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ABSTRACT

Nafziger, Jonathan PhD, Purdue University, May 2015. Partition Density Functional
Theory. Major Professor: Adam Wasserman.

Partition density functional theory (PDFT) is a method for dividing a molecular

electronic structure calculation into fragment calculations. The molecular density

and energy corresponding to Kohn Sham density-functional theory (KS-DFT) may

be exactly recovered from these fragments. Each fragment acts as an isolated system

except for the influence of a global one-body ’partition’ potential which deforms the

fragment densities. In this work, the developments of PDFT are put into the context

of other fragment-based density functional methods. We developed three numerical

implementations of PDFT: One within the NWChem computational chemistry pack-

age using basis sets, and the other two developed from scratch using real-space grids.

It is shown that all three of these programs can exactly reproduce a KS-DFT calcula-

tion via fragment calculations. The first of our in-house codes handles non-interacting

electrons in arbitrary one-dimensional potentials with any number of fragments. This

code is used to explore how the exact partition potential changes for different parti-

tionings of the same system and also to study features which determine which systems

yield non-integer PDFT occupations and which systems are locked into integer PDFT

occupations. The second in-house code,CADMium, performs real-space calculations of

diatomic molecules. Features of the exact partition potential are studied for a variety

of cases and an analytical formula determining singularities in the partition poten-

tial is derived. We introduce an approximation for the non-additive kinetic energy

and show how this quantity can be computed exactly. Finally a PDFT functional

is developed to address the issues of static correlation and delocalization errors in
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approximations within DFT. The functional is applied to the dissociation of H+
2 and

H2.
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1. Introduction

Partition-density functional theory (PDFT) is a method for dividing a molecule into

fragments. There are three primary benefits for such a division. First, calculations

may be performed in smaller, and more manageable chunks leading to improved

computational efficiency. Second, there is the possibility of improving the accuracy

of density functional approximations. Lastly there is the possibility of improved

chemical understanding of the behavior of atoms within molecules. This dissertation

concerns the development and exploration of PDFT. Here we provide an outline of

the Chapters of the thesis.

• Density-Functional Theory This chapter outlines the formalism of Density

Functional Theory and the Kohn Sham equations. This theory provides the

important backdrop for PDFT.

• Partition Density-Functional Theory This chapter outlines the PDFT for-

malism and derives the equations which determine the fragment densities in

analogy with the derivation of the Kohn-Sham equations in KS-DFT. This sec-

tion contains work from the review article entitled ‘Density-Based Partitioning

Methods for Ground-State Molecular Calculations’, written by the author and

Adam Wasserman published in the Journal of Physical Chemistry A.

• Context in Fragment-Based DFT This chapter establishes some of the con-

text for PDFT in relation to other fragment-based density functional theory.

This section contains work from the review article entitled ‘Density-Based Par-

titioning Methods for Ground-State Molecular Calculations’, written by the

author and Adam Wasserman published in the Journal of Physical Chemistry

A. [1]
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• Algorithms This chapter goes over several algorithms used in various PDFT

calculations used throughout the rest of the dissertation.

• Non-Additive Kinetic Energy This chapter looks at the Non-Additive Ki-

netic Energy, which is a critical quantity in PDFT calculations.

• NWChem Implementation This section describes work done in collabora-

tion with Qin Wu to develop a proof of concept program in the computational

chemistry package NWChem. This section contains work from an article enti-

tled ‘Molecular binding energies from partition density functional theory’ writ-

ten by the author, Qin Wu and Adam Wasserman, published in the Journal of

Chemical Physics [2].

• Near-Additivity and Non-Integer Occupations This chapter describes

work done in collaboration with Rougang Tang to explore the behavior of vari-

ous partitionings in simple one-dimensional toy models. In particular we explore

the concept of chemical equilibration between fragments and fractionally occu-

pied fragments. This section contains work from an article entitled ’Fragment

occupations in partition density functional theory’, written by Rougang Tang,

the author, and Adam Wasserman, published in Physical Chemistry Chemical

Physics. [3]

