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ABSTRACT

Pfei↵er, Joseph J., III Ph.D., Purdue University, May 2015. Overcoming Uncer-
tainty for Within-Network Relational Machine Learning. Major Professor: Jennifer
Neville.

People increasingly communicate through email and social networks to maintain

friendships and conduct business, as well as share online content such as pictures,

videos and products. Relational machine learning (RML) utilizes a set of observed

attributes and network structure to predict corresponding labels for items; for exam-

ple, to predict individuals engaged in securities fraud, we can utilize phone calls and

workplace information to make joint predictions over the individuals. However, in

large scale and partially observed network domains, missing labels and edges can sig-

nificantly impact standard relational machine learning methods by introducing bias

into the learning and inference processes. In this dissertation, we identify the e↵ects

on parameter estimation, correct the biases, and model the uncertainty of the missing

data to improve predictive performance. In particular, we investigate this issue on a

variety of modeling scenarios and prediction problems.

First, we introduce the Transitive Chung Lu (TCL) random graph model for mod-

eling the conditional distribution of edges given a partially observed network. This

model fits within a class of scalable generative graph models with scalable sampling

processes that we generalize to model distributions of networks with correlated at-

tribute variables via Attributed Graph Models. Second, we utilize TCL to incorporate

edge probabilities into relational learning and inference models for partially observed

network domains. As part of this work, we give a linear time algorithm to perform

variational inference over a squared network. We apply the resulting semi-supervised

model, Probabilistic Relational EM (PR-EM) to the Active Exploration domain to
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iteratively locate positive examples in partially observed networks. Due to the sam-

pling process, this domain exhibits extreme bias for learning and inference: we show

that PR-EM operates with high accuracy despite the di�cult domain. Third, we

investigate the performance applying Relational EM methods for semi-supervised re-

lational learning in partially labeled networks and find that fixed point estimates

have considerable approximation errors during learning and inference. To solve this,

we propose the stochastic Relational Stochastic EM and Relational Data Augmen-

tation methods for semi-supervised relational learning and demonstrate that these

approaches are improvements over the Relational EM method. Fourth, we improve

on existing semi-supervised learning methods by imposing hard constraints on the

inference steps, allowing semi-supervised methods to learn using better approxima-

tions during learning and inference for partially labeled networks. In particular, we

find that we can correct for the approximated parameter learning errors during the

collective inference step by imposing a Maximum Entropy constraint. We find that

this correction allows us to utilize a better approximation when learning using the

unlabeled data. In addition, we prove that given an allowable error, this method

is only a constant overhead to the original collective inference method. Overall, all

of the methods presented in this dissertation have provable subquadratic runtimes.

We demonstrate each on large scale networks, in some cases including networks with

millions of vertices and/or edges. Across all these approaches, we show that incorpo-

rating the uncertainty into the modeling process improves modeling and predictive

performance.
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1 INTRODUCTION

Relational machine learning (RML) methods (see, e.g., [1]) extend traditional inde-

pendent and identically distributed (i.i.d.) machine learning methods to model the

joint dependencies of a set of items utilizing an observed relational network. There

are many forms of data that easily fall into this representation, with example do-

mains including social networks, the web, internet topologies, bioinformatics, and

fraud detection, where the entities are interconnected through relationships such as

friendships or messages, hyperlinks, packet transfer, interactions and phone calls or

emails. RML aims to make predictions about interesting features in the network,

given some other observed features and the relational structure. Each of these tasks

falls within the broad scope of RML:

• Predicting movie box o�ce receipts using a network comprised of actors/producers

that appeared in multiple films.

• Jointly categorizing/labeling web page content using both word features and

hyperlink network structure.

• Predicting whether a user is likely to click an ad / buy a product based on their

own intrinsic values and their personal network (friendships).

More formally, RML jointly models a set of labels given a set of attributes and

relational structure (see, e.g. [1–4]). RML has been broadly divided into two classes

of tasks: across-network and within-network learning: each formulation assumes fully

observed and perfect network structure, although the data could be missing a subset

of labels. For the former task, a model is learned from a given fully labeled network

and then applied on a separate unobserved network (presumed to be drawn from the
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same underlying network distribution). For the latter, a model is learned from a par-

tially observed network and then applied to jointly predict the remaining instances.

This latter domain also presents a natural opportunity for semi-supervised relational

machine learning methods (SSL) that leverage the unlabeled data to improve the cor-

responding predictions (e.g., [5, 6]). More precisely, SSL intertwines the results from

learning parameters with inferences over the unlabeled items, potentially improving

the accuracy for each. This work focuses on the second scenario and, in particular,

the semi-supervised methods.

For within-network relational learning domains, a set of items (e.g., papers, movies,

individuals) are interconnected via a set of relationships. One class of RML methods

learn a local conditional model from the labeled instances; that is, the instances where

the interesting trait (e.g., box o�ce revenue, fraudulent) is known. The model is

learned to predict an item’s label as a function of it’s intrinsic attributes (i.e., ob-

served features) and relational structure (neighboring labels). The learned model is

then applied to infer the remaining items within the network, predicting each of their

labels, again given their intrinsic attributes and neighboring labels. As the unknown

variables are dependent on one another, collective inference is performed to jointly

predict the unknown instances. Semi-supervised methods then relearn the model

given both the original labeled data and newly inferred values, under the general

assumption that good initial estimates can be utilized to create better subsequent

models. Thus, relational semi-supervised relational learning methods are comprised

of two primary steps and explicitly rely both on accurate label inference coupled with

accurate parameter learning.

However, despite the need for accurate estimates in the semi-supervised learning

scenarios, RML must resort to approximations for both the inference and learning

steps due to the complexity of typical relational structure. For example, as exact

inference is intractable due to loops in the relational structure RML performs collec-

tive inference via Gibbs sampling [7] or Variational Mean Field (VMF) inference [8].

Similarly, maximizing the likelihood (and corresponding gradient) is intractable to



3

compute directly for learning due to the dependencies between the labels. As a re-

sult, the majority of relational learning algorithms maximize the corresponding pseu-

dolikelihood, where the labeled examples are treated as independent samples. For

the supervised learning case, this is learned on just the labeled set of items within a

network and the relationships between them (Figure 1.1.a). For the semi-supervised

learning case, inference is performed to provide estimates on the unlabeled exam-

ples: these unlabeled estimates are utilized as attributes to the labeled instances, and

are used to relearn the parameters (Figure 1.1.b) [5]. Unlike traditional i.i.d. SSL

algorithms (e.g., [9]), the general Relational Expectation Maximization (Relational

EM) method does not utilize the inferred label probabilities of unlabeled samples as

weighted samples; rather, it solely utilizes the predictions as new feature values (Fig-

ure 1.1.b). This contrasts with incorporating unlabeled items as (probabilistically

weighted) training examples to relearn the parameters (as shown in Figure 1.1.c), as

is typically performed in i.i.d. SSL.

Unfortunately, in practice these relational SSL methods perform poorly. In partic-

ular, fixed point approximation errors for learning and inference lead to biases impact

prediction accuracy: in typical domains this leads to predictions that stray far from

priors that correspond to the actual data. Coupled with relational SSL methods, this

often leads to parameter estimates that either (a) do not converge or (b) converge

to largely predicting a single label (exceptions exist for certain types of conditionals,

e.g., [6]). In order to accurately apply relational SSL models in practice, we need to

develop methods that correct for errors caused by approximations and model the un-

certainty over the parameter estimates. Further, due to the size of modern relational

networks, we must develop methods that are provably scalable (run in subquadratic

time); more precisely, we need methods for accurate relational SSL predictions that

we can apply to networks with millions of edges, in contrast to modern methods that

we can only apply to networks with thousands of examples.

In addition to the explicit necessity of accurate inferences and learned parameters,

prior work on RML implicitly assumes a completely observed, known network. How-
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(a) Labeled (b) Known Labels (c) All Instances

Figure 1.1.: (a) Pseudolikelihood over the labeled subgraph GL. (b) Composite like-
lihood over the full graph G, where predicted labels for unlabeled (dashed) vertices
are only considered as features of labeled vertices during learning and (dashed) links
among unlabeled vertices are only used during collective inference. (c) Pseudolikeli-
hood over the full graph G, where all vertices/edges are used for learning.

ever, in real world domains, this assumption can be incorrect. For example, many

users of social networks do not list or communicate with all of their friends. This

can be because they simply haven’t added each other on the site, or because they

generally communicate with each other through external means (e.g., phone, email).

This limitation can also be a result of the domain or task. In the case of fraud or

criminal investigations, photo calls, emails or social networking communications are

generally found through an investigation process. Thus, although the communication

patterns exist, they may be hidden from the view of semi-supervised RML learner.

This is only the case for individuals that are not part of prior investigations: the

communication patterns of previously investigated individuals are observed. As a

result, partially observed networks from real world domains can have considerable

observation error, in that the observed relationships can vary with respect to the

actual communication patterns. These types of domains are illustrated graphically in

Figure 1.2: Figure 1.2.a shows observed edges and attributes, while Figure 1.2.b out-

lines all edges that could potentially exist, with the dashed line thickness indicating

the probability a particular edge does exist but is unobserved. Only observing part

of the underlying distribution can lead to biases in the learning and inference steps,

potentially lowering a RML model’s overall prediction accuracy. This motivates the
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(b) Network Distributions

Figure 1.2.: (a) An example observed network, with some nodes labels and edges. All
the solid edges are relationships that are known (e.g., observed emails). (b) A possible
distribution of networks over the unobserved edges, where the dashed line thickness
indicates the probability that a missing edge actually exists, but is not observed in
this domain.

need to model the distribution of unobserved or missing edges, given a network’s

observed edges and attributes.

There are several factors of this domain that we must consider when modeling the

distribution of missing relationships. First, our methods must be scalable; that is, we

must be able to learn, infer and sample edges in subquadratic time in the number of

observed edges. Second, they must be able to model representative distributions that

account for structural characteristics, such as popularity and transitivity. Third, they

must be possible to represent conditional edge distributions, meaning the missing

edges must naturally condition on sets of observed vertices, attributes and edges.

Current generative graph models, which capture the structural uncertainties of

networks, fail to satisfy the above requirements. The classical Erdős and Rényi [10]

graph model and weighted Chung Lu extension [11] do not condition based on either

the attributes or relative placement of edges within the network, making them ill

suited for modeling dependencies between the labels and network structure. The

generalization of Erdős and Rényi models to Exponential Random Graph Models [12]

does not scale to learning and inference beyond a few thousand vertices. Learning

and sampling from popular scalable generative network models such as Kronecker

Product Graph Models [13] is intractable as there exists a likely NP-Hard matching
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problem between the vertices of the model and the vertices in the observed graph.

Hence, a hole in the RML literature exists with respect to modeling a distribution

of unobserved edges for incorporation into learning and inference, in relation to a

current graph structure.

Thus, there are multiple avenues for error to exist in RML that significantly im-

pact semi-supervised learning, both from the network observation and the learn-

ing/inference approximations. In this dissertation, we investigate the following hy-

pothesis: In large scale and partially observed network domains, missing la-

bels and edges can significantly impact standard relational machine learn-

ing methods by introducing bias into the learning and inference processes.

In this dissertation, we identify the e↵ects on parameter estimation, cor-

rect the biases, and model the uncertainty of the missing data to improve

predictive performance.

1.1 Contributions

First, we present novel approaches for modeling the uncertainty of edges in net-

works by extending the Chung Lu random graph model [11]. We begin by introduc-

ing the Transitive Chung Lu (TCL) random graph model, which extends the Chung

Lu model by incorporating transitivity into the sampling step and (distinctly) is a

graph model that conditions on a partially observed network. We further extend the

sampling process for TCL, Chung Lu, and other scalable generative graph models,

to model the conditional distribution of edges given attribute values via Attributed

Graph Models (AGM). AGM generalizes the sampling processes for previous models,

allowing for scalable (subquadratic) sampling of networks with correlated attributes.

It can further be generalized to model additional structural characteristics, such as

the joint degree distribution.

Second, we utilize TCL to incorporate edge probabilities into relational learning

and inference models for partially observed network domains. Unlike other scalable
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generative graph models, TCL is simple to use for modeling the conditional distri-

bution over the unobserved edges, given an existing set of vertices and relationships.

This contrasts with previous scalable models, which (a) generally treat the edges as

independent probabilities or (b) are NP-Hard to determine whether a vertex in the

model corresponds to a vertex in the original network. Further, we prove that the TCL

edge probabilities can be incorporated into a variational inference or collapsed Gibbs

sampler in linear time. We incorporate TCL into a SSL model to develop Probabilis-

tic Relational EM (PR-EM) and apply it to Active Exploration to iteratively locate

positive examples in partially observed networks.

Third, we investigate the accuracy of Relational EM methods for semi-supervised

relational learning in partially labeled networks. In particular, we find that the fixed

point estimates of Relational EM can have exceptionally high variance between the

iterations: this is the result of the composite likelihood estimation methods required

by Relational EM. In contrast, we propose both the Relational Stochastic EM (R-

SEM) and Relational Data Augmentation R-DA methods for semi-supervised rela-

tional learning. These methods (a) reduce the variance of the parameter estimates

and (b) aggregate over a distribution of possible parameter values to perform infer-

ence. We demonstrate that each of these improves over the traditional relational EM

that learns using only the known instances (Figure 1.1.b).

Fourth, we improve on existing semi-supervised learning methods by imposing

hard constraints on the inference steps, allowing semi-supervised methods to learn

using better approximations during learning and inference for partially labeled net-

works. In particular, we find that we can correct for the parameter uncertainty errors

during the collective inference step by imposing a Maximum Entropy constraint. By

dynamically adjusting the estimated unlabeled probabilities, we correct them to force

the estimated prior probability to match the prior probability in the training sample.

We find that this correction allows us to utilize the all the unlabeled data as weighted

samples for, as shown in Figure 1.1.c, providing a substantial increase in accuracy

over traditional relational EM. In addition, we prove that given an allowable error,
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this method is only a constant overhead to the original collective inference method.

We then demonstrate that our semi-supervised learning methods can be used on net-

works with millions of edges, with collective inference performed in parallel in only

20 seconds on a single server. Our results show improved accuracy over a variety of

methods and demonstrates the successful application of relational learning at a scale

not previously attempted.
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2 NOTATION AND BACKGROUND

In this chapter we review some basic characteristics of real world data and introduce

notation which will be utilized throughout this dissertation. Further, we survey prior

work on generative graph models and relational machine learning.

To start, we define a graph solely in terms of its structural features, which we will

expand on in the following subsection. Let G = hV,Ei comprise a set of Nv vertices

V and a set of Ne edges E ✓ V ⇥ V. An edge (vi, vj) 2 E indicates a relationship

between the vertices vi and vj. For many scenarios, we utilize an attributed graph.

For these domains, every vertex vi 2 V has an associated set of traits wi 2 W, with

the wij 2 wi indicating the vi’s jth trait. W indicate the combinations of possible

traits assigned across all V. Similarly, for machine learning tasks we will split the

traits, W = hX,Yi, where X are observed attributes and Y are the labels to predict.

Many parts of this work will use probability distributions over the attributes,

labels or edges. Let W be a model that defines the probability of a particular com-

bination of traits W 2 W : we define ⇥W to be the parameters of the model. This

results in a distribution PW (W|E, ⇥W ), or the probability of a particular set of traits

W given the corresponding edges and parameters. We generalize this notation to

other possible types of random variables in an attributed network. First, define

PY (Y|X,E, ⇥Y ) as the distribution of labels given a set of attributes and relational

structure under a corresponding model Y . Second, let PE (E|⇥E ) or PE (E|W, ⇥E ) be

the distribution of edges given (possibly) the corresponding attributes and model E .

Third, let PW (W|E, ⇥W ) be the distribution of traits given a set of edges and model

parameters.
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2.1 General Properties of Real World Networks

Real world social networks exhibit a variety of characteristics which are repeatedly

observed in real world data. Our primary emphasis in this work will be with respect

to the scale of the data. Current real world datasets such as Facebook and Twitter

are on the order of hundreds of millions to billions of users, interacting by sharing

information and media. When considering the number of possible relationships, as

needed for probabilistic graphs, it is an order of magnitude more complex. Thus,

graph algorithms which consider every potential pairing of vertices directly quickly

become intractable. Even direct storage of probabilities for every possible friendship

would be di�cult to maintain: Facebook currently has 1.11 billion users [14], so

storing every possible pairing is on the order of 1018, or a billion gigabytes, and with

current available hardware would cost around $100 million (without backups!). As

directly storing such a large network of friendships (and probabilities) is prohibitively

expensive, algorithms on relational data take advantage of a second property of real

world data: sparsity. Relationships in social data are rare in comparison to the

number of possible relationships, meaning Ne ⌧ N2
v .

Given E, the degree d(vi) of a vertex vi is the number of vertices that vi is con-

nected to through the network:

d(vi) =
Nv
X

j=1

I [(vi, vj) 2 E]

For notational simplicity later, we let ⇡i = d(vi)/
P

k d(vk) be the normalized degree

distribution. Along these lines, the distribution of degrees generally follows a power

law:

P (d) / d��

This characterization is central to many real world networks [15,16], as well as having

been observed in other domains [17, 18]. Network data generally has an exponent in

the range 2  �  3 which results in a finite mean, but has infinite variance [18, 19].
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Thus, on average the degree of a vertex is much smaller than the number of nodes,

but nodes with high degree exist.

Two additional structural features are generally found in small world networks.

The first is a small diameter, or the distance between nodes across the graph is rela-

tively small. This was brought to light in Stanley Milgram’s seminal work regarding

“Six Degrees of Separation”, or that the median number of hops between any two

individuals in Milgram’s social network was six [20], which was repeated across email

(with similar results) [21]. Thus, even though the average degree of vertices in a

network is very small in comparison to the overall size of the network, it takes only a

few steps for information to travel through the network. Due to this, large amounts

of work has been dedicated to di↵usion, or modeling how information can propagate

through a network [22–25]. The second is transitivity, or the tendency for triangles in

the network to occur at a rate much greater than random [26]. This characterization

has also been described as clustering or community structure, and a wide variety

of work exists with the goal of discovering these communities [27]. No clear “best”

measure of community currently exists, with measures ranging from simple triangle

counts, to random walks, to normalized graph cuts [28].

The clustering of groups of vertices into communities has led to the characteri-

zation of the edges into two categories: strong and weak ties. The strong ties are

connections between vertices in the same community, while weak ties connect across

communities [29]. In order for information to propagate across the network it must

transfer through the weak ties: intuitively, if there were no weak ties in a network

then information could not pass out of a single community and into another.

In a similar sense, the majority of information generated within a community does

not leave the community, leading to groups of vertices which have a similar view of

the world. This ties intricately with the notion of social influence, or the tendency

for individuals to adopt the characteristics of their neighbors [30]. This can also

lead a group of nodes to pull outside nodes into the community through homophily
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[31, 32]. From a machine learning perspective, the correlations observed across the

edges should be exploited (i.e., modeled) to improve predictive accuracy [2, 33, 34].

2.2 Relational Machine Learning

Considerable work has been done on utilizing the relational information G to

improve learning and inference [2, 33, 34]. The resulting area of study is coined Re-

lational Machine Learning (RML). Using the network structure has repeatedly been

shown to improve prediction accuracy, on datasets such as movie receipts [35], web-

pages [4], topics of conference papers [5] and discovering securities fraud [36]. For

within-network RML, define VU as the unlabeled vertices and VL as the labeled ver-

tices, where VL and VU are disjoint subsets of V. The various attribute traits are

also divided, e.g., YU and YL. Formally, predictive RML estimates the following:

PY (YU |YL,X, G, ⇥Y )

That is, RML estimates the distribution of missing labels given the labeled vertices,

attributes and graph structure. RML methods generally simplify the above expression

by making the Markov assumption: every instance v 2 V is considered conditionally

independent of the rest of the network given its Markov Blanket (MB(vi)). For

undirected networks, this is simply the set of the immediate neighbors, i.e.:

MB(vi) = {vj|(vi, vj) 2 E}

One class of methods use local conditional distribution for a vertex vi 2 V, of the

general form PY (yi|YMB(vi),xi, ⇥Y ), where YMB(vi) indicates the labels of the im-

mediate neighbors of vi. By assuming independence from the rest of the network

(given the neighbors), we can learn the parameters in a scalable fashion (discussed

in upcoming subsections). A variety of possible local conditional models exist: this
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work will primarily focus on Relational Naive Bayes (RNB) [3] and Relational Logistic

Regression [37]. First, RNB is an extension to the i.i.d. Naive Bayes model:

PY (yi|YMB(vi),xi, ⇥Y ) / PY (yi)
Y

xij2xi

PY (xij|yi, ⇥Y )
Y

yj2YMB(vi)

PY (yj|yi, ⇥Y )

Similarly, RLR is a relational extension to i.i.d. Logistic Regression model:

PY (yi|YMB(vi),xi, ⇥Y ) =
�

1 + exp
�

�
�

✓trx · xi + ✓try · YMB(vi)
� ��1

where ✓x and ✓y are the parameter vectors corresponding to the intrinsic and relational

attributes. RML performs collective inference in order to predict the unobserved

labels, and learning to learn the parameters ⇥Y . For within-network RML (a focus

of this work), semi-supervised algorithms alternate between learning and inference on

a single network to improve the final predictions.

2.2.1 Collective Inference

There are several methods for performing inference in partially labeled networks;

here, we focus on Gibbs sampling [7] and Variational Mean Field Inference [8] meth-

ods. Let ỹi 2 ỸU be a collection of sampled labels for the unlabeled instances. Gibbs

sampling iteratively draws a label from the corresponding conditional distributions

of the unlabeled vertices:

ỹi ⇠ PY (yi|YL, ỸU\i,X, G, ⇥Y )

ỹi ⇠ PY (yi|ỸMB(vi),xi, ⇥Y )

where in the second equation we have utilized the Markov assumption, making yi only

depend on its immediate labeled and (previously sampled) unlabeled values (notated

ỸMB(vi). This process repeats until the samples are drawn from the joint distribution

of possible labelings. To compute functions of the labels (e.g., predictions based on
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the expected values), the samples for all the unlabeled examples are aggregated over

all T rounds of inference, e.g.:

EY [yi|YL,X, G, ⇥Y ] =
1

T

T
X

t=1

ỹt
i

Frequently a burn-in period is required prior to aggregation. How long to burn-in or

sample prior to aggregation remains an open problem [38] (we will state our choices

when utilized).

As an alternative to the exact but frequently slow Gibbs sampler, we also discuss

the approximate but faster Variational Mean Field (VMF) inference approach [8]. Let

QY (YU) for some YU 2 YU be an instantiation of a fully factorized approximating

distribution, such that:

PY (YU |YL,X, G, ⇥Y ) ⇡ QY (YU)

QY (YU) =
Y

vi2VU

QY (yi)

VMF inference is performed via iterative updates to each factor, where each factor is

updated via:

QY (yi) / exp
n

EY [log f(yi|ỸMB(vi),xi, ⇥Y )]
o

where in the exponent we have the expected value over all the neighboring factors of

an unnormalized energy function f(·) under the fully factorized assumption:

EY [log f(yi|ỸMB(vi),xi, ⇥Y )] =
X

Ỹ2Y

QY (Ỹ) log f(yi|ỸMB(vi),xi, ⇥Y )

=
X

ỸMB(vi)
2YMB(vi)

0

@

Y

ỹj2ỸMB(vi)

QY (ỹj)

1

A log f(yi|ỸMB(vi),xi, ⇥Y )

where QY (yj) = 1 i↵ yj 2 YL is inserted to simplify the expression.
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2.2.2 Parameter Learning

For a given local conditional model, RML methods learn parameters ⇥Y from

an observed network. Note that exact optimization is di�cult in general, due to

the dependencies between unlabeled examples. For example, let f(·) be the counts

of observations between labels and attributes across structures, and assume a fully

labeled network. Maximizing the likelihood is formulated as:

⇥̂Y = arg max
⇥Y

PY (YL|X, ⇥Y )

To estimate parameters ⇥Y for discriminative relational Markov networks [4] (which

lie in the relatively easy to optimize exponential family), we must repeatedly estimate

the gradient (r⇥) via:

r⇥ = f(YL,XL, GL) � E⇥[f(YL,XL, GL)] � ||⇥||

Although the first and third terms are easy to compute, the second is di�cult when

labels are dependent, requiring collective inference over the joint network. Note that

collective inference must be performed for each update to the parameters during a

gradient descent algorithm, meaning it is generally not of practical use.

In contrast, maximizing the corresponding Pseudolikelihood over an observed graph

GL is much more tractable [3]:

⇥̂Y = arg max
⇥Y

X

vi2VL

log PY (yi|YMB(vi),xi, ⇥Y )

For this representation, as it is a maximization over summations over the logarithms,

the corresponding gradients are easily computed in closed form. Note that for tradi-

tional RML, YMB(vi) only includes known labels; i.e., vj 2 YL.
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2.2.3 Semi-Supervised Relational Machine Learning

More recent work has focused on semi-supervised within network learning, utiliz-

ing predictions over the unlabeled part of the graph to improve RML [5,6,39]. These

works attempt to infer the unlabeled instances in order to improve their accuracy:

generally through the use of expectation maximization [40] (e.g., [5, 6]), or by simply

using the neighboring features instead of the labels [6]. Relational Expectation Max-

imization (Relational EM) methods follow the standard EM paradigm: that is, they

iteratively compute:

E-Step: Compute PY (YU |YL,X, G, ⇥̂t�1
Y )

M-Step: Maximize

⇥̂t
Y = argmax

⇥Y

X

ỸU2YU

PY (ỸU |YL,X, G, ⇥̂t�1
Y ) logPY (YU ,YL|X, G,⇥Y )

until convergence. Again, the above M-Step is di�cult to maximize. The basic Re-

lational EM methods maximize the Composite Likelihood [5] instead, which is similar

to the full pseudolikelihood:

E-Step: Compute PY (YU |YL,X, G, ⇥̂t�1
Y )

M-Step: Maximize

⇥̂t
Y = argmax

⇥Y

X

ỸU2YU

PY (ỸU |YL,X, G, ⇥̂t�1
Y )

X

vi2VL

PY (yi|ỸMB(vi), xi, G,⇥Y )

Note that the composite likelihood is simply the pseudolikelihood over the known

instances and their labels, where the unlabeled instances are only treated as relational

attributes. This contrasts with i.i.d. semi-supervised methods where the unlabeled

instances are incorporated into the training set as weighted samples [9]. Although re-

lational methods exist that utilize the full pseudolikelihood with weighted labels, they

exist only for a specific local conditional model [6]. In general, using the full pseu-

dolikelihood as part of Relational EM performs poorly in practice, with no existing

implementations that can be applied on a variety of local conditional models.
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2.2.4 Further RML Related Work

RML generally utilizes the Markov assumption: vertices are dependent on their

neighbors, but conditionally independent of all other vertices given their neighbors.

This assumption makes estimation and inference tractable, with even the slightly

larger two hop case beginning to present complexity issues. Due to this, relational

machine learning assumes a fixed and observed graph structure to utilize when es-

timating parameters and inferring labels, and generally does not consider the prob-

abilities of unobserved edges because it would become expensive during parameter

estimation or inference over the network.

Relational models are flexible enough to incorporate inference over edges as well

as node attributes, while in [41] the authors relax this process to allow for iterative

inference of edges versus attributes. This allows for a more general class of condition-

als to be used for each. The generative graph models discussed in this work provide

mechanisms for link prediction, or, which links are likely to either be missing from

the dataset or (in a more temporal sense) will occur in the near future. In [42], the

authors discuss and compare a variety of structural link prediction approaches. It was

found that in most cases simply counting the number of common neighbors performed

well, outperforming many more complex methods. Models have been developed to

incorporate node attributes when doing link prediction; [43] uses the attributes to

supervise a random walk to do link prediction. Application of link prediction in the

active learning scenario presents additional challenges. In this case estimation and

inference must be performed iteratively as new labels (and structure) are introduced

into the network, and in some cases a response (prediction) may be needed in or-

der to proceed. For these problems, incorporating probabilistic structure is currently

intractable due to the complexity of modeling the distribution of edges.

In addition to the above RML methods that learn a conditional distribution, then

perform inference, there are a class of simple relational classifiers that utilize collective

relational inference, but do not perform learning [44, 45]. These Label Propagation
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algorithms simply predict an instance’s label given the neighboring labels, and col-

lective inference is done by iteratively averaging predictions given the last estimates

presented. These methods can be highly e↵ective, and easily scale to items with

millions of examples, making them an attractive model for many problems. As part

of this work, we will demonstrate that RML can also scale to large scale data and

outperform these methods.

The problem of within network relational learning can have close ties to the domain

of Active Learning [46]. For Active Learning, a learner is allowed to selectively choose

samples in order to minimize the number of labels needed to learn, generally choosing

to select instances which the current learner is most uncertain about [47], or which

a collection of ensembles most disagree about [48]. In within network learning, we

have a single network where we wish to infer labels jointly, using as few labels as

possible. Relational active learning and active inference select instances which are

uncertain while reducing variance of the estimates across the network [49,50]. Thus,

these methods generally choose instances with high centrality that are “far” from

each other in the graph.

2.3 Generative Graph Models

The above subsection focused on applying machine learning methods in relational

domains, or defining a distribution of labels given some graph structure and attributes.

We next discuss an area of research for defining a distribution of networks, rather than

assuming a fixed network. Further, we primarily focus our work on scalable generative

network models, where learning and sampling is subquadratic (O(Ne)).

We begin by discussing the first generative graph model from the seminal work

of Erdős and Rényi [10]. In this work, the edges are independently and identically

distributed (i.i.d.) with Bernoulli trials on edges, parameterized by a single variable
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p. Thus, the joint distribution PE (E|⇥E ) can be broken into independent probability

mass functions:

PE (Eij = 1|⇥E ) = ✓Eij
p (1 � ✓p)

1�Eij

where Eij = 1 indicates (vi, vj) 2 E and Eij = 0 otherwise. Unless otherwise specified,

we simplify notation such that PE (Eij|⇥E ) ⌘ PE (Eij = 1|⇥E ) unless otherwise stated.

The joint likelihood of the graph is:

PE (E|⇥E ) =
Y

vi,vj2V

✓Eij
p (1 � ✓p)

1�Eij

The above representation is simple to estimate and lies within the exponential family

of distributions. Further, random graphs lead to low distance between individuals [51],

a trait famously associated with social networks by Stanley Milgram [20]. However,

further study of the Erdős Rényi graphs led to di↵erences from observed networks:

Watts and Strogatz found that real world networks generally exhibit large amounts

of clustering [26], while several authors had found that real world networks generally

have a power law degree distribution [16,52]. Erdős Rényi graph models do not exhibit

large clustering and have a degree distribution which is Binomial [53].

With the shortcomings of the Erdős Rényi models becoming apparent, researchers

turned to weighted independent trials to address one of these issues: the degree dis-

tribution. The simpler of these approaches is the Chung-Lu (CL) graph model [11].

Similar to the Erdős Rényi model, CL treats edge probabilities as independent coin

tosses but weights the edges’ success probabilities dependent on the degrees of an

input graph. In the CL model, edges exist with probability:

PCL(Eij|⇥CL) =
✓i✓j

P

vk2V ✓k
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where ✓i = d(vi) for vi 2 V are the degrees from an input graph. The resulting

expected degrees are:

ECL[d(vi)|✓CL] =
X

vj2V

✓i✓j
P

vk2v vk

=✓i

P

vj2V ✓j
P

vk2V ✓k

=✓i

(2.1)

In other words, the degrees produced by the CL graph model match the input de-

grees in expectation. Similarly to the CL model, the Kronecker Product Graph Model

(KPGM) defines a weighted matrix of independent edge probabilities to create a dis-

tribution of graphs with small diameter: subsequent work has found that a noisy

version of the model provably has a lognormal degree distribution [54]. Unlike the

CL model, KPGM parameterizes the graph into a small handful of parameters, rely-

ing only on a b ⇥ b initiator matrix for ⇥E . When k Kronecker products are taken

of this single initiator matrix, the probability of an edge Eij occurring in the set of

edges given the corresponding probability matrix for parameters ⇥KPGM is:

PKPGM(Eij = 1|⇥KPGM) =
Y

k

⇥KPGM(✓ki, ✓kj)

where ✓ki indicates the position of the parameter in the initiator matrix ⇥KPGM that

is associated with nodes vi in the kth Kronecker multiplication.

The main benefit of both CL and KPGM is their ability to model large real-world

networks. Namely, CL requires only the degree distribution of an input graph to

define its distribution and can sample networks by repeated draws from the degree

distribution, where every edge (vi, vj) is sampled proportional to ✓i✓j [55]. This

approach is scalable: Ne edges are drawn, with each edge draw requiring sublinear

time (in this case O(1)). Multiple scaleable methods for learning KPGM exist, include

maximum likelihood estimation [13], and method of moments [56]. Sampling from the

KPGM distribution is performed by repeatedly sampling the b⇥b initiator matrix; this
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sampling algorithm is also scalable, as Ne draws are performed with a cost of O(log Nv)

each, so each draw from KPGM is also sublinear. For each of these models the total

generation time is subquadratic: CL costs O(Ne) and KPGM costs O(Ne log Nv),

which are both less than O(N2
v ), meaning they scale to large networks.

While both CL and KPGM can be viewed as weighted versions of Erdős Rényi

graph model, the Exponential Random Graph Models (ERGM) extend the Erdős

Rényi model by utilizing the form of the exponential family [57, 58]. Namely, the

probability of a graph under the Erdős Rényi model can be expressed as:

PERGM(E|⇥ERGM) / exp

⇢

Ne log
✓p

1 � ✓p

�

/ exp {⌘ · Ne}

In this instance, ⌘ parameterizes the density of the distribution. However, once viewed

as an exponential family additional parameterizations become possible. For example,

[57] extends the model to include an additional parameter for reciprocity. Let

Nr =
X

vi,vj2V

I [(vi, vj) 2 E] · I [(vi, vj) 2 E]

be the number of reciprocated friendships in a (directed) graph. The Erdős Rényi

model can be extended to incorporate these reciprocated edges as:

PERGM(E|⇥ERGM) / exp {⌘1 · Ne + ⌘2 · Nr}

In this way, we can define more general statistics from the graph:

PERGM(E|⇥ERGM) / exp

(

I
X

i=1

⌘iNi

)

Arguably the most important parameterizations were the Markov dependence as-

sumptions [58]. That is, when given a possible relationship (vi, vj), the probability

of this edge existing depends on all other relationships that vi and vj participate in.
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Notably, this allows for incorporation of triadic closures as a statistic in the network,

a statistic which occurs frequently in real world networks.

ERGM’s flexibility allows it to model a variety of statistics, including clustering,

but the resulting flexibility results in increased complexity. Estimation, sampling and

inference are too costly for all but the smallest networks for ERGM as the model must

consider all N2
v possible edges. Even in the case of small networks exact inference

is di�cult, a required step for parameter learning. Thus, researchers to consider

utilizing Markov Chain Monte Carlo (MCMC) techniques to draw from the space

of graphs [59], while [60] introduced pseudolikelihood methods for estimation. This

allows for estimation and inference on networks with several a few thousand nodes, but

cannot scale to large networks. This issue is further complicated by the degeneracy of

the models [61], which leads to large amounts of the probability space lying on either

empty or complete graphs. More recent research has focused on including higher

order alternating statistics into a single parameterization which has been shown to

correct for the degeneracy in the graph by penalizing networks that are too sparse or

too dense [12]. However, a newer issue to arise is that estimation with ERGM is only

consistent when we have dyadic independence, which limits their appeal for modeling

statistics such as triangle counts [62].

The Erdős-Rényi, CL, KPGM and ERGM models discussed are generative graph

models which assign a distribution of edges given a set of vertices. However, with

the discovery of the power law degree distribution, other models were developed in

terms of vertex arrival to a preexisting graph. The most prominent of these is the

preferential attachment model, where arriving vertices choose preferentially propor-

tionally to the degrees of the previously inserted nodes and place d edges (in this

case, d is a parameter) [16,52]. This model produces networks with power law degree

distribution (� = 3), and has low diameter [25]. The copying model has nodes arrive

and choose an existing vertex vi uniformly at random, then with probability p creates

links with those neighbors. Otherwise, it chooses di new neighbors, but uniformly

at random [63]. This also allows for a power law degree distribution, but with ad-
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ditional modeling of clustering. The Random Surfer [64] and Forest Fire Model [65]

incorporate randomness into the copying model: random surfer performs a random

walk from vi to find a neighbor, while forest fire chooses a collection of neighbors (by

a geometric random variable) to create links with, iteratively repeating on the new

neighbors until the fire “dies out”. [66] extends the rich get richer model to incorpo-

rate a function that represents rich at birth, while [67] incorporates a time element to

represent recently active users. An alternative approach of modeling networks stems

from the original small-world paper from Watts & Strogatz [26], that of the configura-

tion model. In the original work, the authors found that randomly rewiring a regular

graph led to characteristics consistent with small world networks. In [68], the authors

extended the configuration rewiring to networks of arbitrary degree, while [69] allows

for configurations of branches (edges not involved in triangles) and triangles, rewiring

branches as before but also rewiring triangles.

Other probabilistic approaches include the stochastic blockmodel of [70] and latent

space modeling of [71,72] which model edge formation conditioned on a latent space.

These methods generally do not model network statistics such as degree distributions

and are di�cult to scale. One exception to this is the Multiplicative Attribute Graph

Model [73], which is an extension of KPGM intended to model latent attribute space

in a scaleable fashion. The work of [74] models temporal edge arrivals and departures

in networks through stochastic processes, both through a blockmodel approach, as well

as through triadic closure. A large limitation to this approach is that the estimation

is O(N2
v ), meaning (similar to ERGM) it is limited to small networks.

2.4 Accept-Reject Sampling

We close our related work with a statistical process that will be useful for several

sections of this dissertation. Accept-Reject sampling is a framework for generating

samples from a desired distribution Q [38]. For many distributions, direct sampling

from Q is di�cult either because direct methods do not exist or are ine�cient; how-
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Algorithm 1 AcceptRejectSampling (Q, Q0)

1: R(Y ) = Q(Y )
Q0(Y )

2: A(Y ) = R(Y )
sup[R(Y )]

3: S = ;
4: while |S| < number of samples do
5: u ⇠Uniform(0, 1)
6: y ⇠ Q0(Y )
7: if u < A(y) then
8: S = S [ y
9: end if
10: end while
11: return S

ever, computing the probability of a given point from Q is possible. Further, alterna-

tive proposal distributions Q0 exist that have the same support (nonzero probability)

as Q.

Given distributions Q(Y ), Q0(Y ) for a random variable Y , define the ratio between

them for a particular value Y = y:

R(Y = y) =
Q(Y = y)

Q0(Y = y)
R(Y ) =

Q(Y )

Q0(Y )

with the set of ratios over the possible values for Y being R(Y ): The acceptance

probabilities A(Y = y) (and corresponding set A(Y )) are defined as:

A(Y = y) =
R(Y = y)

sup [R(Y )]
A(Y ) =

R(Y )

sup [R(Y )]

A typical algorithm for accept-reject sampling is given in Algorithm 1. It begins

by initially computing R(Y ),A(Y ), then proceeds to iteratively propose (or draw)

samples y ⇠ Q0(Y ) (lines 4-10). With probability A(y), the proposed samples are

accepted in the set of samples to return (S); otherwise they are rejected. For intuition,

when the distribution Q0(Y ) samples y too frequently in comparison to Q(Y ), those

samples are frequently excluded from the sample set. In contrast, when Q0(Y ) under

samples y (compared to Q(Y )), those samples are usually included in the set. The
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resulting distribution of accepted samples follows Q(Y ). Note that the assumptions

for Q(Y ), Q0(Y ) are relatively mild: Q0(Y ) must have nonzero probability for all

nonzero points in Q(Y ) and we must compute the corresponding supremum [38].

