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ABSTRACT 

Saber, Sammy M. Ph.D., Purdue University, May 2015. Investigations of Carbon 
Nanotube Catalyst Morphology and Behavior with Transmission Electron Microscopy. 
Major Professor: Dr. Eric A. Stach. 
 
 
Carbon nanotubes (CNTs) are materials with significant potential applications due to 

their desirable mechanical and electronic properties, which can both vary based on their 

structure. Electronic applications for CNTs are still few and not widely available, mainly 

due to the difficulty in the control of fabrication. Carbon nanotubes are grown in batches, 

but despite many years of research from their first discovery in 1991, there are still many 

unanswered questions regarding how to control the structure of CNTs. This work 

attempts to bridge some of the gap between question and answer by focusing on the 

catalyst particle used in common CNT growth procedures. Ostwald ripening studies on 

iron nanoparticles are performed in an attempt to link catalyst morphology during growth 

and CNT chirality (the structure aspect of a nanotube that determines its electrical 

properties). These results suggest that inert gas dynamics play a critical role on the 

catalyst morphology during CNT growth. A novel method for CNT catalyst activation by 

substrate manipulation is presented. Results of this study build upon prior knowledge of 

the role of the chemistry of the substrate supporting CNT catalysts. By bombarding 

sapphire, a substrate known to not support CNT growth, with an argon ion beam, the 

substrate is transformed into an active CNT growth support by modifying both the 
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structure and chemistry of the sapphire surface. Finally, catalyst formation is studied with 

transmission electron microscopy by depositing an iron gradient film in order to identify 

a potential critical catalyst size and morphology for CNT growth. A relationship between 

catalyst size and morphology has been identified that adds evidence to the hypothesis that 

a catalysts activity is determined by its size and ability to properly reduce. 
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CHAPTER 1. INTRODUCTION 

1.1 Introduction / Motivation 

Moore’s law, first observed in 1965, describes the general trend that the number of 

transistors in central processing units seems to double about every two years1. Once 

observed as a general trend, it is now used as a benchmark to guide future research2. 

However, generally, current technology is beginning to hit a wall with regards to 

miniaturization3. 

 

This is a problem that is shared with most electronic devices. As the world faces the need 

to process larger amounts of data and harness larger amounts of energy, our technology 

needs are forced towards the nanoscale. The nanoscale is special in that at these small 

dimensions, quantum effects arise and surface chemistry plays a far more important role. 

Utilizing devices with nanoscale structure allow us to process data faster, utilize less 

energy, and increase the effectiveness or efficiency of devices that depend on surface area. 

 

One potential solution to further minimize electronics is utilizing carbon nanotubes 

(CNT)4. These small, one-dimensional materials have interesting and desirable properties. 

Despite having diameters on the order of a few nanometers, CNTs have extremely high 
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Young’s Moduli and tensile strength5-8. In addition, they have unique electrical 

properties9-11, which can be used for a range of applications12. 

 

1.2 Carbon Nanotubes 

Carbon nanotubes are one-dimensional structures that can be described as sheets of 

graphene rolled into tubes13. These unique materials are interesting due to their unique 

mix of properties, as discussed earlier. While the Young’s modulus can remain somewhat 

constant, a CNT’s electrical properties may vary and are determined by its structure14. 

 

The structure of a CNT is defined by its chiral vector (n,m). This chiral vector is laid out 

on a sheet of graphene that defines a CNT’s circumference. There are three categories of 

CNT structures: armchair, zigzag, and chiral. Armchair CNTs are defined by a chiral 

vector (n,n) where n = m in the standard notation. Visually, these CNTs are defined by a 

chiral vector which falls along the sides and through the centers of the hexagons within 

the graphene structure. This results in an armchair-like pattern in the CNT structure along 

the diameter of the CNT. Zigzag CNTs are defined by the chiral vector (n,0) or (0,m). 

The name, once again, describes the pattern of the carbon bonds in the CNT structure 

observed along the diameter of the CNT, perpendicular to the length. Lastly, chiral CNTs 

are defined as all other CNTs with chiral vector (n,m) that cannot be defined as armchair 

or zigzag15. 
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Figure 1 - Diagram of a graphene sheet with the vectors, a1 and a2, defining the 
circumference of a carbon nanotube, ! = !!! +!!!, where C is the circumference and 
n and m are integers greater than 0. 
 

Electrical properties of CNTs can vary quite drastically, with some CNTs exhibiting 

metallic behavior while others act as semiconductors14. Their chiral vectors determine the 

distinction in electrical properties between these tubes. Carbon nanotubes with chiral 

vectors such that n = m exhibit metallic electrical behavior. So, all armchair CNTs act as 

metals, electrically. However, if a CNT has a chiral vector such that n – m is a multiple of 

three, than the CNT will act as a semiconductor with a small bandgap. Sometimes this 

bandgap can be small enough that there is little distinction between it and a metallic CNT. 

All other CNTs exhibit semiconducting electrical behavior15. The drastic difference 

between CNTs’ electrical properties simply based on their structure highlight the 
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importance of finding ways to either grow, or process through filtering, CNTs of specific 

chirality. 

 

In addition to variations in chirality, there exist two other classifications of CNTs, single-

wall16,17 and multi-wall. Single-wall carbon nanotubes (SWNT), as the name suggests, 

are CNTs that have a wall thickness of one layer of carbon atoms. Multi-wall carbon 

nanotubes (MWNT) are larger CNTs that are made up of multiple concentric CNTs. 

Multi-walled CNTs have their uses, but for the purposes of semiconducting applications 

as described in the previous section, SWNTs are preferred, simply due to the reliability of 

their electrical properties18-21 and theoretical ease of structural control during growth. A 

MWNT, for example, could consist of a mixture of metallic and semiconducting CNTs. 

In this case, its mechanical properties would be the result of some combination of its 

parts, any potentially desirable semiconducting behavior could be shorted by the presence 

of a concentric metallic CNT, and MWNTs are generally larger which limit benefits 

arising from the one-dimensionality of the tube21. 
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CHAPTER 2. CNT GROWTH 

There are a number of ways to grow CNTs. Methods such as arc discharge4,22, laser 

ablation23,24, and chemical vapor deposition (CVD)25-30 have all proven to be effective 

methods of producing CNTs. Despite years of research since CNTs were famously 

identified in 1991, there remain many unanswered or incompletely answered questions 

regarding the process of CNT growth, such as: What is the mechanism of growth 

termination? What is the catalyst composition and morphology during growth and how 

does that impact the structure of the grown CNTs? What is the role of water or oxygen 

with respect to the catalyst during growth? And, last, but not least how can chirality be 

controlled during growth? The reason these questions are so complicated to answer is due 

to the dynamic nature of growth, and the interconnectedness of the available variables to 

control during growth. 

 

2.1 Chemical Vapor Deposition 

Currently, the most popular method of CNT growth is CVD due to the potential 

scalability for manufacturing31, growth at up to atmospheric pressure or higher, and the 

ability to grow at relatively lower temperatures32 and in-place (i.e. control the location of 

growth)33. The process of growing CNTs through CVD starts with catalyst particles, 

usually made up of some transition metal, which are heated on a substrate while a carbon 
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precursor, a small amount of water, and a delivering gas are passed over the catalysts. 

The catalysts break down the carbon precursor and are able to assemble the carbon atoms 

in a structured manner that results in a CNT. However, the process of CNT growth is not 

very well understood. There are reports of wide variations in CNT quality, length, and 

chirality. In addition, CNT growth is not very efficient in that only a small percentage, 

~10%, of catalysts actually nucleate CNTs. These problems faced are likely due to the 

current limits of our understanding and the inability to control the direct mechanisms of 

CNT growth, but instead, control higher order factors such as temperature, pressure and 

initial catalyst size. 

 

2.2 Catalysts 

There are many choices of materials for growing CNTs. However, metals appear to be 

the most effective, specifically Fe34-39, Co40-42, and Ni43-45. These transition metals seem 

to be the most effective due to several properties, including their high carbon solubility 

and diffusion rate at higher temperatures46. However, growth has not been limited to 

these catalyst materials and has been shown in gold47, tungsten48, oxides49, and alloys50.  

 

In addition, recent studies have suggested that their adhesion to carbon is important. Ding 

et al.51 used first principles calculations to show that in addition to the normal catalyst 

function of cracking the carbon precursor gasses and nucleating CNTs, the catalyst also is 

required to have strong carbon adhesion for SWNT growth. As a SWNT is growing, if 

the adhesion between the carbon dangling bonds and the catalyst is not sufficient, the 

CNT will separate and form a cap, either forming a very short CNT or a structure more 
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similar to a ball than a tube. Coincidentally, this study showed that the elements that had 

the highest carbon adhesion were Fe, Co, and Ni. In addition, these metals also have a 

relatively high melting point and low equilibrium vapor pressure46, which means that 

CNTs can be grown at a wide range of temperatures without fear of catalyst loss through 

boiling or sublimation. 

 

There are multiple methods for catalyst preparation for growth. Commonly, thin films are 

deposited through atomic layer deposition (ALD), electron beam evaporation or sputter 

deposition. Catalysts may also be prepared by creating solutions of dissolved 

nanoparticles and then dipping a substrate into the solution. When preparing catalysts 

through film deposition, it is important to carefully choose the film thickness as it is 

directly related to catalyst size. Thicker films, when reduced, result in larger particles. In 

addition, CNT growth is a highly sensitive process, and small changes in surface 

chemistry can affect growth results. Amama et al.52 found that different methods of 

preparing alumina as a support for iron catalysts resulted in different growth behaviors. 

 

When preparing catalysts through film deposition, then the film must be broken up into 

nanoparticles. This is done by exposing the film to a heated reducing environment. The 

state of the catalyst prior to CNT growth is important and there is a diverse set of data 

suggesting many different kinds of catalysts for CNT growth. For example, the most 

popular assumption is that active catalysts are in a pure metallic state38,53. However, CNT 

growth from iron carbide has also been observed.54,55. 
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The catalyst morphology during growth is also the subject of debate. Harutyunyan et 

al.56,57 assert that the catalyst is a liquid during growth and solid catalyst particles inhibit 

the growth of CNTs. The argument for the catalyst being liquid at these temperatures is 

that as their size becomes very small, there is a suppression of their melting point. Even 

though bulk iron with a small amount of carbon begins to melt at around 1500°C, well 

above normal growth temperatures, the fact that catalyst particles are on the order of a 

few nanometers in diameter pushes the melting point downward. However, direct 

evidence of an epitaxial relationship has been observed. The definition of epitaxy veers 

slightly from the classical definition with respect to CNT growth. In this case, epitaxy 

refers to a situation where the wall(s) of CNTs line up crystalline planes within a catalyst. 

Rodriguez-Mazano et al.58 observed the walls of a MWNT lining up well with crystalline 

planes in a catalyst particle. The images, though, were taken after growth occurred. If 

growth had occurred from a liquid particle, it is possible that the particle solidified when 

the temperature was decreased and was seeded by the CNT walls so that there was an 

epitaxial relationship only after growth occurred. Other evidence exists, however. Chiang 

and Sankaran59 grew carbon nanotubes with NixFe1-x catalysts. By varying the relative 

amounts of each element, they were able to alter the CNT chirality distribution, 

independent of size. This means one of two things: 1) either nickel or iron has the ability 

to preferentially grow CNTs of a certain chirality or 2) changing the relative amounts of 

nickel or iron in the catalyst slightly alters the crystal structure, enough to influence the 

growth of certain chiralities. The first explanation falls beyond our current understanding 

of CNT growth. If catalysts are liquid during growth then a catalyst particle would 

presumably have a homogenous mixture of iron and nickel. In addition, the ability to 
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influence chirality in single metallic catalysts such as iron or nickel has always come 

from altering the growth environment, and is not independent of other growth parameters 

such as temperature, pressure, substrate, and feedstock gasses. 

 

2.3 Substrate 

Carbon nanotube growth, as with most parameters, is sensitive to the choice of substrate 

to support the catalyst particles. The most popular substrate for CNT growth, especially 

with iron, is alumina, Al2O3. Alumina readily supports forest growth with iron. However, 

iron does not easily grow vertically aligned carbon nanotubes (VA-CNTs) on other 

substrates. This is likely due to a few reasons. The oxygen in alumina plays active role 

during growth. As stated earlier, keeping the support material constant, but changing the 

preparation method alters the nanoparticle behavior and catalytic activity of iron. This 

result indicates that something about the alumina, either its topography or, more likely, its 

surface chemistry is affected by preparation method. Alumina also has the ability to 

restrict iron movement on the surface. This has the effect of limiting Ostwald ripening, a 

potential cause of growth termination, and it also helps pin the catalyst in place as it 

grows the CNT. Carbon nanotube forest growth has been shown to be fairly uniform and 

well aligned. As a CNT grows it produces a force against the growth direction on the 

catalyst. If the support were not able to pin the catalyst in place, the catalyst would likely 

migrate around the surface of the substrate and could potentially entangle tubes or even 

result in no forest growth.  
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While alumina is the most popular support for growth, other supports are used, even ones 

that support VA-CNT growth. Quartz and silica are common supports that, in the right 

conditions, will support forest growth. 

