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ABSTRACT

Sohail, Hamza Bin PhD, Purdue University, May 2015. Architectural Techniques to
Extend Multi-core Performance Scaling. Major Professor: T. N. Vijaykumar.

Multi-cores have successfully delivered performance improvements over the past

decade; however, they now face problems on two fronts: power and off-chip memory

bandwidth. Dennard’s scaling is effectively coming to an end which has lead to a

gradual increase in chip power dissipation. In addition, sustaining off-chip memory

bandwidth has become harder due to the limited space for pins on the die and greater

current needed to drive the increasing load . My thesis focuses on techniques to

address the power and off-chip memory bandwidth challenges in order to avoid the

premature end of the multi-core era.

In the first part of my thesis, I focus on techniques to address the power problem.

One option to cope with the power limit, as suggested by some recent papers, is to

ensure that an increasing number of cores are kept powered down (i.e., dark silicon)

due to lack of power; but this option imposes a low upper bound on performance. The

alternative option of customizing the cores to improve power efficiency may incur in-

creased effort for hardware design, verification and test, and degraded programmabil-

ity. I propose a gentler evolutionary path for multi-cores, called successive frequency

unscaling (SFU), to cope with the slowing of Dennard’s scaling. SFU keeps powered

significantly more cores (compared to the option of keeping them ‘dark’) running at

clock frequencies on the extended Pareto frontier that are successively lowered every

generation to stay within the power budget.

In the second part of my thesis, I focus on techniques to avert the limited off-chip

memory bandwidth problem. Die-stacking of DRAM on a processor die promises to

continue scaling the pin bandwidth to off-chip memory. While the die-stacked DRAM
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is expected to be used as a cache, storing any part of the tag in the DRAM itself erodes

the bandwidth advantage of die-stacking. As such, the on-die space overhead of the

large DRAM cache’s tag is a concern. A well-known compromise is to employ a small

on-die tag cache (T$) for the tag metadata while the full tag stays in the DRAM.

However, tag caching fundamentally requires exploiting page-level metadata locality

to ensure efficient use of the 3-D DRAM bandwidth. Plain sub-blocking exploits this

locality but incurs holes in the cache (i.e., diminished DRAM cache capacity), whereas

decoupled organizations avoid holes but destroy this locality. I propose Bandwidth-

Efficient Tag Access (BETA) DRAM cache (β$) which avoids holes while exploiting

the locality through various metadata organizational techniques. Using simulations,

I conclusively show that the primary concern in DRAM caches is bandwidth and not

latency, and that due to β$’s tag bandwidth efficiency, β$ with a T$ performs 15%

better than the best previous scheme with a similarly-sized T$.
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1. INTRODUCTION

For the past several decades, Moore’s law has been the driving force behind the

computing industry. The doubling of transistors every 2 years and increasing tran-

sistor speed at the same dollar cost delivered exponential performance improvement.

In 1974, Robert Dennard presented the scaling theory for CMOS which postulated

that transistors can be shrinked, and key figures of merit such as operating speed,

layout density and energy efficiency can be improved as long as voltages, geometric

dimensions and doping concentrations are consistently scaled to maintain constant

electric field [1]. Dennard’s scaling has been the major enabling factor in delivering

the promise of Moore’s law. During the earlier process generations, constant voltage

scaling was employed but with almost a linear increase in power consumption, the

industry switched to constant electric field scaling.

However, the slowing of Dennard’s scaling during the last decade due to higher

static power at lower threshold voltages forced the industry to move to multi-cores.

Multi-cores were inevitable since uniprocessor performance improvements were only

sustainable if Dennard scaling had continued. Multi-cores ushered the era in which

higher performance necessitated greater parallelism in applications. Going parallel to

sustain Moore’s law was a major change in the landscape of computing. Multi-core

performance came through exploitation of thread-level parallelism and small improve-

ments in clock frequency. While multi-cores have successfully delivered performance

improvements over the past decade, they now face problems on two fronts: power and

off-chip memory bandwidth. Figure 1.1 shows chip power consumption over the years

and extrapolates the effects of Dennard’s scaling coming to an end. Purportedly, the

imminent end of Dennard scaling will result in multi-cores hitting a utilization wall –

a direct implication of the power wall. With supply voltage no longer scaling, many

architects feel a significant number of transistors simply cannot be activated because
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Fig. 1.1. Power projections (The trends have been extrapolated from
the power trends figure courtesy of Kunle Olukotun and Lance Ham-
mond)

of stringent power constraints.

In Chapter 2, I present an alternate evolutionary path for multi-core scaling in

the absence of Dennard’s scaling that can alleviate the power problem and extend the

life-span of the multi-core era. I argue that architects, so far, have ignored the fact

that memory plays a central role in today’s applications; from databases to webservers

and beyond, memory plays a crucial role in limiting the achievable performance. Be-

cause the power limits are harsh for memory-unintensive application behavior, the

memory-intensive nature of a vast number of today’s applications can act as a boon

rather than a bane for multi-cores.
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Fig. 1.2. Pin count increase with double the cores

In addition to the power conundrum, today’s multi-cores have an increasing de-

mand of memory bandwidth. Doubling the cores, even with double the cache capacity,

increases the memory bandwidth demand by a factor of 2 which necessitates increas-

ing the off-chip memory bandwidth. However, increasing off-chip memory bandwidth

requires increase in pin count as well as device bandwidth. While heavy banking of

DRAM will increase the device bandwidth, bus bandwidth requires an increase in pin

count of the processor chip. Since die sizes do not change, it has become increasingly

difficult to add more pins to increase bus bandwidth due to the limited space for pins

on the die and greater current needed to drive the increasing load. 3-D Die-stacking

aims to alleviate the pin-bandwidth problem. 3-D Die-stacked DRAM is stacked on

top of the chip while Through-Silicon-Vias (TSVs) act as the interface between the

chip and DRAM. Because the vias are on the surface of the chip and not the edges,

it allows for more and wider buses. Even if DRAM is not stacked on top of the pro-

cessor die, it can still offer high bandwidth by being off-die but in the same package

(e.g., Intel’s Haswell GT3e integrates a 128 MB DRAM in the same package). 3-D

Die-stacking is meant to reduce the off-chip traffic which reduces the off-chip memory

bandwidth demand. Consequently, the need to increase pin count can be avoided.

However, the effectiveness of 3-D Die-stacking depends on how well its main feature

(i.e., bandwidth) is used. As conventional wisdom suggests, researchers have proposed
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designing 3-D Die-stacked caches that reduce the off-chip memory traffic. The pri-

mary reason for this choice is that the capacity of 3-D Die-stacked DRAM is still far

less than what off-chip DDR3/DDR4 modules have to offer; it adds negligible capac-

ity to the physical address space if it were to be added as on-package physical memory.

In Chapter 3, I explore the design challenges associated with 3-D Die-stacked

caches. The main advantage of 3-D Die-stacked caches is its high bandwidth. While

it may provide some latency benefits (the smaller size of arrays and shorter delays on

TSVs may reduce access delay), it is really the bandwidth of 3-D-Die stacked DRAM

which enables it to serve the memory demands of multi-cores. First, I conclusively

show how bandwidth (and not latency) is the real feature of 3-D Die stacked caches,

contrary to some recent papers which tend to argue otherwise. Second, I show the

importance of metadata organization in 3-D Die-stacked DRAM in order to preserve

the bandwidth advantages that 3-D Die-stacking has to offer. Chapter 3 shows that

plain-subblocking, a cache design technique invented back in the 1960s, tends to

exploit spatial locality in a way that helps in cutting down the bandwidth demand

due to metadata accesses. However, plain sub-blocking exploits this locality but

incurs holes in the cache (i.e., diminished DRAM cache capacity), whereas decoupled

organizations avoid holes but destroy this locality. To satisfy these seemingly opposing

contraints, Chapter 3 will describe Bandwidth-Efficient Tag Access (BETA) DRAM

cache (β$), a cache design which avoids holes while exploiting the locality through

various metadata organizational techniques with the aim to preserve the bandwidth

advantage provided by 3-D Die-stacked DRAM.

Chapter 4 wraps up the thesis with conclusions drawn from the earlier chapters,

and ends with greater optimism for the future of multi-cores.
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2. COPING WITH THE SLOWING OF DENNARD’S

SCALING

2.1 Introduction

Historically, CMOS scaling has reduced transistor area and per-transistor dynamic

power by about half and has improved switching speed by about 40% from one tech-

nology generation to the next. Specifically, Dennard’s scaling of the supply voltage

has allowed doubling the number of transistors without significantly worsening the

dynamic power [1]. Recently, however, on one hand, Dennard’s scaling has slowed

down significantly due to its undesirable side-effects of higher leakage, narrower noise

margins, and worse reliability (e.g., supply voltage reduces only by 2% now). On

the other hand, transistor count, and hence the number of cores in a multicore, con-

tinue to double. Consequently, there is an exponential divergence between the core

count and the per-core power. Unfortunately, the total chip power budget cannot

be increased due to limits on cooling and power delivery (i.e., the total chip power

will remain constant). These trends imply an increasing power shortage in future

generations.

The imminence of dark silicon – silicon that must be kept deactivated because of

power shortage – has been presaged1 for some time now [2]. A recent paper [3] ana-

lyzes these trends and asserts that an increasing number of cores must be deactivated

in future generations and that future multicore performance is fundamentally limited

by dark silicon. I refer to the previously shown, dark-silicon induced multicore perfor-

mance limit in [3] as (DSL). Alternatively, to alleviate the resulting performance loss,

other papers [4–6] have suggested customizing the cores for specific functionalities to

improve power efficiency and activate more cores with the same power budget. Unfor-

1ARM CTO Mike Muller appears to have coined the term “dark silicon”. [2]
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tunately, the customization option puts multicores on a potentially arduous path of (i)

requiring customization to provide exponential improvements of power efficiency (i.e.,

every generation better than the previous), (ii) incurring increased effort for hardware

design, verification, and test, and (iii) potentially degraded programmability.

In this paper, I show that DSL performance bounds can be exceeded for memory-

intensive applications, and that a gentler, evolutionary path exists where customiza-

tion may be optional but not essential. Previous dark silicon papers [3, 5] examine

design points along the power-performance Pareto frontier covering a large space of

large and small core designs and voltage-frequency-scaled operating points. The pa-

pers assert that the DSL configurations, in which a subset of the cores run at the

Pareto-optimal clock speed while the rest are deactivated, achieves the best possible

performance for a given technology generation and power budget. I emphasize that

DSL deactivates cores and thereby bounds the peak power to be within the budget.

I make three key observations: First, because voltage-scaling has slowed down

considerably, the Pareto frontier extends to a new region derived by frequency scaling

alone. Second, because memory lags far behind processor clocks in speed, perfor-

mance of most realistic workloads for future multicores will be dominated by memory

latency and not processor clock speed (most future multicores with 16 or more cores

are destined for servers with memory-intensive workloads). Finally, because cores

wait for memory in such workloads and thereby dissipate far less power than the

peak, DSL’s average power is well below the budget. Our key result combines the

first two observations to show that lower frequencies on the new extended Pareto fron-

tier enable powering of more or, in many cases, all cores of a multicore which achieve

more memory-latency overlap and better performance than DSL limits. I show that

our results hold despite techniques for reducing, hiding, or tolerating memory latency

via 3-D stacked memory, out-of-order issue, and simultaneous multithreading, respec-

tively. While the DSL configuration bounds its peak power by deactivating cores (i.e.,

in space), I do so by lowering the clock frequencies (i.e., in time). However, our mul-

ticores’ better performance does imply higher average power than DSL’s well-below-
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the-budget average. Nevertheless, as I show later in Section 2.2.2, our multicores’

average power is guaranteed to be within the budget.

I arrive at our key result by exploiting two known non-linear effects, the first

of which is captured by a simple analytical model for multicore performance. Our

model shows that in the degenerate case of absence of memory latency, more cores

running at slower clocks perform similarly to fewer running at faster clocks under the

same power budget as long as the workloads are sufficiently parallel (a condition also

necessary for multicores in general). In the presence of memory latency, however,

more cores running at slower clocks perform better than fewer cores running at faster

clocks. This reversal occurs because of the non-linear impact of clock speed on per-

formance in the presence of memory latency where more active cores achieve more

overlap of memory latency so that the dominant memory component of execution

time reduces far more than the slight increase in the smaller non-memory component

due to the slower clock. While our extra cores do incur more leakage than the DSL

cores (cache capacity, and therefore cache leakage, is the same in both cases), SFU’s

advantage over DSL remains for memory-intensive workloads even after accounting

for this extra leakage in all but extreme cases (e.g., 90% of the chip power is in

leakage). However, because adjusting for the extra-leakage does modestly degrade

memory-unintensive workloads, I propose to revert to the DSL configuration for such

workloads. Thus, our key insight is that, for a broad range of memory-intensive com-

mercial and scientific workloads, slow silicon is better than DSL’s dark silicon as long

as the slow silicon makes memory accesses. While voltage scaling has historically

exploited the non-linear (cubic) relationship between power and voltage, I propose

that clock-performance non-linearity be exploited in the post-Dennard era. Due to

this fundamental non-linearity, DSL’s performance limit can be exceeded for many

realistic and important multicore workloads.

Based on our model’s predictions, I propose a gentler, evolutionary path for multi-

cores than customization, called successive frequency unscaling (SFU). In SFU, more

cores than DSL (and in many cases, all cores) are kept activated and run at succes-
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sively slower clocks every generation to bridge the exponential divergence between the

core count and per-core power in the post-Dennard era. While the linear relationship

between power and frequency is well known, this paper is the first to propose suc-

cessively slower clocks; dynamic voltage and frequency scaling (DVFS) dynamically

changes the clock speed up or down for good power-performance within a technology

generation but does not employ successively slower clocks from one generation to the

next.

I employ SFU in two contexts with different performance metrics. In the first

context of workloads where job execution time is the only metric (e.g., scientific

applications), I employ full SFU wherein I unscale frequency to power all the cores.

Surprisingly, despite considerably slower clocks in later generations (e.g., sub-GHz)

full SFU exceeds the DSL performance limit. Not surprisingly, however, SFU does

not completely close the gap between a DSL configuration and a power-unconstrained

system due to the slower clock. In the other context of enterprise workloads (e.g., on-

line transaction processing) where both throughput and response latency matter, the

slower clock of full SFU would degrade single-thread performance, and hence response

latency. Accordingly, I employ controlled successive frequency unscaling (C-SFU)

which moderately slows down the clock and powers many, if not all, cores to achieve

better throughput than DSL. C-SFU avoids degrading response latency despite the

clock slowdown by exploiting the second non-linearity that the higher throughput of

C-SFU non-linearly reduces the queuing component of response latency and thereby

compensates for the slower clock. Finally, SFU’s simplicity implies better performance

at virtually no design effort or complexity, enabling a viable evolutionary path for

multicores.

The key contributions of this paper are:

• I propose the unusual idea of successively slower cores to stay within the power

budget in the post-Dennard era.
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• I show that, for memory-intensive applications (which includes important com-

mercial benchmarks) our approach can exceed the DSL’s performance limits.

The key results of this paper are:

• for memory-intensive workloads, SFU performs 46% better than DSL’s limits at

the 11 nm technology node whereas for memory-unintensive, workloads I revert

to the DSL configuration; and

• for response-time-sensitive enterprise workloads, C-SFU achieves 21% better

throughput than DSL at the 11 nm technology node while maintaining the

total response latency including queuing delays to be within +/- 10%.

• while out-of-order cores partially reduce opportunity for SFU by reducing the

exposed memory latency, there remains ample opportunity for SFU to improve

performance compared to DSL (e.g., SFU with out-of-order cores achieves 18%

better performance then DSL with out-of-order cores at the 22nm technology

node).

The rest of the paper is organized as follows. Section 2.2 discusses our intuition and

qualitative arguments behind SFU, and then presents a simple power-performance

model for multicores to provide quantitative corroboration of our intuition. Sec-

tions 2.3 and 3.5 validate our model using simulations of commercial and scientific

workloads. Finally,

2.2 Multicore power and performance

I start with the intuition behind SFU followed by an analytical model.