• Chemical Atoms in Diatomic Molecules This chapter describes results

from the custom built PDFT software we built called CADMium (Chemical

Atoms in Diatomic Molecules). This software is capable of performing, all-

electron KS-DFT, PDFT and sDFT calculations on diatomic molecules up to

the size of the Krypton dimer (72 electrons). This section contains work from

the review article entitled ‘Density-Based Partitioning Methods for Ground-

State Molecular Calculations’, written by the author and Adam Wasserman

published in the Journal of Physical Chemistry A. [1]
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• Towards fixing Static Correlation and Delocalization Errors This chap-

ter presents a possible solution to the KS-DFT issue of static correlation and

delocalization errors through the framework of PDFT. This work may also be

found on the arxiv. [4]



4



5

2. Density-Functional Theory

Matter is composed of atoms consisting of negatively charged electrons orbiting heav-

ier positively charged nuclei. The interactions of these atoms determine a large part

of the behavior of the world around us. While the idea that matter is composed of

atoms dates back to antiquity, it has only been a little over a century since the sci-

entific community has completely accepted this fact. And yet already in 1929 Dirac

stated “The fundamental laws necessary for the mathematical treatment of a large

part of physics and the whole of chemistry are thus completely known, and the dif-

ficulty lies only in the fact that application of these laws leads to equations that are

too complex to be solved. [5]” This bold statement was possible due to the enormous

progress made by Dirac and other pioneers in the field of quantum mechanics dur-

ing the first decades of the twentieth century. In the 85 years since his statement,

enormous progress has been made in solving and approximating the solution to these

fiendishly complex equations.

The goal of DFT [6] is to provide an alternative framework in which to look at these

difficult equations. DFT is formally exact and essentially provides a reformulation

of the Schödinger equation. This reformulation is interesting and merits study on its

own right, but its real value comes from it ability to construct useful approximations

which are computationally inexpensive. There are many excellent review articles and

books which provide introduction to DFT [7–11]. Here we will attempt to give a brief

derivation of important points which emphasize the similarities with the derivation

of PDFT. We will start this introduction to DFT with a look at the Schrödinger

equation.
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2.1 Time-Independent Non-Relativistic Schrödinger Equation

The primary equation of interest to chemists is the non-relativistic Schrödinger equa-

tion. The time-independent version of this equation is sufficient to capture the be-

havior of many molecular systems studied by chemists, biologists and materials sci-

entists. In most cases the Born-Oppenheimer approximation may be used to obtain

any properties of interest, meaning we can fix the location of all nuclei of the system

and consider only the electronic degrees of freedom.

As is typical in chemistry, the Hamiltonian for a system of N electrons is written as

the sum of three operators, the kinetic energy operator, the electron-electron repulsion

operator and the one-body potential operator.

Ĥ = T̂ + V̂ee + V̂ (2.1)

Throughout this report we make use of atomic units, meaning that the mass and

charge of the electron, and Planck’s constant are equal to one (me = e2 = h̄ = 1).

This means that distances will be measured in bohr (1 a0 = 0.529Å) and energy in

hartree (1 Ha = 27.2 eV). The kinetic energy operator is then given by:

T̂ = −1
2

N∑
i=1

∇2
i (2.2)

where the index, i, ranges over all the electrons from 1 to N. The electron-electron

repulsion is simply the Coulomb interaction between electrons:

V̂ee =
∑
i<j

1
|ri − rj|

(2.3)
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The indices, i and j, run over the N electrons. The one-body potential operator takes

care of the interaction between electrons and the nuclei (which are fixed within the

Born-Oppenheimer approximation):

V̂ =
N∑
i

vnuc(ri) (2.4)

For Coulomb systems this potential is given by

vnuc(r) =
∑

j

1
|r − Rj|

(2.5)

where the {Rj} are the locations of nuclei.

The goal of electronic structure calculations is to find the ground state energy of N

electrons in the presence of some nuclei. The energy as well as well as all other observ-

ables can be found from the wavefunction. That is the anti-symmetric wavefunction

which satisfies the time-independent schrödinger equation.

ĤΨ(r1, r2, ..., rN) = EΨ(r1, r2, ..., rN) (2.6)

The wavefunction, Ψ, is a 3N -dimensional function (ignoring spin coordinates), where

N is number of electrons in the system. This makes a direct computer representa-

tion of Ψ completely infeasible for all but the simplest of systems. Without the

electron-electron interaction the Schrödinger equation can be solved by writing the

wavefunction as a single Slater determinant of one-electron functions, yielding a set

of much simpler one-body equations. This avoids the problems with multidimension-

ality. However, the electron-electron interaction term prevents this separation.

