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ABSTRACT

Roth, Samuel Joshua PhD, Purdue University, May 2015. Ergodic Properties of
Countable Extensions. Major Professor: Micha�l Misiurewicz.

First, we study countably piecewise continuous, piecewise monotone interval maps.

We establish a necessary and sufficient criterion for the existence of a non-decreasing

semiconjugacy to an interval map of constant slope in terms of the existence of an

eigenvector of an operator acting on a space of measures. Then we give examples,

both Markov and non-Markov, for which the criterion is violated.

Next, we establish a criterion for the existence of a constant slope map on the

extended real line conjugate to a given countably piecewise monotone interval map.

We require the given interval map to be continuous, Markov, and topologically mixing,

and show by example that the mixing hypothesis is essential.

Next, we study a class of countable state subshifts of finite type which admit

finite-state factors. Our systems carry a displacement function, analogous to that

used in the rotation theory of circle maps. Among those invariant measures on the

factor system for which the average displacement is zero, we identify a unique measure

of maximal entropy. As a corollary we obtain an efficient computational tool for the

Gurevich entropy of the countable state system. We also prove that the countable

state systems in our class do not admit any measure of maximal entropy.

Finally, we apply our findings to the study of degree one circle maps with Markov

partitions and with transitive liftings to the real line. After compactifying by adjoin-

ing fixed points at plus and minus infinity, we show how to compute the topological

entropy of the lifting and how to find all conjugate maps of constant slope. We prove

that there are conjugate maps of constant slope for every slope greater than or equal

to the exponential of the entropy.
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1. NO SEMICONJUGACY TO AN INTERVAL MAP OF

CONSTANT SLOPE

The idea that some interval maps should be conjugate or semiconjugate to maps

of constant slope (we use the term “constant slope” instead of the more accurate

but clumsy “constant absolute value of the slope”) appeared first about 50 years ago.

Parry [18] proved that continuous, transitive, piecewise monotone (with finite number

of pieces) interval maps are conjugate to maps of constant slope. Later, Milnor and

Thurston [14] proved an analogous result, removing the assumption of transitivity,

but replacing conjugacy by semiconjugacy. Another proof of the Milnor-Thurston

theorem appeared in [1]. That proof, after small modifications, can be used for maps

of graphs or for piecewise continuous maps (with finitely many pieces) [2].

In all cases we require that the (semi)conjugacy is via monotone maps preserving

orientation. This is a natural requirement; if we drop it then we get a completely

different, and less interesting, problem. Also in all cases the logarithm of the slope is

equal to the topological entropy of the initial map. This is because the same is true

for the constant slope maps (see [16], [1]).

A natural question is what can be said if the map is piecewise monotone, but with

countably many pieces. When trying to make such generalizations, one immediately

encounters some basic problems.

The first problem is a definition of a countably piecewise monotone map. For

such continuous maps, what should we assume about the set of turning points (local

extrema)? For instance, if we allow the closure of this set to be a Cantor set, there

may be substantial dynamics on it, not captured by our considerations. Thus, it is

reasonable to assume that the closure of the set of turning points is countable.
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The second problem is, what should the slope be? For countably piecewise mono-

tone maps of constant slope it is no longer true that the entropy is the logarithm of

the slope. There are obvious counterexamples, where all points of the interval, except

the endpoints, are moved to the right, so the entropy is zero, but the slope is larger

than 1. Thus, there is no natural choice of the slope of the map to which our map

should be (semi)conjugate.

Recently, Bobok [6] considered the case of continuous, Markov, countably piece-

wise monotone interval maps. He found a necessary and sufficient condition for the

existence of a nondecreasing semiconjugacy to a map of constant slope in terms of

the existence of an eigenvector for a certain operator. The operator is given by a

countably infinite 0-1 matrix representing the transitions in the Markov system, and

the criterion asks for a nonnegative eigenvector in the sequence space �1. Bobok de-

scribed a rich class of examples satisfying this criterion and proved that for many of

these examples the constant slope so obtained is the exponential of the topological

entropy of the original interval map. However, he did not give any examples that

violate the criterion.

In this chapter, we study the general case of countably piecewise continuous,

piecewise monotone interval maps without any Markov assumption. We also establish

a necessary and sufficient criterion – analogous to Bobok’s – for the existence of a

nondecreasing semiconjugacy to a map of constant slope. It is given, like Bobok’s

criterion, in terms of existence of an eigenvector of some operator, but the operator

acts on measures rather than on sequences. Then we construct a class of examples

which violate that criterion. Our examples are continuous and transitive and thus

have positive topological entropy.

The chapter is organized as follows. In Section 1.1 we present notation and define

objects used in the next sections. In Section 1.2 we establish the criterion for the

semiconjugacy to a map of constant slope. In Section 1.3 we produce sufficient condi-

tions for this criterion being not satisfied. Theorem 1.11 can be considered the main

technical result of the chapter. Section 1.4 contains the main theorem of the chapter,
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Theorem 1.12, which gives us a large class of continuous transitive interval maps for

which Theorem 1.11 applies. Finally, in Section 1.5 we give a concrete example of a

one-parameter family of continuous transitive countably piecewise monotone interval

maps that are not semiconjugate to a map of constant slope via a nondecreasing map.

We show that in this family there are uncountably many Markov and uncountably

many non-Markov maps.

This entire chapter has also been published as a standalone paper [15].

1.1 Notation and definitions

Let us introduce the various notations and definitions required to address the

problem more clearly.

If P is a closed, countable subset of [0, 1], then a component of the complement of

P will be called a P -basic interval, and the set of all P -basic intervals will be denoted

B(P ).

We want to consider countably piecewise monotone interval maps, but not only

continuous, but also piecewise continuous. That would mean that there exists a closed

countable set P ⊂ [0, 1] such that our map is continuous and monotone on each P -

basic interval. However, this creates a question: what should be the values of our

map at the points of P? If the map is continuous, this is not a problem. However,

in general there is no good answer. Even if we allow two values at those points

(one-sided limits from both sides), P may have accumulation points, and there is no

natural way of extending our map to those points. Therefore we choose the simplest

solution – we do not define the map at all at the points of P . This is not a new idea;

a similar solution is normally used for instance in the holomorphic dynamics on the

complex projective spaces of dimension larger than 1.

Thus, we define a class C of maps f for which there exists a closed, countable

set P ⊂ [0, 1], f : [0, 1] � P → [0, 1], and f is continuous and strictly monotone on

each P -basic interval. Note that we assume strict monotonicity; while it is possible
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to do everything that we do assuming only monotonicity, the technical details would

be much more involved and they would obscure the ideas.

Similarly as in measure theory where two functions are considered equal if they

differ only on a set of measure zero, we will consider two elements of C equal if they

are equal on the complement of a closed countable set. This gives us a possibility of

using different sets P for a given map f ∈ C. Each such set for which f is continuous

and strictly monotone on P -basic intervals will be called f -admissible.

Lemma 1.1 A composition of two maps from C belongs to C.

Proof We will show that if f, g ∈ C, the set P is f -admissible, and Q is g-admissible,

then the set P ∪ f−1(Q) is g ◦ f -admissible. First observe that the set (f |I)−1(Q)

is countable for every P -basic interval I. Moreover, there are only countably many

P -basic intervals. Thus, the set P ∪ f−1(Q) is countable.

We may assume that 0, 1 ∈ P . Let [a, b] be the closure of a P -basic interval. Then

(f |(a,b))−1(Q) is closed in (a, b). Since a, b ∈ P , the set (P ∪ f−1(Q)) ∩ [a, b] is closed

in [a, b]. Since P is closed in [0, 1], this proves that P ∪ f−1(Q) is closed in [0, 1].

Let I be a component of the complement of P ∪ f−1(Q). Then I is a subset of a

P -basic interval and f(I) is a subset of a Q-basic interval, so g ◦ f is continuous and

strictly monotone on I.

Using this lemma, by induction we get that if f ∈ C then fn ∈ C for every natural

n. That is, we can iterate a map from C without leaving this class of maps.

We do not want to abandon continuous maps. Therefore we consider the class

CC of continuous maps f : [0, 1] → [0, 1] for which there exists a countable closed set

P ⊂ [0, 1] such that f |[0,1]�P ∈ C. Results for maps from this class will follow easily

from the results for maps from C. In view of Lemma 1.1, composition of maps from

CC belongs to CC, so in particular, iterates of a map from CC belong to CC.

We will say that a map f ∈ C (or f ∈ CC) has constant slope λ, if for some f -

admissible set P , f restricted to each P -basic interval is affine with slope of absolute
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value λ. Clearly, this property depends only on the map f , and not on the choice of

an f -admissible set P .

We will say that a nonatomic measure defined on the Borel σ-algebra on the

interval [0, 1] is strongly σ-finite if there is a closed countable set P ⊂ [0, 1] such

that each P -basic interval has finite measure. We denote by M the set of all such

measures. Observe that M is closed under addition and under multiplication by

positive real scalars.

If g : X → Y is a map and ν is a measure on X, then we can always push this

measure forward and define a measure g∗ν on Y by the formula g∗ν(A) = ν(g−1(A)).

If g is invertible and μ is a measure on Y , we can push this measure to X by g−1.

This defines a pull-back of μ, that is, g∗μ = g−1
∗ μ. In terms of measures of sets, we

have g∗μ(A) = μ(g(A)).

For a map f ∈ C, we put all those pull-backs together to get an operator Tf :

M → M. It acts on a measure μ ∈ M as follows. Choose an f -admissible set P .

For each P -basic interval I, consider the homeomorphism f |I : I → f(I). Pull back

the measure μ|f(I) by f |I to a measure on I. This defines Tfμ on the interval I:

(Tfμ)|I = (f |I)∗(μ|f(I)), I ∈ B(P ).

More explicitly,

(Tfμ)(A) =
∑

I∈B(P )

μ(f(I ∩ A))

for all Borel sets A. By a common refinement argument, the definition of Tf depends

only on the map f , and not on the choice of an f -admissible set P . Moreover, as

in the proof of Lemma 1.1, if for a closed countable set Q each Q-basic interval has

measure μ finite, then each R-basic interval, where R = P ∪ f−1(Q), has measure

Tfμ finite. This shows that indeed Tf maps M to M.

Note the linearity properties Tf (μ + ν) = Tfμ + Tfν and Tf (αμ) = αTfμ for

μ, ν ∈ M and α ≥ 0.
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Instead of maps of the interval [0, 1] into itself, we can consider maps of the circle

or of the real line into itself. We will use for them the same notation as for the interval

maps.

1.2 Semiconjugacy

Although M is not a true linear space (multiplication by negative scalars is not

permitted), it is nevertheless quite fruitful to consider eigenvectors for positive eigen-

values. Let us consider the meaning of an eigenvector in this setting. Fix a map

f ∈ C and an f -admissible set P . The condition Tfμ = λμ, λ > 0, is equivalent to

the condition that for all P -basic intervals I, (f |I)∗(μ|f(I)) = λμ|I . We will suppress

subscripts and write f ∗μ = λμ when the context is clear. However, if f ∗μ = λμ on

a P -basic interval I, then the Radon-Nikodym derivative df∗μ
dμ

is identically λ on I.

This Radon-Nikodym derivative is the measure-theoretic version of the Jacobian of

f on I as defined by Parry [19]. Thus, a measure μ ∈ M satisfying Tfμ = λμ is

a measure of constant Jacobian λ for f . If μ is an eigenvector for Tf , then for any

subinterval J contained in a single P -basic interval I, μ(f(J)) = λμ(J). In words, if

μ is an eigenvector for Tf , then within each P -basic interval, f uniformly stretches

the μ measures of intervals by a factor λ. It is suggestive to note that constant slope

maps have the same property, but with lengths in place of measures. We will show

that this has a deeper meaning. Let us denote the Lebesgue measure by m.

Lemma 1.2 The map f ∈ C has constant slope λ if and only if Tfm = λm.

Proof Assume that f has constant slope λ and let P be f -admissible. Then f is

affine with slope ±λ on each P -basic interval. Consider an arbitrary P -basic interval

I and the restricted map f |I : I → f(I). It suffices to prove that f ∗m = λm on this

interval. For every subinterval (a, b) ⊂ I we have

(f ∗m)(a, b) = m(f((a, b))) = |f(b) − f(a)| = λ(b− a) = (λm)(a, b).
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Since the two Borel measures f ∗m and λm on I agree on all open intervals, they are

in fact equal.

Conversely, assume that Tfm = λm. Let I be a P -basic interval. Then for every

subinterval (a, b) ⊂ I we have

|f(b) − f(a)| = m(f((a, b))) = (f ∗m)(a, b) = λm(a, b) = λ(b− a).

Therefore f |I is affine with slope ±λ. But I was arbitrary. Therefore f has constant

slope λ.

Remark 1.3 With only slight modifications in wording, the proof of Lemma 1.2 goes

through for maps of the real line into itself.

Theorem 1.4 Let f ∈ C and let λ > 0. Then f is semiconjugate via a nondecreasing

map ϕ to some map g ∈ C of constant slope λ if and only if there exists a probability

measure μ ∈ M such that Tfμ = λμ.

Proof Assume that f is semiconjugate to a map g of constant slope λ by a non-

decreasing map ϕ. Let P be an f -admissible set; it is clear that then ϕ(P ) is a

g-admissible set. By Lemma 1.2, Tgm = λm. Since m is nonatomic, it can be

pulled back by the nondecreasing map ϕ to define a measure μ = ϕ∗m; explicitly,

μ(A) = m(ϕ(A)) for all Borel sets A. Then μ is a nonatomic Borel probability mea-

sure. Now let I be any P -basic interval. Take restrictions of f , g, ϕ, m, and μ to the

appropriate domains in the following commutative diagram:

I
f−−−→ f(I)

ϕ

⏐⏐� ⏐⏐�ϕ
ϕ(I) −−−→

g
g(ϕ(I))

. (1.2.1)

Using these restricted maps and measures, f ∗μ may be computed on I as

f ∗μ = f ∗(ϕ∗m) = ϕ∗(g∗m) = ϕ∗(λm) = λϕ∗m = λμ.

But I was an arbitrary P -basic interval. Therefore Tfμ = λμ.
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Conversely, assume that there exists a probability measure μ ∈ M such that Tfμ =

λμ. Define a map ϕ by ϕ(x) = μ([0, x]). This map is continuous, nondecreasing, and

maps [0, 1] onto [0, 1]. To see that ϕ induces a well-defined factor map g, suppose that

x1 < x2 and ϕ(x1) = ϕ(x2). If the interval [x1, x2] contains a point of P , then ϕ(xi)

belongs to ϕ(P ), which will be a g-admissible set, so there is no need to define g at

ϕ(xi). Otherwise, the interval [x1, x2] is contained in a P -basic set I, μ([x1, x2]) = 0,

and thus

μ(f([x1, x2])) = (Tfμ)([x1, x2]) = λμ([x1, x2]) = 0.

Therefore ϕ(f(x1)) = ϕ(f(x2)). This shows that we can define our map g by the

equation g(ϕ(x)) = ϕ(f(x)), and such g will be monotone and continuous on every

g(P )-basic interval. By construction, ϕ∗μ is the Lebesgue measure m. It remains to

consider Tgm. Using the same restricted maps and measures as in diagram (1.2.1),

we get

g∗m = g∗(ϕ∗μ) = ϕ∗(f ∗μ) = ϕ∗(λμ) = λϕ∗μ = λm.

Since I was arbitrary, this shows that Tgm = λm. By Lemma 1.2, g has constant

slope λ.

Remark 1.5 If f ∈ CC, then the only way we could get a discontinuity of g in the

above construction was when x1 < x2, ϕ(x1) = ϕ(x2), and there is a point of P

between x1 and x2. However, then

μ(f([x1, x2])) = μ(
⋃

I∈B(P )

f(I ∩ [x1, x2])) ≤
∑

I∈B(P )

μ(f(I ∩ [x1, x2])) =

= (Tfμ)([x1, x2]) = λμ([x1, x2]) = 0

By the continuity of f , the set f([x1, x2]) includes the interval with endpoints f(x1),

f(x2). Therefore ϕ(f(x1)) = ϕ(f(x2)), so no discontinuity is created. This shows

that Theorem 1.4 holds with C replaced by CC, for both f and g.