2.2.1 Intuition

The two key claims by Esmailzadeh et al. [3] are that (1) the limit on perfor-

mance achievable in practical multicore systems of future technology generations is
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significantly lower than the performance of a power-unconstrained multicore system

in the equvalent technology generation, and (2) dark-silicon is inevitable for opti-

mal performance. Esmailzadeh et al.do not examine frequency scaling alone because,

where both voltage and frequency scaling are possible, scaling frequency alone is

not Pareto-optimal. However, in regions where further voltage scaling is infeasible,

frequency-scaling alone can be used to extend the power-performance Pareto fron-

tier. Even in this extended Pareto frontier, frequency scaling alone cannot improve

upon DSL for memory-unintensive applications (i.e., applications with little exposed

memory latency) because both techniques offer the same linear improvement (degra-

dation) in performance for linear increase (reduction) in power. However, I observe

that when I include the effect of exposed memory latency, the power-performance

tradeoff due to frequency unscaling becomes sub-linear because the exposed memory

latency does not scale. Such sublinearity is advantageous because a large reduction in

frequency (which reduces power linearly) results in less-than-proportional reduction

in performance. This difference in the impact of frequency scaling on dynamic power

(linear) and performance (sub-linear) is central to enabling our design to achieve

higher performance than the DSL limits would imply.

Recent work [7] reveals that near-threshold operation is performance-per-watt

optimal for perfectly parallelizable programs. Given that the dark-silicon problem

is to maximize performance under a fixed power-budget, one may think that such

performance-per-watt optimality is ideal. However, near-threshold-computing’s en-

ergy optimality results in very slow speed (e.g., 3-MHz Intel Claremont). As such,

even though individual cores may be performance-per-watt optimal, the system as a

whole will run into other bottlenecks (e.g., area, application scalability) which can

prevent the utilization of the full power budget and hence degrade performance. Fur-

ther, the paper does not consider memory effects which is the main focus of our

work.
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Next, to support the above qualitative reasoning, I develop a simple analytical

model of the combined impact of SFU’s frequency unscaling and memory latency

effects on overall multicore power-performance.

2.2.2 Model

Our model is derived from Amdahls’ Law [8] and more recent revisits of Amdahl’s

Law in the context of multicores [3,9]. However, recall from Section 3.1 that the key

reason for our better performance is more cores achieving higher overlap of mem-

ory latency. Accordingly, our model specifically includes memory latency effects in

addition to the usual serialization effects.

I first describe our model for a multicore that is not constrained by power. Then,

I modify this model to include power constraints either via the DSL configuration or

successive frequency unscaling (SFU). Let

• s be the serial portion of sequential execution time (i.e., 1 − s is the parallel
portion);

• c be the factor by which the clock frequency improves every technology gener-
ation (e.g., if the clock speed improves by 20% then c = 1.2); and

• m be the fraction of sequential execution time due to memory latency (i.e.,
1−m is the non-memory, compute fraction).

I derive m as follows: Assuming the number of off-chip misses per kilo instructions

(MKPI) is r, the per-access average exposed main memory latency is memlat in

processor cycles, and the processor cycles per instruction (CPI) with 0% off-chip miss

rate is instrlat then

m = r ×memlat/(1000× instrlat + r ×memlat).

For example, assuming an off-chip miss rate of 2% which usually corresponds to r

of 5, memlat of 400, and instrlat of 0.5 gives m = 0.80. I note that memlat denotes

exposed memory latency, and hence covers both in-order- and out-of-order-issue cores

though the latter’s memlat and m values would be smaller than the former’s.

To simplify the model, I assume that
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• both the parallel and serial portions of the application incur the same fraction
m of execution time due to memory latency;

• employing more parallel cores does not change the fraction m of execution time
due to memory (our experimental evaluation avoids these two assumptions by
using real workloads);

• the factor c is constant across generations while in reality clock speed improve-
ments may reduce in later generations resulting in an overall average of c (our
experimental evaluation uses actual, non-constant factors);

• the cores do not employ simultaneous multithreading (SMT) (I include SMT
later); and

• memory bandwidth scales with the number of cores (I revisit this assumption
in our results).

Defining the execution time on the generation-0 system as 1 (i.e., our normaliza-

tion base), the breakdown of the total execution time may be expressed as:

s× ((1−m) +m) + (1− s)× ((1−m) +m)

Over n technology generations, the non-memory, compute fraction 1 − m scales

as (1 − m)/cn due to clock speed improvements while the memory fraction m re-

mains unchanged. This scaling occurs for both the serial and parallel portions so

that the serial portion scales as s × (
1−m
cn

+ m) and the parallel portion scales as

(1 − s) × (
1−m
cn

+ m). In addition, the parallel portion gets further sped up by a

factor of 2 every generation due to the doubling of the core count so that the parallel

portion scales overall as

(1− s)× (
1−m
cn

+m)

2n
.

Thus, after n generations since the last uniprocessor, a power-unconstrained (PU)

multicore achieves a net speedup of

1

s× (
1−m
cn

+m) +
(1− s)× (

1−m
cn

+m)

2n

(2.1)

I note that while the 1 −m compute terms in both the serial and parallel portions

diminish exponentially over generations due to faster clocks, the m memory term
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in the parallel portion diminishes exponentially due to more cores’ higher memory-

level parallelism. For memory-intensive workloads, m is generally greater than 1−m

making the number of cores more important than the clock speed for performance

(from the above example, m is 0.80). As I will see shortly, this difference is the key

contrast between DSL and SFU where the former keeps only a subset of the available

cores powered whereas the latter keeps all the cores powered albeit at a slower clock.

For the DSL multicore which is constrained by power, let p be the factor by which

the per-core dynamic power scales every technology generation due to a combination

of feature size scaling, slow scaling of voltage, and transistor engineering (e.g., if power

reduces by 20% then p = 0.8). To simplify the model, I assume that

• the dynamic power of the on-chip (non-L1) caches and network for a core’s
accesses are included in the core’s dynamic power (an accounting simplification
that does not affect the model’s predictions);

• leakage is zero (I add in leakage in the next section); and

• p, like c, is constant across generations while in reality dynamic power improve-
ments may reduce in later generations resulting in an overall average of p.

To stay within the constant power budget across generations, DSL bounds its peak

power by limiting the number of cores after n generations to (2 × 0.5/p)n = 1/pn

(i.e., bound in space). DSL differs from PU only in the number of active cores

—- 1/pn versus 2n; DSL enjoys identical clock speed and last-level, shared cache

size improvements, and incur similar memory latency effects. Therefore, the DSL

multicore’s net speedup after n generations is

1

s× (
1−m
cn

+m) +
(1− s)× (

1−m
cn

+m)

1/pn

(2.2)

I see that DSL exploits significantly less memory-level parallelism than PU due to

fewer active cores. This limitation considerably degrades performance for realistic

multicore workloads which are memory-intensive.
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SFU achieves the same peak bound by successively scaling down the clock over

generations so that the per-core power from one generation to the next is half allowing

twice as many cores to be powered (i.e., bound in time). Let α be the factor by

which the clock speed is unscaled every generation on top of the factor c provided

by technology scaling, so that α × p = 0.5. To account for the dynamic power of

the on-chip (non-L1) caches and network, this unscaling applies to those components

as well. SFU differs from PU only in the scaling of the clock speeds —– cn versus

(α× c)n, while maintaining the same number of active cores (i.e., 2n) and cache size.

Consequently, the SFU multicore’s net speedup after n generations is

1

s× (
1−m

(α× c)n
+m) +

(1− s)× (
1−m

(α× c)n
+m)

2n

(2.3)

Comparing DSL and SFU, I consider all four components of execution time (the

denominators in the above performance expressions): serial-non-memory (s × (1 −

m) terms), serial-memory (s × m terms), parallel-non-memory ((1 − s) × (1 − m)

terms), and parallel-memory ((1−s)×m terms). DSL reduces the serial-non-memory

component by the factor of cn and is better than SFU which reduces by the smaller

factor of (α×c)n. However, this component is likely to be small for parallel, memory-

intensive workloads. DSL and SFU are equal in the serial-memory and parallel-non-

memory (the second and third) components. The equality in the second component

is obvious. To see the equality in the third component, DSL reduces the component

by a factor of pn/cn whereas SFU reduces by a factor of 2n/(α×c)n where α×p = 0.5.

DSL reduces the (fourth) parallel-memory component by a factor of (1/p)n which is

worse than SFU’s factor of 2n, highlighting our insight that slow silicon is better than

dark silicon in the presence of memory latency (e.g., if p = 0.8, then DSL’s and SFU’s

factors are 1.25n and 2n, respectively, giving SFU a significant advantage in memory-

level parallelism). As discussed above, in memory-intensive parallel workloads, the



15

parallel-memory component is likely to dominate the other components, magnifying

SFU’s advantage. Therefore, DSL’s limit can be exceeded.

Impact of leakage:

The above analysis ignores leakage power, which generally increases with lower

supply voltage and higher transistor count. In the post-Dennard generations, how-

ever, leakage as a fraction of the total power budget will either remain a constant

(e.g., 25-30%) or increase only slowly (e.g., under 5% per generation) due to two rea-

sons: (1) voltage scaling has slowed down considerably and (2) the rate of growth of

transistor speed over generations is reduced to compensate for the doubling of tran-

sistor count every generation (e.g., by fine-tuning the transistor threshold voltage).

Recent commercial microprocessors follow this methodology to keep leakage under

check [10]. Note, I assume SFU and DSL use the same fast, leaky transistors (i.e.,

per-transistor leakage is the same for SFU and DSL). This assumption enables us to

operate a subset of processors with the same maximum frequency as DSL which is

important to allow for memory-unintensive workloads.

Let l be the leakage budget as a fraction of the total power budget in the last

uniprocessor generation and λ be the rate at which the total chip leakage budget

increases every generation. Then, the chip leakage budget scales as λn × l after n

generations (to be meaningful, λn × l < 1 for any n), whereas the chip dynamic

power budget scales as (1 − λn × l). To make room for leakage, this new dynamic

power budget is lower than our previously-assumed full budget. Let fl be the core

leakage as the fraction of the total chip leakage, the remainder of which is the cache

leakage. This scaling implies that (1) the core counts and clock frequencies for DSL

and SFU, respectively, should be adjusted for this new dynamic power budget at every

generation; and (2) DSL’s fewer cores incur less leakage than the allotted budget (and

also less than SFU), allowing more cores to be added (the DSL paper does not discuss

such compensation).
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Because the new, lower dynamic power budget is the same for DSL and SFU, both

designs are affected similarly. Both DSL’s core count for generation n, given by 1/pn,

and SFU’s clock frequency, given by (α × c)n in Equations 2.2 and 2.3, respectively,

reduce by the factor (1−λn × l). Therefore, SFU maintains its advantage in memory-

level parallelism, and hence performance, over DSL.

To account for DSL’s leakage budget surplus, I observe that the budget for the

core leakage, total dynamic power, and cache leakage scale as fl×λn× l, (1−λn × l),

and (1−fl)×λn×l, respectively. I analyze each of these terms for DSL. Because there

are 2n cores in all, the per-core leakage in DSL is fl × λn × l/2n. Because 1/pn DSL

cores account for the full dynamic power budget, the per-core dynamic power for DSL

is (1 − λn × l) × pn. Because both DSL and SFU have the same cache capacity, the

cache leakage is the same in the two designs. Therefore, assuming x DSL cores use

the full power budget, the total core leakage (= per-core leakage ×x), total dynamic

power (= per-core dynamic power ×x) and the cache leakage add up to 1. That is,

(
fl × λn × l

2n
+ (1− λn × l)× pn)× x = 1− (1− fl)× λn × l (2.4)

To tie leakage and performance together, the number of DSL cores in Equation 2.2

should be changed from 1/pn to the value of x from Equation 2.4. To analyze Equa-

tion 2.4, I observe that the caches’ large transistor counts (e.g., 75% of all on-chip

transistors) are offset only partly by the fact that they can use slower, less-leaky tran-

sistors than the cores. As such, caches account for a large part of the chip leakage

(e.g., the core leakage fraction fl is 0.4). This large part forces the right hand side

of Equation 2.4 not to be large. Further, compensating for DSL’s leakage surplus by

adding extra DSL cores adds both their small leakage and their large dynamic power

(including the accompanying dynamic power for the on-chip (non-L1) caches and net-

work). These two components make the left term of the product in the left hand side

large. Consequently, x is not large (i.e., not much larger than 1/pn), implying that

DSL’s leakage surplus can accomodate only a few extra cores.
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I illustrate this point with some realistic examples based on known scaling trends [4].

Assume a constant 30-70 split of the total budget for leakage and dynamic power (i.e.,

l = 0.3 and λ = 1) and a 40-60 split of the leakage budget for the cores and caches

(i.e., fl = 0.4). Assume generation 6 with 64 cores (i.e., n = 6) and DSL’s p = 0.646

(i.e., p6 = 0.073). While SFU runs all the 64 cores at a slower clock, DSL runs 1/p6

= 13.7 cores at the full clock speed. SFU splits a total budget of 100 as 12, 70, and

18 for the core leakage, dynamic power, and cache leakage, respectively. DSL has the

same dynamic power (70) and cache leakage (18) as SFU. Because each DSL core’s

leakage is 12/64, DSL’s total budget with 13.7 cores is (12/64) ∗ 13.7 + 18 + 70 =

90.57, and not 100 as it is for SFU. Therefore, a few more DSL cores can be acco-

modated. Assuming x DSL cores and plugging in our values in Equation 2.4 gives

(12/64 + 70/13.7) ∗ x + 18 = 100, giving x = 15.5. DSL’s leakage surplus is equiva-

lent to only 15.5 -13.7 = 1.8 extra DSL cores. Thus, I see that SFU’s advantage of

memory-level parallelism remains. However, the advantage exists solely for memory

intensive applications where the parallel memory component (fourth term in the de-

nominator of Equation 2.2 and Equation 2.3) reduces with memory-level parallelism.

For memory-unintensive applications, where m is negligible, DSL is better because of

the additional cores due to leakage compensation.

Increasing the the total chip leakage budget from 30% to as much as 50% (i.e.,

l = 0.3 and λ = 1.09) implies that the core leakage, dynamic power, and cache

leakage are 20, 50, and 30 in SFU, respectively. The DSL calculations change to

(20/64 + 50/13.7) ∗ x + 30 = 100, giving x = 17.7, or 4 extra DSL cores. Now, the

number of extra DSL cores can be much larger. For example, if the total chip leakage

budget goes to 90% (i.e., l = 0.9) and core leakage is also 90% of all leakage (i.e., fl

= 0.9), then (81/64 + 10/13.7) ∗ x+ 9 = 100, giving x = 45.6. In this extreme case,

SFU has fewer than 2x cores than DSL (45.6 versus 64) but a much slower clock, so

that SFU’s memory-level parallelism advantage may not offset its clock disadvantage.

As an aside, I note that higher leakage (from 30% to 90%) leads to more DSL cores

(from 15.48 to 45.6). The dark silicon problem diminishes because dynamic power,
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which is worsensed considerably by the slowing down of Dennard’s scaling, is now the

minor component whereas leakage, the major component, increases only slowly. In

our experiments, I show the more realistic cases of 30% and 50% leakage.

Finally, I discuss a subtle point: One might think that if DSL has a 25-75 split of

per-core leakage versus per-core dynamic power (this ratio is different from any of the

above), then SFU having 4x more cores than DSL would imply zero dynamic power for

SFU cores (Amdahl’s leakage limit). While true, this limit is rarely reached. Although

chip leakage is 50% in our second example above, DSL’s per-core leakage versus per-

core dynamic power ratio is 20/64 versus 50/13.7 or 1 versus 11.67 which is drastically

different than the starting assumption of 20 in core leakage and 50 in dynamic power

(or 1 versus 2.5). Because Dennard’s scaling has slowed significantly while leakage

stays constant or increases only slowly, DSL’s per-core dynamic power far exceeds the

per-core leakage in future generations, making the leakage limit irrelevant in realistic

scenarios. I note that while DSL’s ratio of core leakage to core dynamic power, and

not SFU’s ratio, is relevant for this limit, SFU’s ratio in this example is 20/64 versus

50/64 or 1 versus 2.5 because SFU scales down the clock to reduce the per-core

dynamic power.

