λ0, there

exists a γ̂ ∈ Λ̂0 satisfying γ̂
P→ γ.

Proof of Lemma 4: Our proof consists of two steps. In the first step, for any γ̂ ∈ Λ̂0

with γ̂
P→ γ, we have

D0γ −D0γ∗0
= (D0γ −D0γ̂) + (D0γ̂ − D̂γ̂) + (D̂γ̂ − D̂γ∗0 ) + (D̂γ∗0 −D0γ∗0

)

= I + II + III + IV.

Obviously, we have I = oP (1) according to continuous mapping theorem and Lemma

3, and II, IV = oP (1) due to (2.40). As for III, we have III ≤ D̂γ̂∗0 − D̂γ∗0 +

n−1/2φγ̂,γ̂∗0 ;α/2 ≤ oP (1) since γ̂ ∈ Λ̂0 defined in (2.16). The above discussions lead to the

conclusion that D0γ−D0γ∗0
≤ oP (1). Therefore, we have P (γ ∈ Λ0) ≥ P (D0γ−D0γ∗0

≤

0)→ 1.

In the second step, we apply the contradiction argument. Assume there exists

some γ ∈ Λ0 such that γ̂ /∈ Λ̂0 for any γ̂
P→ γ. The above assumption directly implies

that D̂γ̂−D̂γ̂∗0 > oP (1). The analysis in the first step further implies that there exists

some γ∗ ∈ Λ0, i.e., D0γ∗ = D0γ∗0
, with probability tending to one such that γ̂∗0

P→ γ∗.

Then, we have

D0γ −D0γ∗ = (D0γ −D0γ̂) + (D0γ̂ − D̂γ̂) + (D̂γ̂ − D̂γ̂∗0 ) + (D̂γ̂∗0 −D0γ∗)

= I + II + III ′ + IV ′.

Recall that I, II = oP (1) and III ′ > oP (1) as shown in the above. We also have

IV ′ = oP (1) due to (2.40) and the fact that γ̂∗0
P→ γ∗. In summary, we have D0γ −

D0γ∗ > oP (1), which contradicts the definition of γ. This concludes the proof of

Lemma 4. �
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Proof of Theorem 2.4.1: The proof consists of two major steps. In the first

step, we show that

sup
γ∈[0,1]

n
∣∣∣D̂BI(S(X; θ̂γ))−DBI(S(X; θ̂γ))

∣∣∣→ 0. (2.43)

DenoteDBI(S(X; θ̂γ)) = 1
n

∑n
i=1 x̃i

†T
(−d)V ar(η̂

†
γ)x̃i

†
(−d), where x̃i

†
(−d) = (1, (Rγxi)

T
(−d))

T

and Rγ is the transformation matrix associated with the loss function Lγ. Then we

have

sup
γ∈[0,1]

n
∣∣∣D̂BI(S(X; θ̂γ))−DBI(S(X; θ̂γ))

∣∣∣
≤ sup

γ∈[0,1]

n
∣∣∣D̂BI(S(X; θ̂γ))−DBI(S(X; θ̂γ))

∣∣∣
+ sup

γ∈[0,1]

n
∣∣∣DBI(S(X; θ̂γ))−DBI(S(X; θ̂γ))

∣∣∣. (2.44)

Next we show each summand in (2.44) converges to 0. For the first one, we have

sup
γ∈[0,1]

n
∣∣∣D̂BI(S(X; θ̂γ))−DBI(S(X; θ̂γ))

∣∣∣
= sup

γ∈[0,1]

n
∣∣∣ 1
n

n∑
i=1

x̃i
†T
(−d)V̂ ar(η̂

†
γ)x̃i

†
(−d) −

1

n

n∑
i=1

x̃i
†T
(−d)V ar(η̂

†
γ)x̃i

†
(−d)

∣∣∣
= sup

γ∈[0,1]

∣∣∣ n∑
i=1

x̃i
†T
(−d)[(V̂ ar(η̂

†
γ)− V ar(η̂

†
γ))]x̃i

†
(−d)

∣∣∣, (2.45)

where

V ar(η̂†γ) =
Σ†0γ,(−d)

n(w†γ,d)
2

and V̂ ar(η̂†γ) =
Σ̂†γ,(−d)

n(ŵ†γ,d)
2
.

Here, ŵ†γ,d is the last dimension of θ̂
∗
γ. Since ŵ†γ,d follows the normal distribution with

mean w†γ,d and variance converging to 0, we have ŵ†γ,d = w†γ,d + oP (1), and hence

(ŵ†γ,d)
2 = (w†γ,d)

2 + oP (1) due to the boundedness of w†γ,d. In addition, uniform law

of large numbers implies that each component of Σ̂†γ − Σ†0γ uniformly converges to 0

w.r.t. γ, because each element of Σ̂†γ is continuous w.r.t. γ (by similar arguments as

in Lemma 3). Therefore, we have

n
[
V̂ ar(η̂†γ)− V ar(η̂

†
γ)
]

=
Σ̂†γ,(−d)

(ŵ†γ,d)
2
−

Σ†0γ,(−d)

(w†γ,d)
2

=
Σ̂†γ,(−d) − Σ†0γ,(−d)

(w†γ,d)
2 + oP (1)

−
Σ†0γ,(−d)oP (1)

(w†γ,d)
2[(w†γ,d)

2 + oP (1)]
,(2.46)
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where the second term in (2.46) uniformly converges to 0 due to Assumption (B1)

and the boundedness of w†γ,d. Therefore, each element of (2.46) uniformly converges

to 0, which implies that (2.45) converges to 0.

As for the second summand of (2.44), we again apply uniform law of large numbers

to show

sup
γ∈[0,1]

n
∣∣∣DBI(S(X; θ̂γ))−DBI(S(X; θ̂γ))

∣∣∣→ 0.

Note that X̃
†T
(−d)V ar(η̂γ)

†X̃
†
(−d) is continuous w.r.t. γ by similar arguments as in

Lemma 3, and

n
∣∣∣X̃†T(−d)V ar(η̂

†
γ)X̃

†
(−d)

∣∣∣ =
∣∣∣(1, (Rγx)T(−d))

TnV ar(η̂†γ)(1, (Rγx)T(−d))
∣∣∣

≤ c4

∣∣∣1 + xT(−d)x(−d)

∣∣∣ ≤ c5,

where the first inequality holds because each component of nV ar(η̂†γ) is uniformly

bounded due to the boundedness of w†γ,d and Assumption (B1). Then the uniform

law of large number implies

sup
γ∈[0,1]

n
∣∣∣DBI(S(X; θ̂γ))−DBI(S(X; θ̂γ))

∣∣∣
= sup

γ∈[0,1]

∣∣∣ 1
n

n∑
i=1

x̃i
†T
(−d)(w

†
γ,d)
−2Σ†0γ,(−d)(η̂

†
γ)x̃i

†
(−d) − E

(
X̃
†T
(−d)(w

†
γ,d)
−2Σ†0γ,(−d)X̃

†
(−d)

)∣∣∣
→ 0. (2.47)

Combining (2.45) and (2.47) leads to (2.43).

In the second step of the proof, we show n(D̂BI(S(X; θ̂γ̂0))−DBI(S(X; θ̂γ0))) ≤

oP (1) and n(DBI(S(X; θ̂γ0))− D̂BI(S(X; θ̂γ̂0))) ≤ oP (1), from which the desirable

result (2.21) follows.

Firstly, we prove

n
(
D̂BI(S(X; θ̂γ̂0))−DBI(S(X; θ̂γ0))

)
≤ oP (1).

Denote γ̂]0 = arg minγ∈Λ̂0
DBI(S(X; θ̂γ)). For γ0 defined in (2.20), Theorem 4 implies

that there exists a γ̂40 ∈ Λ̂0 such that γ̂40
P→ γ0, then we have

n
(
D̂BI(S(X; θ̂γ̂0))−DBI(S(X; θ̂γ0))

)
= I + II + III,
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where

I = n
(
D̂BI(S(X; θ̂γ̂0))−DBI(S(X; θ̂γ̂]0

))
)
,

II = n
(
DBI(S(X; θ̂γ̂]0

))−DBI(S(X; θ̂γ̂40
))
)
,

III = n
(
DBI(S(X; θ̂γ̂40

))−DBI(S(X; θ̂γ0))
)
.

Note that D̂BI(S(X; θ̂γ̂0)) ≤ D̂BI(S(X; θ̂γ̂]0
)) according to (2.19) and hence

I ≤ n
(
D̂BI(S(X; θ̂γ̂]0

))−DBI(S(X; θ̂γ̂]0
))
)
.

According to DBI(S(x; θ̂γ̂]0
)) ≤ DBI(S(x; θ̂γ̂40

)) due to γ̂]0 ∈ Λ̂0, we have II ≤ 0.

Moreover, DBI(S(X; θ̂γ̂40
))−DBI(S(X; θ̂γ0)) = oP (n−1) according to γ̂40

P→ γ0 and

continuous mapping theorem. All these together with (2.43) lead to

I + II + III ≤ sup
γ∈Λ̂0

n
∣∣∣D̂BI(S(X; θ̂γ))−DBI(S(X; θ̂γ))

∣∣∣+ oP (1) ≤ oP (1). (2.48)

Secondly, we prove

n(DBI(S(X; θ̂γ0))− D̂BI(S(X; θ̂γ̂0))) ≤ oP (1).

Denote γ̃0 = arg minγ∈Λ0 D̂BI(S(X; θ̂γ)). For γ̂0 defined in (2.19), Lemma 4 implies

that there exists γ̃]0 ∈ Λ0 such that γ̂0
P→ γ̃]0, then we have

DBI(S(X; θ̂γ0))− D̂BI(S(X; θ̂γ̂0)) ≤ DBI(S(X; θ̂γ̃0))− D̂BI(S(X; θ̂γ̃0))

+ D̂BI(S(X; θ̂γ̃0))− D̂BI(S(X; θ̂γ̃]0
)) + D̂BI(S(X; θ̂γ̃]0

))− D̂BI(S(X; θ̂γ̂0)).

Here DBI(S(X; θ̂γ0)) ≤ DBI(S(X; θ̂γ̃0)) by the definition of γ0, D̂BI(S(X; θ̂γ̃0)) ≤

D̂BI(S(X; θ̂γ̃]0
)) due to the definition of γ̃0, and D̂BI(S(X; θ̂γ̃]0

))−D̂BI(S(X; θ̂γ̂0)) =

oP (n−1) according to γ̂0
P→ γ̃]0 and continuous mapping theorem. Therefore,

n
(
DBI(S(X; θ̂γ0))− D̂BI(S(X; θ̂γ̂0))

)
≤ sup

γ∈Λ0

n
∣∣∣D̂BI(S(X; θ̂γ))−DBI(S(X; θ̂γ))

∣∣∣+ oP (1) ≤ oP (1), (2.49)

Consequently, combining (2.48) and (2.49) leads to the desirable conclusion in

Theorem 2.4.1. �
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3. STABILIZED NEAREST NEIGHBOR CLASSIFIER AND ITS

THEORETICAL PROPERTIES

The k-nearest neighbor (kNN) classifier [50, 51] is one of the most popular nonpara-

metric classification methods, due to its conceptual simplicity and powerful prediction

capability. In the literature, extensive research have been done to justify various near-

est neighbor classifiers based on the risk, which calibrates the inaccuracy of the clas-

sifier [52–57]. We refer the readers to [58] for a comprehensive study. Recently, [27]

has proposed an optimal weighted nearest neighbor (OWNN) classifier. Like most

other existing nearest neighbor classifiers, OWNN focuses on the risk without paying

much attention to the classification stability.

In this chapter, we define a general measure of stability for a classification method.