Remark 1.6 With only slight modifications in wording, the proof of Theorem 1.4

and the considerations in Remark 1.5 go through for circle maps.
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1.3 No semiconjugacy

Now we want to find conditions that prevent semiconjugacy to a map of constant

slope. We start with a technical lemma. One of our assumptions is that λ > 2. For

piecewise monotone maps with finite number of pieces this type of an assumption is

usually circumvented by taking a sufficiently high iterate of the map. If λ > 1 then

for some large n we get λn > 2. However, here we have another assumption, that the

measures of P -basic intervals are bounded away from 0, and taking an iterate of a

map could lead to this condition being violated.

Lemma 1.7 Let f ∈ C. Suppose that there exist λ > 2, δ > 0, μ ∈ M and an

f -admissible set P such that Tfμ = λμ and the measure of every P -basic interval I

satisfies δ ≤ μ(I) <∞. Then for μ almost every x in [0, 1] there exist infinitely many

times n1 < n2 < . . . such that x belongs to an interval which is mapped monotonically

by fnk to an interval of μ-measure at least δ.

Proof Fix an arbitrarily large natural number N and choose an arbitrary PN -

basic interval J . A PN -basic interval means a component of the complement of⋃N−1
i=0 f−i(P ); thus, fN is monotone and continuous on each PN -basic interval. It

suffices to prove that for μ almost every x in J there exists a time n ≥ N and a

P n-basic interval L ⊂ J such that x ∈ L and μ(fn(L)) ≥ δ.

If μ(fN(J)) ≥ δ, then we are done. Otherwise, J is a “bad” interval, and we

subdivide it at all the points of intersection J ∩ f−N(P ) into PN+1-basic intervals,

which we classify as either “good” or “bad” according as μ(fN+1(L)) is either at least

δ or smaller than δ, respectively. For points x in the good PN+1-basic intervals, the

claim holds. But if any of these intervals L is bad, we subdivide it further at all the

points of intersection L∩f−(N+1)(P ) into PN+2-basic intervals, which we then classify

as good or bad, and so on.

To be more precise, we define B0 = {J} and we recursively define

Bi+1 = {M ∈ B(PN+i+1) : μ(fN+i+1(M)) < δ and ∃L ∈ Bi,M ⊂ L}.
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Now observe that each bad interval L at stage i subdivides into at most two bad

intervals at stage i + 1, because #(L ∩ f−(N+i)(P )) = #(fN+i(L) ∩ P ), and by

hypothesis, an interval of measure less than δ never contains more than one point of

P . It follows that #Bi ≤ 2i. The hypothesis Tfμ = λμ means that wherever f is

monotone and continuous, it stretches μ measures uniformly by the factor λ. This

provides an upper bound on the measures of bad intervals. If L ∈ Bi, then

μ(L) = λ−(N+i)μ(fN+i(L)) ≤ λ−(N+i)δ.

It follows that ∑
L∈Bi

μ(L) ≤
(

2

λ

)i
λ−Nδ,

and this quantity tends to zero as i→ ∞. Therefore almost every point of J falls at

some stage of the process into a good basic interval, and this proves our claim.

The following lemma is an analog of Lebesgue’s density theorem. While it is

known, it is difficult to find in the literature the statement we want. Usually state-

ments with one-sided neighborhoods are only about the Lebesgue measure, while

statements about more general measures use balls around the density point. There-

fore we show how to deduce what we need from the statement about the Lebesgue

measure.

Lemma 1.8 Let μ ∈ M and let A be a Borel set. Then for μ almost every x ∈ A

the measures of all one-sided neighborhoods of x are positive, and

lim
δ↘0

μ(A ∩ [x, x+ δ))

μ([x, x+ δ))
= lim

δ↘0

μ(A ∩ (x− δ, x])

μ((x− δ, x])
= 1. (1.3.1)

Proof Let P be a countable closed subset of [0, 1] such that the measure of every P -

basic interval is finite. Let L be a P -basic interval, and let a denote the left endpoint

of L. It suffices to prove the claim for μ almost every x in A ∩ L; therefore we may

restrict everything to L.

There may exist closed subintervals of L of measure zero. There are countably

many of such maximal intervals, so their union has measure zero. Hence, we are free
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to remove this union, as well as the endpoints of L, from A. Then, for each x ∈ A

and each positive δ, the measures μ([x, x+ δ)) and μ((x− δ, x]) are nonzero. Since we

restrict everything to L, and μ(L) is finite, we see that the ratios under consideration

have finite numerators and denominators, and so are well-defined.

Introduce a map ϕ : L → Y , where Y = [0, μ(L)], by ϕ(x) = μ((a, x)) By

construction, ϕ is nondecreasing. Moreover, ϕ is continuous because μ is nonatomic.

By the definition of ϕ, every interval I ⊂ Y enjoys the property m(I) = μ(ϕ−1(I)).

It follows that this property holds for all measurable sets I ⊂ Y . Therefore

lim
δ↘0

μ(A ∩ [x, x+ δ))

μ([x, x+ δ))
= lim

η↘0

m(ϕ(A) ∩ [ϕ(x), ϕ(x) + η))

m([ϕ(x), ϕ(x) + η))
(1.3.2)

and

lim
δ↘0

μ(A ∩ (x− δ, x])

μ((x− δ, x])
= lim

η↘0

m(ϕ(A) ∩ (ϕ(x) − η, ϕ(x)])

m((ϕ(x) − η, ϕ(x)])
. (1.3.3)

The preimage under ϕ of a set of full Lebesgue measure in Y has full μ measure

in L. By the Lebesgue density theorem (see, e.g., [10]), the limits of the right-hand

sides of (1.3.2) and (1.3.3) are 1 for Lebesgue almost all x ∈ ϕ(A). Therefore (1.3.1)

holds for μ almost all x ∈ A.

In the next theorem we need an assumption stronger than transitivity. For a

continuous map f on a topological space X, the usual definition of (topological)

transitivity is that for every pair of nonempty open sets U and V in X, there is

a positive integer k such that fk(U) ∩ V �= ∅. The term “strong transitivity” is

sometimes used for the stronger property that for every nonempty open set U , the

union
⋃∞
n=0 f

n(U) is the whole space X. Let us make an appropriate modification of

this notion for the class C in which countable closed sets are negligible. We will say

that a map f ∈ C is substantially transitive if for every nonempty open set U ∈ [0, 1]

the set [0, 1] �
⋃∞
n=0 f

n(U) has countable closure.

If f ∈ CC is transitive, we get substantial transitivity automatically. We will need

this later also for continuous circle maps, so we will state a lemma for graph maps.

Again, this lemma is known, but it is easier to prove it than to look for it in the

literature.
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Lemma 1.9 Let X be a graph and let f be a topologically transitive continuous map

of X to X. Let U be a nonempty open subset of X. Then the set X �
⋃∞
n=0 f

n(U) is

finite.

Proof By replacing U by one of its connected components, we may assume that

U is connected. Let V be the connected component of the set W =
⋃∞
n=0 f

n(U)

that contains U . By transitivity, there is N such that fN(V ) ∩ V �= ∅. However,

V is a component of a forward invariant set, so fN(V ) ⊂ V . It follows that W =⋃N−1
n=0 f

n(V ), and thus W has only finitely many connected components. On the

other hand, by transitivity W is dense in X. Therefore W excludes only finitely

many points of X.

Remark 1.10 If X = R and f is a lifting of a degree one circle map, the same

proof shows that
⋃∞
n=0 f

n(U) = R. For such f there is a constant M > 0 such that

|f(x)−x| < M for every x ∈ R, so W is contained in the set of points whose distance

from V is smaller than NM . Since V is connected and W is dense, we must have

V = R.

Now we can prove the main technical result of the chapter.

Theorem 1.11 Let f ∈ C be a substantially transitive map and let λ > 2. Assume

that there exist δ > 0, an infinite measure μ ∈ M, and an f -admissible set P , such

that Tfμ = λμ and the measure of every P -basic interval I satisfies δ ≤ μ(I) < ∞.

Then there is no probability measure ν ∈ M such that Tfν = λν.

Proof Suppose that such measure ν exists. The measure μ+ν is an infinite measure

in M such that Tf (μ + ν) = λ(μ + ν) and for every P -basic interval I we have

δ ≤ (μ + ν)(I) < ∞. Replace μ by μ + ν if necessary to obtain absolute continuity

of ν with respect to μ. Now take the Radon-Nikodym derivative, ξ = dν
dμ

and write
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dν = ξdμ. Integrate the function ξ ◦ f over any Borel set A contained in any P -basic

interval I:∫
A

ξ ◦ f dμ|I =

∫
f(A)

ξ df∗(μ|I) =
1

λ

∫
f(A)

ξ dμ|f(I) =
1

λ

∫
f(A)

dν|f(I)

=

∫
f(A)

df∗(ν|I) =

∫
A

1 ◦ f dν|I =

∫
A

dν|I =

∫
A

ξ dμ|I .

This shows that the equality ξ ◦ f = ξ holds μ almost everywhere; that is, that up to

a set of μ measure zero, the function ξ is constant along the orbits of f .

By the definition of the Radon-Nikodym derivative,
∫ 1

0
ξ dμ = ν([0, 1]) = 1.

Therefore there exists a positive real number ε such that the measurable set E =

ξ−1([ε,∞)) has positive μ measure. This measure cannot be infinite, because then∫ 1

0
ξ dμ would be infinite. Thus, 0 < μ(E) < ∞. Because ξ is constant along orbits,

this set E is fully invariant; that is, f−1(E) = E. While this is μ almost everywhere,

we can modify E by adding/subtracting a set of μ measure zero so that it holds

everywhere.

The plan of the rest of the proof is as follows. We use Lemma 1.8 to get high

density of E in a small interval, then Lemma 1.7 to transport it to a long interval,

and then substantial transitivity to transport it to the whole space. By the invariance

of E this construction gives us infinite measure of E, which is impossible.

There is a point x ∈ E which satisfies conclusions of both Lemmas 1.7 and 1.8

(with A = E). In particular, there exist a sequence of times nk and a sequence of

intervals Lk = [ak, bk] containing x such that fnk is monotone on Lk and such that

μ(fnk(Lk)) ≥ δ. Trimming the intervals Lk (but keeping x ∈ Lk), we can achieve

equality μ(fnk(Lk)) = δ. Therefore μ(Lk) = λ−nkδ, and this decreases to zero. But

every neighborhood (both two-sided and one-sided) of x has positive μ measure.

Therefore, ak → x and bk → x as k → ∞. Now we may use the fact that x is a

density point of E to conclude that μ(E ∩ Lk)/μ(Lk) → 1.

Next, we show the density of E in an interval at the large scale. By compactness,

after passing to subsequences we may assume that fnk(ak) converges to some point

a ∈ [0, 1] and fnk(bk) converges to some point b ∈ [0, 1]. Let L denote the interval
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[a, b]. We claim that the points a and b are distinct. Indeed, if a = b, then for

each j take the interval
(
a − 1

j
, a + 1

j

)
. It contains infinitely many intervals fnk(Lk)

and μ(E ∩ fnk(Lk)) is approaching δ, so the measure of E ∩ (a − 1
j
, a + 1

j

)
is at

least δ. Since the measure of E is finite, we may send j to infinity and find by the

continuity of measure that there is an atom at a, which is a contradiction. Thus a �= b.

As k grows, the endpoints fnk(ak), f
nk(bk) of fnk(Lk) eventually draw nearer to the

respective endpoints a, b of L than half the distance between a and b. Therefore, for

sufficiently large k, the symmetric difference fnk(Lk) � L consist of two intervals;

one with endpoints a, fnk(ak), and the other with endpoints b, fnk(bk). Again by

the continuity of measure, each of these intervals has μ measure converging to zero.

Therefore μ(L� fnk(Lk)) → 0 as k → ∞. Together with the invariance of E and the

monotonicity of fnk on Lk, this shows that

μ(E ∩ L)

μ(L)
≥ lim

k→∞
μ(E ∩ fnk(Lk)) − μ(fnk(Lk) � L)

μ(fnk(Lk)) + μ(fnk(Lk) � L)
= lim

k→∞
μ(E ∩ fnk(Lk))

μ(fnk(Lk))

= lim
k→∞

μ(fnk(E ∩ Lk))
μ(fnk(Lk))

= lim
k→∞

λnk · μ(E ∩ Lk)
λnk · μ(Lk)

= 1.

Therefore E ∩ L has full measure in the interval L; that is, μ(L� E) = 0.

If the invariant set E fills L, then it must also fill all the images fn(L), n ∈ N.

Indeed, μ(f(L) � E) = μ(f(L� E)) by the f -invariance of E. However,

μ
(
f(L� E)

) ≤ ∑
I∈B(P )

μ
(
f(I ∩ (L� E))

)
= (Tfμ)(L� E) = λμ(L� E) = 0.

This shows that μ(f(L) � E) = 0, and it follows inductively that μ(fn(L) � E) = 0

for all n ∈ N.

The interval L has nonempty interior, so by substantial transitivity of f the set⋃∞
n=0 f

n(L) excludes at most countably many points of [0, 1], and hence has full μ

measure in [0, 1]. But E has full measure in
⋃∞
n=0 f

n(L), and therefore E has full

measure in [0, 1]. This is a contradiction because E has finite μ measure, while by

the assumption, μ([0, 1]) = ∞. Therefore it is impossible for a probability measure

ν ∈ M to satisfy Tfν = λν.
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1.4 Liftings of circle maps

While Theorem 1.11, together with Theorem 1.4, provides sufficient conditions

for a map f ∈ C to have no semiconjugacy to a map of constant slope, it is not

immediately obvious how to construct concrete examples. In particular, even if we

use those theorems to exclude semiconjugacy to a map with a given slope λ, how can

we exclude other λ’s? In this section we provide tools to do it for a large class of

maps. Those maps additionally will be continuous (formally, they will be restrictions

of continuous maps to [0, 1] � P ). We denote the circle R/Z by R/Z.

Theorem 1.12 Assume that f : R/Z → R/Z is a continuous degree one map that is

piecewise monotone with finitely many pieces and has constant slope λ > 1. Assume

also that f has a lifting F : R → R that is topologically transitive. Take any contin-

uous interval map g : [0, 1] → [0, 1] such that g|(0,1) is topologically conjugate to F .

Then there does not exist any nondecreasing semiconjugacy of g to an interval map

of constant slope.

Proof Fix n sufficiently large so that λn > 2 and consider the iterates gn, fn, and

F n. The map gn|(0,1) is conjugate to F n and F n is a lifting of the degree one circle

map fn of constant slope λn. A priori, a transitive map need not have transitive

iterates. But F is a transitive map on the real line, and therefore either all iterates

of F are transitive, or else there exists a point y ∈ R such that F ((−∞, y]) = [y,∞)

and F ([y,∞)) = (−∞, y] (see [3, pgs 156-7] – the statements are for interval maps

but the proofs also hold in R). This latter alternative is impossible for a lifting of a

degree one circle map. Therefore F n is transitive. If there exists any nondecreasing

map that semiconjugates g with a constant slope interval map, then the same map

also conjugates gn with a constant slope interval map. This shows that after replacing

g, f , and F by some suitably high iterates, we may assume that λ > 2.

Let h : (0, 1) → R denote the homeomorphism that conjugates g|(0,1) with F .

Let π : R → R/Z, denote the natural projection (that semiconjugates F with f).



16

Moreover, let s : R → R, given by s(x) = x+ 1, denote the deck transformation; then

s ◦ F = F ◦ s. Thus, the following diagrams commute.