SFU’s peak power bound:

After adjusting for leakage, DSL and SFU have the same peak power though

DSL bounds its peak power to be within the budget by deactivating cores (i.e., in

space) whereas SFU does so by lowering the clock frequencies (i.e., in time). However,

SFU’s higher performance in memory-intensive workloads means higher average power

than DSL. Nevertheless, SFU’s average power is still within the budget. To validate

this claim, I note that due to exposed memory latency, DSL’s average power for

these memory-intensive workloads falls below its peak by a factor determined by the

latency. (There is no such power slack for memory-unintensive workloads.) Because

SFU can at most eliminate this latency through higher memory-level parallelism,
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SFU’s performance, and hence average power, can increase at most by this factor.

Therefore, SFU’s average power is within the budget.

Effect of SMT:

The above model does not include SMT. It may seem that because SMT reduces

each core’s exposed memory latency via better thread overlap, SFU’s opportunity

would decrease with SMT. However, SMT increases the number of threads to im-

prove thread ovelap but does not change each thread’s compute-memory overlap or

performance (ignoring any extra cache misses due to SMT’s increased cache pres-

sure). SMT’s thread overlap is no different than that achieved by the cores of a

multicore (i.e., one core’s memory latency is overlapped by the other cores’ com-

putation and memory accesses) and the non-linear impact of memory latency on

power-performance tradeoff holds in a multicore irrespective of the number of cores,

as seen in Equation 2.1. Therefore, the non-linearity holds for SMT as well, implying

that the above model stays valid for SMT. One may think that DSL, like SFU, can

also increase its memory-level parallelism via SMT. However, adding SMT contexts

to a core would linearly increase its activity factor, and hence dynamic power, and

would force the number of DSL cores to be cut by the same factor. Therefore, DSL’s

performance, and hence SFU’s opportunity, would remain unchanged with SMT.

In reality, SMT’s increased cache pressure may actually increase cache misses and

thereby increase SFU’s opportunity. I include SMT in all our results.

As an aside, I note that unlike SMT, out-of-order issue does increase each thread’s

compute-memory overlap and therefore, may decrease SFU’s opportunity. I evaluate

this point in our results.

Controlling single-thread latency:

SFU, as proposed, improves (1) overall execution time of parallel workloads (e.g.,

scientific workloads) and (2) throughput of enterprise workloads (e.g., on-line trans-
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action processing). However, full SFU requires scaling the clock by (α× c) every gen-

eration which may degrade single-thread performance, and hence response latency,

of enterprise workloads. This degradation may be considerable despite the sub-linear

impact of clock on performance particularly in later generations where the clock is

slowed down significantly with full unscaling. To address this issue, I exploit the

other non-linear impact of throughput on queuing delays where higher throughput

super-linearly reduces the queuing delay component of response latency as dictated

by queuing theory, and thereby compensates for the slower clock. Based on this non-

linear relationship, I propose to reduce the unscaling factor α compared to full SFU,

still allowing more cores to be powered than DSL, though not all the cores like full

SFU. I choose α so that the resultant degradation of single-thread execution time

is matched by the gain in the queuing delay due to higher throughput, resulting in

similar total response latency and higher throughout as compared to DSL. I propose

to apply such controlled SFU (C-SFU) only for response-latency-sensitive workloads

and not for others.

Because C-SFU allows only a subset of the cores to be powered, I consider the

option of converting the area and leakage of the remaining unpowered cores, which

would otherwise be dark silicon, into additional last-level cache (unlike core cus-

tomization, this option does not worsen design/programmability costs). While the

same design can choose dynamically between full or controlled SFU based on the

workload, this option cannot be applied dynamically and, if employed, would require

different designs for full and controlled SFU. Though DSL’s surplus core leakage bud-

get is already used up for extra cores (Section 2.2.2), I still consider this conversion

option for DSL as well.

2.2.3 Model’s predictions

To illustrate our model’s predictions, I analyze four regions of the workload-

characteristics space in Figures 2.1(a) through (d), respectively: (1) mostly serial
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Table 2.1.
Clock and active core scaling with technology generations (c = 1.07,
p = 0.73, α = 0.68)

Parameter Arch. G0 G1 G2 G3 G4

Clock (GHz)
PU,DSL 3.2 3.42 3.66 3.92 4.19
SFU 3.2 2.33 1.69 1.23 0.90

Active cores
PU,SFU 4 8 16 32 64
DSL 4 5.61 7.79 10.69 14.67

and memory-unintensive (s = 0.8 and m = 0.02), (2) mostly serial and memory-

intensive (s − 0.8 and m = 0.8), (3) highly and memory-unintensive (s = 0.01 and

m = 0.02), and (4) highly parallel and memory-intensive ( s = 0.01 and m = 0.8).

The figure compares the PU (Equation 2.1), DSL, (Equation 2.2 with the adjust-

ment for the number of cores from Equation 2.4), and SFU (Equation 2.3) multicores

across technology generations. The Y axis shows the speedups for the multicores over

our generation-0 4-core multicore; and the X axis shows the technology generations

1 through 4. I assume that the clock and power improvement factors across gener-

ations, c and p, are 1.07 and 0.73, respectively, in line with the conservative scaling

trends in [4]. Based on this p, the frequency unscaling factor, α, is 0.68. I assume

a chip leakage budget of 30% of which 40% is core leakage (i.e., l = 0.3, λ = 1, and

fl = 0.4). Using these scaling values, Table 2.1 shows the clock frequencies and the

number of active cores across generations (G0 through G4) for PU, DSL, and SFU

multicores.

Figure 2.1(a) shows that for serial workloads (s = 0.8), the active core count

does not matter and DSL performs as well as PU. On the other hand, SFU performs

worse due to its slower clock. However, serial workloads are unimportant for future

multicores which are destined for servers where multi-threaded workload is the norm.

As such, the speedups are low even for PU due to the highly-serial workload, placing

SFU within normal range. Further, power is not a problem for such workloads which

need only a few cores.
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Fig. 2.1. Speedups across generations of PU, DSL, and SFU multi-
cores over a four-core multicore (generation 0) for the following work-
loads: (a) mostly serial and memory-unintensive, (b) mostly serial,
and memory-intensive, (c) mostly parallel and memory-unintensive,
and (d) mostly parallel and memory-intensive

The same analysis holds for Figure 2.1(b) though the speedups are even lower

compared to those of Figure 2.1(a) because of the higher impact of memory latency

which does not scale.

In Figure 2.1(c) which shows parallel, memory-unintensive workloads, PU per-

forms better than both DSL and SFU. However, DSL outperforms SFU because (1)
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Fig. 2.2. Sensitivity to model parameters (speedup relative to gen-
eration 0, 4-core configuration) for the different values of m and s:
(a) Variable memory intensity with s = 0.01, (b) Variable parallelism
with m = 0.8

SFU’s memory parallelism offers no advantage for memory-unintensive worklaods and

(2) DSL enjoys the benefit of added cores to compensate for SFU’s added leakage, as

mentioned in Section 2.2.2.

Finally, Figure 2.1(d) shows that for parallel, memory-intensive workloads, PU

performs better than DSL for the same reason as Figure 2.1(c). Despite the lack

of power constraints, PU does not achieve linear speedups with the number of cores

due to the serial portions (Amdahl’s Law effect). SFU performs better than DSL

due to higher memory-level parallelism achieved by SFU’s more, albeit slower, cores

in the major parallel-memory component of this workload. Nevertheless, SFU does

not fully close the gap between PU and DSL due to SFU’s slower clock (Table 2.1)

which affects both the serial-non-memory and parallel-non-memory components in

the workload. I show in Section 3.5 that our real-world commercial and scientific

workloads closely track Figure 2.1(d).

Sensitivity to model parameters: Figure 2.2 illustrates the sensitivity of SFU’s

speedups to the two parameters s and m. Figure 2.2(a) confirms that SFU remains

faster than DSL with m as low as 0.5 which is well below the expected exposed miss



24

Table 2.2.
Scaling factors relative to Gen0 (45nm)

Parameter Gen0 Gen1 Gen2 Gen3 Gen4
Tech Node (nm) 45 32 22 16 11
Clock (ci) 1.00 1.10 1.19 1.25 1.30
Vdd 1.00 0.93 0.88 0.86 0.84
Capacitance 1.00 0.75 0.56 0.42 0.32
Dyn. Power (pi) 1.00 0.71 0.52 0.39 0.29
SFU factor (αi) 1.00 0.70 0.48 0.32 0.22

latency given miss-rates (2%) and given current memory latency trends. Similarly,

Figure 2.2(b) confirms that SFU performs better than DSL at s < 0.1. Note that

with s >= 0.1 the Amdahl’s speedup limit is 10X and thus serialization is a tighter

bottleneck than the power constraint.

2.3 Experimental Methodology

I run full-system simulations using Wisconsin GEMS [11] built on top of Sim-

ics [12]. I simulate SPARC-based multicores running Solaris 10.

Technology Scaling: While our main results use technology scaling parameters

from the conservative projections for planar transistors by Borkar et al. [4], I also

show some brief results using ITRS’s more aggressive projections for FinFETs [13].

Based on Borkar’s projections, Table 2.2 shows the improvement factors over 45nm

technology node for clock frequency (ci for the ith generation, in Section 2.2.2), supply

voltage (Vdd), capacitance, and per-core power (pi). The table also shows SFU factors

(αi in Section 2.2.2 where αi ∗ pi = 0.5i).

Multicore organization: I assume a tiled organization in which each multicore

“tile” comprises a core, private L1 I- and D-caches using MESI coherence protocol,

and a local bank of the shared, unified L2. The tiles are connected via an on-chip

network with memory controllers at the network edges.
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Core: While our baseline generation assumes in-order-issue, two-way SMT cores

(line 1 in Table 2.3), I also show some brief results for out-of-order-issue cores. I use

two-way SMT cores which are common in Intel designs to match our scaling numbers

in Table 2.2 which are based on Intel designs [4]. Based on the per-core power

and clock factors from Table 2.2, I list the number of active cores and the actual

clock frequencies for PU, DSL and SFU in Table 2.4. While c and p are assumed

to be constants in Section 2.2.2, Borkar’s scaling assumes that the factors vary from

one generation to the next (Table 2.2). Consequently, clock frequencies in Table 2.1

and Table 2.4 differ slightly.

Cache Capacity and Access Latency: I hold key parameters of the L1 cache

and the per-core L2 bank (capacity, block size, associativity and access latency in

cycles) constant across generations (lines 2 – 8 in Table 2.3). The aggregate L1 and

L2 capacities double every generation as per Moore’s Law. Though DSL keeps many

of its cores powered down, it uses all of the shared L2 cache including the banks in

the inactive cores’ tiles (i.e., all three designs, PU, DSL, and SFU, have the same

amount of L2 cache in each generation). Consequently, a deeper on-chip hierarchy

(e.g., L3) will improve DSL and SFU to similar extents.

I conservatively assume that the access latencies in ns of L1 and L2 bank scale at

the same rate as frequency improvement. Consequently the access latencies in cycles,

stays constant across generations for PU, DSL, and SFU (line 8 in Table 2.3), though

SFU’s slower clock implies longer latencies in ns.

On-chip Network: I assume a dimension-order routed, 2D mesh network (line

9 in Table 2.3) which grows across generations (line 7 in Table 2.4). Our simulator

models a simple 1-cycle router delay per hop where the link latency scales slower

than logic due to the well-known wire-delay effects. Accordingly, I assume a modest

1-cycle increase in latency at Gen3 for PU, DSL, and SFU (line 8 in Table 2.4). Here

again, SFU’s slower clock implies longer latencies in ns.

DRAM Latency and Bandwidth (including impact of die-stacking):

There are two sources of DRAM latency improvement: technology scaling every gen-
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Table 2.3.
Invariant parameters across generations

Parameter Values

1 SMT contexts per core 2
2 Private L1D size (KB) 64
3 Private L1I size (KB) 64
4 Private L1 associativity 4
5 L1 access (cycles) 3
6 Shared L2 associativity 32
7 Shared L2 block size (bytes) 64
8 L2 bank (cycles) 17
9 Network Topology 2D mesh
10 Channel width (bits) 64
11 Mem. Ctrl. Queue (entries) 32
12 Page mode closed

Table 2.4.
Parameter scaling with technology generations

Parameter Values
Gen0 Gen1 Gen2 Gen3 Gen4 Scaling Comments

1 Number of cores (PU/SFU) 4 8 16 32 64 2X per gen
2 Number of cores (DSL) 4 6 8 12 16 Power-limited
3 Clock (GHz) (PU/DSL) 3.2 3.52 3.81 4 4.16 As per Table 2.2
4 Clock (GHz) (SFU) 3.2 2.48 1.73 1.28 0.89 As per Table 2.2
5 Shared L2 size (MB) 4 8 16 32 64 2X per gen
6 Shared L2 banks 4 8 16 32 64 2X per gen
7 Network 2x2 2x4 4x4 4x8 8x8
8 Link latency (cycles) 2 2 2 3 3 Slower than f scaling
9 Memory (DSL/PU) cycles 320 344 368 380 400 2% reduction per gen
10 Memory (SFU) cycles 320 240 180 124 86 2% reduction per gen
11 Number of DRAM banks 16 32 64 128 256 2X per gen
12 Number of memory channels 1 2 4 8 16 2X per gen
13 Number of instances (DSL) 1 1 2 4 4 Problem size scaling
14 Number of instances (SFU/PU) 1 1 2 4 8 Problem size scaling
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Table 2.5.
Workloads: Description and Characteristics

Commercial Workloads MPKI

SPECjbb: version 2005, Java-based 3-tier client/server system workload
with emphasis on the middle tier. Java server VB version 1.5 with parallel
garbage collection. I simulate a system with 24 warehouses (~600 MB).

7.1

Online Transaction Processing (OLTP): models database transactions of
a wholesale parts supplier. I use PostgreSQL 8.3.7 database system and
DBT-2 test suite which implements TPC-C benchmark. I use a database of
25,000 warehouses (~5GB). I simulate 128 concurrent database connections.

5.1

Apache: version 2.2.9, a static web server workload with repository of
20,000 files (~500 MB). SURGE is used to generate web requests by simu-
lating 1600 clients, each with 25ms think time between requests.

17.9

Scientific Workloads (memory-intensive)

FFT: is a Splash benchmark that computes Fourier transforms. I run the
transpose computation of 4 Million complex numbers (~64 MB) for gener-
ation 0 to 2 and 16 Million complex numbers for generation 3 and 4.

10.2

canneal: is a Parsec benchmark that models cache-aware annealing to op-
timize routing cost of a chip design. I use the native dataset (~100 MB).
Systems for generations 0 to 2, 3 and 4 optimize 1, 2 and 4 chips respec-
tively.

4.0

Streamcluster: is a Parsec benchmark that performs online clustering of
an input stream. I use 1 million 128-dimensional points, 5000 intermediate
centers (~100 MB) for generation 0 to 3 and and 2 million 128-dimensional
points , 20000 intermediate centers (~ 275 MB) for generation 4.

4.8

eration and one-time move to 3-D die-stacking. I assume that the former yields the

usual 2% per generation (optimistic estimate as trends indicate no improvement in

DRAM latency [14]) and show the resultant memory latency in cycles for PU, DSL,

and SFU in lines 9 – 10 in Table 2.4. I assume that the latter achieves the expected

30% latency reduction [5, 15] which I evaluate in Section 2.4.3.

I assume that the number of DRAM banks (i.e., the internal DRAM bandwidth)

doubles every generation, in line with the scaling of DRAM density (line 11 in Ta-

ble 2.4). I assume closed page mode which works best for multi-threaded workloads

(line 12 in Table 2.3) [16]. I show our main results assuming that processor-memory

bandwidth (i.e., the number of memory channels) scales across generations (line 12

in Table 2.4). This assumption is in anticipation of the imminent deployment of 3-D

stacking technology. Further, a recent paper [17] shows that compression and other
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techniques can allow conventional pin bandwidth to scale beyond 100 cores, covering

many future generations. Nevertheless, I include results constraining the number of

memory channels in Section 2.4.3.