 

2.4 Growth Temperature 

In CVD, CNTs may be grown at a range of temperatures from about 500°C up to 1200°C. 

One of the benefits of CVD is the tunability of this temperature. However, these growth 

temperatures are mid range compared to other CNT growth methods. For example, arc 

discharge growth temperatures can be around 4000°C33. Temperature affects a few things. 

First, it can, and likely does, influence the catalyst morphology. It also affects growth rate 

and CNT quality. At higher temperatures, the kinetic energy of all species are increased 

and this, in turn, increases the growth rate. After all, CNT growth is and should be 

thought of as a chemical reaction. Higher temperatures are also associated with CNTs 

with lower defects. This process is not well understood, but the general assumption is that 

as CNTs are growing faster at higher temperature, there is a smaller amount of time for 

defects to occur or grow. It has also been shown that annealing CNTs after growth at high 

temperatures (about 2000°C) can reduce the number of defects60. 

 

2.5 Gasses 

There are many choices for gasses to use during CNT growth. The initial annealing and 

reduction step has already been discussed. This step commonly uses hydrogen or some 

dilution of hydrogen in a carrier gas, such as helium. During growth, a carbon source is 

required for the catalysts to use during growth. Common carbon feedstock includes 
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ethylene (C2H4), acetylene (C2H2) or methane (CH4). Each carbon source differs in its 

total carbon content and the ease with which carbon is mined from its source. When the 

carbon source is fed under growth conditions, the catalysts break the precursor gas down 

and a number of different compounds are formed. These include carbon, hydrogen, 

volatile organic compounds, and polycyclic aromatic hydrocarbons. Ideally, only carbon 

and hydrogen would be the result of the decomposition, but extra compounds result and it 

is unclear what role they play during growth. Some compounds are likely carried away as 

a constant flow of gasses is commonly used during growth, but others are likely 

deposited around the catalysts or on the surface of the substrate. Very little is understood 

of this process and elucidating the dynamics of the development of unwanted compounds 

remains a critical question in understanding CNT growth and its potential implications 

for growth termination. 

 

Figure 2 - Height of carpet grown at different times with water and 
without62. 
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2.6 The Role of Water 

Hata et al.61 first showed that introducing a small amount of water during growth assisted 

in vertically aligned “super growth.” See Figure 2. This result has since been duplicated, 

and there has been debate about what water does during CNT growth. Work by Amama 

et al.62 showed that in hydrogen and water, without the presence of carbon feedstock and, 

thus, without growth, water inhibited Ostwald ripening. In addition, growth was 

performed in two separate conditions. First, growth was performed in hydrogen, 

acetylene and water and then in hydrogen and acetylene, without water. In each case, 

growth was only performed for 30 seconds. The resulting CNTs were removed by two 

methods in order to guarantee no effects on catalyst Ostwald ripening trends were due to 

the CNT liftoff procedures. First, CNTs were removed by catalyst oxidation and liftoff 

and second, by burning the CNTs off in air. In each case, Ostwald ripening was repressed 

in the CNT sample grown with water (Figure 3).  This was attributed to water and 

hydroxyl (species resulting from the decomposition of water) adsorbing to the surface of 

the iron nanoparticles or substrate. Harutyunyan et al.63 used in-situ TEM to observe the 

catalyst morphology at elevated temperatures. They found that catalyst particles in the 

presence of water exhibit strong faceting in helium environments, but became rounded in 

argon. This work will be discussed more in depth in Chapter 4, as it is the motivation for 

our work in that chapter. Conclusions were made that the decomposed water adsorbed 

onto the catalyst led to preferential growth of metallic CNTs, suggesting that the faceting 

may be related. This is in direct contradiction to Harutyunyan’s earlier work arguing that 

active catalysts are in their liquid state. This is one example of the complex nature of 
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CNT growth simply due to the chaotic, dynamic nature of the chemical reaction that is 

very hard to visualize. 

 

 

The second, more widely accepted role of water is to prolong the catalyst lifetime. Many 

have shown that oxygen (not just from water) acts as a mild oxidizer and is thought to 

remove unwanted amorphous material from the outside of the catalyst. Pint et al.64 grew 

CNTs on the order of millimeters with the use of oxygen, and it has been shown that 

oxidizing with water was able to restart growth after it had terminated. 

 

2.7 Ostwald Ripening 

Ostwald ripening is a process of a particle system over a period of time where the total 

surface area of the particle system decreases. Surfaces are high-energy aspects of 

materials. This is essentially because atoms at the surface are only half bonded to the bulk 

Figure 3 - Histograms of the number of particles after annealing for 30 seconds and 5 
minutes in hydrogen (left graph) and hydrogen with water (right graph)62. 
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material. So, in Ostwald ripening, large particles grow at the expense of smaller particles 

to reduce the total surface energy and increase the volume-to-surface ratio, which is 

greater in larger particles. 

 

The most widely accepted theory for Ostwald ripening behavior was developed 

independently by Lifshitz and Slyozov65 and Wagner66 and later combined into the 

Lifshitz-Slyozov-Wagner (LSW) model. Ostwald ripening was first developed for 

colloidal systems where particles are dispersed in a liquid. So, the LSW model assumes 

infinite dispersity in a solution. This differs slightly from Ostwald ripening in CNT 

catalyst systems, where the catalysts are dispersed on a solid substrate in the presence of 

a gas, and atom dissolution occurs by diffusion along the surface of the substrate or, 

potentially, diffusion through the gas phase.  

 

The LSW model offers two general equations describing particle coarsening in a 

dispersed system.  

(1) !! ! − !! ! = !!!"!!!!!
!!"  

(2) !! ! − !! ! = !"!!"!!!!!
!"!"  

The first describes diffusion controlled Ostwald ripening, where 〈a〉 is the average radius 

for all the particles in the system, the subscripts t and 0 denote the state of the system at 

time t and its initial state, respectively, D is the diffusion coefficient, γ is the surface 

energy, C∞ is the particle material solubility, Vm is the molar volume, R is the ideal gas 

constant, T is temperature, and t denotes time. The second equation, where K is a constant 
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taking surface mobility into account, describes Ostwald ripening controlled by interface 

reactions. The main difference between the two equations is that the first assumes 

spherical particles and the second assumes that the particles have facets which control 

how atoms move along those facets. In the latter, Ostwald ripening is limited by atomic 

diffusion along facets. In each situation, however, the behavior remains the same. As 

time increases, the average particle size increases, the number of particles decreases as 

small particles completely dissolve, and the spread in particle size increases as large 

particles grow bigger and small particles decrease in size.  

 

Figure 4 - Histograms of particle size after annealing for 1.5 and 5 minutes on (a) 
sapphire, (b) annealed e-beam alumina, (c) ALD alumina, (d) e-beam alumina, and (e) 
sputtered alumina52. 
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Ostwald ripening is a critical area of study with respect to CNT growth due to its impact 

on particle size for CNT diameter control, but also its role during growth and its potential 

impact on termination of growth. As discussed earlier, work by Amama62 showed direct 

evidence of the ability of water to inhibit Ostwald ripening. Further work by Amama 

focused on the effects of alumina preparation on CNT growth52. The study compared 

sapphire, sputtered, e-beam deposited, annealed e-beam deposited, and ALD alumina and 

found different results in CNT growth from almost every substrate (Figure 4). Sapphire 

did not support any growth, ALD and annealed e-beam deposited alumina supported a 

small amount of growth, and sputtered and e-beam deposited alumina supported the best 

growth (Figure 5). Interestingly, the growth results inversely correlated with the Ostwald 

Figure 5 - Graph of CNT carpet height with respect to 
growth time for sapphire and sputtered, e-beam, annealed e-

beam, and ALD alumina52. 
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ripening behavior of iron on the different substrates. This supports the hypothesis that 

Ostwald ripening is a mechanism of CNT growth termination. Furthermore, this adds to 

the evidence that the chemical interaction between catalyst and support is critical in the 

successful growth of VA-CNTs. 

 

While not exactly Ostwald ripening, Kim et al.67 showed that subsurface diffusion 

coupled with Ostwald ripening is another critical mechanism of CNT growth termination. 

Ostwald ripening studies of iron on alumina found little correlation between Ostwald 

ripening theory and experimental behavior past an anneal time of 5 minutes. Cross-

sectional TEM was performed on samples annealed in hydrogen and water. Images 

showed that iron had diffused into pores within the alumina support layer. This diffusion 

is driven by the reduction of the total system energy by reducing surface area, similar to 

Ostwald ripening. Iron clusters on the surface of the catalyst support have dangling bonds 

from the surface area, which is exposed to the gas flow during growth. Iron clusters 

within the pores of the support have a higher coordination due to the ability to bond to the 

support, which completely surrounds the particle. 
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Figure 6 - Catalyst decay rate measured versus (a) inverse temperature and (b) acetylene 
flow rate. 
 

Going one step further, growth kinetics were studied by analyzing the catalyst decay rate 

parameter λ to test for its dependence on temperature and carbon precursor, shown in 

Figure 6. Fitting with Ostwald ripening theory, the catalyst decay rate shows a strong 

dependence on temperature, decaying faster with increasing temperature. The logarithmic 

decay in Figure 6a indicates that Ostwald Ripening is consistent with the Arrhenius 

relationship, ! = !!!!!/(!") , which states that a rate constant, k, is equal to some 

constant, A, multiplied by the exponential of the activation energy of the process, Ea, 

divided by the ideal gas constant multiplied by temperature, T. In this case, the slope of 

the line resulting from the log of Figure 6a would be equivalent to –Ea/(RT). This makes 

sense as increasing temperature increases kinetic energy, and, thus, iron mobility within 

the catalyst particles. In addition, there is no dependence of the catalyst decay rate on 

acetylene flow. 
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These catalyst decay rate tests were performed by using square wave pulses of acetylene 

through the growth chamber. By using pulses rather than a constant flow, the amount of 

growth between each pulse could be measured and, thus, characterization of the growth 

kinetics could be performed. 
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CHAPTER 3.  CHARACTERIZATION TECHNIQUES 

3.1 Electron Microscopy 

Microscopes are unique and critical tools in the study of our environment and we use 

them primarily because they allow us to see objects or features that the naked eye would 

otherwise be unable to perceive. When studying the nanoscale, it is often necessary to be 

able to visualize the nanoscale features of materials that are important. This creates a 

unique problem because spatial resolution, the measure of how closely features can be 

together while remaining discernable, is dependent on the wavelength of light being 

utilized.  

 

The primary focus of this dissertation is on the utilization of electron microscopy to study 

material properties and dynamic phenomena related to carbon nanotube growth. For this 

reason, the following discussion will be focused on the brief explanation of the theory, 

operation, and techniques essential to the use of transmission electron microscopy (TEM), 

the primary tool used for these studies. 

 

The German physicist, Ernst Abbe, approximated the resolution of microscopes to follow 

the formula ! = !
!! !"#!, where d is the resolution, λ is the wavelength of the radiation, n 

is the refractive index of the observable medium, and θ is the half opening angle of the 
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lens. Making some general assumptions about a light microscope where n = 1.5, a 

common refractive index for immersion lenses, θ = 70°, and λ = 400 nm, the approximate 

wavelength of violet light, the maximum resolution for a light microscope comes out to 

about 142 nm. However, compared to some rough numbers for a 300 keV TEM, like the 

FEI Titan 300 keV Environmental TEM used in these studies, with n = 1 for a vacuum, 

sin θ = 0.01 using the low angle approximation and λ = 1.97 x 10-3 nm, the resolution is 

approximately 0.10 nm. This is a significant resolution limit as it is below the lattice 

constant spacing of many materials, including the interatomic spacing of carbon, which is 

0.142 nm. It should be noted that the energy transmitted to carbon from a 300 keV 

electron beam is too much to allow the carbon structure to remain intact. However, TEMs 

can be operated at 80 keV which allows the imaging of carbon without damage68. 