(0, 1)
g−−−→ (0, 1)

h

⏐⏐� ⏐⏐�h
R −−−→

F
R

R
F−−−→ R

π

⏐⏐� ⏐⏐�π
R/Z −−−→

f
R/Z

R
F−−−→ R

s

⏐⏐� ⏐⏐�s
R −−−→

F
R

The hypothesis of piecewise monotonicity means that there exists a finite set

P ⊂ R/Z such that f is monotone on each P -basic arc, and because of the constant

slope, that monotonicity is strict. In the circle, strict monotonicity does not guarantee

injectivity, but after adjoining the finite set f−1(x) for some x ∈ R/Z to P we have

also injectivity of f on each P -basic arc, so that the restriction of f to any P -basic

arc is then a homeomorphism onto its image. Just as for interval maps we define the

operator Tf acting on the space of nonatomic, strongly σ-finite, Borel measures on

the circle. Let PF = π−1(P ). Then PF is a closed, countable set, invariant under the

integer translation map s, and F is strictly monotone on each PF -basic interval. Let

Pg = h−1(PF ) ∪ {0, 1}. Then g ∈ CC and Pg is a g-admissible set.

Suppose that there is a nondecreasing semiconjugacy of g to a constant slope

interval map, say, with slope λ′. Then by Theorem 1.4 there exists a probability

measure νg ∈ M such that Tgνg = λ′νg. Push this measure down to a measure

νF = h∗(νg) on the real line. Then h gives not only a topological conjugacy, but

also a measure-theoretic isomorphism of ((0, 1), g, νg) with (R, F, νF ). It follows that

TFνF = λ′νF .

Now push this measure down to the circle, defining νf = π∗νF . If A is a Borel

subset of a P -basic arc in R/Z, then its preimage in the covering space R can be

expressed as a disjoint union π−1(A) =
⋃∞
n=−∞ sn(B) in such a way that B is a

subset of a PF -basic interval. Then for each n ∈ N, sn(B) is also a subset of a

PF -basic interval, because PF is s-invariant. By the injectivity of f on each P -
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basic arc, it follows that the sets F (sn(B)), n ∈ N, are pairwise disjoint. Therefore

π−1(f(A)) =
⋃∞
n=−∞ F (sn(B)) is also a disjoint union. Now we can calculate

(Tfνf )(A) = νf (f(A)) = νF (π−1(f(A))) = νF

( ∞⋃
n=−∞

F (sn(B))

)
=

=
∞∑

n=−∞
νF (F (sn(B))) =

∞∑
n=−∞

λ′νF (sn(B)) = λ′νF

( ∞⋃
n=−∞

sn(B)

)
= λ′νf (A).

It follows that Tfνf = λ′νf .

By Theorem 1.4 and Remarks 1.5 and 1.6, there is a nondecreasing semiconjugacy

of f to a circle map of constant slope λ′. But f , being a factor of a transitive

map, is itself transitive. Therefore a nondecreasing semiconjugacy is automatically

a conjugacy (see [1]). Thus, f is conjugate to a circle map of constant slope λ′.

The topological entropy of a constant slope circle map is the logarithm of the slope

(see [16], [1]), and topological entropy is a conjugacy invariant. In such a way we have

shown that if there exists a nondecreasing semiconjugacy of g to an interval map of

constant slope λ′, then in fact λ′ = λ, the constant slope of f .

Let us push the Lebesgue measure m on R via the homeomorphism h−1, and

denote μ = (h−1)∗(m). The μ measures of Pg-basic intervals are the same as m

measures of corresponding PF -basic intervals. Since F is a lifting of a piecewise

monotone map with finite number of pieces, those measures take only finitely many

values, all of them finite. Moreover F , as the lifting of a map of constant slope, has

also constant slope. By Lemma 1.2 and Remark 1.3, the Lebesgue measure m satisfies

TFm = λm. Since h is a measure-theoretic ismorphism of ((0, 1), g, μ) with (R, F,m)

it follows that Tgμ = λμ. Substantial transitivity of g follows from transitivity of

F and Lemma 1.9. All this shows that μ belongs to M and that g and μ satisfy

the assumptions of Theorem 1.11. Therefore there is no probability measure ν ∈ M
with Tgν = λν, and consequently, there is no nondecreasing semiconjugacy of g to a

constant slope interval map.

Remark 1.13 In Theorem 1.12 there is no difficulty in finding a continuous interval

map g : [0, 1] → [0, 1] such that g|(0,1) is topologically conjugate to F . Let h denote
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any homeomorphism of (0, 1) with R and define g = h−1 ◦ F ◦ h with additional fixed

points at 0 and 1. We obtain continuity of g at the points 0, 1, because F was assumed

to be the lifting of a degree one circle map.

Remark 1.14 There are trivial examples of maps with zero topological entropy for

which there is no semiconjugacy to a map of constant slope, for instance, the map

f : [0, 1] → [0, 1] given by f(x) = x2. Theorem 1.12 is nontrivial in that it applies

to continuous and transitive interval maps, and by [4] [5], such maps always have

topological entropy at least log
√

2.

If we wish to construct explicit examples that satisfy the hypotheses of Theo-

rem 1.12, the only possible difficulty is in verifying the transitivity of the lifting F .

Fortunately, there is a simple condition, broadly applicable and easy to verify, that

guarantees transitivity.

Theorem 1.15 Assume that f : R/Z → R/Z is a continuous degree one map that

is piecewise monotone with finitely many pieces and has constant slope. Assume also

that F : R → R is a lifting of f . Let P denote the set of turning points of F .

If for each P -basic interval I there are points xL, xR in the closure of I such that

F (xL) = xL − 1 and F (xR) = xR + 1, then F is topologically transitive.

Proof The sets R := {x ∈ R : F (x) − x = 1} and L := {x ∈ R : F (x) − x = −1}
are both invariant under integer translations and are both nonempty by hypothesis.

Choose a point xL ∈ L and let xR be the smallest element of R that is larger than

xL. Then xR − xL < 1 and F (xR) − F (xL) > 2. Since F has constant slope λ, this

shows that λ > 2.

Let U ⊂ R be any open interval. As n grows, the successive images F n(U) grow

in length by a factor at least λ/2 > 1 until some image FN(U) contains an entire

P -basic interval. Within the closure of this P -basic interval there are points xL ∈ L,

xR ∈ R. Then, in the next steps, FN+1(U) contains (xL−1, xR+1), FN+2(U) contains

(xL − 2, xr + 2), and so on. Therefore the union of all images of U is all of R, and

this proves transitivity of F .
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Remark 1.16 We can immediately verify the hypothesis of Theorem 1.15 by super-

imposing the diagonal lines y = x + 1, y = x− 1 on the graph y = F (x). Each piece

of monotonicity of the graph of F should intersect both diagonal lines.

1.5 Examples

In this section we provide a concrete example of a one-parameter family of circle

maps of degree one with transitive liftings and constant slope. In such a way we will

have examples where our theorems apply and there is no nondecreasing semiconjugacy

to a map of a constant slope.

Let us describe a lifting Fλ in our family. Choose a real parameter λ ≥ 2 +
√

5.

Let Fλ be the “connect the dots” map (the graph of Fλ consists of straight line

segments connecting the dots) with the dots (k, k−1) and (k+ b, k+ c), where k ∈ Z,

b = (λ+ 1)/2λ, and c = (λ−1)/2 (see Figure 1.1). On the interval [k, k+ b] the slope

is (c+ 1)/b = λ, and on [k + b, k + 1] it is −c/(1 − b) = −λ, so the map has constant

slope λ. We have

Fλ(k + b) − (k + b) − 1 =
λ2 − 4λ− 1

2λ
=

(
λ− (2 +

√
5
)) (

λ− (2 −√
5
))

2λ
≥ 0,

and therefore Fλ(k + b) − (k + b) ≥ 1. Moreover, Fλ(k) − k = −1, so by the Inter-

mediate Value Theorem the assumptions of Theorem 1.15 are satisfied. Thus, Fλ is

topologically transitive. Now if we choose any homeomorphism h : (0, 1) → R, we

will get a map gλ = h−1 ◦ Fλ ◦ h (with additional fixed points at 0 and 1), which

belongs to CC, but is not semiconjugate by a nondecreasing map to a map of con-

stant slope. If we want really concrete examples, we can even specify h, for instance

h(x) = ln(x/(1 − x)) (then h−1(x) = ex/(ex + 1)).

We would like to have in our family both maps that are and are not Markov.

Remember that “Markov” means countably Markov, so Fλ being Markov means that

for the corresponding circle map the trajectory of the local maximum has countable

closure (the local minimum is always a fixed point). Of course Fλ is Markov if and

only if the map gλ is Markov.
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Figure 1.1. The Map Fλ with λ = 5.28

We start with a lemma on the one-sided full 2-shift σ : Σ → Σ, where Σ = {0, 1}N.

Lemma 1.17 Let D be the set of those points s ∈ Σ for which the closure of the

trajectory {σn(s)}∞n=0 is countable. Then both sets D and Σ �D are uncountable.

Proof Each element of Σ is a 0-1 sequence. Let E be the set of those sequences that

are built of alternating blocks of 0’s and 1’s, and the length of the n-th block is n or

n + 1. Since we have to choose between the lengths n and n + 1 for each n, the set

E is uncountable. We claim that E ⊂ D. Fix an element s ∈ E. The trajectory of s

is of course countable. It remains to count the accumulation points of this trajectory

(that is, of the ω-set of s). If we fix the size of a window and slide it sufficiently far

to the right along the sequence s, we see in this window only one or two blocks. This

means that every element of the ω-limit set of s will consist of one or two blocks.
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However, there are only countably many such sequences. This proves our claim, and

hence D is uncountable.

The 2-shift is transitive, and therefore the set of points with dense trajectories

contains a dense Gδ set G. If G is countable, then for every s ∈ G the set Σ � {s} is

open and dense, so by the Baire Category Theorem the intersection of all those sets,

Σ�G, is a dense Gδ set. Therefore (Σ�G)∩G is also a dense Gδ set, but it is empty.

This contradiction shows that G is uncountable. Since for every s ∈ G the closure of

the trajectory of S is Σ, we have G ⊂ Σ �D, and thus Σ �D is uncountable.

Theorem 1.18 Fix an integer n ≥ 2. Then there are uncountable sets

ΛM ⊂ [2n + 1, 2n + 3] and ΛnM ⊂ [2n + 1, 2n + 3] such that for every λ ∈ ΛM

the lifting Fλ is Markov and for every λ ∈ ΛnM the lifting Fλ is not Markov.

Proof Let Aλ be the set of those points x such that F i
λ(x) ∈ [0, 1] for i = 0, 1, 2, . . . .

Perform the standard coding procedure, using the left and right subintervals of

[0, 1]∩F−1
λ ([0, 1]). It shows that Aλ is a Cantor set, and Fλ restricted to this set is con-

jugate to the one-sided full 2-shift. By the standard argument, for any given itinerary

the corresponding point of Aλ depends continuously on λ. By Lemma 1.17, uncount-

ably many itineraries correspond to points whose trajectories have countable closures,

and uncountably many itineraries correspond to points whose trajectories have un-

countable closures. As λ varies from 2n+ 1 to 2n+ 3 then the image −n+ (λ− 1)/2

under Fλ of the local maximum −n+ (λ+ 1)/(2λ) sweeps the interval [0, 1]. When it

meets a point with a countable closure of the trajectory, the corresponding map Fλ

is Markov; when it meets a point with an uncountable closure of the trajectory, it is

not Markov. This completes the proof.
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2. CONJUGACY TO A CONSTANT SLOPE MAP ON

THE EXTENDED REAL LINE

In Theorem 1.12 we identify a class of transitive interval maps which are not conjugate

to any interval map of constant slope. These maps are constructed, however, from

constant slope maps on the real line. This raises a natural follow-up question. What

happens if we dispense with the requirement that our constant slope maps act on a

finite-length interval? Can we make a more systematic study of constant slope maps

when the underlying space is allowed to have infinite length?

2.1 Definitions and Background

The extended real line [−∞,∞] is the ordered set R ∪ {∞,−∞} equipped with

the order topology; this topological space is a two-point compactification of the real

line and is homeomorphic to the closed unit interval [0, 1].

Suppose f is a continuous self-map of some interval [a, b], −∞ ≤ a < b ≤ ∞,

and suppose there exists a closed, countable set P ⊆ [a, b], a, b ∈ P , such that

f(P ) ⊆ P and f is monotone on each component of [a, b] � P . Such a map is said to

be countably piecewise monotone and Markov with respect to P , the components of

[a, b] � P are called P -basic intervals, and the set of all P -basic intervals is denoted

B(P ). If additionally the restriction of f to each P -basic interval is affine with slope

of absolute value λ, then we say that f has constant slope λ. This is a geometric,

rather than a topological property, and it is the reason we must distinguish finite from

infinite length intervals. The class of all countably piecewise monotone and Markov

maps is denoted CPMM. The subclass of those maps which act on the closed unit

interval [0, 1] is denoted CPMM[0,1].
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This class CPMM is different from the class of interval maps C of Chapter 1

in three ways. First, the underlying interval [a, b] depends on the map f and is

permitted to be infinite in length. Second, the map f is required to be continuous;

this is essential for our use of the intermediate value theorem. And third, the set P

is required to be forward-invariant. This is the Markov condition; it means that if I,

J are P -basic intervals and f(I) ∩ J �= ∅, then f(I) ⊇ J .

If f is countably piecewise monotone and Markov with respect to P , then we

define the binary transition matrix T = T (f, P ) with rows and columns indexed by

B(P ) and entries

T (I, J) =

⎧⎪⎨
⎪⎩

1, if f(I) ⊇ J

0, otherwise.

If we only allow for constant slope maps on a finite length interval, say, [0, 1], then

there is an established necessary and sufficient condition to determine when a map is

semiconjugate to a map of constant slope.

Theorem 2.1 (Bobok, [6]) Let f ∈ CPMM[0,1] with transition matrix T , and fix

λ > 1. Then f is semiconjugate via a continuous nondecreasing map ψ to some map

g ∈ CPMM[0,1] of constant slope λ if and only if T has a nonnegative eigenvector

v = (vI) ∈ �1(RB(P )) with eigenvalue λ.

To be clear, the notation v ∈ �1(RB(P )) means that we require the eigenvector to

be summable. If we read the proof in [6], the reason for this is clear. If we are given

the semiconjugacy ψ to the constant slope map, then we construct the eigenvector v

by setting vI = |ψ(I)| for each P -basic interval I, where | · | denotes the length of an

interval, and therefore the sum of the entries vI is just the length of the unit interval

[0, 1]. Conversely, if we are given an eigenvector v, then we rescale it so that the sum

of entries is 1 and then construct the semiconjugacy in such a way that |ψ(I)| = vI

for all I, obtaining a map g of an interval of length 1.



25

2.2 Eigenvector Criterion

We return now to the question, when does a map f ∈ CPMM admit a nonde-

creasing semiconjugacy ψ to a map g ∈ CPMM of constant slope on any compact

subinterval of [−∞,∞], whether finite or infinite in length? It is clear that g must

belong to the class CPMM, because g will necessarily be piecewise monotone and

Markov with respect to ψ(P ) – see [1, Lemma 4.6.1]. To avoid pathological examples,

we demand that f be topologically mixing, that is, that for every pair of nonempty

open sets U, V there is N ∈ N such that for all n ≥ N , U ∩ f−n(V ) �= ∅. Without the

mixing hypothesis, many things can go wrong; for instance, we might obtain a map

g defined on a space that is even “longer” than the real line. We return to this idea

in Section 2.7. Here is the statement of our main result.

Theorem 2.2 Let f ∈ CPMM with transition matrix T , and fix λ > 1. Assume

f is topologically mixing. Then f is conjugate via a homeomorphism ψ to some map

g ∈ CPMM of constant slope λ if and only if

T has a nonnegative eigenvector v = (vI) ∈ R
B(P ) with eigenvalue λ. (2.2.1)

Since the map f defines a topological dynamical system without regard to geom-

etry, there is no loss of generality if we assume that f ∈ CPMM[0,1]. We will make

this assumption from now on.