It characterizes the sampling variability of the prediction, and is named the classi-

fication instability (CIS). CIS applies to both linear and non-linear classifiers. An

important result we obtain is that the CIS of a weighted nearest neighbor (WNN)

classifier is asymptotically proportional to the `2 norm of the weight vector. This

rather concise form is crucial in our methodological development and theoretical anal-

ysis. To illustrate the interplay between risk and CIS, we apply the kNN classifier to

a bivariate toy example (see details in Section 3.6.1) and plot in Figure 3.1 the regret

(that is the risk minus a constant known as the Bayes risk) versus CIS, calculated

according to Proposition 2 and Theorem 3.2.1 in Section 3.2, for different k. As k

increases, the classifier becomes more and more stable, while the regret first decreases

and then increases. In view of the kNN classifier with the minimal regret, marked

as the red square in Figure 3.1, one may have the impression that there are other k

values with similar regret but much smaller CIS, such as the one marked as the blue

triangle shown in the plot.
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Figure 3.1. Regret and CIS of the kNN classifier. From top to bottom,
each circle represents the kNN classifier with k ∈ {1, 2, . . . , 20}. The
red square corresponds to the classifier with the minimal regret and
the classifier depicted by the blue triangle improves it to have a lower
CIS.

Inspired by Figure 3.1, we propose a novel method called stabilized nearest neigh-

bor (SNN) classifier, which takes the stability into consideration. We construct the

SNN procedure by minimizing the CIS of WNN over an acceptable region where

the regret is small, indexed by a tuning parameter. SNN encompasses the OWNN

classifier as a special case.

To understand the theoretical property of SNN, we establish a sharp convergence

rate of CIS for general plug-in classifiers. This sharp rate is slower than but approach-

ing n−1, shown by adapting the framework of [21]. Furthermore, the proposed SNN

method is shown to achieve both the minimax optimal rate in the regret established

in the literature, and this sharp rate in CIS established in this article.

In order to illustrate the advantage of the SNN classifier, we offer a comprehensive

asymptotic comparison among various classifiers, through which new insights are

obtained. It is theoretically verified that the CIS of our SNN procedure is much

smaller than those of others. Figure 3.2 shows the regret and CIS of kNN, OWNN,
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Figure 3.2. Regret and CIS of kNN, OWNN, and SNN procedures
for a bivariate normal example. The top three lines represent CIS’s
of kNN, OWNN, and SNN. The bottom three lines represent regrets
of kNN, SNN, and OWNN. The sample size shown on the x-axis is in
the log10 scale.

and SNN for a bivariate example (see details in Section 3.6.1). Although OWNN is

theoretically the best in regret, its regret curve appear to overlap with that of SNN.

On the other hand, the SNN procedure has a visibly smaller CIS than OWNN. A

compelling message is that with almost the same accuracy, our SNN could greatly

improve stability. Extensive experiments further illustrate that SNN has a significant

improvement in CIS, and sometimes even improves the accuracy. Such appealing

results are supported by the theoretical finding (in Corollary 3) that the regret of

SNN approaches that of OWNN at a faster rate than the rate at which the CIS of

OWNN approaches that of SNN, where both rates are shown to be sharp. As a

by-product, we also show that OWNN is more stable than the kNN and the bagged

nearest neighbor (BNN) classifiers.
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3.1 Classification Instability

Let (X, Y ) ∈ Rd×{1,−1} be a random couple with joint distribution P . We regard

X as a d-dimensional vector of features for an object and Y as the label indicating

that the object belongs to one of two classes. Denote the prior class probability as

π1 = P(Y = 1), where P is the probability with respect to P , and the distribution of

X given Y = 1 as P1. Similarly, we denote the distribution of X given Y = −1 as

P2. The marginal distribution of X can be written as P̄ = π1P1 + (1− π1)P2. For a

classifier φ : Rd 7→ {1,−1}, the risk of φ is defined as R(φ) = P(φ(X) 6= Y ). It is well

known that the Bayes rule, denoted as φBayes, minimizes the above risk. Specifically,

φBayes(x) = 1 − 21{η(x) < 1/2}, where η(x) = P(Y = 1|X = x) and 1{·} is the

indicator function. In practice, a classification procedure Ψ is applied to a training

data set D = {(Xi, Yi), i = 1, . . . , n} to produce a classifier φ̂n = Ψ(D). We define the

risk of the procedure Ψ as ED[R(φ̂n)], and the regret of Ψ as ED[R(φ̂n)]−R(φBayes),

where ED denotes the expectation with respect to the distribution of D, and R(φBayes)

is the risk of the Bayes rule, called the Bayes risk. The risk describes the inaccuracy

of a classification method. In practice, for a classifier φ, the classification error for a

test data can be calculated as an emprical version of the risk R(φ).

For a classification procedure, it is desired that, with high probability, classifiers

trained from different samples yield the same prediction for the same object. Our

first step in formalizing the classification instability is to define the distance between

two generic classifiers φ1 and φ2, which measures the level of disagreement between

them.

Definition 2 (Distance of Classifiers) Define the distance between two classifiers φ1

and φ2 as d(φ1, φ2) = P(φ1(X) 6= φ2(X)).

We next define the classification instability (CIS). Throughout the article, we denote

D1 and D2 as two i.i.d. copies of the training sample D. For ease of notation, we

have suppressed the dependence of CIS(Ψ) on the sample size n of D.
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Definition 3 (Classification Instability) Define the classification instability of a clas-

sification procedure Ψ as

CIS(Ψ) = ED1,D2

[
d(φ̂n1, φ̂n2)

]
(3.1)

where φ̂n1 = Ψ(D1) and φ̂n2 = Ψ(D2) are the classifiers obtained by applying the

classification procedure Ψ to samples D1 and D2.

Intuitively, CIS is the average probability that the same object is classified to two

different classes in two separate runs of the learning algorithm. By definition, 0 ≤

CIS(Ψ) ≤ 1, and a small CIS(Ψ) represents a stable classification procedure Ψ.

3.2 Stabilized Nearest Neighbor Classifier

In this section, we introduce a novel classification method called the stabilized

nearest neighbor (SNN) procedure which well balances the trade-off between classifi-

cation accuracy and classification stability. Section 3.2.1 reviews the general weighted

nearest neighbor (WNN) framework. Section 3.2.2 derives an asymptotic equivalent

form of the CIS measure for the WNN procedure, which turns out to be proportional

to the Euclidean norm of the weight vector. Based on WNN’s explicit expressions of

the regret and CIS, we propose the SNN classification procedure in Section 3.2.3.

3.2.1 Review of WNN

For any fixed x, let (X(1), Y(1)), . . . , (X(n), Y(n)) be a sequence of observations with

ascending distance to x. For a nonnegative weight vector wn = (wni)
n
i=1 satisfying∑n

i=1wni = 1, the WNN classifier φ̂wnn predicts the label of x as φ̂wnn (x) = 1 −

21{
∑n

i=1wni1{Y(i) = 1} < 1/2}.

[27] revealed a nice asymptotic expansion formula of the regret of WNN under

the following Assumptions. For a smooth function g, we denote ġ(x) as its gradient

vector at x. We assume the following conditions through all the article.

(A1) The set R ⊂ Rd is a compact d-dimensional manifold with boundary ∂R.
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(A2) The set S = {x ∈ R : η(x) = 1/2} is nonempty. There exists an open subset

U0 of Rd which contains S such that: (i) η is continuous on U\U0 with U an open

set containing R; (ii) the restriction of the conditional distributions of X, P1 and

P2, to U0 are absolutely continuous with respect to Lebesgue measure, with twice

continuously differentiable Randon-Nikodym derivatives f1 and f2.

(A3) There exists ρ > 0 such that
∫
Rd ‖x‖

ρdP̄ (x) <∞. Moreover, for sufficiently

small δ > 0, infx∈R P̄ (Bδ(x))/(adδ
d) ≥ C3 > 0, where ad = πd/2/Γ(1 + d/2), Γ(·) is

gamma function, and C3 is a constant independent of δ.

(A4) For all x ∈ S, we have η̇(x) 6= 0, and for all x ∈ S ∩ ∂R, we have ∂̇η(x) 6= 0,

where ∂η is the restriction of η to ∂R. �

Remark 3 Assumptions (A1)–(A4) have also been employed to show the asymptotic

expansion of the regret of the kNN classifier [59]. The condition η̇(x) 6= 0 in (A4) is

equivalent to the margin condition with α = 1; see (2.1) in [27]. These assumptions

ensure that f̄(x0) and η̇(x0) are bounded away from zero and infinity on S.

Moreover, for a smooth function g: Rd → R, let gj(x) its jth partial derivative

at x, g̈(x) the Hessian matrix at x, and gjk(x) the (j, k)th element of g̈(x). Let

cj,d =
∫
v:‖v‖≤1

v2
jdv. Define

a(x) =
d∑
j=1

cj,d{ηj(x)f̄j(x) + 1/2ηjj(x)f̄(x)}
a

1+2/d
d f̄(x)1+2/d

.

We further define two distribution-related constants

B1 =

∫
S

f̄(x)

4‖η̇(x)‖
dVold−1(x), B2 =

∫
S

f̄(x)

‖η̇(x)‖
a(x)2dVold−1(x),

where Vold−1 is the natural (d − 1)-dimensional volume measure that S inherits.

Based on Assumptions (A1)-(A4), B1 and B2 are finite with B1 > 0 and B2 ≥ 0,

where B2 = 0 only when a(x) equals zero on S. In addition, for β > 0, we denote

Wn,β as the set of wn satisfying (w.1)–(w.5).

(w.1)
∑n

i=1w
2
ni ≤ n−β,

(w.2) n−4/d(
∑n

i=1 αiwni)
2 ≤ n−β, where αi = i1+ 2

d − (i− 1)1+ 2
d ,
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(w.3) n2/d
∑n

i=k2+1wni/
∑n

i=1 αiwni ≤ 1/ log n with k2 = bn1−βc,

(w.4)
∑n

i=k2+1w
2
ni/
∑n

i=1w
2
ni ≤ 1/ log n,

(w.5)
∑n

i=1w
3
ni/(
∑n

i=1w
2
ni)

3/2 ≤ 1/ log n.

For the kNN classifier with wni = k−11{1 ≤ i ≤ k}, [27] showed that (w.1)–(w.5)

reduce to max(nβ, (log n)2) ≤ k ≤ min(n(1−βd/4), n1−β). More discussions on Wn,β can

be found in [27].

Proposition 2 [27] Under Assumptions (A1)–(A4), for each β ∈ (0, 1/2), we have,

as n→∞,

Regret(WNN) =

{
B1

n∑
i=1

w2
ni +B2

( n∑
i=1

αiwni
n2/d

)2
}
{1 + o(1)}, (3.2)

uniformly for wn ∈ Wn,β with Wn,β, where αi = i1+ 2
d − (i− 1)1+ 2

d .

[27] further derived a weight vector that minimizes the asymptotic regret (3.2)

which led to the optimal weighted nearest neighbor (OWNN) classifier. As will be

shown in Section 3.2.3, the OWNN classifier is a special case of our SNN classifier.

3.2.2 Asymptotically Equivalent Formulation of CIS

Denote the two resulting WNN classifiers trained on D1 and D2 as φ̂wnn1 (x) and

φ̂wnn2 (x) respectively. With a slight abuse of notation, we denote the CIS of a WNN

classification procedure by CIS(WNN). According to the definition in (3.1), classifica-

tion instability of a WNN procedure is CIS(WNN) = PD1,D2,X

(
φ̂wnn1 (X) 6= φ̂wnn2 (X)

)
.
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We first do some initial analysis of the above CIS measure, which helps derive its

asymptotic equivalent formulation. Based on the fact D1,D2
i.i.d.∼ D, the CIS of WNN

can be reformulated as

CIS(WNN)

= EX
[
PD1,D2

(
φ̂wnn1 (X) 6= φ̂wnn2 (X)

∣∣∣X)]
= EX

[
PD1,D2

(
φ̂wnn1 (X) = 1, φ̂wnn2 (X) = −1

∣∣∣X)]
+EX

[
PD1,D2

(
φ̂wnn1 (X) = −1, φ̂wnn2 (X) = 1

∣∣∣X)]
= 2EX

[
PD
(
φ̂wnn (X) = 1|X

)]
− 2EX

[
P2
D

(
φ̂wnn (X) = 1|X

)]
(3.3)

The above derivations indicate that WNN’s CIS can be fully captured by its perfor-

mance on a single data set, and we can develop the formulation by studying each

term in (3.3) separately.