2.5 Network Representations

As a short aside, we outline a theoretical network representation for analysis with

regard to runtimes within this paper. All areas of this work assume a fixed number

of vertices that does not change. In order to maintain subquadratic algorithms, we

would like the following:

• Edge (vi, vj) insertion in O(log d(vi) + log d(vi))

• Edge (vi, vj) deletion in O(log d(vi) + log d(vi))

• Random neighbor vj 2 MB(vi) in O(log d(vi))

Hence, an array of modified AVL trees [75] can be used to represent the net-

work, where each vertex is given an AVL tree to represent its neighbors. This allows

logarithmic insertion and removal, but (as is) not random selection. AVL trees al-

ready require storage of the height of the two children; a simple augmentation to

this requires that the size of the two subtrees be stored as well. These counts can

be dynamically updated during the rotations along with the corresponding heights.

Further, it is easy to see that we can draw a random position 1 · · · d(vi) and traverse

the tree using the stored sizes in O(log d(vi)). This ensures insertions, deletions and

random selection are all in logarithmic time in the number of vertices, keeping the

generative graph models proposed in subquadratic time. For algorithms that explic-

itly require analysis of these lookup times, we notate Õ(X) = O(X log(X)), meaning

the runtime could be impacted by an overarching logarithmic cost for interacting with

the network data structure.

We highlight that although this particular data structure enforces subquadratic

constraints on all the algorithms in this work, in practice alternative representations
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utilizing hashing for the relational representation (e.g., an array of hash tables) might

have better empirical performance, although no strong guarantees on subquadratic

runtimes. Throughout this work, we utilize the hashing representation as it has em-

pirically faster runtime and is simplistic to utilize in existing standard libraries (e.g.,

unordered set in C++11 standard library or dict in python). Where necessary, we

also slightly abuse notation and use Õ(·) to represent the overhead related to this

choice of data structure.
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3 EFFICIENT SAMPLING IN SCALABLE GENERATIVE GRAPH MODELS

Various parts of this work rely on defining and analyzing scalable generative graph

models; that is, graph distributions that are both easy to learn and sample from.

Hence, in this chapter we discuss and analyze a property exploited by scalable gener-

ative graph models for sampling a graph from their defined distributions. In particu-

lar, we work with a scalable structural model E , which defines edge probabilities for

every vertex pair PE (Eij|⇥E ). For large networks, directly sampling every possible

edge in a network is O(N2
v ), meaning it will not scale to large modern networks. We

define scalable sampling algorithms to be those which sample a complete network in

subquadratic time.

3.1 Analysis of Scalable Sampling Algorithms

We begin our analysis by defining a popular class of subquadratic sampling algo-

rithms, then show that edges sampled by this class of algorithms are approximations

to their defined edge probabilities. For this reason let PF�E (Eij|⇥E ) define the prob-

ability of an edge being positively sampled as defined by a subquadratic sampling

algorithm. In particular, we define a particular class of subquadratic samplers that

repeatedly draw from a multinomial QE (i, j), where:

QE (i, j) =
PE (Eij|⇥E )

P

k,l PE (Ekl|⇥E )
(3.1)

For this class of samplers, EE [Ne] draws are made from QE to draw a full network

of observed edges (i.e., Eij 2 E), while edges that are not drawn are considered

unobserved (i.e., Eij /2 E). Let ⌧E define the initial cost of constructing QE , while E

defines the cost of a single draw from QE (which is drawn from EE [Ne] times). Thus,
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the time complexity of this process is O(⌧E +EE [Ne]E ). Note that a naive approach

that directly computes every possible edge probability first, then draws from it EE [Ne]

times, the cost would be O(N2
v + EE [Ne] · log(N2

v )). This is clearly not subquadratic

or scalable; in fact, the empirical sampling time is considerably worse than the naive

sampler discussed above.

However, several graph models utilize their corresponding structural representa-

tions to avoid the explicit construction of the above matrix and reduce the corre-

sponding sampling costs. Two of these models are CL and KPGM. Consider the fast

Chung-Lu (F-CL) sampling algorithm, which repeatedly samples edges (vi, vj) with

probability ✓i✓j
(2Ne)2

(where ✓i = d(vi) for the Chung-Lu model) until a full network

is drawn [55]. We can prove that this sampling algorithm is exactly the same as

repeatedly sampling from the corresponding QCL(i, j) as expressed in Equation 3.1:

✓i✓j
(2Ne)2

=
✓i✓j

P

k ✓k
P

l ✓l

=
✓i✓j

P

kl ✓k✓l

=
✓i✓j
2Ne

P

k,l
✓k✓l
2Ne

=
PCL(Eij|✓CL)

P

k,l PCL(Ekl|✓CL)

=QCL(i, j)

Note that although F-CL repeatedly samples proportional to the true edge prob-

abilities (i.e., from QCL(i, j)), it does not require explicit construction of the full

matrix. The initial construction cost for F-CL is simple: simply place every vertex

vi into an array ✓i times. This initial construction cost is simply ⌧CL = Õ(Ne), while

every draw from QCL can be done with by sampling from the array twice, for a cost

of CL = O(1). This is repeated ECL[Ne] = Ne, which is defined by the degree dis-

tribution. Thus, the total cost of sampling according to F-CL for sparse networks is

Õ(Ne), making it subquadratic and scalable.
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The KPGM family of models also samples according to Equation 3.1 with the fast

sampler F-KPGM. To quickly sample KPGMs, each edge is sampled with probability
QK

k=1 ⇥KP (�ki,�kj)

(
P

lm ⇥KP )K
[13]. As with F-CL, we can solve to get:

QK
k=1 ⇥KP (�ki, �kj)

(
P

lm ⇥KP )K
=

PKP (Eij|⇥KP )

(
P

lm ⇥KP )K

=
PKP (Eij|⇥KP )

(✓11 + · · · + ✓bb)K

=
PKP (Eij|⇥KP )

EKP [Ne]

=
PKP (Eij|⇥KP )

P

lm PKP (Elm|⇥KP )

=QKP (i, j)

where (
P

lm ⇥KP )K = EKP [Ne] [76]. The initial starter matrix is presumed constant,

meaning ⌧KP = O(1), while each draw can be performed in O(log Nv). The total time

to draw a network from F-KPGM is therefore Õ(Ne log Nv), which is subquadratic

when the networks are sparse. Thus, both CL and KPGM, two popular scalable graph

models, have sampling algorithms that iteratively sample Eij = 1 from QE (i, j). This

allows each of the methods to sample from the distribution of networks without

explicitly enumerating the full QE (i, j) probability matrix.

However, consider the implications of this approach as they pertain to unweighted

networks. First, as we are summing probabilities across all edges as defined by E ,

we have:

QE (i, j) =
PE (Eij|⇥E )

P

k,l PE (Ekl = 1|⇥E )

=
PE (Eij|⇥E )

EE [Ne]

(3.2)

Second, as unweighted configurations cannot have multiple edges between the same

two instances, iterative draws from QE are not independent. Given that we sample
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exactly EE [Ne] times from QE , the true probability of an edge sample under fast

sampling algorithms is:

PF�E (Eij|⇥E ) = 1 � [1 � QE (Eij|⇥E )]EE [Ne] (3.3)

In the above equation, the probability inside the brackets is the probability that

(vi, vj) is not sampled in a particular draw from QE . Thus, the probability of it never

being sampled by any of the independent draws means simply taking it to the power

EE [Ne]. Subtracting this from one is the probability it is sampled, leaving the result.

We next examine this probability in comparison to the probabilities as defined by

the model E . In particular, we can show (a) that the probability of an edge being

sampled under the fast sampling algorithm is biased, and (b) that for sparse networks

the probability of an edge being sampled under the fast sampling algorithm is an

approximation. First, using the Bernoulli inequality [77], we can see:

PF�E (Eij = 1|⇥E ) =1 � [1 � QE (Eij = 1|⇥E )]EE [Ne]

1 � [1 � EE [Ne]QE (Eij = 1|⇥E )]

=1 �


1 � EE [Ne]
PE (Eij = 1|⇥E )

EE [Ne]

�

=PE (Eij = 1|⇥E )

(3.4)

As a result, the sampling algorithms provided by scalable sampling algorithms are

upper bounded by the defined edge probabilities provided by E and have a downward

bias. This is illustrated graphically in Figure 3.1 with the blue line. Here, we fix

EE [Ne] = 1000 and let the x-axis plot the defined probabilities. The y-axis plots

the di↵erence between the F � E probabilities and true E probabilities. In partic-

ular, we see as the true probabilities increase the sampling algorithms exhibit more

extreme bias.

Correspondingly, Figure 3.1 also shows is that for small probabilities the bias is

also small. This follows the Binomial Approximation [77]. Applying the Binomial
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Figure 3.1.: The bias of F-CL as it compares to standard CL as edge probabilities
increase.

approximation addition to the inequality above we show that when PE (Eij = 1) is

small:

PF�E (Eij = 1|⇥E ) =1 � [1 � QE (Eij = 1|⇥E )]EE [Ne]

⇡1 � [1 � EE [Ne]QE (Eij = 1|⇥E )]

=1 �


1 � EE [Ne]
PE (Eij = 1|⇥E )

EE [Ne]

�

=PE (Eij = 1|⇥E )

(3.5)

This approximation makes the scalable sampling algorithms defined above useful

for large, sparse networks. Importantly, the above demonstrates why prior work that

utilized these F � E sampling algorithms typically produced networks that mirrored

the behaviors expected by their defined distributions E . However, it remains only

an approximation and in some cases the approximation deviates from the desired

behavior. For example, Figure 3.2 shows the degree distributions of an Epinions

network (black) and a sampled F-CL network with the biases uncorrected (green).

In particular, the high degree nodes exhibit considerable bias in comparison to the
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Figure 3.2.: Comparison of Basic and Corrected degree distributions on the Epinions
Trust datasets. The original F-CL method under samples high degree nodes.

original network. In the next subsection we explain why high degree vertices are

undersampled and introduce a corrected F-CL algorithm to remove the bias with

respect to the expected degrees (red line in Figure 3.2).

3.2 Addressing Bias in Fast Chung-Lu Sampling

To start, a second sampling approach (and the presumed implementation used

in [55]) attempts to avoid this edge bias by inserting precisely Ne edges into the

network. For completeness, let ⇥F�CL be the parameters needed for the fast Chung-

Lu sampling algorithm. This is simply the degree distribution we wish to sample

from; when given an input graph to model, this corresponds to the set of degrees

{✓i|vi 2 V}. The fast sampling algorithm is outlined in Algorithm 2. For each

iteration, two draws are made from the degree distribution (Lines 3-4) as a possible

insertion into the network. If this edge has not already been inserted into the new

network it is added into the set of edges (Line 5); otherwise, the algorithm will repeat

for an extra iteration.
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Algorithm 2 F-CL-Basic(⇥F�CL, Nv, Ne)

1: E = {}
2: while |E| < Ne do
3: vi = sample-degree(⇥F�CL)
4: vj = sample-degree(⇥F�CL)
5: if (vi, vj) 62 E then
6: E = E [ (vi, vj)
7: end if
8: end while
9: return E

We highlight the connection between this algorithm and Accept-Reject sampling,

which we will elaborate on further in Chapter 5. In this algorithm edges are proposed

according to the QE distribution defined in Equation 3.1. The only condition for

acceptance is that the edge cannot already exist in the space of edges; thus, if the

edge was previously inserted it is rejected (Line 5), with another pair of nodes is

drawn until exactly Ne unique edges are added to the network.

Such a method clearly increases the exponent in Equation 3.4. However, while

this implementation avoids the clear bias of the first (naive) method, two problems

remain. First, we show that the degrees of the nodes are biased and outline an

alternative algorithm to correct for this. Next, we show that the F-CL algorithm,

even with a correction to the degree bias, does not match the edge probabilities of

the original Chung-Lu algorithm in practice—it only approximates the target edge

probabilities.

3.2.1 Edge Collision Degree Bias

As a notation reminder, we let ⇡(vi) = ✓i/
P

k ✓k be the normalized degree distri-

bution of an observed network. Consider an F-CL algorithm that draws two nodes

from ⇡ to create a possible relationships (vi, vj). If an edge already exists between

the two nodes in the sampled graph, it rejects the pair and draws again. Notice that

this implementation of the F-CL algorithm samples edges only once (i.e., without
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replacement), but nodes may be sampled multiple times (i.e., with replacement). As

edge probabilities are proportional degrees of each vertex and the sampled pairs are

rejected according to whether or not an edge already exists between the nodes, in-

tuitively the probability of collision increases for high degree nodes. As a result the

edges around high degree nodes are rejected more frequently than those around low

degree nodes, lowering their expected degrees.

Lemma 3.2.1 Let vi, vj, vk 2 V, with ✓i > ✓j. Assume ↵ � 1 proposed edges have

been drawn according to the F-CL probabilities, where ↵ > 1 (some fraction of these

may have been rejected). Assume vk is one of the two nodes selected by F-CL. Then:

P↵
F�CL(rejectionki|vk, ⇥F�CL) > P↵

F�CL(rejectionkj|vk, ⇥F�CL)

Proof First, note that P↵
F�CL(rejectionki|vk, ⇥F�CL) can be broken into two inde-

pendent probabilities:

P↵
F�CL(rejectionki|vk, ⇥F�CL) =⇡(vi) · PF�CL(Eki = 1|⇥F�CL)

=⇡(vi) ·
⇥

1 � [1 � 2 · ⇡(vk)⇡(vi)]
↵�1
⇤

The first quantity is the probability vi is drawn from the degree distribution, the

second is that the relationship (vk, vi) has been drawn previously, which results in the

current draw being rejected. First, ⇡(vi) > ⇡(vj) by definition. Second,

2 · ⇡(vk)⇡(vi) >2 · ⇡(vk)⇡(vj)

1 � 2 · ⇡(vk)⇡(vi) <1 � 2 · ⇡(vk)⇡(vj)

[1 � 2 · ⇡(vk)⇡(vi)]
↵�1 < [1 � 2 · ⇡(vk)⇡(vj)]

↵�1

1 � [1 � 2 · ⇡(vk)⇡(vi)]
↵�1 >1 � [1 � 2 · ⇡(vk)⇡(vj)]

↵�1
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Inserting the inequality into the probability an edge adjacent to vk is vi or vj, we

recover:

⇡(vi) ·
⇥

1 � [1 � 2 · ⇡(vk)⇡(vi)]
↵�1
⇤

>⇡(vj) ·
⇥

1 � [1 � 2 · ⇡(vk)⇡(vj)]
↵�1
⇤

P↵
F�CL(rejectionki|vk, ⇥F�CL) >P↵

F�CL(rejectionkj|vk, ⇥F�CL)

Thus, the probability of rejecting an edge (vk, vi) is greater than the probability

of rejecting an edge (vk, vj) (where ✓i > ✓j).

Thus, for a single vertex, the probability it has a collision when placing an edge

to another vertex depends on whether the other vertex has high or low degree. We

next use Lemma 3.2.1 to prove that the expected number of rejections for high degree

nodes will be greater than those for low degree nodes (for every ↵ > 1).

Theorem 3.2.1 Let vi, vj 2 V, with ✓i > ✓j. Assume ↵�1 proposed edges have been

drawn according to the F-CL probabilities, where ↵ > 1 (some fraction of these may

have been rejected). Then:

E↵
F�CL[Rejections(vi)|⇥F�CL] > E↵

F�CL[Rejections(vj)|⇥F�CL]

where Rejections(vi) is the number of rejections at this iteration.

Proof The expected number of rejections is a marginalization over vk:

E↵
F�CL[Rejections(vi)|⇥F�CL] =

X

vk2V

⇡(vk) · P↵
F�CL(rejectionki|vk, ⇥F�CL)

First, the distribution ⇡ is equal for each. Further, from Lemma 3.2.1 we have:

8vk P↵
F�CL(rejectionki|vk, ⇥F�CL) > P↵

F�CL(rejectionkj|vk, ⇥F�CL)
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Thus, we have:

E↵
F�CL[Rejections(vi)|⇥F�CL] =

X

vk2V

⇡(vk) · P↵
F�CL(rejectionki|vk, ⇥F�CL)

E↵
F�CL[Rejections(vj)|⇥F�CL] =

X

vk2V

⇡(vk) · P↵
F�CL(rejectionkj|vk, ⇥F�CL)

As P↵
F�CL(rejectionki|vk, ⇥F�CL) > P↵

F�CL(rejectionkj|vk, ⇥F�CL) 8vk:

E↵
F�CL[Rejections(vi)|⇥F�CL] > E↵

F�CL[Rejections(vj)|⇥F�CL]

Thus, high degree vertices average more rejections than low degree vertices.

Thus, regardless of the number of attempts ↵ we do, at every step we expect

more edges to be rejected from higher degree nodes. As there are more rejections,

the higher degree nodes are under sampled in comparison to the lower degree nodes,

meaning their degrees are too low.

We propose a simple correction to this problem by permuting the randomly sam-

pled endpoints (Algorithm 3). When the algorithm encounters a collision, we place

both vertices in a waiting queue. Before continuing with regular insertions the algo-

rithm attempts to select neighbors for all nodes in the queue. Should the new edge

for a node selected from the queue also result in a collision, the chosen neighbor is

also placed in the queue, and so forth. This ensures that if a node is ‘due’ for a new

edge but has been prevented from receiving it due to a collision, the node is ‘slightly

permuted’ by exchanging places with a node sampled later.

This shu✏ing ensures that Ne edges are placed in the graph, but attempts to

only draw exactly 2Ne times from the degree distribution. As a result, the empirical

samples are closer to the true degree distributions. We show the results of this

sampling algorithm in Figure 3.2, where the black line indicates our algorithm in

comparison to the original data in red. Unlike the green line (which corresponds

to the sampled degree distribution using the simple F-CL sampling technique), our

F-CLc modification results in a much closer match to the original degree distribution,
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Algorithm 3 F-CLc(⇥F�CL, Nv, Ne)

1: E = {}
2: initialize(queue)
3: for iterations do
4: if queue is empty then
5: vi = sample-degree(⇥F�CL)
6: else
7: vi =pop(queue)
8: end if
9: vj = sample-degree(⇥F�CL)
10: if (vi, vj) 62 E then
11: E = E [ (vi, vj)
12: else
13: push(queue, vi)
14: push(queue, vj)
15: end if
16: end for
17: return E)

particularly on the high degree nodes. Thus, we can generate graphs whose degree

distributions are largely una↵ected by collisions. We note that in extreme cases this

correction will not fix the bias problem either. If, for example, there are leftover

vertices in the queue (which are more likely to be high degree), these vertices are

under sampled.

Further, the modified F-CL sampling algorithm is correct only when there is inde-

pendence between the edge placements and the current graph configuration. However,

this independence only truly holds when collisions are allowed (i.e. when generating a

multigraph). In practice, edge placements are not truly independent in the algorithm

since the placement of edges that already exist in the graph is disallowed. The mod-

ification we have described empirically removes the bias described in Theorem 3.2.1

but is not guaranteed to generate graphs exactly according to the original ⇡ distribu-

tion. Our F-CL graph generation algorithm must project from a space of multigraphs

down into a space of simple graphs, and this projection is not necessarily uniform over

the space of graphs. However, our empirical results show that for sparse graphs our
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correction removes the majority of the bias due to collisions and that the bias from

the projection is negligible, meaning we can treat graphs from the modified F-CL as

being drawn from the original Chung-Lu graph distribution.

3.2.2 Fast Chung-Lu Edge Probability Bias

In general, the fast model samplers F � E are not exact; in particular, the edges

exhibit varying biases depending on whether the vertex is a high degree or low degree

vertex (in Section 3.3, we prove that the special Erdős-Rényi graph model for regular

graphs is an exception to this bias). As the bias from the F-CLc approximation is

less for edges with lower likelihoods (see Figure 3.2), additional samplings due to

collisions will bias their probabilities slightly higher, while the high degree edges will

have likelihoods remain lower than their true probabilities. For sparse graphs, we

assume the proportion of degrees is close enough to one another such that the sum-

mations e↵ectively cancel. The di↵erence between the two probabilities is illustrated

in Figure 3.3a-b. The dataset we use is a subset of the Purdue University Facebook

network, a snapshot of the class of 2012 with approximately 2000 nodes and 15,000

edges—using this smaller subset exaggerates the collisions and their e↵ects on the

edge probabilities. We plot the edge probabilities along the x-axis as outlined by

the original CL method versus a simulation of 10,000 networks for the F-CLc edge

probabilities. The y-axis indicates the proportion of generated networks which have

the edge (we plot the top 10 degree nodes’ edges).

In panel (a), we show the probabilities for the original network, where the proba-

bilities are small and una↵ected by the fast model. To test the limits of the method,

in panel (b) we take the high degree nodes from original network and expand them

such that they have near
p

2Ne edges elsewhere in the network. Additionally, these

high degree nodes are connected to each other, meaning they approach the case where
✓i✓j
2Ne

> 1. We see that the randomly inserted edges still follow the predicted slow CL

value, although the probabilities are slightly higher due to the increased degrees. It
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(a) Original (b) Adjusted

Figure 3.3.: Facebook edge sampling biases. In (a) we show the biases for top nodes
in the true Facebook data, while in (b) we show the augmented Facebook network
where edges with high probability have been artificially defined.

is only in the extreme case where we connect
p

2Ne degree nodes to one another that

we see a di↵erence in the realized probability from the CL probability. These account

for .05% of edges in the augmented network, which has been created specifically to

test for problem cases. For social networks, it is unlikely that these situations will

arise.

3.2.3 Time Complexity

The methods presented for generating a new network under F-CL can be done in

an e�cient manner. We first consider the naive approach to F-CL, then proceed with

the corrected version.

F-CL Complexity

The basic approach to F-CL repeatedly attempts insertions that can be rejected

when edges already exist in the desired locations. Here, we will bound the expected

number of insertions to be a constant. Recall that each iteration of F-CL attempts

to place an edge according to two draws from the degree distribution. Consider the
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case where ↵ � 0 edges have previously been inserted into the network, creating a set

of edges we denote E↵. The total probability of collision with one of these existing

edges at time ↵ + 1 is denoted P↵+1
F�CL(E↵|⇥F�CL). When attempts are rejected

subsequent insertions are attempted independently, making the number of attempts

before insertions a geometric distribution:

P↵+1
F�CL(Attempts = k|E↵, ⇥F�CL) = P↵+1

F�CL(E↵|⇥F�CL)k�1(1 � P↵+1
F�CL(E↵|⇥F�CL))

E↵+1
F�CL [Attempts|E↵, ⇥F�CL)] =

1
X

k=1

P↵+1
F�CL(E↵|⇥F�CL)k�1(1 � P↵+1

F�CL(E↵|⇥F�CL))

=
1

1 � P↵+1
F�CL(E↵|⇥F�CL)k�1

As the mean of a geometric distribution is equal to a constant that depends on

the acceptance probability, the bound depends on the previously inserted edges in

the network (E↵). We can create a more concrete bound by considering the most

probable edge in the graph. Let ✓M be the maximum degree in the network. By

definition:

8ij P t
F�CL(Eij = 1|⇥F�CL)  2 · ✓M✓M

(2Ne)2

Further, using the inclusion-exclusion theorem [78]we can bound the total proba-

bility of any set of edges E↵:

P↵+1
F�CL(E↵|⇥F�CL) 

X

(vi,vj)2E↵

P t
F�CL(Eij = 1|⇥F�CL)

 2 · ↵ · ✓M✓M

(2Ne)2

which in turn implies:

E↵+1
F�CL [Attempts|E↵, ⇥F�CL)]  1

1 � 2 · ↵ · ✓M✓M

(2Ne)2
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That is, for a given E↵ the total number of insertions is bounded by a constant.

Further, the maximum time is also bounded in terms of the last insertion in the

network; i.e., ↵ = Ne:

E↵+1
F�CL [Attempts|⇥F�CL)]  1

1 � 2 · Ne · ✓M✓M

(2Ne)2

 1

1 � ✓M✓M

2Ne

(3.6)

Thus, so long as ✓M <
p

2Ne, the expected number of attempts to insert an

edge into the network is bounded by a constant. We must construct the degree

vectors, which cost Õ(Nv + Ne), and insert Ne edges, meaning the total cost remains

Õ(Nv + Ne).

F-CLc Complexity

Recall that for the F-CLc algorithm we utilize a queue to reorder vertices when

a collision occurs after a draw from QCL. Unfortunately, this queuing behavior can

theoretically create situations where the process never completes. Consider the case

where Ne > ↵ > Nv. There is a nonzero probability of the situation where every

possible neighboring edge of vi has been previously inserted into the network:

P↵
F�CLc (E↵(vi) = {(vi, vk) : vk 2 V}|⇥F�CL) �

Y

vk2V

2 · ⇡(vi)⇡(vj)

As there is a nonzero probability of gathering Nv neighbors to vi, when this occurs

the queuing will never be completed and the expected number of insertions for the

corrected version becomes:

E↵+1
F�CL [Attempts|⇥F�CL)] = 1
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in the worst case. However, in practice this does not occur and F-CLc has performance

comparable to the naive F-CL implementation.

3.3 Analysis of Scalable Sampling with the Erdős-Rényi Model

In this section, we begin by considering the special case of regular graphs to show

that for the F-CL and F-KPGM algorithm the probability of an edge existing is

exactly the same for as defined by CL and KPGM. This scenario mirrors the Erdős-

Rényi graph models, where every edge has equal probability, meaning the expected

degree of every nodes is the same.

As an outline for the following proof, consider that:

PE (Eij = 1|⇥E ) =
Nv
X

d=0

PE (i = d|⇥E )PE (Eij = 1|i = d, ⇥E ) (3.7)

We begin with a derivation for PF�CL(Eij = 1|i = d, ⇥F�CL).

Lemma 3.3.1 Let vi, vj 2 V be vertices in a regular graph with ✓i, ✓j = ✓R and i = d.

Then:

PF�CL(Eij = 1|i = d, ⇥F�CL) = d · ✓R

2Ne

Proof First, i is assumed fixed at this point, meaning the probability of rejection

does not e↵ect this conditional probability. As all edges have equal probabilities they

are exchangeable. Our solution is a counting approach: what are the number of

permutations where vj is a neighbor of vi compared to the number of permutations

of neighbors of vi (with degree d):

# Permutations with vj
# Total Permutations

=
(Nv�1)!/(d�1)!

Nv !/d!

=
d

Nv

=d · ✓R

Ne
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The result from Lemma 3.3.2 fits neatly into Equation 3.7:

PF�CL(Eij = 1|⇥F�CL) =
Nv
X

d=0

PF�CL(i = d|⇥F�CL)PF�CL(Eij = 1|i = d, ⇥F�CL)

=
Nv
X

d=0

PF�CL(i = d|⇥F�CL) · d
✓R

Ne

=
✓R

Ne

Nv
X

d=0

PF�CL(i = d|⇥F�CL) · d

=
✓R

Ne

EF�CL [i|⇥F�CL]

(3.8)

We next determine the expected number of edges per vertex if exactly Ne edges

have been laid.

Lemma 3.3.2 Let vi 2 V be a vertex in a regular graph where 8i, j ✓i = ✓R. Ne

edges have been laid in the graph according to the F-CL process, with 0  Ne  N2
v .

We get:

EF�CL [i|⇥F�CL] = ✓R (3.9)

Proof Note that the limit on Ne ensures that the number of sampled edges is possible

to fit in the network with Nv vertices. As this is a regular graph:

8i, j EF�CL [i|⇥F�CL] = EF�CL [j|⇥F�CL]

Additionally, the sum of degrees must always equal 2·Ne, implying the expectation

of the sum of degrees is 2 · Ne.
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EF�CL

"

X

vi

i

�

�

�

�

�

⇥F�CL

#

= 2Ne

X

vi

EF�CL [i|⇥F�CL] = 2Ne

Nv · EF�CL [d|⇥F�CL] = 2Ne

EF�CL [d|⇥F�CL] =
2Ne

Nv

EF�CL [d|⇥F�CL] = ✓R

(3.10)

Thus, inserting into Equation 3.3.2 again gives:

PF�CL(Eij = 1|⇥F�CL) =
Nv
X

d=0

PF�CL(i = d|⇥F�CL)PF�CL(Eij = 1|i = d, ⇥F�CL)

=
✓R✓R

2Ne

(3.11)

which is the same as the defined edge probabilities. Thus, edges exist with the same

probabilities for the fast and slow samplers when the graph is regular.

3.4 Concluding Remarks

In this section, we characterized a class of samplers previously proposed for the

Chung-Lu and Kronecker Product graph models. In particular, we demonstrated that

(in general) these samplers are not exact, proving that they sample from an approx-

imation to the true edge probabilities. We further proved that an exception to this

rule is the simpler random graph model, which samples edges with identical proba-

bilities. In this case, the approximation becomes exact. In the next two chapters, we

will generalize this sampling process in two ways. In the next chapter we will discuss

the Transitive Chung-Lu model, which generalizes the approximation to incorporate
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additional structure (triangles) into the Chung-Lu model. In the subsequent chapter,

we will generalize the approximation to sample edges conditioned on vertex attributes

and the joint degree distribution.



46

4 TRANSITIVE GRAPH MODELS

The previous chapter discussed a general class of graph models with scalable approx-

imate sampling algorithms. In this chapter, we develop an extension to the scaleable

Chung-Lu (CL) graph model: the transitive Chung-Lu graph model (TCL). TCL

shares many properties with CL, but incorporates transitivity into the distribution

of networks. TCL exploits the existence of the multinomial QCL for the Chung-Lu

models, expanding this formulation to incorporate random walks and place networks

in the sampled networks. Thus, as with CL, TCL has a scalable sampling algorithm

(F-TCL). TCL will also be an important approach to modeling edge probabilities in

partially observed networks during Active Exploration in Chapter 6.

As a reminder review, the CL graph model samples edges independently with

probability PCL(Eij|⇥CL) = ✓i✓jP
vk2V

✓k
. As shown in Equation 2.1, the expected degree

of a node vi is ✓i, or the degree of the corresponding vertex in the input graph. To

draw a single edge from the distribution of edges, the fast sampling algorithm for CL

(F-CL) draws the relationship (vi, vj) from the multinomial:

QCL(Eij|⇥CL) =
✓i✓j

(2Ne)2
+

✓j✓i
(2Ne)2

=2 · ✓i✓j
(2Ne)2

=2 · ⇡(vi)⇡(vj)

(4.1)

As discussed in Chapter 3, this is an e↵ective technique for sparse graphs: the

degree distribution is initialized as a vector where each vertex vi is placed in the

vector ✓i times (cost is O(Ne) to construct), meaning successive draws take place

in O(1). While in Chapter 3 we discussed the implications of this decision, here

we will discuss a method to extend the sampling procedure to draw networks with
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triadic closures. We develop simple estimation and sampling algorithms, and will

discuss the theoretical behavior of the TCL algorithm in Section 4.2, showing that

the distribution of graphs will continue to have an expected degree distribution equal

to the input network. We will follow with experiments demonstrating the accuracy

of the approach.

4.1 Transitive Chung-Lu Model

A large problem with the CL (and F-CL) model is the lack of transitivity captured

by the model. F-CL works by independently drawing twice proportionally to the de-

gree distribution: however, many new edges in social networks are formed via existing

relationships which are not taken into account by the F-CL model. Here, we propose

the transitive Chung-Lu (TCL) model. The TCL model works by incorporating a

new parameterization ✓⇢, which captures the transitivity present in the network. At

each iteration of TCL, with probability 1 � ✓⇢ a new relationship (vi, vj) is chosen

according to the previously discussed F-CL, with endpoints chosen proportionally to

the vertices’ degrees. However, with probability ✓⇢ each iteration will (a) draw an

initial starting node from ⇡ and (b) perform a two step random walk across the cur-

rent edges in the generated graph, from the starting node. The resulting endpoint

is paired with the starting node and is inserted into the current collection of edges.

This incorporates a friends-of-friends model for transitivity: vertices are more likely

to create friendships with vertices two hops away. Importantly, we will show that the

TCL model will also maintain the same expected degree distribution as the original

network, meaning our formulation does not interfere with the CL guarantee.

TCL is a generative model, which is conditioned on a current set of edge samples

E. TCL also has a scalable sampling algorithm. As with F-CL and F-KPGM, TCL

implicitly defines a multinomial QTCL which the sampler repeatedly draws from:
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QTCL(i, j|E) =⇡(vi)

0

@

✓⇢

2

4

1

✓i

X

vk2MB(vi)

I[vj 2 MB(vk)]
✓k

3

5+ (1 � ✓⇢)⇡(vj)

1

A

+⇡(vj)

0

@

✓⇢

2

4

1

✓j

X

vk2MB(vj)

I[vi 2 MB(vk)]
✓k

3

5+ (1 � ✓⇢)⇡(vi)

1

A

Intuitively, the model selects a starting vertex proportional to the popularity of

the vertex in the network. This vertex makes a decision: with probability ✓⇢ it

creates a new friendship from its friends-of-friends; that is, a neighbor in the graph

introduces the vertex to one of its friends. Conversely, with probability 1 � ✓⇢ the

vertex randomly chooses another vertex to form a friendship with proportional to that

node’s popularity. This introduces triadic closures to CL, which does not model a

friends-of-friends generative process. Further, the parameters of TCL (⇥TCL) consists

of a degree distribution (the same as CL) and a single additional parameter ✓⇢.

Note that TCL contrasts with other scalable generative graph models by defined as

a conditional model, rather than independent marginal probabilities (as with CL and

KPGM). Thus, given a partially observed network, TCL defines probabilities over the

remaining possible edges. Further, it incorporates transitivity as part of the estimates,

rather than independent edge probabilities. This will make TCL more useful when

incorporated into partially observed domains (discussed further in Chapter 6).

4.1.1 Sampling Transitive Chung-Lu

We give the corresponding sampling algorithm for TCL in Algorithm 4. TCL

begins by constructing a graph of Ne edges using the F-CL model, giving us an ini-

tial edge set E where the degrees have expected values equal to their corresponding

vertex’s degree in the input graph. Next, we iteratively replace the initially drawn

F-CL edges with new TCL edges. To generate the TCL edges, we begin by drawing a

starting point from ⇡, which will be paired with an ending point to create a new edge
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Algorithm 4 TCL(⇥TCL, Nv, Ne, iterations)

1: E = F � CL(⇥F�CL, Nv, Ne)
2: for iterations do
3: vi = sample-degree(⇥TCL)
4: coin = sample-bernoulli(✓⇢)
5: if coin = 1 then
6: vk = sample-uniform(MB(vi))
7: vj = sample-uniform(MB(vk))
8: else
9: vj = sample-degree(⇥TCL)
10: end if
11: if (vi, vj) 62 E then
12: E = E [ (vi, vj)
13: // remove oldest edge from E
14: E = E \ oldest(E)
15: end if
16: end for
17: return E

(Line 3). To find the corresponding endpoint the ✓⇢ parameter becomes important:

with probability ✓⇢ TCL performs a two hop random walk over the current generated

network; otherwise, an additional draw is done from ⇡ (Lines 4-10). Once the corre-

sponding endpoint is chosen, the startpoint and endpoint are paired as an edge and

inserted into the network.

TCL works in an iterative fashion, with each iteration consisting of a single edge

draw as well as removal of an older edge. TCL maintains Ne edges in the generated

network and after Ne TCL insertions all of the original F-CL starting edges will have

been replaced. TCL then repeats the process on the current sampled network until

convergence: that is, sample networks are from the TCL distribution of networks,

rather than the initial F-CL distribution of networks. Generally, it takes few iterations

until TCL converges. Lastly, as we will show in Section 4.2, the marginal edge

insertion probabilities for TCL remain P t
TCL(Eij = 1) = 2⇡(vi)⇡(vj), meaning our

expected degrees remain fixed to their input values. Thus, TCL retains the most
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important characteristic of CL graph models, while incorporating transitivity into

the sampling process.

4.1.2 Learning Transitive Chung-Lu

TCL relies on the ✓⇢ parameterization, which represents the amount of transitivity

present in the distribution of graphs. We wish to learn this parameterization for a

variety of network domains with varying amounts of transitivity, meaning we need to

be able to estimate the amount of transitivity given an observed graph. That is, we

need to determine the fraction of edges that were laid as a result of triadic closure

versus the edges which were laid as a result of popularity.

Given an input graph G with a set of edges E, define a set of latent variables ⇣

where ⇣ij 2 {0, 1} for every (vi, vj) 2 E:

⇣ij =

8

>

<

>

:

0 if (vi, vj) 2 E as a result of F-CL

1 if (vi, vj) 2 E as a result of Transitive Closures

Given the edges E, the set of latent variables ⇣ are conditionally independent. We

will use Expectation Maximization (EM) [40] to maximize:

PTCL(E|⇥TCL) =
X

⇣

PTCL(E, ⇣|⇥TCL)PTCL(⇣|⇥TCL)

We begin by specifying out the distributions necessary for both the Expectation

and Maximization steps. As ⇣ij indicates whether an edge should be placed according

to transitive closure, we have:

PTCL(⇣ij = 1|⇥TCL) = ✓⇢ PTCL(⇣ij = 0|⇥TCL) = 1 � ✓⇢
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as our prior distribution over the proportion of edges which have been laid according

to the transitive closures. Given ⇣ij, the corresponding conditional distributions for

Eij = 1 become:

PTCL

�

Eij = 1|⇣ij = 0, vi,E\(vi,vj)
�

= ⇡(vj)

PTCL

�

Eij = 1|⇣ij = 1, vi,E\(vi,vj)
�

=
1

✓i

X

vk2MB(vi)

I[vj 2 MB(vk)]

✓k

The top equation simply states that we select vj according to the degree distribu-

tion, as defined by F-CL, when ⇣ij = 0. The second equation is the probability that

we chose (vi, vj) by doing a two-hop random walk from vi. We now have the tools to

outline the EM algorithm.

Expectation

In this section we need to determine the expectations of the ⇣ latent variables

given a current parameterization of ✓⇢ – we denote the current value to be ✓old⇢ . To

start, we can apply Bayes’ rule using the above equations to determine the probability

an edge is laid according to a transitive closure:

PTCL (⇣ij = 1|E, vi, ⇥TCL)

=
PTCL

�

⇣i = 1|⇥TCL, vi,E\(vi,vj)
�

PTCL

�

Eij = 1|⇣ij = 1, vi,E\(vi,vj)
�

PTCL

�

Eij = 1|vi,E\(vi,vj)
�

=
✓old⇢ · 1

✓i

P

vk2MB(vi)
I[vj2MB(vk)]

✓k

✓old⇢ · 1
✓i

P

vk2MB(vi)
I[vj2MB(vk)]

✓k
+ (1 � ✓old⇢ )⇡(vj)

(4.2)

As each ⇣ij is a simple Bernoulli random variable, the expected value is simply

the probability of being positive:

ETCL[⇣ij|E, vi, ⇥TCL] = PTCL (⇣ij = 1|E, vi, ⇥TCL)
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Maximization

Maximization is simple for TCL as we only need to maximize over the mixture

parameter ✓⇢. As the ⇣ij are independent given the edges E we have:

✓new⇢ =

P

(vi,vj)2E ETCL[⇣ij|E, vi, ⇥TCL]

Ne

Thus, given that we have computed Equation 4.2 for all ⇣, we simply normalize

these positive probabilities by the total number of edges in the network.