The proof proceeds in several pieces. First we show the easy implication, that

Condition 2.2.1 is necessary. Showing the sufficiency of Condition 2.2.1 requires

much more work. We give an explicit construction of the conjugating map ψ in

several stages. Our construction closely follows the lines of the proofs of [6, Theorem

2.5] and [1, Theorem 4.6.8], but the unsummability of v introduces some additional

difficulties not present in these previous works. The topological mixing hypothesis

was introduced to overcome these difficulties.

Lemma 2.3 (Bobok) Condition 2.2.1 is necessary.
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Proof This proof is due to private communication with Jozef Bobok [7]. As men-

tioned before, we may suppose that f ∈ CPMM[0,1]. Let ψ be the conjugating map,

ψ ◦ f = g ◦ ψ. Define v by vI = |ψ(I)|, I ∈ B(P ), where | · | denotes the length of

an interval. A priori, we may have |ψ(I)| = ∞; this happens if and only if I contains

one of the endpoints 0, 1 and ψ maps this endpoint to one of ±∞. (Recall that if 0, 1

are accumulation points of P , then they are not endpoints of any P -basic interval).

We want to show that all the entries of v are finite. Since g is monotone with slope

of absolute value λ on each ψ(P )-basic interval, we have

|g(ψ(I))| = λ|ψ(I)|, I ∈ B(P ), (2.2.2)

where if one side of the equality is infinite then so is the other. Let F denote the

collection of all P -basic intervals I such that |ψ(I)| = ∞. If I ∈ F and if f(J) ⊇ I,

then by the conjugacy of f , g and by Equation 2.2.2, it follows that J ∈ F . Now

invoke the topological mixing property, and it follows that either F = ∅ or F = B(P ).

Suppose toward contradiction that F = B(P ). Then there are at most two P -

basic intervals. There cannot be only one P -basic interval, because a monotone

map is not mixing. Therefore there are exactly two P -basic intervals and ψ([0, 1]) =

[−∞,∞]. Since g has constant slope, g(x) is finite whenever x is finite. By the mixing

hypothesis, g is surjective, and therefore g either fixes or interchanges ∞, −∞. In

either case it follows that g is monotone, contradicting the mixing hypothesis. We

may conclude that F = ∅ and all entries of v are finite.

We still need to show that v is an eigenvector for T . Applying Equation 2.2.2 we

have

λvI = λ|ψ(I)| = |g(ψ(I))| = |ψ(f(I))| =
∑
J⊆f(I)

|ψ(J)| =
∑

J∈B(P )

TIJvJ .

Remark 2.4 The proof of Lemma 2.3 does not use the full strength of the mixing

hypothesis. The lemma continues to hold if we relax the hypotheses of Theorem 2.2

and assume only that f is topologically transitive.
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Now we begin the long work of proving the sufficiency of Condition 2.2.1. Let

f , T , be as in the statement of the theorem, fix λ > 0, and suppose Tv = λv for

some nonzero vector v = (vI) ∈ R
B(P ) with nonnegative entries. We still assume

f ∈ CPMM[0,1]. We will construct a map ψ : [0, 1] → [−∞,∞] which is a homeo-

morphism onto its image in such a way that g := ψ ◦ f ◦ ψ−1 has constant slope λ.

Define the sets

Pn = ∪ni=0f
−i(P ), n ∈ N, Q = ∪∞

i=0f
−i(P )

The set Q is backward invariant by construction and forward invariant because

P is forward invariant. Q is a dense subset of [0, 1] because f is mixing. Choose a

basepoint p0 ∈ P and define ψ on Q by the formula

ψ(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if x = p0

λ−n
∑

J∈B(Pn)
p0<J<x

vfn(J), if x ∈ Pn, x > p0

−λ−n
∑

J∈B(Pn)
x<J<p0

vfn(J), if x ∈ Pn, x < p0

(2.2.3)

The choice of p0 is somewhat arbitrary, but to simplify the proof of Lemma 2.5

(v), we insist that 0 < p0 < 1 and that p0 is an endpoint of some P -basic interval

(i.e., p0 is not a 2-sided accumulation point of P ). This is possible because P is a

closed, countable subset of [0, 1] and hence cannot be perfect.

Lemma 2.5 The function ψ : Q→ [−∞,∞] has the following properties:

(i) ψ is well-defined; i.e. when x ∈ Pn1 and x ∈ Pn2, the sums agree.

(ii) ψ is strictly monotone increasing.

(iii) If x, x′ ∈ Q belong to an interval of monotonicity of f , then

|ψ(f(x)) − ψ(f(x′))| = λ|ψ(x) − ψ(x′)|,

where if one side of the equality is infinite, then so is the other.
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(iv) For arbitrary x, x′ ∈ Q:

|ψ(f(x)) − ψ(f(x′))| ≤ λ|ψ(x) − ψ(x′)|,

and we allow for the possibility that one or both sides of this inequality are

infinite.

(v) For 0 < x < 1, ψ(x) is finite.

Proof Our proof of (i) is borrowed from [6].

(i) Suppose K ∈ B(Pn). Then fn|K is monotone and fn(K) ∈ B(P ). Therefore

λ−n−1
∑

J∈B(Pn+1)
J⊆K

vfn+1(J) = λ−n−1
∑

J∈B(P1)
J⊆fn(k)

vf(J) =

= λ−n−1
∑

J∈B(P0)

Tfn(K)JvJ = λ−n−1λvfn(K) = λ−nvfn(K)

This shows that ψ is well-defined.

(ii) We will use the nonnegativity of the eigenvector v together with the mixing

hypothesis to show that the entries of v must be strictly positive. Strict mono-

tonicity of ψ then follows from the definition. Since v is not the zero vec-

tor, there must be some P -basic interval I0 with vI0 �= 0. Let I ∈ B(P ).

By the mixing hypothesis, there is n ∈ N such that (T n)II0 �= 0. Then

vI = λ−n
∑

J(T n)IJvJ ≥ λ−nvI0 > 0.

(iii) Consider the case when (x, x′) = K ∈ B(Pn). Then |ψ(x) − ψ(x′)| = λ−nvfn(K)

by the definition of ψ. Moreover, f(K) ∈ B(Pn−1), so that |ψ(f(x))−ψ(f(x′))| =

λ−(n−1)vfn−1(f(K)), so the claim holds in this case. By taking sums and limits,

the claim holds for every x, x′ ∈ Q contained in a single interval of monotonicity

of f .

(iv) This is the inequality that survives from (iii) when we allow for folding between

x and x′.
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(v) Let x be given, 0 < x < 1. Assume x < p0; the proof when x > p0 is similar. Fix

a P -basic interval J0 with p0 at one endpoint. Because f is mixing, there exists

n such that J0 ∩ f−n((p0, 1)) �= ∅ and J0 ∩ f−n((0, x)) �= ∅. By the intermediate

value theorem there exist x1, x2 ∈ J0 with fn(x1) = x and fn(x2) = p0. By

(iv) applied n times, |ψ(x)| ≤ λn|ψ(x2)−ψ(x1)|. But by (ii), |ψ(x2)−ψ(x1)| ≤
|ψ(sup J0) − ψ(inf J0)|. At the two endpoints of J0, ψ takes the finite values 0

and vJ0 .

The main problem to tackle before we can extend ψ to the desired homeomorphism

is to show that the map we have defined so far has no jump discontinuities.

Problem 2.6 Show that for each x ∈ [0, 1],

inf ψ(Q ∩ (x, 1]) = supψ(Q ∩ [0, x)),

except that for x = 0 we write ψ(0) in place of the supremum and for x = 1 we write

ψ(1) in place of the infimum.

The resolution of this problem makes essential use of the topological mixing hy-

pothesis as well as the order structure of the interval [0, 1]. Moreover, special treat-

ment is required for the points x ∈ Q – we must show the continuity of ψ from each

side separately. We do this by introducing a notion of “half-points.”

2.3 Half-Points

Construct the sets

Q̃ = (Q× {+,−}) � {(0,−), (1,+)}, S = ([0, 1] �Q) ∪ Q̃

The way to think of this definition is that we are splitting each point x ∈ Q into

the two half-points (x,+) and (x,−). S is the interval [0, 1] with each point of Q
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replaced by half-points. We use boldface notation to represent points in S, whether

half or whole. Thus, x may mean x or (x,+) or (x,−), depending on the context.

Let us extend the dynamics of f from [0, 1] to S. Recall that Q is both forward

and backward invariant. On S�Q̃ = [0, 1]�Q we keep the map f without change. To

extend f from Q to Q̃ we define a notion of the orientation of the map at half-points.

We say that f is orientation-preserving (resp. orientation-reversing) at the half-point

(x,+) if some half-neighborhood [x, x + ε) is contained in some J ∈ B(P ) with f |J
increasing (resp. decreasing). For a half-point (x,−), the definition is the same,

except that we look at a half-neighborhood of the form (x− ε, x]. It is not clear how

to decide if f is orientation-preserving or orientation-reversing at the accumulation

points of P . It may happen that every half-neighborhood of x contains f(x) in the

interior of its image, so that neither definition is appropriate. Nevertheless, we define

the extended map f on Q̃ by the following formula:

f(x,+) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(f(x),+), if f is orientation-preserving at (x,+)

(f(x),−), if f is orientation-reversing at (x,+)

(f(x),+), if ∀ε>0 ∃x′∈P∩[x,x+ε) f(x′) > f(x)

(f(x),−), otherwise

f(x,−) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(f(x),+), if f is orientation-reversing at (x,−)

(f(x),−), if f is orientation-preserving at (x,−)

(f(x),+), if ∀ε>0 ∃x′∈P∩(x−ε,x] f(x′) > f(x)

(f(x),−), otherwise

(2.3.1)

Let us say a few words about the “otherwise” cases. Consider a half-point

(x,+) which does not fit into any of the first three cases. We claim that for such

a point, ∀ε>0 ∃x′∈P∩[x,x+ε) f(x′) < f(x). If not, we would have to conclude that

∃ε>0 ∀x′∈P∩[x,x+ε) f(x′) = f(x). But this is impossible, because the half-neighborhood

[x, x + ε) must contain some P -basic interval J , and by the strict monotonicity of

f |J the two endpoints of this interval have distinct images. Similarly, if a half-point
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(x,−) falls into the “otherwise” case, then ∀ε>0 ∃x′∈P∩(x−ε,x] f(x′) < f(x). This is

relevant in the proofs of Lemmas 2.7 and 2.8.

Now we define a real-valued function Δψ on S by the formula

Δψ(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

inf ψ(Q ∩ (x, 1]) − ψ(x) if x = (x,+) ∈ Q̃

ψ(x) − supψ(Q ∩ [0, x)) if x = (x,−) ∈ Q̃

inf ψ(Q ∩ (x, 1]) − supψ(Q ∩ [0, x)) if x = x ∈ S � Q̃

If Δψ(x) > 0, then we say that x is an atom for ψ and Δψ(x) is its mass. In this

language, Problem 2.6 asks us to show that ψ has no atoms.

2.4 Lemmas About Half-Points

The next lemma is an analog of Lemma 2.5 (iii) for a single point (or half-point) x.

We introduced half-points for the purpose of proving this lemma even at the folding

points of f .

Lemma 2.7 Let x ∈ S. Then Δψ(f(x)) = λΔψ(x).

Proof Consider first the case when x = x is a whole-point, i.e. x ∈ S � Q̃. Then x

belongs to the interior of some P -basic interval J . We may choose a sequence yi in

Q∩ J converging to x from the left-hand side, and a sequence zi in Q∩ J converging

to x from the right-hand side. Then f(yi) and f(zi) are sequences in Q converging

to f(x) from opposite sides. By the monotonicity of ψ and the definition of Δψ we

have |ψ(zi) − ψ(yi)| → Δψ(x) and |ψ(f(zi)) − ψ(f(yi))| → Δψ(f(x)). Since J is an

interval of monotonicity of f , the result follows from Lemma 2.5 (iii).

Now consider the case when x = (x,+) or x = (x,−), and suppose an appropriate

half-neighborhood of x is contained in a single P -basic interval J so that f is either

orientation-preserving or orientation-reversing at x. We may repeat the proof from

the previous case, with one modification. If x = (x,+), then we take yi to be instead

the constant sequence with each member equal to x. If x = (x,−), then we take zi
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to be instead the constant sequence with each member equal to x. Then the rest of

the proof holds as written.

Now consider the case when x = (x,+) and f(x) = (f(x),+), but every half-

neighborhood [x, x+ε) meets P . We will show in this case that Δψ(x) and Δψ(f(x))

are both zero. Choose points zi ∈ P which converge monotonically to x from the

right and such that each f(zi) > f(x). By continuity, f(zi) → f(x), and after passing

to a subsequence, we may assume that this convergence is also monotone. Now we

calculate Δψ(x) using the sequence zi and appealing back to the definition of ψ.

Δψ(x) = lim
i→∞

(ψ(zi) − ψ(x)) = lim
i→∞

∑
J∈B(P )
x<J<zi

vJ = lim
i→∞

∞∑
j=i

∑
J∈B(P )

zj+1<J<zj

vJ = 0

The rearrangement of the sum is justified because for each P -basic interval J between

x and zi there is exactly one j ≥ i such that J lies between zj+1 and zj. But by Lemma

2.5 (v), when i = 1 we have already a convergent series. Thus, when we sum smaller

and smaller tails of the series, we obtain 0 in the limit. We may apply exactly the

same argument to compute Δψ(f(x)) along the sequence f(zi), because these points

also belong to the invariant set P and decrease monotonically to f(x).

There are three other cases in which every appropriate half-neighborhood of x

meets P ; again in each of these cases Δψ(x) = 0 and Δψ(f(x)) = 0 by similar

arguments.

The next lemma extends the intermediate value theorem to S.

Lemma 2.8 Let x1 < x2 be any two points in [0, 1], not necessarily in Q, and let

k ∈ N. Suppose that there exists a point y ∈ S with y strictly between fk(x1) and

fk(x2). Then there exists x ∈ S with x between x1 and x2 such that fk(x) = (y).

Proof If y = y ∈ S � Q̃, we just apply the invariance of Q and the usual inter-

mediate value theorem. If y ∈ Q̃, then we consider the set A = [x1, x2] ∩ f−k(y).

It is nonempty by the usual intermediate value theorem, compact by the continu-

ity of fk, and contained in Q by the invariance of Q. Suppose first that fk(x1) <
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fk(x2). If x′ satisfies x1 < x′ < minA, then fk(x′) < y by the usual interme-

diate value theorem and the minimality of minA. It follows that fk(minA,−) =

(y,−). Similarly, fk(maxA,+) = (y,+). Thus x may be taken as one of the points

(minA,−), (maxA,+). The proof when fk(x1) > fk(x2) is similar, except that

fk(minA,−) = (y,+) and fk(maxA,+) = (y,−).

2.5 No Atoms

Now we are ready to answer Problem 2.6.

Lemma 2.9 ψ has no atoms; that is, Δψ is identically zero.

Proof Assume toward contradiction that there is a point b ∈ S such that Δψ(b) > 0.

For n = 0, 1, 2, . . . , let bn := fn(b) ∈ S and denote the corresponding point in [0, 1]

by bn. We denote the orbit of b by Orb(b) = {b0, b1, b2, . . .}. By Lemma 2.7,

Δψ(bn) = λnΔψ(b), n ∈ N (2.5.1)

and this grows to ∞ because λ > 1. If Orb(b) has an accumulation point in the

open interval (0, 1), then the increment of ψ across a small neighborhood of this

accumulation point is ∞, contradicting Lemma 2.5 (v) and we are done. Henceforth,

we may assume that the orbit of b only accumulates at (one or both) endpoints of

[0, 1]. Consider first the case when Orb(b) accumulates at only one endpoint of [0, 1],

and assume without loss of generality that limn→∞ bn = 1.

Since f is mixing, it must have a fixed point w with 0 < w < 1. Since bn → 1,

it follows that bn > w for all sufficiently large n. Thus, after replacing b and b with

their appropriate images, we may assume that bn > w for all n ∈ N. Equation 2.5.1

continues to hold, and it follows that b is not a fixed point for f , so b �= 1.