Theorem 3.2.1 provides an asymptotic expansion formula for the CIS of WNN in

terms of the weight vector wn.

Theorem 3.2.1 (Asymptotic Equivalent Form of CIS) Under Assumptions (A1)–

(A4), for each β ∈ (0, 1/2), we have, as n→∞,

CIS(WNN) = B3

( n∑
i=1

w2
ni

)1/2

{1 + o(1)}, (3.4)

uniformly for all wn ∈ Wn,β with Wn,β, where the constant B3 = 4B1/
√
π > 0 with

B1 defined in Proposition 2.

Theorem 3.2.1 demonstrates that CIS of the WNN procedure is asymptotically

proportional to (
∑n

i=1w
2
ni)

1/2. For example, for the kNN procedure (that is the

WNN procedure with wni = k−11{1 ≤ i ≤ k}), its CIS is asymptotically B3

√
1/k.

Therefore, a larger value of k leads to a more stable kNN procedure, which was seen

in Figure 3.1. Furthermore, we note that the CIS expansion in (3.4) is related to the

first term in (3.2). The expansions in (3.2) and (3.4) allow precise calibration of the

regret and CIS. This interesting connection is important in the development of our

SNN procedure.
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3.2.3 Stabilized Nearest Neighbor Classifier

To stabilize WNN, we consider a weight vector which minimizes the CIS over an

acceptable region where the classification regret is less than some constant c1 > 0,

that is,

min
wn

CIS(WNN) (3.5)

subject to Regret(WNN) ≤ c1,
n∑
i=1

wni = 1, wn ≥ 0.

By considering CIS(WNN)2 in the objective function and the Lagrangian formulation,

we can see that (3.5) is equivalent to minimizing Regret(WNN) + λ0CIS2(WNN)

subject to the constraints that
∑n

i=1wni = 1 and wn ≥ 0, where λ0 > 0. The

expansions (3.2) and (3.4) in Proposition 2 and Theorem 3.2.1 imply the following

asymptotically equivalent formulation:

min
wn

(
n∑
i=1

αiwni
n2/d

)2

+ λ
n∑
i=1

w2
ni (3.6)

subject to
n∑
i=1

wni = 1, wn ≥ 0,

where λ = (B1 + λ0B
2
3)/B2 depends on constants B1 and B2 and λ0. When λ→∞,

(3.6) leads to the most stable but trivial kNN classifier with k = n. The classifier in

(3.6) with λ ↓ B1/B2 (i.e., λ0 ↓ 0) approaches the OWNN classifier considered in [27].

Note that the two terms (n−2/d
∑n

i=1 αiwni)
2 and

∑n
i=1w

2
ni in (3.6) represent the bias

and variance terms of the regret expansion given in Proposition 2 [27]. By varying

the weights of these two terms through λ, we are able to stablize a nearest neighbor

classifier. Moreover, the stabilized classifier achieves desirable convergence rates in

both regret and CIS.

Theorem 3.2.2 gives the optimal weight w∗ni with respect to the optimization prob-

lem (3.6). We formally define the stabilized nearest neighbor (SNN) classifier as the

WNN classifier with the optimal weight w∗ni.
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Theorem 3.2.2 (Optimal Weight) For any fixed λ > 0, the minimizer of (3.6) is

w∗ni =


1
k∗

[
1 + d

2
− d

2(k∗)2/d
αi

]
, for i = 1, . . . , k∗,

0, for i = k∗ + 1, . . . , n,

where αi = i1+ 2
d − (i− 1)1+ 2

d and k∗ = b{d(d+4)
2(d+2)

}
d
d+4λ

d
d+4n

4
d+4 c.

The SNN classifier encompasses the OWNN classifier as a special case when λ =

B1/B2. Note that Theorem 3.2.2 is valid for any λ > 0, which includes the case

λ > B1/B2.

The computational complexity of our SNN classifier is comparable to that of

existing nearest neighbor classifiers. If we preselect a value for λ, SNN requires no

training at all. The testing time consists of two parts: the O(n) complexity for the

computation of n distances, where n is the size of training data; and the O(n log n)

complexity for sorting n distances. The kNN classifier, for example, shares the same

computational complexity. In practice, λ is not predetermined and we may treat

it as a tuning parameter, whose optimal value is selected via cross validation. See

Algorithm 1 in Section 3.5 for details. We will show in Section 3.5 that the complexity

of tuning in SNN is also comparable to existing methods.

3.3 Theoretical Properties

In this section, we establish a sharp convergence rate of CIS for a general plug-

in classifier, which includes SNN as a special case. We then demonstrate that SNN

attains this established sharp convergence rate in CIS, as well as the minimax optimal

convergence rate in regret.

3.3.1 A Sharp Rate of CIS

Motivated by [21], we establish a sharp convergence rate of CIS for a general

plug-in classifier. A plug-in classification procedure Ψ first estimates the regression
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function η(x) by η̂n(x), and then plugs it into the Bayes rule, that is, φ̂n(x) = 1 −

21{η̂n(x) < 1/2}.

The following margin condition [21] is assumed for deriving the upper bound of

the convergence rate, while two additional conditions are required for showing the

lower bound. A distribution function P satisfies the margin condition if there exist

constants C0 > 0 and α ≥ 0 such that for any ε > 0,

PX(0 < |η(X)− 1/2| ≤ ε) ≤ C0ε
α. (3.7)

The parameter α characterizes the behavior of the regression function η near 1/2,

and a larger α implies a lower noise level and hence an easier classification scenario.

The second condition is on the smoothness of η(x). Specifically, we assume that η

belongs to a Hölder class of functions Σ(γ, L,Rd) (for some fixed L, γ > 0) containing

the functions g : Rd → R that are bγc times continuously differentiable and satisfy,

for any x, x′ ∈ Rd, |g(x′)− gx(x′)| ≤ L‖x− x′‖γ, where bγc is the largest integer not

greater than γ, gx is the Taylor polynomial series of degree bγc at x, and ‖ · ‖ is the

Euclidean norm.

Our last condition assumes that the marginal distribution P̄ satisfies the strong

density assumption which satisfies that for a compact set R ⊂ Rd and constants

c0, r0 > 0, P̄ is supported on a compact (c0, r0)-regular set A ⊂ R satisfying νd(A ∩

Br(x)) ≥ c0νd(Br(x)) for all r ∈ [0, r0] and all x ∈ A, where νd denotes the d-

dimensional Lebesgue measure and Br(x) is a closed Euclidean ball in Rd centered at

x and of radius r > 0. Moreover, for all x ∈ A, the Lebesgue density f̄ of P̄ satisfies

f̄min ≤ f̄(x) ≤ f̄max for some 0 < f̄min < f̄max, and f̄(x) = 0 otherwise. In addition,

f̄ ∈ Σ(γ − 1, L, A).

We first derive the rate of convergence of CIS by assuming the exponential con-

vergence rate of the corresponding regression function estimator.

Theorem 3.3.1 (Upper Bound) Let η̂n be an estimator of the regression function η

and let R ⊂ Rd be a compact set. Let P be a set of probability distributions supported
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on R × {1,−1} such that for some constants C1, C2 > 0, some positive sequence

an →∞, and almost all x with respect to P̄ ,

sup
P∈P

PD
(
|η̂n(x)− η(x)| ≥ δ

)
≤ C1 exp(−C2anδ

2) (3.8)

holds for any n > 1 and δ > 0, where PD is the probability with respect to P⊗n.

Furthermore, if all the distributions P ∈ P satisfy the margin condition for a constant

C0, then the plug-in classification procedure Ψ corresponding to η̂n satisfies

sup
P∈P

CIS(Ψ) ≤ Ca−α/2n ,

for any n > 1 and some constant C > 0 depending only on α,C0, C1, and C2.

It is worth noting that condition (3.8) holds for various types of estimators. For

example, Theorem 3.2 in [21] showed that the local polynomial estimator satisfies

(3.8) with an = n2γ/(2γ+d) when the bandwidth is of the order n−1/(2γ+d). In addition,

Theorem 3.3.3 in Section 3.3.2 implies that (3.8) holds for the newly proposed SNN

classifier with the same an. Hence, in both cases, the upper bound is of the order

n−αγ/(2γ+d).

We next derive the lower bound of CIS in Theorem 3.3.2. As will be seen, this

lower bound implies that the obtained rate of CIS, that is, n−αγ/(2γ+d), cannot be

further improved for the plug-in classification procedure.

Theorem 3.3.2 (Lower Bound) Let Pα,γ be a set of probability distributions sup-

ported on R× {1,−1} such that for any P ∈ Pα,γ, P satisfies the margin condition

(3.7), the regression function η(x) belongs to the Hölder class Σ(γ, L,Rd), and the

marginal distribution P̄ satisfies the strong density assumption. Suppose further that

Pα,γ satisfies (3.8) with an = n2γ/(2γ+d) and αγ ≤ d. We have

sup
P∈Pα,γ

CIS(Ψ) ≥ C ′n−αγ/(2γ+d),

for any n > 1 and some constant C ′ > 0 independent of n.
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Theorems 3.3.1 and 3.3.2 together establish a sharp convergence rate of the CIS for

the general plug-in classification procedure on the set Pα,γ. The requirement αγ ≤ d

in Theorem 3.3.2 implies that α and γ cannot be large simultaneously. As pointed out

in [21], this is intuitively true because a very large γ implies a very smooth regression

function η, while a large α implies that η cannot stay very long near 1/2, and hence

when η hits 1/2, it should take off quickly. Lastly, we note that this rate is slower

than n−1, but approaches n−1 as the dimension d increases when αγ = d.

3.3.2 Optimal Convergence Rates of SNN

This subsection illustrates that SNN’s convergence rate of regret is minimax op-

timal and its convergence rate of CIS achieves the sharp rate established in Sec-

tion 3.3.1. We further show the asymptotic difference between the SNN procedure

and the OWNN procedure.

In Theorem 3.3.3 and Corollary 3 below, we consider SNN with k∗ � n2γ/(2γ+d) in

Theorem 3.2.2, where an � bn means the ratio sequence an/bn stays away from zero

and infinity as n→∞. Note that under Assumptions (A1)–(A4), we have γ = 2 and

hence k∗ � n4/(4+d), which agrees with the formulation in Theorem 3.2.2.

Theorem 3.3.3 For any α ≥ 0 and γ ∈ (0, 2], the SNN procedure with any fixed

λ > 0 satisfies

sup
P∈Pα,γ

Regret(SNN) ≤ C̃n−(α+1)γ/(2γ+d),

sup
P∈Pα,γ

CIS(SNN) ≤ Cn−αγ/(2γ+d),

for any n > 1 and some constants C̃, C > 0, where Pα,γ is defined in Theorem 3.3.2.

Corollary 3 below further investigates the difference between the SNN procedure

(with λ 6= B1/B2) and the OWNN procedure in terms of both regret and CIS.
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Corollary 3 For any α ≥ 0, γ ∈ (0, 2], we have, when λ 6= B1/B2,

sup
P∈Pα,γ

{
Regret(SNN)− Regret(OWNN)

}
� n−(1+α)γ/(2γ+d),

sup
P∈Pα,γ

{
CIS(OWNN)− CIS(SNN)

}
� n−αγ/(2γ+d), (3.9)

where Pα,γ is defined in Theorem 3.3.2.