Leakage: As explained in Section 2.2.2, recent commercial microprocessors in-

crease transistor threshold voltages and decrease transistor speeds to hold leakage

at a constant 25-30% of the constant total power budget [10]. Consequently, the

total dynamic power budget is also a constant. Borkar’s conservative scaling, and

therefore Table 2.2, include the effects of such adjustments. While our main results

assume a chip leakage budget of 30% held constant across generations (i.e., l = 0.3

and λ = 1), I also show brief results for leakage growing from 30% to 50% across our

four generations (i.e., l = 0.3 and λ = 1.15). Based on our reasons in Section 2.2.2, I

assume that 40% of the chip leakage is in the cores (i.e., fl = 0.4).

Workloads: I run the commercial and scientific workloads shown in Table 3.4.

Note, because our focus is on memory-intensive workloads where SFU offers maximum

advantage, I focus on the above workloads. However, because it is important to show

that SFU does not hurt performance for memory-unintensive workloads, I show ad-

ditional results in Section 2.4.5 for three other workloads that are compute-intensive.

Recall from Section 2.2.2 that I revert to DSL for memory-unintensive (based on a

miss-rate threshold) workloads. To account for the general trend of data increasing

with cache sizes across generations, I scale up the workload size across generations so

that the off-chip miss rate, shown as misses per kilo instructions (MPKI) in Table 3.4,

remains about the same across generations. Because even higher miss rates would

give more opportunity for SFU over DSL, this constant miss rate is a conservative

choice. While the scientific workloads are amenable to easy scale-up by increasing

the datasets, meaningfully scaling up the commercial workloads’ datasets to 128 cores

requires significant amount of domain expertise to achieve realistic settings (e.g., tune

various benchmark parameters to avoid software bottlenecks). Instead, I scale up the

commercial workloads by consolidating multiple instances of the same benchmark as

shown in lines 13 – 14 of Table 2.4 (i.e., homogeneous consolidation as done in [18]).
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This methodology is in line with the trend in software consolidation especially on large

multicores [18]. I compile our workloads with full software prefetching so that the

exposed memory latency is realistic. Finally, because OLTP runs are long-running,

I only include OLTP in the main results (Section 2.4.1 and Section 2.4.6). I omit

OLTP from the other sensitivity results.

2.4 Experimental Results

I begin with our main results (Section 2.4.1) in which I compare across technology

generations the performance of PU, DSL, and SFU multicores running our commer-

cial and scientific workloads. This comparison assumes in-order-issue processors, dou-

bling of processor-memory bandwidth (i.e., the number of memory channels) across

generations, conventional off-chip memory, Borkar’s conservative scaling parameters

based on planar transistors, and chip leakage of 30% constant across generations. I

also evaluate the effect of (1) out-of-order issue processors in Section 2.4.2 (2) con-

straining the processor-memory bandwidth in Section 2.4.3; (3) faster memory (e.g.,

via 3-D stacking) in Section 2.4.3; (4) ITRS’s aggressive scaling parameters based

on FinFETs in Section 2.4.4; (5) higher chip leakage of 50% in Section 2.4.4; and

(6) greater compute phase which is the case for compute-intensive workloads . Fi-

nally, in Section 2.4.6, I compare the response time (i.e., single-thread performance)

and throughput achieved by controlled unscaling (C-SFU) and DSL for commercial,

transaction-processing workloads.

2.4.1 Performance

In Figure Figure 2.3, I compare PU, DSL, and SFU multicores across technol-

ogy generations. I evaluate full SFU here and cover C-SFU later in Section 2.4.6.

The figure shows performance normalized to that of a generation-0, four-core, PU

multicore on the Y axis and technology generations past our generation 0 as well

as the benchmarks on the X axis. The normalized performance for our consolidated
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Fig. 2.3. Speedups of PU, DSL, and SFU multicores over a generation-
0, four-core, PU multicore.

commercial workloads (Section 2.3) is defined as the improvement in transaction rate

whereas that for our scientific workloads is defined as improvement in execution time.

Recall that PU and DSL multicores use the same clock frequencies whereas the SFU

multicore uses slower clock, and that while the power-unconstrained and SFU (full

unscaling) multicores keep all the cores active, the DSL multicore has fewer active

cores.

From Figure 2.3, I observe that for all the benchmarks DSL’s relative performance

improves slowly over generations with DSL lagging well behind PU, as also shown

in [3]. This lag is due to the difference in the number of active cores between PU

and DSL. By keeping all the cores active, albeit at slower clocks, SFU performs

significantly better than DSL for our memory-intensive benchmarks (see Table 3.4),

as predicted in Figure 2.1(d). Overall, SFU achieves an average 46% improvement

over DSL for our workloads in generation 4.

Recall from Section 2.2.3 that our model predicts this improvement based on the

reasoning that the higher memory-level parallelism enabled by the greater number of

active cores in SFU than in DSL more than offsets the slower clock in SFU. To cor-

roborate this reasoning, I show the misses per thousand instructions (MPKI) for the

generation-0, PU multicore (Table 3.4), and the average number of parallel memory

requests for PU, DSL, and SFU multicores (Table 2.6). Because I commensurately

scale the cache and workload sizes across generations (Table 2.4), the MPKI for the
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Table 2.6.
Measured average number of parallel memory accesses

Benchmarks Gen0 Gen1 Gen2 Gen3 Gen4
PU DSL FU PU DSL FU PU DSL FU PU DSL FU

specjbb 5.4 10.5 7.7 9.2 20.4 9.8 13.3 37.7 13.4 19.9 74.2 15.6 27.3
oltp 4.8 6.2 5.4 5.8 12.9 8.16 9.3 19.5 10.4 12.5 41.5 12.7 14.5
apache 6.0 11.2 8.6 10.2 20.7 10.7 14.3 36.9 14.9 20.8 78.2 17.8 38.2
fft 6.3 12.0 9.3 11.3 24.5 11.8 20.7 48.7 17.9 33.0 98.0 22.9 48.4
canneal 5.8 11.5 7.9 10.5 22.2 10.9 16.6 34.6 14.5 19.8 71.7 15.7 26.8
streamcluster 5.9 11.0 8.3 10.0 21.1 10.9 15.9 39.6 15.3 24.0 - - -

other generations are similar; and because all the three multicores have the same

amount of cache, the MPKI for the other multicores (DSL and FU) are similar (not

shown). From Table 3.4, I see that our memory-intensive benchmarks have usual but

non-trivial MPKI (but well below the excessive point of thrashing). As expected, the

greater number of parallel memory requests in SFU than in DSL ( Table 2.6) indicate

that SFU achieves higher memory-level parallelism, and hence higher performance.

These performance results, which are the main claims of the paper, show that DSL’s

bounds can be exceeded for important workloads, and that slow silicon is better than

DSL as long as the slow silicon makes memory accesses.

SFU, however, does not catch up to PU because while both systems have the same

number of active cores and hence achieve the same amount of memory-level paral-

lelism, the slower clock in (full) SFU results in slower compute portion. Nevertheless,

the gap between SFU and PU is narrow in the earlier generations and is wide only in

the fourth generation, supporting our claim in Section 3.1 that SFU provides a gentle,

evolutionary path for multicores which may need to be augmented with customized

cores only in later generations.

2.4.2 Impact of out-of-order issue

Our results in Section 2.4.1 use in-order-issue cores whereas out-of-order-issue

cores can hide some memory latency and may diminish SFU’s memory-parallelism

advantage over DSL. To resolve this issue, I show in Figure 2.4 performance for
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Fig. 2.4. Impact of out-of-order issue

generation-2 DSL, SFU, and PU multicores normalized to that of a generation-0, four-

core, PU multicore (Y axis) running our memory-intensive workloads (X axis), where

all the systems employ out-of-order-issue cores. I vary the number of SMT contexts as

2 and 4 in the X axis. Because out-of-order-issue simulations are long-running, I show

results only for generation 2. I point out that while Figure 2.3 compares in-order-issue

systems compared among each other, Figure 2.4 compares out-of–order-issue systems

among each other. From the figures, I see that the speedups for out-of-order issue

(Figure 2.4)closely match those for in-order issue generation-2 in Figure 2.3. The

only exception is FFT which saturates the memory bandwidth in all the systems,

as evidenced by excessive queuing at the memory controllers. The similarity in the

speedups exists even though out-of-order issue perform around 22% better than in-

order issue (not shown), implying that SFU overlaps the significant memory latency

left exposed despite out-of-order issue’s ability to hide memory latency. Overall, SFU

retains its significant advantage over DSL, resulting in 18% improvement with 2-way

SMT (for in-order issue generation 2, the improvement is 22% in Figure 2.3). Further,

SFU’s advantage over DSL increases from 2-way to 4-way SMT due to increased cache

pressure (Section 2.2.2).
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2.4.3 Impact of processor-memory bandwidth and faster, 3-D stacked

memory

Because SFU exploits higher memory-level parallelism requiring more processor-

memory bandwidth than DSL, I study the impact of lower processor-memory band-

width on SFU. Separately, I study how faster memory due to 3-D stacking affects

SFU (I show the two effects together to save space). Figure 2.5 shows normalized

performance on the Y axis for generation-4 DSL and SFU multicores running our

memory-intensive workloads (X axis). While the default configuration for our results

has 16 memory channels and conventional, slow memory, the graph shows perfor-

mance using fewer memory chanels (8) than the default, (labeled as ‘A’ on X axis),

the default configuration (labeled as ‘B’), and faster memory than the default (la-

beled as ‘C’). Performance is normalized to that of the default, generation-0 PU

multicore. The faster-memory case assumes a 30% lower memory latency because

previously-reported latency reduction for 3-D stacking ranges from 20% to 30% [15].

I choose generation 4 because it has the highest bandwidth demand. Comparing 8

and 16 channels (‘A’ and ‘B’, respectively), SFU outperforms DSL by a significant

margin (53% on average) even with 8 channels though the margin increases with 16

channels for bandwidth-hungry applications like FFT. As discussed in Section 2.3,

these amounts of bandwidth seem achievable by the time of generation 4, given the

imminence of 3-D stacking and potential of compression and other techniques [17].

Comparing conventional (‘B’) and faster memory (‘C’) cases, both DSL and SFU

improve in performance due to lower memory latency. However, the reduction in

latency is not enough to eliminate exposed memory latency. As such, SFU is still on

average 39% better than DSL.

2.4.4 Impact of ITRS (FinFETS) and leakage

Because ITRS projections for FinFETs are more optimistic than Borkar’s pro-

jections for planar transistors, I study whether ITRS projections change our results
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Fig. 2.5. Impact of memory bandwidth and latency

(ITRS revised its clock-speed projections from 13 GHz to 5.5 GHz which is more in

line with Borkar’s projections). Separately, I study the impact of higher leakage (I

put these two together to save space). Figure 2.6 shows normalized performance (Y

axis) for generation-4 PU, DSL, and SFU running our memory-intensive workloads (X

axis). While the default configuration for our results uses Borkar’s projections with

conventional, slow memory and 30% chip leakage constant across generations, the

graph shows performance assuming ITRS projections which includes faster memory

(labeled as ‘A’ on X axis), the default configuration (labeled as ‘B’), and higher leak-

age than the default (labeled as ‘C’). Performance is normalized to that of the default,

generation-0 PU multicore. ITRS projections predict ci, pi, and αi for generation-4

as 1.73, 0.25, and 0.22, respectively, so that DSL has 16 cores running at 5.54 GHz

and SFU has 64 cores running at 1.2 GHz. The higher-leakage case assumes 50% chip

leakage in generation-4 which corresponds to leakage increasing from 30% at the rate

of 14% per generation (more than 50% leakage would be unreasonable because then

less than half of the chip power would be available for real work). Instead of giving
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extra cores to DSL to account for DSL’s core leakage surplus (Section 2.2.2), I reduce

SFU’s clock speeds from 0.89 GHz (default) to 0.78 GHz, because extra DSL cores

require time-consuming simulation warm-up of a new DSL multicore. Comparing the

ITRS (‘A’) and default (‘B’) cases, while both DSL and SFU perform better with

ITRS projections than with the conservative default projections due to ITRS’s faster

clocks and memory, SFU’s lead over DSL increases with ITRS because the faster

clocks expose more memory latency even with the faster memory. Comparing the de-

fault (‘B’) and higher leakage (‘C’) cases, SFU’s lead over DSL shrinks modestly with

higher leakage due to the further lowering of SFU’s clock speeds. However, because

DSL’s leakage surplus is not large (Section 2.2.2), SFU’s lead shrinks only modestly

even with leakage as high as 50%.
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Fig. 2.7. Speedups of PU, DSL, and SFU generation-2 multicores
over a generation-0, four-core, PU multicore for compute-intensive
workloads

2.4.5 Memory-unintensive Workloads

Recall from Section 2.2.2 that I revert to DSL operation for memory-unintensive

(compute-dominated) workloads because it yields better performance. Because SFU’s

key improvement is increasing memory-level parallelism, and because memory-unintensive

workloads do not have any significant exposed memory latency, it is better to focus

the power budget on a few cores operating at maximum frequency (similar to DSL)

and deactivate other cores. On the hardware-front, the configuration is identical to

DSL however, there is a key difference on the software front. Because SFU exposes

more processors, the application will have likely spawned as many threads. However,

when dynamically reverting to DSL operation, those larger number of threads must

now run on fewer cores.

To quantify the impact of this change on memory-unintensive workloads, we fo-

cus on three Parsec benchmarks with very low MPKI (blackscholes, fluidanimate,

and dedup which have MPKI values of 0.08, 0.91, and 0.46 respectively). Based on a

simple fixed MPKI threshold of 2.0, I are trivially able to identify compute intensive

workloads. The task to monitor the MPKI and decide which mode to operate SFU

in can be left to the operating system. Figure 2.7 shows the performance of PU, DSL

and SFU normalized to that of the default, generation-0 PU multicore (Y-axis) for
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Table 2.7.
Controlled SFU Configurations

Configuration Cores Clock (GHz) L2 (MB)
DSL + big cache 14 4.16 98
C-SFU + big cache 20 2.84 98
DSL 16 4.16 64
Full SFU 64 0.89 64

memory-unintensive benchmarks (X-axis). The key result is the fact that the perfor-

mance of DSL and SFU for generation-2 are nearly identical (and significantly less

than the impractical PU configuration); thus proving that the difference in number

of threads does not have an impact on overall performance.

2.4.6 Single Thread Latency

Recall from Section 2.2.2 that to restore single-thread performance for response-

time-sensitive workloads, controlled SFU (C-SFU) trades-off throughput by activating

fewer additional cores than dark-silicon (but not as many as full SFU) for higher clock

frequency than full SFU (but not as high as DSL). Also, recall the option of using the

leakage power and spare transistors of the unactivated cores into additional last-level

cache for C-SFU. (I include a DSL configuration with the big-cache as well. However,

because DSL does not have the leakage budget for the additional cache, I reduce the

number of cores by 2 to account for the added leakage of the cache.) I empirically

determine a C-SFU configuration that corresponds to acceptable throughput-latency

trade-off as listed in Table 2.7. The table shows the number of cores and frequency

for C-SFU and DSL with the “big-cache” option as well as full SFU and DSL, all for

generation 4 (where SFU has the biggest clock disadvantage). Due to the non-linear

impact of memory latency, C-SFU’s 32% slower clock amounts to 18% single-thread

slowdown over DSL.

Throughput: Figure 2.8 shows throughput (transactions per second) for C-SFU

+ big cache, DSL + big cache, full SFU, and DSL normalized to that of a gen0 system
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(Y-axis) for our commercial workloads which are sensitive to response times (X axis).

I see that C-SFU performs better than DSL by 21%. Further, DSL does not improve

with big-cache (DSL + big cache versus DSL), because the additional cache is offset

by the reduction in the number of cores. As such, neither variant of DSL matches

C-SFU’s performance.