Practical Implementations

In the worst case, the above learning algorithm requires maximizing over Ne, with

each maximization searching over the maximum degree in the worst case. Thus,

the runtime is O(Ne · Nv log Nv) in the worst case. Although the expectations and

maximizations are defined over the entire set of edges, we find usage of all edges

unnecessary for estimation. Namely, we find that uniform sampling of a subset of

edges is su�cient on large graphs. This gives the added benefit of (a) speed in the

computation and (b) an estimate of variance to determine either convergence or if

more samples should be acquired. This can be done quickly using the node ID vector

we have previously constructed for sampling from the ⇡ distribution. Since each node

vi appears ✓i times in this vector, sampling a node from the vector and then uniformly

sampling one of its edges results in a ✓i/Ne · 1/✓i = 1
Ne

probability of sampling any given

edge.

4.2 Transitive Chung-Lu Analysis

For clarity, we restate that QTCL(Eik|E, ⇥TCL) as the probability (vi, vj) is cho-

sen to be inserted into the edge set E, given the a set of previous edges. Further,

PTCL(Eij|⇥TCL) is the marginal edge probabilities of being positive, after integrating
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over the distribution of E. Initially, we set the marginal edge probabilities to the CL

edge probabilities; as a result, the intial expected degree equals the input degree (as a

consequence of the CL model). Algorithmically, this means we require the initial edge

samples to be drawn from the CL model. We will show that the marginal edge prob-

abilities remain approximately ✓i✓j/2Ne, meaning the expected degrees remain equal to

the input vertices’ degrees.

The TCL edge selection probabilities QTCL are comprised of two parts: the first

part is the QF�CL insertion probabilities (known) and the second is the transitive

closure probabilities, or the probability an edge is placed at time t due to the closure

of the graph (which is our focus). For these closures, we use the random walk prob-

abilities, or, what is the probability of a single step in a random walk landing on vk

given a starting point vi?

Definition 4.2.1 Let PTCL(Wi = k|vi, ⇥TCL) be the probability of stepping to vertex
vk after starting at vi. This is a marginalization over (a) the probability Eij = 1 (that
the edge exists) and (b) the probability the degree ✓i = d given that Eij = 1.

PTCL(Wi = vk|vi,⇥TCL) =

NvX

d=0

X

e2{0,1}
PTCL(Wi = k|vi, Eik = e, k = d)PTCL(di = d|Eik = e)PTCL(Eik = e)

=

NvX

d=0

PTCL(Wi = k|viEik = 1, k = d)PTCL(di = d|Eik = 1)PTCL(Eik = 1)

In the second line we have dropped the case where Eik = 0 as no random step can

occur from vi to vk without the edge currently existing. Further, we have omitted

reference to the other edges which include vi as an endpoint, as their information is

summarized in the degree.

Using the above, we can define a single step transition probability matrix where

a vertex vi is selected, followed by a single step to vj.

Definition 4.2.2 Let QTR(Eij = 1|⇥TCL) be the marginal probability of edge (vi, vj)

being chosen by a single step random walk. It is comprised of an initial selection
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vi, followed by selection of the endpoint vj. Alternatively, vj could be chosen first,

followed by selecting vi.

QTR(Eij = 1|⇥TCL) = ⇡(vi)PTCL(Wi = j|vi, ⇥TCL) + ⇡(vj)PTCL(Wj = i|vj⇥TCL)

Extending on the above single step definition, we can also define the closure matrix

as the probability of sampling a vertex vi, followed by two random hops.

Definition 4.2.3 Let QCLO(Eij = 1|⇥TCL) be the marginal probability of edge (vi, vj)
being chosen by a two hop random walk. It is comprised of an initial selection vi, an
intermediate vertex vk, followed by selection of the endpoint vj. Alternatively, vj could
be chosen first, followed by selecting vk and finally vi.

QCLO(Eij = 1|⇥TCL)

=

NvX

vk=0

QTR(Eik = 1|⇥TCL)PTCL(Wk = j|⇥TCL) +

NvX

vk=0

QTR(Ejk = 1|⇥TCL)PTCL(Wk = i|⇥TCL)

=⇡(vi)

NvX

vk=0

PTCL(Wi = k|⇥TCL)PTCL(Wk = j|⇥TCL) + ⇡(vj)

NvX

vk=0

PTCL(Wj = k|⇥TCL)PTCL(Wk = i|⇥TCL)

Note that for each random walk step, we utilize the marginal probabilities from

Definition 4.2.1.

For TCL, the sampling step is comprised of a mixture of QCLO and QF�CL, mean-

ing the QF�CL(Eij|⇥TCL) and QCLO(Eij|⇥TCL) edge selection probabilities comprise

the total edge probabilities in TCL as parameterized by ✓⇢.

Definition 4.2.4 Let QTCL(Eij = 1|⇥TCL) be the probability (vi, vj) is chosen for

insertion under TCL. It is comprised of (a) the F-CL random edge probabilities and

(b) the two step closure probabilities.

QTCL(Eij = 1|⇥TCL) = ✓⇢ · QCLO(Eij = 1|⇥TCL) + (1 � ✓⇢) · QF�CL(Eij = 1|⇥TCL)



55

Either probability matrix, QCLO or QF�CL, can be used to select edges for in-

sertion into the network; hence, if both matrices preserve the degree distribution in

expectation, then the overall TCL algorithm preserves the degree distribution in ex-

pectation. Once the sampler is initialized with a set of Ne edges inserted into the

sampled network, the algorithm repeatedly inserts new TCL edges into the network

using QTCL, removing the older edges. If the selected pair of nodes does not already

have an edge in the graph, the algorithm adds it and removes the oldest edge in the

graph. If the selected pair already has an edge in the graph, the selected endpoint

nodes are placed in the priority queue (lines 21 and 22). The replacement operation

is repeated many times to ensure that the original CL graph is mostly replaced and

then the final set of edges is returned as the new graph. In practice, we find that

Ne replacements is su�cient to remove all edges generated originally by F-CL and

generate a reasonable sample.

In order to show that the TCL update operation preserves the expected degree

distribution, we prove the following:

1. The transitive closure transition matrix QCLO(Eij = 1|⇥TCL) is approximately

⇡(vi)⇡(vj) when edges exist with small probabilities.

2. TCL places edges with approximately ⇡(i)⇡(j) probability.

3. The change in the expected degree distribution after a TCL iteration is approx-

imately zero.

The first step is the more complex part of the proof, with steps 2 and 3 being

natural extensions. Note that the di�cultly comes with the samples being placed

without replacement; if the samples were drawn with replacement, they would always

be drawn with probability exactly proportional to their degrees. Intuitively, the

argument centers on the fact the edge probabilities are small; thus, their impact on

each other’s conditional sampling probabilities is minimal.
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Step 1: Transitive Closure Matrix is Approximately ⇡

From a high level, we will show that each step of the random walk matrix is

approximately the F � CL transition probabilities for small edge probabilities. For

this step, we require a few additional definitions. The first is degree of vertex vj,

excluding two of its possible neighbors vk1 , vk2 .

Definition 4.2.5 Let vi, vk1 , vk2 be nodes in V , where E(vi) is the set of existing

edges with vi as one endpoint. Define:

d
\k1k2
i = |MB(vi) \ {(vi, vk1), (vi, vk2)}|

to be the size of the set of edges that currently exist in the generated graph from vi to

its neighbors, but excluding the edges (vi, vk1) and (vi, vk2) if they exist.

Next, the ratio of edge probabilities quantifies the odds of picking an edge (vi, vk1)

against (vi, vk2), under the assumption the first node selected is v.

Definition 4.2.6 Let vi, vk1 , vk2 be nodes in V with QE being a probability matrix.

Define:

RE (Eik1 = 1, Eik2 = 1) =
QE (Eik1 = 1|⇥E )

QF�CL(Eik2 = 1|⇥E )

to be the ratio of edge draw probabilities between (vi, vk1) and (vi, vk2). For simplicity,

we assume directionality for this definition.

This ratio is a measure of how far two probability matrices are from each other; in

particular, the distance between the marginal probabilities of QCLO from QF�CL. This

is compared to an optimal distance when the distributions are equal. We define the

edge probability ratio bias as the distance between the ratio of two edge probabilities

as defined under QE to the ratio defined by RCL (the true best distance we can

achieve).



57

Definition 4.2.7 Let vi, vk1 , vk2 be nodes in V with RE being the ratio of edge prob-

abilities for some probability matrix QE . Define the edge probability ratio bias to be:

�E (Eik1 = 1, Eik2 = 1) = RE (Eik1 = 1, Eik2 = 1) � RF�CL (Eik1 = 1, Eik2 = 1)

In essence, � encapsulates how much influence the edges have on one another,

and how that e↵ects the probabilities in relation to the CL edge probabilities. We

now quantify how far the transition probabilities defined by QTR are from QF�CL.

Intuitively, if a single step of the random walk has correct marginal probabilities, then

the two hop random walk will as well.

Theorem 4.2.1 Assume edges have been drawn according to PCL. For nodes vi, vk1,

vk2, and a given d
\k1k2
i , the edge probability ratio bias for the probability matrix as

defined by QTR is:

�TR (Eik1 = 1, Eik2 = 1) =
✓k1

h

d
\k1k2
i + 2 � ✓i✓k1

2Ne

i

✓k2

h

d
\k1k2
i + 2 � ✓i✓k2

2Ne

i � ✓k1
✓k2

Proof We begin by computing RTR(eik1 , eik2). Recall that d
\k1k2
i is the degree of vi

which considers all edges except (vi, vk1), (vi, vk2). Thus, under the CL model d
\k1k2
i

is independent of Eik1 , Eik2 . When d
\k1k2
i is given, Definition 4.2.2 reduces to:

QTR(Eik1 = 1|⇥TCL)

=⇡(vi)P
⇣

d

\k1k2

i

⌘

Nv
X

d=0

P (Eik1 = 1)P (di = d|d\k1k2

i , Eij = 1)P (Wik1 = 1|di = d,Eik1 = 1)

As d
\k1k2
i summarizes all edges aside from (vi, vk1) and (vi, vk2), di can only take

on three possible values:
n

d
\k1k2
i , d

\k1k2
i + 1, d\k1k2

i + 2
o

. Of these, d
\k1k2
i implies that

Eik1 = 0: if the edge doesn’t exist, we cannot walk to it, meaning the probability
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for this part of the summation is 0. Thus, we are left with two possible degrees that

allow us to walk from vi to vk1 :
n

d
\k1k2
i + 1, d\k1k2

i + 2
o

.

QTR(Eik1 = 1|⇥TCL)

=⇡(vi)P
⇣

d

\k1k2

i

⌘

Nv
X

d=0

P (Eik1 = 1)P (di = d|d\k1k2

i , Eij = 1)P (Wik1 = 1|di = d,Eik1 = 1)

=⇡(vi)P
⇣

d

\k1k2

i

⌘

P (Eik1 = 1)

"

P (Eik2 = 0)
1

d

\k1k2

i + 1
+ P (Eik2 = 1)

1

d

\k1k2

i + 2

#

The ratio is defined to be the above edge probability divided by the converse

possibility (QTR(Eik2 = 1)). The result is:

RTR(Eik1 = 1, Eik2 = 1)

=

⇡(vi)P (d\k1k2
i )P (Eik1 = 1)



[1 � P (Eik2 = 1)] 1

d
\k1k2
i +1

+ P (Eik2 = 1) 1

d
\k1k2
i +2

�

⇡(vi)P (d\k1k2
i )P (Eik2 = 1)



[1 � P (Eik1 = 1)] 1

d
\k1k2
i +1

+ P (Eik1 = 1) 1

d
\k1k2
i +2

�

=

P (Eik1 = 1)



[1 � P (Eik2 = 1)] 1

d
\k1k2
i +1

+ P (Eik2 = 1) 1

d
\k1k2
i +2

�

P (Eik2 = 1)



[1 � P (Eik1 = 1)] 1

d
\k1k2
i +1

+ P (Eik1 = 1) 1

d
\k1k2
i +2

�

=

✓i✓k1
2Ne

hh

1 � ✓i✓k2
2Ne

i

(d\k1k2
i + 2) +

✓i✓k2
2Ne

(d\k1k2
i + 1)

i

✓i✓k2
2Ne

hh

1 � ✓i✓k1
2Ne

i

(d\k1k2
i + 2) +

✓i✓k1
2Ne

(d\k1k2
i + 1)

i

=
✓k1

h

d
\k1k2
i + 2 � ✓i✓k2

2Ne

i

✓k2

h

d
\k1k2
i + 2 � ✓i✓k1

2Ne

i

Since RCL(Eik1 = 1, Eik2 = 1) =
✓k1
✓k2

, our bias is:

�TR (Eik1 = 1, Eik2 = 1) =
✓k1

h

d
\k1k2
i + 2 � ✓i✓k2

2Ne

i

✓k2

h

d
\k1k2
i + 2 � ✓i✓k1

2Ne

i � ✓k1
✓k2
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Consider the case where the edge probabilities are small. In these instances, the

edge probability ratio bias is nearly zero.

Corollary 4.2.1 As QTR(Ejk1 = 1|⇥TCL), QTR(Ejk2 = 1|⇥TCL) decrease, �TR(Ejk1 =

1, Ejk2 = 1) ⇡ 0.

Proof Note that as the ratio

d
\k1k2
i + 2 � ✓i✓k2

2Ne

d
\k1k2
i + 2 � ✓j✓k1

2Ne

approaches 1,

�TR(Ejk1 = 1, Ejk2 = 1) =
✓k1

h

d
\k1k2
i + 2 � ✓i✓k2

2Ne

i

✓k2

h

d
\k1k2
i + 2 � ✓i✓k1

2Ne

i � ✓k1
✓k2

⇡ ✓k1
✓k2

· 1 � ✓k1
✓k2

= 0

As a single random walk step is approximately ⇡ at the endpoint, the two hop

QCLO is naturally also approximately ⇡ at the endpoint.

Corollary 4.2.2 As QTR(Eij = 1|⇥TCL) ⇡ 0, QCLO(Eik = 1|⇥TCL) ⇡ 0.

Proof This is a consequence of the stationary distribution of random walks. As the

first random walk step marginal probabilities follow ⇡ (Corollary 4.2.1), subsequent

samples also follow the stationary distribution.

Using the above corollary, we see that each step in a random walk over the sampled

network is approximately ⇡ distributed when the edges exist with the CL probabilities

if the edge probabilities are small. In the above analysis we have assumed that the

degree with respect to the remaining edges is fixed to a particular value: we wish to
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(a) Facebook (b) PurdueEmail

Figure 4.1.: Transition edge biases for a Facebook and PurdueEmail dataset (statistics
in Figure 4.2). The larger dataset (PurdueEmail, approximately 200,000 vertices)
has considerably less bias than the smaller dataset (Facebook, approximately 77,000
vertices). This follows Corollary 4.2.1 and shows empirically how the bias decreases
for larger datasets.

determine the amount of bias we will observe for di↵erent ✓i on large social networks.

To this end, we repeatedly sample from real world networks and record the bias

observed. We wish to record the amount of bias for varying ✓i, thus, we will repeatedly

sample nodes from every degree present in the datasets. Our sampling process is:

• For each ✓, sample a center node vc where ✓c = ✓

• Sample two neighboring vertices vn1 , vn2 according to ⇡

For every sample vc we use the current dc as d
\k1k2
c , allowing us to measure the bi-

ases �TR(Ecn1 = 1, Ecn2 = 1) and �TR(Ecn2 = 1, Ecn1 = 1) according to Theorem 4.2.1.

The results are stored for every degree ✓, and repeated 10,000 times. Figure 4.1 re-

ports the averages. Both datasets results in biases under .005 for every degree, with

PurdueEmail biases being much lower. This is reasonable as PurdueEmail is a much

larger graph, meaning the edge probabilities are smaller (Figure 4.2a). Corollary 4.2.1

implies that the bias is reduced for larger graphs.
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Step 2: TCL draws edges with approximate probability ⇡(vi)⇡(vj)

TCL draws in a similar fashion to F-CL, iteratively drawing edges for placement

in the network. The di↵erence comes in the second step of the process, which can

either (a) follow the F-CL probability or (b) do a two hop random walk to close a

triangle. However, using the above we show that either process results in a draw

from ⇡.

Proposition 4.2.1 Let vi be a node in the network. The probability selecting the

second vertex vj with TCL is ⇡(vj)

Proof Let ✓⇢ be the probability of selecting according to two random walk steps

from QCLO and (1 � ✓⇢) be the probability of selecting according to QF�CL. Recall

that F-CL places the second node with probability ⇡(vk), meaning that should we

use F-CL we select according to ⇡(vj). Further, Corollary 4.2.2 shows that when

we perform a two hop random walk over a graph where edges exist with probability

defined by PCL, the resulting edge ratios are proportional to ✓j. Thus,

✓⇢⇡(vj) + (1 � ✓⇢)⇡(vj) = ⇡(vj)

The previous proposition coupled with the initial choice of vi results in the iterative

step choosing edges with probability ⇡(j)⇡(i).

Theorem 4.2.2 The TCL algorithm selects edge (vi, vj) for insertion with probabil-

ity: QTCL(Eij = 1|⇥TCL) = ⇡(vi)⇡(vj).

Proof The first node is selected directly from ⇡ while the second is selected according

to TCL, which was shown in Proposition 4.2.1 to be ⇡-distributed.

Most importantly, as QTCL(Eij = 1|⇥TCL) = ⇡(vi)⇡(vj), and removal of old edges

also occurs with probability ⇡(vi)⇡(vj), the TCL updates can be inserted in place of
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F-CL above (as they are equal), meaning at each point t the probability of an edge

existing is ✓i✓j
2Ne

.

Step 3: The expected degree distribution of TCL matches CL

Corollary 4.2.3 The expected degree distribution of the graph produced by TCL is

the same as the degree distribution of the input graph.

Proof The inductive step of TCL places an edge with endpoints distributed accord-

ing to ⇡, so the expected increase in the degree of any node vi is ⇡(vi). However, the

inductive step will also remove the oldest edge that was placed into the network. Since

the oldest edge can only have been placed in the graph through a Chung-Lu process

or a transitive closure, the expected decrease in the degree is also ⇡(vi), which means

the expected change in the degree distribution is zero. Because the CL initialization

step produces a graph with expected degree distribution equal to the input graph’s

distribution, and the TCL update step causes zero expected change in the degree dis-

tribution, the output graph of the TCL algorithm has expected degree distribution

equal to the input graph’s distribution by induction.

This implies that the algorithm is placing edges according to ⇡(vi)⇡(vj), and the

algorithm continues for Ne insertions. This is the same approach that the F-CL

algorithm—which means that if the F-CL method matches the slow CL, then the

TCL does as well. In practice, TCL and CL capture the degree distribution well (see

Section 7.4).
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4.2.1 Time Complexity

When ✓⇢ < 1, generation of naive TCL follows similar time constraints as F-CL in

(3.6), with a geometric distribution bounding the expectation to a constant as with

probability 1 � ✓⇢ the method reduces to naive F-CL.

E↵+1
TCL [Attempts|⇥TCL)]  1

1 � (1 � ✓⇢)
✓M✓M

2Ne

Overall, each iteration no longer takes O(1) but O(✓M), meaning the overall run-

time becomes O(Nv + ✓maxNe). When ✓⇢ = 1 this becomes 1. Similarly, when

queuing we can also encounter situations as discussed in Subsection 3.2.3 and have

infinite expectation, as nodes have a nonzero probability of having a complete set

of neighbors.

For the learning algorithm, assume we have I iterations which gather s samples.

It is O(1) to draw a node from the graph and O(1) to choose a neighbor, meaning

each iteration costs O(s). Coupled with the cost of creating the initial ⇡ sampling

vector, the total runtime is then O(N + M + I · s).

4.3 Analysis of TCL with Erdős-Rényi Models

Importantly, the TCL model is also unbiased when working under the Erdős-Rényi

constraints. We begin by showing that taking a single random walk step is unbiased,

using the previous Theorem 4.2.2.

Corollary 4.3.1 In the case where the input network is a regular graph, the CLO

edge probability ratio bias is 0.
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Proof From Corollary 4.2.2, we have:

�CLO(Ejk1 = 1, Ejk2 = 1) =
✓k1

h

i\k1k2 + 2 � ✓R✓R

2Ne

i

✓k2

h

i\k1k2 + 2 � ✓R✓R

2Ne

i � ✓k1
✓k2

=
✓k1
✓k2

� ✓k1
✓k2

= 0

This proof removes the approximations from Section 4.2 and replaces them with

equalities. Thus, the transitive closure matrix QCLO is unbiased in this case, and all

edges exist with probability ✓R✓R/2Ne under TCL. Thus, TCL mirrors the finding that

Erdős-Rényi random graphs can be scalably sampling without bias.

4.4 Experiments

To empirically evaluate the models, we learned model parameters from real-world

graphs (Figure 4.2a) and then generated new graphs using those parameters. We then

compared the network statistics of the generated graphs with those of the original

networks.

For our experiments, we compared three di↵erent graph generating models. The

first is the fast Chung-Lu (CL) generation algorithm with our correction for the

degree distribution. The second is Kronecker Product Graph Model (KPGM [13])

implemented with code from the SNAP library1. Lastly, we compared the Transitive

Chung-Lu (TCL) method presented in this paper using the EM technique to estimate

the ⇢ parameter. All experiments were performed in Python on a Macbook Pro, aside

from the KPGM parameters which were generated on a desktop computer using C++.

1SNAP: Stanford Network Analysis Project. Available at
http://snap.stanford.edu/snap/index.html. SNAP is written in C++.
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Dataset Nodes Edges
Epinions 75,888 811,480
Facebook 77,110 500,178
Gnutella30 36,682 176,656

PurdueEmail 214,773 1,711,174

(a) Size

Dataset CL KPGM TCL
Epinions N/A 9,105.4s 2.5s
Facebook N/A 5,689.4s 2.0s
Gnutella30 N/A 3,268.4s 0.9s

PurdueEmail N/A 8,360.7s 3.0s

(b) Learning Time

Dataset CL KPGM TCL
Epinions 20.0s 151.3s 64.6s
Facebook 14.2s 92.4s 30.8s
Gnutella30 4.2s 67.8s 7.0s

PurdueEmail 61.0s 285.6s 141.0s

(c) Generation Time

Figure 4.2.: Dataset sizes, along with learning times and running times for each
algorithm

All the datasets were transformed to be undirected by reflecting the edges in the

network, except for the Facebook network which is already undirected.

4.4.1 Datasets

The first dataset we analyze is Epinions [79]. This network represents the users of

Epinions, a website which encourages users to indicate other users whose consumer

product reviews they ‘trust’. The edge set of this network represents nominations of

trustworthy individuals between the users.

Next, we study the collection of Facebook friendships from the Purdue University

Facebook network. In this network, the users can add each other to their lists of

friends and so the edge set represents a friendship network. This network has been

collected over a series of snapshots for the past 4 years; we use nodes and friendships

aggregated across all snapshots.

The Gnutella30 network di↵ers from the other networks presented. Gnutella is a

Peer2Peer network where users are attempting to find seeds for file sharing [80]. The

user reaches out to its current peers, querying if they have a file. If not, the friend
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(a) Epinions (b) Facebook

(c) Gnutella30 (d) PurdueEmail

Figure 4.3.: Degree distribution for the Epinion, Facbook, Gnutella30 and Pur-
dueEmail datasets.

refers them to other users who might have a file, repeating this process until a seed

user can be found.

Lastly, we study a large collection of emails gathered from the SMTP logs of

Purdue University [81]. This dataset has an edge between users who sent e-mail to

each other. The mailing network has a small set of nodes which sent out mail at a

vastly greater rate than normal nodes; these nodes were most likely mailing lists or

automatic mailing systems. In order to correct for these ‘spammer’ nodes, we remove

nodes with a degree greater than 1, 000 as these nodes did not represent participants

in any kind of social interaction.
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(a) (b)

Figure 4.4.: Convergences of the EM algorithm—both in terms of time and number
of iterations. 10000 samples per iteration.

4.4.2 Running Time

In Figure 4.4 we can see the convergence of the EM algorithm when learning

parameter ⇢, both in terms of the number of iterations and in terms of the total clock

runtime. Due to the independent sample sets used for each iteration of the algorithm,

we can estimate whether the sample set in each iteration is su�ciently large. If the

sample size is too small, the algorithm will be susceptible to variance in the samples

and will not converge. Using Figure 4.4a, we see that after 5 iterations of 10,000

samples the EM method has converged to a smooth line.

In addition to the convergence in terms of iterations, in Figure 4.4b we plot the wall

time against the current estimated ⇢. The gap between 0 and the start of the colored

lines indicates the amount of overhead needed to generate our degree distribution

statistic and ⇡ sampling vector for the given graph (a step also needed by CL). The

Purdue Email network has the longest learning time at 3 seconds. For the same

Email network, learning the KPGM parameters took approximately 2 hours and 15

minutes, meaning our TCL model can learn parameters from a network significantly

faster than the KPGM model (shown in Table 4.2.b).
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(a) Epinions (b) Facebook

(c) Gnutella30 (d) PurdueEmail

Figure 4.5.: Clustering Coe�cient Distribution for the Epinion, Facbook, Gnutella30
and PurdueEmail datasets.

Next, the performance in terms of graph generation speed is tested, shown in

Table 4.2.c. The maximum time taken to generate a graph by CL is 61 seconds for

the Purdue Email dataset, compared to 141 seconds to generate via TCL. Since TCL

must initialize the graph using CL and then place its own edges, it is logical that

TCL requires at least twice as long as CL. The runtimes indicate that the transitive

closures cost little more in terms of generation time compared to the CL edge in-

sertions. KPGM took 285 seconds to generate the same network. The discrepancy

between KPGM and TCL is the result of the theoretical bounds of each—KPGM

takes O(Ne log Nv) while TCL takes O(Ne).
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4.4.3 Graph Statistics

In order to test the ability of the models to generate networks with similar char-

acteristics to the original four networks, we compare them on three well known graph

statistics: degree distribution, clustering coe�cient, and hop plot.

Matching the degree distribution is the goal of both the CL and KPGM models, as

well as the new TCL algorithm. In Figure 4.3, the degree distributions of the networks

generated from each model for each real-world network are shown, compared against

the original real-world networks’ degree distribution. The measure used along the

y-axis is the complementary cumulative degree distribution (CCDF), while the x-axis

plots the degree, meaning the y-value at a point indicates the percentage of nodes

with greater degree. The four datasets have degree distributions of varying styles—

the three social networks (Epinions, Facebook, and PurdueEmail) have curved degree

distributions, compared to Gnutella30 whose degree distribution is nearly straight,

indicating an exponential cuto↵. As theorized, both the CL and TCL have a degree

distribution which closely matches their expected degree distribution, regardless of

the distribution shape. KPGM performs best on the Gnutella30 network, sharing an

exponential cuto↵ indicated by a straight line, but is still separated from the original

network’s distribution. With the social networks, KPGM has an alternating dip/flat

line pattern which does not resemble the true degree distribution.

The next statistic we examine is TCL’s ability to model the distribution of lo-

cal clustering coe�cients compared to CL and KPGM (see Figure 4.5). As with

the degree, we plot the CCDF on the y-axis, but against the local clustering coe�-

cient on the x-axis. On the network with the largest amount of clustering, Epinions,

TCL matches the distribution of clustering coe�cients well with the TCL distribu-

tion covering the original distribution. The same e↵ect is visible for Facebook and

PurdueEmail, despite the large size of the latter. The Gnutella30 has a remarkably

low amount of clustering—so low that it is plotted in log-log scale—yet TCL is able



70

(a) Epinions (b) Facebook

(c) Gnutella30 (d) PurdueEmail

Figure 4.6.: Hop plots for the Epinion, Facbook, Gnutella30 and PurdueEmail
datasets.

to capture the distribution as well. Furthermore, the networks exhibit a range of ⇢

values which TCL can accurately learn.

In contrast, CL and KPGM cannot model the clustering distribution. For each

network, both methods lack appreciable amounts of clustering in their generated

graphs, even undercutting the Gnutella30 network which has far less clustering than

the others. This shows a key weakness with both models, as clustering is an impor-

tation characteristic of small-world networks.

The last measure examined is the Hop Plot (see Figure 4.6). The Hop Plot

indicates how tightly connected the graph is; for each x-value, the y-value corresponds

to the percentage of nodes that are reachable within paths of the corresponding length.
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When generating the hop plots, we excluded any nodes with infinite hop distance and

discarded disconnected components and orphaned nodes. All of the models capture

the hop plots well, with TCL producing hop plots very close to those of the standard

CL. This indicates that the transitive closures incorporated into the TCL model did

not impact the connectivity of the graph and the gains in terms of clustering can be

obtained without reducing the long range connectivity.

4.5 Concluding Remarks

In this section we introduced the Transitive Chung-Lu model. Given a real-world

network, the TCL algorithm can learn a model and generate graphs which accurately

capture the degree distribution, clustering coe�cient distribution and hop plot found

in the training network, where alternative methods fail on one or more of these char-

acteristics. We proved the algorithm generates a network in time thats linear in the

number of edges, on the same order as the original CL algorithm and faster than

KPGM. The amount of clustering in the generated network is controlled by a single

parameter, and we demonstrated how estimating the parameter is several orders of

magnitude faster than estimating the parameters of the KPGM model.

This representation is useful for a number of reasons. First, we will show that it

can be e↵ectively incorporated into the Attributed Graph Models of the next chapter,

both for modeling attributes and for modeling the joint degree distribution. Second,

we show in Chapter 6 that it is an exceptionally useful framework for incorporating

edge probabilities into relational machine learning for partially observed domains.
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5 ATTRIBUTED GRAPH MODELS

Consider the following scenario: two users in a network (Alice and Bob) have a large

number of common friends, which in turn implies a high likelihood that they will

become friends. At some point in time, Alice and Bob might meet through a mutual

friend. However, if we examine the intrinsic attributes of Alice and Bob, we may find

that Alice is conservative while Bob is liberal. Although this does not prevent the two

from becoming friends, political views typically correlate across edges in a network.

Thus, a model which represents the probability that an edge will form between Alice

and Bob should consider both their network structure and their attributes.

However, current general scalable graph models make careful structural assump-

tions in order to make the models scale to large, real world data, removing information

given to the model by the vertex attributes. In this chapter, we introduce a powerful

generative framework that allows us to sample large, real world networks that model

the dependencies between edges and vertex attributes. Our framework allows for

modeling the joint distribution of attributes and edges in subquadratic time (in the

number of vertices). Specifically, we introduce the Attributed Graph Model (AGM),

which e�ciently exploits common scalable structure assumptions to model a set of

edges conditioned on vertex attributes. We also provide e�cient sampling and es-

timation methods and prove that specific properties of input structural models are

preserved. Notably, we prove AGM preserves the expected degree distribution as

defined by an input structural graph model, and demonstrate empirically that AGM

models additional properties such as clustering. In addition to preserving the struc-

tural characteristics of an input graph model, we demonstrate that AGM accurately

models the correlation of vertex attributes. We further expand this model to capture

higher order graph structures; in particular, the joint degree distribution.
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5.1 Attributed Graph Models

In this section we outline our AGM framework. Current scalable graph models

(such as TCL and KPGM) draw from the joint distribution of edges given a set of

edge parameters ⇥E . This could be combined with simple generation of attributes on

the vertices, given attribute parameters ⇥X , by assuming the vertex attributes are

independent of the edges. However, as social networks typically exhibit homophily

this assumption is generally incorrect, meaning:

PE (E|W, ⇥E )PW (W|⇥W ) 6= PE (E|⇥E )PW (W|⇥W )

Here, PW (W|⇥W ) represents a prior distribution for the traits on the vertices, which

can be estimated using probabilistic graphical models (see [82]). However, estimation

and (in particular) sampling of PE (E|W, ⇥E ) in large domains remains an open prob-

lem. For example, consider again the motivating case from the introduction, where

the goal is to model the Political Views in an input friendship network. Assume a gen-

erative structural model E , and draw a sample network where vertices have attributes.

If we assume independence between attributes and edges (as structural graph models

do), the sampled graph will have many fewer friendships generated among two Con-

servatives (C-C) compared to those that are observed in Go (Figure 5.1a). Consider

the ratio between the percentage of edges which connect Conservatives to Conser-

vatives in the true data as opposed to the sampled network (Figure 5.1b): we see

that C-C pairings are considerably more likely to occur in the true dataset, while

other combinations of pairings (notably Not Conservative - Conservative) are over-

represented in the sampled network. AGM will utilize these ratios to reject certain

endpoint attribute combinations more frequently than others.

5.1.1 Framework

As in the basic independent model described above, our AGM framework in-

corporates distributions over the attributes (PW (W|⇥W )) and edges (PE (E|⇥E )).
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(a) (b)

Figure 5.1.: (a) Distributions of Politics across edges (C conservative, NC non con-
servative), for network G and network generated by E . (b) Ratios between these
distributions (left y-axis) and acceptance probabilities (right y-axis).

In addition, the AGM approach uses a parameterization ⇥F to model the desired

attribute correlations across edges in a scalable way—in conditionals of the form

PE (Eij = 1|W, ⇥E , ⇥F ). Specifically, we introduce a deterministic function f(wi,wj),

which maps tuples of attribute vectors to a single model of correlation across linked

edges. The random variables Eij remain conditionally independent Bernoulli trials,

and the only additional dependence is on the attributes of the incident nodes wi,wj.

Thus, the edge trials are conditionally independent from one another:

PE (E|W,⇥E ,⇥F ) =
Y

eij2E

PE (Eij = 1|W,⇥E ,⇥F )
Y

ekl /2E

PE (Ekl = 0|W,⇥E ,⇥F )

=
Y

eij2E

PE (Eij = 1|f(wi,wj),⇥E ,⇥F )
Y

ekl /2E

PE (Ekl = 0|f(wk,wl),⇥E ,⇥F )

Let Po(Eij = 1|f(wi,wj), ⇥E , ⇥F ) be the conditional distribution of an edge in the

observed graph given the corresponding attributes on the incident vertices. Applying

Bayes’ Theorem, we have:
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Po(Eij = 1|f(wi,wj),⇥E , ⇥F )

=
Po(f(wi,wj)|Eij = 1, ⇥E , ⇥F ) · Po(Eij = 1|⇥E , ⇥F )

Po(f(wi,wj)|⇥E , ⇥F )

= Po(Eij = 1|⇥E )
Po(f(wi,wj)|Eij = 1, ⇥E , ⇥F )

Po(f(wi,wj)|⇥E , ⇥F )

Here we assume that the prior distribution of the edge is defined by our chosen

structural model E ; i.e., Po(Eij = 1|⇥E , ⇥F ) = PE (Eij = 1|⇥E ), while the posterior

distribution accounts for the observed vertex attributes. Unfortunately, it is not

simple to derive e�cient estimation and sampling methods for the underlying data

that reflect the observed edge/attribute correlations. Instead, we exploit the sampling

mechanism from a simpler graph model E (discussed in Chapter 3) to approximate

the true data distribution observed in G. We define the ratio between the edge

probabilities in the the observed data G and in the graph model E :

R(f(wi,wj)|⇥E , ⇥F ) =
Po(Eij = 1|f(wi,wj), ⇥E , ⇥F )

PE (Eij = 1|f(wi,wj), ⇥E , ⇥F )
(5.1)

Given estimation and sampling methods for E , we can adjust the edge probabilities

to recover the distribution for G using R(f(wi,wj)|⇥E , ⇥F ):

Po(Eij = 1|f(wi,wj),⇥E ,⇥F ) = PE (Eij = 1|f(wi,wj),⇥E ,⇥F ) · R(f(wi,wj)|⇥E ,⇥F )

(5.2)

The equation above can be used to adjust for the discrepancies between the proba-

bilities calculated by the model E and those that reflect the true data distribution of

G. Additionally, for sparse networks we can utilize a sample graph from E and the

original graph G to further approximate R in Equation 5.2.

Lemma 5.1.1 Given a target distribution Po and a generative graph model E , we

can model Po indirectly using PE and the ratio R from Eq. 5.1. Furthermore, when
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the edge priors are modeled by E (i.e., Po(Eij=1|⇥E , ⇥F ) = PE (Eij=1|⇥E ) ) and the

graph is sparse, we can approximate R e�ciently with R̃ = Po(f(wi,wj)|Eij=1,⇥E ,⇥F )

PE (f(wi,wj)|Eij=1,⇥E ,⇥F )
:

Po(Eij = 1|f(wi,wj), ⇥E , ⇥F ) = PE (Eij = 1|⇥E ) · R(f(wi,wj)|⇥E , ⇥F ) (5.3)

⇡ PE (Eij = 1|⇥E ) · R̃(f(wi,wj)|⇥E , ⇥F )

= PE (Eij = 1|⇥E ) · Po(f(wi,wj)|Eij = 1, ⇥E , ⇥F )

PE (f(wi,wj)|Eij = 1, ⇥E , ⇥F )

(5.4)

A proof for this Lemma is included in Section 5.2. Estimation and sampling in

AGM involves the three probabilities on the last line of Equation 5.4. From a high

level, these can each be explained as follows:

• PE (Eij = 1|f(wi,wj), ⇥E , ⇥F ) is the prior probability of an edge existing ac-

cording to E .

• Po(f(wi,wj)|Eij = 1, ⇥E , ⇥F ) represents the correlations observed in the graph

G.

• PE (f(wi,wj)|Eij = 1, ⇥E , ⇥F ) represents the correlation produced by E .

E↵ectively, edge samples with attribute configurations that are under-sampled in E

are given a higher conditional probability, while samples with configurations that are

over-sampled in E are given lower probability. AGM provides e�cient methods for

sampling and estimation in each of these three distributions.

5.1.2 Sampling

Ideally, an algorithm would estimate and sample directly from (5.4). However, as

N2
v edges can exist in the network, both estimation and sampling from this distri-
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bution are prohibitively expensive for large networks. Instead, we draw Ne samples

from a multinomial parameterized by:

Q(i, j) =
Po(Eij = 1|f(wi,wj), ⇥E , ⇥F )

P

k,l Po(Ekl = 1|f(wk,wl), ⇥E , ⇥F )

/ Po(Eij = 1|f(wi,wj), ⇥E , ⇥F )

Note the similarities between the framework discussed in Chapter 3 and this one: both

are sampling repeatedly from a multinomial where every edge exists proportional

to its true edge probability. By applying Equation 5.3 and normalizing, Q(i, j) is

proportional to:

Q(i, j) / PE (Eij = 1|f(wi,wj), ⇥F , ⇥E ) · R(f(wi,wj)|⇥E , ⇥F )

/ Q0
E (i, j) · A(f(wi,wj)|⇥E , ⇥F )

where:

Q0
E (i, j) =

PE (Eij = 1|f(wi,wj), ⇥F , ⇥E )
P

k,l PE (Ekl = 1|f(wk,wl), ⇥F , ⇥E )
(5.5)

A(f(wi,wj)|⇥E , ⇥F ) =
R(f(wi,wj)|⇥E , ⇥F )

supvl,vk2V R(f(wl,wk)|⇥E , ⇥F )
(5.6)

In this case, Q0
E (i, j) is a scalable network model as discussed in Chapter 3.