Corollary 3 illustrates that the regret of SNN approaches that of the OWNN (from

above) at a faster rate than the rate at which the CIS of OWNN approaches that of

the SNN procedure (from above). Intuitively, this may imply that there is some room

for improvement in CIS, while the difference in regret between the two methods is

very small.

Remark 4 Under Assumptions (A1)–(A4), which are the assumptions in Theorem

3.2.1, and the assumption that γ = 2, the conclusion in (3.9) can be strengthened to

that for any P ∈ P1,2, CIS(OWNN) − CIS(SNN) � n−2/(d+4), that is, the room for

improvement in CIS is relatively large for all distributions in P1,2.

3.4 Asymptotic Comparisons

This section starts with an asymptotic comparison of the CIS among several exist-

ing nearest neighbor classifiers. We then demonstrate that SNN significantly improves

OWNN in CIS.

3.4.1 CIS Comparison of Existing Methods

We compare the CIS for three existing methods, kNN, OWNN and the bagged

nearest neighbor (BNN) classifier. The kNN classifier is a special case of the WNN

classifier with weight wni = 1/k for i = 1, . . . , k and wni = 0 otherwise. Another

special case of the WNN classifier is the BNN classifier. After generating subsamples

from the original data set, the BNN classifier applies 1-nearest neighbor classifier to

each bootstrapped subsample and returns the final predictor by majority vote. If the
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resample size m is sufficiently smaller than n, i.e., m→∞ and m/n→ 0, the BNN

classifier is shown to be a consistent classifier [60]. In particular, [60] showed that, for

large n, the BNN classifier (with or without replacement) is approximately equivalent

to a WNN classifier with the weight wni = q(1− q)i−1/[1− (1− q)n] for i = 1, . . . , n,

where q is the resampling ratio m/n.

We denote the CIS of the above classification procedures as CIS(kNN), CIS(BNN)

and CIS(OWNN), respectively. Here k in the kNN classifier is selected as the one

minimizing the regret [59]. The optimal q in the BNN classifier and the optimal weight

in the OWNN classifier are both calculated based on their asymptotic relations with

the optimal k in kNN, which were defined in (2.9) and (3.5) of [27]. Corollary 4

gives the pairwise CIS ratios of these classifiers. Note that these ratios depend on the

feature dimension d only.

Corollary 4 Under Assumptions (A1)-(A4) and the assumption that B2 is positive,

we have, as n→∞,

CIS(OWNN)

CIS(kNN)
−→ 22/(d+4)

(d+ 2

d+ 4

)(d+2)/(d+4)

,

CIS(BNN)

CIS(kNN)
−→ 2−2/(d+4)Γ(2 + 2/d)d/(d+4),

CIS(BNN)

CIS(OWNN)
−→ 2−4/(d+4)Γ(2 + 2/d)d/(d+4)

(d+ 4

d+ 2

)(d+2)/(d+4)

.

The limiting CIS ratios in Corollary 4 are plotted in Figure 3.3 which delivers

several messages. A major one is that the OWNN procedure is more stable than

the kNN and BNN procedures for any d. The largest improvement of the OWNN

procedure over kNN is achieved when d = 4 and the improvement diminishes as

d→∞. The CIS ratio of BNN over kNN equals 1 when d = 2 and is less than 1 when

d > 2, which is consistent with the common perception that bagging can generally

reduce the variability of the nearest neighbor classifiers. Similar phenomenon has been

shown in the ratio of their regrets [27]. Therefore, bagging can be used to improve

the kNN procedure in terms of both accuracy and stability when d > 2. Furthermore,

the CIS ratio of OWNN over BNN is less than 1 for all d and it quickly converges to 1
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Figure 3.3. Pairwise CIS ratios between kNN, BNN and OWNN for
different feature dimension d.

as d increases. This implies that although the BNN procedure is asymptotically less

stable than the OWNN procedure, their difference sharply vanishes as d increases.

3.4.2 Comparisons between SNN and OWNN

Corollary 3 in Section 3.3.2 implies that OWNN and SNN share the same conver-

gence rates of regret and CIS (note that OWNN is a special case of SNN). Hence, it

is of great interest to go one step further and compare their relative magnitude. The

asymptotic comparisons between SNN and OWNN are characterized in Corollary 5.



65

Corollary 5 Under Assumptions (A1)-(A4) and the assumption that B2 is positive,

we have, as n→∞,

Regret(SNN)

Regret(OWNN)
−→

{ B1

λB2

}d/(d+4){4 + dλB2/B1

4 + d

}
,

CIS(SNN)

CIS(OWNN)
−→

{ B1

λB2

}d/(2(d+4))

,

where constants B1 and B2 are defined in Proposition 2.

As can be seen from Corollary 5, both ratios of the SNN procedure over the OWNN

procedure depend on λ, and unknown constants B1 and B2. Since λ = (B1+λ0B
2
3)/B2

in (3.6) and B3 = 4B1/
√
π in (3.4), we further have

Regret(SNN)

Regret(OWNN)
−→

{ 1

1 + 16B1λ0/π

}d/(d+4){4 + d(1 + 16B1λ0/π)

4 + d

}
, (3.10)

CIS(SNN)

CIS(OWNN)
−→

{ 1

1 + 16B1λ0/π

}d/(2(d+4))

. (3.11)

For any λ0 > 0, SNN has an improvement in CIS over the OWNN. As a mere

illustration, we consider a case that the regret and the squared CIS are given equal

weight, that is, λ0 = 1. In this case, the ratios in (3.10) and (3.11) only depend on

B1 and d.

Figure 3.4 shows 3D plots of these ratios as functions of B1 and d. As expected,

the CIS of the SNN procedure is universally smaller than OWNN (ratios less than 1

on the right panel), while the OWNN procedure has a smaller regret (ratios greater

than 1 on the left panel). For a fixed B1, as the dimension d increases, the regret of

SNN approaches that of OWNN, while the advantage of SNN in terms of CIS grows.

For a fixed dimension d, as B1 increases, the regret ratio between SNN and OWNN

gets larger, but the CIS advantage of SNN also grows. According to the definition of

B1, a great value of B1 indicates a harder problem for classification; see the discussion

after Theorem 1 of [27].

Since SNN improves OWNN in CIS, but has a greater regret, it is of inter-

est to know when the improvement of SNN in CIS is greater than its loss in re-

gret. We thus consider the relative gain, defined as the absolute ratio of the per-

centages of CIS reduction and regret increment, that is, |∆CIS/∆Regret|, where
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Figure 3.4. Regret ratio and CIS ratio of SNN over OWNN as func-
tions of B1 and d. The darker the color, the larger the value.

∆CIS = [CIS(SNN) − CIS(OWNN)]/CIS(OWNN) and ∆Regret = [Regret(SNN) −

Regret(OWNN)]/Regret(OWNN). As an illustration, when λ0 = 1, we have the rel-

ative gain converges to
[
1− (1 + 16B1/π)−d/(2d+8)

] [
(1 + 16B1/π)4/(d+4) − 1

]−1
. Fig-

ure 3.5 shows the log(relative gain) as a function of B1 and d. For most combinations

of B1 and d, the logarithm is greater than 0 (shown in grey in Figure 3.5), where

SNN’s improvement in CIS is greater than its loss in regret. In particular, when

B1 ≤ 0.2, the logarithm of relative gain is positive for all d.

3.5 Tuning Parameter Selection

To select the parameter λ for the SNN classifier, we first identify a set of values

for λ whose corresponding (estimated) risks are among the smallest, and then choose

from them an optimal one which has the minimal estimated CIS. Let φ̂λD denote an

SNN classifier with parameter λ trained from sample D. Given a predetermined set of

tuning parameter values Λ = {λ1, . . . , λK}, the tuning parameter λ̂ is selected using

Algorithm 1 below, which involves estimating the CIS and risk in Steps 1–3 and a

two-stage selection in Steps 4 and 5.
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case where the logarithm of relative gain is greater (less) than 0.

Algorithm 1:

Step 1. Randomly partition D = {(Xi, Yi), i = 1, . . . , n} into five subsets Ii,

i = 1, · · · , 5.

Step 2. For i = 1, let I1 be the test set and I2, I3, I4 and I5 be training sets.

Obtain predicted labels from φ̂λI2∪I3(Xj) and φ̂λI4∪I5(Xj) respectively for each Xj ∈ I1.

Estimate the CIS and risk of the classifier with parameter λ by

ĈISi(λ) =
1

|I1|
∑

(Xj ,Yj)∈I1

1{φ̂λI2∪I3(Xj) 6= φ̂λI4∪I5(Xj)},

R̂iski(λ) =
1

2|I1|
∑

(Xj ,Yj)∈I1

{
1{φ̂λI2∪I3(Xj) 6= Yj}+ 1{φ̂λI4∪I5(Xj) 6= Yj}

}
.

Step 3. Repeat Step 2 for i = 2, . . . , 5 and estimate the CIS and risk, with Ii being

the test set and the rest being the training sets. Finally, the estimated CIS and risk

are,

ĈIS(λ) =
1

5

5∑
i=1

ĈISi(λ), R̂isk(λ) =
1

5

5∑
i=1

R̂iski(λ).



68

Step 4. Perform Step 2 and Step 3 for each λk ∈ Λ. Denote the set of tuning

parameters with top accuracy as

A := {λ : R̂isk(λ) is less than the 10th percentile of R̂isk(λk), k = 1, . . . , K}.

Step 5. Output the optimal tuning parameter λ̂ as

λ̂ = argmin
λ∈A

ĈIS(λ).

In our experiments, the predetermined set of tuning parameters Λ are of size 100.

In Step 1, the sample sizes of the subsets Ii are chosen to be roughly equal. The

estimation scheme based on cross-validation in Steps 1 – 3 can be replaced by other

data re-sampling strategies such as bootstrap, while in the latter case each subsets

are no longer independent. In Step 4, the threshold 10% reflects how the set of most

accurate classifiers is defined. Based on our experiments, the choice of 10% leads to

superior performance.

Compared with the tuning method for the kNN classifier, which minimizes the

estimated risk, Algorithm 1 requires additional estimation of the CIS. However, as

revealed in Step 2, the estimation of the CIS is concurrently conducted with the

estimation of the risk. Therefore, the complexity of tuning for our SNN classifier is

in the same order as that for the kNN classifier. As will be seen in the numerical

experiment, the additional effort on estimating the CIS leads to improvement over

existing nearest neighbor methods in both accuracy and stability.

3.6 Numerical Studies

We first validate our theoretical findings using a simple example, and then illus-

trate the improvements of the SNN classifier over existing nearest neighbor classifiers

using simulations and real examples.
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3.6.1 Validation of Asymptotically Equivalent Forms

This subsection aims to support the asymptotically equivalent forms of CIS de-

rived in Theorem 3.2.1 and the CIS and regret ratios in Corollary 5. We focus on a

multivariate Gaussian example in which regret and CIS have explicit expressions.

Assume that the underlying distributions of both classes are P1 ∼ N(02, I2) and

P2 ∼ N(12, I2) and the prior class probability π1 = 1/3. We choose R = [−2, 3]2,

which covers at least 95% probability of the sampling region, and set n = 50, 100, 200

and 500. In addition, a test set with 1000 observations were independently gener-

ated. The estimated risk and CIS were calculated based on 100 replications. In this

example, some calculus practice leads to B1 = 0.1299, B2 = 10.68 and B3 = 0.2931.

According to Proposition 2, Theorems 3.2.1 and 3.2.2, we obtain that

Regret(SNN) =
0.1732

k∗
+

4.7467(k∗)2

n2
(3.12)

CIS(SNN) =
0.3385

(k∗)1/2
, (3.13)

with k∗ = b1.51/3λ1/3n2/3c. For mere illustration, we choose λ = (B1 +B2
3)/B2, which

corresponds to λ0 = 1. So we have k∗ = b0.3118n2/3c. Similarly, the asymptotic regret

and CIS of OWNN are (3.12) and (3.13) with k∗ = b0.2633n2/3c due to (2.4) in [27].