 

Transmission electron microscopy is a unique characterization tool in that it uses plane 

wave electrons to image samples, which are extremely thin (less than 100 nm) and 

transparent to electrons. In a transmission electron microscope, electrons are emitted one-

at-a-time from a source, collimated by a series of electromagnetic lenses, interact with a 

sample, and then are magnified and projected onto a viewing screen, typically a charge-

coupled device (CCD)68. Other common forms of high-resolution microscopy such as 

atomic-force microscopy (AFM) or scanning electron microscopy (SEM) generally 

image the surface or topography of a sample. However, in this scenario, the electron 

wave passes through the sample, and, thus, what is seen in TEM images are three-

dimensional projections through the thickness of the sample onto a two-dimensional 

viewing screen68. 
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There are four conditions that can describe the electron wave once it exits the sample: 

coherent, incoherent, elastic, and inelastic. Coherence refers to the phase of the electron 

wave. So, an electron passing through a specimen can either keep the phase that it entered 

the sample with (coherent) or lose its phase relationship with the incident beam 

(incoherent). Whether scatter is elastic or not refers to the energy of the electron as it 

leaves the specimen. An electron which scatters elastically has the same energy it did 

when it entered the sample, but an electron which undergoes inelastic scatter has lost 

some amount of energy through interaction with the specimen. When the electron wave 

passes through the sample, it can undergo four different events which all interact to form 

the image. The beam can pass through the sample without interference, coherently scatter 

elastically, incoherently scatter elastically, or incoherently scatter inelastically. Coherent 

inelastic scattering may occur; however, it will only likely occur at higher angles, and, 

therefore, does not affect the image. These are all examples of forward scatter. Back 

scattering can occur, meaning the electron can bounce backward toward the direction 

from which it came; however, only forward scatter influences the resulting image68. 

 

Forward scatter is what makes up the forms of TEM imaging techniques, and will 

underline the following discussion on electron diffraction: bright-field TEM, dark-field 

TEM, high-resolution TEM (HRTEM), and energy filtered TEM (EFTEM). 

 

One useful tool in the TEM to characterize the structure of a material is electron 

diffraction. When discussing electron diffraction in the TEM it is useful to reference the 

discussion of classical Bragg diffraction. Bragg diffraction describes reflection of 
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electromagnetic waves off of planes of atoms. This is illustrated in the simple formula 

!" = 2! sin!, where n is an integer, λ is the wavelength of the wave, d is the distance 

between planes of atoms, and θ is the incident angle. This equation essentially describes 

the specific set of conditions for diffraction to occur. Specifically, the distance between 

planes of atoms multiplied by the sine of the incident angle must be equal to a multiple 

integer of the wavelength of the incident wave. So, if the condition is met, constructive 

interference occurs and a diffraction event is observed, otherwise there is destructive 

interference off of the planes of atoms and no diffraction is observed. At a higher level, 

diffraction in crystallography is often described by the Laue equation, !! − !! = Δ!, 

where k0 is the exiting wavevector, ki is the incident wavevector and Δk is the difference 

vector. However, this just essentially describes Bragg diffraction in three dimensions. In 

practice, an incident electron wave will encounter a crystalline specimen within the TEM 

and undergo diffraction events off any set of periodic planes within a sample. Projected 

onto the CCD, what is observed is a two-dimensional array of diffraction spots. If a 

specimen’s crystal structure is known and it is tilted properly to a zone axis, an 

orientation of a crystalline material by which multiple sets of lattice planes align along 

the observed direction, then it is possible to identify the zone axis from the diffraction 

pattern68. 

 

It may be useful at this point to discuss how to find a zone axis of a specimen within the 

microscope. During the sample preparation process, it is useful to understand the rough 

orientation of the material and prepare a TEM sample such that the thickness of the 

sample is as close to parallel to a zone axis of interest. However, the level of precision 
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during the sample preparation process can only reliably achieve about ±5 – 10% from the 

zone axis. When the kind of diffraction work is performed that requires a zone axis be 

reached, a double tilt sample holder is used. This allows the specimen to tilt in two 

perpendicular directions, which are commonly labeled α and β. The α tilt tilts the 

specimen around the axis of the specimen holder and the β tilt tilts the specimen 

perpendicular to that axis. To observe the exact tilt of the specimen, a convergent beam 

electron diffraction pattern (CBED) is utilized. To obtain a CBED pattern, the electron 

beam is collapsed to a small point and positioned over an area of interest. Then the 

microscope is put in diffraction mode. What is then observed is a diffraction pattern from 

the specimen using many ki wave vectors over a spread of incident angle θ. This differs 

from a standard two-beam diffraction pattern, which, instead, spreads the beam to obtain 

as parallel illumination as possible so as to only sample one ki wave vector. If θ is large 

enough, what is observed on the viewing screen is called a Kossel pattern (if observing a 

crystalline specimen). A diffraction pattern may also display Kikuchi diffraction, pairs of 

diffraction lines forming bands that arise from incoherent electron scatter. These Kikuchi 

diffraction patterns act as stereographic maps in diffraction (reciprocal) space. We can 

use them to find zone axes of sample by finding areas where these bands formed by 

Kikuchi diffraction intersect68.  

 

Bragg diffraction describes crystalline diffraction. However, sometimes amorphous 

materials are observed in the TEM. Diffraction from amorphous materials is a little 

simpler. Due to the lack of long-range order, or even short-range order, little destructive 

interference occurs. Instead, diffraction occurs in all (x,y) directions equally and decays 
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as it moves away from the central spot. What is observed is a circular disk. Observing 

this pattern can confirm the amorphous nature of a material by not observing any 

diffraction off of a periodic set of ordered planes, but also allows the user to correct for 

any astigmatism within the image from the objective lens of the microscope. This 

correction is often viewed in real time by observing the fast Fourier transform (FFT) of 

the live image being observed. One of the beauties of mathematics which relate to the 

physical world is that the Fourier Transform ! ! = ! ! !!!!"#∙! !"  of an image is 

the diffraction pattern of that image. Conversely, the inverse Fourier transform of a 

diffraction pattern is an image68. 

 

A standard TEM image, formed from the forward scattered electron beams, shows 

contrast primarily due to mass-thickness and diffraction contrast. Mass-thickness contrast 

is contrast created by incoherent elastic scattering within the specimen. Simply put, a 

region of the specimen that is thicker, but has the same density (i.e. atomic number, Z) as 

the rest of the specimen will scatter electrons more due to the longer travel distance. Also, 

a region of the specimen that has a higher density, but the same thickness as the 

surrounding area will diffract more due to the fact that higher Z materials have more 

electrons and a larger nucleus. Figure 7 illustrates an example of this thickness contrast 

behavior. Imaged on a silicon nitride sloped wall, the image appears darker over areas of 

the sample that are thicker, and light and dark bands appear due to the effect of the 

extinction distance of the electron beam through the specimen68. 
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Figure 7 - TEM image over the wedge-shaped edge of a SiN TEM window. The dark and 
light bands running horizontally across the image are thickness fringes with the thicker 
region of the sample at the top of the image and the thinner region of the sample at the 
bottom. Note that this is a standard TEM image and was not taken in a two-beam 
condition, thus illustrating the power of the two-beam condition approximation. 
 

Diffraction contrast occurs in TEM images due to coherent elastic scatter. This happens 

when a diffraction event occurs within the specimen and the incident electron is 

diffracted to a large enough angle that it is not collected by the CCD detector. There are 
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useful techniques to accentuate this contrast within the TEM. Specifically, this is 

accomplished through the use an objective aperture to create bright-field and dark-field 

images. In bright-field and dark-field images, an objective aperture is placed in the back 

focal plane of the microscope. This is commonly performed by inserting a selected area 

diffraction (SAD) aperture over the intermediate image, centering the SAD aperture on 

the area of interest, spreading the intensity of the beam to achieve parallel illumination of 

the area of interest, and switching the microscope to “diffraction mode” so as to view the 

diffraction pattern. Once the diffraction pattern is projected on the viewing screen, an 

objective aperture is placed in the back focal plane of the microscope. While in 

“diffraction mode,” the position of the objective aperture may be viewed and centered on 

the diffraction spot of interest. A bright-field image is created by centering the objective 

aperture on the central transmitted beam along the optic axis. In this scenario, the image 

obtained will be made entirely from electrons that have not undergone any diffraction 

event, simply speaking. It is possible for an electron to undergo multiple diffraction 

events within the specimen and end up back in the central spot as if it had not diffracted 

at all. In a bright-field image, bright areas indicated areas of the specimen where the 

beam has simply passed through and dark contrast in the image is intensity that has been 

removed from the image by physically blocking it with an objective aperture68. 

 

Converse to a bright-field image is a dark field image, where, instead of centering the 

objective aperture around the central spot, the objective aperture is centered around one 

of the diffracted spots. In a two-beam condition (which will be discussed soon), bright-

field and dark-field images are essentially inverse images in the two-beam condition 
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because in a dark-field image, the bright areas indicate regions of the specimen where a 

diffraction event from a specific set of planes occurred and dark contrast in the image is 

intensity that has been removed from the image by the objective aperture68.  

 

There are two ways to create a dark-field image. A dirty dark-field image is made by 

moving the objective aperture to the diffraction spot of interest. However, a proper dark-

field image is made by centering the objective aperture along the optic axis and then 

tilting the beam so that the diffraction spot of interest is shifted to the optic axis. The 

latter method keeps the diffracted beam aligned with respect to the microscope and the 

CCD. Dark-field images are often preferred when observing defects, as they tend to show 

defects such as dislocations more prominently than bright-field or normal TEM images68. 

 

There are ways to further optimize dark-field imaging, by physically tilting the specimen 

to create what is called a two-beam condition. From here, it is useful to discuss bright-

field and dark-field imaging in reciprocal space, since the sample is being manipulated 

with respect to its diffraction pattern. In reciprocal space, this excited Bragg reflection is 

referred to as G and the central transmitted spot is referred to as O. The vector from O to 

G is referred to as g. Once g has been defined, this limits the discussion to the linear set 

of spots along the line defined by O and G. All other spots and vectors along this line are 

referred to as integer multiples of G and g. In a zone axis diffraction pattern, the central 

spot (transmitted beam) is the brightest and the array of diffracted spots have lower 

intensity and decrease as they get farther away from the central spot. When a two-beam 

condition is made, the sample is tilted such that one diffraction spot of interest (g, usually 
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a nearest neighbor to the transmitted beam) is excited and displays a higher intensity than 

its surrounding diffracted spots. Ideally, it should approach the intensity of the central 

spot. In this setup, the majority of the electron beam is either being transmitted through 

the specimen or undergoes a diffraction event from a single set of crystallographic planes. 

From here, there are two common kinds of dark-field images that may be used. Once the 

two-beam condition is set up, a dark-field image may be taken by tilting the beam so that 

–G is on the optic axis. Tilting the beam such that –G is on the optic axis will excite that 

the –G Bragg reflection and an objective aperture can be inserted around this spot to 

collect the dark-field image and block all other forward scattered beams. The second kind 

of dark-field image that may be taken is called a weak beam dark-field (WBDF) image. 

Tilting the beam so that G, the originally excited Bragg reflection, is on the optic axis, 

sets up a WBDF condition. However, when this happens, G will fade and 3G will 

become excited. A WBDF image is taken by inserting an objective aperture around this 

faded G beam. Weak beam dark-field images are usually desirable because they show 

strong contrast around defects within materials68. 

 

At a slightly higher level, in a two-beam condition, not only should the sample be tilted 

such that the diffracted beam G is strongly excited, but it should be tilted such that the 

deviation parameter sg is slightly greater than zero. The deviation parameter is a measure 

of how far away G is from the exact Bragg condition. This may be geometrically 

visualized by the concept of the Ewald sphere. The Ewald sphere is defined as the sphere 

in reciprocal space with a radius of the wave vector of the incident electron wave. When 

the Ewald sphere intersects a Bragg reflection or its reciprocal lattice rod (an extension of 



30 

 

30 

the Bragg condition due to the three-dimensional planar structure of the sample), a 

diffraction spot will appear68. 

 

Electrons that scatter inelastically usually do so by interaction with the electrons within 

the sample. In addition, the energy lost in the incident electron wave by interaction with 

the specimen is often directly related to the discreet energy levels of the electrons within 

the specimen. This is an extremely powerful concept because it means that if the resulting 

exit wave (the modulated electron wave as it leaves the specimen) can be segregated by 

the different energies it contains, then chemical information about the specimen can be 

determined (i.e. elements present and valence state). In practice, some TEMs, as in the 

case of the FEI Titan ETEM at Purdue University, are equipped with a magnetic prism 

lens that the exit wave passes through before hitting the CCD. A slit may then be placed 

in between the path of the exit wave after it passes through the prism and the CCD. This 

slit allow electrons of only a specific energy gap through. There are two imaging 

techniques that can be utilized in this setup, electron energy loss spectroscopy (EELS) 

and EFTEM. Electron energy loss spectroscopy uses wide slits and collects spectra from 

anywhere the beam interacts with the specimen. Unless, in STEM mode where the 

electron probe is condensed to a point generally smaller than the atomic spacing, spatial 

resolution is extremely low, but the shape of peaks can be observed. In EFTEM mode, a 

smaller slit is used so as to only measure a specific elemental peak and increase the 

spatial resolution, making an elemental map where bright intensity indicates the presence 

of the element being searched68. 
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Phase-contrast imaging can take place at very high resolution, where it may be possible 

to visualize the atomic structure of the material being imaged. Phase-contrast imaging 

occurs at all magnifications of a specimen; however, it competes with amplitude contrast 

for dominance in the contrast of an image. At high magnification, we work under the 

assumption that the sample is a weak-phase object. This essentially means that variations 

in the intensity of the resulting image are directly related to the potential of the specimen. 