However, in this case we wish to augment the edge probabilities to incorporate the

additional information provided by the vertex attributes. Sampling with AGM is

therefore a process of Accept-Reject sampling: samples are drawn from a proposing

matrix Q0
E , then moderated by an acceptance probability conditioned on the features

(A(f(wi,wj)|⇥E , ⇥F )). Thus, as Chapter 4 expanded the framework of Chapter 3 by

defining a new conditional form for QE , in this case we’ve expanded it to incorporate

probabilistic rejections based on the attributes of the endpoints.

The sampling algorithm for AGM is outlined in Algorithm 5. The algorithm begins

by computing a proposing distribution Q0
E (i, j) from E and ⇥E (line 2). Then it draws

a graph from E (lines 3-5) in order to compute the ratios R(f(wi,wj)|⇥E , ⇥F ) and
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Algorithm 5 SampleFromAGM (⇥E , ⇥W , ⇥F , G)

1: // Draw initial graph and attributes
2: Calculate Q0

E in Eq. 5.5 from E and ⇥E

3: E0 ⇠ from E using ⇥E

4: V0 = V
5: W0 ⇠ from W using ⇥W

6: // Compute Acceptance Probabilities

7: R(f(W,W)) =
P(f(Wo,Wo)|Eo,⇥o

F ,⇥o
E )

P(f(W0,W0)|E0,⇥0
F ,⇥0

E )
8: A(f(W,W)) = R(f(W,W))

sup[R(f(W,W))]

9: // Reinitialize E and generate new edges based on W
10: E0 = ;
11: while |E0| < |Eo| do
12: E 0

ij ⇠ multinomial(Q0
E )

13: u ⇠ Uniform(0,1)
14: if u  A(f(wi,wj)) then
15: E0 = E0 [ E 0

ij

16: end if
17: end while
18: return G0 = hV0,E0,W0i

the corresponding acceptance probabilities (lines 7-8). The main loop (lines 11-17)

repeatedly draws a sample from Q0
E and determines whether to accept it into the

graph based on the attributes of the vertices of the proposed edge and the acceptance

probabilities (line 14). This loop is repeated until enough edges are inserted into the

network.

5.1.3 Estimation

Algorithm 6 outlines the framework for learning the parameters required by Sam-

pleFromAGM (Algorithm 5). Given a generative model E , we assume methods for

estimation of parameters ⇥E for modeling PE (E|⇥E ) exist. Further, we assume a

model PW (W|⇥W ) where ⇥W can be learned from the vertex attributes, and from

which samples w ⇠ P (W|⇥W ) can be drawn. However, as AGM models correla-

tions from a given input network Po (f(W,W)|E = 1, ⇥F , ⇥E ) as well as correlations
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Algorithm 6 LearnAGM (E , W , G)

1: // These first two steps can be estimated through existing techniques
2: Learn ⇥E from G using E
3: Learn ⇥W from G using W
4: // We must estimate the edge correlations
5: Learn ⇥F from G
6: return (⇥E , ⇥W , ⇥F )

that arise from the given generative graph model PE (f(W,W)|Eij = 1, ⇥F , ⇥E ), we

need to estimate the parameters ⇥F for each. In this subsection, we show how these

conditionals can be e�ciently estimated.

We begin by making a simplifying assumption about the dependencies between

the observed features f(wi,wj) and the parameters of the structural graph model

(⇥E ), then later demonstrate how to estimate the accept-reject probabilities when this

assumption is removed. To start, assume the distribution of the features f(wi,wj) is

conditionally independent of the graph model parameters ⇥E
1:

P (f(wi,wj)|Eij = 1, ⇥E , ⇥F ) = P (f(wi,wj)|Eij = 1, ⇥F ) (5.7)

A graphical representation of this assumption is given in Figure 5.2. The interpre-

tation is this: if we observe the value of Eij, then the parameters for the distributions

of f(wi,wj) do not depend on the generative model E . This simplifies our esti-

mation of the distribution, as it removes dependencies on the underlying model E .

Conditional independence allows us to estimate the parameters ⇥F using maximum

likelihood estimation (MLE).

⇥̂F = arg max
⇥F

X

(vi,vj)2E

log P (f (wi,wj) |Eij = 1, ⇥F )

1These are equally applicable for Po and PE , so reference to a specific model is dropped
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ΘM# Eij#

Xj#

Xj#

Figure 5.2.: Estimation where attributes are independent of the model parameters
given the edges.

We will now demonstrate how to estimate the MLE of P (f(wi,wj)|Eij = 1, ⇥F ).

First, we will use the correlation of a single binary variable w across edges as its

criteria:

fw(wi,wj) =

8

>

>

>

>

>

<

>

>

>

>

>

:

(0, 0) if wi[w] = 0 and wj[w] = 0

(1, 1) if wi[w] = 1 and wj[w] = 1

(0, 1) if wi[w] 6= wj[w]

(5.8)

where wi(0) represents the attribute whose correlation we are trying to encode; for

example, wi(0) can be a binary attribute indicating whether the corresponding indi-

vidual is Conservative or Not Conservative. To maximize the likelihood, we take all

(vi, vj) 2 E and count the number of observations of each value the feature can take

(in this case, {(0, 0), (0, 1), (1, 1)}). For example:

⇥̂Fw((0, 0)) =

P

(vi,vj)2E I [(wi[w] = 0) ^ (wj[w] = 0)]

Ne

For attributes with larger scope S, the function f(wi,wj) makes a mapping over

the
�

S+1
2

�

combinations using the S possibles values of the characteristic, where

f(wi,wj) and ⇥̂F are given by
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fw(wi,wj) =

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

(k, k) if wi[w] = k ^ wj[w] = k

(k, l) if (wi[w] 6= wj[w])^

((wi[w] = k ^ wj[w] = l)_

(wi[w] = l ^ wj[w] = k))

⇥̂Fw((k, l)) =

P

(vi,vj)2E I [fw(wi,wj) = (k, l)]

Ne

We can also create an edge function which considers more than a single attribute.

We let:

f(wi,wj) = (f0(wi,wj), · · · , fW�1(wi,wj)) (5.9)

meaning the output of f(wi,wj) is the multiple pairs of the edge functions fw(wi,wj)

defined for the W di↵erent characteristics. For example, when we have two attributes

such as Religion and Political Views our corresponding features are f(wi,wj) =

(f0(wi,wj), f1(wi,wj)), where f0(wi,wj) refers to the pairing of religious views and

f1(wi,wj) to the pairing of political views. Although this edge function has a higher

order of magnitude than with single variables, the estimation of ⇥̂F can also ap-

ply to Equation 5.1.3. This allows for modeling a variety of feature functions

(⇥̂F ((k1, l1), · · · , (kw, lw))).

Removing Conditional Independence Assumption

In Equation 5.7, we inserted an assumption that the distribution of edge features

was independent of the underlying generative graph model E . For many generative

graph models this is true, such as F-CL and KPGM. However, other models are more

complicated (e.g., those that model transitivity as TCL does). TCL enforces that the

marginal probability of an edge existing in the graph will remain proportional to the

product of the degrees. However, as TCL iteratively lays triangles over an existing

graph sample, future edge samples are dependent on the previously laid edges in the
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network. By extension, the samples are dependent on our accept-reject probabilities,

as well as our edge function parameters ⇥F .

To address this issue, we use the fact that the correct accept-reject probabilities

will result in a sampled network G0 being drawn where the observed f(wi,wj) in G0

will equal the observed f(wi,wj) in G. Let Aold(f(wi,wj)|⇥E , ⇥F ) be the initial ac-

ceptance probabilities. Define ↵(f(wi,wj)) to be the proportion PE (f(wi,wj)|Eij =

1, ⇥E , ⇥F ) under- or over-samples the desired distribution:

Po (f(wi,wj)|Eij = 1, ⇥E , ⇥F ) =

↵ (f(wi,wj)) · PE (f(wi,wj)|Eij = 1, ⇥E , ⇥F )

Solving for ↵(f(wi,wj)) gives:

↵ (f(wi,wj)) =
Po (f(wi,wj)|Eij = 1, ⇥E , ⇥F )

PE (f(wi,wj)|Eij = 1, ⇥E , ⇥F )

We then update our acceptance probabilities with:

Anew(f(wi,wj)|⇥E , ⇥F ) = ↵(f(wi,wj)) · Aold(f(wi,wj)|⇥E , ⇥F )

A subsequent graph is then drawn by AGM, but using the updated acceptance rates

Anew(f(wi,wj)|⇥E , ⇥F ). If AGM previously over-sampled certain edge values, it will

adjust and sample them lower. In contrast, if edge features are observed too rarely,

AGM will adjust and sample them at a higher rate.

In Algorithm 5, these changes can be implemented by adding another loop around

lines 7-17—in which A and R are updated as described and the edges then drawn

again according to the new accept-reject probabilities. We find it takes relatively few

iterations of this outer loop to converge on accurate acceptance probabilities.
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5.1.4 Runtime

The benefit of using AGM is the e�ciency of the algorithm. As discussed in

Chapter 3, we let ⌧E refer to the cost of constructing the Q0
E matrix, while E refers

to the cost of sampling from Q0
E . For AGM, we must now iteratively sample from

Q(i, j) / Q0
E (i, j) · A(f(wi,wj|⇥E , ⇥F )), meaning we have the additional rejection

rate cost to consider. Denote this �, which is the expected value of the number of

trials it takes to get a single edge accepted (as with the proofs in Chapter 3, this

is a geometric distribution). Thus, the total runtime for AGM using a model E is

Õ(⌧E + Ne · E · �).

5.2 AGM analytical properties

We have proposed AGM, a new framework which considers the dependencies be-

tween the attributes and edges of network. Besides its general formulation that can

be implemented for a class of generative graph models and its e�cient running time,

AGM has several important analytical characteristics:

• Theorem 5.2.1: AGM approximately draws from the conditional edge distribu-

tion Po(E|W, ⇥E , ⇥F ).

• Theorem 5.2.2: The expected probability of an edge (vi, vj) in the AGM model

is equal to the probability of the edge (vi, vj) in the underlying graph model E .

• Corollary 5.2.1: The expected degree of a node in AGM is equal to its expected

degree in E .

We begin with a proof of Lemma 5.1.1 from Section 5.1.1, showing how we can

reweight edge probabilities as modeled by E into edge probabilities that are observed

in the graph G.

Lemma 5.1.1 Given a target distribution Po and a generative graph model E , we

can model Po indirectly using PE and the ratio R from Eq. 5.1. Furthermore, when
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the edge priors are modeled by E (i.e., Po(Eij=1|⇥E , ⇥F ) = PE (Eij=1|⇥E ) ) and the

graph is sparse, we can approximate R e�ciently with R̃ = Po(f(wi,wj)|Eij=1,⇥E ,⇥F )

PE (f(wi,wj)|Eij=1,⇥E ,⇥F )
:

Po(Eij = 1|f(wi,wj), ⇥E , ⇥F ) = PE (Eij = 1|⇥E ) · R(f(wi,wj)|⇥E , ⇥F ) (5.3)

⇡ PE (Eij = 1|⇥E ) · R̃(f(wi,wj)|⇥E , ⇥F )

= PE (Eij = 1|⇥E ) · Po(f(wi,wj)|Eij = 1, ⇥E , ⇥F )

PE (f(wi,wj)|Eij = 1, ⇥E , ⇥F )

(5.4)

Proof We wish to model the conditional probability of an edge existing in the orig-

inal network using the proposing distribution E . This results in a Ratio representing

how close the two distributions are to each other, which we denote

R(f(wi,wj)|⇥E , ⇥F ) = Po(Eij=1|f(wi,wj),⇥E ,⇥F )

PE (Eij=1|f(wi,wj),⇥E ,⇥F )
:

Po(Eij = 1|f(wi,wj),⇥E ,⇥F ) = PE (Eij = 1|f(wi,wj),⇥E ,⇥F )R(f(wi,wj)|⇥E ,⇥F )

= PE (Eij = 1|f(wi,wj),⇥E ,⇥F )
Po(Eij = 1|f(wi,wj),⇥E ,⇥F )

PE (Eij = 1|f(wi,wj),⇥E ,⇥F )

= Po(Eij = 1|f(wi,wj),⇥E ,⇥F )

(5.10)

where PE (Eij = 1|⇥E ) = PE (Eij = 1|f(wi,wj), ⇥E , ⇥F ). We simplify

R(f(wi,wj)|⇥E , ⇥F ):

R(f(wi,wj)|⇥E , ⇥F ) =
Po(Eij = 1|f(wi,wj), ⇥E , ⇥F )Po(f(wi,wj)|Eij=1,⇥E ,⇥F )

Po(f(wi,wj)|⇥E ,⇥F )

PE (Eij = 1|f(wi,wj), ⇥E , ⇥F )PE (f(wi,wj)|Eij=1,⇥E ,⇥F )

PE (f(wi,wj)|⇥E ,⇥F )

=
Po(f(wi,wj)|Eij = 1, ⇥E , ⇥F )

PE (f(wi,wj)|Eij = 1, ⇥E , ⇥F )
·


PE (f(wi,wj)|⇥E , ⇥F )

Po(f(wi,wj)|⇥E , ⇥F )

�

(5.11)

Here we used our assumption on the prior to cancel the terms. The ratio in the brack-

ets represent the normalization terms for each of the original conditional distribution.

These can be expressed as marginalizations over the probability of an edge existing:
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PE (f(wi,wj)|⇥F , ⇥E ) =PE (Eij = 1|⇥F , ⇥E )PE (f(wi,wj)|Eij = 1, ⇥F , ⇥E )

+PE (Eij = 0|⇥F , ⇥E )PE (f(wi,wj)|Eij = 0, ⇥F , ⇥E )

Po(f(wi,wj)|⇥F , ⇥E ) =PE (Eij = 1|⇥F , ⇥E )Po(f(wi,wj)|Eij = 1, ⇥F , ⇥E )

+PE (Eij = 0|⇥F , ⇥E )Po(f(wi,wj)|Eij = 0, ⇥F , ⇥E )

Each of these can be explicitly computed from the data and should be utilized

in the ratio when modeling the distribution of dense matrices. However for sparse

matrices, PE (Eij = 0|⇥F , ⇥E ) dominates the sum for each equation as all edges exist

with probability near 0:

PE (f(wi,wj)|⇥F , ⇥E ) ⇡ PE (Eij = 0|⇥F , ⇥E )PE (f(wi,wj)|Eij = 0, ⇥F , ⇥E )

Po(f(wi,wj)|⇥F , ⇥E ) ⇡ PE (Eij = 0|⇥F , ⇥E )Po(f(wi,wj)|Eij = 0, ⇥F , ⇥E )

Further, Po(f(wi,wj)|Eij = 0, ⇥F , ⇥E ) and PE (f(wi,wj)|Eij = 0, ⇥F , ⇥E ) define

distributions over nearly every possible pair of vertices in V⇥V. As wi ⇠ P (W|⇥W )

for both distributions, Po(f(wi,wj)|Eij = 0, ⇥F ) ⇡ PE (f(wi,wj)|Eij = 0, ⇥F ).

Thus, in Equation 5.11 the ratio in brackets is approximately 1. Inserting this result

into Equation 5.10, the conditional is:

Po(Eij = 1|f(wi,wj), ⇥E , ⇥F )

= PE (Eij = 1|f(wi,wj), ⇥E , ⇥F ) · R(f(wi,wj)|⇥E , ⇥F )

⇡ PE (Eij = 1|f(wi,wj), ⇥E , ⇥F ) · Po(f(wi,wj)|Eij = 1, ⇥E , ⇥F )

PE (f(wi,wj)|Eij = 1, ⇥E , ⇥F )

We introduce notation used for the remaining proofs. Recall Equation 5.5, where

scalable graph models draw edges repeatedly from a multinomial:

Q0
E (i, j) =

PE (Eij = 1|f(wi,wj), ⇥F , ⇥E )
P

k,l PE (Ekl = 1|f(wl,wk), ⇥F , ⇥E )
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We denote the normalization constant:

ZE =
Nv ,Nv
X

i,j

PE (Eij = 1|f(wi,wj), ⇥F , ⇥E )

Recall the acceptance probabilities from Equation 5.6:

A(f(wi,wj)|⇥E , ⇥F ) =
R(f(wi,wj)|⇥E , ⇥F )

supvl,vk2V R(f(wl,wk)|⇥E , ⇥F )

We let the constant C be the supremum over the ratios:

CF = sup
vk,vl2V

[R(f(wl,wk)|⇥E , ⇥F )]

These two constants are key in showing how approximation between AGM ap-

proximates the true edge parameters, as well as the runtime of AGM.

Edge Probabilities: Recall that a draw of Eij from our proposal distribution Q0

occurs with probability PE (Eij = 1|⇥E )/ZE . In Lemma 5.2.1, we show the target

conditional distribution Q (probability of an edge existing given the vertex attributes)

can be split into a sum of (a) the probability of drawing Eij ⇠ PE (Eij = 1|⇥E )/ZE

and (b) the acceptance probability of f(wi,wj).

Lemma 5.2.1 For every possible edge (vi, vj) 2 V ⇥ V:

Po(Eij = 1|f(wi,wj), ⇥E , ⇥F )

=
ZE ·CF
X

1



PE (Eij = 1|f(wi,wj), ⇥E , ⇥F )

ZE
· A(f(wi,wj)|⇥E , ⇥F )

�
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Proof We begin by applying Equation 5.3:

Po(Eij|f (wi,wj), ⇥E , ⇥F )

=PE (Eij = 1|f(wi,wj), ⇥E , ⇥F ) R(f(wi,wj)|⇥E , ⇥F )

=
ZE
X

1



PE (Eij = 1|f(wi,wj), ⇥E , ⇥F )

Nv

· R(f(wi,wj)|⇥E , ⇥F )

�

=
ZE ·CF
X

1



PE (Eij = 1|f(wi,wj), ⇥E , ⇥F )

ZE

✓

1

CF

· R(f(wi,wj)|⇥E , ⇥F )

◆�

=
ZE ·CF
X

1



PE (Eij = 1|f(wi,wj), ⇥E , ⇥F )

ZE
· A(f(wi,wj)|⇥E , ⇥F )

�

where in the second step we have multiplied every piece of the summation by 1
ZE

but summed ZE times and in the third step where we again multiply every instance

by 1
CF

, but additionally sum over the quantity CF times.

This shows the conditional probabilities of the edges can be broken into ZE ·

CF parts, with each part referring to the probability (vi, vj) is drawn and accepted.

However, the probability of an edge existing in the accept-reject process is not the

summation of the individual probabilities, but:

1 �


1 �
✓

PE (Eij = 1|f(wi,wj), ⇥E , ⇥F )

ZE
A(f(wi,wj)|⇥E , ⇥F )

◆�ZE ·CF

The probability in the square brackets represents the probability of not drawing

edge (vi, vj) on each iteration. The loop is executed ZE · CF times, meaning the

quantity on the right is the probability an edge is never sampled. The probability

an edge is sampled subtracts the quantity on the right from 1. However, as this

probability is small, we can prove the accept-reject process is a good approximation

to Po(Eij = 1|f (wi,wj), ⇥E , ⇥F ) due to the Binomial Approximation [77].
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Theorem 5.2.1 For every edge (vi, vj) 2 E:

PAGM :=1 �


1 �


PE (Eij = 1|f(wi,wj), ⇥E , ⇥F )

ZE
A(f(wi,wj)|⇥E , ⇥F )

��ZE ·CF

⇡ Po(Eij = 1|f (wi,wj), ⇥E , ⇥F )

Proof The Binomial Approximation [77] states that for values t close to 0, (1 +

t)↵ = 1 + ↵t. Here, our individual draws and corresponding accept-reject probability
PE (Eij=1|⇥E )

ZE
A(f(wi,wj)|⇥E , ⇥F ) is close to 0 for real-world networks, meaning:

1�


1 �


PE (Eij = 1|f(wi,wj), ⇥E , ⇥F )

ZE
A(f(wi,wj)|⇥E , ⇥F )

��ZE ·CF

⇡1 �


1 � ZE · CF ·


PE (Eij = 1|f(wi,wj), ⇥E , ⇥F )

ZE
A(f(wi,wj)|⇥E , ⇥F )

��

=ZE · CF ·


PE (Eij = 1|f(wi,wj), ⇥E , ⇥F )

ZE
A(f(wi,wj)|⇥E , ⇥F )

�

=
ZE ·CF
X

1



PE (Eij = 1|f(wi,wj), ⇥E , ⇥F )

ZE
· A(f(wi,wj)|⇥E , ⇥F )

�

=Po(Eij = 1|f (wi,wj), ⇥E , ⇥F )

Where in the last step we have applied Lemma 5.2.1.

Thus, the AGM sampling formulation provides a good approximation to the true

distribution of edges conditioned on the vertex attributes.

Expected Degrees: Many generative graph models explicitly model the degree

distribution of the network; KPGM has a heavy-tailed degree distribution [13], while

the CL family of models has a degree distribution whose expectation is equal to that

of the input graph G [11]. We now prove that the expected degree of a node with

AGM is equal to the expected degree of the node as produced by E . We begin with

Theorem 5.2.2, which states that the expected probability of an edge under AGM is

equal to the probability of the edge as defined by E .
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Theorem 5.2.2 If the generating distribution E is independent from the attributes

W, i.e., PE (Eij = 1|f(wi,wj), ⇥E , ⇥F ) = PE (Eij = 1|⇥E ), then

E
W

[Po(Eij = 1|f(wi,wj), ⇥E , ⇥F )] = PE (Eij = 1|⇥E )

Proof We marginalize over the combinations of attributes that can exist on the

vertices.

E
W

[Po(Eij = 1|f(wi,wj), ⇥E , ⇥F )]

=
X

wi2Wi

X

wj2Wj

Po(f(wi,wj)|Eij = 1, ⇥E , ⇥F )PE (Eij = 1|⇥E )

= PE (Eij = 1|⇥E )
X

wi2Wi

X

wj2Wj

Po(f(wi,wj)|Eij = 1, ⇥E , ⇥F )

= PE (Eij = 1|⇥E )

Where in the second step we observed the summation must sum to 1 to be a valid

probability distribution.

Using Theorem 5.2.2, we can show that the expected value of the degree of a

vertex under AGM is equal to the expected value of the degree of a vertex under E .

Corollary 5.2.1 If the generating distribution E is independent from the attributes

W, i.e., PE (Eij = 1|f(wi,wj), ⇥E , ⇥F ) = PE (Eij = 1|⇥E ), then E
W

[di] = EE [di].

Proof Apply Theorem 5.2.2 and linearity of expectation:

E
W

[di] =
X

vj

E
W

[Po(Eij = 1|f(wi,wj), ⇥E , ⇥F )]

=
X

vj

PE (Eij = 1|⇥E ) = EE [di]

Corollary 5.2.1 states that regardless of the generating distribution, if the attribute

parameters are independent of the generating distribution we will draw the same
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degrees. Thus, applying AGM with CL models will provably have the same expected

degree distribution as the input graph.

5.3 Extensions to Structural Features

The AGM formulation extends far past modeling and learning complex edge-

attribute dependencies. In this section, we discuss how the framework allows us to

model complex higher order structural conditionals; in particular, the joint degree

distribution (JDD) and (as a natural consequence) the assortativity of networks.

From a high level, we characterize the vertex degrees as the attributes w, allowing us

to apply the theoretical results from the previous section to this task.

Assortativity is a graph measure defined in [83]; formally, it is the correlation of

degrees across edges observed in the network. It is a popular measure used to catego-

rize and understand the structure of a network, since di↵erent types of networks have

varying amounts of assortativity. For example, social networks tend to have positive

assortativity while biological and technological networks tend to have negative assor-

tativity [84]. Define Ds(eij) = d(vi) and Dt(eij) = d(vj). Intuitively, {Ds(e)|e 2 E} is

the distribution of degrees of the startpoints of edges in graph G, while {Dt(e)|e 2 E}

is the distribution of degrees of the endpoints in graph G. The assortativity is the

Pearson correlation coe�cient for these variables:

A =
cov({Ds(e), Dt(e)|e 2 E})

p

var({Ds(e)|e 2 E}) ·
p

var({Dt(e)|e 2 E})
(5.12)

Note that as the graph is undirected, the variances of the random variables are equal;

however, the covariance can widely vary depending on the network structure (as we

will explore in detail in Section 3). A more in depth discussion of assortativity can

be found in [83].
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Graph Nodes Edges A ÂTCL

Facebook Wall 444,829 1,014,542 -0.297 -0.0021
Purdue Email 54,076 880,693 -0.1161 -0.0092
Gnutella 36,682 88,328 -0.1034 0.0006
Epinions 75,865 385,418 0.0226 -0.0363
Rovira Email 1,133 5,451 0.0782 -0.0200
Patents 2,745,762 13,965,410 0.1813 0.0004

Figure 5.3.: Network statistics

5.3.1 Assortativity in Graph Models

In Table 5.3 we give the assortativity (A) we observed across six networks of vary-

ing sizes, ranging from 0.18 to �0.29 (the details on each is discussed in Section 5.4).

We note that despite its popularity as a graph measure, assortativity can fail to

capture important dependencies in the joint degree distribution. This is because it

measures degree correlation and thus focuses on linear relationships. Consider the

real-world examples depicted in Figures 5.4.a-b, which illustrate the joint degree dis-

tributions of the Purdue Email and Gnutella networks respectively. To (coarsely)

visualize the joint degree distribution, we divide the degrees of a graph G into K

quantiles: BK = [B1, B2, ..., BK ]. In Figure 5.4, we use K = 10. Let b(vi) be a

function that returns the set membership in BK based on vertex vi’s degree. We now

construct a K ⇥ K matrix B to represent the joint degree distribution, where each

cell counts the number of edges between nodes with degrees in Bi and those with

degree Bj. To visualize the joint degree distribution B, we use a gray scale intensity

plot to indicate the number of edges in each cell (i.e., a cell without any edges will

be colored white and a cell with the largest amount of edges will be close to black).

We order the axes of B in terms increasing degree, to give a vizualiation of the

joint degree distribution. If the darker boxes form a line with a positive slope, the

graph will have positive assortativity. In contrast, if the dark boxes form a line

with a negative slope, the graph will have negative assortativity. More precisely, the



92

(a) Purdue Email (b) Gnutella

Figure 5.4.: Joint degree distribution representations B; k=10.

binned plots are a histogram approximation to the full joint degree distribution; they

graphically represent the dependencies between the various degrees in the network.

The Purdue Email and Gnutella datasets have similar assortativity values of

�0.1161 and �0.1034, respectively. However, their joint degree distributions are

quite di↵erent (Figures 5.4.a-b). These examples illustrate evidence in support our

claim that the single dimensional measure of assortativity does not fully capture the

dependencies we observe in joint degree distributions in real networks.

To expand on this individual example, we prove in Theorem 5.3.1 that there are

infinitely many pairs of graphs with the same assortativity and degree distribution,

but maximally di↵erent joint degree distributions (Proof in Section 5.3.3).

Theorem 5.3.1 Let GA
w, GB

w be two networks comprised of graphlets, where w pa-

rameterizes the size and counts of the graphlets. There exist an infinite set of pairs of

graphs {GA
w, GB

w} such that for any w � 2, GA
w and GB

w have the same degree distri-

bution, the same assortativity, but infinite KL-Divergence between their joint degree

distributions.

As an example of a pair of graphs that are covered by Thm. 5.3.1, we construct two

Graphs GA and GB with w = 5. The graphs are composed of disconnected subgraphs

that are either stars or cliques. Graph GA consists of 1782 stars of size 5 and 16 cliques

of size 11. Graph GB consists of 176 stars of size 10, 297 cliques of size 6, and 3575
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D GA GB

1 8910 8910
5 1782 1782
10 176 176

(a) Degrees (b) Graph G

A (c) Graph G

B

Figure 5.5.: (a) Degree distribution; (b-c) Joint degree distribution representations
B; k=3.

cliques of size 2. Both of these graphs have the exact same degree distribution (see

Table 5.5.a) and the same assortativity: A = 9
187

. However, Figures 5.5.b-c show that

the two graphs have very di↵erent joint degree distributions, despite their identical

assortativity and degree distributions. Further, as the two joint degree distributions

have disjoint support, the KL-Divergence between them is infinite. Next, we propose

a novel approach to modeling assortativity in networks that considers dependencies

in the full joint distribution. In particular, we show how the AGM framework can be

expanded to incorporate structural features, as well as traits.

5.3.2 AGM-BCL

Most generative graph models are not able to reproduce assortativity, and even

fewer model negative assortativity. For example, although Chung Lu (CL) models

preserve other network statistics, the processes produce no correlation between the

degrees of edge endpoints. This results in network samples with near zero assortativity

(see the table in Figure 5.3). We now propose the AGM Binning Chung Lu (AGM-

BCL) method to model assortativity in networks.

The AGM-BCL methods use an existing edge-by-edge generative graph model

(such as F-CL or TCL) to propose possible edges from their respective distributions.
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AGM-BCL then filters, or conditionally accepts, a subset of the proposed edges into

a final network sample. Our approach is a form of accept reject sampling and general

enough to augment any Chung Lu model, in particular, CL and TCL (referred to as

AGM-FCLB and AGM-TCLB when distinction is required).

AGM-BCL augments the degree vector provided by F-CL and TCL by sorting the

2Ne entries by their respective degrees. That is, each vertex vi appears d(vi) times

in the vector, with the low degree vertices appearing first and high degree vertices

appearing last. The vector is then divided into K quantiles, or bins of equal size.

Let b(vi) = k indicate that vertex vi belongs to the kth quantile; similarly, let

b(vi, vj) = (k1, k2). Then, the K ⇥ K matrix B represents the count of edges that fall

into particular K ⇥K quantiles, or approximate joint degree distribution. B[b(vi, vj)]

allows indexing into the approximate joint degree distribution for vertices vi, vj. For

AGM-BCL, B[b(vi, vj)] corresponds to the function f(·) of the more general AGM

representation. Given bins B (for the true data) and B0 (for the proposal distribution),

we can define our accept-reject probabilities as with AGM by computing the ratios:

R(B[b(vi, vj)]|⇥E , ⇥F ) =
Po(B[b(vi, vj)]|Eij = 1, ⇥E , ⇥F )

PE (B[b(vi, vj)]|Eij = 1, ⇥E , ⇥F )
=

B[b(vi), b(vj)]

B0[b(vi), b(vj)]

This corresponds to the ratios defined for the vectors W in Algorithm 5 Line 7,

although with the bin placement of the vertices replacing the attributes. We again

normalize by the supremum in Line 8, with Line 14 again considering the bins of

the degrees for the endpoints rather than W when considering whether to accept

or reject a proposed edge. Hence, we only need to compute all the K ⇥ K bin

counts for the quantiles for the original data and proposal distribution, use these

to find the ratios, and normalize by the supremum. Thus, AGM-BCL extends the

AGM method discussed earlier to more complex structural distributions. AGM-BCL

preserves specific properties of the CL models: these guarantees are possible due to the

fact CL models sample from the marginal degree distributions. In the next subsection,
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we prove that our AGM-BCL approach maintains the original degree distributions as

guaranteed by CL and TCL, while also modeling the true joint degree distribution of

the original network and (by extension) the assortativity.

5.3.3 Analysis of AGM-BCL Models

In this section, we prove the following key theorems:

• Theorem 5.3.2: In expectation, the AGM-BCL models provably sample from

the original coarse JDD.

• Theorem 5.3.3: The expected degree of a node sampled using AGM-BCL

models equals the original degree.

These proofs exploit a key relationship between the Chung Lu graph models and

the defined quantiles; namely, the Chung Lu graph models sample uniformly from the

coarse JDD representation. These rely on a definition and a lemma to simplify their

notations. Define the quantiles of an input k as being the set of vertices whose degree

places them in the corresponding quantile Bk: Qu(k) = {vi|b(vi) = Bk}. Similarly,

for a particular bin in K ⇥ K, let Qu(k1, k2) == {(vi, vj)|b(vi) = Bk1 [ b(vj) = Bk2}.

In the following Lemma, we use this to derive the probability a given sample from a

Chung Lu model is accepted by AGM-BCL. This is subsequently used to prove both

Theorems 5.3.2 and 5.3.3.

Lemma 5.3.1 In AGM-BCL, if the edges are sampled from a Chung Lu model, the

marginal probability that an edge sample is accepted is 1
CBCL

(as a reminder, CBCL is

the maximum ratio).
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Proof First, the acceptance probability is equivalent to marginalizing over all the

acceptance probabilities for each Eij. Let k1, k2 indicate a particular bin index. Then:

PBCL(accepted) =
X

(vi,vj)2V⇥V

QE (Eij = 1|⇥E )PBCL(accepted|Eij = 1,⇥E )

=
X

(vi,vj)2V⇥V

✓i, ✓j

(2Ne)(2Ne)

X

k1,k22{1,...,K}

I[B(b(vi, vj)) = B(k1, k2)] · R(B[b(vi, vj)]|⇥E ,⇥F )

CBCL

=
1

CBCL

X

k1,k22{1,...,K}

X

(vi,vj)2Qu(k1,k2)

✓i, ✓j

(2Ne)(2Ne)
R(B[b(vi, vj)]|⇥E ,⇥F )

=
1

CBCL

X

k1,k22{1,...,K}

X

(vi,vj)2Qu(k1,k2)

✓i, ✓j

(2Ne)(2Ne)

B[k1, k2]
B0[k1, k2]

=
1

CBCL

X

k1,k22{1,...,K}

X

vi2Qu(k1)

✓i

(2Ne)

X

vj2Qu(k2)

✓j

(2Ne)

B[k1, k2]
B0[k1, k2]

=
1

CBCL

1

K

2

X

k1,k22{1,...,K}

B[k1, k2]
B0[k1, k2]

As Chung Lu models have uniform bin distribution 8 k1, k2, we have B0[k1, k2] = 2Ne

K2 :

PBCL(accepted) =
1

CBCL

1

K2

K2

2Ne

X

k1

X

k2

B[k1, k2]

=
1

CBCL

1

2Ne

X

k1

X

k2

B[k1, k2]

As the sum over all the bin frequencies is 2Ne, we simplify the above to recover

PBCL(accepted) = 1
CBCL

.

Using the above lemma, we show that although the proposal distribution (F-CL

or TCL) proposes edges from a uniform joint degree distribution, the edges accepted

into the network sample provably model the joint degree distribution of the original

network.

Theorem 5.3.2 For a graph GBCL generated by AGM-BCL, the expected edge fre-

quency in bin BBCL[k1, k2] is equal to the frequency in bin B[k1k2], from the original

input graph G.



97

Proof The probability a particular bin is drawn and accepted into is:

PBCL(B[k1, k2]|E, = 1⇥E , ⇥BCL) =
X

(vi,vj)2Qu(k1,k2)

Q0
E (i, j)A(B[k1, k2]|⇥E , ⇥BCL)

=
X

(vi,vj)2Qu(k1,k2)

2
d(vi)d(vj)

(2Ne)(2Ne)

R(B[k1, k2]|⇥E , ⇥BCL)

CBCL

=
2

CBCL

X

(vi,vj)2Qu(k1,k2)

d(vi)d(vj)

(2Ne)(2Ne)

B[k1, k2]

B0[k1, k2]

=
2

CBCL

1

K2

X

(vi,vj)2Qu(k1,k2)

B[k1, k2]

B0[k1, k2]

Chung Lu models have uniform bin distribution so B0[k1, k2] = 2Ne

k2
and further by

definition, the sum of degrees are uniformly distribution among the k quantiles:

PBCL(B[k1, k2]|E, = 1⇥E , ⇥BCL) =
2B[k1, k2]

CBCL

1

2Ne

=
B[k1, k2]

CBCLNe

(5.13)

The overall acceptance probability is 1
CBCL

from Lemma 5.3.1, meaning the expected

number of draws to insert a single edge is CBCL. Therefore, the expected number

of total draws from the underlying CL model is NeCBCL. Thus, combined with

Equation 5.13, the expected number of edges in BBCL[k1, k2] is equal to B[k1, k2].

Thus, the resulting graph samples will have edges drawn from the coarse joint

degree distribution representation that parameterizes the original network G. By

extension, the assortativity (which is simply a statistic of the joint degree distribution)

of the generated networks GBCL will approximately match that of G. Additionally,

our AGM-BCL method preserves the modeled expected degree distribution.

Theorem 5.3.3 For a graph GBCL generated by BCL, the expected degree of a node

vi is d(vi), the degree of the node in the original graph G.
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Proof First, we derive the probability of accepting a sampled edge incident to node

vi (within bin b(vi)):

QBCL(i,V) =
X

j

Q0
E (i, j)A(B(b(vi, vj))|⇥E , ⇥BCL)

=
X

k2{1,··· ,K}

X

vj2Qu(k)

Q0
E (i, j)A(B(b(vi), k)|⇥E , ⇥BCL)

=
X

k2{1,··· ,K}

X

vj2Qu(k)

2
d(vi)d(vj)

(2Ne)(2Ne)

R(B(b(vi), k)|⇥E , ⇥BCL)

CBCL

=
d(vi)

CBCLNe

X

k2{1,··· ,K}

X

vj2Qu(k)

d(vj)

(2Ne)

B(b(vi), k)

B0(b(vi), k)

=
d(vi)

CBCLNe

K

2Ne

X

k2{1,··· ,K}

B(b(vi), k)

=
d(vi)

CBCLNe

where in the last step we again use the fact that the marginal bin frequencies are

uniform. As in the proof of Theorem 2, the expected number of total draws from the

underlying CL model is is NeCBCL. Therefore, the expected number of edges incident

to node vi is d(vi).

Proof of Theorem 5.3.1

This section provides the detailed proof for Theorem 5.3.1. The proof states

there are infinitely many pairs of graphs (name GA and GB) with the following three

conditions:

• Lemma 5.3.2: Graphs GA, GB have equal degree distributions.

• Lemma 5.3.3: Graphs GA and GB have the same assortativity.

• Proposition 5.3.1: The joint degree distributions of graphs GA and GB have

infinite KL divergence.
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Graphs GA and GB are defined in terms of a positive integer w, where w � 2.

In particular, GA and GB are defined solely in terms of stars and cliques that relate

to w:

Graph GA Graph GB

NS w-stars N2s 2w-stars

N2c (2w+1)-cliques NC (w+1)-cliques

Np Pairs

In particular, given the same w � 2, the graphs GA and GB have di↵erent joint

degree distributions.

Proposition 5.3.1 For any w � 2, the joint degree distributions of Graphs GA and

GB have infinite KL-Divergence.

Proof Note that Graph GA consists solely of links between nodes of degree 1 to w,

and 2w to 2w. In contrast, Graph GB consists solely of links between nodes of degree

2w-1, w to w, and 1 to 1. These sets are disjoint, meaning neither graph has full (or

any) support of the opposite graph. Thus, the joint degree distributions have infinite

KL-Divergence.

Next, we define values for the parameters of GA and GB that result in the same

degree distributions between the two networks (computation omitted for space).