In Figures 3.6, we plot the asymptotic CIS of the SNN and OWNN classifiers

computed using the above formulae, shown in red curve, along with the estimated

CIS based on the simulated data, shown as the box plots over 100 replications. As the

sample size n increases, the estimated CIS approximates its asymptotic value very

well. For example, when n = 500, the asymptotic CIS of the SNN (OWNN) classifier

is 0.078 (0.085) while the estimated CIS is 0.079 (0.086).

Similarly, in Figure 3.7, we plot the asymptotic risk, that is, the asymptotic regret

in (3.12) plus the true Bayes risk (0.215 in this example), for the SNN and OWNN

classifiers, along with the estimated risk. Here we compute the Bayes risk by Monte

Carlo integration. Again the difference of the estimated risk and asymptotic risk

decreases as the sample size grows.
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Figure 3.6. Asymptotic CIS (red curve) and estimated CIS (box plots
over 100 simulations) for OWNN (left) and SNN (right) procedures.
These plots show that the estimated CIS converges to its asymptotic
equivalent value as n increases.

Furthermore, according to (3.11), the asymptotic CIS ratio of the SNN classifier

over the OWNN classifier is 0.9189 in this example, and the empirically estimated

CIS ratios are 0.6646, 0.9114, 0.8940 and 0.9219, for n = 50, 100, 200, 500. This

indicates that the estimated CIS ratio converges to its asymptotic value as n increases.

However, by (3.10), the asymptotic regret ratio of the SNN classifier over the OWNN

classifier is 1.0305, while the estimated ones are 1.0224, 1.1493, 0.3097 and 0.1136,

for n = 50, 100, 200, 500. It appears that the estimated regret ratio matches with

its asymptotic value for small sample size, but they differ for large n. This may be

caused by the fact that the classification errors are very close to Bayes risk for large

n and hence the estimated regret ratio has a numerical issue. For example, when

n = 500, the average errors of the SNN classifier and the OWNN classifier are 0.2152

and 0.2161, respectively, while the Bayes risk is 0.215 (see Figure 3.7). A similar issue

was also reported in [27].
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Figure 3.7. Asymptotic risk (regret + the Bayes risk; red curves) and
estimated risk (black box plots) for OWNN (left) and SNN procedures
(right). The blue horizontal line indicates the Bayes risk, 0.215. These
plots show that the estimated risk converges to its asymptotic version
(and also the Bayes risk) as n increases.

3.6.2 Simulations

In this section, we compare SNN with the kNN, OWNN and BNN classifiers. The

parameter k in kNN was tuned from 100 equally spaced grid points from 5 to n/2.

For a fair comparison, in the SNN classifier, the parameter λ was tuned so that the

corresponding parameter k∗ (see Theorem 3.2.2) were equally spaced and fell into the

roughly same range.

In Simulation 1, we assumed that the two classes were from P1 ∼ N(0d, Id) and

P2 ∼ N(µd, Id) with the prior probability π1 = 1/3. We set sample size n = 200 and

chose µ such that the resulting B1 was fixed as 0.1 for different d. Specifically, in

Section 3.7.8 we show that

B1 =

√
2π

3πµd
exp

(
−(µd/2− ln 2/µ)2

2d

)
. (3.14)

Hence, we set µ = 2.076, 1.205, 0.659, 0.314, 0.208 for d = 1, 2, 4, 8 and 10, respec-

tively.
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In Simulation 2, the training data set were generated by setting n = 200, d = 2

or 5, P1 ∼ 0.5N(0d, Id) + 0.5N(3d, 2Id), P2 ∼ 0.5N(1.5d, Id) + 0.5N(4.5d, 2Id), and

π1 = 1/2 or 1/3.

Simulation 3 has the same setting as Simulation 2, except that P1 ∼ 0.5N(0d,Σ)+

0.5N(3d, 2Σ) and P2 ∼ 0.5N(1.5d,Σ)+0.5N(4.5d, 2Σ), where Σ is the Toeplitz matrix

whose jth entry of the first row is 0.6j−1.
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Figure 3.8. Average test errors and CIS’s (with standard error bar
marked) of the kNN, BNN, OWNN, and SNN methods in Simulation
1. The x-axis indicates different settings with various dimensions.
Within each setting, the four methods are horizontally lined up (from
the left are kNN, BNN, OWNN, and SNN).

Simulation 1 is a relatively easy classification problem. Simulation 2 examines the

bimodal effect and Simulation 3 combines bimodality with dependence between the

components. In each simulation setting, a test data set of size 1000 is independently

generated and the average classification error and average (estimated) CIS for the

test set are reported over 100 replications. To calculate the average CIS, for each

replication we build two classifiers based on the randomly divided training data, and

then estimate CIS by the average disagreement of these two classifiers on the test

data.
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Figure 3.9. Average test errors and CIS’s (with standard error bar
marked) of the kNN, BNN, OWNN, and SNN methods in Simula-
tion 2. The ticks on the x-axis indicate the dimensions and prior
class probability π for different settings. Within each setting, the
four methods are horizontally lined up (from the left are kNN, BNN,
OWNN, and SNN).

Figure 3.8 shows the average error (on the left) and CIS (on the right) for Sim-

ulation 1. As a first impression, the error is similar among different classification

methods, while the CIS differs a lot. In terms of the stability, SNN always has the

smallest CIS; in particular, as d increases, the improvement of SNN over all other

procedures becomes even larger. This agrees with the asymptotic findings in Section

3.4.2. For example, when d = 10, all the kNN, BNN, and OWNN procedures are

at least five times more unstable than SNN. In terms of accuracy, SNN obtains the

minimal test errors in all five scenarios, although the improvements in test errors are

not significant when d = 1, 2 or 4. This result reveals that although SNN would be

asymptotically less accurate than OWNN in theory, the actual empirical difference in

accuracy between SNN and OWNN is often ignorable. In contrast, SNN additionally

relies on the classification stability, which in turn provides a significant improvement

in stability over other nearest neighbor procedures.

Figures 3.9 and 3.10 summarize the results for Simulations 2 and 3. Again, in

general, the difference in CIS is much obvious than the difference in the error. The
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SNN procedure obtains the minimal CIS for all 8 cases. Interestingly, the improve-

ments are significant in all the four cases when π1 = 1/3. Moreover, among 3 out

of the 8 cases, our SNN achieves the smallest test errors and the improvements are

significant. Even in cases where the error is not the smallest, the performance of SNN

is close to the best classifier.
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Figure 3.10. Average test errors and CIS’s (with standard error bar
marked) of the kNN, BNN, OWNN, and SNN methods in Simula-
tion 3. The ticks on the x-axis indicate the dimensions and prior
class probability π for different settings. Within each setting, the
four methods are horizontally lined up (from the left are kNN, BNN,
OWNN, and SNN).

3.6.3 Real Examples

In this subsection, we extend the comparison to four real data sets publicly avail-

able in the UCI Machine Learning Repository [46].

The first data set is the breast cancer data set (breast) collected by [47]. There

are 683 samples and 10 experimental measurement variables. The binary class label

indicates whether the sample is benign or malignant. These 683 samples arrived

periodically. In total, there are 8 groups of samples which reflect the chronological

order of the data. A good classification procedure is expected to produce a stable
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Figure 3.11. Average test errors and CIS’s (with standard error bar
marked) of the kNN, BNN, OWNN and SNN methods for four data
examples. The ticks on the x-axis indicate the names of the examples.
Within each example, the four methods are horizontally lined up (from
the left are kNN, BNN, OWNN, and SNN).

classifier across these groups of samples. The second data set is the credit approval

data set (credit). It consists of 690 credit card applications and each application has

14 attributes reflecting the user information. The binary class label refers to whether

the application is positive or negative. The third data set is the haberman’s survival

data set (haberman) which contains 306 cases from study conducted on the survival

of patients who had undergone surgery for breast cancer. It has three attributes,

age, patient’s year of operation, and number of positive axillary nodes detected. The

response variable indicates the survival status: either the patient survived 5 years

or longer or the patient died within 5 years. The last data set is the SPECT heart

data set (spect) which describes the diagnosing of cardiac Single Proton Emission

Computed Tomography (SPECT) images. Each of the 267 image sets (patients) had

22 binary feature patterns and was classified into two classes: normal and abnormal.

For each data set, we randomly split it into training and test sets with the equal

size. The same tuning procedure as in the simulation is applied here. We compute
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the classification error and (estimated) CIS on each test set. These procedures are

repeated 100 times and the average error and CIS are reported in Figure 3.11.

Similar to the simulation results, the SNN procedure obtains the minimal CIS in

all four real data sets and the improvements in CIS are significant. The errors of

OWNN and our SNN procedures have no significant difference, although OWNN is

theoretically the best in accuracy. These real experiments further illustrate that, with

almost the same classification accuracy, our SNN procedure can achieve a significant

improvement in stability.

3.7 Technical Proofs

This section contains detailed proofs of all theoretical results and the calculation

of B1 in a particular example.

3.7.1 Proof of Theorem 3.2.1

Before we prove Theorem 3.2.1, we first introduce a useful Lemma.

Lemma 5 For any distribution function G, constant a, and constant b > 0, we have∫ ∞
−∞
{G(−bu− a)− 1{u < 0}} du = −1

b

{
a+

∫ ∞
−∞

tdG(t)

}
,∫ ∞

−∞
u {G(−bu− a)− 1{u < 0}} du =

1

b2

{
1

2
a2 +

1

2

∫ ∞
−∞

t2dG(t) + a

∫ ∞
−∞

tdG(t)

}
.

Proof of Lemma 5: We show the second equality. The proof of the first equality is

similar. Note ∫ ∞
−∞

u {G(−bu− a)− 1{u < 0}} du

=

∫ 0

−∞
u {G(−bu− a)− 1} du+

∫ ∞
0

uG(−bu− a)du (3.15)
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After substitute t = −bu− a for each term, we have∫ 0

−∞
u {G(−bu− a)− 1} du =

1

b2

∫ ∞
−a

(t+ a)(1−G(t))dt∫ ∞
0

uG(−bu− a)du =
1

b2

∫ −a
−∞

(t+ a)(−G(t))dt

Plugging these two into (3.15), we have∫ ∞
−∞

u {G(−bu− a)− 1{u < 0}} du

=
1

b2

{
−
∫ −a
−∞

tG(t)dt− a
∫ −a
−∞

G(t)dt+

∫ ∞
−a

t(1−G(t))dt+ a

∫ ∞
−a

(1−G(t))dt

}
=

1

b2
{I + II + III + IV } .

Applying integration by part, we can calculate

I = −1

2

[
a2G(−a)−

∫ −a
−∞

t2dG(t)
]

II = a
[
aG(−a) +

∫ −a
−∞

tdG(t)
]

III =
1

2

[
− a2(1−G(−a)) +

∫ ∞
−a

t2dG(t)
]

IV = a
[
a(1−G(−a)) +

∫ ∞
−a

tdG(t)
]

Plugging I-IV into (3.15) leads to desirable equality. This concludes the proof of

Lemma 5. �

Proof of Theorem 3.2.1: Note that CIS(WNN) = PD1,D2,X

(
φ̂wnn1 (X) 6= φ̂wnn2 (X)

)
can be expressed in the following way.