This means that as the incident electron wave passes through a small area of a specimen, 

it will be modulated differently depending on whether it passed through a column of 

atoms or the space between the columns. This difference gives rise to high resolution and 

the ability to visualize individual columns of atoms within the TEM. High-resolution 

images require high spatial frequencies. Spatial frequencies refer to periodicity within a 

crystalline specimen. This means that it is near impossible to be able to visualize a single 

column of atoms, rather many columns of atoms with adding degrees of periodicity are 

required to visualize high-resolution images. Directly interpreting these images can be 

tricky, however, because the contrast that is observed in a HRTEM image is dependent 

upon the geometry of the specimen (thickness), focal condition of the beam, and 

spherical aberration. However, for most users, only the specimen thickness (sample 

preparation) and focal condition can be controlled. Aberration correctors exist for 

microscopes, however they are not yet the norm. Depending on the focal condition and 

thickness of a specimen, the contrast observed in an image, the intensity over columns of 

atoms and the space between them, can vary wildly. Atoms can potentially be black or 

white. Luckily, the theoretical aspects of this process are fairly well understood, and 

software exists that can simulate an image based on the thickness or focal condition of 
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the microscope. The effects of the focal condition and aberration on resolution within a 

HRTEM image can be represented by what is called the contrast transfer function (CTF). 

This is a measure of how contrast in the modulated wave is transmitted to the image 

being viewed. The CTF is a combination of the aperture function and a phase-distortion 

function which is damped by aberrations within the microscope lenses and the spatial 

coherence of the electron beam. To maximize the information passed to the image, it is 

necessary to maximize the area in the CTF. In practice, this is done by choosing a 

defocus value which maximizes this area. This specific defocus value is called the 

Scherzer defocus and is given by the equation ∆!!"! = −1.2 !!! ! !, where ΔfSch is the 

Scherzer defocus, CS is the spherical aberration coefficient, and λ is the wavelength of the 

electron68. 

 

3.2 TEM Sample Preparation 

Sample preparation is the key to taking good TEM images. Current technology allows for 

stable electron emission energies, high emission voltages, and noise and sound isolation 

which make it fairly easy to obtain high-resolution images (all of these being the case for 

the FEI 300 keV Titan ETEM at Purdue University). However, if a sample is not thin, 

uniform, and relatively clean of amorphous debris, then it will not be suitable for 

HRTEM, and, unfortunately, many of our current methods for TEM sample preparation 

are still highly dependent on skill. 

 

The simplest method for TEM sample preparation involves the use of TEM grids. Grids 

are readily available and come in a wide variation of sizes, geometries, and support 
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material. With these available, sample preparation can either be done by some form of 

physical vapor deposition (such as sputter deposition which was used to prepare the Fe 

gradient samples) or by dissolving or dispersing a specimen in a fluid (i.e. nanoparticles 

or CNTs) and then placing drops of the fluid onto an organic thin film on a TEM grid. 

 

Preparing plan view or cross-sectional TEM samples is more complex. Plan view 

samples are prepared by cutting a disk of appropriate size (3.0 mm is standard, but some 

holders use 2.3 mm samples) and then polishing it until it is around 50 microns thick. 

Once polished, the sample is placed in a dimple grinder which uses a rotating wheel to 

grind a dimple in the sample. When complete, the thinnest region of the sample, the 

bottom of the dimple, should be around 10 microns thick. Lastly, the sample is then 

placed in an ion polishing system which uses focused ion beams at low angles (typically 

1 - 20°) to slowly mill away material and form a small hole in the center of the specimen, 

usually at the base of the dimple. Once prepared, a user can image the region around the 

hole, which should be easily less than 100 nm thick. On paper this process can sound 

quite easy; however, there are a number of variables in the execution of this process that 

can cause issues, such as pressure applied to the specimen, specimen brittleness, 

redeposition of material during the ion polishing, and overall human error. When any 

specimen is prepared by hand to be less than 100 nm thick, extreme care must be taken. 

 

The focused ion beam (FIB) is a tool that is utilized to prepare cross-sectional TEM 

samples. The FIB is a beam of ions, usually Ga+, but sometimes Ar+, that is focused and 

can be used to image, mill, or deposit material. It is common to have dual SEM / FIB 
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machines as the FIB can be quite damaging to samples, especially at the surface while 

imaging. If a user is interested in features of the sample that occur near the surface, then 

imaging with the FIB should be kept to a minimum, and the SEM utilized instead. The 

procedure for preparing cross-sectional TEM samples with a FIB starts by identifying an 

area of interest on the specimen. Once chosen, it is common to deposit a thin layer of 

amorphous Pt (about 1 µm x 10 µm x 1 µm thick) to protect the surface of the specimen. 

The length of this layer can vary depending on the features within the specimen that are 

of interest. This Pt layer is deposited by focusing the FIB on the area of interest and 

spraying an organometallic (Pt attached to a hydrocarbon chain) in the path of the beam. 

The FIB deposits a mix of Pt and C on the surface of the substrate by simple ballistics. 

Once the protective layer is deposited, the FIB is used to mill trenches on either side of 

the specimen outline. These trenches are milled deep enough to expose the entire cross-

section of the specimen, usually around 10 µm. What is left is a thin wedge attached to 

the bulk of the substrate. The FIB is then used to cut one side and the bottom of the 

specimen free from the bulk sample. Once free, a micromanipulator is brought in and 

positioned very close to the specimen. Amorphous Pt is once again utilized, but this time 

to weld the specimen to the manipulator. After the specimen is secured to the manipulator, 

the FIB is used to cut the remaining side, attaching the specimen to the bulk sample, and 

the sample is then lifted away from the substrate. Once clear of the substrate, the 

micromanipulator is used to bring the specimen close to a TEM grid, usually a copper 

half-circle with a pillar to attach specimens. The specimen is once again welded with 

amorphous Pt, but this time to the TEM grid. The FIB is then used to cut the specimen 

free from the manipulator and the manipulator is removed. From here, the final thinning 
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process begins and the sample is tilted back and forth by about 1° while each side is 

milled. Once the sample and Pt layer become very thin, the voltage of the FIB is lowered 

to perform one last thinning step. The purpose of the lower voltage is to reduce the 

energy of the incident ions and clean away any thin amorphous layers on the side of the 

specimen that have been created by higher energy ion beam bombardment from the FIB. 

The specimen is thinned until the protective Pt layer is almost completely removed. A 

small amount is kept as it allows the TEM user to easily view amorphous material and 

correct for objective astigmatism. 

 

3.3 Raman Spectroscopy 

Raman spectroscopy is a common characterization tool, which uses lasers in the visible, 

or near visible wavelength range to characterize molecules by their vibrational modes of 

movement. The process relies on inelastic scatter from the species being studied as 

energy is absorbed and then re-emitted while either shifting the energy of the laser up 

(Stokes Raman scattering), shifting the energy down (anti-Stokes Raman scattering), or 

with no shift at all (Rayleigh scattering). The shift in energy of the beam is measured in 

wavenumbers and is given by the general equation ∆! = ! !
!!
− !

!!
, where Δw is the 

wavenumber shift, λ0 is the wavelength of the laser being utilized, and λ1 is the 

wavelength of the measured output69.  

 

Carbon nanotubes, based on their hollow tube nature, unique electronic structure based 

on their diameter and chirality, and corresponding unique phonon states can be discretely 
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characterized by probing their density of states through Raman spectroscopy. Essentially, 

singularities within the CNT density of states, called van Hove singularities, occur when 

the conduction band touches the valence band within the CNT electronic structure. Given 

that a SWNT has a unique chiral vector and corresponding diameter, the van Hove 

singularities act like fingerprints. Rather unique to the sp2 bonding in graphite and 

SWNTs is that the π band in the electronic structure is close to the Fermi level. For this 

reason, optical absorption by specific wavelengths of light in Raman spectroscopy can be 

used to probe the unique electronic structure of SWNTs. Dresselhaus et al.70 mapped the 

electron valence to conduction band energy transitions versus the nanotube diameter, as 

shown in Figure 8.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8 - Figure from Dresselhaus et al.71 showing the relationship between electronic 
transition energies and SWNT diameter, where !!!! !and$!!!! are transition energies for 
metallic and semiconducting tubes, respectively. 
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Phonon scattering within CNTs may also be observed in Raman spectra. During the 

measurement of Raman spectra, a CNT may absorb energy from the laser, become 

excited and emit phonons as it relaxes. Multiple scattering events are possible, and, in the 

sequence of scattering events, the order of the scattering event refers to what place it held 

in that sequence. So, for example, the G band, which is observed at about 1582 cm-1, is 

the only first-order Raman peak in CNTs, meaning that the scattering event resulting in 

the G band always occurs first, sequentially, if phonon scattering events occur. There are 

two possibilities for second-order Raman scattering. Either two phonon scattering events 

occur or one phonon and one elastic scattering event occurs. An elastic scattering event in 

a CNT occurs due to defects in the CNT where a phonon changes direction but does not 

change frequency. The D band in CNTs occurs at 1350 cm-1 and consists of one phonon 

and one elastic scattering event. Since the D band consists of an elastic scattering event, it 

is associated with measuring the degree of disorder within the CNTs. It also indicates the 

presence of MWNTs. Since Raman spectra are measured in arbitrary units (a.u.) in order 

to determine the degree of disorder or amount of MWNTs, the ratio of the G/D band 

peaks are calculated. The second-order Raman scattering consisting of two phonon 

scattering events is labeled as the G’ band and occurs at 2700 cm-1 71. 



38 

 

38 

CHAPTER 4. INFLUENCE OF CATALYST MORPHOLOGY 

4.1 Catalyst Morphology and CNT Growth 

Recently, research has linked chirality selective SWNT growth to the ambient gas 

environment during growth. Results have shown that CVD growth at 860°C in a small 

amount of water (~3.5 mTorr) has resulted in about 91% metallic nanotubes in the 

presence of a He ambient environment. In similar growth conditions, but by replacing He 

with Ar, growth resulted in approximately 64% metallic CNTs63. 

 

In an attempt to discover the cause of this phenomenon, iron catalyst morphology was 

observed in-situ ETEM in both helium and argon with a small amount of water. It was 

observed that the iron nanoparticle showed strong faceting in He, but rounded in Ar. In 

addition, previous work has shown that water, critical for CNT growth61, suppresses 

Ostwald ripening in iron nanoparticle arrays which would be suitable for CNT growth39, 

and Ostwald ripening rates are higher in argon than in helium63. 

 

Two conclusions may be drawn from these results. Either 1) water, or some 

decomposition of water (i.e. hydroxyl or oxygen), adsorbs to the surface of iron 

nanoparticles and inhibits Ostwald ripening, or 2) some unknown impurity or impurities 
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in the inert gas adsorb onto the surface of iron nanoparticles and inhibits Ostwald 

ripening. So, since Ostwald ripening rates have been shown to be higher in nanoparticle 

arrays that have a more rounded morphology, it is possible to qualitatively measure the 

degree of faceting in a nanoparticle array by measuring how quickly Ostwald ripening 

occurs. The idea that a nanoparticle’s surroundings can influence their morphology is not 

new72. Using Ostwald ripening as a secondary effect to make conclusions about catalyst 

morphology in dynamic environments may test both hypotheses through Ostwald 

ripening studies.  

 

4.2 Experimental Setup and Results 

To begin, 18 nm SiO2 meshed TEM windows were purchased and 1.8 nm of iron was 

deposited on them by ion beam sputtering. With respect to CNT catalyst preparation, 1.8 

nm is thick. Common film thicknesses for CNT catalyst preparation by sputter deposition 

typically range from about 0.5 – 0.9 nm. In this situation, a thicker film thickness was 

used to ensure a striking and visible nanoparticle density and size distribution. All 

samples were first annealed in 2 Torr of hydrogen at 500°C for 30 minutes to reduce the 

iron film. During the reduction process, oxygen in the iron film is removed, leaving 

behind pure iron, and the film is broken up into nanoparticles. One sample was prepared 

using only this initial reduction step and then imaged in plan view TEM in order to 

measure an estimate for “time 0” before Ostwald ripening in the gaseous environments of 

interest. See Figure 9. Particle analysis was then performed by utilizing the Dunin-

Borkowski algortithm73. Just as a note, the sets of images of samples annealed in argon 

and water were not analyzed rigorously. At the time of measurement and analysis there 
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were deadlines that prevented thorough data analysis. So, all interpretations of data or 

trends from the data analysis within this section should be read or observed with a higher 

degree of skepticism than may be given to a peer-reviewed article. 

 

Figure 9 - Plan view TEM images of 1.8 nm iron film after annealing in 2 Torr H2 at 
500°C for 30 minutes. 
 