Lemma 5.3.2 For any w � 2, if NS = 2(w + 1)(2w + 1)(2w � 1)2 and N2s =

(w + 1)(2w + 1)(w � 1)2 and NC = 2(2w + 1)(2w � 1)2 and N2c = (w + 1)(w � 1)2

and Np = w2(w + 1)(2w + 1)(3w � 2), then graphs GA and GB have identical degree

distributions.

For an undirected graph, the first moments of these two distributions are identical.

Definition 5.3.1 For a bidirectional graph G, let:

µG =

P

e2E T⇤(e)

|E| =

P

eij2E d(vi)

|E|
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�2
G =

P

e2E(T⇤(e) � µG)2

|E| =

P

eij2E(d(vi) � µG)2

|E|

where ⇤ 2 {s, t} This occurs due to the symmetry of a bidirectional network: for

every Eij 2 E there is a corresponding Eji 2 E.

Lastly, although the variances of Ts(e) and Tt(e) are equal, the covariance between

them is not equal to the variance. We use this to define the assortativity.

Definition 5.3.2 The assortativity of a network is defined as the covariance of two

variables divided by the standard deviation of each. Thus,

AG =
cov({Ts(e), Tt(e)|e 2 E})

�G · �G

=

P

eij2E(d(vi) � µG)(d(vj) � µG)

�2
G

With these defined, the next lemma proves values for graphs GA and GB are equal

(computation omitted for space).

Lemma 5.3.3 For any w � 2, if NS, N2s, NC, N2c, and Np are defined as in Lemma

5.3.2, then graphs GA and GB have identical assortativity values.

We now combine Lemmas 5.3.2 and 5.3.3 (matching Degree Distribution and

Assorativity) with Proposition 5.3.1 (infinite KL divergence in the joint degree dis-

tribution) to present the final proof.

Proof We construct {GA
w, GB

w} by using the equations from Lemma 5.3.2 and w to

find NS, N2s, NC , N2c, and Np. The value of these five constants can be used to

construct two graphs, GA
w and GB

w , as in Proposition 5.3.1.

By Lemma 5.3.2, GA
w and GB

w have the same degree distribution. By Lemma 5.3.3,

GA
w and GB

w have the same assortativity. Finally, by Proposition 5.3.1, GA
w and GB

w

have infinite KL-divergence.

5.4 Attributed Graph Experiments

To demonstrate the flexibility of AGM when sampling edges conditioned on at-

tributes, we use four popular generative graph models as proposing distributions: fast
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Chung Lu (F-CL), transitive Chung Lu (TCL), and the Kronecker Product Graph

Model (KPGM) with a 2x2 and 3x3 initialization matrix. Our experiments will

show that the AGM versions of each of the underlying generative models have the

same structure as the structural model, but capture the Pearson correlations of the

attributes as well. We implemented learning and generation for F-CL and TCL di-

rectly, only modifying the generation step for AGM-F-CL and AGM-TCL. For the

two KPGMs, we utilized the authors’ publicly distributed code for learning the pa-

rameter matrix2, but augmented the generation process to incorporate correlation.

We also compare against the Multiplicative Attribute Graph (MAG) model; as MAG

is intended for learning latent attributes, we augment the model for usage in this

domain to utilize the known correlations3.

After discussing how AGM can model complex edge-attribute conditional dis-

tributions, in Section 5.5 we demonstrate how AGM can model complex structural

features as well (via AGM-BCL).

5.4.1 Datasets

We evaluate our models on two network data sets: the CoRA citations network [85]

and Facebook wall postings from Purdue University. For CoRA, we consider the cate-

gorical feature “AI” (1 i↵ the topic of a paper lies in the field of Artificial Intelligence).

CoRA contains 11,881 vertices with 31,482 citations between them, and the AI feature

is highly correlated across edges. We model the distribution of attributes PW (W|⇥W )

by maximizing the likelihood of Bernoulli trials; the probability of a label being AI

is proportional to the number of AI labels in the CoRA dataset.

The Facebook network has 449,748 vertices with 1,016,621 wall postings between

them. We estimate model parameters from all visible vertices, ignoring instances

for which privacy settings prevent us from accessing the information. We consider

two attributes: Religion and Political. Here, we model the distribution of attributes

2Source available at http://snap.stanford.edu/
3Source also available at http://snap.stanford.edu/
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PW (W|⇥W ) as a bivariate multinomial distribution and use maximum likelihood es-

timation to estimate the parameters. For each network, the vertex attributes are

drawn independently and identically distributed from their respective PW (W|⇥W )

distributions.

5.4.2 MAG Implementation4

Rather than use the normal fitting process which assumes latent attributes, we use

the observed attributes to calculate the probability of seeing an edge between partic-

ular attributes. This allows us to directly calculate the a�nity matrix parameter for

the MAG model. On the single-attribute CoRA dataset this calculation is simple, as

P (Eij = 1|f(wi,wj)) can be estimated using the number of edges between vertices

with a specific pair of attribute values.

This calculation is not as simple on the Facebook dataset as we must estimate

the probabilities for two attributes. Let wi[0] represent the Political attribute and

wi[1] represent the Religion attribute. As MAG treats edge a�nities as independent,

we decompose P (Eij = 1|f(wi,wj)) into two independent components: P (Eij =

1|f(wi[0],wj[0])) and P (Eij = 1|f(wi[1],wj[1])). Then, for every attribute per-

mutation of two vertices we can estimate P (Eij = 1|f(wi,wj)) from the observed

data and set up a system of equations. Solving this system of equations gives us

P (Eij = 1|f(wi[0],wj[0])) and P (Eij = 1|f(wi[1],wj[1])), which are the edge a�ni-

ties. However, as the real data has dependencies between the attributes, there is no

exact solution for this system and we must use an approximation instead. We chose

an approximation that kept the a�nity for two non-conservative vertices equal to the

a�nity for two non-religious vertices.

Finally, we must take into account the vertices in the Facebook network with un-

observed attributes. These vertices had much lower degrees than observed vertices

in the original network. We chose to create a third attribute, observed vs. unob-

4Analyzed and implemented by Timothy La Fond
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served, when generating the graph. Vertices labeled unobserved still have their other

attributes simulated, but have their edge a�nities reduced to the rate of unobserved

vertices in the original graph.

5.4.3 Attributed AGM Implementations

In order to test the correlations of the attributes across the edges of generated

networks, every vertex was assigned attributes drawn from the prior distribution of

vertex attributes as computed on the real world network and independent of the other

vertices. Tests were run for each of our four generative models, with each generative

model proposing edges which are then either accepted or rejected. The end result is

a joint sampling of attributes and edges, with the edges having been conditioned on

the attributes.

Edge Functions: For the CoRA dataset, we have one feature to consider (AI) and

we use the edge feature for a single attribute as discussed in Section 5.1.3, Equation

5.8. For the Facebook dataset, we have two attributes to consider (Religion and

Politics). This corresponds to the edge features discussed in Equation 5.9, which

models the joint conditionals of the two attributes, allowing AGM to model the

correlations of each.

5.4.4 Preserving Proposal Distribution Graph Structure

We begin our analysis by determining whether AGM produces graphs which alter

the structure of the proposing distributions. First, the degree distributions for each

dataset are plotted in Figure 5.6a-b and compared against some of the models (to

reduce clutter we omit the simpler F-CL and KPGM2x2 in this part of the analysis).

For each of these plots, the x-axis represents vertex degrees, while the y-axis represents

the complementary cumulative distribution function (CCDF). For any point on the

x-axis, the y-axis is the proportion of vertices with the corresponding degree (on
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(a) CoRA (b) Facebook

Figure 5.6.: Degree distributions for each network

the x-axis) or higher. The degree distribution of CoRA (Figure 5.6.a) shows that

AGM-TCL closely matches the degree distribution of TCL, while AGM-KPGM3x3

closely matches the degree distribution of KPGM3x3. For the Facebook network

(Figure 5.6b), which has a more complicated edge feature distribution, AGM-TCL

and AGM-KPGM3x3 also match their corresponding proposing distributions (TCL

and KPGM3x3).

We extend our analysis of the degrees in Figure 5.7, where we show the KS-

Statistic between the degree distribution of each AGM model and its corresponding

generative model (F-CL, TCL, KPGM2x2, KPGM3x3). We see no change between the

original model and corresponding AGM distributions, since for all but one test we are

unable to reject the null hypothesis that the distributions are equal (p = 0.01). TCL

is the only rejection, which is due to TCL not having dyadic independence. However,

empirically AGM-TCL performs comparably to TCL, meaning we can e↵ectively

model degree distributions even when there is edge dependence.

In Figure 5.8a-b, we give the local Clustering Coe�cient distributions, which mea-

sure the number of triangles each vertex has compared to the number of triangles the

vertex could have given its degree. KPGM3x3 does not explicitly model the clustering

coe�cients in the network, meaning the low clustering the model produces is ex-

pected. Further, since its corresponding generative model does not generate networks
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Dataset
AGM KS-Distance (Degree Distribution)
F-CL TCL KPGM2x2 KPGM3x3

CoRA 0.003 0.021 0.004 0.009
Facebook 0.003 0.002 0.004 0.004

Figure 5.7.: KS-Statistic for AGM degree distributions against corresponding pro-
posal distributions.

(a) CoRA (b) Facebook

Figure 5.8.: Clustering coe�cients for each network.

with high clustering, neither does AGM-KPGM3x3. In contrast, TCL was explicitly

designed to incorporate transitivity into the generative process by incorporating two

step random walks. As TCL proposes large numbers of triangles, the networks pro-

duced by AGM-TCL will also have high numbers of triangles. More generally, AGM

does not interfere with structural characteristics such as degree and clustering that

the underlying generative graph model provides, meaning AGM is not limited to a

single characterization of structural components.

5.4.5 Feature Correlations

Lastly, we demonstrate how our formulation can capture accurate correlations

between the feature instances. We begin by analyzing the correlations of the simpler

CoRA network (with 1 attribute to model), then move to the more complicated 2

attribute Facebook network.
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Model
Correlations

CoRA Facebook
AI R P RP

Original 0.833 0.108 .211 0.106

MAG 0.835 0.584 0.436 0.002

F-CL 0.005 0.001 0.001 -0.001
AGM-F-CL 0.835 0.130 0.223 0.095

TCL -0.006 0.001 0.001 0.001
AGM-TCL 0.856 0.128 0.219 0.093

KPGM2x2 -0.002 0.001 -0.002 0.001
AGM-KPGM2x2 0.839 0.131 0.221 0.095

KPGM3x3 -0.004 0.001 -0.001 0.001
AGM-KPGM3x3 0.841 0.132 0.221 0.092

Figure 5.9.: Correlations for attributes in each dataset.

As seen in Figure 5.9, the initial CoRA network contains a high level of corre-

lation (.837), which none of our underlying generative models capture (F-CL, TCL,

KPGM2x2, and KPGM3x3). However, introducing our AGM framework in conjunction

with each one, we see that every AGM version of the models has very close correla-

tion to the original network. Further, recall that each AGM method accomplishes this

without disrupting the underlying structural distribution (prior subsection). Thus,

AGM is jointly modeling both structural components and the correlation of the at-

tribute. Additionally, when MAG is presented just the single attribute found in CoRA

it captures the correlation as well.

When expanding the number of attributes, however, MAG begins to break down

(Table 5.9). Namely, MAG does not accurately model the joint distribution of edges

given vertex attributes. We can see that for each underlying proposal distribution,

AGM’s augmentation allows the proposal distribution to model the edge correlations.

This observation holds for each possible correlated attribute pair: Religion (R), Pol-

itics (P), and the correlation of Religion with Politics across edges. Again, these

correlations are being modeled while the corresponding structural behavior remains
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unchanged. Thus, AGM takes each underlying generative model and extends them

to model attribute correlations.

5.5 Complex Structural Graph Experiments

In this section, we demonstrate how AGM exploit scalable sampling models to

sample networks with complex structural characteristics. In particular, we model

the joint degree distributions of a number of real world networks using AGM-BCL.

Experiments were performed to assess the AGM-BCL algorithm accuracy and the

e↵ects of binning. As with the attributed AGM models, we learned model parameters

from real-world graphs and then generated new graphs using those parameters. We

then compared the network statistics of the generated graphs with those of the original

networks.

5.5.1 Datasets

As unattributed graphs are more available than attributed graphs, we used six

di↵erent datasets to evaluate our experimental results. Their node and edge counts

can be found in Figure 5.3, with all networks being cast into an undirected and

unweighted representation.

First, we study two email datasets: a small publicly available dataset from an

email network of students at University Rovira i Virgili in Tarragona (RoviraEmail)

[86], and a large email network from Purdue University (Email). Each dataset is a

collection of SMTP logs representing when users send an email to one another, with

every email sent representing a link between instances.

The next two networks we study are examples of social networks, with a collection

of Facebook wall postings (FacebookWall) and the publicly available Epinions trust

network (Epinions) [79].

Another dataset is Gnutella, a publicly available Peer2Peer network where users

are attempting to find seeds for file sharing [80]. In a Peer2Peer network, a user
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queries its peers to determine if they can seed a file. If not, the peer refers them to

other users who might have a file. This repeats until a seed is found.

Lastly, we study a publicly available citation network of US Patents [87]. Nodes

in this network are published patents, while edges indicate where one patent cited

the other. This is a large network, with over 10 million citations between 2 million

edges and demonstrates the scalability of our proposed methods.

5.5.2 Models Compared

We compare our proposed methods against three baselines: F-CL, TCL and the

Block Two-Level Erdos-Renyi (BTER) model5 [88]. The BTER model groups ver-

tices with similar degrees into blocks with high probability, resulting in networks

with a high amount of clustering and positive assortativity. As a result, BTER can-

not model networks where the assortativity is independent of the clustering, meaning

augmenting BTER with our AGM-BCL method would interfere with the clustering

that BTER models. In contrast, the degree and clustering statistics of F-CL and

TCL are independent from the assortativity. Thus, we implement our augmentation

to both the F-CL and TCL models, creating the AGM-FCLB and AGM-TCLB meth-

ods. We demonstrate how, in particular, AGM-TCLB can jointly capture the degree

distribution, clustering, joint degree distributions and assortativity, in contrast to any

of the baseline methods.

5.5.3 Methodology

We ran experiments on six real world datasets using five di↵erent algorithms. For

evaluation, we compared the graphs generated by the algorithms using the comple-

mentary cumulative distribution function for both the degree distribution and the

distribution of local clustering coe�cients. We also compared the assortativity coef-

ficient and the joint degree distributions visually. To compare the distributions, we

5Downloaded from www.sandia.gov/ tgkolda/feastpack
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Figure 5.10.: Degree distributions

choose a binning number of 10 bins and plot the original and generated graphs’ joint

degree distribution.
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Figure 5.11.: Clustering coe�cients

5.5.4 Results

To begin, Figure 5.10 demonstrates that all the compared methods closely model

the degree distributions of the datasets. In the next figure, Figure 5.11, we demon-

strate that only TCL, AGM-TCLB and BTER preserve the local clustering coe�-

cients found in the original network. As expected, the F-CL method fails to model
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the clustering found in the datasets; this is reflected in AGM-FCLB, which only cap-

tures the assortativity of the F-CL model provided to it. Thus, the binning models

(AGM-FCLB and AGM-TCLB) reflect the underlying proposal distributions (F-CL

and TCL) and preserve the corresponding statistics that each model .

In Figure 5.12, we plot the joint degree distributions for all six of our datasets.

AGM-FCLB and AGM-TCLB are able to capture not only the correct assortativity

coe�cient, but also accurately model the joint degree distribution. In contrast, BTER

creates a joint degree distribution with a linear degree correlation.

Correspondingly, we present the assortativity of each of the models for each of

the datasets in Figure 5.13.a. In particular, the non-binning Chung Lu models have

assortativity very close to zero. However, AGM-FCLB and AGM-TCLB closely match

the assortativity for all datasets. Although BTER exhibits positive assortativity, it

doesn’t model the assortativity found in the corresponding real world networks.

In order to test the impact of the 10 bin selection, we compare error rates for

AGM-FCLB and AGM-TCLB on the Gnutella dataset as we vary the bin size (Figure

5.13.b-c) The error we use is the skew-divergence to measure the di↵erence between the

model distribution and the original data distribution [89]. The skew-divergence is used

as it has a slight mixture between the two distributions, meaning that there is always

support between the measures (unlike KL Divergence). We generate 25 di↵erent

graphs and take the mean and standard deviations (bars) of error rates at various

points, measuring the error for the degree distribution, joint degree distribution and

clustering coe�cients. In addition to the binning methods (solid lines, plotted by

means), we give the original models’ values for each statistic (dashed lines). First, we

see that the degree distribution for the binning models are not significantly di↵erent

from the original models until a relatively large number of bins are used (50 or more).

However, the joint degree distribution quickly improves over the baseline models,

with considerably less error when only 5 bins are used. Additionally, the clustering

coe�cient distribution is not significantly di↵erent from the original model. Hence,

our models are largely stable over a variety of binning choices, maintaining the original



112

ORIG TCLB F-CLB

BTER TCL F-CL

(a) Facebook Wall

ORIG TCLB F-CLB

BTER TCL F-CL

(b) Purdue Email

ORIG TCLB F-CLB

BTER TCL F-CL

(c) Gnutella

ORIG TCLB F-CLB

BTER TCL F-CL

(d) Epinions

ORIG TCLB F-CLB

BTER TCL F-CL

(e) Rovira Email

ORIG TCLB F-CLB

BTER TCL F-CL

(f) Patents

Figure 5.12.: Visualization of joint degree distribution representations B; k=10.

degree distribution and clustering of a given model and additionally modeling joint

degree distribution.

Lastly, we plot the rejection rates for the binning models, as we vary the number

of bins used, in Figure 5.13.d. Note that the original Chung Lu models sample from
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Figure 5.13.: (a) Assortativity for the datasets and methods. The e↵ect of varying bin
sizes for (b) AGM-FCLB and (c) AGM-TCLB. (d) Rejection rates for each method.

the edge distribution Ne times. As the rejection rates are geometric, the overhead

is simply a constant overhead. In practice, even with large amounts of rejection for

the large bins (100), the binned version is only 5x longer than the original model.

For smaller bin sizes, which also accurately model the joint degree distribution, the

rejection rate is considerably less (around 2x rejection rate). Thus, with a constant

factor of extra samples we are able to accurately model the joint degree distribution,

while maintaining the degree distribution and clustering. Empirically, the Patents

dataset containing 14 million edges ran in under 20 minutes with only 10 bins.
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5.6 Concluding Remarks

In this chapter we have introduced an extension to the framework defined in Chap-

ter 3: the Attributed Graph Model (AGM). AGM enables conditional sampling of

graph structure based on vertex attributes. We showed that AGM can be combined

with several generative graph models, e.g., fast Chung Lu (F-CL), transitive Chung

Lu (TCL), and Kronecker Product Graph Model (KPGM). AGM has e�cient learn-

ing and sampling mechanisms that accurately replicate both the characteristics of the

underlying graph structure and the vertex attribute correlations. Further, we demon-

strated empirically that our approach o↵ers improvements compared to the competing

Multiplicative Attributed Graph (MAG) model. Notably, our AGM framework en-

ables e�cient generation of large-scale network structure with homophily. Further, we

introduced the Binning Chung-Lu method for modeling the joint degree distribution

over Chung-Lu graph models, demonstrating its use in conjunction with both F-CL

and TCL.
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6 ACTIVE EXPLORATION

In this chapter, we discuss how to apply some of the probabilistic relationships dis-

cussed in previous chapters to Relational Machine Learning (RML) tasks. In particu-

lar, we discuss how to improve learning and inference in partially observed networks by

incorporating probabilistic relationships into the inferences. The Active Exploration

(AE) task is to iteratively identify all items in a network with a particular trait (i.e.,

items with positive labels) when network information is partially observed [90, 91].

Applications of AE include probing securities traders’ communication networks for in-

dividuals involved in fraud, or crawling the Web to gather pages with relevant content

via hyperlinks. In these domains resource constraints only allow for the investigation

of a limited number of items, and the goal is to maximize identification of items with

the target trait within the available budget. As a result, the networks are partially

observed, meaning inference over the distribution of edges is a key component to

accurate predictions.

AE is an iterative task in network domains where querying the labels and rela-

tionships from the network has an associated cost. The goal of AE is to gather as

many items with a particular label (i.e., trait) as possible, within a querying budget.

As a result, predictions about what to query in a given iteration can only use the

previously queried labels, attributes and relational information.

Every AE process involves three high-level steps: querying, learning, and pre-

diction. Querying actions gather additional information about the network, such as

item labels (e.g., fraudulent or not) and relational structure (e.g., links from phone

records). To decide what to query, AE algorithms use predictive models. These

models first learn parameters using the currently available network information and

are then applied for prediction to infer the unknown items’ labels. Given the limited

querying budget, it is critical that the models accurately identify items likely to have
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Figure 6.1.: Active exploration introduces label correlation bias into the labeled par-
tially observed networks.

the target label (to minimize queries). Prior work on AE methods has focused on

estimating label probabilities through weighted random walks in the network (i.e.,

predictions are comprised of weighted averages of nearby label values) [90,91]. How-

ever, in some cases estimates that condition directly on the items’ attributes can be

more accurate than estimates based only on relational information. Relational Ma-

chine Learning (RML) (see Chapter 2) methods can learn the relative importance

of dependencies among labels, attributes, and network structure. As such, in this

chapter we propose the first AE method to incorporate RML learning in order to

fully leverage all available information. More generally, our formulation will utilize

the conditional edge probabilities provided by the Transitive Chung-Lu graph model

to improve the predictions in a partially observed network (Chapter 4).

AE allows iterative queries from an underlying dataset, where each query returns

a subset of items’ labels and local relational structure. These queries result in a

partially observed view of the underlying network each iteration, which the algorithm

must use to learn a model and predict the items (among the set of unlabeled instances)

that are likely to be positive. We illustrate the process in Figure 6.1 with a simplified

example. In Iteration 1, the algorithm uses the observed labels, relational structure,

and attributes to estimate the label probabilities for the border items (va, vb, vc) and

queries the node with highest probability of value 1 (e.g., vc). This reveals additional

structure in Iteration 2, namely, the revealed label for vc and additional links to vd and

ve. The resulting partially observed network (6.1.b) has biased relational similarities

compared to the full network (6.1.c) because only the positive neighbors of vc are
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observed. More generally, this overrepresentation of positive neighbors is a typical

case for any e↵ective AE algorithm as AE aims to only acquire positive nodes. In the

example, a conventional RML method (using only the observed network) will learn

biased parameters that result in poor performance on subsequent iterations (e.g., by

selecting vd or ve). An e↵ective use of RML for AE must address the sampling bias in

the partially observed network to learn parameters that reflect the true dependencies.

In this chapter, we first demonstrate how the simple label correlation bias illus-

trated in Figure 6.1 generalizes to the partially observed networks produced by the

AE process. In particular, we show that the AE sampling process commonly pro-

duces partially observed networks with negatively correlated labels across the edges,

in contrast to the positively correlated full graph. Since conventional RML models

assume a fully observed network is available to learn the parameters, when presented

with a highly biased network sample these models struggle.

To address this we develop a semi-supervised learning approach based on expec-

tation maximization (EM). Specifically, we propose to incorporate inferred values of

the unobserved labels and edges into the learning step to improve the parameter es-

timates. With respect to Figure 6.1.a, this means we will first infer the labels of

va, vb and vc, then use the inferences to relearn the model. Furthermore, since the

relationships between the border vertices are also hidden (e.g., the link (va, vb)) we

incorporate probabilistic relationships into our formulation. We refer to our method

as Probabilistic Relational EM, or PR-EM. The edge probabilities utilized by PR-EM

are equal to the triadic components of TCL. However, the space of combinations

of possible edges and labels is exponential in the number of items, so we develop

a Variational Mean Field (VMF; [8]) approach for approximate inference. Conven-

tional VMF for PR-EM would be quadratic in the number of border nodes, which is

computationally prohibitive in an iterative process such as AE. To overcome this, we

introduce a linear time approximation to perform PR-EM inference. In particular,

we demonstrate how marginalization over the TCL edge probabilities can be done in

linear time, rather than quadratic.



118

1

1 0

vb1

vb2

vb3

vb4?

?

?

?

?

...

...

...
...

...

G
S

G
L

(a)

1

1 0

(b) GL

1

1 0

vb1

vb2

vb3

vb4

(c) GO

1

1 0

vb1

vb2

vb3

vb4

(d) GS

1

1 0

vb1

vb2

vb3

vb4

(e) P (G0
S |GO)
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full subgraph, and (e) a probability distribution over the unknown border edges.

6.1 Problem Description

Current approaches to AE use predictive models to decide which items to query [90,

91]. At each iteration, an AE algorithm selects one (or more) items to label from the

set of unlabeled items. When an item is labeled, relationships to other items (unla-

beled and labeled) are also acquired. Thus the set of unlabeled items consists of the

labeled items’ relational neighbors. These items are the border instances, which can

be selected for labeling in subsequent iterations. Prior to selection, an AE algorithm

utilizes a model to infer the instances that are likely to have the desired class label

value. The choice of model is key to success on the AE task: if it returns accurate

predictions for the border labels, the algorithm can find larger numbers of instances

with the desired label before the budget runs out.

6.1.1 Notation

AE requires the specification of three subgraphs of G: GL, GO and GS (Figure 6.2

illustrates each subgraph). First, let the subgraph GL = hVL,EL,XL,YLi consist of

the labeled vertices VL ✓ V (the 1/0 vertices in Figure 6.2) and the edges between

labeled vertices EL ✓ E (Figure 6.2.b). The corresponding set of known labels and

attributes is YL and XL. Next, let VB be the border vertices (blue vb vertices in
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Figure 6.2.a). The border vertices are unlabeled but through their relationship with

a labeled vertex are known to the active explorer:

VB = {vi|vi /2 VL and (9 vj 2 VL and (vi, vj) 2 E)}

Similarly, define the true (actually existing but hidden) set of edges between the

border instances EB ✓ VB⇥VB. Unlike the border vertices VB, the border edges EB

are unobserved during the AE process. Let the subgraph GO = hVO,EO,XO,YLi be

the subgraph which contains the labeled subgraph, the border vertices VB, as well as

the observed edges between the VB and VL (Figure 6.2.c). Further, XO = XL [XB.

The set of edges EO of GO does not contain the unobserved EB (dashed lines in

Figure 6.2.a):

EO = {(vi, vj)|(vi, vj) 2 E and (vi 2 VL or vj 2 VL)}

In contrast, the subgraph GS = hVS,ES,XO,YLi encompasses all labeled and border

vertices (VS = VL [ VB) as well as all the true edges between them ES = EO [ EB

(Figure 6.2.d).

Let E0
B ✓ VB ⇥VB be a possible set of border edges (but not necessarily the true

set EB), and EB be all possible combinations of border edges. Our work will require

the estimation of the probability of a set E0
B, PE (E0

B|EO, ⇥E ), being the true border

edges EB. Similarly, GS denotes all combinations of full subgraphs, with G0 2 GS

being a particular combination (Figure 6.2.e).

The structural characteristics defined in earlier sections all apply to the sub-

graphs utilized in this chapter. First, let G⇤ indicate a particular subgraph (such as

G, GL, GO, GS). We define MB⇤(vi) to be the set of neighbors of a vertex vi within

the subgraph: MB⇤(vi) = {vj|(vi, vj) 2 E⇤}. Second (as a notational extension), let

YMB⇤(vi) indicate the corresponding set of labels for the neighbors of a vertex vi.

Third, d⇤(vi) indicates the degree of the vertex vi in the subgraph G⇤.
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Algorithm 7 ActiveExploration(GO, Y )

1: # Search until the budget is exhausted
2: while |VL| < Budget do
3: # Apply prediction model
4: ⇥̂Y = Learn(GO, Y ) #(Possibly) learn classifier
5: P(YB) =Inference(GO, Y , ⇥̂Y ) #Infer labels
6: # Select instances to label and find related instances
7: V0

L = Select(P(YB), BatchSize)
8: Y0

L = Label(V0
L)

9: E0
O = AcquireEdges(V0

L)
10: V0

B = AcquireNeighbors(V0
L,E0

O)
11: # Update our sets
12: VL = VL [ V0

L

13: VO = VL [ V0
B

14: YL = YL [ Y0
L

15: EO = EO [ E0
O

16: end while
17: return GO

6.1.2 Active Exploration

AE algorithms aim to identify positive instances in a graph G in an iterative

fashion. During each iteration, the algorithm uses the observed subgraph GO to

infer the positive probabilities of the unlabeled border labels YB. The AE algorithm

then chooses a small set of border items to label, acquires any new edges and border

vertices, and repeats until the budget is exhausted.

Algorithm 7 presents pseudocode for a generic AE algorithm. It begins with an

initial observed graph GO and a classifier Y , and proceeds to iteratively sample labels

and structure until the query budget runs out. Each iteration of the algorithm begins

by modeling the labels of the border items. The algorithm may choose to learn

parameters of the model (Line 4), but most current methods skip this step. Then the

model is applied for prediction of YB (Line 5). Instances are selected, or queried, on

Line 7, with the goal of maximizing the number of positives identified1. The items are

then labeled on Line 8, while Lines 9 and 10 identify new border vertices and edges.

1In this work, we select the most probable examples.



121

Lines 12-15 update the observed network with the newly acquired labels, edges and

border instances2.

The primary task in AE is to infer the border probabilities PY (YB|YL,X,EO)

on Line 5 using only the observed subgraph GO (which are then used for selection on

line 7). Initial work infers unknown labels (i.e., yB 2 YB) by averaging the labels of

the neighbors, with variants including weighting the neighbors by their attributes [91]

or their random walk distances across the network [90]. In contrast, in this paper we

learn a model that directly conditions on the attributes and neighboring labels using

relational machine learning, so inferences are no longer solely comprised of nearby

labels.

6.1.3 Starting Point

As an initial approach to this task, we start with applying the simple Label Prop-

agation approach of [44, 45]. Label propagation utilizes the homophily commonly

found in relational networks to make a prediction of the unlabeled items given the

labeled items.

PLP (yi|MB(vi), ⇥LP ) =
1

ZLP

X

vj2MB(vi)

P (yi|yj, ⇥LP )

There are several notable disadvantages to this. First, as many edges are miss-

ing, it would be attractive to utilize the probability of missing edges into the predic-

tions. However, as is, even performing inference over the two hop neighbors would

be quadratic in the number of vertices. Second, this model fails to take advantage of

any attribute dependencies. Lastly, it does not learn the relationship between neigh-

boring labels and attributes. Throughout this chapter, we will develop a model that

addresses each of these issues.
2For brevity we omit X, which is updated with V.
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6.2 The Impact of Subgraph Information on AE Learning and Inference

AE algorithms explicitly target positive instances to label. If the algorithms are

successful, they gather larger numbers of positive samples into the labeled set than

negatives, but may make occasional mistakes and gather negatives as well. This

is illustrated through the example in Figure 6.1.a (Page 116): the algorithm may

choose to label vc as it has two positive neighbors. As vc was negative (Figure 6.1.b),

our learning algorithm should take into account the observed mistake, adjust its

parameters to incorporate the new information, and use the new estimates to make

better predictions on future samples. However, if the learning algorithm uses just

the observed labels in this example network it would appear that negatives only

link with positives. In contrast, the full subgraph is positively correlated (Figure

6.1.c). Thus, a model which learns from the limited GL would assign higher positive

probability to neighbors of the negative instances, rather than the neighbors of the

positive instances.

We will next demonstrate that throughout the AE process di↵erent subgraphs ex-

hibit di↵erent amounts of label correlation bias in comparison to the true graph G; in

particular, the labeled subgraph GL is considerably more biased than subgraphs that

incorporate the missing border labels YB. First, let G+
O = hVO,EO,XO,YL [ YBi be

the observed subgraph augmented with the true YB labels, and let

G+
S = hVS,ES,XS,YL [ YBi, or the full subgraph GS augmented with YB. Next,

we will define a classifier to use in the AE algorithm to actively explore the network,

choosing the most probable instances to explore as predicted by the classifier. As

the AE process unfolds, we will measure the label correlations across the links of the

GL, G+
O and G+

S subgraphs against the true graph G, showing that GL exhibits the

most bias. The classifier that we construct is a hypothetical “Oracle” since it will be

allowed to cheat and observe the full subgraph G+
S for learning (Line 4, Algorithm 7).

After learning, the Oracle then infers the unlabeled border vertices (Line 5, Algorithm

7) using the full subgraph GS rather than the observed GO.
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Figure 6.3.: The correlations of the three subgraphs, GL, G+
O and G+

S , along with the
full graph correlation G, when using Oracle for AE.

We use our Oracle to actively explore two of our datasets (Music and DVD co-

purchases – dataset details in Section 7.4.1). In Figure 6.3, we plot the Pearson

correlations of the subgraphs GL, G+
O and G+

S , as well as the correlation of the full

graph G, for each dataset as AE explores utilizing the Oracle for prediction3. The GL

subgraphs produced by AE when exploring the Music dataset are negatively correlated

as we acquire more labels. The Music dataset produces the most striking contrast,

but the bias is also observed in the DVD dataset. Note that G+
S best models the label

correlation found in the true graph G, making GS the best option for learning and

inference. In contrast, learning from GL or GO would result in more biased parameter

estimates.

6.2.1 How to Model Subgraph Information

Given an observed graph GO, there are a variety of models that can be employed to

learn the parameters (Line 4, Algorithm 7) and infer the labels YB (Line 5, Algorithm

7). Although they have not been applied directly to the AE task before, there are

two approaches that can be immediately adapted to this domain. We describe these

3The results are averaged over 100 trials, and the error bars are small and hidden behind the
line markers.
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methods (RML and R-EM) next and analyze how they would use GL and GO. As

neither models the full GS, they will experience a larger amount of label correlation

bias (as discussed above). To address this, we propose a novel approach (PR-EM),

which estimates GS to improve learning and inference.

Adapted RML: Unlike random walk based methods, traditional RML conditions

directly on a vertex’s attributes and neighboring labels, as opposed to weighting the

labels of nearby instances. RML formulates the problem in two steps: learning of

parameters ⇥Y using labeled data (Line 4, Algorithm 7), then inferring the missing

labels using the parameters (Line 5, Algorithm 7). Existing RML methods assume

knowledge of the full graph for learning and inference, meaning each conditional

distribution is over G. In order to adapt RML to the AE task, this would correspond

to learning using just the labeled data GL, meaning each label yi 2 YL [ YB has

a conditional distribution PY (yi|xi,YMBL(vi), ⇥Y ). The parameters ⇥Y are learned

from the labeled subgraph GL via Maximum Likelihood Estimation (MLE) or the

more e�cient Maximum Pseudolikelihood Estimation (MPLE) [1]:

⇥̂Y = arg max
⇥Y

PL
Y (YL|XL,EL, ⇥Y )

= arg max
⇥Y

X

vi2VL

log PL
Y (yi|xi,YMBL(vi), ⇥Y )

where the second line shows the MPLE maximization problem. We use PL to denote

learning on the labeled subgraph GL; similarly, RML uses the learned parameters ⇥̂Y

to infer the border labels utilizing the subgraph GO, denoted PO
Y (YB|YL,XB,EO, ⇥̂Y )

(Line 5, Algorithm 7).

Adapted R-EM: In [5], the authors proposed a relational expectation maximiza-

tion (R-EM) algorithm, which utilizes the expected values of the unlabeled instances

to improve estimation of ⇥̂Y . Again, we can adapt this model to the AE task by
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Algorithm 8 R-EM Learning(GO, Y , ⇥Y )

1: while Not Converged do
2: P (YB) = Inference(GO, Y , ⇥̂Y )
3: ⇥̂Y = Learn(GO, P (YB), Y , ⇥Y )
4: end while
5: return P (YB)

using Algorithm 8 in place of Lines 4-5 in Algorithm 7. Algorithm 8 first (Line 2)

computes the expected values of the unlabeled examples:

E-Step: Compute PO
Y (YB|YL,XB,EO, ⇥old

Y )

That is, we use the previous iteration’s estimated parameters ⇥old
Y to compute the

distribution of the border labels. Let YB indicate the space of possible label combi-

nations for the missing border labels. The distribution of combinations YB 2 YB is

used to maximize the composite likelihood on the observed subgraph GO (Line 3):

M-Step: Update the parameters ⇥̂Y to be:

arg max
⇥Y

X

YB2YB

PO
Y (YB|YL,XS,EO, ⇥old

Y )
X

vi2VL

log PO
Y (yi|xi,YMBO(vi), ⇥Y )

This contrasts with traditional RML, which would learn using just the subgraph

GL. The E and M steps are repeated until convergence. However, the R-EM inference

step remains limited by only inferring over the observed graph GO. As a result, the

expectations of the unlabeled border vertices VB are inferred independently as there

are no observed edges between the border nodes.

Proposed PR-EM: In this chapter, we discuss methods for using a distribution

over the possible border edges to improve AE. Our method will infer the subgraph

GS utilizing the TCL model of Chapter 4: this will introduce dependencies between

the border labels and allow us to perform collective inference when predicting YB.
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Figure 6.4.: Models and subgraphs.

Thus, vertices which are “near” each other in the network will be able to utilize each

other’s predictions to jointly improve inferences. We will extend the relational EM

process to marginalize over the distribution of possible border edges:

P S
Y (YB|YL,XB,EO, ⇥Y )=

X

E

0
B2EB

P S
Y (YB|YL,XB,E0

S, ⇥Y )PE (E0
B|EO, ⇥E )

where E0
S = EO [ E0

B. This estimate replaces the previous E-Step of the R-EM

method with a collective prediction of YB:

New E-Step (Line 2, Algorithm 8): Compute

P S
Y (YB|YL,XB,EO, ⇥Y )=

X

E

0
B2EB

P S
Y (YB|YL,XB,E0

S, ⇥Y )PE (E0
B|EO, ⇥E )

Our proposed inference step utilizes a distribution over G0
S 2 GS, rather than only

using GL or GO. As the expectations are computed with GS, the M-step is over the

full subgraph by using the improved predictions:

New M-Step (Line 3, Algorithm 8): Update parameters ⇥̂Y

arg max
⇥Y

X

YB2YB

P S
Y (YB|YL,X,EO, ⇥old

Y )
X

vi2VL

log P S
Y (yi|xi,YMBS(vi), ⇥Y )

As our proposed method incorporate the probabilities of the missing relationships

into the learning and inference, we call it Probabilistic Relational EM, or PR-EM. PR-

EM can be utilized to jointly infer the probability of missing edges EB in a network
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xi yj

vj 2 N(vi)

yi

(a)

xik

xik 2 xi

yj

vj 2 N(vi)

yi

(b)

Figure 6.5.: (a) The most general generative relational model that can be utilized
with PR-EM. (b) The specific RNB relational generative model.

and incorporate the additional information into predicting the unlabeled YB. PR-

EM is designed for AE, where large numbers of edges are unavailable, but can also

be applied on other probabilistic network domains.

Unlike learning using just GL or GO, utilizing the distribution over GS presents

a unique set of challenges. In the worst case, marginalizing over the full distribu-

tion of P (E0
B|EO) would involve a summation over an exponential number of edge

combinations. Even when assuming conditional independence between the edges, a

straightforward implementation of PR-EM would pair every border vertex with each

other, resulting in a quadratic runtime. The fast sampling algorithms of TCL present

an initial attractive option. As an alternative, we prove that the edge probabilities of

TCL can be e�ciently marginalized over without sampling; that is, there is an e�cient

algorithm that incorporates the TCL edge probabilities, but runs in O(dMBO
(vb)) for

each vb 2 VB. Thus, this algorithm is linear in the number of observed neighbors of a

vertex, rather than a conventional inference algorithm being quadratic in the number

of observed neighbors, and is the same runtime as RML and R-EM.