Now consider the following claim:

For all N ∈ N there exist n > N and a ∈ S

such that a /∈ Orb(b) and f(a) = bn and w < a < bn+1. (�)
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The proof of Claim (�) proceeds in two cases. First, assume that bN < bN+1 <

bN+2 < . . .; i.e., starting from time N , the orbit of b moves monotonically to the

right. Since f is mixing, the interval [bN+1, 1] cannot be invariant, so there must exist

c > bN+1 with f(c) < bN+1. Take n = max{i : bi < c}. Clearly n > N . The relevant

ordering of points is bn−1 < bn < c < bn+1. Since f(bn) > bn and f(c) < bn, it follows

by Lemma (2.8) that there exists a with a between bn and c such that f(a) = bn.

Clearly, a �= bn−1. It follows that a /∈ Orb(b). Moreover, w < a < bn+1.

The remaining case is that there exists i ≥ N such that bi+1 < bi; i.e., at some

time later than N , the orbit moves to the left. But our orbit is converging to the

right-hand endpoint of [0, 1], so it cannot go on moving to the left forever. Let

n = min{j > i : bj+1 > bj}. We have n > N , and the relevant ordering of points is

bn−1 > bn and bn+1 > bn. Since f(w) < bn and f(bn) > bn, it follows by Lemma (2.8)

that there exists a with a between w and bn such that f(a) = bn. Again, we see that

a �= bn−1, so a /∈ Orb(b). Finally, a < bn+1. This concludes the proof of Claim (�).

Now we apply Claim (�) recursively to find infinitely many distinct atoms between

w and b, each with the same positive mass. At stage 1, find n1 and a1 with a1 /∈ Orb(b)

such that f(a1) = bn1 and w < a1 < bn1+1. Now we apply Lemma (2.8) to fn1+1 to

find x1 with x1 between w and b such that fn1+1(x1) = a1. Then fn1+2(x1) = bn1 , so

by applying Lemma (2.7) and Equation (2.5.1) we have Δψ(x1) = λ−(n1+2)Δψ(bn1) =

λ−2Δψ(b). The point x1 will serve as the first of infinitely many points between w

and b at which ψ has this particular increment. At stage i, set N = ni−1 and apply

Claim (�) to find ni and ai with ni > ni−1. Again, we can find xi with xi between w

and b and fni+1(xi) = ai, whence Δψ(xi) = λ−2Δψ(b) as before. It remains to check

that the points {xi} are distinct. Observe that fni+1(xi) = ai does not belong to the

invariant set Orb(b), whereas fni+2(xi) = bni
∈ Orb(b). By construction, the numbers

{ni} are all distinct. Thus, the points {xi} are distinguished from one another by the

time required to make first entrance into Orb(b).

Now we use our atoms to produce a contradiction. By Lemma 2.5 (v), the in-

crement ψ(b) − ψ(w) is finite. Choose an integer n large enough that nλ−2Δψ(b) >
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ψ(b) − ψ(w). Consider the points x1,x2, . . . ,xn, and let δ be the minimum distance

between two adjacent points of the set {w, b}∪{x1, x2, . . . , xn}. For each i = 1, . . . , n

there exist yi, zi ∈ Q with yi < xi < zi and max{zi − xi, xi − yi} < δ/2. Then

ψ(zi) − ψ(yi) ≥ λ−2Δψ(b). By the monotonicity of ψ,

ψ(b) − ψ(w) ≥
n∑
i=1

ψ(zi) − ψ(yi) > nλ−2Δψ(b) > ψ(b) − ψ(w).

This is a contradiction; in words, we cannot have infinitely many atoms between w

and b all having the same positive mass when the total increment of ψ between w

and b is finite. This completes the proof in the case that Orb(b) accumulates at only

one endpoint of [0, 1].

Finally, let us say a few words about the case when Orb(b) accumulates at both

endpoints of [0, 1]. In this case, f(0) = 1 and f(1) = 0 by continuity. Again by

continuity, for sufficiently large n the points bn belong alternately to a small neigh-

borhood of 0 and a small neighborhood of 1. Thus, the subsequence b2n accumulates

only on a single endpoint of [0, 1]. The map f 2 is again topologically mixing. It is

straightforward, then, to modify the above proof to deal with this case, by working

along the subsequence b2n and writing f 2 and λ2 in place of f and λ.

2.6 Sufficiency of the Eigenvector Criterion

Having resolved Problem 2.6, we are ready to finish the proof of Theorem 2.2.

Proof It remains to show that Condition 2.2.1 is sufficient. We have defined on

the dense subset Q ⊂ [0, 1] a strictly monotone map ψ : Q → [−∞,∞]. In light of

Lemma 2.9, the formula ψ(x) = supψ(Q ∩ [0, x)) = inf ψ(Q ∩ (x, 1]) gives a well-

defined extension ψ : [0, 1] → [−∞,∞]. Strict monotonicity of the extension follows

from the strict monotonicity of ψ|Q and the density of Q. We claim that the extended

function ψ is continuous. It suffices to verify for each x that ψ(x) = limy→x− ψ(y) =

limz→x+ ψ(z). By monotonicity of ψ and the density of Q we may evaluate these
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one-sided limits using points y, z ∈ Q, and by our definition of the extended map

ψ the claim follows. Finally, from strict monotonicity and continuity, it follows that

ψ : [0, 1] → [−∞,∞] is a homeomorphism onto its image.

Define a map g : ψ([0, 1]) → ψ([0, 1]) by the composition g := ψ ◦ f ◦ ψ−1. It is

countably piecewise monotone and Markov with respect to ψ(P ). If y = ψ(x) and

y′ = ψ(x′) belong to a single ψ(P )-basic interval, then x and x′ belong to an interval

of monotonicity of f . By Lemma 2.5 (iii) and the density of Q we may conclude that

|g(y) − g(y′)| = λ|y − y′|. This shows that g has constant slope λ.

2.7 The Mixing Hypothesis

Now we show that the mixing hypothesis in Theorem 2.2 is essential. We give an

example of a map f in CPMM which is topologically transitive but not mixing. We

give a nonnegative eigenvector v for the transition matrix T , but prove that f is not

conjugate to any map on any subinterval [a, b] ⊆ [−∞,∞] with constant slope the

eigenvalue of v.

Fix λ = 2 +
√

5 and take the corresponding maps Fλ, h, and gλ defined in Section

1.5. By way of reminder, Fλ is the piecewise affine “connect-the-dots” map with

“dots” at (k, k − 1), (k + b, k + b + 1), k ∈ Z, where b = (
√

5 − 1)/2; it is piecewise

monotone and Markov with respect to the set {k, k+b : k ∈ Z}. For concreteness, we

take h(x) = ln(x/(1−x)). The map gλ = h−1◦Fλ◦h with additional fixed points at 0,

1, is piecewise monotone and Markov with respect to the set {0, 1}∪{h−1(k), h−1(k+

b) : k ∈ Z}; it is also transitive, as explained in Section 1.5. Figure 2.1 shows the

graph of Fλ together with its Markov partition.

Now define a map f : [−1, 1] → [−1, 1] by the formula

f(x) =

⎧⎪⎨
⎪⎩
−gλ(x), if x ∈ [0, 1]

−x if x ∈ [−1, 0]
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Figure 2.1. The Constant Slope Map Fλ : R → R

This map f is piecewise monotone and Markov with respect to the set P = {0,±1}∪
{±h−1(k),±h−1(k + b) : k ∈ Z}. We enumerate the P -basic intervals as follows:

I2k = [h−1(k), h−1(k + b)], I2k+1 = [h−1(k + b), h−1(k + 1)], Jk = −Ik, k ∈ Z.

The Markov transitions are given by

f(I2k) =
2k+2⋃
i=2k−2

Ji, f(I2k+1) =
2k+2⋃
i=2k

Ji, f(Jk) = Ik, k ∈ Z. (2.7.1)

Figure 2.2 shows the graph of f (in bold) as well as the corresponding Markov par-

tition. Superimposed is the graph of the second iterate f 2. By construction, f 2|[0,1]
and f 2|[−1,0] are both isomorphic copies of the map gλ. In this sense, the map f is

the dynamical square root of gλ.

We claim that f is topologically transitive, but not topologically mixing. To

see the transitivity, let U , V be arbitrary nonempty open subsets of [−1, 1]. After

shrinking these sets, we may assume that 0 /∈ U, V . Consider first the case when

U, V ⊂ [0, 1]. By the transitivity of g there exists n such that U ∩ g−n(V ) �= ∅, but

then U ∩ f−2n(V ) �= ∅. The case when U, V ⊂ [−1, 0] is similar. Now consider the

case when U ⊂ [0, 1] and V ⊂ [−1, 0]. Using the reflected set −V and the transitivity

of g, find n such that U ∩ g−n(−V ) �= ∅. Then U ∩ f 2n−1(V ) �= ∅. The case when

U ⊂ [−1, 0] and V ⊂ [0, 1] is similar. This shows topological transitivity of f . To see
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Figure 2.2. A Map f Demonstrating the Sharpness of Theorem 2.2

that f is not topologically mixing, notice that the set {n ∈ N : (0, 1)∩ f−n(0, 1) �= ∅}
consists of only the even natural numbers.

Let T be the binary transition matrix for the map f . Let us find all nonnegative

solutions v ∈ R
B(P ) to the equation Tv =

√
λv. Comparing Equation 2.7.1 with the

definition of T , we are looking for all nonnegative solutions to the infinite system of

equations ⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

√
λ vI2k =

∑2k+2
i=2k−2 vJi

√
λ vI2k+1

=
∑2k+2

i=2k vJi

√
λ vJk = vIk

k ∈ Z (2.7.2)

By direct verification (remembering that we fixed λ = 2 +
√

5), Equation 2.7.2 is

satisfied by

vI2k = 2, vI2k+1
=

√
5 − 1, vJ2k =

2√
λ
, vJ2k+1

=

√
5 − 1√
λ

, k ∈ Z. (2.7.3)
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We claim that, up to scalar multiples, Equation 2.7.3 defines the unique non-

negative solution v ∈ R
B(P ) to Equation 2.7.2. This may be seen as follows. First,

substitute the last line in Equation 2.7.2 into the first two lines to obtain⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λ vI2k =
∑2k+2

i=2k−2 vIi

λ vI2k+1
=

∑2k+2
i=2k vIi

k ∈ Z.

Adding and subtracting equations, we obtain⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λ(vI2k+1
+ vI2k−1

− vI2k) = vI2k

λvI2k+1
= vI2k + vI2k+1

+ vI2k+2

k ∈ Z.

Solving for later variables in terms of earlier ones, we obtain⎡
⎢⎢⎢⎣
vI2k+1

vI2k+2

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

−1 1 + 1
λ

−λ+ 1 λ− 1 − 1
λ

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
vI2k−1

vI2k

⎤
⎥⎥⎥⎦ k ∈ Z. (2.7.4)

Equation 2.7.4 should be regarded as a linear recurrence relation on v. Substituting

our fixed value λ = 2 +
√

5 and observing that the matrix is invertible, we may

conclude inductively that⎡
⎢⎢⎢⎣
vI2k+1

vI2k+2

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

−1 −1 +
√

5

−1 −√
5 3

⎤
⎥⎥⎥⎦
k ⎡
⎢⎢⎢⎣
vI1

vI2

⎤
⎥⎥⎥⎦ , k ∈ Z.

The action of this matrix and its iterates on R
2 may be regarded as a dynamical

system, and the entries of v are the orbit of the initial point (vI1 , vI2). To obtain

nonnegative entries for v, we must choose the initial point so that the whole orbit

remains in the first quadrant. The point (vI1 , vI2) = (
√

5 − 1, 2) is a fixed point

of this dynamical system (an eigenvector with eigenvalue 1), and so is every scalar

multiple thereof. There are no other eigenvectors, and it follows that our matrix acts

as a shear on R
2 parallel to this line of fixed points. Thus, the only way to obtain a
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whole orbit in the first quadrant is to choose the initial point from the line of fixed

points, recovering (up to a scalar multiple) the vector given in Equation 2.7.3. This

completes the proof that Equation 2.7.3 gives (up to a scalar multiple) the unique

nonnegative vector v ∈ R
B(P ) satisfying Tv =

√
λv.

Now we show that despite the existence of this eigenvector v, there does not exist

any conjugacy ψ of the map f to a map g of constant slope
√
λ. Assume the contrary.

Then by the uniqueness of v and by Remark 2.4, we have

|ψ(I2k)| = 2c, |ψ(I2k+1)| = (
√

5−1)c, |ψ(J2k)| =
2c√
λ
, |ψ(J2k+1)| =

(
√

5 − 1)c√
λ

, k ∈ Z,

for some positive real scalar c. But the P -basic intervals accumulate at the center of

[−1, 1] so that a small open interval (−ε, ε) contains infinitely many P -basic intervals.

Thus, ψ(−ε, ε) has infinite length. On the other hand, a nondecreasing homeomor-

phism ψ : [−1, 1] → [−∞,∞] must take finite values at every interior point of the

interval [−1, 1]. This is a contradiction.
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3. COUNTABLE EXTENSIONS IN DIMENSION ZERO

In one-dimensional dynamics there is a well-developed theory of degree one liftings,

that is, continuous transformations F : R → R on the real line which factor through

the topological covering map π : R → R/Z to a transformation f : R/Z → R/Z on

the circle. The degree one property means that F (X + 1) = F (X) + 1, i.e., that

the map F commutes with the deck transformations associated with the covering

map. Consequently, there is a well-defined displacement function R/Z → R given by

x �→ F (X) − X for X ∈ π−1({x}), which measures in some sense how far around

the circle the transformation f carries each point. One-dimensional rotation theory

consists in large part of studying ergodic averages of this displacement function and

the implications for the dynamics of the maps f and F .

In this chapter, we study a zero-dimensional analog of degree one liftings which we

call countable extensions. They are countable state subshifts of finite type (topological

Markov chains). They factor through a countable-to-one topological covering map

onto a finite-state chain, and the group of shift-commuting deck transformations

is isomorphic to Z. Countable extensions also come with a displacement function,

analogous to the one-dimensional case. Treating this displacement function as a

potential and applying the theory of thermodynamic formalism we obtain results

regarding entropy and maximal measures.

3.1 Definitions and Basic Properties.

Start with a pair (Σ, ϕ) where Σ ⊆ AZ is a two-sided subshift of finite type

in a finite alphabet A equipped with the shift transformation (xi)i∈Z �→ (xi+1)i∈Z,

and ϕ is an integer-valued observable which depends only on the zeroth coordinate,

ϕ ((xi)i∈Z) = ϕ(x0) ∈ Z. The function ϕ will be called the displacement. The
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countable extension of (Σ, ϕ) is defined as the two-sided subshift of finite type Σ̂ in

the countable alphabet A× Z with the transition rules

(a,m) → (b, n) if and only if a→ b and n−m = ϕ(a). (3.1.1)

The notation a → b means that the symbol a may be followed by the symbol b in

sequences belonging to Σ; another way to say this is that the word ab belongs to the

language of Σ.
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Figure 3.1. Transition Graphs of a Countable Extension

Example 3.1 Let Σ be the golden mean subshift with the alphabet A = {a, b} in which

consecutive b’s are forbidden. Assign values ϕ(a) = −1, ϕ(b) = 2. The transition

graphs of Σ and the induced countable extension Σ̂ are shown in Figure 3.1. In the

graph for Σ̂ the vertices are arranged by levels and the function ϕ tells us how many

levels up or down each arrow should point.

It is easy to tell from the transition graph when a subshift of finite type is topologi-

cally transitive or topologically mixing (see [13]). Topological transitivity is equivalent

to irreducibility of the transition graph, which is the condition that for any pair of

vertices a, b, there is a path from a to b and there is a path from b to a. Topological

mixing is equivalent to irreducibility and aperiodicity of the transition graph, which

requires additionally the existence of two loops in the transition graph whose lengths

are relatively prime. In Example 3.1, we see that Σ̂ is topologically transitive but
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not topologically mixing; every loop in the transition graph has length a multiple of

three. Σ, on the other hand, is both topologically transitive and topologically mixing.