 

Figure 10 - Plan view TEM images of 1.8 nm of iron film annealed in 2 Torr H2 at 500°C 
for 30 minutes followed by 12 Torr of Ar at 700°C for 30 minutes. 
 

After annealing in hydrogen, the samples were annealed in different gas mixtures of 

argon and water. One sample was annealed in 12 Torr of argon at 700°C for 30 minutes, 

and three other samples were annealed in a mixture of argon and 100 ppm of water. 

Three samples were annealed at 700°C for 30 minutes in 100 sccm argon and water and 
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400 sccm of argon, 200 sccm argon and water and 300 sccm argon, and 500 sccm argon 

and water. Each sample had a fixed flow rate and was allowed to build up to 12 Torr of 

pressure before flowing through the chamber. The images from the argon and water 

experiments are shown in Figure 11. The 200 sccm argon and water images appear 

brighter because they are bright-field images which were taken to test the effectiveness of 

the Dunin-Borkowski algorithm of particle analysis.  
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Figure 11 - TEM images of the top row are images of a sample annealed in 100 sccm 
argon and water with 400 sccm of argon. The middle row of images is from a sample 

annealed in 200 sccm argon and water with 300 sccm argon, and the last row of images 
was taken from a sample annealed in 500 sccm of argon and water. All samples were first 

annealed in 2 Torr of H2 for 30 minutes at 585°C, and then annealed in their respective 
argon and water environments at 700°C for 30 minutes. 
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The particle analysis results are shown in Figure 12. Even though the average particle 

size decreases with increasing water content, the data is more effectively interpreted 

through a histogram, which illustrates that as the water content is decreased, the overall 

particle size increases and spreads out to larger diameters. 

 

Ostwald ripening of iron in a catalyst system, under conditions optimized for CNT 

growth, is affected by the degree to which water and the gas environment interferes with 

the diffusion. Referring to Equation (1) on page 14, the images in Figures 9-11 can be 

used to measure the chemical effect of water on the mobility of iron. Specifically, both 
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the diffusivity and solubility of iron on the catalyst support are influenced by the 

interaction of iron with the gas species. Solving for these two constants yields equation 

(3), and is plotted in Figure 13.! 

3 !!!!!!!!!!! = !! ! − !! ! 9!!!
8!!!!! 

 

 

Figure 13 - The mobility of iron (diffusivity x solubility) plotted versus the flow rate of 
water. As the activity of water increases, the mobility of iron decreases. 

 

The data in Figures 11 and 13 are odd in  that, at a certain level of water vapor, the iron 

mobility actually became negative. There are two possibilities for this to be a real result. 

Either, the assumption that the data collected from the sample deemed to be at time 0 did 

not apply to the two samples were mobility was negative, or there was a chemical 

reaction taking place, which interfered with Ostwald ripening reaction. The last row of 

images from Figure 11 seems to support the latter conclusion. The support film in the 

images appears patchy and not uniform in contrast. This reaction could have been a result 
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of the catalyst reacting with either the excessive amount of water or some impurity in the 

gas mixture. 

 

Taking a step back, this work was, in part, motivated by a short in-situ experiment 

performed by Seung Min Kim, a former graduate student at Purdue and currently at the 

Korea Institute of Science and Technology. The TEM images are presented in Figure 14. 

Iron was deposited on a TEM grid and reduced in  (a) 500 mTorr of hydrogen for 90 

minutes, (b) annealed in 500 mTorr of helium for 60 minutes, (c) annealed in vacuum for 

40 minutes, and then annealed in increasing steps of argon pressure for 30 minutes each 

of (d) 1.5 mTorr, (e) 20 mTorr, (f) 500 mTorr, and (g) 1200 mTorr, consecutively. No 

particle analysis has been performed on these images, but my interpretation of these 

images suggests that the rate of Ostwald ripening increases with increasing argon 

pressure. 
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Figure 14 - An iron film reduced in (a) 500 mTorr of hydrogen for 90 minutes, (b) 500 
mTorr of helium for 60 minutes (c) vacuum for 40 minutes, and then blocks of 30 
minutes in argon at (d) 1.5 mTorr, (e) 20 mTorr, (f) 500 mTorr, and (g) 1200 mTorr. 
 

This ripening concept was compounded by Harutyunyan et al.63 when it was shown that 

in the presence of water, iron particles coarsened faster in argon that in helium. 

  

4.3 Discussion 

The results show that as the activity of water increases (or the overall amount of water) 

the mobility of the catalyst species decreases, and they seem to suggest that the inert 

gasses play a role in interfering with the ability of water to inhibit Ostwald ripening. 

Gases are often thought of in terms of their pressure, and pressure is an averaged force 

over an area. However, at a smaller scale, this is simply gas molecules with different 

kinetic energies and momentums colliding with a surface. But, since different ripening 

behaviors are observed at equal pressures in different gasses, it may be necessary to look 

at how these gasses are interacting with the catalyst particles. This may be modeled by 
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considering the ability of the inert gas environment to transfer momentum to the catalyst 

particle and its adsorbates. Helium is a lighter element and therefore cannot transfer as 

much momentum to adsorbates on the surface of catalyst particles as heavier atoms like 

Ar or Xe. This results in catalyst particles in He undergoing lower Ostwald ripening rates 

and, therefore, exhibiting stronger facets. 

 

When modeling how these inert gasses behave in dynamic CNT growth conditions, it 

may be useful to consider the Knudsen number of the gas. The Knudsen number is a 

dimensionless constant that relates a particle’s mean free path to an arbitrary length scale. 

In this case, the length scale will be the size of the particle. So, !" = ! !! where Kn is the 

Knudsen number, λ is the mean free path, and L is the arbitrary length scale. For an ideal 

gas, !" = !!!
!!!!" ! where kB is the Boltzmann constant, σ is the hard shell diameter of the 

gas particle, and p is the total pressure. 

 

 

Figure 15 - Rough schematic of a gas molecule colliding with a catalyst. The incident 
momentum of the gas molecule is labeled and defined as its mass multiplied by its 
volume. 
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When the inert gas molecule collides with a catalyst particle (or adsorbed decomposed 

species of water), some momentum is transferred from the gas molecule to the catalyst 

(Figure 15). This interaction may be modeled by defining a momentum transfer 

coefficient, !!"!#$%&! = !!"#$"%&"'!!!"#
!!"##!!!"#

, where preflected is the momentum of the gas 

molecule after the collision, pinc is the momentum of the incident gas molecule before the 

collision, and pwall is the momentum that has been transferred to the particle surface after 

the collision. If the momentum transfer coefficient is 1, then momentum is completely 

accommodated and the gas molecule reflects diffusely. In contrast, if the momentum 

transfer coefficient is 0, then the gas molecule has not transferred any momentum to the 

catalyst or its adsorbates and it will reflect specularly. There is also a corresponding 

energy transfer coefficient, !!"!#$% =
!!"#$"%&"'!!!"#
!!"##!!!"#

 where E is energy and the subscript 

labels identify the energies of their corresponding momentums. 

 

The resulting function that describes this momentum transfer model is 

! !",!!"!#$%&!,!!"!#$% .!This is a complicated function that has many compounding 

factors such as ambient gas composition and particle surface roughness. It is difficult to 

tune just one of the many parameters that goes into this function, but what we can do is to 

scale the Knudsen number of the gas environment which can be approximately done by 

scaling the mass flux of the ambient gas environment. 

 

It has been previously noted39 and again shown in this body of work that water interferes 

with Ostwald ripening. In addition, it has been demonstrated the rate of Ostwald ripening 
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is affected by the amount of water in the system. The significant and underlying question 

brought about by this and previous works is: what, exactly, is the water doing in this 

system? 

 

Akimov74 performed XPS on an iron surface exposed to water and oxygen. 

Measurements were taken at different temperatures to observe the relative amounts of 

adsorbates present on the iron surface.  Water was only stable as an adsorbate up to about 

-73°C. At the maximum temperature which data was presented for, around 400°C, both 

oxygen and hydroxyl adsorbates are present. However, the amount of hydroxyl is 

decreasing with temperature and the oxygen adsorbate is dominant. It is difficult to say 

with certainty that oxygen is the dominant adsorbate during CNT growth because growth 

temeratures are much higher (above 700°C) and iron begins a phase transition from 

ferrite (body-centered cubic [BCC]) to austenite (face-centered cubic [FCC]) around 

727°C75. The iron surface density increases significantly between ferrite and austenite, 

comparing the density of the (111) FCC plane to the (110) BCC plane76. Whether or not 

this increase in surface density, corresponding with an absolute decrease in surface 

energy77, is enough to compensate increases in temperature and kinetic energy should be 

experimentally tested.  

 

A few experiments need to be completed in order to rigorously test the theory of 

momentum transfer presented in this section. The data presented indicating increased 

catalyst Ostwald ripening rates in increased pressures of gas is a very striking result. 

Ostwald ripening theory predicts higher ripening rates at higher material solubility, and 
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solubility increases with ambient gas pressure. As pressure increases, either temperature 

or moles of gas must increase as well. Both increased kinetic energy and increased 

material will raise solubility. However, Ostwald ripening performed on Ni78 and 

evaporation work on tungsten79,80 have shown that metal evaporation in the presence of 

gas is extremely low. It could be possible that impurities in the inert gasses used are 

responsible for differences in Ostwald ripening behavior. To completely rule out the 

possibility of impurities interfering with the ability of water to inhibit Ostwald ripening, 

impurity levels near the part per billion level would need to be achieved, as it has been 

shown that even gaseous impurities at a level of 1 part per million (ppm) can have an 

effect on catalytic behavior81 and carbon nanotube growth82. However, if the mass flux of 

helium, argon, and xenon are scaled to be equal and similar Ostwald ripening behaviors 

are observed then that result would be further evidence in support of the theory of the 

significance of momentum transfer in gas dynamics. 

 

The mass flux of gasses is proportional to !!, where m is the mass of the molecule and 

p is pressure. So, for example, if the mass flux were to be scaled to that of helium at 1 

Torr, the scaling constant would be !! = 4.0026×1 = 2.0006. The pressure of 

argon needed to have an equal mass flux to that of helium would be !.!!"
!".!"# = 316.53 

mTorr. It is important to note that the scaling constant for normalizing mass flux does not 

have a time scale factor. So, even if the mass flux of inert gasses are made equal in 

Ostwald ripening experiments, the samples annealed in different gasses may not coarsen 
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at the same rate. So, it would be critical to do tests at multiple anneal times to measure 

the rate relationship between gasses. 

 

To truly test the effects of the inert gas kinetics on CNT growth, tests should be designed 

to be performed during growth. The proposed tests in this section are all done without the 

presence of a carbon precursor, and, thus, without growth. Testing catalyst behavior 

dependence on the environment is complicated as it is difficult to discern catalyst 

behavior during growth. However, borrowing from Kim et al.67 it may be possible to test 

the catalyst decay rate dependence on inert gas flow rate. Previous tests from that work 

used square wave pulses of acetylene to test the growth kinetics dependence on 

temperature and acetylene flow rate. A similar test could be designed to measure growth 

using simultaneous square wave pulses of acetylene and higher amounts of inert gas. 

Since it has been shown there is no dependence of catalyst decay rate on acetylene flow, 

square wave pulses of acetylene or any other carbon precursor used in combination with 

square wave pulses of inert gas would only show the catalyst decay rate dependence on 

the extra inert gas pulsed through the system. For example, a constant flow of water and 

helium could be set up in a CVD system. A waveform generator could be used to 

generate a square wave pulse of both acetylene and extra inert gas, which could be a 

higher level of helium, argon, or xenon. Since the catalytic decay rate for temperature and 

acetylene have already been measured, any extra decay occurring on the catalysts in the 

sample would likely be due to Ostwald ripening induced growth termination from the 

enhanced Ostwald ripening rate caused by the extra inert gas flow.   
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CHAPTER 5. CONTROLLING CATALYST ACTIVITY VIA SUBSTRATE 
MANIPULATION 

5.1 Ion Beam Bombardment of Substrates 

Earlier discussions have noted the importance of the substrate in supporting CNT growth. 

The most popular supports are alumina and silica. Past work on alumina has shown that 

different methods of depositing alumina support films for CNT growth have different 

effects on CNT growth. While single crystal sapphire does not support growth, alumina 

deposited by magnetron sputtering, electron beam evaporation, and ALD supported 

vertically aligned CNT (VA-CNT) growth, exhibiting the importance the substrate on 

catalytic activity. It was observed that the critical structural feature for supporting VA-

CNT growth was substrate porosity, which reduced coarsening (Ostwald ripening) and 

extended the lifetime of the catalyst62. With the knowledge that ion beam bombardment 

of substrates damages the top surface and introduces porosity83, the hypothesis that ion 

beam bombardment of inactive substrates (i.e. sapphire) may turn them into active 

substrates that supported CNT growth is explored in this chapter. 