Response Time: To analyze queuing delays, I use an M/M/m multiserver queu-

ing model to relate the response time to throughput. I set the number of servers m

to be 40 for C-SFU (20, 2-way SMT cores) and 28 for DSL (14, 2-way SMT cores),

and the service time (i.e., single-thread execution time) to be 1.24 for C-SFU and

1.0 for DSL. Figure 2.9 plots the response time (Y-axis) vs. throughput (X-axis,

normaized to DSL’s saturation throughput) curves for C-SFU and DSL. The typ-

ical L-shaped curves show that at low loads, the response time is almost entirely

service time (i.e., little queuing delay) and at high loads, the response time grows

with the queuing delay, increasing rapidly near saturation. Typically, systems are
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operated in the flat, pre-saturation region to achieve reasonable response times and

good throughput (a proxy for utilization). While C-SFU’s response time is longer

than DSL’s at low loads, cores can be turned off at low loads without throughput

loss making power constraints irrelevant. However, in the fairly typical region of load

(0.87-0.93 normalized throughput), C-SFU stays within +/-10% of the response time

of DSL. Thus, C-SFU exploits the non-linear impact of higher throughput on queuing

delays to compensate for its slower clock.

2.5 Related Work

The multicore scaling roadmap relies on both Moore’s scaling [19] and Dennard’s

scaling [1] to provide the area and power budgets, respectively, to support a steady,

geometric increase in the number of cores. Unfortunately, the slowing down of Den-

nard scaling (while Moore’s scaling continues) puts the multicore roadmap at risk.

While in the past, a significant body of work used dynamic voltage and frequency

scaling (DVFS) [20, 21] to achieve energy efficiency, the voltage knob will no longer

be available.

Prevous work responds to this challenge by noting that the traditional multicore

scaling will result in dark silicon [3,5]. To address the dark silicon problem, researchers
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have proposed specialization [6, 22] and approximate computing [23] as two future

paths.

Approximate computing address the dark silicon problem by trading off exact-

ness with high energy efficiency. The insight is that a small degradation in output

quality can provide high gains in energy efficiency [23]. While approximation is a fea-

sible approach for client codes and specific algorithm classes where minor dilution in

precision is acceptable (e.g., image/video compression/decompression, iterative con-

vergence codes), it is not a viable approach for enterprise/commercial server class

applications where inexactness is effectively incorrect. This is especially important

because commercial servers are expected to be the dominant market for multicores

with 32+ cores. SFU squeezes out performance gains from all the silicon without

compromising on the existing (exact) computing paradigm.

Specialization aims to provide higher energy efficiency while preserving perfor-

mance. Through task-specific accelerators and co-processors, specialization focuses

on running the code on the right hardware at the right time [6, 22]. Our approach

does not preclude the use of specialization as the two approaches are orthogonal be-

cause specialization increases the energy efficiency of compute whereas SFU leverages

enhanced memory-level parallelism to achieve higher efficiency.

Prior work has demonstrated the value of simple models based on Amdahl’s law [8]

that are useful for understanding and demonstrating the first-order effects of vari-

ous bottlenecks such as the serial portion of programs [9] and multicore power con-

straints [3]. Our model builds on such prior models to capture the effects of memory

latency and memory parallelism for power-constrained systems. Our model directly

leads to the insight that SFU achieves significantly higher performance than dark

silicon for memory-bound (i.e., typical) multicore workloads.
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3. METADATA ORGANIZATIONAL TECHNIQUES FOR

3-D DIE-STACKED CACHES

3.1 Introduction

Die-stacking of DRAM on top of a microprocessor is emerging as a way to continue

scaling the pin bandwidth to off-chip memory [15,24]. Die-stacking will allow the pro-

cessor and DRAM dies to be connected with a few thousands of fast, through-silicon

vias (TSVs) as opposed to a few hundreds of slower, traditional pins, thereby provid-

ing a factor of 4-5 or higher bandwidth (perhaps over some technology generations).

Though such 3-D DRAM has high capacity, the DRAM will likely be too small to

play the role of main memory. As such, the DRAM will be used as a large cache with

the key advantage of high-bandwidth, cache-processor connection. In Section 3.2.4, I

conclusively show that the problem is memory bandwidth and not latency.

The die-stacked DRAM cache’s tag poses a challenge. Placing the tags on the

processor die adds significant area overhead for conventional block sizes given that

the DRAM cache is off-die, large, and scales in capacity more quickly due to DRAM

technology improvements than on-processor-die SRAM tag (e.g., a 256-MB DRAM

cache with 64-B blocks incurs a 14-MB tag overhead while the last-level on-die cache

may be 16 MB). On the other hand, placing the tag in the 3-D DRAM incurs multiple

accesses for the tag and erodes 3-D DRAM’s bandwidth advantage. In Section 3.2.4, I

conclusively show that the tag bandwidth, and not latency, is the problem for DRAM

caches.

Previous papers address the tag challenge via two approaches. The first approach

places the tag in the 3-D DRAM incurring little on-die area overhead and attempts

to alleviate the tag bandwidth burden. However, either the 3-D DRAM bandwidth

overhead remains high (e.g., MissMap [25]) or the memory bandwidth demand is high
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due to high cache miss rate (e.g., Alloy cache [26]). The second approach places the

tag on the processor die incurring little 3-D DRAM bandwidth overhead but either

high memory bandwidth demand due to high cache miss rate (e.g., CHOP [27]) or

high on-die area overhead (e.g., plain sub-blocking (PSB) [28], decoupled sector cache

(DS) [29]). The on-die overhead can be addressed by using a small on-die tag cache

(T$, pronounced as ‘T cash’) [30, 31] while the full tag (and data) stays in the 3-D

DRAM. Table 3.1 summarizes this multi-dimensional space.

Surprisingly, our results show that the old PSB with a T$ performs better than

the other above proposals. (While most previous work does not compare to PSB,

the original MissMap paper does but its addendum with corrections to MissMap

performance does not.) However, PSB, with or without prefetching [32,33], populates

only the accessed blocks within a page while the rest of the page remains unused (i.e.,

there are “holes” in the cache); pages are large superblocks (e.g., 2 KB, not related

to virtual memory). Consequently, PSB diminishes the effective cache capacity (only

a third-fourth of a page is populated, on average). Conventional caches and DS avoid

the holes but spread a page’s blocks across multiple sets, destroying page-level locality

of tag metadata (i.e., set mapping is at block granularity). Decoupled compressed

cache (DCC) [34] performs set mapping at page granularity but destroys metadata

locality by scattering a page’s blocks among those of the other pages (ways) in the

set. See Table 3.1.

This paper addresses the challenge of avoiding holes while exploiting page-level

metadata locality. This locality is the dominant type of locality remaining at the

DRAM cache level while the upper-level caches capture temporal and block-level

spatial locality. While typical 64-B blocks sufficiently exploit spatial locality in the

data, tag metadata of a single block is too small to amortize the 3-D DRAM band-

width cost of tag access. Amortizing this cost by exploiting page-level metadata

locality fundamentally depends on the DRAM cache and T$ organizations. I empha-

size that the issue here is not the prefetch latency effect of the page-level fetch but
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Table 3.1.
DRAM cache design issues
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the bandwidth effect because the problem is bandwidth and not latency (prefetching

improves latency but not bandwidth).

I propose Bandwidth-Efficient Tag Access (BETA) DRAM cache (β$, pronounced

as ‘beta cash’) which decouples pages and blocks to reduce the number of holes and

performs set mapping at page granularity like previous approaches, but exploits page-

level metadata locality unlike previous approaches. Our novelty is not tag caching or

page-block decoupling, but our cache organization’s features to exploit this locality.

While T$ and β$ hits do not impose any metadata bandwidth overhead, reducing

the overhead of T$ and β$ misses is one of our two goals. To that end, β$ employs

two features so that the T$ can fetch an entire page’s metadata in as few 3-D DRAM

accesses (DRAM row hits) as possible. Our second goal is to improve the T$’s effective

size in the presence of page-block decoupling, for which β$ and T$ each employ a

feature to reduce the amount of metadata in the T$. Note that the effective T$ size

affects the T$ miss rate which in turn affects the 3-D DRAM bandwidth demand.
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The first overhead is the number of 3-D DRAM accesses per T$ miss. Page-block

decoupling scatters a page’s blocks among those of the other pages in the set and the

correspondingly scattered metadata would incur many 3-D DRAM accesses. Instead,

β$ co-locates the metadata of a page via a set of forward pointers from a page to

its (unordered) blocks. This co-location, β$’s first novel feature, enables β$ both

to avoid holes and to preserve metadata spatial locality, unlike PSB, DS, and DCC

which achieve one but not the other. While null pointers for absent blocks impose a

small space overhead (i.e., holes in the tag), this overhead is much smaller than that

due to PSB’s holes in the data (and tag), especially considering the large 3-D DRAM.

The second overhead is the number of 3-D DRAM accesses per β$ miss. Because

multiple pages share a β$ set (set mapping at page granularity), the set is large and

accessing all of the set’s metadata upon β$ misses to find free space would incur

many 3-D DRAM accesses. Instead, β$ tracks the per-set free blocks in a free list,

β$’s second novel feature, implemented as a compact vector of pointers and cached

in the T$ requiring no 3-D DRAM accesses in the common case.

To improve the T$’s effective size (our second goal), I address the amount of

metadata in the T$. β$’s forward pointers for page metadata co-location helps T$

miss bandwidth penalty but exacerbates this overhead. I make the key observation

that the 3-D DRAM has plentiful capacity but insufficient spare bandwidth for tag

metadata whereas the T$ has sufficient bandwidth but limited capacity. β$’s null-

pointer space overhead is relatively small for the large 3-D DRAM but relatively large

for the small T$. Consequently, our idea is to switch dynamically from β$’s forward

pointers to reverse pointers in the T$ as the tag metadata crosses the β$-T$ interface;

this switching is T$’s novel feature.

Finally, β$ also employs a feature to reduce the amount of metadata in the T$

which is impacted by allocation of space in β$. Fine, block granularity for allocation

wouid increase the amount of metadata in the T$ (e.g., reverse pointers) whereas

coarse, page granularity would default to plain-sub-blocking and incur holes. Instead,

β$ allocates at the granularity of a few blocks, called chunks, β$’s third novel feature,
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which balance the metadata amount and the number of holes; each chunk is not

merely larger than a block but groups unordered blocks of a page for maximum choice

in block placement within the set. Pages, blocks, and chunks are granularities for

tagging, transfer, and space allocation, respectively. Each of PSB, DS, and DCC

decouple only two, albeit different two, of the three granularities: PSB’s tagging and

allocation granularities are a page and transfer granularity is a block; and DS’s and

DCC’s tagging granularity is a page, and allocation and transfer granularities are a

block. In contrast, β$ is the first design to decouple all three granularities: tagging

granularity of a page, transfer granularity of a block, and allocation granularity of a

chunk. Because the allocation granularity is a chunk, β$’s free list tracks free chunks.

In summary, for effective tag caching, (1) β$ exploits page-level metadata locality

to reduce the 3-D DRAM bandwidth cost of T$ misses and DRAM cache misses (our

first goal) by:

• co-locating the metadata of a page, and

• tracking the per-set free chunks;

and (2) β$ and the T$ reduce the amount of on-die metadata to improve the T$’s

effective size (our second goal) by:

• dynamically switching from β$’s forward pointers to reverse pointers in the T$

at the β$-T$ interface, and

• allocating space in β$ at the chunk granularity.

Using simulations, I show that due to β$’s tag bandwidth efficiency, β$ with a T$

performs 15% better than the best previous scheme with a similarly-sized T$.

The rest of the paper is organized as follows. Section 3.2 discusses the key chal-

lenges and opportunities in 3-D DRAM cache design. Section 3.3 describes the or-

ganizations of β$ and T$. Section 3.4 describes our evaluation methodology. In Sec-

tion 3.5, I evaluate performance using simulations of commercial workloads.
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3.2 Opportunity and Challenges

Though 3-D DRAM promises lower latency and higher bandwidth than memory,

there are fundamental performance limits due to technology constraints and access

characteristics.

3.2.1 Technology constraints

While expecting high bandwidth for the 3-D DRAM is reasonable (say 4-5x of

main memory), assuming larger surpluses is unrealistic because of higher costs without

corresponding performance benefits which are fundamentally limited by DRAM cache

miss rates (discussed next). Increasing the DRAM cache bandwidth requires larger

numbers of TSVs (or interposer pads for 2.5-D stacking) and a larger bandwidth from

the 3-D DRAM. While adding TSVs may be viable (8x pin bandwidth is reasonable),

the smaller size of the 3-D DRAM than main memory has two opposing effects: On one

hand, smaller arrays cannot be banked as aggressively as larger arrays due to density

degradation (which directly affects cost), which hurts bandwidth. On the other hand,

smaller arrays are faster, which helps bandwidth. The former effect requires balancing

area (density) and bandwidth. A single-banked design is optimal for area, but is

choked for bandwidth. 16 banks for 32-GB main memory is a reasonable compromise

between bandwidth and area with a penalty of 10% area over the unrealistic single

bank, as per CACTI [35]. However, increasing the banking in a smaller 3-D DRAM

well beyond that in the larger memory degrades density (e.g., increasing the banking

by 4x to 64 banks for a 128-MB DRAM degrades area by more than 10% over 16

banks, as per Cacti for the 32 nm technology node). As such, I assume a banking

increase of 2x. Fortunately, the second effect of faster banks yields 2-2.5x lower bank

occupancy resulting in an impressive 4-5x higher bandwidth for the 3-D DRAM than

memory.

On the latency front, 3-D DRAM offers net latency improvements of 1.7-2x over

main memory [25], which is smaller than that seen at other levels of the hierarchy
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(2-2.5x faster banks amounts to 1.7-2x net lower latency due to latency overheads

involving the controller and DRAM periphery). At other levels, the improvement is

5x assuming typical latencies of 3 cycles for L1, 15 cycles for L2, 75 cycles for L3

cache, and 350 cycles for memory.

3.2.2 Access characteristics

Assuming the DRAM cache to be an L4 cache, most temporal locality and block-

level spatial locality is captured by L1-L3 caches leaving mostly page-level spatial

locality at the L4 level. Later, I show that for commercial workloads, the miss-ratio

is typically around 35% which fundamentally limits the overall achievable bandwidth

and latency improvements.

Now, consider a system without a DRAM cache that is memory-bandwidth bound.

After adding a DRAM cache that yields a high miss-ratio – say 33% – the main mem-

ory must still serve every third request (i.e., the cache misses). Thus, the bandwidth

headroom allows for at most a tripling of instruction throughput. Further, the true

bandwidth demand (i.e., ignoring bandwidth overheads of metadata) on the DRAM

cache is twice that on main memory (because the cache serves the other 67% of ac-

cesses). Even assuming non-trivial bandwidth overhead for metadata accesses, signif-

icant spare 3-D DRAM bandwidth remains (e.g., 3x of 3-D DRAM’s 5x bandwidth).

Tag caches spend this spare bandwidth on tag cache misses to achieve smaller on-die

tag. However, both the DRAM cache and T$ organizations should exploit metadata

spatial locality to avoid overwhelming this spare bandwidth.

3.2.3 Tag Metadata Bandwidth Challenge

Recall from the Section 3.1 that the tag metadata of the three cache configurations,

conventional cache, PSB, and DS) is too large to be on-die. The straightforward

option of holding the metadata in the large 3-D DRAM would increase the 3-D DRAM

bandwidth demand due to the metadata accesses. One may think that the tags can

be looked up in one access followed by a data access so that the two 3-D DRAM
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lookups per access would comfortably fit within the 3-D DRAM’s 4-5x bandwidth.

However, the bandwidth demand is far worse in practice.

Even on hits, multiple tags and coherence state metadata must be read which

may require multiple 3-D DRAM accesses. Change to replacement information (e.g.,

NRU bits) and coherence state must also be written back. The bandwidth demand is

higher on misses with additional 3-D DRAM accesses to account for line fills, victim

reads (for dirty blocks), and tag/coherence-state updates, as summarized in Table 3.2.

This large number of accesses places a high demand on the 3-D DRAM bandwidth.

I clarify that the coherence state in the DRAM cache is needed in most systems.

While multi-socket systems would have coherence state at the DRAM cache, even

single-socket systems would for many reasons. Single-socket multicores with per-

core private L1, L2, and L3 caches would naturally place the coherence state at the

shared L4 DRAM cache (in addition, the L4 may also hold directory information).