The approach of DFT is to replace the many-body wavefunction with the much

simpler one-body electronic density:

n(r) = N
∫

d3r2...
∫

d3rNΨ∗(r, r2, ..., rN)Ψ(r, r2, ..., rN) (2.7)
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Here the integration runs over all the electrons except for one. The resulting quantity

is defined so that n(r)d3r yields the expectation value of the number particles found

in the volume d3r. Clearly this quantity which depends on just 3 spatial coordinates

will be much easier to handle numerically than a quantity that has 3N spatial coordi-

nates. However it is not immediately clear that this change preserves all the necessary

information needed to model the system, or if this change will fundamentally over-

simplify things. This question was answered in 1964 by Hohenberg and Kohn who

proved two theorems which are considered foundational to DFT [6].

2.2 Hohenberg-Kohn Theorems

The first theorem establishes a one-to-one mapping between the ground state many-

body wavefunction and the ground state one-body density. Upon reflection it is

quite remarkable that there exists a one-to-one mapping between these two objects.

The complicated many-body wavefunction is a function of 3N coordinates while the

density is just a function of the 3 spatial coordinates. However from an information

theory perspective a one-to-one mapping implies that these two objects contain the

same amount of information.

As a result of this theorem the ground state wavefunction and therefore all observables

of the ground state can be written as a functional of the density. Perhaps the most

important observable is the energy:

E[n] = T [n] + Vee[n] +
∫

vnuc(r)n(r)d3r

= F [n] +
∫

vnuc(r)n(r)d3r
(2.8)

Here the energy is broken up into a kinetic energy functional, T [n], an electron-

electron energy functional, Vee[n], and an external potential energy,
∫

vnuc(r)n(r)d3r,

coming from interaction with the nuclei. Neither of the first two of these functionals

depend directly on the system, and therefore are often grouped together into what
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is called the universal functional, F [n]. In contrast, the remaining term, depends

completely on the system, and is determined by the position of the nuclei. Once the

system is known, this part of the energy functional is known exactly, however, the

exact form of F [n] is not known and must be approximated.

The second Hohenberg and Kohn theorem establishes a variational principle:

E[ñ] > E[n0] (2.9)

The ground state density is the one which minimizes the energy functional. Any trial

density, ñ, not equal to the ground state density, n0, will have a higher energy. This

gives us a recipe for DFT calculations. We simply need to search over all densities and

find the one which minimizes the energy functional subject to the constraint that the

density must integrate to N electrons. Equivalently we can solve the corresponding

euler equation:
δF [n]
δn(r)

+ vnuc(r) − µ = 0 (2.10)

Here µ is the lagrange multiplier which enforces the constraint. It is also known as

the chemical potential.

2.3 N and v-representability

The Hohenberg-Kohn theorems establish this one-to-one correspondance between

ground-state densities and ground-state wavefunctions, however there are other re-

lated questions to consider. For example, can an arbitrarily function n(r) integrating

to N electrons be represented by a N -electron antisymmetric wavefunction as in

equation 2.7? In other words, ground-state densities have a one-to-one correspon-

dence with ground-state wavefunctions, but what about other densities. Is it possible

that our search over all densities will lead us to a minimizing density which cannot

be represented by a wavefunction? If so this density will be non-physical, and the
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result useless. This is known as the N -representability problem and is fortunately

solved [7, 12]. Any arbitrary density is N -representable provided that n(r) ≥ 0 and∫
n(r)dr = N .

Another important representability question known as v-representability tries to es-

tablish whether for a given N -representable density there exists a potential v(r) for

which that density is the ground-state [7]. The Hohenberg-Kohn theorem proves the

uniquness of such a potential, but doesn not arbitrarily prove its existence. Work on

this question has been less conclusive. It has been shown that under some restric-

tions v-representability can be established (ensembles, discretized systems), but in

the general case it has also been shown that there exist continuous densities that are

not pure-state v-representable [13, 14]. However, v-representability of the interacting

system is not required for the Hohenberg-Kohn Theorems thanks to the constrained

search formalism of Levy and Lieb [7, 15,16].