Let us try to develop the analogy between countable extensions and degree-one

liftings. Our findings are summarized in Table 3.1. We notice that in both settings we

have a dynamical system on a noncompact space which factors through a countable-

to-one topological covering map to a system on a compact space. In both cases, the

group of deck transformations that commute with the dynamics is isomorphic to Z.

And in both cases there is a displacement function which assigns to a point x the

number of fundamental domains to the right or to the left that a point in the fiber

above x is carried under the dynamics. In the following paragraphs we develop these

ideas in more detail.

Table 3.1.
Countable Extensions and Degree One Liftings

Zero-Dimensional Dynamics One-Dimensional Dynamics

Σ̂
σ̂−−−→ Σ̂

π

⏐⏐� ⏐⏐�π
Σ

σ−−−→ Σ

R
F−−−→ R

π

⏐⏐� ⏐⏐�π
R/Z

f−−−→ R/Z

(xi, ni)i �→ (xi, ni + 1)i X �→ X + 1

ϕ(x) = n1 − n0, ϕfloor(x) = �F (X)� − �X�,
for (xi, ni)i ∈ π−1(x) for X ∈ π−1(x)

Countable extensions come with a natural factor structure. Suppose Σ̂ is the

countable extension of (Σ, ϕ), and denote the left shift transformations by σ̂ and σ

respectively. Then the map

π
(
(xi, ni)i∈Z

)
= (xi)i∈Z (3.1.2)
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gives the semiconjugacy σ ◦ π = π ◦ σ̂. This projection is countable-to-one. If a

point (xi)i∈Z is given, then for each l ∈ Z there exists a preimage (xi, ni)i∈Z satisfying

n0 = l and ni+1 − ni = ϕ(xi) for all i, and by the transition rules in Σ̂ there are

no other preimages. Moreover, the projection π : Σ̂ → Σ is a topological covering

map. Indeed, π−1(Σ) is the countable disjoint union �l∈Z
{

(xi, ni)i∈Z : n0 = l
}

and

restricting π to any one of these summands yields a homeomorphism onto Σ.

Because our spaces are totally disconnected, the group of deck transformations

may be quite large. But from the dynamical point of view, we should only consider

those deck transformations that commute with the shift

Γ :=
{
γ ∈ Aut

(
Σ̂
)

: π ◦ γ = π, γ ◦ σ̂ = σ̂ ◦ γ
}
.

Proposition 3.2 Let Σ̂ be the countable extension of (Σ, ϕ). If Σ̂ is topologically

transitive, then the group Γ of shift-commuting deck transformations is isomorphic to

Z with generator γ
(
(xi, ni)i∈Z

)
= (xi, ni + 1)i∈Z.

Proof It is clear from the definitions that γ and its iterates are shift-commuting

deck transformations and form an infinite cyclic group. It remains to show that there

are no other shift-commuting deck transformations. Suppose η ∈ Γ is arbitrary. Since

η preserves the fibers of π, it follows that η must be of the form

x = (xi, ni)i∈Z �→ (xi, ni + k(x))i∈Z

for some k : Σ̂ → Z. We must show that k is constant.

Assume temporarily that k is discontinuous. Then there is a point x ∈ Σ̂ and there

are points y arbitrarily near to x with k(y) �= k(x). Remember that in shift-spaces,

nearness is measured by the number of symbols around the zeroth position that x

and y have in common. But if x and y agree in the zeroth position and k(x) �= k(y),

then η(x) and η(y) will already differ in the zeroth position. This contradicts the

continuity of η. Therefore k must be continuous.

Since η commutes with the shift, it follows that k(σ̂(x)) = k(x) for all x. That

means that k is constant along orbits. By hypothesis, Σ̂ is topologically mixing, and
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therefore transitive. In a complete metric space, transitivity implies the existence of

a point with a dense orbit [22]. Since k is integer-valued, continuous, and constant

along a dense orbit, it must be constant everywhere.

Finally, we remark that the more conventional displacement function in the one-

dimensional theory is ϕcon(x) = F (X) − X. But there is no harm in introducing

the floor function �·� into the definition because ϕcon and ϕfloor are cohomologous.

Explicitly, ϕfloor = ϕcon + g − g ◦ f where g(x) = X − �X�. Therefore the limiting

ergodic averages of ϕcon and of ϕfloor behave identically, so both functions yield the

same rotation-theoretic results.

Thus far, our discussion of countable extensions has been purely topological. If

we want a fuller understanding, we must consider the measures supported by these

systems. The projection π : Σ̂ → Σ associated with a countable extension induces

a projection map π∗ on measures, which sends a Borel measure ν on Σ̂ to the Borel

measure on Σ given by the formula (π∗ν)(A) = ν(π−1A). If ν is shift-invariant (resp.

ergodic, finite, a probability measure), then so is π∗ν. However, unlike in compact

dynamics, as a map on the spaces of shift-invariant Borel probability measures, π∗

need not be surjective. We will use this fact to great advantage, arguing that certain

measures on Σ do not lift, i.e., are not the projection of any invariant measure from

Σ̂. We record now a crude but necessary condition for a measure to lift. If μ is a shift-

invariant probability measure on Σ, then we call the average displacement
∫
ϕdμ the

drift of μ. A measure is called drift-free if its drift is zero.

Theorem 3.3 Let Σ̂ be the countable extension of (Σ, ϕ). If ν is an invariant, Borel

probability measure for Σ̂, then its projection π∗ν is necessarily drift-free, that is,∫
ϕdπ∗ν = 0.

Proof By considering ergodic decompositions, we may assume without loss of gen-

erality that ν is ergodic. Then π∗ν is also ergodic. Now suppose toward contradiction
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that
∫
ϕdπ∗ν = c > 0; the proof for c < 0 is analogous. By Birkhoff’s pointwise

ergodic theorem,

lim
t→∞

1

t

t−1∑
i=0

ϕ(xi) = c, for π∗ν a.e. (xi)i∈Z in Σ.

Passing to preimages and remembering the transition rules in Σ̂, we have

lim
t→∞

nt − n0

t
= c, for ν a.e. (xi, ni)i∈Z in Σ̂. (3.1.3)

We claim that Equation 3.1.3 is incompatible with the shift-invariance of the measure

ν. If the measure ν has any atoms, then by ergodicity it is concentrated on a periodic

orbit, which already contradicts Equation 3.1.3. Now assume that ν is nonatomic. Let

A[−m,m] = {(xi, ni)i∈Z : −m ≤ n0 ≤ m}, and fix m sufficiently large that ν(A[−m,m]) >

1
2
. The convergence in Equation 3.1.3 is pointwise, but by Egoroff’s theorem we can

find a slightly smaller subset B ⊆ A[−m,m], but still with 1
2
< ν(B), on which the

convergence is uniform. Fix T > 4m/c sufficiently large so that

nT − n0

T
>
c

2
, for all (xi, ni)i∈Z ∈ B.

So if (xi, ni) ∈ B, then n0 ≥ m and nT − n0 >
4m
c
c
2

= 2m, whence nT > m. This

shows that the T th preimage of A under the shift is disjoint from B. But B has

measure greater than 1
2
, and by the invariance of ν, so does the T th preimage of A.

This is a contradiction.

Theorem 3.3 is not surprising if we think in terms of rotation theory. Invariance of

the measure ν on Σ̂ should mean that in some sense there is just as much displacement

of mass in the positive direction as there is in the negative direction. So we should

expect the projected measure π∗ν to have average rotation zero. There is also the

heuristic reasoning
∫
Σ
ϕdπ∗ν =

∫
Σ̂
n1 − n0 dν =

∫
Σ̂
n1 dν −

∫
Σ̂
n0 dν = 0 by the shift-

invariance of ν. Unfortunately, this argument is not rigorous; when ν has heavy

enough tails the last two integrals diverge.

The drift-free condition is necessary for a measure to lift, but not sufficient. In

the proof of Theorem 3.7 we give more delicate arguments showing that the most
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important drift-free measure associated to a countable extension nevertheless does

not lift.

3.2 Entropy and the Maximal Drift-Free Measure

We wish to study our countable extensions from the point of view of entropy. For

a countable state topological Markov chain, there are several possible definitions of

the entropy. We are most interested in the Gurevich entropy, denoted hGur(·). It

may be defined as the supremum of metric entropies over all shift-invariant Borel

probability measures supported on the countable state chain [12]. Thus, when we

prove in Theorem 3.7 that a countable extension has no measure of maximal entropy,

we mean quite naturally the Gurevich entropy.

Two other characterizations of the Gurevich entropy will be relevant for us. For

transitive chains, the Gurevich entropy is given by the limit

lim
n→∞

1

n
log #{length n words which start and end with some fixed symbol a},

(3.2.1)

where by transitivity, this quantity does not depend on the choice of a. In the

transition graph representation of the chain, this limit measures the growth rate of the

number of loops which start and end at some fixed vertex. The third characterization

of Gurevich entropy may also be given in terms of the transition graph model. Each

finite subgraph corresponds to a finite-state subchain which is a compact dynamical

system with its own well-defined topological entropy. The Gurevich entropy is equal

to the supremum of topological entropies over all such subchains. The equivalence of

these three characterizations was proved by Gurevich [11], [12].

Our study of the entropy of countable extensions stems from the work of Misi-

urewicz and Tolosa [17]. Although the terminology is slightly different, their work

contains the following restricted variational principle for countable extensions.
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Theorem 3.4 (Misiurewicz, Tolosa, [17]) Suppose Σ̂ is the countable extension of

(Σ, ϕ). Then the Gurevich entropy of Σ̂ is the supremum of metric entropies over all

drift-free invariant ergodic probability measures on Σ.

We want to show that this supremum is uniquely attained and we want to describe

explicitly the measure which attains it. To do that, we will need to apply a few results

from thermodynamic formalism. In particular, we will study the pressure of the scaled

displacement function βϕ for β ∈ R. For our purposes, we may define this pressure

in terms of the following variational principle:

P(βϕ) := sup

{
hΣ(μ) + β

∫
ϕdμ

∣∣∣∣ μ invariant probability measure on Σ

}
,

where hΣ(μ) denotes the metric entropy of μ. The quantity hΣ(μ) +β
∫
ϕdμ is called

the free energy of μ (with respect to the potential function βϕ). A shift-invariant

probability measure whose free energy attains this supremum is called an equilibrium

state for the observable βϕ.

Theorem 3.5 Let Σ̂ be the countable extension of (Σ, ϕ). If Σ̂ is topologically tran-

sitive and Σ is topologically mixing, then there exists a measure μ0 on Σ, called the

maximal drift-free measure, with the following properties:

• μ0 is an ergodic drift-free shift-invariant probability measure and has strictly

larger entropy than any other drift-free shift-invariant probability measure. Thus,

it uniquely achieves the supremum in Theorem 3.4

• μ0 is the unique equilibrium state for β0ϕ, where β0 minimizes the pressure

P(β0ϕ) = minβ∈R P(βϕ) (and this uniquely determines β0).

Moreover, the Gurevich entropy of Σ̂ is given by

hGur(Σ̂) = hΣ(μ0) = P(β0ϕ)

Proof Since we have a locally constant observable function ϕ on a topologically mix-

ing subshift of finite type Σ, we may apply some strong results from thermodynamic
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formalism. The first of these results tells us that the pressure function β �→ P(βϕ)

is convex and real analytic (see [21]). Now we will show that the pressure function

takes a minimum value. Since Σ̂ is topologically mixing, there must be a path in its

transition graph from some vertex (a, 0) to the vertex (a, 1); let n denote the length of

this path. Projecting to the transition graph for Σ, we find a loop of length n from a

to a with the sum of ϕ along the loop equal to 1. This loop corresponds to a periodic

point of Σ. Consider the purely atomic probability measure distributed uniformly

along this periodic orbit. It is an invariant measure with entropy zero, and the inte-

gral of ϕ with respect to this measure is 1/n. Thus, the free energy of this measure is

β/n, so we obtain the inequality P(βϕ) ≥ β/n, β ∈ R. It follows that P(βϕ) → +∞
as β → +∞. Similarly, if we use a path in the transition graph of Σ̂ from some vertex

(a, 0) to the vertex (a,−1), we may conclude that P(βϕ) → +∞ as β → −∞. Now

from convexity and real analyticity, it follows that P(βϕ) is minimized at a unique

point β0.

The second major result we need from thermodynamic formalism is that for each

β, the observable βϕ has a unique equilibrium state (see [20]). Define μ0 to be the

unique equilibrium state corresponding to β0. By its uniqueness it is ergodic. Consider

the graph of the line y = hΣ(μ0) + β
∫
ϕdμ0 and the pressure curve y = P(βϕ).

This line intersects the pressure curve at the point β0 because μ0 is an equilibrium

measure. This line lies below the pressure curve by the definition of pressure. By real

analyticity, this line must be a tangent line, and since it is tangent at the minimum

point, it must have slope zero. We conclude that μ0 has zero drift.

For measures with zero drift, free energy equals entropy. But μ0 is the unique

equilibrium state for the parameter β0. This implies that the entropy of μ0 is equal

to P(β0ϕ) and is strictly larger than the entropy of any other drift-free shift-invariant

probability measure.

In the course of the proof we also demonstrated the following fact, which will be

useful in Chapter 4.
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Corollary 3.6 Let Σ̂ be the countable extension of (Σ, ϕ). If Σ̂ is topologically tran-

sitive and Σ is topologically mixing, then the pressure function β �→ P(βϕ) maps R

surjectively onto [hGur(Σ̂),∞).

Let us illustrate our theorem by making explicit calculations for the countable

extension in Example 3.1. The measure μ0 is known to be Markov, i.e., it is given by a

probability vector and a stochastic matrix. By the drift-free condition, the probability

vector must be
[

2
3

1
3

]
. By the invariance of the measure, the stochastic matrix must

be
[

1
2

1
2

1 0

]
. The Gurevich entropy of Σ̂ is therefore 2

3
log(2), the metric entropy of this

Markov measure. This number is smaller than log(1+
√
5

2
), the topological entropy of

Σ, which reflects the fact that the Parry measure (measure of maximal entropy for

Σ) has nonzero drift.

3.3 No Measure of Maximal Entropy

Theorem 3.7 Let Σ̂ be the countable extension of (Σ, ϕ). If Σ̂ is topologically tran-

sitive and Σ is topologically mixing, then Σ̂ has no measure of maximal entropy.

Proof Consider the maximal drift-free measure μ0 on Σ identified in Theorem 3.5.

In the first step of the proof, we regard ergodic sums of the displacement function ϕ

as random variables on the measure space (Σ, μ0). A central limit theorem applies.

We verify that the asymptotic variance term is positive. In the second step of the

proof, we use the central limit theorem to show that no invariant Borel probability

measure on Σ̂ projects to the measure μ0. Thus, even though μ0 is drift-free, it does

not lift. Finally, in the third step of the proof we use the fact that μ0 does not lift to

show that there is no measure of maximal entropy for Σ̂.

Step One: Equip the topological Markov chain Σ with the measure μ0 from The-

orem 3.5. The measure μ0 is an equilibrium state, so we may apply a central limit

theorem (see [8], Theorem 1.27) to the distribution of ergodic sums of any Hölder

continuous function on Σ. The displacement function ϕ is Hölder continuous because

it depends on only the zeroth coordinate. Its expected value is zero because the
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measure μ0 is drift-free. Introduce random variables Stϕ, t = 1, 2, . . . on Σ by the

formula

Stϕ
(
(xi)i∈Z

)
= ϕ(x0) + ϕ(x1) + . . .+ ϕ(xt−1).