Alternately, single-socket multicores with private L1 and L2 and a shared L3 (holding

L1-L2 coherence state) would still have coherence state at the shared L4 DRAM cache

to allow cache-coherent DMA for I/O devices; disallowing such DMA would require

changes to device drivers of all the I/O devices to enforce software coherence. Further,

the same microprocessor part is often used in both single- and multi-socket systems

for easy extensibility and amortization of design, test, and verification costs (e.g.,

Intel Xeon).

3.2.4 Opportunity

Figure 3.1 isolates the impact of memory latency and bandwidth for our com-

mercial workloads. Using configurations without 3-D DRAM caches, I compare a

baseline memory system (Baseline, shown as line at 1.0) against memory systems

(1) with double the bandwidth and same latency (Double-BW), (2) with half the la-

tency (Half-latency), and (3) with infinite pin and device bandwidth and same latency

(∞-BW). While halving the latency has the side-effect of doubling the bandwidth,

Double-BW performs only modestly worse than Half-latency, showing that the im-
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Fig. 3.1. Impact of bandwidth and latency

pact of latency is small. However, Double-BW performs better than Baseline, and

∞-BW performs much better than Half-latency, showing the high impact of band-

width. Therefore, the problem is memory bandwidth and not latency (not surprising

because die stacking addresses pin bandwidth).

Figure 3.1 also shows the impact of 3-D DRAM’s latency and bandwidth on our

workloads. I show conventional 3-D DRAM caches with tags in the 3-D DRAM, 64-

byte blocks, and half the latency of Baseline (as seen in Section 3.2.1) configured (1)

with 5x the bandwidth of Baseline (Raw-3D)1, (2) with 5x the bandwidth for data

and infinite pin and device bandwidth for tag (∞-tag-BW), (3) with infinite pin and

device bandwidth for tag and data (∞-3D-BW), and (4) with zero latency for tag

1The device bandwidth is 5x because of 2x more and 2.5x faster banks than main memory while the
pin bandwidth is 8x of main memory



50

while retaining half the latency for data, 5x the bandwidth for data and infinite pin

and device bandwidth for tag (Zero-tag-latency). Raw-3D is better than Baseline,

highlighting 3-D technology’s benefits without any architectural innovations. How-

ever, ∞-tag-BW is better than Raw-3D, showing that the tag bandwidth overhead

is so high that even Raw-3D, which has 5x higher bandwidth than main memory,

cannot absorb. The difference between Raw-3D and ∞-tag-BW is the opportunity

for architectural innovations. ∞-3D-BW and ∞-tag-BW are close showing that this

opportunity does not increase with more 3-D DRAM bandwidth due to main mem-

ory bandwidth saturation (Section 3.2.2). Finally, Zero-tag-latency is only modestly

better than ∞-tag-BW, showing that tag latency does not significantly impact per-

formance.

3.2.5 Previous proposals

Being a direct-mapped cache, Alloy [26] reduces the metadata accesses to only one

tag but incurs high miss rate for important, memory-intensive, commercial workloads.

MissMap [25], which holds only presence information on-die and relegates the rest of

the metadata to the DRAM cache moves in the right direction to reduce the 3-D

DRAM bandwidth demand. However, MissMap is insufficient because (1) it reduces

the bandwidth penalty only on misses, and (2) even on misses, many components

such as line fills, victim reads (for dirty blocks) and coherence state updates are not

avoided (see Table 3.2).

While tag caching would filter some metadata accesses, previous cache organiza-

tions incur many 3-D DRAM accesses upon T$ misses due to lack of metadata spatial

locality. Both conventional and DS caches place consecutive blocks from the same

page in consecutive sets. In Figure 3.2, page X’s blocks, X0, X3, X6 and X7, are in

different sets. Such set mapping destroys row-locality for spatially-close accesses.

A recent cache compression design, DCC [34], uses page-level set mapping which

ensures that blocks of a page remain on the same set (and thus the same DRAM

row). However, the metadata of blocks of one page are interspersed with that of
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Table 3.2.
Comparing 3-D DRAM accesses across cache designs
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Miss (clean victim) 2+ 0 2+ 1 5+
Miss (dirty victim) 2+ 0 2+ 2 6+

MissMap
(assuming
missmap hit)

Hit 2+ 1 0 0 3+
Miss (clean victim) 0 0 2+ 1 3+
Miss (dirty victim) 0 0 2+ 2 4+

T$ +β$
Hit/Hit 0 1 0 0 1
Hit/Miss (typical) 0 0 2 1 3
Miss/Hit (typical) 2 1 2∗ 0 5
Miss/Miss (typical) 2 0 4∗ 1+ 7+

∗ Includes writeback of T$ victims to β$
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blocks of other pages (ways) in the set. In Figure 3.2, page Y’s blocks Y0 through

Y2 are in the same set but dispersed across the ways and the metadata is similarly

dispersed. Such dispersion necessitates multiple 3-D DRAM accesses. In contrast,

β$ (1) uses allocation granularity of chunks to balance the number of holes and

metadata amount in the T$, (2) co-locates the metadata of a page, and (3) tracks

per-set free chunks for efficient miss handling. Together, these features minimize

the number of 3-D DRAM accesses needed for T$ misses. Further, DCC employs

three granularities for cache compression. Two of them are similar to pages and

blocks; although they consider smaller 256-B pages in their context. The third sub-

block granularity (16 B) is finer than block granularity and is used for compressing

blocks. In contrast, our chunks are a capacity allocation granularity that is larger

than blocks (e.g., groups of four blocks). Moreover, chunks are unordered groups of

blocks as opposed to DCC’s linearly-ordered sub-blocks. Not targeting 3-D DRAM

bandwidth issues, DCC does not employ β$’s features without which performance

degrades as I show in Section 3.5.3.

Prefetching of blocks within a page [32, 33] is an orthogonal optimization that

can apply to any sub-blocking scheme including β$, PSB, and DS. More importantly,

prefetching can improve only latency but not the average bandwidth, which is the

main issue for 3-D DRAM caches. Later, in Section 3.5.3, I demonstrate that the

latency benefit of prefetching is marginal.

3.3 Beta Cache (β$) and Tag Cache (T$)

While β$ and T$ have many similarities and a few differences, understanding β$’s

organization eases understanding T$’s organization. Therefore, I start with β$.

3.3.1 Beta Cache (β$)

Recall from Section 3.1 that like DS and DCC, β$ (1) decouples the pages and

blocks to reduce the number of holes (e.g., 2-KB pages and 64-B blocks); and (2)

performs set-mapping (i.e., indexing) at page granularity so that the blocks of a page
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Fig. 3.2. Impact of organization on DRAM cache bandwidth (Exam-
ple assumes 8 blocks per page)

are in the same set. However, unlike previous work, β$ exploits page-level metadata

locality with the goal of reducing the 3-D DRAM bandwidth overhead of T$ and β$

misses by (1) co-locating the metadata of a page and (2) tracking the per-set free

space. Further β$ also helps reduce the amount of metadata in the T$ to increase

the T$’s effective size by allocating space at the chunk granularity.

Figure 3.3 illustrates β$ for the same running example as in Section 3.2. For quick

determination of page hit/miss, the page tags of a set are co-located, as shown by

”Set Metadata” in Figure 3.3(a). To achieve page-block decoupling, the pages in a set

share the set’s space so that a page’s blocks are scattered among those of the other

pages.

Co-location: Due to this scattering, β$ employs a vector of forward pointers from

a page to its blocks to identify both which blocks are present and where they are

placed within the set. Each forward pointer is associated with the block’s coherence

state, as shown by ”Page X’s Metadata” in Figure 3.3(b). As discussed in Section 3.1,
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Fig. 3.3. Beta Cache (β$) Organization

many of the forward chunk pointers are null due to absent blocks. While these null

pointers impose a space overhead on the 3-D DRAM, the overhead is much smaller

than that of holes in the cache (the null pointers are holes in the tag as compared to

the holes in the data) and is relatively small for the large DRAM. On the positive

side, the forward pointers enable co-location of the page’s metadata, conserving the

3-D DRAM bandwidth (just one standard 64-B access per page for most interesting

configurations).

To assess β$’s features, I use a realistic configuration shown in Table 3.3. Assuming

32 blocks per page, I provision 256 frames per set of 16 associative ways, for an

average of 16 frames per page. This provisioning works because, in typical commercial

workloads, more than half the 2-KB pages are sparse with fewer than four 64-B

blocks present. Figure 3.4 plots the cumulative block density distribution for our



55

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

C
D

F

# of blocks evicted per page upon replacement in a PSB cache

Specjbb

OLTP

Apache

Linkbench

TATP

Fig. 3.4. Block density distribution

commercial workloads described in Table 3.4. Increasing the associativity would

allow us to tighten the number of frames allocated per page to be closer to the

statistical per-page average, around 8 blocks per page for our workloads, by sharing

a set’s frames among more pages and avoiding holes within each set (a law-of-large-

numbers effect). However, higher associativity, past the point of diminishing returns

on conflicts misses, also implies more accesses to look up the page tags of a set for

page hit/miss determination.

For the example configuration. the per-page metadata amounts to 56 bytes includ-

ing the null pointers (see row A of Table 3.3). Without the co-location via forward

pointers, a page’s metadata would use reverse pointers from the block to the page

(one of the associative ways) and be spread over the entire set spanning 256 frame’

metadata, as in DCC. In our example, this option would amount to 480 B which

would have to be accessed to obtain the page’s much smaller metadata (8 DRAM

accesses, as shown in row B of Table 3.3).
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Chunks: Recall from Section 3.1 that the T$ uses reverse pointers to avoid β$’s

null-pointer overhead which is significant for the small T$. However, allocating space

at the granularity of only one block would imply a reverse pointer per block in the

T$ which still amounts to high space overhead. Therefore, β$ allocates space at the

chunk granularity (e.g., 4 blocks per chunk) upon a miss.

Accesses may miss in the page (i.e., the entire page is missing), or in a block of a

page that is present. A page miss results in the (full) eviction of a victim page and

the freeing of its chunks. Upon a block miss, β$ allocates a chunk either by reclaiming

a free chunk (from a previous eviction of a page which vacates all its chunks) or by

partially evicting a chunk of a page in the set if no chunk is free. In either case,

the page’s metadata records a forward pointer to the first frame within the allocated

chunk for the missing block, as shown by ”Page X’s Metadata” in Figure 3.3(b).

Once a chunk is allocated, the subsequent blocks are allocated within the chunk in

left-to-right order. For maximum flexibility in using the set’s space, the blocks of a

page may be located in any order and are discontiguous.

Chunking may cause a few holes in β$ (data array) due to internal fragmentation

but so significantly reduces the T$’s space overhead that the trade-off is justified. I

show an example of how much the overhead reduces in Section 3.3.2.

Per-set free lists: Upon a block miss, determining which, if any, chunks are free

requires examining the metadata of all the pages in the set which would incur many

3-D DRAM accesses. To alleviate this problem, I propose to maintain a free list per

set as a bit vector, as shown in ”Set Metadata” in Figure 3.3(a) (i.e., 64-bit vector

for our example of 64 chunks per set). Freeing of chunks upon full eviction results in

the corresponding free-list bits being set and allocation of chunks results in clearing

of the bits. Without the chunks, the free list would grow but may still fit within a

3-D DRAM access. However, this growth imposes significant space overhead on the

small T$, as I will see in Section 3.3.2.
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Table 3.3.
β$ Configuration

Common Configuration Assumptions
2KB page; 32 blocks/page with 64B per block; Metastate overhead per block = 6b (stable
and transient coherence states)
β$: 16-way associative, 256 frames per set (64 chunks of 4 frames each), 16K sets
Row Configuration Description

A Forward point-
ers

Pointers per page = 32; 8b forward pointers to pool of 256
frames; Total per-page overhead = 32×(8+6) bits = 56
bytes (fits within one 64-B DRAM access).

B No colocation 4-b pointers to 16 associative ways (reverse pointers) and 5-
b block offsets within page; Total metadata transfer = 256
× (4+5 + 6) bits = 480 B (requires eight 64-B transfers)

T$: 32-way associative, 360 block metadata frames (90 chunks of 4 frames each) per set,
1K sets
Row Configuration Description

C Reverse-
pointers +
Chunks

5b reverse pointer (to one of 32 ways) for each of 90 chunks;
5 bit block-offset for each of 350 blocks; 90b freelist for 90
chunks; 64b freelists per β$ set, at most 16 β$ sets per T$
set; Total = ((5× 90) + (5× 360) + 90 + (64× 16) + (6×
360))/8 = 690.5B

D No reverse-
pointers

9b Forward pointers (to point to one of 360 frames) for
each of 32 blocks in each of 32 ways of set; 90b freelist for
90 chunks; 64b freelists per β$ set, at most 16 β$ sets per
T$ set; Total = ((32×32×9)+90+(64×16)+(6×360))/8 =
1562.25B

E No chunks 5b reverse pointer (to one of 32 ways) plus 5b block offset
for each frame; 360b freelist for 360-frame T$ set; 256b
freelists per β$ set, at most 16 β$ sets per T$ set; Total =
((10× 360) + 360 + (256× 16) + (6× 360))/8 = 1277B

F Page tags 4B page tag, 32 page tags per T$ set; Total = (4× 32) =
128B
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The remaining issues are replacement and row locality. β$ tracks the replacement

state (e.g., NRU) at the page granularity for full evictions and at the chunk granularity

for partial evictions (i.e., evict any NRU chunk in the set). The per-set replacement

state is co-located with the set’s tags to reduce the bandwidth demand (see ”Set

Metadata” in Figure 3.3(a)).

Because a page stays in one set, β$ enjoys row hits for (1) the metadata of not

only all the page’s blocks and but also the entire set (e.g., tags, replacement state,

and free list) as well as (2) the data of the page (though the tag metadata and data

would be in different rows). In contrast, conventional and DS caches spread the page

over multiple sets and incur row misses (Section 3.2). β$’s tag and data share the

same 3-D DRAM with all of the tag preceding all of the data, both laid out linearly.

Finally, I saw above that β$ incurs some holes in the cache (data array) to reduce

the T$ size though page-block decoupling can eliminate most of the holes as shown

in DS [29]. However, a detailed design trade-off study is left to future work while this

work focuses on the first step of design and illustrates one good design point in the

evaluation.

3.3.2 Tag Cache (T$)

Because T$ is a cache for the tag metadata in β$, T$’s organization largely mirrors

that of β$ metadata (i.e., with page-based set mapping, and block metadata grouped

into chunks). The T$ cache is significantly smaller than the β$ metadata which

implies that there is a many-to-one mapping of β$’s sets to the T$’s sets.

Organization: Due to the many-to-one mapping, the following items may be dif-

ferent in β$ and T$: (1) a page’s associative way, (2) a page’s replacement rank in the

respective sets, (3) the chunks occupied by a page, and (4) the per-set chunk free lists.

Items (1), (2), and (3) are needed for correctly updating a page’s metadata in the β$

upon eviction from the T$. Accordingly, the T$ holds a page’s way and rank in the

β$ (see ”Page Tags” in Figure 3.5(a) for page X) and the chunk numbers in the β$
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(see ”β$ Chunk” under ”T$ Metadata” in Figure 3.5(b)). The fourth item is needed

for locating a free chunk upon a block miss. To that end, the T$’s set holds the free

lists of all the β$ sets whose pages may map to an T$ set (see ”β$ Freelist Table”

under ”Page Tags” in Figure 3.5(a)). Fortunately, the T$ need not be provisioned for

the worst case of as many β$ sets as the T$’s associativity. Because the T$ has fewer

sets than β$ and the same associativity, set-mapping rules imply that only a few β$

sets can map to the same T$ set (e.g., though the T$’s associativity is 32, if the T$

is 16 times smaller than β$ then the T$ needs to hold at most 16 β$ free lists).