2.4 Density-Functional Approximations

The biggest problem with attempting to solve equation 2.10 directly is that the uni-

versal functional, F [n] is not a simple functional of the density. Despite the first

Hohenberg-Kohn Theorem’s statement of the existence of the energy as a functional

of the density it gives no indication of how to construct the energy as an explicit

functional of the density. We do not know how to write either the kinetic energy nor

the electron-electron repulsion energy as an explicit functional of the density. Partic-

ularly problematic is that no sufficiently accurate approximation has been found for

the kinetic energy density functional (KEDF).

The very first density functional predates the Hohenberg-Kohn theorems and was a

KEDF developed by Thomas and Fermi [17,18].

T TF[n] = As

∫
n

5
3 (r)d3r, As = 3(4π2)

2
3 /10 (2.11)
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This local functional is defined to give the exact result for the kinetic energy of the

homogeneous electron gas. When applied to systems with non-uniform density the

Thomas-Fermi functional gives surprisingly good results, however the results are not

of sufficient accuracy for practical electronic structure calculations.

2.5 Kohn-Sham Density-Functional Theory

A method to bypass the poor performance of KEDFs was proposed by Kohn and

Sham in 1965 [19]. They proposed that the ground state of an auxiliary system of

non-interacting electrons should be considered. The kinetic energy of this system of

non-interacting electrons will in most cases be a good approximation for the fully-

interacting kinetic energy. We simply constrain the density of this auxiliary system

to be equal to density we are interested in. The kinetic energy of this non-interacting

system forms an implicit density functional.

Ts[n] = min
Ψ→n

⟨Ψ| T̂ |Ψ⟩ (2.12)

The subscript s denotes that this is the non-interacting kinetic energy. This recipe for

the KEDF can be described as searching over all non-interacting wavefunctions which

yield a particular density n(r) and then choosing the one which yields the lowest ki-

netic energy. This constrained minimization can be transformed into a corresponding

unconstrained minimization,

W [n] = min
Ψ

⟨Ψ| T̂ |Ψ⟩ +
∫

vs(r)(⟨Ψ| n̂ |Ψ⟩ − n(r)) (2.13)

where the lagrange multiplier, vs(r), must be chosen such that that the density of

the non-interacting wavefunction is equal to the target density n(r). Because in this

case there is no electron-electron interaction, the ground-state wavefunction of this

system can be exactly represented as a single Slater determinant. Optimization of
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the lagrangian with respect to the orbitals of the determinant yield a set of orbital

equations known as the Kohn-Sham equations.

(−1
2

∇2 + vs(r))ϕi = ϵiϕi (2.14)

The lagrange multiplier vs(r) can be interpreted as an effective potential for this

auxiliary system of non-interacting electrons, which must ensure that its density cor-

responds to some arbitrary density n(r). The density of the non-interacting system

can easily be constructed from the orbitals.

n(r) =
∑

i

fi |ϕi(r)|2 (2.15)

Here, the occupation numbers, fi, are either zero or one depending on whether the

corresponding eigenvalue ϵi is greater (fi = 0) or less than (fi = 1) the chemical

potential, µ. Solution of Eqs. 2.14 and 2.15 is equivalent to solution of the euler

equation:
δTs[n]
δn(r)

+ vs(r) − µ = 0 (2.16)

Now we must find a way to choose the lagrange multiplier, vs(r), such that density

of this auxiliary system of electrons reproduces the density of the interacting system.

To do this we begin by rewriting the total energy functional of the interacting system.

E[n] = Ts[n] + VH[n] + EXC[n] +
∫

n(r)v(r)d3r (2.17)

The first term is the non-interacting kinetic energy, defined in Eq. 2.12. The second

is the hartree energy:

VH[n] = 1
2

∫ n(r1)n(r2)
|r1 − r2|

d3r1d
3r2 (2.18)
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which is simply the classical self-repulsion of a distribution of charge n(r). The third

term, EXC[n] is an important functional called the exchange correlation energy, which

is defined to make Eq. 2.17 exact.