Stϕ records the sum of the displacement function ϕ along the first t symbols (ignoring

negative coordinates; at this moment we do not care that our shift-space is two-

sided and we forget about the past). Now consider the asymptotic variance σ2
asy =

limt→∞ 1
t
V ar(Stϕ). The central limit theorem states that this limit exists and is finite,

and moreover, if σ2
asy > 0, then the random variables Stϕ, properly scaled, converge in

distribution to the standard normal distribution:

If σ2
asy > 0, then

Stϕ

σasy
√
t

dist−−→ Standard Normal. (3.3.1)

Bowen gives a condition for determining when the asymptotic variance σ2
asy is

positive [8]. We have σ2
asy = 0 if and only if ϕ is homologous to zero by a Hölder

continuous function, that is, there is some Hölder continuous u such that

ϕ = u ◦ σ − u, μ0-almost everywhere.

Composing with the shift and taking sums, we must have

Stϕ = u ◦ σt − u, μ0-almost everywhere, t ∈ N. (3.3.2)

Since u is continuous function on a compact metric space, it is bounded by some

constant M , and so the right-hand side of equation 3.3.2 is bounded by 2M . This

bound is independent of t. By hypothesis, Σ̂ is topologically transitive, so we can find

a path in its transition graph from some vertex (a, 0) to the vertex (a, 1) with some

path length n. Projecting this path into the transition graph for Σ we have a length

n loop from a to a with net displacement 1. Fix k > 2M and consider the cylinder

set corresponding to k repetitions of this loop. Then Sknϕ is identically equal to k on

this cylinder set. Moreover, Theorem 3.5 tells us that μ0 has full support, so that this

cylinder set has positive measure. This contradicts Equation 3.3.2. We may conclude

that ϕ is not homologous to zero and therefore σ2
asy > 0 and Equation 3.3.1 is valid.
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Step Two: Consider the projection π : Σ̂ → Σ defined in Equation 3.1.2 and

the corresponding push-forward operator on measures. Suppose that ν is a Borel

probability measure on Σ̂ with π∗(ν) = μ0. Since μ0 is nonatomic, so is ν. We will

prove that ν is not shift-invariant.

Let Al ⊂ Σ̂ denote those sequences which begin at level l, that is, Al = {(xi, ni)i∈Z :

n0 = l}. By an appropriate choice of l we may assume that ν(Al) > 0, and after

relabeling the levels, we may assume that l = 0. Let A[−m,m] := {(xi, ni)i∈Z : −m ≤
n0 ≤ m}. By the continuity of measure, we may make an appropriate choice of m so

that

ν(Σ̂ � A[−m,m]) <
1

2
ν(A0). (3.3.3)

Choose δ > 0 small enough so that the measure of the interval [−δ, δ] under the

Gaussian distribution is strictly less than 1
2
ν(A0). Applying the central limit theorem

(Equation 3.3.1), we may fix a value of t sufficiently large so that m < δσasy
√
t and

μ0

({
x ∈ Σ :

∣∣∣∣ Stϕ(x)

σasy
√
t

∣∣∣∣ ≤ δ

})
<

1

2
ν(A0).

Passing to a subset, we have

μ0({x ∈ Σ : |Stϕ(x)| ≤ m}) <
1

2
ν(A0). (3.3.4)

Consider the set B =
{

(xi, ni)i∈Z : nt = 0
}

of sequences which reach level 0 at

time t. It is the tth preimage of A0 under the shift transformation in Σ̂. Partition

this set into B ∩ A[−m,m] and B � A[−m,m]. We have

B ∩ A[−m,m] ⊆ {(xi, ni)i∈Z : |nt − n0| ≤ m} = π−1({x ∈ Σ : |Stϕ(x)| ≤ m}).

Combining Inequalities 3.3.3 and 3.3.4 and remembering that ν projects to μ, we have

ν(B) = ν(B ∩ A[−m,m]) + ν(B � A[−m,m])

≤ μ0({x ∈ Σ : |Stϕ(x)| ≤ m}) + ν(Σ̂ � A[−m,m])

<
1

2
ν(A0) +

1

2
ν(A0) = ν(A0).

It follows that ν is not a shift-invariant measure.
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Step Three: The Gurevich entropy hGur(Σ̂) is the supremum of metric entropies

among all invariant probability measures on Σ̂. We wish to show that this supremum

is not attained.

Suppose ν is an arbitrary shift-invariant probability measure on Σ̂. We know from

step two that π∗ν �= μ0. We know from Theorem 3.3 that π∗ν is a drift-free measure.

Therefore, by Theorem 3.5,

hΣ(π∗ν) < hΣ(μ0) = hGur(Σ̂). (3.3.5)

Since π is is a countable-to-one factor map, π∗ preserves metric entropy (see [9]

Theorem 4.1.15),

hΣ̂(ν) = hΣ(π∗ν). (3.3.6)

Combining Equations 3.3.5 and 3.3.6, we see that Σ̂ has no measure of maximal

entropy.

3.4 Explicit Calculations

Let us show how to apply Theorem 3.5 to make explicit calculations for concrete

examples of countable extensions. We begin by recording some formulas from the

general theory of equilibrium states. Suppose we have a countable extension Σ̂ of a

pair (Σ, ϕ), with Σ̂ topologically transitive and Σ topologically mixing. We continue to

use A to denote both the (finite) alphabet of Σ and the vertex set of the corresponding

transition graph. The transition matrix A is the binary matrix with rows and columns

indexed by A and entries

A(a, b) =

⎧⎪⎨
⎪⎩

1, if a→ b

0, otherwise.

(3.4.1)

We define also for each β ∈ R the weighted transition matrix Mβ with entries

Mβ(a, b) =

⎧⎪⎨
⎪⎩
eβϕ(a), if a→ b

0, otherwise.

(3.4.2)
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Theorem 3.8 (see, eg., [20]) Let Σ, ϕ,Mβ be as above. Then the pressure of βϕ is

given by the logarithm of the spectral radius of the weighted transition matrix

P(βϕ) = log rad(Mβ).

Theorem 3.9 (see, eg., [20]) Let Σ, ϕ,Mβ be as above. Then the equilibrium state

for βϕ is the stationary Markov measure with stochastic matrix Pβ and probability

vector pβ given by

Pβ(a, b) =
r(b)

λr(a)
Mβ(a, b), pβ(a) = r(a)l(a)

where λ, r, l (they also depend on β) are the largest eigenvalue and the strictly positive

right and left eigenvectors given by the Perron Frobenius theorem, Mβr = λr, lMβ =

λl, scaled in such a way that
∑

a∈A l(a)r(a) = 1.

We remark that Mβ is irreducible and aperiodic because Σ was assumed to be

topologically mixing. That is why the Perron Frobenius theorem gives a strictly

positive eigenvector.

Combining Theorem 3.8 with Theorem 3.5, we see that the problem of computing

Gurevich entropy is reduced to the problem of minimizing the leading eigenvalue

of the weighted transition matrix. When the vertex set A is small enough, we can

sometimes solve this problem quickly and explicitly.

�� ��
��
��
��

����

+1 −1 0

���� �� ����

���� ���� ��

�� ���� ����

�
�
�
�

�� ��
��
��
��

����
��
��

����
�
�
�
�

��

����

��
��
��
��

��
��
��
��

�
�
�
�

����

��
��
��
��

��
��
��
��

����

���
���
���
���

���
���
���
���

�
�
�
�

����

Mβ =

⎡
⎢⎢⎢⎣

eβ eβ 0

e−β 0 e−β

0 1 0

⎤
⎥⎥⎥⎦

Figure 3.2. Entropy Calculations for a Countable Extension
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For example, consider the countable extension Σ̂ of the pair (Σ, ϕ) shown in Figure

3.2. The characteristic polynomial is −λ3 + eβλ2 + (1 + e−β)λ − 1, and we wish

to minimize the leading root of this polynomial as we allow β to vary. Set the

characteristic polynomial equal to zero and look at the solution set in the (β, λ)

plane. We can solve for eβ explicitly with the quadratic formula. The discriminant is

λ6−2λ4−2λ3 +λ2−2λ+1. The Gurevich entropy is the logarithm of the largest real

root of this discriminant polynomial; the approximate value is hGur(Σ̂) ≈ log 1.7549.

In light of Theorem 3.9, it is easy to see when the system Σ equipped with the

maximal drift-free measure μ0 and the partition by time-zero cylinders is a Bernoulli

process.

Proposition 3.10 Let Σ̂ be the countable extension of (Σ, ϕ). Suppose that Σ̂ is topo-

logically transitive and Σ is topologically mixing. Then Σ equipped with the maximal

drift-free measure μ0 and the partition by time-zero cylinders is a Bernoulli process

if and only if the transition graph of Σ is complete in the sense that for all a, b ∈ A,

there is an arrow a→ b.

Proof If the transition graph is complete, then the weighted transition matrix of

Equation 3.4.2 has all columns equal. Therefore its rank is one and the strictly positive

eigenvector r is just the common column vector. It follows that the stochastic matrix

Pβ of Theorem 3.9 has all its rows equal, and so the corresponding Markov process is

in fact Bernoulli. Conversely, if all rows of Pβ are equal, then by transitivity Pβ can

contain no zeros, and hence the transition graph is complete.
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4. APPLICATIONS

Our findings are relevant in one-dimensional dynamics in the study of circle maps.

If we have a piecewise monotone degree one map of the circle, a transitive lifting

of this map to R, and an appropriate Markov partition, then the induced symbolic

dynamical system is a countable extension as defined in Chapter 3. This allows us to

compute a certain entropy for our degree one lifting. Moreover, for every λ greater

than or equal to the exponential of this entropy, we can construct a conjugacy to a

map of constant slope λ.

4.1 Degree One Circle Maps with Markov Partitions

Throughout this chapter, we will assume that F : R → R is a transitive lifting

of a degree one map of the circle f : R/Z → R/Z. We assume also the existence

of a Markov partition. Explicitly, we require that [0, 1] (and also R/Z) is the union

of a finite collection V of closed intervals (in the circle these are closed arcs) with

pairwise disjoint interiors. Then R is the union of the countable collection V × Z

of closed intervals with pairwise disjoint interiors given by setting (v,m) equal to

the translation v + m of the interval v by m units, v ∈ V ,m ∈ Z. Moreover, we

assume that for all (v,m) ∈ V ×Z, the restriction F |(v,m) is monotone and the image

F
(
(v,m)

)
is a union of intervals from V ×Z. This is the Markov property – it means

that if we study dynamics symbolically by coding points according to their itineraries,

then we obtain subshifts of finite type. In fact, these symbolic systems will have the

structure of countable extensions.

Let us give explicitly the construction of these symbolic systems. This construction

will be easier to read with a concrete example in mind; the reader may wish to look

ahead to Example 4.2. Corresponding to the circle map f we construct a labeled
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directed graph G∗ with vertex set V . Corresponding to the lifting F we obtain an

unlabeled directed graph Ĝ∗ with vertices V×Z. The dynamics of F determine where

to draw the arrows and what labels to assign them, as follows:

v
l−→ w in G∗ iff (v,m) → (w,m+ l) in Ĝ∗ iff F

(
(v,m)

) ⊇ (w,m+ l), (4.1.1)

and by the degree one property, this definition does not depend on the choice of m.

The notation v
l−→ w means there is an arrow a pointing from v to w with label l,

and then for each m ∈ Z we denote by (a,m) the arrow (v,m) → (w,m+ l). We use

the symbol A for the set of arrows of G∗, ϕ : A → Z for the labels (on the arrows);

the arrow set for Ĝ∗ is A× Z. We will also use the notation init(a), term(a) for the

initial and terminal points of an arrow a ∈ A.

In general, the graph G∗ may have multiple arrows pointing between the same two

vertices. This happens when an arc v ∈ V has an image under f that wraps around

the circle multiple times. Let A∗ denote the transition matrix for G∗; its vw-entry is

the number of arrows pointing from v to w,

A∗(v, w) = #{a ∈ A : init(a) = v, term(a) = w}. (4.1.2)

We also define for each β ∈ R the weighted transition matrix matrix M∗
β with entries

M∗
β(v, w) =

∑
a:init(a)=v,term(a)=w

eβϕ(a). (4.1.3)

The graph Ĝ∗ can have only single arrows; its transition matrix T ∗ is binary and is

given by

T ∗((v,m), (w,m+l)
)

=

⎧⎪⎨
⎪⎩

1, if ∃a ∈ A : init(a) = v, term(a) = w,ϕ(a) = l

0, otherwise.

(4.1.4)

We have not yet defined a countable extension – we still need to construct Σ̂ and Σ.

Because G∗ can have multiple arrows, we must take the arrow set A as the alphabet

for our shift space. In other words, we construct our chain from the dual graph. The

dual graph to G∗ uses the arrows of G∗ as its vertices (they are still labeled by ϕ) and
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allows a transition from a to b if and only if init(b) = term(a). We write G without

a star for this dual graph and (Σ, ϕ) for the corresponding topological Markov chain

and observable function. Its transition matrix and weighted transition matrices have

already been defined in equations 3.4.1 and 3.4.2. Similarly we write Ĝ for the dual

graph to Ĝ∗ and we write Σ̂ for the corresponding countable-state topological Markov

chain. Its transition matrix T is given by

T
(
(a,m), (b, n)

)
=

⎧⎪⎨
⎪⎩

1, if term(a) = init(b) and ϕ(a) = n−m

0, otherwise.

(4.1.5)

Comparing the transition rules of equation 4.1.1 with the transition rules of equa-

tion 3.1.1, we see that Σ̂ is the countable extension of (Σ, ϕ). This concludes our

construction.

Remark 4.1 The graphs G∗, Ĝ∗ and their corresponding matrices form an unneces-

sary intermediate stage in the above construction. It is possible to eliminate this stage

by replacing V × Z with the finer partition (V × Z) ∨ F−1(V × Z). Indeed, there is a

natural identification of this refined partition with A×Z; a nondegenerate interval of

the form (v,m)∩F−1
(
(w,m+ l)

)
corresponds to (a,m) where a is the labelled arrow

v
l−→ w. Thus, from this finer partition we can obtain G and Ĝ directly. Our choice to

make such a long construction is motivated by applications. When we want theoretical

results, we will use Σ̂ and Σ because our theory of countable extensions applies. But

when we want to make numerical calculations, we will use the intermediate stage, be-

cause we want our matrices to have as few rows and columns as possible. This point

of view is justified by lemma 4.3.

Example 4.2 Let F be the piecewise affine “connect-the-dots” map with turning

points F (k) = k − 1, F (k + 1
2
) = k + 2, k ∈ Z and Markov partition V × Z gen-

erated by V = {[0, 1
2
], [1

2
, 1]}. Figure 4.1 depicts F and the corresponding circle map

f as well as several of the associated directed graphs and matrices.



60

�� ��
�� ��

��
��

��
��

�� ��
�� ��

��
��

�� �� �� �� �� ��

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�� �� ��

��
��
��

��
��

�
�

�
�

�
�

�
�

��� ������ ������ ���

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

F
:
R

→
R

f
:
R
/Z

→
R
/Z

V
=
{[ 0,

1 2

] ,[
1 2
,1
]}

V
×

Z

−10

+
1 0

+
1

0
+
1

−1
0

+
1

+
1 0 −1

−1
0

+
1

0 +
1

0
+
1

V
er
ti
ce
s:

V
A
rr
o
w
s:

A
L
a
b
el
s:
ϕ
:
A

→
Z

V
er
ti
ce
s:

A
L
a
b
el
s:
ϕ
:
A

→
Z

G
,

(Σ
,ϕ

)

Ĝ
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Lemma 4.3 Let G∗ = (V ,A, ϕ) be a labeled directed graph, G its dual graph. Let

M∗
β , Mβ be the respective weighted transition matrices as defined in equations 4.1.3

and 3.4.2. If r∗ is an eigenvector with M∗
βr

∗ = λr∗, then the vector with entries

r(a) = eβϕ(a)r(term(a))

satisfies Mβr = λr. Moreover, all eigenvectors of Mβ are obtained in this way from

eigenvectors of M∗
β , with the possible exception that Mβ may have additional eigen-

vectors with eigenvalue λ = 0.