 

In addition to the fact that catalyst size affects CNT growth, it is also known that the 

choice of substrate has an enormous effect, as discussed in section 1.3.3. It is known that 

defective alumina is an excellent substrate for CNT growth, but, in contrast, pristine 
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sapphire will not support growth. This is mainly attributed to the fact that an atomically 

flat substrate acts like a highway for atoms. Flat, single-crystalline surfaces have 

relatively homogenous and low surface energies. So, there is very little energetic barrier 

to fix catalyst atoms or clusters of atoms in place. 

 

 

5.2 Experimental Setup & Results 

To test the hypothesis, c-cut sapphire was exposed to a 5kV Ar+ beam at a dose of about 

2.1 x 1020 cm-2. Once damaged, 1 nm of ion beam sputtered iron was deposited on the 

surface of the damaged substrate, and then annealed in hydrogen at a flow of 200 sccm at 

585°C for 10 minutes to reduce the iron and break it up into individual catalyst particles. 

After annealing, the samples were then let to cool to room temperature in a hydrogen 

environment. Some samples that were subject to this procedure were characterized by 

AFM and others were immediately used to test growth. To test for catalytic activity, the 

samples were exposed to 470 sccm of argon, 100 sccm for hydrogen, 25 sccm of ethylene 

(the carbon source), and 50 – 80 ppm of water at 760°C for 30 minutes. Not only did 

growth occur, but VA-CNT growth was achieved. In addition, a standard mesh 

molybdenum TEM grid was used as a grid to test the ability to pattern substrates. In this 

scenario, the entire substrate was coated with Fe, but only the exposed surface of the 

substrate was damaged by Ar+ bombardment. Due to the substrate modification by the 

ion beam, VA-CNT growth only occurred in the patterned region, as seen in Figure 16. 
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The VA-CNTs grown by this method were about 0.8 mm tall and had a Raman spectra 

G/D ratio of 1.4, as seen in Figure 17. This is a relatively low G/D ratio, and it indicates 

the presence of MWNTs84,85.  This was confirmed in TEM (Figure 18). However, these 

growth results are similar to what has been previously achieved on ALD alumina 

supports52. To illustrate the contrast and effectiveness of this new procedure, growth was 

attempted on a flat, unadulterated c-cut sapphire substrate, and only a few CNTs grew 

and there was no VA-CNT growth. 

Figure 16 - SEM images of  (a) the patterned sapphire substrate showing VA-CNT 
growth, and (b) a higher resolution image of the edge of the growth. 
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In addition to the VA-CNT growth on the damaged sapphire substrate, flakes of catalyst 

support were also observed on top of the carpet. This is consistent with odako growth86-88, 

where the catalyst grows the nanotube downward, elevating itself and small flakes of the 

supporting substrate as growth occurs. 

 

 

 

Figure 17 – Raman spectra measured from the top of the VA-CNT growth showing a G/D 
ratio of about 1.4 and the presence of the G’ band. The radial breathing modes are shown 
in the top-left inset from about 150 – 300 cm-1. 
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Figure 18 - TEM image of a small subset of CNTs grown on the modified sapphire 
substrate. A variety of CNTs are present, including single-wall, double-wall, and 

MWNTs. 
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The nature of the Ar+ beam damage was observed and characterized by cross-sectional 

TEM. Cross-sectional TEM was performed on a sample that was prepared from a c-cut 

sapphire substrate that was damaged by an Ar+ beam with a flux of 3.8x1020 ions/cm2 and 

an accelerating voltage of 5 keV. Images showed a two-region damaged layer of about 13 

nm, as seen in Figure 19, which was confirmed in X-ray reflectivity (XRR). The two-

region layer consisted of a crystalline, epitaxial, bottom-layer, which sits on top of the 

non-damaged substrate and an amorphous layer on top supporting the catalysts. This is 

consistent with past work that has been done on ion beam damage of silicon and sapphire 

substrates89-91. 

 

 

Figure 19 – Cross-section TEM image of ion beam damaged c-cut sapphire 
substrate with deposited iron. The substrate, and two-layer damaged region 
consisting of an amorphous layer and interfacial layer are clearly visible. 
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Figure 20 – XPS data detailing the enhancement of surface activity with respect to ion 
bombardment beam energy. (a) Diagrams of the O 1s FWHM and (b) the ratios of the 
area under the O 1s peak to the area under the Al 2p peak for untreated sapphire and 

sapphire damaged by 3 keV and 5 keV ion beams. The dotted lines indicate the level of 
untreated ALD alumina. Diagrams (c), (d), and (e) show the O 1s peaks for pristine 

sapphire, 3 keV, and 5 keV respectively. Notice how the O 1s peak shifts with increasing 
ion beam energy. 
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X-ray photoelectron spectroscopy (XPS) was used to measure the change in surface 

chemistry with respect ion beam energy, as seen in Figure 20. Measuring the oxygen-to-

aluminum ratio using XPS identifies changes in stoichiometry of Al2O3 at the substrate 

surface92. In addition, measuring changes in the ratio of surface-active oxygen to stable 

  

Figure 21 - Results of varying accelerating voltage on (a) VA-CNT carpet height, (c) 
surface roughness, and (e) particle count, and the results of varying ion density on (b) 
VA-CNT carpet height, (d) surface roughness, and (f) particle count. 
 

oxygen can indicate changes in the absolute number of surface-active oxygen sites for 

catalytic activity. Figure 20 compiles the XPS data for the treated sapphire substrate and  

untreated sapphire, and displays evidence for the ability to tune the surface chemistry of 

sapphire by bombarding the surface with Ar+ ions and varying the energy of the beam by 

changing the accelerating voltage. Figure 20(b) details the ability to tune the number of 
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oxygen active sites by varying the accelerating voltage. Figures 20(c – e) show how the O 

1s peak changes with ion beam energy. The peak shifts to lower energies with increasing 

beam energy. The O 1s peaks are the sum of the O2
- and OH- peaks. The shifting of the 

peaks is due to the change in the relative intensities of the O2
- and OH- peaks. The values 

of the O 1s full-width at half maximum (FWHM) and O/Al ratio are compared to that of 

ALD-AlOx
92,93, which is a common support for VA-CNT growth. The ion-beam damaged 

sapphire exhibits chemical similarities to ALD alumina. Specifically, the damaged 

substrates show higher OH- concentrations, which correspond with increased catalytic 

activity92 and longer catalyst lifetime. The correlation between ion beam damage, VA-

CNT growth (Figure 21), the top amorphous substrate layer, and hydroxyl enrichment 

leads to the conclusion that the disordered nature of the top alumina substrate layer 

directly leads to enhanced catalytic activity and lifetime. 

 

5.3 Discussion 

This work expands our current understanding of carbon nanotube growth by building 

upon our previous knowledge of suitable CNT growth supports. By varying the degree of 

damage by controlling the accelerating voltage of the argon ion beam, characteristics of 

the substrate that are required for VA-CNT growth may be controlled, such as surface 

chemistry and surface roughness. In turn, these substrate properties control catalytic 

activity, stability (in terms of particle migration), and density. More generally, this opens 

the door to the possibility of modifying or tailoring substrates to maximize their 

interaction with catalysts. What this could mean is being able to maximize the catalyst 
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efficiency, growth rate, catalyst lifetime, or potentially even chirality control simply 

through substrate modification. 

 

Modification of a substrate for CNT growth could control two major aspects of a 

substrate: surface chemistry and roughness. As has been shown in this work, argon ion 

beam bombardment can change the relative amounts of active oxygen sites. Increasing 

the bombarding ion beam energy increases the relative amount of OH- active sites on the 

surface of the support. Damaging the surface of the support also increases the surface 

roughness. Increasing the roughness increases surface area. This either increases the 

surface area of the support that the catalyst particle can interact with, thus increasing the 

coordination of the catalyst particle, increases the chance that a catalyst particle will find 

a preferential spot on the support to sit, or it does both. 

 

A number of future avenues of work logically present themselves from this body of work. 

First, different ion beams should be tried for this method of substrate surface 

modification. Different ions may interact or modify the substrate differently both 

chemically and topographically. In an extreme case, hydrogen may be utilized to lightly 

roughen modify the surface of the substrate. In the case of hydrogen, the ion is very small 

and will likely only damage the very top surface of the substrate, but it may also implant 

into the surface and modify its chemical nature. Adding more hydrogen ions could 

potentially increase the amount of OH- active sites on the surface. However, the lower 

amount of damage would result in either a small amount of pores near the surface or no 

pores at all. It has been demonstrated that porous substrates are generally better at 
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growing CNTs due to their stronger interaction with catalyst particles and the higher rate 

of carbon precursor diffusing through the substrate94. Thus, a lower porosity substrate 

damaged by a hydrogen ion beam may not grow as well, but still may provide insights as 

to the importance of surface chemistry in CNT growth. 

 

Varying substrates is also a potential area of research. Testing substrates that do not tend 

to support aligned growth, such as quartz or titanium nitride, would be a logical next step. 

For similar reasons discussed above, adjusting substrate porosity or modifying surface 

chemistry could transform previously unsuitable substrates for CNT growth into 

catalytically active supports that regularly support VA-CNT growth.
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CHAPTER 6. USING GRADIENTS TO STUDY CNT GROWTH 

6.1 CNT Growth Dependence on Catalyst Size 

The generally accepted theory is that the size of the catalyst particle has some effect on 

the diameter of a growing CNT95-97. It stands to reason that a hypothetical catalyst 

particle with a diameter of 3 nm is unable to grow a carbon nanotube with a diameter 

larger than its own. This is simply due to the fact that a catalyst particle cannot deliver 

carbon to a growing CNT that it does not touch. 

 

As stated earlier, CNTs are defined by their chiral vector. This vector (n,m) defines not 

only the chirality, but also the diameter of the CNT. Figure 1 illustrates this point. Thus, 

if one wants to achieve chirality control during growth, it seems that focus should be 

directed toward smaller diameter CNTs, and thus, catalyst particles. This is due to the 

fact that, as the catalyst diameter increases, the potential number of chiralities it can grow 

also increases. By limiting catalyst size, we may be making it easier to select specific 

CNT chiralities to nucleate and grow. 
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Catalyst film reduction is a critical step in CNT catalyst preparation38,53. Between the 

deposition of the catalyst film or whole catalysts, it is very likely that these samples will 

be exposed to air unless specially fabricated sample deposition and growth chambers are 

fabricated in order to prevent this from occurring. Since transition metals oxidize very 

easily due to their partially filled d orbitals, these films must be reduced to remove the 

unwanted oxygen and form individual active catalyst particles53. Reduction time is an 

important factor in this process because it is necessary to fully reduce the catalysts 

without unnecessarily facilitating Ostwald ripening. Ostwald ripening is responsible for 

increasing the size distribution of the catalyst particles and the average size98 and may 

even terminate growth99. As discussed earlier, size is of critical importance when growing 

CNTs, especially SWNTs. The formation of the catalyst particles is a function of the 

feedstock gasses used for reduction and the reaction rate, which can be influenced by 

pressure and temperature. 

 

6.2 Experimental Setup 

To test the dependence of CNT growth on catalyst size, iron gradients were created 

directly on TEM grids. Silicon nitride films 15 nm thick on TEM grids with rectangular 

slots (100 µm x 1500 µm) were deposited with 2.5 nm of ion beam sputtered (IBS) silica 

in order to simulate an oxide surface suitable for CNT growth. Iron was then deposited as 

a gradient along the length of the slots from 0 nm to 2.0 nm thick. The gradients were 

fabricated simply by inserting a razor blade in the path of the sputtered Fe beam, as 

shown in Figure 22. Once deposited, the Fe film was then heated at 585°C in a reducing 

environment of H2 flowing at 200 sccm for 10 minutes. Once the particles were formed, 
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the TEM was utilized to take images at different thicknesses at 0.1 nm intervals along the 

gradient of the Fe film. A profile of the gradient was measured using XRR to determine 

the position of film thicknesses along the length of the gradient. The raw XRR data is 

noisy and was smoothed by utilizing a moving average with a period of 15. Once the 

profile was determined, the position of the gradient thicknesses were found within the 

TEM by simple geometry. The slope of the slot sidewall could be determined simply by 

noting the (x,y) position of the beginning of a slot window and a random position along 

the length of the wall. By finding the equation describing the slot sidewall and utilizing 

the Pythagorean theorem to determine distances along that wall, the position of specific 

film thicknesses could be found. Once the images were taken, particle statistics were 

measured by masking particles with black ovals, circles, or in cases of irregular looking 

particles, polygons and feeding the masked images into the Dunin-Borkowski algorithm73. 

See Figure 27. 