EXC[n] = T [n] − Ts[n] + Vee[n] − VH[n] (2.19)

This term accounts for both the difference between the true interacting kinetic en-

ergy and the non-interacting kinetic energy as well as the difference between the true

electron-electron repulsion energy and the hartree energy. While all the other terms

in Eq. 2.17 can be calculated exactly the exchange correlation energy, must be ap-

proximated in practice. This is the most convenient term in Eq. 2.17 to approximate,

because Ts[n] ≈ T [n] and VH[n] ≈ Vee[n], and therefore EXC[n] is relatively small.

From Eq. 2.14 and Eq. 2.15 it is clear that the non-interacting density is a functional

of the lagrange multiplier vs(r). Therefore we can write Eq. 2.17 using potential

functionals of vs(r).

E[vs] = Ts[vs] + VH[vs] + EXC[vs] +
∫

n[vs](r)vnuc(r)d3r (2.20)

Then if we simply choose the lagrange multiplier, vs(r), such that the total energy

is minimized then from the Hohenberg-Kohn theorems we must have achieved our

constraint that the non-interacting density is equal to the fully-interacting ground

state density. To accomplish this task we solve the euler equation:

δE[vs]
δvs(r)

= 0 (2.21)

The solution to this equation reveals that we must choose vs(r) such that:

vs(r) = vnuc(r) + δVH[n]
δn(r)

+ δEXC[n]
δn(r)

(2.22)
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It is important to note that this procedure is formally exact. That is to say, if we knew

the exact form of EXC[n] then solution of Eq. 2.14 along with Eq. 2.22 would yield

exactly the correct ground state density (ignoring any questions of representability).

Of course given the definition of EXC[n] as the term which makes Eq. 2.17 exact this

perhaps not terribly surprising. What is surprising is that even fairly crude local

approximations of EXC[n] can give quite reasonable results.

2.6 Exchange-Correlation Functionals

The simplest approximation for EXC[n] is called the local density approximation

(LDA) [19].

ELDA
XC [n] =

∫
n(r)ϵHEG

XC (n(r))d3r (2.23)

Here the XC energy per particle, ϵHEG
XC , for the homogeneous electron gas (HEG) is

calculated as a function of the density such that this expression is exact for homo-

geneous densities. Then this same expression is simply applied to the inhomogenous

density of any system of interest. More advanced functionals use more advanced

forms for the XC energy in which the XC energy density is allowed to depend on not

only the density but its gradients. For example generalized gradient approximations

(GGAs) [20] have the form:

EGGA
XC [n] =

∫
n(r)ϵGGA

XC (n(r), ∇n(r))d3r (2.24)

The development of new and more accurate density functional approximations is a

large area of research. A hierarchy of approximations has emerged which is referred

to by John Perdew as Jacob’s ladder (see the first chapter of [8]). The lowest rung

is the LDA and the second rung consists of the GGA’s. The next rung consists

of functionals which may depend on the Kohn-Sham kinetic energy density (meta-
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GGAs). Functionals higher up on the ladder give better accuracy, but are also more

computationally demanding.

Calculations based on KS-DFT using these exchange-correlation functionals fill a

critical role in the context of other electronic structure methods, by providing unpar-

alleled compromise between speed and accuracy. While other more accurate electronic

structure methods rely on more accurate treatment of the wavefunction, DFT fun-

damentally uses the electronic density as the primary variable. Increased accuracy

in DFT calculations is only achieved through improved XC functionals. This allows

for far more favorable scaling with system size resulting in superior computational

efficiency.

KS-DFT calculations have proved useful in solid-state physics calculations over the

last forty years and have come to dominate quantum chemistry calculations in the last

twenty years. The number of papers involving DFT calculations has grown almost

exponentially since the 1998 Nobel prize of Kohn and Pople for their pioneering work

in the field. The applications of DFT calculations continue to grow.
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3. Partition Density-Functional Theory

This section contains work from the review article entitled ‘Density-Based Partitioning

Methods for Ground-State Molecular Calculations’ written by the author and Adam

Wasserman published in the Journal of Physical Chemistry A. [1]

We now turn to the derivation of PDFT, which is analogous to the derivation of

Kohn-Sham theory given above. A system of non-interacting fragments will be glued

together with a one-body potential much like the non-interacting electrons of Kohn-

Sham theory are glued together by the Kohn-Sham potential. These non-interacting

fragments are the auxiliary system of PDFT. Our derivation starts with the definition

of the energy Eα[nα] of each fictitious fragment.