Reverse-pointers: Another issue is that β$’s co-location feature (wherein co-location

of page metadata via forward pointers from the page to the blocks incurs many null

pointers which impose significant space overhead on the T$ (e.g., each page’s forward

pointer metadata in row A in Table 3.3 is 56 bytes of which nearly 65-75% is null

based on average page occupancy of between a third and a fourth in Figure 3.4). To

avoid the null pointers, the T$ uses reverse pointers from the blocks to the page, as

shown by ”Reverse Pointers” under ”T$ Metadata” in Figure 3.5(b). In addition,
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the use of reverse pointers also necessitates saving block-offsets with the metastate to

identify which block the metastate belongs to (e.g., the block positions, 3, 0, 7 and

6 in Figure 3.5(b)). The use of reverse pointers reduces the metastate overhead by

56% from 1562 Bytes to 690 Bytes as shown in Rows D and C of Table 3.3. Because

the T$ is on-die, access bandwidth to the reverse pointers is not an issue, unlike the

off-die β$. As the tag metadata transits between the T$ and β$, the forward pointers

in β$ are changed to reverse pointers in the T$, and vice versa.

Recall from Section 3.3.1 that the key motivation for chunking is to reduce the T$

metastate overhead. Indeed, the per set overhead of T$ bloats by 1.85X in the absence

of chunking as shown in rows E and C (1277B versus 690B). The overall reduction

is a combination of (1) a linear reduction (proportional to degree of chunking) in the

freelist overhead and reverse-pointer overheads and (2) no reduction in block-offset

and coherence overheads which are unaffected by chunking.

Figure 3.6 describes the metadata layout in the DRAM row. The page tags are

stored together followed by free-list and chunk replacement information. The chunk
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metadata associated to each page tag is laid out at the end. It is important to note

that all page tags, the free-list and chunk replacement bits, and chunk metadata

for the matching page tag (or victim page tag) can be transferred in 3 memory

transactions. Great care is taken to ensure that the metadata layout is done in a

way that minimizes the number of memory transactions needed to fetch the required

metadata.

Operation: The T$ and the metadata in the β$ operates like a traditional 2-level

hierarchy wherein addresses are first looked up in the T$ before accessing the β$ (in

case of a miss in the T$). Because of the two-level organization, each access can face

one of four possible outcomes (hit/miss in the T$, hit/miss in the β$). The number

of DRAM accesses for each of these four cases is summarized in Table 3.2. Note, not

all cases are equally likely; hits are common and misses are uncommon in each of the

two levels. Later, in Section 3.5.1, I show that β$ + T$ reduces the total number of

transfers from 3D-DRAM.

A key invariant I enforce in the T$’s operation is that for the pages present in

the T$, the block information in the T$ is the same as that in the β$. That is, the

T$ maintains full and current information about a page. This invariant guarantees

that for any given access, a page hit in the T$ ensures that the block hit (miss) in

the T$ is a hit (miss) in the β$ as well. The rationale for this invariant is that (1) it

prevents unnecessary accesses to the β$, and (2) it matches the T$’s goal of exploiting

page-level spatial locality by fetching (and maintaining) full page information.

As with any tag-caching scheme, the T$ requires page metadata invalidations

whenever a page is evicted from the underlying cache (β$, in our case). Further,

to enforce the invariant, I require one additional safeguard – in the case of partial

replacement of a chunk of a page, the update must be actively propagated to the

corresponding page entry in the T$ to ensure that the metadata of the victim chunk

is also evicted from the T$.
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For example, eviction of a page results in the tag-cache entry being similarly

evicted from the T$.

Accordingly, accesses to the T$ and β$ fall into four cases (in increasing order of

difficulty): page hit and block hit (in both the T$ and β$), page hit (in the T$) and

block miss (in the β$), page miss in the T$ and block hit in the β$, page miss in the

T$ and block miss in the β$.

First case: In the first case, the metadata is served completely from the T$

without requiring any access to the 3-D DRAM. In the T$, the way pointers of all

the chunks in the indexed set are matched to identify the relevant chunks (e.g., 4-bit

way pointers of 64 chunks). Then the offsets of the matching chunks are searched to

identify the relevant block. This matching can be simplified to a few sequential steps

involving fewer matches per step (e.g., 4 groups of 16 chunks each). Such grouping

costs only a few cycles compared to the 3-D DRAM data access of more than 50

cycles.

Second case: In the second case, if space is already available in a chunk that is

not full (sub-case 1), the pre-allocated space is assigned to the block. If there is no

free space in existing chunks (sub-case 2), a new chunk, preferably a free chunk, is

allocated in both the T$ and β$. If there were no free lists, locating the free chunks

would incur many 3-D DRAM accesses to search through the forward pointers of

all the pages in the set (e.g., 8 64-B accesses each of which covers 2 pages’ forward

pointers shown in row A of Table 3.3). If no free chunks are available in the T$ and

β$ (sub-case 3), then a partial eviction occurs from the β$ (i.e., only one chunk is

evicted) and a full eviction from the T$ (i.e., a full page is evicted); recall that there

are no partial evictions , based on the replacement state for the respective sets in the

T$ and β$; from the T$. The partial β$ eviction incurs a 3-D DRAM read of the

coherence state in the β$ possibly followed by a writeback of the partially evicted

data to main memory and an update of the victim page’s block metadata (typically

two 3-D DRAM accesses). The T$ full eviction (in sub-case 3) incurs a reverse-to-

forward-converted metadata writeback to the β$ (typically one DRAM access for the
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page’s tag and replacement state, another access for the page’s co-located metadata,

and one more for updating the free list vector). If the page’s metadata were not co-

located, the writeback would incur many 3-D DRAM accesses (e.g., 6 64-B accesses

for the page’s metadata scattered across the set as shown in row C of Table 3.3).

While the writeback can be reduced with metadata dirty bits, replacement state and

block occupancy often change and make the dirty bits ineffective (our implementation

does not use metadata dirty bits).

Irrespective of the sub-case (i.e., presence or absence of free chunks), the second

case is a block miss in the β$ which requires a fill of the data from main memory

into the DRAM cache. Assuming the β$ (and T$) is provisioned appropriately with

enough chunks, free chunks would be available in the common case. As such, the

first two cases (both page hits) correspond to the prevalent page-level spatial locality

and therefore capture a majority of accesses (e.g., 80%) most of which require only

a few or no 3-D DRAM accesses. Table 3.2 briefly summarizes the number of 3-D

DRAM accesses for the two cases (rows ”Hit/Hit” and ”Hit/Miss”). While full/partial

evictions from the T$ and β$ are uncommon in the second case, they do occur in the

fourth case below where β$’s mechanisms of chunking, co-location and free lists are

more important.

Third case: In the third case of page miss in the T$ and block hit in the β$, there

are typically two 3-D DRAM accesses for the block hit: one to read the page tags of

the set in the β$ and another to read the co-located per-page metadata. Recall that

in a set in the β$, the page tags are co-located for quick page hit/miss determination.

In addition, the page miss in the T$ requires a full eviction from the T$ incurring a

metadata writeback to the β$ (like the second case above) and a page metadata fill

via a forward-to–reverse conversion (see ”Miss/Hit” row in Table 3.2; the transfers

may increase in case of dirty evictions). This case is uncommon as it corresponds to

the page being absent in the T$ but being present in the β$ which would not occur

often in the presence of page-level locality and a well-provisioned T$.
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Fourth case: The fourth and most difficult case of page miss in the T$ and block

miss in the β$ requires a full eviction in both the β$ and the T$. Determining the

block miss in the β$ typically requires a 3-D DRAM access to the co-located page

tags and is followed by a full page eviction from the β$. This full eviction typically

requires a 3-D DRAM read for the victim page’s co-located metadata followed by

several reads of dirty data to be written back to main memory. The full eviction from

the T$ is similar to the third case above but without any metadata fill from the β$

because the page is not in β$. Instead, the T$ starts the page with just the missing

block. Like the second case above, this case is a block miss in β$ which requires a

fill of the data from main memory into the DRAM cache. Table 3.2 shows the fewest

accesses in this ”Miss/Miss” case; dirty block evictions would require more accesses.

Figure 3.7 summarizes the operations that take place upon an access to the T$ in

the form of a flowchart.
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Table 3.4.
Benchmarks

Benchmark Description Memory Foot-
print (GB)

Specjbb: version 2005, Java-based 3-tier client/server system workload with emphasis on
the middle tier. Java server VB version 1.5 with parallel garbage collection. I simulate
2 JVMs each hosting 24 warehouses. I warmup the benchmark for 180,000 transactions
and measure performance for 2,000 transactions

1.2

Online Transaction Processing (OLTP): models database transactions of a wholesale
parts supplier. I use PostgreSQL 8.3.7 database system and DBT-2 test suite which
implements TPC-C benchmark. I reduced number of items and districts per warehouse
and customers per district to allow a larger number of warehouses. I use 8 databases each
with 25,000 warehouses. I simulate 128 concurrent database connections per database. I
warmup the databases for 80,000 transactions each before taking measurements for 200
transactions

64

Apache: version 2.2.9, a static web server workload. I use 8 webservers hosting a 160,000
files. SURGE is used to generate web requests by simulating 12800 clients, each with
25ms think time between requests. I warmup the webservers for 1,000,000 transactions
each before taking measurements for 1,000 transactions

4

Linkbench: models database queries to a social graph e.g Facebook. I use MySQL 5.6.14
database system and the Linkbench social graph and query generator. I use 8 databases
each with 5 million keys. I configure MySQL with a 4 GB buffer pool and InnoDB
storage engine. I generate the social graph, load the keys, warmup the databases for
300,000 transactions, and perform our measurements for 500 transactions

48

Telecom Application Transaction Processing (TATP): models database transactions of a
Home Location Register (HLR) database used by a mobile carrier. I use MySQL 5.6.14
database system and OLTP-Bench which implements the request generator in java. I
use 8 databases each with a scale factor of 40. I use 40 client terminals and default
weights. Each MySQL database is configured with an 4 GB buffer pool and InnoDB
storage engine. I warmup the database for 300,000 transactions and take measurements
for 500 transactions

40

Spec2006: I evaluate 4 spec programs (astar,omnetpp,mcf,libquantum) in rated mode (8
copies each). I use simpoints to identify a simulation interval. I warmup the caches for
250 million instructions and do measuremeants for 100 million instructions

2-6
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Fig. 3.8. Impact of Associativity on Performance

3.4 Experimental Methodology

I run full-system simulations using Wisconsin GEMS [11] built on top of Sim-

ics [12]. I simulate SPARC-based, single-socket multicores running Solaris 10.

Workloads For our main results, I simulate the commercial benchmarks shown in

Table 3.4 which also shows their memory footprints. Following GEMS methodology,

I fully warm up the caches before measuring performance to avoid cold-start effects.

More than 90% of the simulated cache frames see several misses during each measure-

ment confirming steady-state behavior. In addition, I also simulate multiprogrammed

SPECPU 2006 benchmarks [36] to validate the behavior of previous proposals that

have demonstrated performance benefits with scientific/engineering workloads.

System Configuration Table 3.5 lists the key parameters of the simulated sys-

tem. The system uses 16 4-way SMT multicore organized as a 4x4 tiled architecture

where each tile includes private L1/L2 caches and a slice of the shared L3 cache.

To simulate the effects of TSVs, the 3-D DRAM uses twice as many channels, twice
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Table 3.5.
Common System Configuration Parameters

Processors, On-chip Caches and Network
Cores 16 (4-way SMT)
Core Frequency 3.2 GHz
Private L1I 64KB, 4-way, 3 cycles
Private L1D 64KB, 4-way, 3 cycles
Private L2 128KB, 4-way, 4 cycles
Shared L3 8MB, 16 banks, 16-way
Shared L3 latency 6 cycles (local bank)
Link latency 2 cycles
Interconnection network 4x4 Mesh

Die-stacked DRAM (256 MB)
Bus frequency 1.6 GHz
Channels 4
Ranks 1 per channel
Banks 8 per rank
Bus width 128 bits per channel
tCAS-tRP-tRCD-tRAS 9-9-9-27

Main Memory (64 GB)
Bus frequency 800 MHz
Channels 2
Ranks 1 per channel
Banks 8 per rank
Row buffer size 2KB
Bus width 64 Bits per channel
tCAS-tRP-tRCD-tRAS 11-11-11-33

the bus speed, and twice the bus-width as main memory. Other timing parameters

for the 3-D DRAM and main memory are shown in Table 3.5; the DRAM has 5x

more bandwidth than memory (2x more banks and 2.5x shorter bank occupancy, as

discussed in Section 3.2). Recall, the β$ and T$ parameters are shown in Table 3.3. I

determine the associativity of the conventional DRAM cache empirically. As shown in

Figure 3.8, commercial workloads see significant performance improvements as asso-

ciativity (X-axis) increases up to 16. However, the impact of associativity in spec2006

programs is insignificant. For the commercial workloads, increasing the associativity

beyond 16 resulted in insignificant performance gains. As such, all our experiments

use a 16-way associative DRAM cache.
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Table 3.6.
Tag Overhead (MB)
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Total
for
256-
MB

17.5 10.2 0.5 0.5 16 17.5 3.5 15

Total
for
1-GB

70 40 2.1 2.1 64 70 14 60

Total
for
4-GB

280 160 8.5 8.5 256 280 56 240

Comparison with other cache organizations I compare the following schemes:

(1) a conventional cache using large, 2-KB blocks; (2) an ideal version of CHOP [27]

using 2-KB blocks with an experimentally determined migration threshold of 8 ac-

cesses, and an unbounded filter-cache to filter sparse pages without any loss of history;

(3) an ideal Alloy cache using 64-B blocks with the tag metadata in the 3-D DRAM

and perfect hit-miss prediction [26]; (4) MissMap with compound accesses to the tag

metadata and data which are stored in the 3-D DRAM [25]; and (5) a PSB cache

using 2-KB pages and 64-B blocks with tag metadata in DRAM cache and a T$

for caching the tag metadata; and (6) a β$ cache and a T$ using 2-KB pages, 64-B

blocks, and 4-block chunks. I model the bus and 3-D DRAM bank occupancy of

non-critical-path events such as writeback of coherence and replacement state for all

the caches, as these events impact the bandwidth demand on the 3-D DRAM, as

discussed in Section 3.2.

3.4.1 Tag Overhead

Varying the DRAM cache size as 256 MB, 1 GB, and 4 GB, Table 3.6 shows

the total tag overhead conventional 64-B-block cache, DS, conventional 2-KB-block
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caches (Large Blk in table), ideal 2-KB-block CHOP [27], MissMap [25], ideal Alloy

cache [26], PSB, and β$. The ideal variants are described in Section 3.4. The overhead

includes tags, replacement state (NRU bits at the appropriate granularity), sub-block

pointers or presence bit vectors (for β$ and PSB), per-block coherence state, reverse

(block-to-page) pointers (for DS) and free-lists (for β$). Excluding the large-block

variants, the metastate for all other techniques is too large to include on the processor

die. As such, our performance comparisons configure these schemes to use a tag cache

to hold a subset of the total metadata on the processor die.

In Figure 3.9, I show the T$’s page miss rate for our benchmarks as I vary its

size as 512, 1K (default),and 2K sets (410, 820, and 1640 KB in total size), which

are 30x, 15x, and 7.5x fewer than the DRAM cache’s sets. I also show the 256-MB

DRAM cache’s block miss rate for reference. While the T$’s page miss rate lowers

as expected with its size, the more important point is that the T$’s page miss rate is
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far better than the DRAM cache’s block miss rate highlighting the key role of spatial

locality in DRAM cache design.

3.5 Results

I compare the performance of β$ + T$ against several previous schemes. I first

show that β$ + T$ outperforms the competition because of improved bandwidth

efficiency. I then show that omitting β$’s features results in increased bandwidth

demand and hence lower performance. Finally, I show some results for sensitivity to

3-D DRAM bandwidth.

3.5.1 Performance

In Figure 3.10(a), I compare the performance of a conventional 2-KB-block cache

(labeled ’Large Blk’), ideal CHOP, ideal Alloy cache, MissMap, ATCache, PSB +

T$, and β$ + T$, all configured as a 256-MB DRAM cache. The Y axis shows

performance normalized to that of a conventional 64-B-block DRAM cache with all

of its tag metadata in the 3-D DRAM. The X axis shows our benchmarks. To help

understand the performance graph, I also include the total access latency incurred

at the 3-D DRAM (Figure 3.10(b)) and at main memory (Figure 3.10(c)). The

schemes compared are the same as those in Figure 3.10(a); with the following key

differences. The Y-axis shows total access latency normalized to that of a conventional

DRAM cache with 64 byte blocks and tags in DRAM. Each bar is subdivided into

two components: the raw access latency at zero load and the queuing delay.