CIS(WNN)

= EX
[
PD1,D2

(
φ̂wnD1

(X) 6= φ̂wnD2
(X)

∣∣∣X)]
= EX

[
PD1,D2

(
φ̂wnD1

(X) = 1, φ̂wnD2
(X) = −1

∣∣∣X)]
+EX

[
PD1,D2

(
φ̂wnD1

(X) = −1, φ̂wnD2
(X) = 1

∣∣∣X)]
= EX

[
2PD1

(
φ̂wnD1

(X) = 1|X
)(

1− PD1

(
φ̂wnD1

(X) = 1|X
))]

,

where the last equality is valid because D1 and D2 are i.i.d. samples. Without

loss of generality, we consider a generic sample D = {(Xi, Yi), i = 1, . . . , n}. Given
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X = x, we define (X(i), Y(i)) such that ‖X(1) − x‖ ≤ ‖X(2) − x‖ ≤ . . . ≤ ‖X(n) − x‖

with ‖ · ‖ the Euclidean norm. Denote the estimated regression function Sn(x) =∑n
i=1wni1{Y(i) = 1}. We have

EX
[
P
(
φ̂wnD (X) = 1|X

)]
=

∫
R
P
(
Sn(x) ≥ 1/2

)
dP̄ (x),

EX
[
P2
(
φ̂wnD (X) = 1|X

)]
=

∫
R
P2
(
Sn(x) ≥ 1/2

)
dP̄ (x),

where P̄ (x) is the marginal distribution of X. For the sake of simplicity, P denotes

the probability with respect to D. Hence, CIS satisfies

CIS(WNN)/2 =

∫
R
P(Sn(x) ≥ 1/2)

(
1− P(Sn(x) ≥ 1/2)

)
dP̄ (x)

=

∫
R
{P(Sn(x) < 1/2)− 1{η(x) < 1/2}} dP̄ (x)

−
∫
R

{
P2(Sn(x) < 1/2)− 1{η(x) < 1/2}

}
dP̄ (x)

Denote the boundary S = {x ∈ R : η(x) = 1/2}. For ε > 0, let Sεε = {x ∈ Rd :

η(x) = 1/2 and dist(x,S) < ε}, where dist(x,S) = infx0∈S ‖x−x0‖. We will focus on

the set

Sε =

{
x0 + t

η̇(x0)

‖η̇(x0)‖
: x0 ∈ Sεε, |t| < ε

}
.

Let µn(x) = E{Sn(x)}, σ2
n(x) = Var{Sn(x)}, and εn = n−βd/4. Denote s2

n =∑n
i=1 w

2
ni and tn = n−2/d

∑n
i=1 αiwni. [27] showed that, uniformly for wn ∈ Wn,β,

sup
x∈Sεn

|µn(x)− η(x)− a(x)tn| = o(tn), (3.16)

sup
x∈Sεn

∣∣∣∣σ2
n(x)− 1

4
s2
n

∣∣∣∣ = o(s2
n). (3.17)

We organize our proof in three steps. In Step 1, we focus on analyzing on the

set R ∩ Sεn ; in Step 2, we focus on the complement set R\Sεn ; Step 3 combines the

results and applies a normal approximation to yield the final conclusion.

Step 1: For x0 ∈ S and t ∈ R, denote xt0 = x0 + tη̇(x0)/‖η̇(x0)‖. Denote f̄ =

π1f1 +(1−π1)f2 as the Radon-Nikodym derivative with respect to Lebesgue measure
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of the restriction of P̄ to Sεn for large n. We need to show that, uniformly for

wn ∈ Wn,β,∫
R∩Sεn

{P(Sn(x) < 1/2)− 1{η(x) < 1/2}} dP̄ (x) =∫
S

∫ εn

−εn
f̄(xt0)

{
P
(
Sn(xt0) < 1/2

)
− 1{t < 0}

}
dtdVold−1(x0){1 + o(1)} (3.18)∫

R∩Sεn

{
P2(Sn(x) < 1/2)− 1{η(x) < 1/2}

}
dP̄ (x) =∫

S

∫ εn

−εn
f̄(xt0)

{
P2
(
Sn(xt0) < 1/2

)
− 1{t < 0}

}
dtdVold−1(x0){1 + o(1)}.(3.19)

According to [27], for large n, we define the map φ(x0, t
η̇(x0)
‖η̇(x0)‖) = xt0, and note

that

det φ̇
(
x0, t

η̇(x0)

‖η̇(x0)‖

)
dtdVold−1(x0) = {1 + o(1)}dtdVold−1(x0),

uniformly in (x0, tη̇(x0)/‖η̇(x0)‖) for x0 ∈ S and |t| < εn, where det is the determi-

nant. Then the theory of integration on manifolds [61] implies that, uniformly for

wn ∈ Wn,β,∫
Sεn
{P(Sn(x) < 1/2)− 1{η(x) < 1/2}} dP̄ (x) =∫

Sεnεn

∫ εn

−εn
f̄(xt0)

{
P
(
Sn(xt0) < 1/2

)
− 1{t < 0}

}
dtdVold−1(x0){1 + o(1)}.

Furthermore, we can replace Sεn with R∩Sεn since Sεn\R ⊆ {x ∈ Rd : dist(x, ∂S) <

εn} and the latter has volume O(ε2n) by Weyl’s tube formula [61]. Similarly, we can

safely replace Sεnεn with S. Therefore, (3.18) holds. Similar arguments imply (3.19).

Step 2: Bound the contribution to CIS from R\Sεn . We show that, for all M > 0,

sup
wn∈Wn,β

∫
R\Sεn

{
P
(
Sn(x) < 1/2

)
− 1{η(x) < 1/2}

}
dP̄ (x) = O(n−M),(3.20)

sup
wn∈Wn,β

∫
R\Sεn

{
P2
(
Sn(x) < 1/2

)
− 1{η(x) < 1/2}

}
dP̄ (x) = O(n−M).(3.21)

Here (3.20) follows from the fact |P(Sn(x) < 1
2
) − 1{η(x) < 1/2}| = O(n−M) for all

M > 0, uniformly for wn ∈ Wn,β and x ∈ R\Sεn [27]. Furthermore, (3.21) holds

since∣∣∣P2
(
Sn(x) < 1/2

)
− 1{η(x) < 1/2}

∣∣∣ ≤ 2
∣∣∣P(Sn(x) < 1/2

)
− 1{η(x) < 1/2}

∣∣∣.
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Step 3: In the end, we will show∫
S

∫ εn

−εn
f̄(xt0)

{
P
(
Sn(xt0) < 1/2

)
− 1{t < 0}

}
dtdVold−1(x0)

−
∫
S

∫ εn

−εn
f̄(xt0)

{
P2
(
Sn(xt0) < 1/2

)
− 1{t < 0}

}
dtdVold−1(x0)

=
1

2
B3sn + o(sn + tn). (3.22)

We first apply the nonuniform version of Berry-Esseen Theorem to approximate

P(Sn(xt0) < 1/2). Let Zi = (wni1{Y(i) = 1} − wniE[1{Y(i) = 1}])/σn(x) and W =∑n
i=1 Zi. Note that E(Zi) = 0, Var(Zi) <∞, and Var(W ) = 1. Then the nonuniform

Berry-Esseen Theorem [62] implies that∣∣∣P(W ≤ y)− Φ(y)
∣∣∣ ≤ M1

n1/2(1 + |y|3)
,

where Φ is the standard normal distribution function and M1 is a constant. Therefore,

sup
x0∈S

sup
t∈[−εn,εn]

∣∣∣∣P(Sn(xt0)− µn(xt0)

σn(xt0)
≤ y
)
− Φ(y)

∣∣∣∣ ≤ M1

n1/2(1 + |y|3)
. (3.23)

Thus, we have∫
S

∫ εn

−εn
f̄(xt0)

{
P
(
Sn(xt0) < 1/2

)
− 1{t < 0}

}
dtdVold−1(x0)

=

∫
S

∫ εn

−εn
f̄(xt0)

{
Φ
(1/2− µn(xt0)

σn(xt0)

)
− 1{t < 0}

}
dtdVold−1(x0) + o(s2

n + t2n),

where the remainder term o(s2
n + t2n) is due to (3.23) by slightly modifying the proof

of A.21 in [27].

Furthermore, Taylor expansion leads to

f̄(xt0) = f̄(x0) + ( ˙̄f(x0))T
η̇(x0)

‖η̇(x0)‖
t+ o(t).

Denote ∆0 = Φ
(
−2t‖η̇(x0)‖−2a(x0)tn

sn

)
− 1{t < 0}. We have∫

S

∫ εn

−εn
f̄(xt0)

{
P
(
Sn(xt0) < 1/2

)
− 1{t < 0}

}
dtdVold−1(x0) (3.24)

=

∫
S

∫ εn

−εn
f̄(x0)∆0dtdVold−1(x0) +

∫
S

∫ εn

−εn

˙̄f(x0)T η̇(x0)t

‖η̇(x0)‖
∆0dtdVold−1(x0) +R1,
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where R1 = R11 +R12 + o(s2
n + t2n) with

R11 =

∫
S

∫ εn

−εn
f̄(x0)∆dtdVold−1(x0),

R12 =

∫
S

∫ εn

−εn

˙̄f(x0)T η̇(x0)t

‖η̇(x0)‖
∆dtdVold−1(x0),

∆ = Φ
(1/2− µn(xt0)

σn(xt0)

)
− Φ

(−2t‖η̇(x0)‖ − 2a(x0)tn
sn

)
.

Next we show R1 = o(sn + tn). Denote rx0 = −a(x0)tn
‖η̇(x0)sn‖ . According to (3.16) and

(3.17), for a sufficiently small ε ∈ (0, infx0∈S ‖η̇(x0)‖) and large n, for all wn ∈ Wn,β,

x0 ∈ S and r ∈ [−εn/sn, εn/sn], [27] showed that∣∣∣1/2− µn(xrsn0 )

σn(xrsn0 )
− [−2‖η̇(x0)‖(r − rx0)]

∣∣∣ ≤ ε2(|r|+ tn/sn).

In addition, when |r − rx0| ≤ εtn/sn,∣∣∣Φ(1/2− µn(xrsn0 )

σn(xrsn0 )

)
− Φ

(
− 2‖η̇(x0)‖(r − rx0)

)∣∣∣ ≤ 1

and when εtn/sn < |r| < tn/sn,∣∣∣Φ(1/2− µn(xrsn0 )

σn(xrsn0 )

)
− Φ

(
− 2‖η̇(x0)‖(r − rx0)

)∣∣∣ ≤ ε2(|r|+ tn/sn)φ(‖η̇(x0)‖|r − rx0|),

where φ is the density function of standard normal distribution.

Therefore, we have

|R11| ≤
∫
S

∫ εn

−εn
f̄(x0) |∆| dtdVold−1(x0)

≤ f̄(x0)sn

∫
|r−rx0 |≤εtn/sn

dr + f̄(x0)snε
2

∫ ∞
−∞

(|r|+ tn/sn)φ(‖η̇(x0)‖|r − rx0|)dr

≤ ε(tn + sn). (3.25)

Similarly,

|R12|

≤
∫
S

∫ εn

−εn

˙̄f(x0)T η̇(x0)t

‖η̇(x0)‖
|∆| dtdVold−1(x0)

≤ f̄(x0)εs2
n

∫
|r−rx0 |≤εtn/sn

|r|dr + f̄(x0)s2
nε

2

∫ ∞
−∞

(|r|+ tn/sn)φ(‖η̇(x0)‖|r − rx0 |)dr

≤ ε(t2n + s2
n).
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The inequality above, along with with (3.25), leads to R1 = o(sn + tn).

By similar arguments, we have∫
S

∫ εn

−εn
f̄(xt0)

{
P2
(
Sn(xt0) < 1/2

)
− 1{t < 0}

}
dtdVold−1(x0) (3.26)

=

∫
S

∫ εn

−εn
f̄(x0)

{
Φ2
(−2t‖η̇(x0)‖ − 2a(x0)tn

sn

)
− 1{t < 0}

}
dtdVold−1(x0)

+

∫
S

∫ εn

−εn

˙̄f(x0)T η̇(x0)t

‖η̇(x0)‖

{
Φ2
(−2t‖η̇(x0)‖ − 2a(x0)tn

sn

)
− 1{t < 0}

}
dtdVold−1(x0)

+ o(sn + tn).