 

At this point, it may be useful to discuss the current state of particle analysis in electron 

microscopy. There are many programs and algorithms in the literature that claim to be 

able to accurately automate the process of finding particles in images on model samples 

(i.e. high contrast, dispersed, regular particles), particularly in TEM. These claims made 

are valid; however, they by no means have definitively solved this issue of automatic 

particle statistics analysis. There are still many situations in which these methods simply 

fail. For example, a few techniques were used to try to automate the measurement of 

particle statistics for the Fe gradient samples used in this study. The most successful 

method, by Dunin-Borkowski et al., was more than 90% accurate at finding particles. 
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This is strictly a rough estimate made by eye with no statistical backing. However, it had 

trouble accurately finding the edges of those particles and often erroneously identified 

particles which were just contrast variations on the support. This is simply due to the fact 

that these particles had oxidized (as some metals do simply when exposed to air) and they 

 

 

 

were sitting on an amorphous surface. The high contrast speckling of white and black 

dots on an amorphous region makes it difficult for a computer algorithm to accurately 

determine the boundaries of particles that themselves do not have a high contrast with 

respect to the substrate due to their oxidized state. The Dunin-Borkowski method is 

optimized for bright-field TEM images, where much of the information within the image 

Figure 22 - Schematic diagram of sputter coating gradient onto a 
substrate with gradient accentuated to show orientation. 
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is cut out due to the presence of a small objective aperture. While bright-field TEM does 

smooth out the appearance of amorphous materials, it can also cut off information in the 

image relating to the particles themselves if they have some portion that does not diffract 

much, such as an oxide layer. However, one commonality between many particle analysis 

programs is the thresholding of images while throwing away important information such 

as curvature. Any particle is most likely to be round and has limits to the curvature of its 

boundaries. This information is likely left out due to computational cost. However, with 

our current state of computing power it needs to be reconsidered as a critical component 

in any particle identification algorithm. 

 

The gradients were created by utilizing an IBS system where the target is the material to 

be deposited. In this case, the target was iron. See Figure 22. A razor blade is placed 

between the path of the plume to the sample, which is placed above the target. The blade 

acts as a shade to block the Fe plume from half of the sample while the unblocked half is 

coated with the gradient. There are two methods for controlling the gradient. The first 

method is by adjusting the distance between the blade and the Fe target. When the ion 

beam strikes the target, Fe is ejected in a plume with a Gaussian distribution. If we 

assume there is some crossover (i.e. some of the plume, when ejected, travels towards the 

central axis rather than parallel to it or away), then moving the shade closer or farther 

away from the target will either limit or expand the width of the plume, respectively. 

Referring to Figure 22, the relationship between the width of the emitted plume, the 

deposited gradient, and the shade height can be expressed as !! = !! !!!!. The second 

method is adjusting the tilt of the specimen. The plume approaches the specimen at an 
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angle, not perpendicularly. So, by tilting the specimen away from the plume in the 

direction of the gradient, the distance traveled by the plume increases and the gradient is 

extended. Illustrated in Figure 23, the extension in the width of the gradient can be 

expressed as !!! = ℎ! !!!! cos!!
!

!"# !!!!
+ !

!"# !!!!
. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 23 – Schematic of sample preparation 

controlling gradient deposition. 
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It should be noted that all substrate preparation, growth, and Raman analysis was 

performed at Wright-Patterson Air Force Base (WPAFB) and the corresponding TEM 

studies were done at Purdue University and WPAFB. 

 

6.3 Results 

One sample, labeled A2 was prepared by the previously discussed method, and then 

imaged in an FEI Titan ETEM operating at 300 keV. Those images are compiled in 

Figures 24-29. Most striking is the core-shell nature of many of the particles, and the 

qualitative phenomenon that at lower thicknesses particles begin to appear that do not 

share the core-shell structure of the majority. Particle diameter statistics were measured 

and a few phenomena appeared. Discontinuities at 0.4 nm and 0.6 nm were observed. 

However, the sample size was low. Particle counts ranged between 75 – 160 particles per 

sample thickness. Four more samples were prepared, most at the same time. One sample, 

T3, had iron deposition prepared separately from the rest of the samples, but all samples 

were annealed in hydrogen at the same time. The second set of four samples (T3, T7, S8, 

and T9) were all imaged in a 200 keV CM200. For this set of data, more images were 

taken at a lower magnification, resulting in a larger sample size, ranging from 300 – 700 

particles per sample thickness. The resulting particle diameter statistics are compiled in 

Figure 31. All images were taken as close to identical thicknesses as possible at 0.1 nm 

intervals, however the data in Figure 31 is plotted in a cluster around the exact thickness 

to more clearly illustrate the error bars for each data set. To measure the data, all images 

were masked with polygons to identify particles manually, as shown in Figure 30, and 

were then fed into a Dunin-Borkowski algorithm to identify particle diameters by 
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approximating particle areas to a circle and calculating the associated diameter. The Fe 

film gradients produced a range of average particle sizes that roughly correlated with the 

thickness of the Fe film.  

 

 

Figure 24 – Set of images from the Fe gradient sample A2, all taken at 255,000x 
magnification. The top, middle, and bottom rows are sets of 3 images from a Fe film 
thickness of 0.3 nm, 0.4 nm, and 0.5 nm, respectively. The scale bar, seen in the top left 
image, is 10 nm. 
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Figure 25 – Set of images from the Fe gradient sample A2, all taken at 255,000x 
magnification. The top, middle, and bottom rows are sets of 3 images from a Fe film 
thickness of 0.6 nm, 0.7 nm, and 0.8 nm, respectively. The scale bar, seen in the top left 
image, is 10 nm.  
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Figure 26 - Set of images from the Fe gradient sample A2, all taken at 255,000x 
magnification. The top, middle, and bottom rows are sets of 3 images from a Fe film 
thickness of 0.9 nm, 1.0 nm, and 1.1 nm, respectively. The scale bar, seen in the top left 
image, is 10 nm. 
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Figure 27 - Set of images from the Fe gradient sample A2, all taken at 255,000x 
magnification. The top, middle, and bottom rows are sets of 3 images from a Fe film 
thickness of 1.2 nm, 1.3 nm, and 1.4 nm, respectively. The scale bar, seen in the top left 
image, is 10 nm. 
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Figure 28 - Set of images from the Fe gradient sample A2, all taken at 255,000x 
magnification. The top, middle, and bottom rows are sets of 3 images from a Fe film 
thickness of 1.5 nm, 1.6 nm, and 1.7 nm, respectively. The scale bar, seen in the top left 
image, is 10 nm. 
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Figure 29 - Set of images from the Fe gradient sample A2, all taken at 255,000x 
magnification. The top, middle, and bottom rows are sets of 3 images from a Fe film 
thickness of 1.8 nm, 1.9 nm, and 2.0 nm, respectively. The scale bar, seen in the top left 
image, is 10 nm. 
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Figure 30 - Sample image from the 1.0 nm film thickness on sample A2 displayed for the 
purpose of explaining the particle analysis procedure. Particles were manually masked 
with polygons or ovals and then fed into a Matlab script running the Dunin-Borkowski 
algorithm. Six particles are numbered on the edge, and they would all be counted as half 
particles, only to be included in the particle density statistics and not the particle diameter 
statistics. 
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Figure 31 - Average particle diameter in nm (y-axis) versus Fe gradient film thickness in 
nm (x-axis). 
 

All referenced data from samples T3, T7, S8, and T9, from now on, may be found in the 

appendix. In sample A2, between thicknesses 1.3 and 2.0 nm, the average particle size 

varies quite largely. This is due to the bimodal distribution that arises at these larger 

thicknesses. Below 1.3 nm, there is a steady decrease in the average particle size up until 

around 0.6 nm. The particles in the thicker film regions have a clear core-shell structure, 

with an iron core and an oxide shell that is a result of these particles being exposed to air. 

This core-oxide shell structure was confirmed in scanning TEM (STEM). Below about 

0.5 nm, more particles appear to have no core-shell structure, flat contrast, and an 

irregular shape (non-oval/circular).  

 

Sample T3 exhibits a very clear bimodal distribution above 0.4 nm film thickness, as 

shown in Figures 32-39, while the other samples do not. The reason for this difference is 
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not completely understood. Sample T3 had iron deposited on it at a very shallow gradient. 

This resulted in only thicknesses of 0.3 nm – 0.7 nm being observed in the microscope.  

 

Average particle density was also measured, ranging from about 2000 – 3500 particles 

per square micron. This data was deliberately left out because, despite a general trend of 

increasing particle density with increasing iron film thickness, there is no agreement or 

tighter consistency in the data. 

 

When Ostwald ripening occurs, it is expected that the average particle size increases over 

time, as it is energetically favorable for large particles to grow at the expense of smaller 

particles. If this were to occur, then histograms of average particle size would show a tail 

trailing off the bulk of the data toward larger particles. This is not observed in the 

histogram data. Given that the particles were annealed in hydrogen for only ten minutes, 

it is likely that Ostwald ripening has not even had the chance to become a dominating 

phenomenon. 

 

Particle size error was calculated using the standard error of the mean method where 

!" = ! !!, where SE is the standard error of the mean, σ is the standard deviation, and n is 

the number of measurements. In addition, x-axis error bars, or error in position, were 

calculated by comparing the error in the position measured by the electron probe micro-

analyzer used to profile the samples with the slope of the film thickness. 
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Gven that this sample is a gradient, there is some uncertainty related to the position along 

the gradient. The Si3N4 TEM slot windows are made by back etching silicon with a thin 

layer of Si3N4 deposited on the surface. Given that silicon is so highly utilized and 

understood, and any etching process, most likely utilizing some kind of mixture of nitric 

or hydrofluoric acid, would be highly regular, the error in finding the position of a film 

thickness along the length of the wall from any irregularities in the structure of the 

sidewall (i.e. curvature or the sidewall length not being parallel to the length of the slot) 

is likely trivial. The major source of error in determining the position of film thicknesses 

would be from the compustage controlling TEM stage movement. This error was 

determined by noting the (x,y) location of two opposite corners of the slot and then 

moving back and forth between those positions to record the change in the (x,y) position 

of those corners. This gave an upper estimate of about 6 µm in stage movement error in 

the FEI Titan. In the CM 200, the error in stage movement was less than 1 micron. While 

this seems surprising that the error was less on the older microscope, this was because 

sample movement on the CM 200 was done manually at the same magnification, 

completely out of necessity, but on the Titan, stage movement was done digitally by 

entering coordinates to travel to into the software. It can be safely assumed that error in 

TEM sample position is proportional to the distance the TEM sample is being moved. 

 

6.4 Discussion 

Gradients were utilized to find any indications of catalyst morphological anomalies that 

would explain VA-CNT growth turn on at iron film thicknesses less than 1.0 nm. While 

nothing obvious was observed, a slight discontinuity between 0.4 nm and 0.5 nm can be 
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observed from Figures 32, 34, 40 and 42. In addition, there is a striking difference 

between the histograms of sample T3 and the rest of the samples. To understand what 

might be causing this, the data was segmented by structure. The most striking feature of 

the particles was the core-shell structure some exhibited and others did not. The 

segmented data is displayed in Figures 32 – 82. Quite surprisingly, a clear and consistent 

pattern emerged where core-shell particles displayed separate Gaussian-like histograms 

and were most often larger than non-core shell particles. One might argue that core shell 

particles are naturally going to appear larger due to their bulky oxide shell, but non core 

shell particles most often display flat or patchy contrast indicating the particle might be 

completely oxidized. In addition, this separation in average particle size between core-

shell and non-core-shell particles appears to widen with increasing film thickness. If there 

was a random distribution of core-shell particles, then a clear and consistent pattern 

would not be expected to emerge. 

 

Our current hypothesis for this phenomenon is that there is a particle size threshold for 

catalysts to reduce. Catalysts that reduce completely, or to a large degree, re-oxidize 

when exposed to air when they are removed from the CVD furnace and created the core-

shell structure. Catalysts that are too small to reduce are likely interacting too strongly 

with the substrate and remain oxidized while being exposed to reducing conditions. 

Again, a counter argument might that the non-core shell particles also seem to increase in 

size with increasing film thickness. So, it is not necessarily a hard catalyst size limit that 

determines whether it will reduce or not. It may be due to nearest neighbor effects or 

there may be more segments of particle structure that are being missed in the images. 
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In addition to segmenting by core-shell structure, roundness may be another method by 

which the particle data could be segmented. Many particles appeared to have different 

morphologies. Most particles were round, but some were faceted and some had odd 

curvature in its features. Both roundness and circularity are distinct measurements, which 

indicate different aspects curvature of a particle. Circularity is the ratio of !!∗!"#!
!"#$%"&"#! and 

roundness is the ratio of !∗!"#!
!∗!"#$%!!"#$!, where the major axis is the long axis if the object 

is fitted to an ellipse. Furthermore, there are different ways to measure particle size. The 

method used in this study finds the diameter of a particle to be, that which would fit a 

perfect circle of equal area. Another way to measure particle size is by measuring the 

Feret’s diameter, or the longest distance between two parallel, tangential lines to the 

perimeter of the particle. Further data segmentation is an obvious choice when trying to 

determine if there are any other distinct phenomena which may be affecting the creation 

and development of catalyst particles. 