Conventional 2-KB-block cache and ideal CHOP both perform poorly due to main

memory bandwidth wasted on transfering entire 2-KB blocks of which the useful data

is around a quarter to a third (Figure 3.4). Compared to the conventional 2-KB-block

cache, ideal CHOP does filter the bandwidth demand modestly. However, asFigure 3.4

shows, that the page occupancy is not bi-modal but rather has a long tail so that

CHOP’s bandwidth filtering is insufficient. For both these techniques, their high

memory bandwidth demand manifests as large main memory queuing delays in Fig-
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Fig. 3.11. Queuing delay for DRAM cache

ure 3.10(c). Ideal Alloy cache performs worse than the baseline due to higher DRAM

cache miss rate, which translates to larger queuing delays at main memory. (Recall

from Section 3.4 that Alloy cache’s direct-mapped design incurs higher missrates for
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commercial benchmarks than for SPEC2006 benchmarks.) Because MissMap exerts

similar 3-D DRAM bandwidth pressure for tag metadata as the conventional baseline,

as seen in Figure 3.10(b), MissMap performs close to the baseline. Despite using a

T$, the ATCache fares worse than the baseline because the ATCache employs set-

based tag prefetches. Consequently, ATCache fetches a lot of useless tags (i.e., tags

for blocks that will not be accessed) in to the T$ thereby worsening the bandwidth

pressure on 3-D DRAM. Also, the layout of ATCache is no different than a conven-

tional cache. By spending only a little of the 3-D DRAM bandwidth on tag metadata

because of their T$ s, both PSB and β$ perform better than the conventional base-

line. However, PSB incurs holes in the DRAM cache and higher DRAM cache miss

rate (shown next), which has two effects. (1) main memory bandwidth pressure goes

up; and (2) the tag metadata activity increases driving up 3-D DRAM bandwidth

pressure (more misses means more tag accesses). In contrast, β$ incurs fewer holes

due to page-block decoupling. As such, β$ + T$ enjoys lower 3-D DRAM and main
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Fig. 3.13. Spec Performance

memory bandwidth pressure, which translates to 15% better performance than PSB

+ T$.

3.5.2 Comparison with SPEC2006 workloads

The above results are different than those in the previous papers primarily be-

cause of our commercial workloads which are significantly more memory-intensive

than SPEC workloads. Figure 3.13 shows the performance of the various schemes

on SPEC workloads. As with commercial workloads, performance is normalized to

that of a conventional cache with 64-byte blocks (Y-axis). While SPEC workloads

show some bi-modality in page occupancy which helps CHOP’s filtering, our com-

mercial workloads do not and hence our results are different from the CHOP paper’s.

With some SPEC benchmarks (see libquantum in Figure 3.13) there are many dense

pages, which results in performance improvements for ideal CHOP and conventional

2KB-block cache. The MissMap’s authors published a correction to the performance

results in their paper but the addendum does not compare to our baseline though the

original MissMap paper does. The Alloy cache paper uses multiprogrammed SPEC
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Table 3.7.
DRAM Cache Misses per thousand instructions (MPKI)
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Apache 11 2.8 3.6 21 12 12 13.5 13
Linkbench 2.2 1 1.1 6.6 1.9 2.0 3.0 2.7
TATP 1.5 0.5 0.7 13 2.1 2.0 1.2 1.4

benchmarks whereas our commercial workloads are more memory-intensive. Our own

SPEC comparisons do show that associativity is not as important for SPEC bench-

marks. Finally, the results show that β$ + T$ is within 9% of ATCache, which is the

best technique for SPEC benchmarks. However, for commercial workloads, β$ + T$

is more than 2x better than ATCache (Figure 3.10(a)).

The queuing delays shown in Figure 3.10(b) and Figure 3.10(c) are indirect mea-

sures of bandwidth demand. To provide more direct measures, I show both the DRAM

cache miss rates (in MPKI) in Table 3.7, and the bandwidth demand (in normalized

number of transfers) at both the DRAM cache and main memory in Table 3.8. Due

to space constraints, Table 3.8 shows only the (geometric) mean bandwidth demand

across all benchmarks.

Table 3.7 shows the miss rates in MPKI for the above schemes starting with the

baseline conventional 64-B-block cache. While the miss rates for the large-block cache

and ideal CHOP are significantly lower than the conventional design’s, their main

memory bandwidth demand is much higher due to the unwanted data in their large

blocks. The ideal Alloy Cache has higher miss rates due to more conflict misses which

translates to 190% increase in bandwidth demand from main memory (Table 3.8).

By avoiding holes via page-block decoupling (Section 3.4.1) MissMap has low miss

rates close to the conventional design’s but performs slightly worse due to the slightly



75

Table 3.8.
Bandwidth demand at 3-D DRAM and Main Memory

Normalized Bandwidth Demand
(Conventional Cache with Off-die tags = 1.0)
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eroded 3-D DRAM bandwidth advantage (Table 3.8). ATCache is a conventional

cache and hence has miss rates similar to ocnventional but lack of page-level metadata

locality implies 2.2x more 3-D DRAM bandwidth (Table 3.8). PSB +T$’s miss rates

are higher than the conventional design’s due to holes, yet PSB performs better by

avoiding excessive pressure on the 3-D DRAM bandwidth for tag metadata. In TATP,

PSB incurs lower miss rate than the conventional design because the former’s coarse-

grain page replacements preserve the pages with high and frequent reuse where the

block reuse is high but spreaad out in time. whereas the latter’s fine-grain block

replacement evicts such blocks. β$’s miss rates are better than PSB’s due to fewer

holes but worse than conventional’s because though page-block decoupling in β$ can

eliminate PSB’s holes and achieve miss rates similar to the conventional design’s, β$

incurs some holes in return for a smaller T$ and lower 3-D DRAM bandwidth demand

(Section 3.3.1).

3.5.3 Other Comparisons

Impact of Perfect Footprint Prefetch: Figure 3.14 compares the performance

(Y-axis, normalized to conventional cache with 64B blocks) of PSB and β$ to that

of PSB with an oracular perfect prefetch mechanism — all three configurations use

the T$. Experimentally, perfect prefetch is simulated by (1) including the bandwidth
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Fig. 3.14. Perfect Footprint Prefetch

cost (bank occupancy) of the subset of blocks of a page that are accessed before page

replacement, and (2) considering any page hit to be a block hit. The addition of

perfect footprint prefetching offers a modest improvement over PSB + T$; β$ +T$

remains significantly better without any prefetching at all. This result is not surprising

because the problem is one of bandwidth and not latency and prefetching improves

latency but not bandwidth (Section 3.2.4).

Impact isolation and comparison with DCC: Recall that two of our features

(colocation, free-lists) serve to minimize transfers from the DRAM cache and two of

them (chunking and reverse pointers) to reduce the size of the T$. The impact of

omitting the latter two features was previously isolated in Section 3.3.2 and Table 3.3;

the per-set state is reduced by more than 1.85X as a result. As such, I focus on the

impact of the former two features in this section.

To isolate the impact of β$’s features, Figure 3.15 shows the performance of β$

with and without the features (both variants use the T$). Without the features,

β$ defaults to a decoupled cache with set mapping at the page granularity (i.e.,

few holes), similar to DCC [34]. In such an organization, the metadata is scattered
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Fig. 3.15. Impact of β$’s features and comparison with DCC

across the set, which destroys metadata locality at the page-level. Consequently,

β$ loses significant performance despite using the T$ because the lack of page-level

metadata spatial locality results in many more 3-D DRAM accessses than the full β$

(Section 3.3.1). Thus, both T$ and β$’s features are needed for good performance.

Note, the above comparison is equivalent to a comparison of β$ +T$ with DCC+T$.

3.5.4 Sensitivity to 3-D DRAM bandwidth

Figure 3.16 shows the normalized performance (mean across all benchmarks, Y-

axis) of three systems (conventional with 64B blocks and off-die tags, PSB +T$, and

β$ + T$) while varying 3-D DRAM bandwidth between 4X and 6X of main memory

bandwidth. (Recall that our main results assume 3-D DRAM has 5X the bandwidth

of main memory. I use the conventional cache with 64B blocks and off-die tags and

5X bandwidth as our normalization baseline.)

When available bandwidth is reduced (see 4X bars in Figure 3.16, 3-D bandwidth

becomes a more precious resource. This results in β$ +T$ widening its performance

gap relative to both PSB + T$ and conventional cache. In contrast, when I increase
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Fig. 3.16. Sensitivity to 3-D DRAM bandwidth

the bandwidth to 6X, the conventional cache, which is starved for 3-D bandwidth,

benefits significantly relative to β$ + T$. This is not surpising as abundant bandwidth

reduces the benefit of bandwidth efficiency that β$ enjoys. Interestingly, PSB + T$,

which is not limited by 3-D DRAM bandwidth, becomes worse than both conventional

and β$ +T$ configurations. The abundant bandwidth neutralizes any bandwidth

efficiency advantage PSB +T$ may have with respect to the conventional cache; and

PSB’s holes ensures that it has a disadvantage relative to both β$ and the conventional

cache.

3.6 Related work

Off-chip memory bandwidth has been predicted to be a limiting factor even before

the multicore era began [37]. While memory latency has always been a roadblock to

maximizing processor performance, the advent of multicores meant that the memory

subsystem will face another roadblock in the form of higher bandwidth demand. Not

as harsh as the memory latency wall – a name given to the ever-increasing diverg-

ing gap between the speed of operation of the processor and memory – designing

multicores with memory subsystem capable of sustaining the memory bandwidth de-



79

mand has its own challenges. Because die areas are not supposed to increase a lot

with smaller process nodes, the available physical space along the chip edges doesn’t

increase. Consequently, this makes it harder to increase the pin count as memory

traffic increases due to increase in core count. It is precisely for this reason pin-

bandwidth has been identified to be a major bottleneck for future multicores [38].

3-D die-stacking is the industry’s response to the pin-bandwidth problem [15, 24].

3-D die-stacking packages the on-chip logic and DRAM together albeit on different

dies. Through the use of TSVs, the 3-D DRAM is stacked on top of processors. An-

other form of packaging, 2.5-D packaging, instead of TSVs makes use of high density

interconnects between heterogeneous dies on a single package. As of now, it isn’t

clear which of the two packaging techniques will become more prevalent in the com-

ing years. However, it is fair to say that on-chip logic and DRAM will be packaged

together to serve the bandwidth demands of multicore. The idea of a tag cache has

been proposed before for off-chip DRAM sector cache [31]. While sector caches cap-

ture spatial locality very well without increasing metadata storage overhead, they

suffer from capacity loss due to holes incurred since page-level spatial locality varies.

I compare with this design point in my evaluation. [39] proposes a sector cache with

tags in 3-D, which on top of footprint prediction [32,33], uses way prediction to avoid

the tag lookup latency overhead if the tags are stored in 3-D cache. [39] operates

under the assumption that (1) 3-D bandwidth is plentiful (2) the loss of capacity due

to holes is a non-issue. First, while it is true that 3-D bandwidth is more than main

memory bandwidth, it is overly far-fetched to assume that such bandwidth would

justify wasting it in metadata lookup and updates. Architects will try to utilize the

copious bandwidth by increasing the core count, multithreading, or through other

means. Second, while the spatial locality exhibited by scaleout workloads may be

regular and plentiful, it is more varying for commercial workloads (Figure 3.4) where

the loss of capacity in the form of holes hurts MPKI. In contrast, β$ tries to minimize

loss of capacity due to holes by decoupling tagging granularity and allocation granu-
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larity, and ensuring that bandwidth is not worsened due to the additional metadata

accesses through compact metadata layout techniques.
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4. CONCLUSIONS

In this thesis, I have addressed the two fundamental problems that act as hindrance

for multi-core performance scaling: power and off-chip memory bandwidth.

Multi-cores are becoming increasingly power-contrained. The slowing of Den-

nard’s scaling, despite transistor innovations, is making it harder to get the desired

power savings transistor scaling has traditionally offered. Researchers have responded

to the slowing of Dennard’s scaling by arguing that dark silicon inevitably imposes a

performance limit and by advocating for customization to harness more performance

with the same power budget. While the DSL suggests an undesirable bound on per-

formance because of dark silicon, customization places multi-cores on a potentially

arduous path of considerable design/programmability cost. In chapter 2, I showed

that previously shown dark-silicon induced bounds on multi-core performance can be

surpassed, and that a gentler, evolutionary path for multi-cores exists. This path,

called successive frequency unscaling (SFU), involves successively scaling down the

clock frequency with each technology generation. SFU is based on the insights that

(1) frequency unscaling lowers per-core power where voltage-frequency scaling is in-

feasible, enabling more cores to be activated than the DSL approach; and (2) typical

multi-core workloads are memory-bound and benefit from the increased memory-level

parallelism achieved by the higher active core count. Guided by these insights and a

simple analytical model, SFU exploits two non-linearities: (1) the sub-linear impact

of clock speed on performance for memory-bound workloads and (2) the super-linear

impact of throughput on queuing delays. The first non-linearity implies that SFU’s

increased memory-level parallelism more than offsets the slower clock so that for

memory-intensive workloads, full SFU, where all the cores are powered up, performs

46% better than the DSL limit at the 11 nm technology node (18% better with out-of-
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order cores). The second non-linearity comes into play for enterprise workloads where

both throughput and response times are important and full SFU’s aggressive clock

slowdown may penalize response times. To address this issue, I proposed controlled

SFU (C-SFU) which moderately slows down the clock and powers many, but not all,

cores to achieve 21% better throughput than the DSL limit at the 11 nm technol-

ogy node. The higher throughput non-linearly reduces queuing delays and thereby

compensates for the slower clock, resulting in C-SFU’s total response latency to be

within +/- 10% of that of DSL.

Finally, SFU’s simplicity enables a viable, evolutionary path of higher performance

for multi-cores at virtually no design effort or complexity.

On the memory bandwidth front, increasing the pin-bandwidth has become harder

due to the physical space limitations along the chip edges. While die sizes can be

increased to allow greater number of pins, doing so will increase the cost per chip

due to lower yield. Fortunately, the problem of memory bandwidth can be alleviated

by die-stacking of DRAM on the processor die which promises to continue scaling

the pin bandwidth to off-chip memory. The 3-D DRAM is expected to be used as a

large cache, which poses a choice between placing its large tag on the processor die

versus in the 3-D DRAM. Tag caching can strike a compromise between these choices

but fundamentally requires exploiting page-level metadata locality to ensure efficient

use of 3-D DRAM bandwidth. This locality crucially depends on the DRAM cache

and tag cache (T$) organizations. While plain sub-blocking exploits this locality but

incurs holes in the cache due to absent blocks, decoupled organizations avoid holes

but destroy this locality. In chapter 3, I proposed Bandwidth-Efficient Tag Access

(BETA) DRAM cache (β$) which both avoids holes and exploits the locality via its

four features. β$ targets two goals: (1) reducing the 3-D DRAM bandwidth cost of

T$ misses and DRAM cache misses, and (2) improving the T$’s effective size. For

the first goal, β$ exploits page-level metadata locality by (a) co-locating the meta-

data of a page, and (b) tracking the per-set free space. For the second goal, both

β$ and T$ reduce the amount of on-die metadata by (a) dynamically switching from
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β$’s forward pointers to reverse pointers in the T$ at the β$-T$ interface, and (b)

allocating space in β$ at the chunk granularity. Using simulations, I conclusively

showed that (1) the primary concern in DRAM caches is bandwidth and not latency;

(2) previous proposals incur bandwidth bottlenecks at either main memory or 3-D

DRAM; (3) β$ with a T$ performs 15% better than the best previous scheme with a

similarly-sized T$; and (4) β$’s improvements are due to its tag bandwidth efficiency.

As die stacking is increasingly adopted, β$’s tag bandwidth efficiency will be a key

advantage over the other cache organizations.

While multi-cores do face challenges in delivering the promise of Moore’s law, this

thesis makes an attempt to show that multi-core performance can scale (for atleast a

decade) without a drastic paradigm shift in computing.
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