Denote ∆̃ = Φ
(
− ‖η̇(x0)‖u − 2a(x0)tn

sn

)
− 1{u < 0}. Finally, after substituting

t = usn/2 in (3.24) and (3.26), we have, up to o(sn + tn) difference,

CIS(WNN)/2

=
sn
2

∫
S

∫ ∞
−∞

f̄(x0)∆̃dudVold−1(x0) +
s2
n

4

∫
S

∫ ∞
−∞

( ˙̄f(x0))T η̇(x0)

‖η̇(x0)‖
u∆̃dtdVold−1(x0)

−sn
2

∫
S

∫ ∞
−∞

f̄(x0)∆̃dudVold−1(x0)− s2
n

4

∫
S

∫ ∞
−∞

( ˙̄f(x0))T η̇(x0)

‖η̇(x0)‖
u∆̃dtdVold−1(x0)

= I + II − III − IV.

According to Lemma 5, we have

I − III =

[∫
S

f̄(x0)

2
√
π‖η̇(x0)‖

dVold−1(x0)

]
sn =

1

2
B3sn

II − IV = −

[∫
S

( ˙̄f(x0))T η̇(x0)a(x0)

2
√
π(‖η̇(x0)‖)3

dVold−1(x0)

]
sntn =

1

2
B4sntn.

Therefore, the desirable result is obtained by noting that B4sntn = o(sn + tn). This

concludes the proof of Theorem 3.2.1. �

3.7.2 Proof of Theorem 3.2.2

We first introduce a Lemma for Proving Theorem 3.2.2.
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Lemma 6 Given αi = i1+2/d − (i− 1)1+2/d, we have

(1 +
2

d
)(i− 1)

2
d ≤ αi ≤ (1 +

2

d
)i

2
d , (3.27)

k∑
j=1

α2
j =

(d+ 2)2

d(d+ 4)
k1+4/d

{
1 +O(

1

k
)

}
. (3.28)

Proof of Lemma 6: First, (3.27) is a direct result from the following two inequalities.

(1− 1

i
)2/d ≥ 1− 2

(i− 1)d
and (1 +

1

i− 1
)2/d ≥ 1 +

2

id
,

where i and d are positive integers. These two inequalities hold because both differ-

ences (1− 1
i
)2/d − (1− 2

(i−1)d
) and (1 + 1

i−1
)2/d − (1 + 2

id
) are decreasing in i and the

limit equals 0.

Second, (3.28) is due to (3.27) and Faulhaber’s formula
∑k

i=1 i
p = 1

p+1
kp+1+O(kp).

According to (3.27), we have

(1 +
2

d
)2

k∑
i=1

(i− 1)4/d ≤
k∑
j=1

α2
j ≤ (1 +

2

d
)2

k∑
i=1

i4/d.

Due to Faulhaber’s formula,
∑k

i=1 i
4/d = d

d+4
k1+4/d + O(k4/d) and

∑k
i=1(i − 1)4/d =

d
d+4

k1+4/d +O(k4/d), which leads to (3.28). This concludes the proof of Lemma 6. �

Proof of Theorem 3.2.2: For any weight wn, the Lagrangian of (3.6) is

L(wn) =
( n∑
i=1

αiwni
n2/d

)2

+ λ
n∑
i=1

w2
ni + ν(

n∑
i=1

wni − 1).

Considering the constraint of nonnegative weights, we denote k∗ = max{i : w∗ni > 0}.

Setting derivative of L(wn) to be 0, we have

∂L(wn)

∂wni
= 2n−4/dαi

k∗∑
i=1

αiwni + 2λwni + ν = 0. (3.29)

Summing (3.29) from 1 to k∗, and multiplying (3.29) by αi and then summing from

1 to k∗ yields

2n−4/d(k∗)1+2/d

k∗∑
i=1

αiwni + 2λ+ νk∗ = 0

2n−4/d

k∗∑
i=1

αiwni

k∗∑
i=1

α2
i + 2λ

k∗∑
i=1

αiwni + ν(k∗)1+2/d = 0.
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Therefore, we have

w∗ni =
1

k∗
+

(k∗)4/d − (k∗)2/dαi∑k∗

i=1 α
2
i + λn4/d − (k∗)1+4/d

(3.30)

Here w∗ni is decreasing in i since αi is increasing in i and
∑k∗

i=1 α
2
i > (k∗)1+4/d from

Lemma 6. Next we solve for k∗. According to the definition of k∗, we only need to

find k such that w∗nk = 0. Using the results from Lemma 6, solving this equation

reduces to solving k∗ such that

(1 +
2

d
)(k∗ − 1)2/d ≤ λn4/d(k∗)−1−2/d +

(d+ 2)2

d(d+ 4)
(k∗)2/d{1 +O(

1

k∗
)} ≤ (1 +

2

d
)(k∗)2/d.

Therefore, for large n, we have

k∗ =
⌊{d(d+ 4)

2(d+ 2)

} d
d+4
λ

d
d+4n

4
d+4

⌋
.

Plugging k∗ and the result (3.28) in Supplementary into (3.30) yields the optimal

weight. �

3.7.3 Proof of Theorem 3.3.1

Following the proofs of Lemma 3.1 in [21], we consider the sets Aj ⊂ R

A0 = {x ∈ R : 0 < |η(x)− 1/2| ≤ δ},

Aj = {x ∈ R : 2j−1δ < |η(x)− 1/2| ≤ 2jδ} for j ≥ 1.

For the classification procedure Ψ(·), we have

CIS(Ψ) = E[1{φ̂n1(X) 6= φ̂n2(X)}],

where φ̂n1 and φ̂n2 are classifiers obtained by applying Ψ(·) to two independently and

identically distributed samples D1 and D2, respectively. Denote the Bayes classifier

φBayes, we have

CIS(Ψ) = 2E[1{φ̂n1(X) = φBayes(X), φ̂n2(X) 6= φBayes(X)}]

= 2E[{1− 1{φ̂n1(X) 6= φBayes(X)}}1{φ̂n2(X) 6= φBayes(X)}]

= 2EX [PD1(φ̂n1(X) 6= φBayes(X)|X)− {PD1(φ̂n1(X) 6= φBayes(X)|X)}2]

≤ 2E[1{φ̂n1(X) 6= φBayes(X)}],
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where the last equality is due to the fact that D1 and D2 are independently and

identically distributed. For ease of notation, we will denote φ̂n1 as φ̂n from now on.

We further have

CIS(Ψ) ≤ 2
∞∑
j=0

E[1{φ̂n(X) 6= φBayes(X)}1{X ∈ Aj}]

≤ 2PX(0 < |η(X)− 1/2| ≤ δ) + 2
∑
j≥1

E[1{φ̂n(X) 6= φBayes(X)}1{X ∈ Aj}].

Given the event {φ̂n 6= φBayes} ∩ {|η − 1/2| > 2j−1δ}, we have |η̂n − η| ≥ 2j−1δ.

Therefore, for any j ≥ 1, we have

E[1{φ̂n(X) 6= φBayes(X)}1{X ∈ Aj}]

≤ E[1{|η̂n(X)− η(X)| ≥ 2j−1δ}1{2j−1δ < |η(X)− 1/2| ≤ 2jδ}]

≤ EX [PD(|η̂n(X)− η(X)| ≥ 2j−1δ|X)1{0 < |η(X)− 1/2| ≤ 2jδ}]

≤ C1 exp(−C2an(2j−1δ)2)PX(0 < |η(X)− 1/2| ≤ 2jδ)

≤ C1 exp(−C2an(2j−1δ)2)C0(2jδ)α,

where the last inequality is due to margin assumption (3.7) and condition (3.8).

Taking δ = a
−1/2
n , we have

CIS(Ψ) ≤ C0a
−α/2
n + C0C1a

−α/2
n

∑
j≥1

2αj+1e−C24j−1 ≤ Ca−α/2n ,

for some C > 0 depending only on α,C0, C1 and C2. �

3.7.4 Proof of Theorem 3.3.2

Before we prove Theorem 3.3.2, we introduce a useful lemma. In particular,

we adapt the Assouad’s lemma to prove the lower bound of CIS. This lemma is of

independent interest.

We first introduce an important definition called (m,w, b, b′)-hypercube that is

slightly modified from [63]. We observe independently and identically distributed
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training samplesD = {(Xi, Yi), i = 1, . . . , n} with Xi ∈ X = R and Yi ∈ Y = {1,−1}.

Let F(X ,Y) denote the set of all measurable functions mapping from X into Y . Let

Z = X ×Y . For the distribution function P , we denote its corresponding probability

and expectation as P and E, respectively.

Definition 4 [63] Let m be a positive integer, w ∈ [0, 1], b ∈ (0, 1] and b′ ∈ (0, 1].

Define the (m,w, b, b′)-hypercube H = {P~σ : ~σ
∆
= (σ1, . . . , σm) ∈ {−1,+1}m} of proba-

bility distributions P~σ of (X, Y ) on Z as follows.

For any P~σ ∈ H, the marginal distribution of X does not depend on ~σ and satisfies

the following conditions. There exists a partition X0, . . . ,Xm of X satisfying,

(i) for any j ∈ {1, . . . ,m}, PX(X ∈ Xj) = w;

(ii) for any j ∈ {0, . . . ,m} and any X ∈ Xj, we have

P~σ(Y = 1|X) =
1 + σjψ(X)

2

with σ0 = 1 and ψ : X → (0, 1] satisfies for any j ∈ {1, . . . ,m},

b
∆
=

[
1−

(
E~σ[
√

1− ψ2(X)|X ∈ Xj]
)2
]1/2

,

b′
∆
= E~σ[ψ(X)|X ∈ Xj].

Lemma 7 If a collection of probability distributions P contains a (m,w, b, b′)-hypercube,

then for any measurable estimator φ̂n obtained by applying Ψ to the training sample

D, we have

sup
P∈P

E⊗n[PX(φ̂n(X) 6= φBayes(X))] ≥ mw

2
[1− b

√
nw]. (3.31)

where E⊗n is the expectation with respect to P⊗n.

Proof of Lemma 7: Let ~σj,r
∆
= (σ1, . . . , σj−1, r, σj+1, . . . , σm) for any r ∈ {−1, 0,+1}.

The distribution P~σj,0 satisfies P~σj,0(dX) = PX(dX), P~σj,0(Y = 1|X) = 1/2 for any

X ∈ Xj and P~σj,0(Y = 1|X) = P~σ(Y = 1|X) otherwise. Let ν denote the distribution

of a Rademacher variable σ such that ν(σ = +1) = ν(σ = −1) = 1/2. Denote the

variational distance between two probability distributions P1 and P2 as

V (P1, P2) = 1−
∫ (dP1

dP0

∧ dP2

dP0

)
dP0,
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where a ∧ b means the minimal of a and b, and P1 and P2 are absolutely continuous

with respect to some probability distribution P0.

Lemma 5.1 in [63] showed that the variational distance between two distribution

functions P⊗n−1,1,...,1 and P⊗n1,1,...,1 is bounded above. Specifically,

V (P⊗n−1,1,...,1, P
⊗n
1,1,...,1) ≤ b

√
nw.