6.3 Probabilistic Relational EM (PR-EM)

In this section we discuss our proposed PR-EM model, with a focus on e�cient

inference over the probabilistic edges. We begin with a discussion of the inference
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methods of RML and R-EM, which will be extended to incorporate collective inference

when estimating the border labels YB. Along the way we will incrementally introduce

the probability of edges E0
B 2 EB (as they relate to TCL), the corresponding VMF

inference algorithm, and our linear time implementation. We make the usual RML

Markov assumption and define a generative local conditional model Y which falls

into the class of models represented by Figure 6.5.a. That is, given a subgraph G⇤ we

assume the relational features are conditionally independent from the attributes and

each other:

P ⇤
Y (yi|xi,YMB⇤(vi), ⇥Y ) / PY (yi|⇥Y )PY (xi|yi, ⇥Y )

Y

vj2MB⇤(vi)

PY (yj|yi, ⇥Y )

We allow any form for the attributes conditioned on the label; for instance, the

Naive Bayes representation falls within this class of models (Figure 6.5.b), but the

attribute conditional can be more expressive.

Inference on the Observed Graph (GO): To start, we formulate the inference

methods of RML and R-EM. These infer the border labels YB utilizing the joint

distribution of YB given the observed graph GO: PO
Y (YB|YL,XB,EO, ⇥Y ). We will

then extend to the more di�cult distribution over GS, which is necessary for our

PR-EM method.

Given only the observed graph GO, all border vertices vi 2 VB are conditionally

independent of each other, meaning the joint distribution of border vertices can be

broken into inferring each border vertex vi independently. ZY (vi) represents the

corresponding partition function for the conditional log probability of vi. We define
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↵i(yi) to represent the summation over the observed log probabilities for a vertex vi

- the log conditional for an instance yi is then:

logPO
Y (yi|xi,YMBO(vi),EO, ⇥Y )

= log(P (yi|⇥Y )) + log P (xi|yi, ⇥Y ) +
X

vj2MBO(vi)

log P (yj|yi, ⇥Y ) � ZY (vi) (6.1)

= ↵i(yi) � ZY (vi)

We can compute each local summation ↵i(yi) in O(dO(vi)) time. Utilizing the

conditional independence provided by GO, RML and R-EM apply the above equation

to each vb 2 VB to infer the joint distribution PO
Y (YB|YL,XB,EO, ⇥Y ).

Inference on the Full SubGraph (GS): The above inference represents the con-

tributions from the observed graph GO when inferring the border labels YB. However,

it does not incorporate any edges given a full subgraph G0
S 2 GS. Consider yi 2 YB:

let VB\i be the set of vertices in VB excluding vi. Define E0
iB as the complete set of

random variables Eib, or the possible edges between vi and all other border vertices.

In the next step, we introduce the conditional of yi under the assumption YB\i and

EiB are known:

log P S
Y (yi|xi,YMBO(vi),EO,YB\i,E

0
iB, ⇥Y ) (6.2)

= log

2

4P (yi|⇥Y )P (xi,YMBO(vi)|yi, ⇥Y )
Y

vb2VB\i

P (yb|yi, ⇥Y )Eib

3

5� ZY (vi)

=↵i(yi) +
X

vb2VB\i

Eib log P (yb|yi, ⇥Y ) � ZY (vi) (6.3)

When an edge Eib is unobserved the corresponding belief from yb is not incorpo-

rated into the summation and does not contribute to yi. The derived conditional log

probabilities currently have three complicating elements:
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• We must tie TCL into the conditional edge probabilities between border vertices;

i.e., PTCL(EiB|EO, ⇥TCL).

• The distributions of border labels YB\i and edges E0
iB need to be incorporated

into Equation 6.2.

• Naive implementation of VMF inference leads to a complexity of O(|VB|2).

In the rest of this section we will solve each of these issues.

6.3.1 PR-EM Edge Probabilities

We begin by proposing the probability of an edge P (Eik|EO) between two border

instances (vi, vk) 2 E0
B. We will then generalize this to the distribution of edges

P (E0
B|EO).

In this subsection, we incorporate a form of the TCL edge probabilities into PR-

EM – in particular, we utilize the transitive closure matrix (CLO) discussed in Chap-

ter 4. Note that the two hop closure edge probabilities (QCLO) can be transferred to

the partially observed network and simplified as such:

PCLO(Eik =1|EO, ⇥CLO) /✓�
2

dO(vi)
X

vj2MBO(vi)

1

dO(vi)

I[vk 2 MBO(vj)]

dO(vj)

+
✓�
2

dO(vk)
X

vj02MBO(vk)

1

dO(vk)

I[vi 2 MBO(vj0)]

dO(j0)

=✓�
X

vj2MBO(vi)

I[vk 2 MBO(vj)]

dO(vj)
(6.4)

where we have replaced the normalizer for the QCLO matrix with a hyper parameter

✓�. As a result, the probability of an edge Eik existing is the weighted summation of

the intermediate vertices’ inverted degrees. First, as the summations are defined over

GO the probabilities Eij 2 E0
B are conditionally independent. This result, coupled
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with the summations being only over the two hop neighbors, initially reduces our

complexity to O(|VB|2). Second, ✓� must lie in the following range:

0  ✓�  arg max
i,k

1
P

vj2MBO(vi)
I[vk2MBO(vj)]

dO(vj)

The lower bound of 0 will remain fixed and represents the case where no collective

inference is performed (inference reduces to GO); however, later in this section we

will show how in practice the upper bound can be relaxed (0  ✓�).

6.3.2 PR-EM Variational Mean Field Inference

The PR-EM conditional distributions of yi 2 YB defined in Equation 6.2 require

the other border labels YB\i and edges E0
iB (found in Equation 6.3). We next incor-

porate the probabilities over these sets utilizing VMF inference. We define a fully

factorized approximating distribution over the set of border labels YB and edges E0
B,

denoted QY E (YB,E0
B):

QY E (YB,E0
B) =QY (YB)QE (E0

B) =
Y

vi2VB

QY (yi)
Y

Ejb2E0
B

PCLO(Ejb|EO, ⇥CLO)

Each QY (yi) represents the current probability of each vi’s label to be yi 2 Y .

VMF computes the optimal solution of Q(YB,E0
B) by iteratively updating each

QY (yi) component until convergence [8]. We next define the updates for each QY (yi)

given the other QY (yb) for yb 2 YB\i and Eib 2 E0
iB. As the Ejb 2 E0

B are indepen-

dent we do not recompute them at each iteration. Let YB\i be the space of possible
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border labelings except vi, and E 0
iB be the space of all possible vi border edges. The

VMF update for each conditional is4:

log QY (yi)

=
X

YB\i2YB\i

QY (YB\i)
X

E

0
iB2EiB

QE (E0
iB) log P S

Y (yi|YMBO(vi),YB\i,E
0
iB, ⇥Y )�ZY (vi)

=
X

YB\i2YB\i

QY (YB\i) g(yi;YMBO(vi),YB\i, EiB, ⇥) � ZY (vi)
(6.5)

where ZY (vi) is now the appropriate variational normalizing constant. Given the

remaining border labels (which will also be relaxed shortly), g(·) represents the un-

normalized energy function over the probabilistic edges. We begin by simplifying g(·)
by inserting our assumed generative conditional form (illustrated in Figure 6.5.a):

g(yi;YMBO(vi),YB\i, EiB,⇥) =
X

E

0
iB2EiB

QE (E
0
iB) logP

S
Y (yi|YMBO(vi),YB\i,E

0
iB,⇥Y )

=
X

E

0
iB2EiB

QE (E
0
iB)

2

4

↵i(yi) +
X

vb2VB\i

Eib logPY (yb|yi,⇥Y )

3

5

= 1 · ↵i(yi)+
X

E

0
iB2EiB

QE (E
0
iB)

2

4

X

v0b2VB\i

Eib logPY (y0b|yi,⇥Y )

3

5

We pause to highlight that the observed dependencies ↵i(yi) do not depend on

the border edge probabilities. As a result, summing over the probabilities of all

combinations of probabilistic edges and two hop labels equals multiplying ↵i(yi) by

1 as Q(E0
iB) is a probability distribution. Similarly, a label yb 2 YB\i only depends

4For clarity we omit listing xi and EO. These are fixed and conditioned on when inferring yi.
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on Q(Eib), with the summation over the distribution of remaining edge factorizations

also equaling 1. We further reduce the above5:

g(yi;YMBO(vi),YB\i, EiB, ⇥)

= ↵i(yi)+
X

vb2VB\i

X

Eib2{0,1}

PE (Eib|EO, ⇥E ) [Eib log PY (yb|yi, ⇥Y )]

= ↵i(yi)+
X

vb2VB\i

PE (Eib=1|EO, ⇥E ) log PY (yb|yi, ⇥Y )

where in the last step we have excluded the case where Eib = 0 (and naturally adds

no weight to the log sum). We insert our derived g(·) variables back into log QY (yi):

log QY (yi)

=
X

YB\i2YB\i

QY (YB\i)g(yi;Yi,YMBO(vi),YB\i, EiB, ⇥)

=
X

YB\i2YB\i

Y

yb2YB\i

QY (yb)

2

4↵i(yi) +
X

y0b2YB\i

PE (Eib0 = 1|EO, ⇥E ) log PY (y0
b|yi, ⇥Y )

3

5

= ↵i(yi) +
X

YB\i2YB\i

Y

yb2YBi

QY (yb)
X

y0b2YB\i

PE (Eib0 = 1|EO, ⇥E ) log PY (y0
b|yi, ⇥Y )

(6.6)

As with the previous simplification, ↵i(yi) are also independent of the two hop

variables. Thus, summing over all two hop combinations weighted by the distribution

QY (YB\i) is again equal to multiplying by 1, meaning we can pull the term outside

the summation. The border labels YB\i are also independent by the definition of the

approximating distribute QY . Applying this independence means only a particular

QY (yb) and possible edge PE (Eib|EO, ⇥E ) can impact the value of PY (yb|yi, ⇥Y ),

allowing for a further simplification:

5
EO is reintroduced to provide clarity regarding the conditional edge distribution P (E0

B |EO).
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log QY (yi)

= ↵i(yi) +
X

YB\i2YB\i

Y

yb2YB\i

QY (yb)
X

y0b2YBi

PE (Eib0 = 1|EO, ⇥E ) log PY (y0
b|yi, ⇥Y )

= ↵i(yi) +
X

vb2VB\i

X

yb2Y

QY (yb)PE (Eib = 1|EO, ⇥E ) log PY (yb|yi, ⇥Y )

At this stage the conditionals for the updates depend on the full set of border

instances; however, from the derived edge probabilities we can see that P (Eib=1) = 0

when vi and vb are not within two hops of each other. Let MB2
OB

(vi) be the border

vertices within two hops of vi. The above equation reduces to summations over just

the two hop neighbors:

log Q(yi) = ↵i(yi) +
X

vb2MB2
OB

(vi)

X

yb2Y

QY (yb)PE (Eib=1|EO, ⇥E ) log PY (yb|yi, ⇥E )
(6.7)

At this point we have a collective inference algorithm where each update to Q(i)

costs O(dO(vi)2). We will next discuss how to reduce this complexity to O(dO(vi))

by exploiting the transitive closure representation derived above (with the framework

from Chapter 4).

6.3.3 PR-EM E�cient Collective Inference

The above formulation implies a simplification we can make: namely, if vk 2 VB

is two hops away from both vi1 , vi2 2 VB then it will contribute similar amounts

of information to both QY (yi1) and QY (yi2). In this subsection we will introduce

a method which does not recompute the influence from vk when evaluating QY (yi1)

and QY (yi2).
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Figure 6.6.: PR-EM with respect to (a) vertex vi1 and (b) vertex vi2 . Note that vi1
and vi2 share considerable amount of two hop information from the beliefs of vk’s.
PR-EM inference exploits this to avoid recomputing for every example. (c) A more
general case

We give a simplified example of our approach in Figure 6.6. In Figure 6.6a-b, we

wish to use the two hop neighbor probabilities to infer the label of the vertices vi1 and

vi2 , respectively. The total contributed weighted log probabilities from the two hop

neighbors for vi1 and vi2 are identical, aside from their contributions to each other’s

estimate. Thus, when computing Q(yi1) we can store the logarithmic sum of two

hop beliefs, then incorporate the previously computed sum when evaluating Q(yi2).

This will allow us to propagate the beliefs without having to recompute the weighted

evidence from every two hop neighbor. We define the set of variables �j(y):

�j(y) =
X

v0k2MBOB
(vj)

X

y02Y

⇥�

dO(vj)
QY (y0

k) log PY (y0
k|y, ⇥Y ) (6.8)

where MBOB
(vj) is the border neighbors of vj in the observed graph. For each

labeled vertex vj, �j(y) is the total conditional log probabilities of the border neigh-

bors given a label y 2 Y . For example, consider Figure 6.6.c. �e(1) sums over the

positive conditional log probabilities of the neighboring va, vb, vc, while �f (1) sums

over the positive conditional log probabilities of the neighboring va, vc. Correspond-

ing summations �e(0) and �f (0) are also maintained. After we update a single factor

Q(yi) we can update the neighboring �j in O(1) time by subtracting o↵ the old belief

(determined by Qold(yi)) and adding in the new belief (determined by Q(yi)). We
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apply the derived CLO edge probabilities from Equation 6.4 to the conditional log

probability expressed in Equation 6.7:

log QY (yi)

= ↵i(yi) +
X

vb2MB2
OB

(vi)

X

yb2Y

QY (yb)PE (Eib=1|EO, ⇥E ) log PY (yb|yi, ⇥Y )

= ↵i(yi) +
X

vb2MB2
OB

(vi)

X

yb2Y

X

vj2MBO(vi)

✓�I[Ejb]

dO(vj)
QY (yb) log PY (yb|yi, ⇥Y )

= ↵i(yi) +
X

vj2MBO(vi)

2

6

4

X

vb2MB2
OB

(vi)

X

yb2Y

✓�I[Ejb]

dO(vj)
QY (yb) log PY (yb|yi, ⇥Y )

3

7

5

= ↵i(yi) +
X

vj2MBO(vi)

2

6

6

6

4

X

vb2MBOB
(vj)

yb2Y

✓�I[vb 6= vi]

dO(vj)
QY (yb) log PY (yb|yi, ⇥Y )

3

7

7

7

5

In the third step we simply switch the sums between all border vertex and simply the

neighbors to the vertex vi. This simplification is key, as it allows us to simplify the

last step to only sum over its immediate neighbors MBO(vj) (out of all the two hop

neighbors of vi). This representation is the crux of the e�cient inference algorithm,

the portion within the brackets can be stored o↵ as a running summation, and simply

updated as we update a component QY (yi). As a tradeo↵ for this representation,

we must only exclude vb = vi, as vi should not depend on the previous Q(yi) values.

The relational components are in the same form as weighted Naive Bayes, meaning

we must only require 0  ✓� to return valid probabilities for Q(yi). As ✓� increase,

more influence from the other border neighbors influences Q(yi), and smaller values

revert to traditional R-EM.

We now reformulate the above equation in terms of the summations �j. Define

the previous iteration’s QY (yi) as Qold
Y (yi). When summing the �j variables into our

log probability for vi, we subtract o↵ the weighted contribution from the previous

iteration:
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log QY (yi)

= ↵i(yi) +
X

vj2MBO(vi)

2

6

6

6

4

X

vb2MBOB
(vj)

yb2Y

✓�I[vi 6= vb]

dO(vj)
QY (vb) log PY (yb|yi, ⇥Y )

3

7

7

7

5

� ZY (vi)

= ↵i(yi) +
X

vj2MBO(vi)

2

4�j(yi) �
X

y0i2Y

✓�
dO(vj)

QY (y0
i)
old log PY (y0

i|yi, ⇥Y )

3

5� ZY (vi)

(6.9)

As we maintain the �j summations, when inferring QY (yi) we do not need to

recompute the contributions from all the two hop neighbors. Before inferring Q(yi)

we subtract o↵ the belief proportional to Qold
Y (yi) from each neighboring �j. After

inference for QY (yi) we add these values back into the neighbor’s summations �j.

We then perform inference on the next border vertex, until convergence. As we

only consider the summations stored at each immediate neighbor vj, rather than

recomputing the value for each possible Vk, the inference runtime of a single border

vertex vi is O(dO(vi)). This is the same runtime order as independent inference,

meaning our PR-EM process does not impact the total runtime.

6.3.4 PR-EM Algorithmic Implementation

We lay out our PR-EM procedure in Algorithm 9: this collective inference replaces

the independent inference over VB in the original R-EM algorithm (Algorithm 8, Line

2). Here, we give an example for a binary classification task. Every labeled instance

keeps track of the two �j sums:

for y 2 {0, 1} : �j(y) =
X

vk2MBOB
(vj)

X

yk2{0,1}

⇥�

dO(vj)
QY (vk) log PY (yk|y, ⇥Y )
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Algorithm 9 PR-EM Inference(GO, Y , ✓�, ⇥Y )

1: # Initialize vectors
2: Q = ; # Mean expectations
3: �(1) = [�1(1), �2(1), . . . , �b(1)] = [0, 0, . . . , 0]# Two hop beliefs
4: �(0) = [�1(0), �2(0), . . . , �b(0)] = [0, 0, . . . , 0]# Two hop beliefs
5: # Push labeled beliefs onto neighbors summations
6: for vi 2 VL, vj 2 MBO(vi) do
7: if yi = 1 then
8: � = UpdateSummation(1, vj, �j, +, Y , ✓�, ⇥Y )
9: else
10: � = UpdateSummation(0, vj, �j, +, Y , ✓�, ⇥Y )
11: end if
12: end for
13: # Initialize Border Labels for VMF
14: for vi 2 VB do
15: Q[vi] = Y .Expectation(xi, MBO(vi), ⇥Y ) # Equation 1
16: for vj 2 MBO(bi) do
17: � = UpdateSummation(Q[bi], vj, �j, +, Y , ✓�, ⇥Y )
18: end for
19: end for
20: # Repeat until convergence
21: while Not Converged do
22: Q = InferenceLoop(GO, Y ,Q, �(1), �(0), ✓�, ⇥Y )
23: end while
24: return Q

In practice, we extend the algorithm to allow the inclusion of the labeled instances

as part of the two hop beliefs: when vl 2 VL then QY (y0
l) is either 1 or 0, depending

on whether yl = y0
l. By adding the labeled neighbors it can incorporate belief from

labeled vertices that lie both one and two hops away multiple times, which places

higher weight on neighboring vertices with a large number of common neighbors.

Algorithm 9 begins by pushing the conditional beliefs from the labeled instances

to their relational neighbors, to use when informing the border instances (Lines 6-10).

Each iteration of the loop calls Algorithm 11, which dynamically handles inserting

the weighted conditional log probability into the correct summation. The collective

inference algorithm then proceeds to initialize the Q initial samples from local con-

ditionals defined by the generative model Y for each of the border instances (Lines
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Algorithm 10 InferenceLoop(GO, Y ,Q, �(1), �(0), ✓�, ⇥Y )

1: # Update Q for all vb 2 VB

2: for vb 2 VB do
3: # This updates Equation 9 for vi
4: for vj 2 MBO(vb) do
5: � = UpdateSummation(Q[vb], �j, �, Y , ✓�, ⇥Y )
6: end for
7: Q[vi] = Y .Expectation(vb, MBO(vb), �j, ⇥Y )
8: for vj 2 MBO(vb) do
9: � = UpdateSummation(Q[vb], �j, +, Y , ✓�, ⇥Y )
10: end for
11: end for
12: return Q

Algorithm 11 UpdateSummation(Q(a), �j, ±, Y , ✓�, ⇥Y )

1: # This maintains the �j variables from Equation 8
2: # ± is specified when calling this function
3: �j(1) = �j(1) ± Q(a)✓�

dO(vb)
· log (P (1|1))

4: �j(1) = �j(1) ± (1�Q(a))✓�
dO(vb)

· log (P (0|1))

5: �j(0) = �j(0) ± Q(a)✓�
dO(vb)

· log (P (1|0))

6: �j(0) = �j(0) ± (1�Q(a))✓�
dO(vb)

· log (P (0|0))
7: return �

12-15). Q[vi] sums the expectations of the border instances, which are then pushed

into the summations of the immediate neighbors.

After initialization, repeated calls are made to Algorithm 10 for a specified number

of iterations. Algorithm 10 begins by removing any belief in the summation that was

contributed by the vertex that is being estimated (Lines 3-4). Line 5 computes a

new expected value for the vertex by utilizing the running sum of beliefs over the

vertex’s neighbors, while lines 6-7 update the neighbor’s sums of weighted conditional

log probabilities, before the loop repeats for the next vertex.
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6.4 Related Work

Various variations of the AE task exist, with the domains having varying levels of

network availability. Each of the previous algorithms provided for solving the corre-

sponding variation of AE reduce to weighted averages of the neighboring (or nearby)

labels. In [90,92], the authors assume a full network is available for inference. Garnett

et al. [92] performed a lookahead to determine the expected impact of a selection, but

the lookahead could be costly for more than a single step. The authors proposed an

improvement by using a “soft” random walk coupled with an estimated impact fac-

tor [90]. This allowed a random walk to flow through the currently labeled instances

and outperformed the single step lookahead citations. However, these methods do

not incorporate the observed attributes into their estimation. Fang et al. [91] assume

a somewhat more restrictive case of AE. Their selection algorithm has the option to

only acquire relational structure, resulting in a partial free crawl across the network.

The authors also allow for usage of node features to formalize a supervised random

walk, weighting the transition probabilities. While their methods do learn the weights

of the random walk given the attributes, they do not directly condition on the at-

tribute values and remain limited to weighted averages of the neighbors’ labels. Our

method allows the classifier to learn the relative importance of the attributes versus

relational features.

AE has a similar setup as network active learning and active querying, but has

distinct goals. For network active learning, a sampler selects instances which either

improve the classifier or reduce variance across the network and are not concerned

with maximizing the identification of a particular class label [49,50]. Active learning

and AE also have distinct goals from active querying [93]. In active querying, a

sampler selects instances to improve the predictions of a particular set of vertices

which it cannot sample directly.
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6.5 Experiments

In this section, we evaluate AE using our proposed PR-EM model, several baseline

learning approaches and the state-of-the-art AE methods discussed in Section 6.4.

6.5.1 Methods

We compare AE using our proposed method against five competing methods and

a random method: each competing method is used for AE (Algorithm 7) to infer the

label probabilities of the border vertices. For each method, we list the subgraph it

models (GL, GO, GS) and whether it performs learning (Line 4, Algorithm 7), infer-

ence (Line 5, Algorithm 7) or both.

Naive Bayes (NB): This is the independent Naive Bayes estimator: it only uses

the vertex attributes when performing estimation and inference and does not utilize

any network information. It learns (Line 4) using the labeled vertices and their

corresponding attributes (YL,XL), and applies the result to predict border labels

(Line 5) using only the available border attributes (XB).

Relational Naive Bayes (RNB): This is similar to the NB estimator, but

uses the labeled relational neighbors as features during estimation and inference. For

learning it utilizes the labeled graph GL (Line 4). During inference the border labels

use the labels of their relational neighbors with the GO network (Line 5).

weighted vote Relational Neighbor (wvRN): This is simple estimator intro-

duced early in the chapter and an implementation of Label Propagation [44, 45]. It

does not learn, rather, it selects items which have the highest percentage of positive

observed (GO) neighbors (Line 5).

Soft Random Walk (SoftRW): This is a recently proposed method by Wang et

al. for AE [90] which improves on the methods of [92]. It does not perform learning

— it creates a soft random walk through the labeled instances, making a broader

scope of label information available to the unlabeled vertices (Line 5). As a result,
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Dataset MBv MBe W ⇢ P (+)

Facebook 6,342 73,374 2 0.174 0.320
IMDB 12,469 122,230 28 0.207 0.119
DVD 17,219 75,596 28 0.208 0.200
Music 60,215 272,544 26 0.154 0.074

Figure 6.7.: Data statistics. From the left: number of vertices, edges, and attributes,
label correlation across edges, positive prior.

this method models GS. This is in contrast to only viewing the immediate neighbors

with wvRN. We use the parameters suggested in their work.

Supervised Walk (SupRW): This is a recently proposed method by Fang et

al. for AE [91]. It weights the probability of a walk passing between instances as a

function of features created by the endpoint vertices’ attributes, which are learned

(Line 4). The predictions are made from the averages of the random walk (Line 5).

As the random walk is grounded, only immediate neighbors are used during inference

meaning this method only utilizes GO. We use the edge features and linear weighting

suggested by the authors.

Probabilistic Relational EM (PR-EM (RNB)): Our EM which utilizes the

probabilistic relationships – we utilize 5 iterations of EM with 10 iterations of our

VMF approximation during the E-step. Our conditional form is RNB – we initialize

the attribute parameters using a single maximization of RNB, while the relational

parameters on the first iteration are uniform. Between inference steps we calibrate

the estimates of the PR-EM probabilities so their mean matches the labeled popula-

tion mean [94]. During learning, we incorporate an informative Beta prior for each

relational parameter: B(0, |YL| · P (1)) for the positive conditional probability and

B(|YL| · P (0), 0) for the negative. We set ⇥� = 22, and will discuss the impact of

this selection. As discussed previously, PR-EM performs both learning and inference

(Algorithms 2-5) by modeling GS.
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6.5.2 Datasets

We compare each of the above methods on four datasets. The full statistics for

the datasets are compiled in Figure 6.7.

Facebook: This is a snapshot of the Purdue University Facebook network. We

include users who have listed their (a) Political Views, (b) Religious Views and (c)

Gender. We use the users’ Political views as the label, and Religious Views and

Gender as the two attributes.

IMDB: This is the IMDB dataset (www.imdb.com), where the goal is to predict

whether a movie is successful (i.e., high box o�ce return). We use a boolean label

to indicate if the reported gross receipts were greater than $50 million. We use 19

boolean feature variables indicating whether the movie belongs to any of 19 possible

genres. We break the user rating into 9 boolean variables, each of which indicates

whether the average movie rating is greater than the corresponding variable index. We

construct a network by inserting an edge if two movies share two or more producers.

DVD: This is the Amazon copurchase network compiled by [65], but we only

select the DVD items. This allows us to incorporate 24 genres of movies as features.

We construct boolean features based on the average user’s review of a product: star

ratings are between 1 and 5. The label we predict is whether the item is a top seller

(salesrank ¡ 7500).

Music: This is the Amazon copurchase network compiled by [65], but we only

select the Music items. This allows us to incorporate 22 styles of music as features in

addition to the user rating features, and keep the same top seller labeling.

6.5.3 Methodology

We conduct 100 trials of each method on each dataset6. At the beginning of each

trial we give every method the same starting subgraph with 20 vertices. The starting

6SupRW is not compared on the larger Music dataset due to the expensive learning time at each
iteration.
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Figure 6.8.: Gains reported for each datasets. PR-EM performs as well as the top
competitor for the Facebook and IMDB datasets, and is considerably better for the
Music and DVD datasets.

subgraphs are created by (a) sampling a single positive instance and (b) actively

exploring with the random method 19 times. We set the budget to 10% of the total

network size: each method takes the starting subgraph and selects vertices to label

until the budget is exhausted. The Select function (Algorithm 7, Line 7) is to choose

the 20 most probable instances. The measure we utilize for evaluation is the recall, or

number of positive instances identified as the number of selected vertices grows. For

each method on each dataset the average positives found over 100 trials is reported.
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6.5.4 Results

Figure 6.8 shows the recall for each method on each of the four networks. The

only point where PR-EM is ever outperformed is at the very beginning of the IMDB

curve where RNB achieves slightly higher recall. However, PR-EM recovers and

outperforms all other methods by the time 4% of the graph is labeled. At 10%

labeled, PR-EM performance is equivalent, or significantly better, than the second

best method on all four datasets. Although SupRW does well on Facebook and RNB

does well on IMDB, the PR-EM model is the only method to do consistently well

across all the networks. Moreover, it achieves significant gains over all the competing

methods on the DVD and Music networks. PR-EM is thus able to learn the important

information and use it for accurate predictions across a variety of scenarios.

Next, we examine the types of partially observed networks RNB can e↵ectively

learn from in comparison to PR-EM. Figure 6.9 shows the label correlations in GL as

we run the AE algorithm with RNB and PR-EM. Notably, in two datasets (DVD and

Music), PR-EM learns in a space where the observed GL is negative, but is still able

to make accurate predictions (Figure 6.8). In contrast, RNB cannot learn accurate

parameters in scenarios where e↵ective AE would generate a GL with negative label

correlation. In these cases, RNB samples neighbors of negative items rather than

positive items, until the GL label correlation becomes more positive. By inferring the

missing edges, PR-EM is able to learn correct parameters from heavily biased sample

networks.

Lastly, we investigate the impact of the probabilistic relationships on performance

in terms of the associated ✓� parameterization, which controls the weight of the

probabilities (Section 6.3). The evaluation is performed in comparison with RNB.

In particular, in Figure 6.10 we plot the gain percentage, or additional percentage

of positives, compared to RNB as we vary ✓� with di↵erent powers of 2. Larger

weightings correspond to more probable relationships. RNB only performs well in the

IMDB network, which is the only network where RNB observes positive correlations
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Figure 6.9.: The correlation of the labels across the observed edges. PR-EM can
accurately estimate in cases where the observed graph is negatively correlated.

in GL (Figure 6.9.b): even in this network, PR-EM overtakes RNB. Additionally, on

the DVD and Music datasets we see that large ✓� greatly improves the performance.

Future work could include methods for automatically tuning ✓� to further increase the

gains. For all datasets and all parameterizations, PR-EM outperforms the baselines

and competing models over nearly all sample points.

6.6 Concluding Remarks

In this chapter we have defined a new problem, Active Exploration, which at-

tempts to identify strictly positive instances in a partially available network. To

address the partially observed edges, we modeled probabilistic relationships among
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Figure 6.10.: Varying ✓� on each dataset. PR-EM significantly outperforms the
baseline across all ✓�.

the border vertices and developed an e�cient collective inference method to jointly

infer the item labels at the same time as the missing edges. The edge probabili-

ties are a form of the TCL edge probabilities, introduced in Chapter 4. We proved

that these edge probabilities allow for linear time learning and inference algorithms

over a squared network, a first in relational algorithms. This makes it feasible to use

our collective inference approach within an iterative AE process on real world net-

works. We demonstrated the gains o↵ered by our PR-EM method on four real-world

datasets, showing that PR-EM outperforms several baseline learning methods as well

as previous state-of-the-art AE methods.
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7 RELATIONAL STOCHASTIC EM AND RELATIONAL DATA

AUGMENTATION

In the previous chapter, we utilized semi-supervised RML (Relational EM) methods

to improve parameter estimates during AE. In the AE problem domain, the collective

inference methods improve the predictions over the unlabeled instances considerably;

however, the amount of influence the border examples have on each other is somewhat

constrained. In this chapter, we will analyze the performance of Relational EM over

largely unlabeled networks, where collective inference methods do not need the prob-

abilistic edge formulations from TCL, but the unlabeled instances have considerably

more influence on one another.

R-EM generally outperforms traditional RML on within-network classification

tasks [5] (something we exploited in the previous chapter). However, recent work has

reported some problems with collective inference approaches in scenarios where the

network is sparsely labeled ( [95, 96]). More specifically, [95] showed that fixed point

parameters learned through Maximum Composite Likelihood Estimation (MCLE)1

can create over propagation error when performing inference in sparsely labeled net-

works. Although R-EM methods can significantly improve predictive performance in

networks that are densely labeled, they do not achieve the same gains in sparsely

labeled networks and can perform worse than RML methods [5]. Since many single-

network domains are sparsely labeled, this presents a significant impediment to the

adoption of relational methods.

In this paper, we investigate this issue in more detail. First, we introduce the

Relational Stochastic EM (R-SEM) and Relational Data Augmentation (R-DA) ap-

proaches for within-network statistical relational learning (Figure 7.1). Our R-SEM

1RML literature generally refers to this as the pseudolikelihood, but composite likelihood is more
accurate due to the sole maximization of labeled components given their Markov blankets.
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Figure 7.1.: Comparison of alternatives for incorporating estimates into within-
network learning. We introduce R-SEM and R-DA.

method utilizes samples from the joint distribution to iteratively maximize the MCLE,

rather than using approximations of the expectations as in R-EM. Our R-DA method

moves beyond the fixed point parameters used to make final predictions in both R-

EM and R-SEM, by integrating over the posterior distribution of parameters for a

stochastic estimate. For R-DA, we provide the corresponding composite likelihood

sampling distributions for the RNB and RLR conditional distributions. Further, we

provide evidence that substituting the Maximum a Posteriori (MAP) provides a good

approximation for distributions where the posterior cannot be easily sampled.

Next, we demonstrate how the structure of a network directly impacts the quality

of the estimates produced by RML and R-EM. Namely, we demonstrate how applying

fixed point MCLE parameters for collective inference leads to distributions of labels

that are far from the correct distribution—in many cases the inferred labels are pri-

marily comprised of a single class label. First, we show that the samples drawn from

the joint distribution of unlabeled items through Gibbs sampling do not empirically

mix (converge) to the correct label distribution. Second, we show how the correct

inference solution for VMF can be cast as an equilibrium state of a Nonlinear Dynam-

ical System. By analyzing the first eigenvalue of the solution vector, we show that

for sparsely labeled networks the inference method might not converge to a stable

solution. Further, even if it does converge to a stable solution, using the predictions

to relearn the parameters through MCLE (as is done with R-EM) commonly results

in widely varying parameter estimates. Due to these approximation errors, R-EM is

no longer covered by EM’s guarantees (i.e., [40]) and does not converge.
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7.1 Notation and Background

For the more general within-network relational learning, we want to jointly in-

fer the unknown labels of YU given the labeled data YL, attributes X and net-

work G: PY (YU |YL,X, G, ⇥Y ). This contrasts with standard machine learning,

where the primary goal is to estimate the parameters ⇥Y of a model Y , which

are then applied to infer future samples. As with the previous chapter, we make

the Markov assumption with the corresponding conditional distribution for yi being:

PY (yi|Y\i,X, G, ⇥Y ) = PY (yi|YMB(vi),xi, ⇥Y ), which is a chosen local conditional

model, such as the Relational Naive Bayes (RNB) formulation discussed previously.

In this chapter, we will also work with the additional Relational Logistic Regression

(RLR), showing how R-SEM and R-DA can be applied in either case.

The basic approach to learning parameters and performing inference in a frequen-

tist approach corresponds to:

Estimate Parameters: ⇥̂Y = arg max
⇥Y

PY (YL|X, G, ⇥Y )

⇥̂Y = arg max
⇥Y

X

yi2YL

log P (yi|YMBL(vi), xi, ⇥Y )

Perform Inference: PY (YU |YL,X, G, ⇥̂Y )

(7.1)

where in the maximization we have made the typical MCLE substitution. The second

step (inference) utilizes the fixed point parameter estimates. In contrast, Bayesian

posterior inference would marginalize over the distribution of parameters ⇥Y given a

prior with hyper parameter ↵:

PY (YU |YL,X, G, ↵) =

Z

PY (YU |YL,X, G, ⇥Y )PY (⇥Y |YL,X, G, ↵) d⇥Y
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Algorithm 12 LearningFromIncompleteData(Wobs,Wmis, W )

1: ⇥̃0
W = InitialParameters(Wobs, W )

2: while More Iterations or Not Converged do
3: # The E/I Step, then the M/P Step
4: P̃ t

W (Wmis) = IterativeAssignment(Wobs, W , ⇥̃t�1
W )

5: ⇥̃t
W = IterativeParameters(Wobs, P̃

t
W (Wmis), W )

6: end while
7: ⇥̂W = FinalizeParameters(Wobs, P̃

1,...,T
W (Wmis), ⇥̃

0,...,T
W , W )

8: P̂W (Wmis) = FinalizeInference(Wobs, P̃
1,...,T
W (Wmis), ⇥̂W , W )

Since direct computation of this integral is generally hard, approximations are used by

sampling from the posterior distribution2 of ⇥Y (i.e., P (⇥Y |YL,X, G)) and averaging

the results.

7.1.1 General Learning from Incomplete Data

For domains with unknown latent variables, a general class of methods learn

by iteratively evaluating both the latent variables Wmis and parameters ⇥Y given

observed variables Wobs. Both the deterministic Expectation Maximization (EM)

method [40] and the Bayesian Data Augmentation (DA) method [97] are examples of

methods in this class. Algorithm 12 gives an overview of the general approach for a

classifier W .

The algorithm begins by assigning initial values to the parameters (Line 1). This

assignment can be random or possibly something more clever if allowed by the domain.

Lines 2-6 are the heart of the algorithm, which alternates between inferring the latent

variables P̃ t
W (Wmis) (Line 4) and estimating parameters ⇥̃t

W (Line 5). This continues

until convergence or for a fixed number of iterations (denoted T ). Lastly, using the

set of parameter estimates and latent variable evaluations from the iterations, the

algorithm produces final estimates ⇥̂W and inferences P̂W (Wmis) (Lines 7-8).

2
↵ is dropped for clarity; it always defines the ⇥Y prior.
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Expectation Maximization

The EM method is an iterative, deterministic method for learning with missing

data [40]. Algorithm 12 decribes EM with the following specifications:

E-Step (Line 4): evaluate P̃ t
W (Wmis|Wobs, ⇥̃

t�1
W )

M-Step (Line 5): maximize for ⇥̃t
W

arg max
⇥W

X

Wmis

P̃W (Wmis|Wobs, ⇥̃
t�1
W ) log PW (Wobs,W

t�1
mis|⇥W )

That is, each iteration first computes the expected values of the missing data, then

maximizes the expected log likelihood (over the missing data). Each step maximizes

a lower bound of the log likelihood and converges to a local maximum [98]. The

estimated ⇥̂W is the final maximization of ⇥̃W (Line 7) and Ŵmis is finally inferred

(Line 8) with ⇥̂W (i.e., PW (Wmis|Wobs, ⇥̂W )).

For many domains, the ‘E’-Step is intractable to compute exactly and various ap-

proximate inference techniques exist (e.g., [99,100]). For example, the Stochastic EM

(SEM) algorithm replaces the ‘E’ step with a sample from the conditional distribu-

tion PW (Wmis|Wobs, ⇥̃t
W ) [99]. Further, averaging over the collection of intermediate

parameters can reduce the variance of the final parameter estimates. Note that ap-

proximations to the ‘E’ and ‘M’ steps do not necessarily carry the same convergence

guarantees as the original EM.

Lastly, the finalized parameters and inference steps of Algorithm 12 (Lines 7 and

8) for the EM algorithm simply correspond to a last round of maximization and

inference. This contrasts with alternative SSL methods (e.g., Data Augmentation)

that potentially have a specialized step for the final rounds.