 

Lastly, how this relates to CNT growth is unclear. It is known that CNT growth is not 

very efficient in terms of the percentage of catalysts that are created that actually nucleate 

and grown a CNT. This segmentation of core-shell/non-core-shell particles may be a 

result of the inability of catalysts to reduce, which, as a result, do not nucleate CNTs. 
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CHAPTER 7. FUTURE WORK AND CONCLUSIONS 

The study of carbon nanotube growth is extensive enough that it can be easy to 

become boxed into the study of carbon, how its forms nucleate, and how they grow. 

However, it is important to realize that CNT growth, at least through CVD, is a 

heterogeneous catalyst system. This means that the phase of the catalyst differs from 

that of the reactants100. What this implies is that results discovered through the 

research of CNT growth are largely applicable to the greater catalysis world in 

general. Specifically, all of the preliminary results discussed within this dissertation 

have potential applications within the greater heterogeneous catalysis community.   

 

Chapter 4 focused on the potential influence of the inert gas environment on catalyst 

morphology when multiple gaseous species are involved. The work is based on 

previous findings that iron catalysts on alumina tend to grow metallic nanotubes in 

the presence of helium and semiconducting nanotubes in the presence of argon. This 

behavior was correlated with catalyst morphology through in-situ TEM studies 

showing that a small iron nanoparticle in the presence of a small amount of water and 

helium exhibits strong facets and becomes more rounded when exposed to a mixture 

of argon and water. In addition, it has also been shown that water is effective at 

inhibiting Ostwald ripening, a mechanism of CNT growth termination, and Ostwald 

ripening rates are higher in iron/alumina catalyst/support systems when annealed in 
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argon as opposed to helium. These results suggest that Ostwald ripening might be 

used as a qualitative measurement of the degree of faceting in a catalyst system. 

However, it is still unclear whether this strong catalyst faceting behavior in helium is 

a result of the ability of the inert gas to transfer momentum to the catalyst particle and 

its adsorbates and knock off any adsorbed hydroxyl or oxygen or if this is due to 

impurities within the gaseous environment, as it has been shown that ppm impurity 

levels can have a significant effect on CNT growth behavior. 

 

To discern the cause of the faceting behavior in the iron/alumina system, Ostwald 

ripening tests of catalyst particles with controlled mass flux of the inert gas are 

proposed. A positive result showing increased Ostwald ripening rates at higher inert 

gas mass fluxes would indicate that increasing the mass flux of an inert gas interferes 

with the ability of water to inhibit Ostwald ripening, and could result in more rounded 

and less faceted catalyst particles. This disruption of water’s ability to inhibit Ostwald 

ripening would likely be due to the ability of the individual inert gas species to 

transfer momentum to adsorbates on the surface of the catalyst particle and knock 

them away. Any potential influences of ppm level impurities could be mitigated by 

observing increased Ostwald ripening rates in catalyst systems with heavily increased 

mass flow rates of helium, the lightest species which is least effective at transferring 

momentum to the adsorbates. 

 

Preliminary data has shown that Ostwald ripening rates decrease with increasing 

amounts of water, and rates increase with increasing pressure of argon without the 
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presence of water. Past work has shown that increased Ostwald ripening rates in the 

catalyst system are not likely due to evaporation of the catalyst material, but more 

likely due to increased atom mobility on the surface of the substrate. 

Further tests should be completed to test the ability of heavier inert gases such as 

argon or xenon to influence Ostwald ripening rates in the presence of water. In 

addition, if tests show no dependence on mass flow of inert gases then the next step 

would be to search for impurities within inert gasses that cause the catalyst faceting 

behavior.  

 

Next, work was presented highlighting the ability to tune the surface chemistry and 

morphology of catalyst support substrates through ion beam bombardment. Sapphire, 

a substrate which does not support VA-CNT growth, was turned into a catalytically 

active substrate through bombarding the surface with an argon ion beam. Specifically, 

the ion beam increased the number of active oxygen sites on the surface by increasing 

the relative OH- concentration and the relative O 1s to Al 2p peak ratio. Cross-

sectional TEM was used to characterize the nature of the damage. Two layers were 

observed. A top amorphous layer was found, which is the layer that supports the 

catalyst particles, and a second crystalline interfacial layer was seen to exist in 

between the top amorphous layer and the sapphire substrate. 

 

By catalytically activating previously unsuitable substrates for VA-CNT growth, the 

possibilities exist to attempt similar procedures on other substrates and using other 

ion beams to tune the substrate chemistry and topography. 



85 
 

 

85 

Lastly, iron gradients were studied in an attempt to draw conclusions about catalyst 

development and morphology for CNT growth. It is known that small, uniform 

catalyst arrays are necessary for CNT growth and CNT growth seems to turn on at 

small catalyst sizes. So, it is logical to try and observe sudden changes in catalyst 

morphology at critical sizes near where CNT growth starts.  

 

To study this behavior, an iron gradient thickness film was deposited on a TEM grid 

covered in a small amount of IBS silica. The tested samples in this body of work 

exhibited a core-shell structure and were mostly rounded the entire length of the 

gradient, making it impossible to determine potential changes in catalyst morphology 

due to changes in deposited iron film thickness. However, a discontinuity in the 

average particle size was observed along the length of the gradient, which is not 

immediately expected. In addition, segmenting the particles by whether or not they 

show a core-shell structure revealed clear, consistent, and distinct data sets. 

 

The questions arising from this iron gradient study are perfectly suited for in-situ 

TEM experiments. Specifically, it should be attempted to observe newly formed 

catalyst particles reduce. Electron energy loss spectroscopy could potentially be 

utilized to measure the degree to which an ensemble of catalysts or individual 

catalysts reduce or do not reduce. Taking in-situ measurements gives the benefit of 

observing particle structure and orientation as it is reducing. This data would be 

invaluable in answering the question “why do some catalysts nucleate CNTs and 

some do not?” Specifically, for the main catalyst materials for CNT growth, iron, 
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cobalt, and nickel, their L2,3 EELS edges may be measured to determine the reduction 

state of the catalyst. 

 

Lastly, the gradient experiments were performed on IBS silica, but alumina is the best 

support choice for iron due to the metal’s affinity for the specific oxide. Repeating 

these experiments on alumina would be enlightening if catalyst/support interaction is 

preventing some catalysts from reducing and nucleating CNTs on silica.
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APPENDIX 

 

 

Figure A1 - Histogram of nanoparticle diameters at 0.4 nm film thickness of Sample T3. 
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Figure A2 - Histogram of nanoparticle diameters at 0.4 nm film thickness of Sample T3 
segmented by core-shell structure. 
 

 

Figure A3 - Histogram of nanoparticle diameters at 0.5 nm film thickness of Sample T3. 
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Figure A4 - Histogram of nanoparticle diameters at 0.5 nm film thickness of Sample T3 
segmented by core-shell structure. 
 

 

Figure A5 - Histogram of nanoparticle diameters at 0.6 nm film thickness of Sample T3. 
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Figure A6 - Histogram of nanoparticle diameters at 0.6 nm film thickness of Sample T3 
segmented by core-shell structure. 
 

 

Figure A7 - Histogram of nanoparticle diameters at 0.7 nm film thickness of Sample T3. 
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Figure A8 - Histogram of nanoparticle diameters at 0.7 nm film thickness of Sample T3 
segmented by core-shell structure. 
 

 

Figure A9 - Histogram of nanoparticle diameters at 0.4 nm film thickness of Sample T7. 
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Figure A10 - Histogram of nanoparticle diameters at 0.4 nm film thickness of Sample T7 
segmented by core-shell structure. 
 

 

Figure A11 - Histogram of nanoparticle diameters at 0.5 nm film thickness of Sample T7. 
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Figure A12 - Histogram of nanoparticle diameters at 0.5 nm film thickness of Sample T7 
segmented by core-shell structure. 
 

 

Figure A13 - Histogram of nanoparticle diameters at 0.6 nm film thickness of Sample T7. 
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Figure A14 - Histogram of nanoparticle diameters at 0.6 nm film thickness of Sample T7 
segmented by core-shell structure. 
 

 

Figure A15 - Histogram of nanoparticle diameters at 0.7 nm film thickness of Sample T7. 
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Figure A16 - Histogram of nanoparticle diameters at 0.7 nm film thickness of Sample T7 
segmented by core-shell structure. 
 

 

Figure A17 - Histogram of nanoparticle diameters at 0.8 nm film thickness of Sample T7. 
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Figure A18 - Histogram of nanoparticle diameters at 0.8 nm film thickness of Sample T7 
segmented by core-shell structure. 
 

 

Figure A19 - Histogram of nanoparticle diameters at 0.9 nm film thickness of Sample T7. 
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Figure A20 - Histogram of nanoparticle diameters at 0.9 nm film thickness of Sample T7 
segmented by core-shell structure. 
 

 

Figure A21 - Histogram of nanoparticle diameters at 1.0 nm film thickness of Sample T7. 
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Figure A22 - Histogram of nanoparticle diameters at 1.0 nm film thickness of Sample T7 
segmented by core-shell structure. 
 

 

Figure A23 - Histogram of nanoparticle diameters at 0.4 nm film thickness of Sample S8. 
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Figure A24 - Histogram of nanoparticle diameters at 0.4 nm film thickness of Sample S8 
segmented by core-shell structure. 
 

 

Figure A25 - Histogram of nanoparticle diameters at 0.5 nm film thickness of Sample S8. 
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Figure A26 - Histogram of nanoparticle diameters at 0.5 nm film thickness of Sample S8 
segmented by core-shell structure. 
 

 

Figure A27 - Histogram of nanoparticle diameters at 0.6 nm film thickness of Sample S8. 
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Figure A28 - Histogram of nanoparticle diameters at 0.6 nm film thickness of Sample S8 
segmented by core-shell structure. 
 

 

Figure A29 - Histogram of nanoparticle diameters at 0.7 nm film thickness of Sample S8. 
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Figure A30 - Histogram of nanoparticle diameters at 0.7 nm film thickness of Sample S8 
segmented by core-shell structure. 
 

  

Figure A31 - Histogram of nanoparticle diameters at 0.8 nm film thickness of Sample S8. 
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Figure A32 - Histogram of nanoparticle diameters at 0.8 nm film thickness of Sample S8 
segmented by core-shell structure. 
 

 

Figure A33 - Histogram of nanoparticle diameters at 0.9 nm film thickness of Sample S8. 
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Figure A34 - Histogram of nanoparticle diameters at 0.9 nm film thickness of Sample S8 
segmented by core-shell structure. 
 

 

Figure A35 - Histogram of nanoparticle diameters at 1.0 nm film thickness of Sample S8. 
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Figure A36 - Histogram of nanoparticle diameters at 1.0 nm film thickness of Sample S8 
segmented by core-shell structure. 
 

 

Figure A37 - Histogram of nanoparticle diameters at 0.4 nm film thickness of Sample T9. 
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Figure A38 - Histogram of nanoparticle diameters at 0.4 nm film thickness of Sample T9 
segmented by core-shell structure. 
 

 

Figure A39 - Histogram of nanoparticle diameters at 0.5 nm film thickness of Sample T9. 
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Figure A40 - Histogram of nanoparticle diameters at 0.5 nm film thickness of Sample T9 
segmented by core-shell structure. 
 

 

Figure A41 - Histogram of nanoparticle diameters at 0.6 nm film thickness of Sample T9. 
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Figure A42 - Histogram of nanoparticle diameters at 0.6 nm film thickness of Sample T9 
segmented by core-shell structure. 
 

 

Figure A43 - Histogram of nanoparticle diameters at 0.7 nm film thickness of Sample T9. 
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Figure A44 - Histogram of nanoparticle diameters at 0.7 nm film thickness of Sample T9 
segmented by core-shell structure. 
 

 

Figure A45 - Histogram of nanoparticle diameters at 0.8 nm film thickness of Sample T9. 
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Figure A46 - Histogram of nanoparticle diameters at 0.8 nm film thickness of Sample T9 
segmented by core-shell structure. 
 

 

Figure A47 - Histogram of nanoparticle diameters at 0.9 nm film thickness of Sample T9. 
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Figure A48 - Histogram of nanoparticle diameters at 0.9 nm film thickness of Sample T9 
segmented by core-shell structure. 
 

 

Figure A49 - Histogram of nanoparticle diameters at 1.0 nm film thickness of Sample T9. 
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Figure A50 - Histogram of nanoparticle diameters at 1.0 nm film thickness of Sample T9 
segmented by core-shell structure. 
 

 

Figure A51 - Average particle size by segmented populations. Core-shell structures are 
generally larger than non-core shell particles and the difference becomes greater at 
increasing film thicknesses.
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