Note that P contains a (m,w, b, b′)-hypercube and for X ∈ Xj, φBayes(X) = 1 −

21{η(X) < 1/2} = 1 − 21{(1 + σjψ(X))/2 < 1/2} = σj since ψ(X) 6= 0. Therefore,

we have

sup
P∈P

E⊗n[PX(φ̂n(X) 6= φBayes(X))]

≥ sup
~σ∈{−1,+1}m

{
E⊗n~σ PX(1{φ̂n(X) 6= φBayes(X)})

}
(3.32)

≥ sup
~σ∈{−1,+1}m

{
E⊗n~σ

( m∑
j=1

PX [1{φ̂n(X) 6= σj;X ∈ Xj}]
)}

≥ Eν⊗m
m∑
j=1

E⊗n~σ
(
PX [1{φ̂n(X) 6= σj;X ∈ Xj}]

)
(3.33)

= Eν⊗m
m∑
j=1

E⊗n~σj,0
(dP⊗n~σ

dP⊗n~σj,0

PX [1{φ̂n(X) 6= σj;X ∈ Xj}]
)

= Eν⊗(m−1)(d~σ−j)

m∑
j=1

E⊗n~σj,0Eν(dσj)

(dP⊗n~σ

dP⊗n~σj,0

PX [1{φ̂n(X) 6= σj;X ∈ Xj}]
)

≥ Eν⊗(m−1)(d~σ−j)

m∑
j=1

E⊗n~σj,0
[(dP⊗n~σj,−1

dP⊗n~σj,0

∧
dP⊗n~σj,+1

dP⊗n~σj,0

)
Eν(dσj)

(
PX [1{φ̂n(X) 6= σj;X ∈ Xj}]

)]
(3.34)

= Eν⊗(m−1)(d~σ−j)

m∑
j=1

1

2
PX [1{X ∈ Xj}]

[
1− V (P⊗n~σj,−1

, P⊗n~σj,+1
)
]

=
mw

2

[
1− V (P⊗n−1,1,...,1, P

⊗n
1,1,...,1)

]
≥ mw

2
[1− b

√
nw],

where (3.32) is due to the assumption that P contains a (m,w, b, b′)-hypercube,

(3.33) is because the supremum over the m Rademacher variables is no less than
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the corresponding expected value. Finally, the inequality (3.34) is due to dP⊗n~σ ≥

{dP⊗n~σj,+1
∧dP⊗n~σj,−1

} and the latter is not random with respect to ν(dσj). This ends the

proof of Lemma 7. �

Proof of Theorem 3.3.2: According to the proof of Theorem 3.3.1, we have

CIS(Ψ) = 2
{
EX [PD(φ̂n(X) 6= φBayes(X)|X)]− EX [{PD(φ̂n(X) 6= φBayes(X)|X)}2]

}
.

[21] showed that when αγ ≤ d, the set of probability distribution Pα,γ contains

a (m,w, b, b′)-hypercube with w = C3q
−d, m = bC4q

d−αγc, b = b′ = C5q
−γ and

q = bC6n
1/(2γ+d)c, with some constants Ci ≥ 0 for i = 3, . . . , 6 and C6 ≤ 1. Therefore,

Lemma 7 implies that the first part is bound, that is,

sup
P∈Pα,γ

EX [PD(φ̂n(X) 6= φBayes(X)|X)]

= sup
P∈Pα,γ

ED[PX(φ̂n(X) 6= φBayes(X))]

≥ mw

2
[1− b

√
nw]

= (1− C6)C3C4C5n
−αγ/(2γ+d).

To bound the second part, we again consider the sets Aj defined in Appendix

3.7.3. On the event {φ̂n 6= φBayes} ∩ {|η − 1/2| > 2j−1δ}, we have |η̂n − η| ≥ 2j−1δ.

Letting δ = a
−1/2
n leads to

EX [{PD(φ̂n(X) 6= φBayes(X)|X)}2]

=
∞∑
j=0

EX [{PD({φ̂n(X) 6= φBayes(X)}|X)}21{X ∈ Aj}]

≤ PX(0 < |η(X)− 1/2| ≤ δ) +
∞∑
j=1

EX [{PD({φ̂n(X) 6= φBayes(X)}|X)}21{X ∈ Aj}]

≤ PX(0 < |η(X)− 1/2| ≤ δ) +
∑
j≥1

C1e
−2C24j−1PX(0 < |η(x)− 1/2| ≤ 2jδ)

≤ C0a
−α/2
n + C0C1a

−α/2
n

∑
j≥1

2αje−2C24j−1

≤ C7a
−α/2
n ,
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for some positive constant C7 depending only on α,C0, C1, C2. When an = n2γ/(2γ+d),

we have

EX [(PD(φ̂n(X) 6= φBayes(X)|X))2] ≤ C7n
−αγ/(2γ+d).

By properly choosing constants Ci such that (1− C6)C3C4C5 − C7 > 0, we have

CIS(Ψ) ≥ 2[(1− C6)C3C4C5 − C7]n−αγ/(2γ+d) ≥ C ′n−αγ/(2γ+d),

for a constant C ′ > 0. This concludes the proof of Theorem 3.3.2. �

3.7.5 Proof of Theorem 3.3.3

According to our Theorem 3.3.1 and the proof of Theorem 1 in the supplementary

of [27], it is sufficient to show that for any α ≥ 0 and γ ∈ (0, 2], there exist positive

constants C1, C2 such that for all δ > 0, n ≥ 1 and P̄ -almost all x,

sup
P∈Pα,γ

PD
(
|S∗n(x)− η(x)| ≥ δ

)
≤ C1 exp(−C2n

2γ/(2γ+d)δ2). (3.35)

where S∗n(x) =
∑n

i=1 w
∗
ni1{Y(i) = 1} with the optimal weight w∗ni defined in Theorem

3.2.2 and k∗ � n2γ/(2γ+d).

According to Lemma 6, we have

k∗∑
i=1

(w∗ni)
2 =

2(d+ 2)

(d+ 4)k∗
{1 +O((k∗)−1)} ≤ C8n

−2γ/(2γ+d),

for some constant C8 > 0.

Denote µ∗n(x) = E{S∗n(x)}. According to the proof of Theorem 1 in the supplement

of [27], there exist C9, C10 > 0 such that for all P ∈ Pα,γ and x ∈ R,

|µ∗n(x)− η(x)| ≤

∣∣∣∣∣
n∑
i=1

w∗niE{η(X(i))− ηx(X(i))}

∣∣∣∣∣+

∣∣∣∣∣
n∑
i=1

w∗niE{ηx(X(i))} − η(x)

∣∣∣∣∣
≤ L

n∑
i=1

w∗niE{‖X(i) − x‖γ}+

∣∣∣∣∣
n∑
i=1

w∗niE{ηx(X(i))} − η(x)

∣∣∣∣∣
≤ C9

n∑
i=1

w∗ni

( i
n

)γ/d
≤ C10n

−γ/(2γ+d). (3.36)
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The Hoeffding’s inequality says that if Z1, . . . , Zn are independent and Zi ∈ [ai, bi]

almost surely, then we have

P

(∣∣∣ n∑
i=1

Zi − E
[ n∑
i=1

Zi

]∣∣∣ ≥ t

)
≤ 2 exp

(
− 2t2∑n

i=1(bi − ai)2

)
.

Let Zi = w∗ni1{Y(i) = 1} with ai = 0 and bi = w∗ni. According to (3.36), we have that

for δ ≥ 2C10n
−γ/(2γ+d) and for P̄ -almost all x,

sup
P∈Pα,γ

PD
(
|S∗n(x)− η(x)| ≥ δ

)
≤ sup

P∈Pα,γ
PD
(
|S∗n(x)− µ∗n(x)| ≥ δ/2

)
≤ 2 exp{−n2γ/(2γ+d)δ2/(2C8)},

which implies (3.35) directly. �

3.7.6 Proof of Corollary 3

According to Theorems 3.3.1 and 3.3.2, we have, for any γ ∈ (0, 2],

sup
P∈Pα,γ

CIS(SNN) � n−αγ/(2γ+d).

Therefore, when λ 6= B1/B2, we have

sup
P∈Pα,γ

{
CIS(SNN)− CIS(OWNN)

}
≥ sup

P∈Pα,γ
CIS(SNN)− sup

P∈Pα,γ
CIS(OWNN)

≥ C11n
−αγ/(2γ+d).

for some constant C11 > 0. Here C11 = 0 if and only if λ = B1/B2. On the other

hand, we have

sup
P∈Pα,γ

{
CIS(SNN)− CIS(OWNN)

}
≤ sup

P∈Pα,γ
CIS(SNN) + sup

P∈Pα,γ
CIS(OWNN)

≤ C12n
−αγ/(2γ+d),

for some constant C12 > 0.
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Furthermore, according to Theorem 3.3.3, we have

sup
P∈Pα,γ

Regret(SNN) � n−γ(1+α)/(2γ+d).

Similar to above arguments in CIS, we have

sup
P∈Pα,γ

{
Regret(SNN)− Regret(OWNN)

}
� n−γ(1+α)/(2γ+d).

This concludes the proof of Corollary 3. �

3.7.7 Proof of Corollaries 4 and 5

For the OWNN classifier, the optimal k∗∗ is a function of kopt of k-nearest neighbor

classifier [27]. Specifically,

k∗∗ =
⌊{2(d+ 4)

d+ 2

} d
d+4
kopt

⌋
.

According to Theorem 3.2.2 and Lemma 6, we have

k∗∑
i=1

(w∗ni)
2 =

2(d+ 2)

(d+ 4)k∗
{1 +O((k∗)−1)}.

Therefore,
CIS(OWNN)

CIS(kNN)
→ 22/(d+4)

(d+ 2

d+ 4

)(d+2)/(d+4)

.

Furthermore, for large n,

CIS(SNN)

CIS(OWNN)
=

B3

(∑k∗

i=1 w
∗2
ni

)1/2

B3

(∑k∗∗

i=1 w
∗∗2
ni

)1/2
=
{ B1

λB2

}d/(2(d+4))

.

The rest limit expressions in Corollaries 4 and 5 can be shown in similar manners. �

3.7.8 Calculation of B1 in Section 3.6.2

According to the definition,

B1 =

∫
S

f̄(x0)

4‖η̇(x0)‖
dVold−1(x0).
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When f1 = N(0d, Id) and f2 = N(µ, Id) with the prior probability π1 = 1/3, we

have

f̄(x0) = π1f1 + (1− π1)f2 = 2(2π)−2/d exp{−xT0 x0/2}/3,

and

η(x) =
π1f1

π1f1 + (1− π1)f2

=
(

1 + 2 exp{µTx− µTµ/2}
)−1

.

Hence, the decision boundary is

S = {x ∈ R : η(x) = 1/2} = {x ∈ R : 1Td x = (µd)/2− (ln 2)/µ},

where 1d is a d-dimensional vector of all elements 1.

Therefore, for x0 ∈ S, we have η̇(x0) = −µ/4 and hence

B1 =
2

3µ(2π)d/2
√
d

∫
S

exp{−xT0 x0/2}dVold−1(x0).

=

√
2π

3πµd
exp

{
−(µd/2− ln 2/µ)2

2d

}
.
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4. SUMMARY

Stability is an important and desirable property of a statistical procedure. It provides

a foundation for the reproducibility, and reflects the credibility of those who use the

procedure. To our best knowledge, our work is the first to propose a measure of

classification instability to calibrate this quantity. In this thesis, we first introduce a

decision boundary instability (DBI). This allows us to propose a two-stage classifier

selection procedure based on GE and DBI. It selects the classifier with the most stable

decision boundary among those classifiers with relatively small estimated GEs. We

then propose a novel SNN classification procedure to improve the nearest neighbor

classifier. It enjoys increased classification stability with almost unchanged classifica-

tion accuracy. Our SNN is shown to achieve the minimax optimal convergence rate

in regret and a sharp convergence rate in CIS, which is also established in this article.

Extensive experiments illustrate that SNN attains a significant improvement of CIS

over existing nearest neighbor classifiers, and sometimes even improves the accuracy.

For simplicity, we focus on the binary classification in this article. The concept of

DBI or CIS is quite general, and its extension to a broader framework, e.g., multicat-

egory classification [28,64–67] or high-dimensional classification [68], is an interesting

topic to pursue in the future.

Stability for the high-dimensional, low-sample size data is another important topic.

Our classification stability can be used as a criterion for tuning parameter selection in

high-dimensional classification. There exists work in the literature which uses variable

selection stability to select tuning parameter [14]. Classification stability and variable

selection stability complement each other to provide a description of the reliability of

a statistical procedure.
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Finally, in analyzing a big data set, a popular scheme is divide-and-conquer. It

is an interesting research question how to divide the data and choose the parameter

wisely to ensure the optimal stability of the combined classifier.
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