Proof The matrix M∗
β should be regarded as representing a linear operator on the

space R
V . We will abuse notation and regard V not only as the index set for R

V ,

but also as the basis, so that the symbol v represents the column vector with a 1

in position v and zeros elsewhere. We may represent a column vector as a sum of

coefficients times basis vectors, for example, r∗ =
∑

w∈V r
∗(w)w. If we multiply M∗

β

by a basis vector w, the result is the wth column vector of M∗
β ,

M∗
βw =

∑
b∈A:term(b)=w

eβϕ(b)init(b). (4.1.6)

In the same way, we regard A as both index set and basis for the linear space R
A on

which Mβ acts. We have

Mβb =
∑

a∈A:term(a)=init(b)

eβϕ(a)a.

Consider the linear subspace F ⊆ R
A spanned by vectors of the form

fw :=
∑

b∈A:term(b)=w

eβϕ(b)b, w ∈ V .

Now we may write more simply Mβb = finit(b). This shows that the range of Mβ is con-

tained in the subspace F , so if we wish to find eigenvectors with nonzero eigenvalues

it suffices to look at the restriction Mβ|F . By linearity we have

Mβfw =
∑

b∈A:term(b)=w

eβϕ(b)finit(b) (4.1.7)
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Comparing equations 4.1.6 and 4.1.7, we see that Mβ|F is conjugate to M∗
β by the lin-

ear isomorphism w �→ fw. This isomorphism carries an eigenvector r∗ =
∑

w∈V r
∗(w)w

to the eigenvector

r =
∑
w∈V

r∗(w)fw =
∑
b∈A

r∗(term(b))eβϕ(b)b,

which agrees with the formula for r in the statement of the theorem.

One more observation is necessary before we can apply the theory of countable

extensions to transitive lifts of degree one circle maps. Under the assumption that F is

transitive, it follows that all of the dynamical systems F , f , Σ̂, and Σ are topologically

mixing and that all of the matrices T ∗, M∗
β , A∗, T , Mβ, and A are irreducible and

aperiodic. To see this, recall that the only way for a continuous map of the real line

to be transitive but not mixing is if interchanges the intervals (−∞, c) with (c,∞) for

some c ∈ R (see [3, pp. 156-159]; the result is stated for interval maps but generalizes

easily to maps on the real line). No such c can exist for a degree one lifting, and so

F is topologically mixing. Then, using paths through interiors of partition elements

of V ×Z or of the finer partition (V ×Z)∨F−1(V ×Z) we can produce the necessary

paths in the various directed graphs to verify the rest of the claim.

4.2 Entropy

We wish to be able to calculate the entropy of the map F : R → R. Since we

are working in noncompact dynamics, we must specify which entropy we mean. One

possibility is to compactify the dynamics by introducing fixed points at +∞ and

at −∞. The extended map F̄ : [−∞,∞] → [−∞,∞] is continuous, and so has

a well-defined topological entropy. Another possibility is to take the supremum of

topological entropies over all compact invariant subsets. In fact, these two notions

coincide and are equal to the Gurevich entropy of the corresponding symbolic system

Σ̂.
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Theorem 4.4 Let F be a transitive lifting of a degree one circle map with Markov

partition V × Z. Let Σ̂ be the associated subshift of finite type. Then

h(F̄ ) = sup{h(F |K) : K ⊂ R compact, invariant} = hGur(Σ̂)

Proof Our proof will be terse, since the ideas are not new – similar ideas appear

in [13] and [17]. Recall the characterization of Gurevich entropy as the supremum

of entropies of finite subgraphs. Let Ĝn denote the subgraph of Ĝ formed from the

vertices A× [−n, n] and all arrows between these vertices. These subgraphs form an

increasing sequence, and any other finite subgraph is contained in Ĝn for sufficiently

large n. Therefore we may calculate hGur(Σ̂) as the increasing limit limn→∞ h(Ĝn).

Similarly, let Kn define the compact invariant set consisting of all points X ∈ R

with forward orbit contained in [−n, n + 1]. The supremum of entropies over all

compact invariant sets can be calculated along this sequence as limn→∞ h(F |Kn). Now

recognize that Ĝn encodes the symbolic dynamics of F |Kn , and so h(Ĝn) = h(F |Kn)

for all n. Therefore the limits are equal.

Next we show that h(F̄ ) is equal to limn→∞ h(F |Kn). The inequality h(F̄ ) ≥
limn→∞ h(F |Kn) is obvious. Define “truncated” maps Fn : [−∞,∞] → [−∞,∞] by

setting

Fn(X) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

n+ 1, if X ∈ [−n, n+ 1] and F (X) > n+ 1

−n, if X ∈ [−n, n+ 1] and F (X) < −n

F (X) if X ∈ [−n, n+ 1] and F (X) ∈ [−n, n+ 1]

and then extend with Fn|[n+1,∞] and Fn|[−∞,−n] constant. The entropy of the truncated

map Fn is at least as great as the entropy of the restricted map F |Kn , because these

two maps are identical on the compact invariant set Kn. To get the reverse inequality,

notice that the dynamics of Fn are not substantially different from the dynamics of

F |Kn in the following precise sense: each of the points F (−n), and F (n + 1) either

belongs to Kn or is (pre)periodic, and every point in [−∞,∞] �Kn has a trajectory

which eventually arrives at one of these two points. It follows from the Poincare
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recurrence theorem that any invariant measure is supported on the union of Kn

with perhaps one or two additional periodic orbits, and therefore by the variational

principle Fn has entropy no greater than that of F |Kn . Therefore limn→∞ h(Fn) =

limn→∞ h(FKn).

The topological space [−∞,∞] is homeomorphic to the interval, and, regarded as

interval maps, the truncations Fn converge uniformly to F̄ . Topological entropy is a

lower semicontinuous function on the space of interval maps with respect to the topol-

ogy of uniform convergence [1, Theorem 4.5.2]. Therefore h(F̄ ) ≤ limn→∞ h(Fn) =

limn→∞ h(F |Kn).

Theorem 4.4 allows us to apply the theory of countable extensions to compute the

entropy of the transitive lifting of a degree one circle map.

Corollary 4.5 Let F be a transitive lifting of a degree one circle map with Markov

partition V×Z, and F̄ its continuous extension to [−∞,∞]. Let M∗
β be the associated

weighted transition matrix defined in equation 4.1.3. Then h(F̄ ) = log minβ∈R radM∗
β .

Proof Theorem 4.4 equates the entropy of F with the Gurevich entropy of Σ̂. Theo-

rem 3.5 equates this entropy with the minimum pressure of βϕ. Theorem 3.8 equates

the pressure of βϕ with the logarithm of the spectral radius of the matrix Mβ. And

Lemma 4.3 implies that Mβ and M∗
β have the same spectral radii.

We illustrate our results with several examples. We want to show what issues may

arise in computations.

First, consider the map F from example 4.2. From the transition graphs, it is easy

to verify the transitivity hypothesis. The matrix M∗
β has rank one, and so its spectral

radius is equal to its trace. Thus, the problem of finding the entropy is reduced to

minimizing e−β + 2 + 2eβ and taking a logarithm. Then, elementary calculus gives

h(F̄ ) = log(2 + 2
√

2).

Next, let F be the piecewise-affine “connect-the-dots” map with critical points

F (k) = k− 2, F (k+ 1
2
) = k+ 2, k ∈ Z, again with the Markov partition V ×Z where
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V = {[0, 1
2
], [1

2
, 1]}. We can easily write down the weighted transition matrix M∗

β . It

again has rank one, so that its spectral radius is just its trace, which we calculate to

be

radM∗
β = 2e2β + 2eβ + 2 + 2e−β + 2e−2β + e−3β

To minimize this expression we set the derivative equal to zero, substitute μ = eβ,

and look for positive real solutions of the resulting quintic equation

4μ5 + 2μ4 − 2μ2 − 4μ− 3 = 0.

There has to be exactly one positive real root, because radM∗
β is the exponential of

P(βϕ) and is therefore convex with a unique minimum. Computations give this root

as μ ≈ 1.1138 and the resulting value for the entropy is h(F̄ ) ≈ log(10.8403).

4.3 Constant Slope

Lemma 4.6 If Mβr = λr, then the nonnegative vector

y
(
(a,m)

)
= eβmr(a)

satisfies Ty = λy.

Proof By hypothesis we have

∑
b∈A

Mβ(a, b)r(b) = λr(a), a ∈ A.

Applying Equation 3.4.2 this becomes

∑
b∈A:

init(b)=term(a)

eβϕ(a)r(b) = λr(a), a ∈ A.

Multiplying both sides of the equation by eβm, m ∈ Z arbitrary, and applying the

definition of y, we obtain

∑
b∈A:

init(b)=term(a)

y
(
(b,m+ ϕ(a))

)
= λy

(
(a,m)

)
, a ∈ A,m ∈ Z.
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Applying Equation 4.1.5 we obtain the desired result

∑
(b,n)∈A×Z

T
(
(a,m), (b, n)

)
y
(
(b, n)

)
= λy

(
(a,m)

)
, (a,m) ∈ A× Z.

Theorem 4.7 Let F be a transitive lifting of a degree one circle map with Markov

partition V×Z, and let F̄ : [−∞,∞] → [−∞,∞] denote the extended map (with fixed

points at ±∞). Fix λ > 1. Then F̄ is conjugate to a map of constant slope λ on

some interval [a, b] ⊆ [−∞,∞] if and only if log λ ≥ h(F̄ ).

Proof Our proof applies the theory of countable extensions to the symbolic systems

Σ̂ and (Σ, ϕ) constructed from F in Section 4.1. We saw there that Σ̂ is topologically

transitive and Σ is topologically mixing, so that the theory of countable extensions

applies in full force. We will need to use the weighted transition matrix Mβ of (Σ, ϕ)

given in Equation 3.4.2 and the infinite transition matrix T of Σ̂ given in Equation

4.1.5. The theory of countable extensions will allow us to determine which positive

numbers λ are eigenvalues for nonnegative eigenvectors of T .

We also appeal to our work in Chapter 2 on countably piecewise monotone and

Markov maps. We choose to regard F̄ as countably piecewise monotone and Markov

with respect to the refined partition (V × Z) ∨ F−1(V × Z). Remark 4.1 identifies

this partition with A× Z, and we see that the Markov transition matrix for F̄ with

respect to this partition is the same matrix T that encodes Σ̂. The discussion at the

end of Section 4.1 shows that F̄ is topologically mixing. Applying Theorem 2.2, it

suffices to prove the equivalence

log λ ≥ h(F̄ ) iff T has a nonnegative eigenvector in R
A×Z with eigenvalue λ.

Suppose that log λ ≥ h(F̄ ). By Theorem 4.4, log λ ≥ hGur(Σ̂). By Corollary 3.6

we can find β such that log λ = P(βϕ). By Theorem 3.8, λ is the spectral radius

of the weighted transition matrix Mβ. By the Perron Frobenius theorem, Mβr = λr

for some strictly positive vector r. By Lemma 4.6, we can lift r to a nonnegative

eigenvector y ∈ R
A×Z for T with eigenvalue λ.
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Conversely, suppose that T has a nonnegative eigenvector y ∈ R
A×Z with eigen-

value λ. Then T ny = λny for all n ∈ N. Fix a state I ∈ A × Z such that y(I) > 0.

By the definition of matrix multiplication and the nonnegativity of y we obtain the

inequality

λny(I) ≥ (T n)II y(I), n ∈ N.

Now recall the characterization of Gurevich entropy given by Equation 3.2.1. After

taking the logarithm of both sides of our inequality, dividing by n, and letting n tend

to infinity, it follows that log λ ≥ hGur(Σ̂).

Among all constant slope maps conjugate to F̄ , Theorem 4.7 characterizes which

slopes can be realized. What can we say about the constant slope maps themselves?

In light of Theorem 2.2, finding a constant slope map conjugate to F̄ is the same as

finding a nonnegative eigenvector for the matrix T acting on the linear space R
A×Z.

Conjecture 4.8 Let F be a transitive lifting of a degree one circle map with Markov

partition V ×Z. Let T be the infinite transition matrix of the corresponding countable

extension Σ̂. Let d(λ) denote the dimension of the intersection of the nullspace of

T − λI with the cone of nonnegative vectors in R
A×Z. We conjecture that

d(λ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, if 0 < log λ < h(F̄ )

1, if log λ = h(F̄ )

2, if log λ > h(F̄ )

We give now partial evidence in support of this conjecture. Theorem 4.7 shows

that d(λ) = 0 for 0 < log λ < h(F̄ ) and d(λ) ≥ 1 for log λ ≥ h(F̄ ). If we read the

proofs of Theorems 3.5 and 4.7 carefully, we see that d(λ) ≥ 2 for λ > exph(F̄ ). This

is because the pressure function β �→ P(βϕ) attains the value log λ for exactly two

distinct values of β. This gives two weighted transition matrices Mβ with the same

spectral radius λ, which by Lemma 4.6 gives two linearly independent nonnegative

eigenvectors for T (linear independence follows from the distinctness of β). Our
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conjecture asserts that up to taking positive linear combinations, these are the only

nonnegative eigenvectors for T .

Now we give some alternative computational techniques for finding the nullspace

of T − λI. Our computations give a finite upper bound for d(λ) in terms of the

cardinality of A and the maximum value of the displacement function ϕ. We make

no attempt to sharpen this upper bound.

Fix λ with log λ ≥ hGur(Σ̂). Let r denote the cardinality of A and m the maximum

value of the displacement function ϕ. Form a finite submatrix S of the matrix T −λI
taking the entries from rows A× [l, l + 2mr] and columns A× [l −m, l + 2mr +m];

the result is independent of the choice of l ∈ Z. By the definition of m, S contains all

nonzero entries from rows A× [l, l+ 2mr] of T −λI. Therefore if y is in the nullspace

of T − λI, then the projection of y on R
A×[l−m,l+2mr+m] is in the nullspace of S.

Now form a square matrix R by taking rows A × [l, l + 2mr] and columns A ×
[l −m, l + 2mr +m] from T and adjoining mr rows of zeros at the top and mr rows

of zeros at the bottom. It is the binary matrix corresponding to a finite subgraph

of the transition graph of Σ̂. Recall now the characterization of Gurevich entropy

as the supremum of topological entropies over finite subgraphs. Theorem 3.7 tells us

that Σ̂ has no measure of maximal entropy. But the finite state subshift of the finite

subgraph corresponding to R does have a measure attaining its topological entropy,

namely, its Parry measure, (or else the Parry measure on some irreducible component)

(see, eg., [13]). Therefore the topological entropy of this subgraph is strictly smaller

than hGur(Σ̂). But the topological entropy of this subgraph is also the spectral radius

of R (see, eg., [1]). It follows that the spectral radius of R is smaller than λ, and

therefore R − λI has full rank. But S is just R − λI with the upper and lower rm

rows removed. Therefore S has full rank.

Apply Gauss-Jordan elimination to find the reduced row-echelon form of S. The

number of columns without a leading one is 2mr. It follows by the pigeonhole principle

that for every a ∈ A there exists k ∈ {0, 1, . . . , 2mr} such that the column with index

(a, l + k) contains a leading one. Thus, for any vector in the nullspace of S, we
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can solve for entry (a, l + k) in terms of some succeeding entries, and the number of

succeeding entries required is less than N , where N is the number of columns of S.

It follows that for any vector y in the nullspace of T − λI, we can solve for entry

(a, l+ k) as a function of the succeeding N entries. This is true for every a ∈ A, and

the integer l is completely arbitrary, and therefore we can solve for every entry of y

in terms of the succeeding N entries. We may also apply Gauss-Jordan elimination

working from the bottom right-hand corner of S to produce trailing ones instead of

leading ones. It follows that we can solve for every entry of y in terms of the preceding

N entries. We have shown that once we know N consecutive entries of a vector y

in the nullspace of T − λI, we can calculate all the remaining entries. Therefore the

nullspace of T − λI in R
A×Z has dimension at most N .
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