Data Augmentation

The Data Augmentation (DA) method is a stochastic Markov Chain Monte Carlo

(MCMC) method for computing the joint posterior distributions of ⇥W and Wmis [97].
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Algorithm 12 also describes DA, but instead of the deterministic ‘E’ and ‘M’, DA has

stochastic Imputation (I) and Posterior (P) steps in its specification:

I-Step (Line 4): sample W̃

t
mis ⇠ PW (Wmis|Wobs, ⇥̃

t�1
W )

P-Step (Line 5): sample ⇥̃t
W ⇠ PW (⇥W |Wobs,W̃

t
mis)

The iterative sampling process forms two correlated Markov Chains from the posterior

distributions of PW (⇥W |Wobs) and PW (Wmis|Wobs, ⇥W ). DA can be viewed as a

special case of the Gibbs sampler [7] in that both missing data and parameters are

jointly sampled. As the samples are drawn from the joint distribution of unlabeled

data and parameters, the final Maximum a Posteriori (MAP) inferences are:

Parameters (Line 7) Variables (Line 8)

⇥̂W ⇡ 1

T

X

t

⇥̃t
W P̂W (Wmis) ⇡ 1

T

X

t

P̃ t
W (Wmis)

7.1.2 Relational Expectation Maximization

R-EM an application of EM to network domains [5]. In this case, the observed vari-

ables Wobs are the label YL and attributes X, while the missing data Wmis are the un-

labeled YU . The ‘E’-Step in Line 4 involves collective inference of P̃ t
Y (YU |YL,X, ⇥̃t�1

Y ),

performed via approximate inference methods.

The form of the local conditional distribution (e.g., RNB or RLR) specifies the

parameters ⇥Y , and the maximization is approximated via MCLE:

R-M-Step (Line 5): maximize ⇥̃t
Y

arg max
⇥Y

X

YU

Y

yi2YU

P̃ t
Y (yi|Ỹ\i,X, G, ⇥̃t�1

Y )
X

yj2YL

log PY (yj|ỸMB(vj),xj, ⇥Y )
(7.2)
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To produce final parameter estimates ⇥̂Y (e.g., for RNB or RLR) on Line 7,

R-EM simply performs one additional learning step (e.g., ⇥̂Y = ⇥̃T
Y ). Lastly, R-

EM performs one final round of collective inference with ⇥̂Y to produce P̂Y (YU) =

PY (YU |YL,X, G, ⇥̂Y ) (Line 8).

R-EM is one approach to performing semi-supervised learning within the above

framework. However, it is not necessarily the only approach. In the following sec-

tion, we outline the Relational Stochastic EM and Relational Data Augmentation

algorithms, which we will then demonstrate have superior performance than R-EM.

7.2 The Relational Stochastic EM and Relational Data Augmentation Methods

The R-EM method described above can be viewed as a series of iterative fixed

point updates that incorporate YU into the learning process. Due to the complexity

of real world networks, algorithms must use approximations for both the ‘E’ and ‘M’

steps. As a result, errors with either approximation can interfere with REM’s fixed

point estimates, which does occur in practice. Section 7.3 explores this issue in more

detail.

In this section, we discuss two stochastic methods for within network learning

and inference instead of using fixed point estimates: (1) Relational Stochastic EM

(R-SEM) and (2) Relational Data Augmentation (R-DA). The di↵erences between

our proposed methods and conventional R-EM are shown in Table 7.1. Our proposed

R-SEM method utilizes a fixed point ⇥̂Y similar to R-EM to perform a final round

of inference. But, R-SEM learns the parameters ⇥̂Y by aggregating over a range of

probable values, which reduces parameter estimation error compared to R-EM. Our

proposed R-DA method does not use fixed point estimates when inferring P̂Y (YU).

Instead, R-DA performs inference by marginalizing over a distribution of parameters

⇥Y , which makes it more robust than utilizing a single, fixed point estimate.
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7.2.1 Relational Stochastic EM

Our first proposed method, R-SEM, is a stochastic version of the standard R-EM

method, where the ‘E’-Step from R-EM is replaced with a stochastic ‘SE’-Step:

SE-Step (Line 4): sample ỸU ⇠ P̃ t
Y (YU |YL,X, G, ⇥̃t�1

Y )

(i.e.) sample ỹj ⇠ PY (yj|ỸMB(vj),xj, ⇥
i�1
Y ) 8 yj 2 YU

M-Step (Line 5): maximize ⇥̃t
Y

arg max
⇥Y

X

yj2YL

log P (yj|ỸMB(vj),xj, ⇥Y )

(7.3)

For the SE-Step, we draw each ỹj according to the local conditional distribution (e.g.,

RNB or RLR) and utilize ỹj for subsequent local samples or learning. By sampling

across all local conditionals yj 2 YU , this is a joint sample from the distribution of

missing variables. The M-Step maximizes the parameters ⇥̃Y for the local condition-

als. This produces a key di↵erence between R-SEM and R-EM. R-SEM utilizes a joint

sample ỸU for MCLE estimation, while R-EM assumes conditional independence of

the expectations for the unlabeled YU (Equation 7.2). Thus, R-SEM maximizes the

parameters using the joint sample, unlike R-EM.

As suggested by [99], rather than using a single ⇥̃T
Y as our final estimate we

average the set of parameters learned over all iterations and the final parameters are

used for inference:

Parameters (Line 7) Variables (Line 8)

⇥̂Y ⇡ 1

T

X

t

⇥̃t
Y evaluate: P̂ (YU |YL,X, G, ⇥̂Y ) (7.4)

Thus, as indicated in Table 7.1, R-SEM utilizes an aggregated parameter estimate,

but inference is a fixed point operation.
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7.2.2 Relational Data Augmentation

The R-DA framework marginalizes over a distribution of parameters for the local

conditional (e.g., RNB or RLR) rather than using fixed point estimates. In partic-

ular, R-DA iteratively samples from the conditional distributions of both labels and

parameters:

I-Step: (Line 4): sample Ỹ

t
U ⇠ P̃

t(YU |YL,X, G,⇥t�1
Y )

(i.e.) sample ỹj ⇠ P̃

t(yj |ỸMB(vj),xj ,⇥
t�1
Y ) 8 yj 2 YU

P-Step: (Line 5): sample ⇥̃t
Y ⇠ P (⇥Y |YL, Ỹ

t
U ,X, G)

(7.5)

The I-Step repeatedly draws from the local conditionals (RNB or RLR), while the

P-Step samples from the posterior distribution of local conditional parameters ⇥̃Y .

The resulting draws are from the joint distribution of labels and parameters, forming

two intertwined Markov Chains [97]. Importantly, the samples for each are drawn

from their corresponding marginal distributions. Thus, the MAP estimate is:

Parameters (Line 7) Variables (Line 8)

⇥̂Y ⇡ 1

T

T
X

t=1

⇥̃t
Y P̂Y (YU ) ⇡ 1

T

T
X

i=1

P̃

t
Y (YU ) (7.6)

In contrast with R-EM and R-SEM, R-DA inferences are averages over the prior

samples Ỹ1,...,T
U rather than fixed point inferences based on ⇥̂Y . These samples are

from the distribution PY (YU |YL,X) that marginalizes over ⇥Y , thus inference in no

longer dependent on a single fixed point estimate.

Another important distinction exists between the R-SEM and R-DA parameter

estimates. R-DA averages over the sampled parameters that are drawn from the

marginal probability distributions over the iterations, while R-SEM averages over

the maximized parameters ⇥̃1,...,T
Y in order to reduce the variance of a fixed point

estimate. This reflects the di↵erence between the frequentist and Bayesian point of
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view, where frequentists average fixed point estimates to reduce error due to variance

in the data and Bayesians view the parameters themselves as random variables that

have uncertainty. Thus, despite the apparent similarity in estimation equations, they

reflect contrasting viewpoints.

Lastly, the current representation for the full joint posterior of ⇥Y is intractable

due to the complexity of computing the full likelihood. Thus, we substitute the

composite likelihood:

Composite P-Step:

sample ⇥̃t
Y ⇠ PY (⇥Y |YL,X, Ỹt

U) /⇠
Y

yi2YL

PY (yi|Ỹt
MB(vj),xi, ⇥Y )P (⇥Y )

This replaces the update on Line 5.

7.2.3 Composite Parameter Posteriors and MAP Approximation

In this subsection, we illustrate the simplicity of using the composite posteriors

for the local conditionals RNB and RLR within R-DA and R-SEM. We begin by

discussing the sampling process from the local parameter posteriors for DA (Com-

posite P-Step). For many local conditional forms, such as RNB, selecting the cor-

responding conjugate prior results in a closed form posterior distribution. For local

conditionals such as RLR there is no conjugate prior, but we can use methods such as

Metropolis-Hastings (e.g., [101]) to sample. Lastly, we’ll discuss theoretical motiva-

tions for allowing a replacement of a sample with the MAP estimate for R-DA. This

allows virtually all existing relational learning conditional distributions to be incorpo-

rated into R-DA. This maximization is similar to the ‘M’-Step for R-SEM; however,

R-DA remains distinct from R-SEM as R-DA samples from the posterior of YU . As

a reminder, each of these methods also condition over the attributes; however, we

continue to omit their notation to reduce clutter.

Composite Relational Naive Bayes: We next give an example of the composite

posterior corresponding with the RNB [3] local conditional distribution. For this
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example, we begin by assuming the labels are binary {0, 1} and let ✓ indicate the

parameter corresponding with P (yj|yi = 1, ✓): that is, the conditional distribution of

the neighboring label corresponding with the observed label being yi =1. The RNB

composite likelihood term when yi=1 is:

PRNB(yi=1|Ỹt
MB(vi), ✓) / PRNB(yi=1)PRNB(xi|yi = 1)

Y

ỹtj2Ỹt
MB(vi)

PRNB(ỹt
j|yi=1, ✓)

where we have omitted the additional ⇥RNB (except ✓) for clarity. For this example,

we must estimate the posterior distribution of ✓ (Line 4 and corresponding Equation

7.5): as a reminder, ↵ is the associated hyper parameter which defines the prior

distribution of ✓. As the labels are Bernoulli, the corresponding conjugate prior

distribution for P (✓|↵) is the Beta(↵1, ↵2) distribution. The posterior of ✓ is not

dependent on either a) the prior P (y = 1) or b) the attribute conditionals P (x|y = 1).

Thus, the corresponding posterior ✓ for a single datapoint is:

PRNB(✓|yi, Ỹt
MB(vi), ↵) /PRNB(✓|↵)

Y

ỹtj2Ỹt
MB(vi)

PRNB(ỹt
j|yi=1, ✓)

=✓↵1�1(1 � ✓)↵2�1
Y

ỹtj2Ỹt
MB(vi)

✓ỹ
t
j(1 � ✓)1�ỹtj

=✓↵1+
P

ỹtj�1(1 � ✓)↵2+
P

(1�ỹtj)�1

meaning that the posterior again follows a Beta distribution. The corresponding

posterior for ✓ on the full data Ỹt is:

PRNB(✓|Ỹt, ↵) / ✓↵1+
P

yi
P

ỹtj�1(1 � ✓)↵2+
P

yi
P

(1�ỹtj)�1

which also follows a Beta distribution. Thus, after sampling variables for YU in

the I-step, we sample from the posterior ✓ of the relational parameters using the

above. A slight generalization would be to use a multinomial distribution, rather

than Bernoulli, with the corresponding Dirichlet conjugate prior.
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Composite Relational Logistic Regression: In this subsection, we give an ex-

ample of the corresponding composite posterior corresponding to the RLR [37] local

conditional distribution. Let Ri
0 =

P

ỹtj2ỸMB(vi)
(1�ỹt

j) and Ri
1 =

P

ỹtj2ỸMB(vi)
(ỹt

j). For

clarity, we show just the label parameterizations ✓0 and ✓1, omitting the additional

parameters. The composite likelihood is:

PRLR(yi|ỸMB(vi), ✓0, ✓1) =

✓

1

1 + e�(✓0Ri
0+✓1Ri

1)

◆yi
 

e�(✓0Ri
0+✓1Ri

1)

1 + e�(✓0Ri
0+✓1Ri

1)

!1�yi

RLR does not have a conjugate prior, so we instead set the prior distribution to

be a Normal with mean µ = 0 and variance �2 (the hyper parameters ↵). Thus, the

full composite posterior for ⇥ over the labeled components becomes:

PRLR(✓0, ✓1|Ỹt, �2)

/ g(✓0, ✓1|�2)

=
Y

yi2YL

✓

1

1 + e�(✓0Ri
0+✓1Ri

1)

◆yi
 

e�(✓0Ri
0+✓1Ri

1)

1 + e�(✓0Ri
0+✓1Ri

1)

!1�yi

N (✓0|0, �2)N (✓1|0, �2)

This posterior does not have a closed form solution like the RNB methods did.

Hence, we must utilize alternative sampling algorithms, such as the Metropolis-

Hastings sampling algorithm [101]. In this example, let ⇥̃t
RLR be the current as-

signment of the sampled parameters (e.g., ✓0, ✓1). Generate a candidate ⇥̃0
RLR ⇠

⇥̃t
RLR + N (0, �2). Let U ⇠ Uniform(0, 1). The next iteration of ⇥̃t+1

RLR is:

⇥̃t+1
RLR =

8

>

<

>

:

⇥̃0
RLR if U < min

⇣

g(⇥̃0
RLR|�2)

g(⇥̃t
RLR|�2)

, 1
⌘

⇥̃t
RLR otherwise

In this example we have used Normal priors over the parameters, which is equivalent

to a L2-regularization.
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MAP Substitution: In [102], the authors note that the following approximation:

PY (YU |YL,X, G) = PY (YU |✓̂,YL,X, G)(1+O(n�1)), meaning that the distribution

of the unlabeled data given the MAP is a close approximation to the posterior dis-

tribution. This motivated them to introduce the ‘Poor Man’s Data Augmentation’,

in order to estimate the probability of the posterior parameters by maximizing the

MAP and sampling multiple times. In this work, we wish to take advantage of that

approximation in a di↵erent way: that is, we replace the composite P-Step with the

maximization of the local parameters (for, e.g., RNB or RLR) instead of a sample:

MaxComposite P-Step: maximize ⇥̃t
Y

arg max
⇥Y

Y

vj2YL

PY (yj|ỸMB(vj),X, ⇥Y )P (⇥Y )
(7.7)

Our motivation for this is the abundance of previous work on relational algorithms

which may require significant work to be transferrable to the Bayesian framework

(e.g., choice of proposal distribution). Prior work which focuses on the maximiza-

tion includes the Relational Generative Models (e.g., RNB) [1], Relational Logistic

Regression [37] and others (e.g., [3,103]). By utilizing this MAP approximation step,

we can directly apply each of these respective local learners without the overhead of

determining the acceptance steps. Further, we e↵ectively learn a distribution of max-

imizations to apply for inference, rather than a fixed point estimate. Thus, we again

avoid any instabilities that could result from a single fixed point parameter estimate.

The I-Step will not change, and our inference is still performed by aggregating the

samples from the marginal distribution (i.e., Equation 7.6).

In Algorithm 13, we give just our R-DA algorithm. The algorithm begins by de-

termining initial MAP parameters (Line 1). The algorithm then alternates between

sampling from the posterior distribution of labels (Line 4) and maximizing the MCLE

MAP (Line 5) until the desired number of iterations are performed. Lastly, on Line

7 we average the previously sampled parameters, and on Line 8 we average the pre-
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Algorithm 13 RelationalDataAugmentation(Yobs,Ymis, Y )

1: ⇥̃0
Y = MaximizeMCLE MAP(Yobs, Y )

2: while More Iterations do
3: # I Step, then P Step
4: Ỹmis = SampleLabels(Yobs, Y , ⇥̃t�1

Y ) # Equation 7.5
5: ⇥̃t

Y = MaximizeMCLE MAP(Yobs, Ỹmis, Y ) # Equation 7.7
6: end while
7: ⇥̂Y = AverageParameters(⇥̃0,...,T

Y )
8: P̂Y (Ymis) = AverageSamples(Ỹ1,...,T

mis )

viously sampled labels to recover our predictions. Note that in most domains, the

actual parameters are unnecessary to know as we simply desire the final predictions.

7.3 Fixed Point Learning Error and Its E↵ect on R-EM

In this section, we discuss the learning error of MCLE using the corresponding

Gibbs sampling and Variational Mean Field inference methods in relational networks.

In particular, we find that the parameter estimates create equilibriums that are far

from the true label distribution. These e↵ects compound themselves during R-EM,

with the parameter estimates failing to converge for sparsely labeled networks. Our

analysis is with respect to a single, fixed point iteration method with respect to a single

set of parameters being learned (or iteratively updated). For space, we primarily give

results here utilizing the RLR conditional; however, we will also show the parameters

of RNB do not converge.

7.3.1 Empirical Convergence of Gibbs Sampling

The Gibbs sampler is a theoretically guaranteed MCMC method to sample from

the joint distribution of a set of (possibly correlated) variables [7]. For relational

inference, this corresponds to repeatedly sampling from the conditional distributions

of the unlabeled items: i.e., ỹm
i ⇠ Pm

Y (yi|ỸMB(vi),X, ⇥Y ) 8 yi 2 YU . The samples
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Figure 7.2.: In each subfigure, dashed lines indicate the expected values of the corre-
sponding axis. (a) A simple Bivariate normal (Independent vs. Gibbs). (b) RLR -
number of positive/negative samples. (c) RNB - First Eigenvalue of the Jacobian of
the converged solution.

correspond to draws from the joint distribution and the MAP inference is performed

by averaging: i.e., ỹt
i = 1

M

P

m ỹm
i .

In the R-EM framework, this corresponds to Line 4 of Algorithm 12. As our state

space is finite, when the probabilities for all vertices and labels is nonzero the chain

is ergodic, meaning it will sample from the states in a finite number of steps [104].

However, the mixing rate, or time it takes to converge, can be greatly a↵ected by the

correlation of variables [105]. As an example, we present a simple bivariate normal in

Figure 7.2.a, where the variables X1 and X2 are highly correlated. In this example,

we draw 100 samples independently from the bivariate normal, which we compare

with 100 samples drawn utilizing a Gibbs sampler. When trapped in an extremum,

the high correlation limits the Gibbs sampler (red) to only a small portion of the

space.

When performing Gibbs sampling for relational networks, we find a similar prob-

lem exists when the parameters are learned from varying amounts of labeled data.

Figure 7.2.b shows the number of positives and negatives recorded per iteration of

Gibbs sampling using the RLR conditional distribution. In particular, we show five

di↵erent trials for each local conditional distribution, with di↵erent randomly assigned

labeled values for learning. For each trial, we label 10% of the Facebook network to

learn from (dataset discussed in Section 7.4.1) and report results over 1000 iterations
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over the unlabeled data. Our analysis shows that for each trial, the Gibbs sampling

iterations give di↵erent results for the number of positives and negatives existing. Of

the 10 trials for RLR, no trial gives a reasonable coverage of the space, with sampling

from each set of parameters converging to a single (incorrect) point. Although 1000

iterations seems moderate, recall that each iteration involves sampling from over 5000

conditional distributions, resulting in over 5,000,000 total samples drawn. Thus, the

parameters learned from the sparsely labeled set create highly correlated estimates of

the unlabeled vertices. This results in the Gibbs sampler converging to an incorrect

fixed point estimate without fully exploring the label space.

7.3.2 Empirical Stability of Variational Mean Field

As the theoretically correct Gibbs sampler fails to e�ciently search the space,

we next analyze the Variational Mean Field (VMF) inference approximation [8]. As

discussed in the previous chapter, VMF approximates the full joint distribution of ỸU

through the approximating distribution QY (ỸU) =
Q

yi2ỸU
QY (yi). Each component

QY (yi) is iteratively updated in a coordinate ascent algorithm:

QY (yi) / exp
n

E
YU\i⇠Q[log g(yi|ỸMB(vi)⇥̃Y )]

o

(7.8)

where g(·) is the unnormalized energy function. VMF is guaranteed to converge

to a fixed point equilibrium [82]; thus, VMF inference can be cast as a Nonlinear

Dynamical System (NLDS). A useful theorem exists about the stability of a NLDS

system at an equilibrium:

Theorem 7.3.1 [Asymptotic Stability ( [106])] The system given by P⇤ = Q(P⇤) is

asymptotically stable at an equilibrium point P⇤ = ỹ if the eigenvalues of the Jacobian

J = OQ(ỹ) are less than 1 in absolute value, where: Ji,j = @ Q(yi)
@ Q(yj)

.

Hence, given a set of labeled data YL and unlabeled vertices YU to infer, we can

determine whether or not the system will stay in an equilibrium P⇤ using the partial
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derivatives of the VMF update in Equation 7.8. In particular, the labeled data is a

fixed value (1 or 0, depending on the state and label), meaning partial derivatives

with respect to all other variables is 0. The corresponding Jacobian matrix J is:

J =

YU YL

YU JU⇥U JU⇥L

YL JL⇥U JL⇥L

=

YU YL

YU JU⇥U 0

YL 0 0

where JU⇥L = 0 as the corresponding rows JL are 0 (they do not a↵ect the max-

imal eigenvalue [106]). Thus, we need only evaluate the partial derivatives of the

unlabeled QY (yi) conditionals (with learned parameterization ⇥̂Y ) at the stationary

convergence equilibrium P⇤. Computing the relevant partials is straightforward for

both RNB and RLR; i.e.:

Let h(yi|yj) = exp
n

E
ỸU⇠Q[log f(yi|yj, ỸMB(vi)\j)]

o

. The partials for Jij are:

@ Q(yi)

@ Q(yj)
=
�(yi, yj)h(yi|yj)ZQ(i) � h(yi|yj)

P

y02Y �(y, yj)h(y|yj)
Z

2
Q(i)

where �(y, yj)=log P (yj|y) (RNB) or �(y, yj)=✓y (RLR).

In Figure 7.2.c, we evaluate the eigenvalues at the converged P⇤ for four datasets.

For this starting example, we use a single fixed parameter estimate (i.e., ⇥̃0
Y ) and

perform inference with respect to those parameters. This corresponds to traditional

RML, without performing R-EM (i.e., the inferences are not used to relearn). In

general, the eigenvalues reach a fairly stable state, with the average eigenvalues largely

being at or below the 1 threshold. However, for some cases of RLR it is clear the

achieved equilibriums are not necessarily stable, meaning small perturbations during

inference could have a large e↵ect on P⇤.
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7.3.3 MCLE Error on R-EM

In this section we study the empirical error produced by the R-EM algorithm.

In particular, we analyze whether the algorithm ever converges (in practice) to a

stationary point, whether using Gibbs sampling or VMF.

We first analyze the convergence of R-EM utilizing Gibbs sampling for inference.

For the RLR relational classifier, we analyze the Facebook network for convergence

(Section 7.4). The networks are initially assigned 10% of the data labeled: the rest

is unlabeled and must be inferred. The model is then utilized to compute the ex-

pectations of the unlabeled instances utilizing the Gibbs sampler and the process is

repeated. We allow each method 100,000 passes over the unlabeled data for perform-

ing the Gibbs sampling, with maximizations performed every 1000 passes.

We show results in Figure 7.3, with Figure 7.3.a containing the learned relational

conditional distributions for RLR. The scatterplots illustrate the learning parameters

after each ‘M’-Step; we observe that they follow a periodic behavior. That is, for

example, in Figure 7.3.a when a learned state corresponds to the bottom left state,

the next maximization will result in parameters from the upper right state. This

occurs despite the initial parameter estimates beginning in a less extreme portion of

the parameter space; even though each method has (potentially) started near a good

solution, the estimates quickly degrade. Figure 7.3.b demonstrates that even over

100,000 passes of the data, the estimates of ⇥̂Y never converge (we plot both the

weight variance for RLR and the neighboring conditionals’ variance for RNB).

The Variational R-EM approach allows us to draw a more general conclusion

regarding the convergence R-EM. Let J W be the within-iteration Jacobian, where

first the parameters ⇥̃t
Y are learned; then we estimate P⇤ using the parameters. As

an alternative, let J C be the cross-iteration Jacobian matrix. For J C , we use the

equilibrium P⇤ to learn a new set of parameters (⇥̃t+1
Y ). We then define J C using P⇤

and ⇥̃t+1
Y .
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Figure 7.3.: Empirical (lack of) convergence of R-EM. (a) RLR relational parameters.
(b) Variance of the parameter estimates does not decrease with number of iterations.

Corollary 7.3.1 [Parameter Convergence] If the first eigenvalue �W
1 of J W is less

than 1 in absolute value, and the parameters ⇥̃t
Y = ⇥̃Y

t+1
, then the first eigenvalue

�C
1 of J C is less than 1 in absolute value.

This is a consequence of Equation 7.8 having equivalence for ⇥̃t
Y and ⇥̃t+1

Y , and

J comprising the partial derivatives with respect to Equation 7.8. This is easily seen

as a consequence of J W = J C when ⇥̃t
Y = ⇥̃t+1

Y . In Figure 7.4a-b, we plot the �W
1

and �C
1 within R-EM. Note that the within-iteration eigenvalue is small, and usually

indicates a stable convergence to P⇤. However, �C
1 in Figure 7.4.b is exceptionally

large for small amounts of labeled data. Thus, we conclude that the parameters have

not reached a stable equilibrium (even after 100 iterations). For each dataset, when

using both RLR and RNB (not shown for space), R-EM does not converge prior to

the 20% labeled data mark. This is an extreme limitation to the method as most

partially labeled datasets have few labels.

7.4 Experiments

In this section, we compare our R-SEM and R-DA frameworks against the existing

R-EM within-network relational learning approach. We test each method on four

large, real world datasets, and compare against independent and collective inference
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Figure 7.4.: Parameter convergence. (a) The within-iteration Jacobian max eigen-
value, (b) the cross-iteration Jacobian max eigenvalue.

methods based on two local conditional implementations (RNB and RLR) combined

with Gibbs sampling.

7.4.1 Datasets

We compare each of the above methods on four datasets. The full statistics for

the datasets are compiled in Figure 7.5. When possible, we set thresholding for the

labels such that the label set is closely balanced, to keep skew from impacting our

error measurements.

Facebook: This is a snapshot of the Purdue University Facebook network. We

use the users’ Political views as the label, with Religious Views and Gender as at-

tributes.

IMDB: This is the IMDB dataset (www.imdb.com), where we predict whether

a movie is successful. We discretize the label by assigning the value 1 if the gross

receipts were greater than $300 million. Edges in the network represent when two

moves share a producer.

DVD: This is the Amazon copurchase network compiled by [65], but we only

select the DVD items. This allows us to incorporate 24 genres of movies as features

in addition to the 1 through 5 star ratings for a total of 28 features. The label we
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Dataset Nv Ne W ⇢ P (+)

Facebook 5,906 73,374 2 0.174 0.320
IMDB 11,280 426,167 28 0.207 0.494
DVD 16,118 75,596 28 0.177 0.510
Music 56,891 272,544 26 0.114 0.491

Figure 7.5.: From left: dataset, number vertices, number edges, number attributes,
label correlation across edges, positive prior.

predict is whether the item is a top seller. We use the provided sales rank and set

the top seller threshold at 20000.

Music: This is the Amazon copurchase network compiled by [65], but we only

select the Music items. This allows us to incorporate 22 styles of music as features.

We keep our user rating features which gives us 26 features total, and also set our

sales rank threshold at 65000.

7.4.2 Methods Compared

We test the RNB and RLR conditionals with six di↵erent learning and represen-

tations, ranging from independent learning and inference to the proposed R-DA. The

collective approaches are allowed a total of 1000 iterations of Gibbs sampling over the

unlabeled dataset, regardless of the method, allowing us to directly compare their

relative performance on the same number of iterations over the data. The param-

eters in the RNB formulation have a Beta(↵1 = ↵2 = .5) prior; the parameters in

the RLR formulation have a N (0, 1) prior. Each uses the MAP approximation and

we use LibLinear [107] for optimization. Each method can be viewed as di↵erent

implementations of various lines in Algorithm 1—we mention each specifically.

Ind (NB and LR): (Lines 6 & 7, Equation 7.1). This method uses just the

attribute components of the data, and ignores the relational components.

Rel (IND) (RNB and RLR): (Lines 6 & 7, Equation 7.1). This method

estimates from the observed attributes and relational components. These estimates
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are applied on the remaining data. It does not utilize the unlabeled data when

learning, and does not perform collective inference.

Rel (CI) (RNB and RLR): (Lines 6 & 7, Equation 7.1). This method estimates

from the observed attributes and relational components. These estimates are applied

on the remaining data. It does not utilize the unlabeled data when learning, but does

perform collective inference.

R-EM (RNB and RLR): (Lines 1–7, Equation 7.2). This is the fixed point

estimation method of [5], and is the first iterative method. The method begins by

computing the expectations of the unlabeled data, then utilizes these to maximize the

full data likelihood. We allow 10 iterations of the full EM loop, with 100 iterations

of Gibbs sampling each EM iteration. As EM can have extreme variance, we average

in 10 and 11 iterations to give the expected error.

R-SEM (RNB and RLR): (Lines 1–7). This is the first of our proposed

methods. We allow 900 iterations of R-SEM (Equation 7.3) and averages over the

intermediate parameters are used for the final parameters. This final parameter set

is used for a final round of collective inference using an additional 100 iterations of

Gibbs sampling (Equation 7.4).

R-DA (RNB and RLR): (Lines 1–7, Equation 7.3). This is the second of

our proposed methods. We allow R-DA 1000 iterations of Gibbs sampling (Equation

7.5), and utilize the MAP approximation to the parameters between each iteration

(Equation 7.7). We perform the final inference by aggregating over the intermediate

Gibbs samples (Equation 7.6).

7.4.3 Methodology

We compare each method on each dataset. For each percentage of labeled in-

formation a random subset was selected from the respective networks and used for

learning/inference. All methods are given the same starting set for each of the 25

recorded trials (10 for the larger Music dataset). For error, we measure the Mean
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Absolute Error (MAE) and the 0-1 Loss. Standard error bars are plotted but small

(i.e., < .01).

7.4.4 Results

In Figure 7.6 we report error results when applying the methods, each using the

RNB conditional distribution. Note that R-DA is equal or better than all competitors

across all label percentages, regardless of the error measure used. Importantly, R-DA

exceeds previous methods with small percentages of labeled data. It is important to

notice the previous R-EM su↵ers for small amounts of labeled data in comparison to

relational RNB which does not perform collective inference. This is due to the unsta-

ble collective inference impacting the learned parameters of R-EM. Not surprisingly,

NB performs well with small amounts of information but never improves.

In Figure 7.7 we report the RLR conditional distribution error results. In each

dataset R-DA outperforms or equals the corresponding R-EM collective inference al-

gorithm, particularly when fewer labels are available. In these examples, the RLR

without collective inference performs competitively with R-DA on the denser datasets,

even outperforming R-DA on IMDB. However, this is not generally the case—for most

datasets R-DA largely outperforms the independent relational method. Our experi-

ments demonstrate R-DA’s ability to compete and outperform competing methods,

across a variety of datasets and label percentages.

As a final note, we see that R-SEM outperforms R-EM across all datasets and

performs nearly as well as R-DA in many cases, despite being a fixed point estimate.

However, we cannot always use the inferences that result from R-SEM for additional

fixed point estimations. This is shown in Figure 7.8 for the RLR conditional, where

the Facebook network has low within iteration Jacobian eigenvalues but still has high

cross iteration eigenvalues. Thus, even with largely correct inferences MCLE can still

learn unstable parameters.
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Figure 7.6.: RNB Conditionals. We show the MAE and 0/1 Loss on a) Facebook,
b) IMDB, c) DVD and d) Music.
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Figure 7.7.: RLR Conditionals. We show the MAE and 0/1 Loss on a) Facebook,
b) IMDB, c) DVD and d) Music.
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Figure 7.8.: For the RLR conditional, (a) the within iteration eigenvalues for SEM
and (b) the SEM cross iteration eigenvalues.

7.5 Discussion and Further Related Work

The R-SEM and R-DA methods in this chapter tie several research areas together.

First, we demonstrated that the approximations necessary for tractable learning and

inference substantially interfere with the guarantees provided by EM [40]. However,

by utilizing a distribution of maximizations, R-SEM is able to find a reasonable fixed

point in the parameter space which results in empirically stable inference. We further

improve on the R-SEM implementation and remove the fixed point inference process,

introducing the Bayesian R-DA method. These methods facilitate the application

of RML techniques to make predictions over entire networks from minimal amounts

of label data using collective inference—improving on independent inference, despite

using approximations for scalable learning (e.g., the component likelihood).

Collective Inference (CI) error for sparsely labeled datasets has been noted before,

although we carry out the first empirical analysis of the Gibbs mixing rate and Varia-

tional Inference stability when parameters are learned through MCLE. Our methods

complement current Cautious Collective Inference (CCI) methods [96]. CCI methods

only utilize inferred labels with high confidence during CI to overcome the possible

error in the parameter estimates. R-SEM and R-DA provide better estimates for

these methods to use during CCI. Specialized conditionals, as proposed by [39], place
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more weight on the attributes of neighboring instances to improve CI. By weight-

ing the attributes more heavily, these conditionals implicitly stabilize the inference

process. R-SEM and R-DA again complement these specialized methods by incor-

porating the unlabeled data into the conditionals’ learning, while maintaining their

implicit stability.

The Gibbs mixing and VMF inference stability creates connections to other areas

of Statistical Network Analysis, notably virus propagation. The stability analysis

of VMF was partially motivated by the work of [106], which showed common virus

propagation models can be tied to the stability of the network and the maximal

eigenvalue. Our R-DA model can be tied to Ensemble Methods [108]. In particular,

as each fixed point MCLE step has error, R-DA takes an ensemble of estimates over

the missing data for inference. Although each individual value may only be weakly

correlated with the correct solution, the aggregation over these methods can produce

a good solution.

7.6 Concluding Remarks

In this chapter we introduced the R-DA method for within-network relational

learning and inference. We began with an analysis of the fixed point relational in-

ference methods in conjunction with MCLE learning methods. In particular, we

demonstrated that Gibbs sampling and VMF inference are inaccurate when the pa-

rameters are learned through MCLE, and that these errors interfere with R-EM’s

convergence. By introducing the R-SEM method, we were able to learn fixed point

parameter estimates with a reasonable inference solution. R-DA further extends this

idea and removes fixed point inference, replacing it with a distribution of inferences.

We demonstrated that R-DA significantly outperforms competing methods when uti-

lized in conjunction with multiple learning algorithms. Most importantly, R-DA

improves prediction in sparsely labeled networks, an important practical application

where RML techniques have traditional struggled.
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8 MAXIMUM ENTROPY INFERENCE

In the previous chapter, we discussed how over propagation errors from RML semi-

supervised learning methods can cause wide variations during learning and inference.

In particular, we talked about the di�culties of convergence when utilizing Relational

EM in conjunction with the Maximum Composite Likelihood Estimate (MCLE). We

introduced the Relational Data Augmentation method for use in conjunction with the

MCLE, and found the empirical performance improved considerably.

Despite R-DA and R-SEM’s empirical improvements, they su↵ers two limitations

for real world domains. First, they are primarily applicable in conjunction with the

MCLE approximation and does not carry a strong guarantees on whether it prevents

the predicted distribution from collapsing to a singular value. Consider Figure 8.1:

Figure 8.1.a is the traditional maximization over the labeled subgraph GL, while Fig-

ure 8.1.b is the MCLE approximation over the full graph G. However, traditional

semi-supervised learning methods (e.g., [9]) use the full data, where unobserved in-

stances are treated as weighted training examples. This corresponds with maximizing

over the full pseudolikelihood in Figure 8.1 (i.e., Maximum Pseudolikelihood Estima-

tion (MPLE)), rather than the MCLE. R-DA and R-SEM generally work well with

MCLE as it (loosely) draws a relational sample, then adjusts its corresponding esti-

mates. If neighboring samples begin to converge in to one label, the maximization

places less weight on the corresponding label and swings in the other direction. This

does not hold for MPLE, and therefore R-DA does not necessarily perform well with

this approximation. Second, R-DA and R-SEM require many iterative maximizations,

which become expensive for large scale data.

In this chapter, we conclude the dissertation by introducing Maximum Entropy

Inference (MaxEntInf ) for relational learning domains. Our MaxEntInf adjusts the

label predictions produced by collective inferences algorithms so they adhere to Max-
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(a) Pseudolikelihood (GL) (b) Composite Likelihood (G) (c) Pseudolikelihood (G)

Figure 8.1.: (a) Pseudolikelihood over the labeled subgraph GL. (b) Composite like-
lihood over the full graph G, where predicted labels for unlabeled (dashed) vertices
are only considered as features of labeled vertices during learning and (dashed) links
among unlabeled vertices are only used during collective inference. (c) Pseudolikeli-
hood over the full graph G, where all vertices/edges are used for learning.

imum Entropy constraints; namely, we force the predicted label proportions (i.e., per-

centage predicted positive vs. negative) to align with the label proportions observed

in the training set. Note the di↵erence from typical maximum entropy approaches

that augment the learning step of the algorithm; here, we augment the inference step.

Our approach also provides a more general correction than [6], which requires a spe-

cial model form and regularizer. Specifically, we can incorporate MaxEntInf easily

with any chosen RML conditional distribution, keeping predictions from collapsing

to a singular value and enabling the use of more general SSL techniques. Further,

it applies to either the MCLE or MPLE formulation, allowing us to perform full

semi-supervised RML.

Utilizing VMF inference algorithms in conjunction with MaxEntInf , we apply

semi-supervised RML approaches to large scale networks. As part of this, we demon-

strate that the collective inference step needed by RML algorithms can easily be

massively parallelized. In particular, we show that through asynchronous updates

to VMF methods, we can achieve linear speedup in terms of the number of cores.

This speedup is largely attained due to the avoidance of synchronous updates to high

degree vertices (common to small world networks), which would e↵ectively stop the

parallelism. Our MaxEntInf algorithm is simple to extend to this massively parallel

case. Importantly, we prove that the MaxEntInf approach requires only a constant
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overhead for both sequential and parallel algorithms, requiring a bounded constant

number of data samples to compute the correction. This means that despite the

various approximations that must be used, semi-supervised RML algorithms can be

successfully applied to large scale networks and improve predictions over either i.i.d.

or simple relational inference approaches.

We demonstrate the accuracy and scale of our correction and parallel algorithm

on seven real world datasets. In particular, we find that our SSL methods using Max-

EntInf outperform a variety of competing state-of-the-art baselines, both independent

learners and simple relational-only models. Notably, we apply our methods networks

with over 5 million edges, demonstrating it scales to networks orders of magnitude

larger than competing work. In particular, recent work in RML [5,6,109,110] has been

demonstrated on networks with fewer than than 15,000 instances; in this chapter, our

large network is nearly 900,000 instances.

8.1 Likelihood Approximations

As discussed in the previous chapters, computing the full joint likelihood is not

scalable to large datasets. Hence, RML maximizes the pseudolikelihood over the

labeled graph GL, while relational EM methods maximize the composite likelihood

on the graph G. Note that although the composite likelihood over the graph G is

similar to the pseudolikelihood, it is distinct as it only sums over the log conditional

distributions of the labeled instances.

We graphically illustrate the di↵erences between the learning methods. In Figure

8.1.a, the traditional RML maximization problem is shown. Note that this method

maximizes the full pseudolikelihood of the labeled graph GL. In contrast, relational

EM methods utilize additional information from the predicted label values. In par-

ticular, they utilize the neighboring probabilities and incorporate them as attributes

for the label maximization step. This is shown in Figure 8.1.b, where only the solid

outlined instances are treated as labeled instances for maximization, while the dashed
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instances are only used as attributes. Thus, we term these learning algorithms Com-

posite Likelihood EM (CL-EM) methods, and they include the general Relational EM

formulation of [5].

Conversely, maximizing over the full pseudolikelihood is illustrated in Figure 8.1.c

– every solid instance (including the unlabeled items) is utilized to update the pa-

rameter values. For independent data, this is the crux of EM-based methods: IID

learners incorporate probabilistic samples of the unlabeled instances into the training

set. This allows the learners to observe new correlations between the various at-

tributes and labels that are not observed in the original labeled set. This generalized

relational pseudolikelihood EM (PL-EM) approach is formalized as:

E-Step: evaluate PY (YU |YL,X, G,⇥t�1
Y ) (8.1)

M-Step: learn ⇥t
Y

argmax
⇥Y

X

YU2YU

P (YU |YL,X, G,⇥t�1
Y )

X

vi2V
logP (yi|YMB(vi), xi,⇥Y ) (8.2)

Note the di↵erence between PL-EM maximization and the CL-EM maximization

of Equation 7.2. CL-EM maximizes strictly over the labeled data, while the PL-

EM incorporates the estimates of the unlabeled instances as well. Thus, when new

attribute combinations are only observed in the unlabeled portion of the network,

PL-EM can learn these values as well.

In Figure 8.2 we study the e↵ect of a naive application of PL-EM to learning and

inferring on the DVD dataset (discussed more Section 8.4.2). As we can define the

positive class label for DVD by thresholding at various Amazon sale ranks, we can ex-

amine the e↵ect of RML, CL-EM and PL-EM in relation to the true prior distribution.

In order to minimize the convergence di�culties for CL-EM (previous chapter), we

formulate a Relational Logistic Regression criterion that utilizes proportion variables

rather than count variables, adds an additional variable for the degree of a node, and

smooths out the parameter value using an exponential decay. Thus, the particular

conditional chosen for CL-EM is a best case scenario for the method (and converges),
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Figure 8.2.: Naive application of the pseudolikelihood exaggerates error produced by
RML and CL-EM. (a) For small priors the probabilities are underestimated, while
for (b) large priors the probabilities are overestimated.

allowing at least a reasonable comparison between CL-EM and a (naive) application

of PL-EM. Note that the RLR and CL-EM algorithms have a substantial bias away

from the correct prior distribution, both when we adjust the threshold to have a high

negative proportion Figure 8.2.a and high positive proportion Figure 8.2.b. Thus,

even in this largely constrained environment each has a tendency to exaggerate the

prior. Coupled with a naive PL-EM application, this di↵erence is exaggerated —

we can see that the error in the estimate of the prior is greatly exaggerated when

applied in this context. Thus, naively applying PL-EM generally performs poorly in

comparison to CL-EM.

Although some work in relational domains has augmented particular classifiers to

account for biases, they assume a specific form that is not applicable to all models,

modifying the optimization function via a regularizer [6]. In contrast, in the next

section we will outline a general correction to the inference step that is simple to

implement in conjunction with any relational classifier—with a constant overhead,

and it can also be incorporated into an massively parallel inference mechanism.
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8.2 Maximum Entropy Inference

In this section, we introduce our method to correct for the biases experienced by

relational classifiers during their inference step; more generally, this will allow us to

improve Relational EM by utilizing the full pseudolikelihood over all unlabeled data

during an EM process.

Note that given the labeled sample VL 2 V, it is simple to compute the proportion

of observed label types P (yi) (e.g., P (�), P (yi = 1)). We aim to satisfy the following

maximum entropy constraint:

Proposition 8.2.1 The proportion of unlabeled items with predicted value y should

equal the proportion of labeled items with value y.

This forms the basis of our Maximum Entropy Inference (MaxEntInf ) approach,

which will augment standard relational inference algorithms. We use Variational

Mean Field (VMF) inference as our example inference procedure, but the results can

be applied to any collective inference algorithm that produces probability estimates

over the unlabeled data.

Recall that VMF assumes an approximating distribution QY (YU), such that

PY (YU |YL,X, G, ⇥Y ) ⇡ QY (YU). For a possible YU 2 YU , VMF assumes a

fully factorized form QY (YU) =
Q

vi2VU
QY (yi). After each round of VMF, every

QY (yi) 2 QY (YU) corresponds to the probability of an instance having a partic-

ular label. For example, for every unlabeled instance with QY (yi = 1) � 0.5 the

corresponding predicted label ŷi is 1. MaxEntInf forces the proportion of unlabeled

instances with QY (yi = 1) � 0.5 to be exactly P (1). In more formal terms, Max-

EntInf forces the first moment of the predicted population to match the first moment

of the observed population.

Our method will focus on a linear shift around an o↵set, which (without consid-

erable checks) could result in probabilities lying outside [0, 1]—thus directly working

with the probabilities themselves is problematic. To this end, we perform a trans-
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form of the current probabilities (i.e., every QY (yi = +)) using the logit function

(i.e., ��1(x) = log[x/1 � x]):

zi = ��1(QY (yi = 1)) = log

✓

QY (yi = +)

1 � QY (yi = +)

◆

The values zi 2 Z take values in the range [�1, +1], meaning that a linear transform

within this space can then be transformed back into probability space through the

logistic function (i.e., �(x) = (1 + e�x)�1).

Next let z(r) indicate the rth ranked value of Z (i.e., index r after Z are sorted). Let

� be our linear pivot—the index that will split the sorted range into two proportions,

one approximately equal to P (�) and the other approximately equal to P (+) (i.e.,

P (�) · |VU |). Formally, we have:

� = arg min
r

 

P|VU |
i=1 I[i  r]

|VU | � P (�)

!2

Lastly, for all zi 2 Z we subtract o↵ the corresponding pivot value z(�). The result

is then transformed back to the probability space to define QY (yi):

QY (yi = +) = �
�

zi(y) � z(�)
�

QY (yi = �) = 1 � QY (yi = +)

In particular, note that our transformation of z(�) is assigned:

Q(�)(y) = �
�

z(�) � z(�)
�

= � (0) = .5

splitting the data into the two desired proportions to enforce the maximum entropy

constraint. Further, the transformation is lossless as it maintains a perfect ordering

of the predicted label probabilities.

Our initial sequential VMF algorithm is presented in Algorithm 14. The algorithm

begins by computes the corresponding prior P (�): this is followed by a while loop that

can either terminate upon convergence, or until some maximal number of iterations
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Algorithm 14 MaxEntInf (G,YL, Y )

1: P (�) = NegativeProportion(YL)
2: while Not Converged or More Iterations do
3: Z = []
4: for every vi 2 VU do
5: update variational QY (yi)
6: Z.insert(logit(QY (yi = +))
7: end for
8: Z.sort()
9: � = P (�) ⇤ |Z|
10: for every vi 2 VU do
11: QY (yi = +) = logistic(logit(QY (yi = +)) - Z[�])
12: QY (�) = 1 � QY (yi = +)
13: end for
14: end while

has been processed. The traditional VMF updates are computed in Lines 4-7, with

each iteration performing the point wise update to the QY (yi) factor, followed by

computing zi. Lines 8-9 select the corresponding o↵sets, while lines 10-12 calibrate

the VMF estimates.

Note that the correction does not require any assumptions about the distribu-

tion form, as in prior work. All it requires is that the estimators return a set of

probabilities.

Approximating MaxEntInf with Constant Sample Sizes

We can improve the runtime of the above sequential algorithm by sampling from

the vector of logit values. In particular, we can prove that with a high confidence

(1 � �), the chosen o↵set has provably small error (✏). Importantly, this sample will

not depend on the data size; rather, it only depends on the amount of error and

confidence we wish to have. We define VS ✓ VU , �s = P (�) · |VS| and Zs = {zi|zi 2

Z [ vi 2 VS}.
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We desire the following:

P
�

z(�s) 2 z(�±✏)

�

� 1 � �

That is, of the full distribution VU , the z(�s) we choose in the subsample VS is

no more than ✏ away from the z(�) in the full data. This error can be bounded using

the Lemma 7 of Manku et al. [111]:

Lemma 8.2.1 (Lemma 7 of [111]) Let VS ✓ VU be a uniformly random subset

from the unlabeled vertices, � be the index of our o↵set, ✏ be the amount of error in

the chosen index we will allow, and � be the probability bound. To satisfy zs(�s) 2 z(�±✏)

with 1 � � probability, we must have:

|VS| �

s

1

2✏2
log

✓

2

�

◆

Thus, we require a constant number of samples from VU .

For example, if we wish to allow an ✏ = .05 amount of error in the index, with

probability 1 � � = .95 success, we require only 28 samples in VS. Thus, as |VU |

grows |VS| remains fixed, meaning our correction has a constant overhead.

Corollary 8.2.1 (Sequential Constant Overhead) For a specified error ✏ and

confidence 1 � �, an approximation to the sequential algorithm proposed can be per-

formed with constant overhead.

Proof From Lemma 8.2.1, we need only sample |VS| = O(1) vertices from VU

to estimate the o↵set index �. The sampling can be performed in constant time,

and sorting and selection is therefore also in constant time. Although updating the

probability requires O(|VU |), the original variational inference algorithm required

O(|VU | + |E|) time, meaning our approach does not increase the order complexity.

Requiring only a constant amount of overhead makes the approximation quite

powerful for the sequential algorithm and big data problems. In the next section, we
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Algorithm 15 Parallel-MaxEntInf (G,YL,VU , T, Y )

1: [V1
U , · · · ,VT

U ] = RandomSplit(VU , T )
2: ỸU = SharedMemManager(YU)
3: for t 2 1, · · · , T do
4: spawn Rt := Parallel-MaxEntInf -Client(G,YL,Vt

U , ỸU , Y )
5: end for
6: for t 2 1, · · · , T do
7: join thread Rt upon completion
8: end for
9: return ỸU

discuss parallelizing the method and prove that we retain a constant overhead in this

scenario as well.

8.3 Inference on Large Scale Data

In this section, we discuss our scalable approach to VMF inference in parallel. This

inference approach will allow us to apply relational machine learning at a scale not

previously accomplished, and is able to handle the calibration necessary for PL-EM.

To start, assume we have a set of T cores, with a shared memory (or memory

manager) denoted ỸU . An initial approach to solving the VMF algorithm is through

an asynchronous and lock-free parallel VMF algorithm [112]. In particular, the un-

labeled data is split into T segments, which are distributed amongst the T clients.

Each client receives its corresponding portion of unlabeled data Vt
U , and is tasked

with updating the corresponding QY (Yt
U) ✓ QY (YU). Along the way, the client esti-

mates its own �t, computing its own o↵sets in the logit space, and calibrates its own

MaxEntInf correction to the portion of the unlabeled data it is assigned. Each client

is the memory manager ỸU , which is updated periodically with new label estimates

as provided by the other clients. After a client finishes updating its corresponding

segment of data, it pushes the newly estimated QY (yi) to the memory manager ỸU

for distribution amongst the other clients. When updating QY (yi) on a particular

client, it is assumed that for every neighboring vj some form of Qj(yi) exists in ỸU ,



185

Algorithm 16 Parallel-MaxEntInf -Client(G,YL,Vt
U , ỸU , Y )

1: P (�) = NegativeProportion(YL)
2: while Not Converged or More Iterations do
3: Zt = []
4: for every vi 2 Vt

U do
5: update variational QY (yi = +)
6: Zt(logit(QY (yi = +))
7: end for
8: Zt.sort()
9: �t = P (�) ⇤ |Zt|
10: for every vi 2 Vt

U do
11: QY (yi = +) = logistic(logit(QY (yi = +) - Z[�t|))
12: QY (�) = 1 � QY (yi = +)
13: ỸU .update(QY (yi))
14: end for
15: end while

although it may not be the most recent update. By having asynchronous updates,

we avoid the di�culty of locking the high degree vertices. These vertices would have

to lock the entire dataset, e↵ectively shutting down the parallelism.

The overall or parallel MaxEntInf inference approach is given in Algorithms 15

and 16. In Algorithm 15, the master devises a random split of the unlabeled data

points and creates the shared memory (or memory manager) (Lines 1-2). Each client

is then spawned, given the portion of data it should infer, along with the labeled

data, the classifier and the memory manager. After each client has finished, the

master collects the processes (Lines 6-8) and returns the results (Line 9).

Algorithm 16 is the pseudocode for the client side operations. Note that it is fairly

similar to the sequential MaxIntInf corrected algorithm (Algorithm 14) in terms of

coding. The only exceptions are that (a) it only operates on a subset of the data

and (b) the results after calibration are pushed to the memory manager for the other

clients to use in their own inferences. However, each client only calibrates on a subset

of the data rather than the complete dataset. This is a fundamental shift from the

sequential algorithm, where all instances are adjusted on the same o↵set value. Thus,
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we need to understand the impact of this approximation in comparison to the true

MaxEntInf correction .

Accuracy of Parallelizing MaxEntInf

In this subsection, we will extend the notion of the constant sample size required

to compute the correction (Lemma 8.2.1), to prove that each processor can indepen-

dently compute its own o↵set without relying on other values. A natural extension

to this is that the PL-EM correction again only requires a constant overhead to the

parallel variational inference approach.

Let there be T threads, each thread t 2 {1, · · · , T} receiving a portion of the data

Vt
U . Without loss of generality, assume all |Vt

U | are equal (if not, simply choose the

smallest). Then, we wish to bound the error ✏ with probability 1 � �, i.e.:

P
�

z(�t) 2 z(�±✏) 8t 2 {1, · · · , T}
�

� 1 � �

where �t = P (�) · |Vt
U | is the o↵set index for each subsample.

Theorem 8.3.1 (Parallel Sample Size)

Let V1
U , · · ·VT

U ✓ VU be disjoint uniformly random subsets of the unlabeled network

vertices. Let � be the true o↵set, ✏ be the amount of error in the chosen index �t for

each subset T we will allow, and � be the probability bound. If:

|Vt
U | �

s

1

2✏2
log

✓

2T

�

◆

81, · · · , T

then 8t2{1, · · · , T} z(�t)2z(�±✏) with 1 � � probability.

Proof We wish to bound the following quantity:

P
�

z(�t) 2 z(�±✏) 8t 2 {1, · · · , T}
�

� 1 � �
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By the Union bound:

P

�

z(�t) 2 z(�±✏) 8t 2 {1, · · · , T}
�

�1 �
X

t

P

�

z(�t) /2 z(�±✏)

�

�1 � T · P
⇣

z(�t0 ) /2 z(�±✏)

⌘

where �t0 is the o↵set index associated with the minimum |Vt
U |. Then we have:

1 � T · P
⇣

z(�t0 ) /2 z(�±✏)

⌘

�1 � �

T · P
⇣

z(�t0 ) /2 z(�±✏)

⌘

�

Applying Lemma 7 of [111] to P (�0
t /2 � ± ✏), we recover:

T · P
⇣

z(�t0 ) /2 z(�±✏)

⌘

�

T · 2 exp{�2✏2|Vt0

U |2} �

exp{�2✏2|Vt0

U |2}  �

2T

�2✏2|Vt0

U |2  log

✓

�

2T

◆

2✏2|Vt0

U |2 � log

✓

2T

�

◆

|Vt0

U |2 �

s

1

2✏2
log

✓

2T

�

◆

Thus if each subset has at least
q

1
2✏2

log
�

2T
�

�

samples, then z(�t) 2 z(�±✏) 8t 2

{1, · · · , T} with probability 1 � �.

This shows that the number of samples in each thread must only reach a certain

threshold in order to have the desired accuracy, regardless of the total size of VU .

Again using ✏ = .05 and � = .05, if we have 10 cores available each core must only

contain a minimum of 37 samples to achieve the desired accuracy. Similarly, if we

have 100 cores each core must only contain 41 samples and for 1000 cores we must

only have 47 samples per core. For big data problems, these thresholds are easy to

achieve.
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As with the sequential sampler, the parallel correction only has a constant amount

of overhead in comparison to the uncorrected variational inference algorithm.

Corollary 8.3.1 (Parallel Constant Overhead)

Let V1
U , · · ·VT

U ✓ VU be disjoint uniformly random subsets of the unlabeled network

vertices. For a specified ✏ and �, an approximation to the parallel algorithm proposed

can be performed with constant overhead.

Proof From Theorem 1, we need only sample |VS| = O(1) vertices from Vt
U to

estimate the o↵set index �t. Again, the sampling can be performed in constant time,

sorting and selection is therefore also in constant time, meaning that updating the

estimates is again done in O(|VU | + |E|) time.

8.4 Experiments

In this section, we compare our proposed PL-EM framework against a variety

of competing state-of-the-art methods. We test each method on seven real world

datasets, three of which are an order of magnitude larger than any known prior

application of RML.

8.4.1 Models

To control for variation due to knowledge representation, we compared models

based on logistic regression, including independent logistic regression and relational

methods that use logistic regression for the local conditional distribution in collective

classification. For the relational approaches, three additional variables are incorpo-

rated into the conditional distribution: the proportion of positive neighbors, the pro-

portion of negative neighbors, and the degree of the vertex. The parameter learning

is done via iteratively reweighted least squares [113] where the least squares solution

is solved using the tall/skinny streaming QR matrix factorization [114].
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Logistic Regression [LR]: This is the independent logistic regression model. It

does not consider any relational features, using only the vertex features to predict the

label.

Logistic Regression EM [LR (EM)]: The independent logistic regression ap-

proach coupled with EM.

Relational Logistic Regression [RLR]: Logistic regression that incorporates

relational features (positive proportions, negative proportions and degree). This

method does not perform EM and only the initial parameters are used for predic-

tion. Predictions are not made collectively.

Label Propagation [LP]: This is a standard algorithm for inference in relational

networks ( [44, 45]). It does not learn a dependence on attributes and relational

information; rather, the algorithm assumes high correlation and iteratively predicts

label probabilities by averaging the current estimates of the relational neighbors. This

iterative process repeats until convergence.

Composite Likelihood EM [CL-EM]: This is the traditional semi-supervised

relational EM algorithm that maximizes the composite likelihood [5]. To allow for

a comparison, we utilize our parallelized collective inference algorithm for e�ciency.

However, this method does not utilize the MaxEntInf correction proposed. It performs

10 rounds of variational inference for collective inference. As the previous chapter

demonstrated CL-EM to be unstable, we smooth the parameters at each iteration t.

More specifically, we estimate ⇥t
C = ↵t⇥new

C +(1�↵t)⇥
t�1
C where ↵t = exp{�0.125·t}.

Further, for this method we report the average error between 10 and 11 rounds of

EM.

Naive Pseudolikelihood EM [PL-EM (Naive)]: This method naively applies

a semi-supervised relational EM that maximizes the pseudolikelihood rather than the

composite likelihood. We again implement our parallelized collective inference algo-

rithm for e�ciency, but again omit the proposed MaxEntInf correction. It performs

10 rounds of variational inference for collective inference and, since the PL-EM is

more stable than CL-EM, 10 rounds of EM.
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Dataset Nv Ne W ⇢ P (yi = +)

Facebook 5,906 73,374 2 0.174 0.320
IMDB 7,934 122,230 28 0.207 0.164
DVD 16,118 75,596 28 0.208 0.210
Music 56,891 272,544 26 0.153 0.078
Comm. 881,187 5,302,712 50 0.710 0.059

Computers 881,187 5,302,712 50 0.815 0.169
Organic 881,187 5,302,712 50 0.486 0.021

Figure 8.3.: Datasets compared. From left: dataset name, number of vertices, number
of edges, number of attributes, label correlation, proportion positive.

MaxEntInf Pseudolikelihood EM [PL-EM (MaxEntInf)]: This is our pro-

posed semi-supervised relational EM method that uses pseudolikelihood combined

with the MaxEntInf approach to correct for relational biases. As with PL-EM (Naive),

this method utilizes 10 rounds of variational inference for collective inference, 10

rounds of EM, and maximizes the full PL. However, this approach utilizes our pro-

posed inference correction during each round of variational inference.

8.4.2 Datasets

We compare each of the above methods on seven real world networks, gathered

from various types of social networks. Each network only includes items with degree

greater than zero, and excludes the rest. A full listing of the statistics are given in

Figure 8.3.

Smaller Datasets

The first four datasets are small in comparison to the last three. However, each

provides a di↵erent type of network on which to compare the algorithms; further,

they provide a means to evaluate scalability of our parallel inference.

Facebook: This is a snapshot of the Purdue University Facebook network. We

include users who have listed their (a) political views, (b) religious views and (c)
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gender. The resulting network contains 5,906 vertices and 73,394 edges. We predict

the political views, with the other two variables as features, resulting in a label

correlation of 0.174 and positive proportion 0.32. This positive proportion is the

largest observed in any dataset.

IMDB: This is a movie dataset release by the Internet Movie Database1. The task

is to predict whether a movie will have a gross revenue of $50 million (or greater).

As features, we utilize the 19 provided movie genres: for each genre we define an

indicator variable for whether the movie falls into the associated genre (these are

not necessarily disjoint). In addition, we incorporate the user rating of the movie

through 9 boolean indicator variables: each variable indicates whether the average

movie rating is greater than the corresponding index. We connect movies through

their producers: two movies that share two (or more) producers are linked. The

resulting network has 7,934 vertices and 122,230 edges, with label correlation 0.207

and positive proportion 0.164.

DVD: This is a subset of the Amazon dataset gathered by [65], with items in

the DVD classification. The prediction task is to determine whether an item has an

Amazon salesrank < 7500. The attributes are the associated 24 genres that Amazon

provides, as well as four boolean variables indicating whether the average number

of stars is greater than the associated index. The edges are created through DVD

copurchases, with an edge indicating that Amazon believes two items are frequently

purchased together. The resulting network has 16,118 vertices and 75,596 edges, with

a label correlation of 0.208 and positive proportion 0.21.

Music: This is another subset of the Amazon dataset gathered by [65], with items

in the Music classification. As before, the prediction task is to determine whether an

item has an Amazon salesrank < 7500. The attributes are the associated 22 styles of

music that Amazon provides, as well as four boolean variables indicating whether the

average number of stars is greater than the associated index. The resulting network

has 56,891 vertices and 272,544 edges, with a label correlation of 0.153 and positive

1www.imdb.com
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proportion 0.078. This is on the order of the largest datasets on which RML methods

have previously been applied.

Larger Datasets

Our large scale network datasets are constructed from the publicly available

NBER patents datasets (network structure [115], labelings [87]2). For every patent

that was published from 1990-2000, we queried the corresponding text from http:

//patft.uspto.gov, stripping out the claims and description for each patent. We

removed English stop words [116] and took the top 50 most frequently occurring

words. We weighted each document’s words using TF-IDF [117], and each document

feature vector was length normalized. The network has 881,187 vertices (patents)

and 5,302,712 edges (citations between patents). We constructed three di↵erent clas-

sification tasks by considering the filing categories associated with each patent [87].

Communications: In this task, we considered whether patents were filed in

“Primary Category 2, Subcategory 21” or not. The patents in this category are

communications patents, involving computer communication infrastructure and tech-

nologies. Since this is a subcategory, the label has has considerable skew, with 0.059

positive proportion. However, label correlation is relatively high at 0.71.

Computers: In this task, we considered whether patents were filed in “Primary

Category 2” or not. The patents in this category are related in some way to computers.

Since it is a relatively large category, the positive proportion in 0.169. It has extremely

high label correlation of 0.815.

Organic: In this task, we considered whether patents were filed in “Primary Cat-

egory 1, Subcategory 14” or not. This category comprises chemical patents that relate

to organic compounds. This is the most skewed dataset, with a positive proportion

of 0.021. Label correlation is 0.486.
2http://www.nber.org/patents/subcategories.txt
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8.4.3 Methodology

For each dataset, we compare all methods. We repeat the experiments 100 times

for the smaller datasets and 20 times for the larger datasets. Our error statistic is

the Balanced Absolute Error (BAE) and we report the mean of the trials. The BAE

measures the absolute error of a classifier Y , but normalizes the error across the

classes:

errY (y) =

P

vi2VU
PY (yi 6= y)I[yi = y]

P

vi2VU
I[yi = y]

BAEY =

P

y2Y errY (y)

|Y|

This measure averages the balanced accuracy for all unlabeled instances. For the

smaller datasets, we examine the BAE across a range of labeling percentages (0.05-

0.9), while on the larger datasets we report accuracies on the more interesting sparser

labeling percentages (0.001-0.1). Note that the extremely sparse labelings have only

880 instances out of nearly 900,000 labeled. All tests are paired across the various

methods (i.e., each is given the same set of labeled instances).

Our tests were performed on a MacPro with two 2.66GHz 6-Core Intel Xeon

processors, capable of 24 possible hyperthreads, with 48GB of RAM. The parallelized

algorithms utilized all possible hyper threads, except for during the speedup tests.

8.4.4 Results

In Figure 8.4 we report the performance of the varying methods as the percentage

of labeled data increases for each of the small datasets. In every instance, PL-EM with

MaxEntInf outperforms all of the competing methods. Further, we find that vertex

features alone are learned fairly accurately from a low label percentage, with little

improvement as more data is gathered. This results in LR (EM) performing on par

with LR, and each of these methods are outperformed by the relational methods as
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(d) Music

Figure 8.4.: Results on the four smaller datasets. PL-EM outperforms each method.

the proportion of labeled data increases. By incorporating both relational information

and vertex information, RLR makes an initial gain over LP by utilizing the vertex

information, then continues to improve at the same rate as LP. These gains are

accentuated in the Amazon datasets, where the additional degree information leads

to considerable gain over LR and LP. This is due to the salesrank of an item being

heavily correlated to the degree (⇡ �0.26) making the degree highly predictive. For

each of these smaller datasets, PL-EM with MaxEntInf improves over the baselines.
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Figure 8.5.: IMDB: Distribution of predictions at varying labeled percentages. Note
that at a high labeled percentage RLR, CL-EM, and Naive PL-EM continue to be
poorly calibrated.

We contrast the di↵erence between the Naive PL-EM and PL-EM with MaxEntInf.

In particular, the Naive application of PL-EM is nearly always outperformed by the

more restrictive CL-EM, particularly for sparsely labeled domains. PL-EM (Max-

EntInf) also slightly outperforms PL-EM (Naive) even at higher label percentages.

This is due to Naive PL-EM continuing not to calibrate at the higher label percent-

ages. We illustrate this in Figure 8.5. At the lower label percentage, Naive PL-EM

strays far from the prior, as expected, while PL-EM (MaxEntInf) goes through the

correct point. For the higher label percentage, PL-EM (Naive) has improved its esti-

mates, but remains further from the correct prior than PL-EM (MaxEntInf). Thus,

calibrating alone can decrease the error rate.

Next, Figures 8.6.a-c report performance results for the large scale datasets. PL-

EM (MaxEntInf) produces significant performance improvements over the competing

methods, with a substantial decrease in error. The e↵ectiveness of LP largely depends

on the dataset—as Communication and Computers have considerably more label

correlation, LP performs the best on these datasets. Similarly, the attributes are

largely ine↵ective on the Communication dataset, but helpful on both Computers

and Organic. Thus, the RML methods perform best on Computers, with PL-EM
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Figure 8.6.: (a-c) Performance across each of the large scale datasets. (d) Speedup
as we vary the number of processors available for each of the small datasets.

(MaxEntInf) having an error of less than 0.1 with only 1/100 data points labeled.

Again, PL-EM (Naive) is largely outperformed by CL-EM, but our correction allows

the additional information provided by the pseudolikelihood to greatly improve the

accuracy.

Figure 8.6.d examines the e↵ect of parallelizing the inference algorithm on each

of the smaller datasets. As expected, the algorithm scales at a linear rate. There

are two slight irregularities in the curve. First, the algorithm appears to increase

faster than linear up to 8 cores. This is an artifact of spawning the threads—these
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Percentage Labeled No Correction Correction

0.001 16.184 18.042
0.005 16.479 18.300
0.01 15.826 18.221
0.05 15.458 17.374
0.1 14.790 16.342
0.25 12.068 13.842

Figure 8.7.: Total inference times on the large scale datasets (seconds).

datasets are rather small, meaning the thread creation has a noticeable impact on the

runtime. Second, after 8 cores the algorithm does not continue its rate and appears

to slow. This is due to our machine only having 12 true cores, requiring the 16

thread test to utilize the hyper threads. Although we continue gaining, this hardware

implementation has an impact on the gains.

Lastly, Figure 8.7 gives the total inference time for the large scale datasets (each E-

Step) for varying amounts of data, in seconds. We give both the runtimes MaxEntInf

correction and with the MaxEntInf correction. Notably, we can solve the inference

step with nearly 900,000 unlabeled documents, over 10 rounds of variational inference,

within 20 seconds. Thus, the collective inference necessary for relational machine

learning is not a significant burden.

8.5 Related Work and Discussion

Our work advances the field of Relational Machine Learning (RML) [1] in two

notable directions. First, we demonstrated that the error from the pseudolikelihood

maximization learning approximation can be overcome by correcting the inference

step of the algorithm. This approach allows any relational conditional distribution to

be corrected on the fly solely by a small correction to the inference step, and allows for

more the more general PL-EM algorithm to be used in conjunction with the chosen

conditional. Second, we demonstrated that using asynchronous variational mean

field inference we can trivially parallelize this problem allowing for fast computations
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of the unlabeled probabilities. As part of this, we demonstrated that we can also

parallelize the correction, and provided bounds on the error from this parallelization.

The correction itself is similar to one proposed by [94] for IID EM learning, although

we propose using it on more than the simple IID Naive Bayes classifier for text. We

also provided the error bounds for the sampled approach, as well as the proofs for the

constant sampling overhead.

The most related work to ours is that of McDowell & Aha [6]. This work first

noted the di↵erences between learning from the labeled vertices and the full network

during the ‘M’-step. However, their solution required the use of a special regularizer

during the optimization step, and made use of a specific form of conditional. In

contrast, our work pairs with any black box conditional distribution that provides

label probabilities. Further, we demonstrated the power of parallelizing our inference

step, allowing for our correction and inference method to scale to data orders of

magnitude above previous relational algorithms.

8.6 Concluding Remarks

In this chapter, we proposed a novel maximum entropy constraint for inference

during statistical relational learning. Implementing this task as part of relational

learning is straightforward, allowing it to be used in conjunction with any relational

learner. We proved the method has a constant overhead, making it ideally suited

for big data problems. Additionally, we applied asynchronous variational mean field

algorithms with success to relational inference problems. The maximum entropy

inference correct is also ideally suited for this parallel implementation; as with the

sequential case, we proved that it can be implemented with accuracy and only constant

overhead. We demonstrated our approach on 7 large, real world network domains,

outperforming a variety of baselines and competing methods. Further, we showed our

parallel corrected inference procedure perform in under 20 second on networks with

more than five million edges, an order of magnitude larger than prior works. We can
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apply these methods to various tasks in network domains, extending past classical

relational machine learning tasks to the relational summarization task.

It is important to note the contrasts between this MaxEntInf method and the

methods in the previous chapter. In particular, the R-DA and R-SEM methods pair

well with the composite likelihood, as they incrementally correct the over propaga-

tion error. Intuitively, R-DA and R-SEM place less importance on labels that are

commonly observed; thus, when the models begin converging to a single label value

R-DA and R-SEM swing the predictions in the other direction. In contrast, Max-

EntInf places a hard constraint on the predictions, forcing the percentage of instances

predicted to be positive to exactly match the training sample prior. This constraint

allows us to use the more informative pseudolikelihood, which mirrors the analogous

i.i.d. EM methods, and make better overall predictions while using the faster VMF

EM semi-supervised learning algorithm.



200

9 CONCLUSIONS AND FUTURE WORK

In this dissertation, we discussed how missing labels and edges can significantly im-

pact standard relational machine learning algorithms by introducing bias into the

learning and inference process. Throughout this work, we created scalable meth-

ods to model distributions over networks and account for observation uncertainties,

introduced probabilistic edges into relational learning algorithms, and addressed pa-

rameter approximation learning errors by developing new semi-supervised learning

frameworks and constraints.

First, we introduced a generalized framework for modeling a distribution of edges

in subquadratic time for learning and sampling. As an initial step, we grouped several

existing models into a general scalable approximation framework. We demonstrated

that this framework easily extends to incorporate transitive edges (the TCL model), as

well as allowed for sampling networks with correlated attributes across the edges (the

AGM framework). By understanding the scalable relationships within this framework,

we were able to develop e�cient sampling algorithms for a variety of scenarios.

Second, we incorporated probabilistic edges into relational learning and inference

into RML, to overcome heavily biased and partially observed networks. To do so,

we introduced the Active Exploration problem, where an extreme relational bias is a

natural consequence of the selective sampler. In particular, we found that standard

RML methods have di�culties in this environment and learn biased parameters that

a↵ect prediction accuracy. By incorporating the distribution of unobserved edges into

our learning and inference, we find that we can outperform a variety of RML (and

alternative) approaches, as it allowed the relational learner to more closely model

the true graph, rather than the biased observation. More precisely, we found that

by incorporating the TCL edge probabilities into the Relational EM method, we

could significantly improve the prediction accuracy. Further, we found that the TCL
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representation coupled with VMF inference allowed for a scalable linear time inference

algorithm, allowing us to apply the methods on medium sized real-world networks.

Third, we focused on improving existing relational semi-supervised modeling. Al-

though the constrained environment of Active Exploration allowed the conventional

Relational EM to flourish, we found that in general the learning biases from the com-

posite likelihood approximation caused considerable error in the inference step. By

utilizing stochastic learning methods (R-SEM and R-DA) in conjunction with the

existing composite likelihoods, we found the stochastic methods iteratively corrected

their over propagation biases to increase inference accuracy. However, this observation

did not carry through to the more general semi-supervised approach of pseudolike-

lihood EM. As a final step we introduced Maximum Entropy Inference constraints,

which forced the predicted distributions in the inference steps to match the training

distribution. This approach allowed us to utilize more general semi-supervised meth-

ods (e.g., PL-EM). We proved that the constraints only require a constant overhead

to implement in conjunction with existing inference algorithms, and work with high

accuracy in parallel environments. Lastly, we demonstrated our methods on datasets

orders of magnitude larger than previous work, greatly increasing the applicability of

RML to large scale networks.

9.1 Contributions

We summarize the theoretical and empirical contributions of this dissertation

below:

• Models and Frameworks

– Development of a single scalable sampling framework that characterizes

the sampling processes for several existing generative graph models.

– Development of the Transitive Chung-Lu generative graph model for cap-

turing distributions of networks with large amounts of transitivity and

having scalable sampling methods.
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– Generalization of scalable sampling approaches to develop to the Attributed

Graph Model. This model generates networks with correlated attributes

and we can pair it with a number of existing scalable generative graph

models.

– Development of Probabilistic Relational EM – a semi-supervised relational

framework for learning and inference within partially observed networks

with highly biased label observations.

– Development of Relational Stochastic EM and Relational Data Augmenta-

tion approaches for better semi-supervised learning using MCLE in par-

tially observed relational networks by integrating over uncertain parameter

estimates.

– Development of Maximum Entropy Inference to calibrate predictions dur-

ing inference in relational networks, preventing over propagation error.

This allows more general approximations of likelihood functions to be used

for parameter estimation in semi-supervised relational learning algorithms.

• Theoretical

– Proofs that the Transitive Chung-Lu and Attributed Graph Models pre-

serve the expected degree distribution of input networks.

– Proofs that the Attributed Graph Models sample from the joint distribu-

tion of edges and attributes in subquadratic time.

– Proofs that the Maximum Entropy Inference mechanism is a constant over-

head to any existing relational inference algorithm.

• Algorithms

– Development of subquadratic learning and sampling algorithms for Tran-

sitive Chung-Lu and Attributed Graph Models.

– Development of a linear time learning and inference algorithm for Proba-

bilistic Relational EM
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– Development of subquadratic learning and inference algorithms for Rela-

tional Data Augmentation and Relational Stochastic EM

– Development of subquadratic algorithm for Maximum Entropy Inference

for use with general learning and inference approximations for RML.

• Empirical

– Demonstration of accuracy of the Transitive Chung-Lu graph model pre-

serving both the degree distributions and transitivity in large scale real

world networks.

– Demonstration of accuracy for Attributed Graph Models in terms of mod-

eling the correlation of attributes in large scale real world networks.

– Demonstration of gains achieved during Active Exploration by Probabilis-

tic Relational EM compared to a variety of competing models and net-

works.

– Demonstration of accuracy for Relational DA and Relational Stochastic

EM over Relational EM over a variety of networks.

– Demonstration that Maximum Entropy Inference improves the accuracy

semi-supervised relational learning approximations over a variety of com-

peting models in large scale, real world datasets with millions of edges.

These works, together, show that in large scale and partially observed network do-

mains, missing labels and edges can significantly impact standard relational learning

methods by introducing bias into the learning and inference processes. We demon-

strated the impact on parameter estimates due to partially observed edges and labels

(i.e., during the Active Exploration task), corrected the biases (i.e., MaxEntInf), and

modeled the uncertainty of the missing data to improve predictive performance (i.e.,

generative graph models, PR-EM, R-SEM, R-DA).

There are several directions to pursue after the completion of this dissertation.

First, the our ability to accurately infer the unlabeled examples through semi-supervised
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methods takes advantage of the considerable amounts of unlabeled data typically

available in social network domains. As we can make accurate predictions in large

scale networks, we can also utilize the unlabeled data through active learning, an

iterative framework (similar to Active Exploration) that identifies instances in the

network likely to reduce model error. Typical active learning scenarios require se-

lectively labeling instances that are uncertain (e.g., predicted probabilities near 0.5),

meaning SSL methods such as MaxEntInf would be necessary to accurately identify

good candidates for labeling.

Second, the success of implementing Maximum Entropy inference for the 0/1

labeling trials gives hope for accounting for the relational inference bias, but the

current approach leaves considerable room for improvement. For example, many

datasets have multiple label values that could be predicted, instead of simply 0 or 1:

for example, users can choose from a variety of political viewpoints. One approach to

this problem is iteratively correcting for each label, attempting to adjust the split in

a greedy fashion. This approach would allow us to prevent the over propagation in

a variety of domains, and allow us to extend our methods to a variety of additional

large scale real world applications.

Third, the class of generative network models that we can augment with accept-

reject sampling can potentially be incorporated into a variety of research areas. For

instance, network hypothesis testing using generative graph models has been success-

fully applied to networks without attributes. Using AGM, we can likely augment

these methods to model the joint distribution of edges and attributes, allowing hy-

pothesis testing for network domains with attributes. By adding these features in,

we can likely make more representative distributions and have more accurate tests

available. Additional areas such as Gibbs sampling or Bagging likely require resam-

pling networks that match graph statistics and attribute correlations, which AGM

can provide.

Lastly, our Probabilistic Relational EM algorithm is currently focused on genera-

tive conditional models; however, generative models are frequently outperformed by
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their corresponding discriminative representation (e.g, Naive Bayes versus Logistic

Regression). Generalizing the marginalization over the probabilistic edges to the dis-

criminative case would likely allow for improved accuracy on a variety of problem

domains. In particular, it is likely that the fast VMF inference algorithm is appli-

cable to feature values that correspond to either linear or log-linear summations of

the neighboring labels. This result would allow for learning and inference over a

squared network representation without explicitly performing the squaring, keeping

the representation sparse, runtime subquadratic, and methods practical for large scale

domains.
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