In order to make this definition the external potential, vnuc(r), is divided into into

fragments vα
nuc(r). This can be done arbitrarily as long as the fragment potentials

sum to the total potential.

vnuc(r) =
∑

α

vα
nuc(r) (3.1)

The energy of a fragment is then defined as the energy of Nα electrons in an external

potential vα
nuc(r).

The sum of fragment energies is the energy of a fictitious system of non-interacting

fragments constrained to have the same total density, n(r), as the interacting system

of electrons. Systems of truly non-interacting fragments do not exist in nature except

as a limit with increasing separation between fragments. In this limit, we can consider

that each fragment may still exchange electrons with other fragments and thus may

have a non-integer number of electrons. Density functional theory for open systems

with fluctuating numbers of electrons was studied by Perdew, Parr, Levy and Balduz

[21]. These systems are described as a statistical mixture of pure states also known as
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an ensemble. Perdew, Parr, Levy and Balduz extended the Hohenberg-Kohn theorem

to include ensembles and they showed that the ground state energy of such a system

versus the number of electrons, N , is a series of straight lines between integer values

of N . The fragment energies of PDFT are also defined as ensembles. In cases where

Nα is not an integer the fragment energy, Eα[nα] is defined through an ensemble of

two states, each containing an integer number of particles:

Eα[nα] = ναEvα [npα+1] + (1 − να)Evα [npα ] (3.2)

Here, να is the non-integer portion of Nα and pα is the lower bounding integer of Nα.

These fragment energies are defined as:

Evα [npα ] = Ts[npα ] + EH[npα ] + EXC[npα ] +
∫

vα
nuc(r)npα(r)d3r (3.3)

This definition gives PDFT fragments behavior which agrees with that of a real

system in the limit that fragments are well separated. With these definitions, the non-

interacting kinetic energy, the hartree, and exchange-correlation energy functionals

only ever act on densities with integral numbers of electrons (npα(r) and npα+1(r)),

even while the fragment density as a whole, nα(r), may contain non-integer numbers

of electrons.

3.1 Fragment Equations

The densities npα(r) and npα+1(r) are defined as those which minimize the sum of

fragment energies,

Ef [{nα}] ≡
∑

α

Eα[nα] (3.4)
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and simultaneously satisfy two constraints. First, that the sum of fragment densities,

nf (r) ≡ ∑
α nα(r), is equal to the molecular density,

nf (r) = nm(r) (3.5)

where each fragment density is calculated from the ensemble as:

nα(r) = ναnpα+1(r) + (1 − να)npα(r) (3.6)

Second, that the total fragment density integrates to N , the total number of electrons

in the system.

N =
∫

nf (r)d3r =
∑

α

Nα (3.7)

In other words we have a definition for the non-interacting fragment energy functional

which is analogous to the definition of the non-interacting kinetic energy functional

of Eq. 2.12.

Ef [n] = min
{nα}→n

Ef [{nα}] (3.8)

Overall, this constrained minimization of Ef is transformed into an unconstrained

optimization of G through the introduction of two lagrange multipliers: the partition

potential, vp(r), and the molecular chemical potential, µm.

G[n] = min
{nα}

[Ef [{nα}] +
∫

vp(r)(nf (r) − n(r))d3r − µm(
∫

nf (r)d3r − N)] (3.9)

The molecular chemical potential, µm, controls the total number of electrons in the

system and the partition potential, vp(r) must be chosen so that the resulting frag-

ment densities sum to the correct total density n(r). This lagrangian must then be
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minimized with respect to every element of each fragment ensemble, yielding the euler

equations:
0 = δG

δnpα(r)

=(1 − να)δEα[npα ]
δnpα(r)

+ (1 − να)vp(r) − (1 − να)µm

=δEα[npα ]
δnpα(r)

+ vp(r) − µm

(3.10)

= δTs[npα ]
δnpα(r)

+ vH[npα ](r) + vXC[npα ](r) + vα(r) + vp(r) − µm (3.11)

In order to solve Eq.(3.10) we use a KS systems of pα electrons in the external potential

vα(r)+vp(r) to obtain the density npα(r) = ∑pα
ipα

|ϕipα
(r)|2, where the fragment orbitals

are determined by the fragment KS equations:

{−1
2

∇2 + veff
α [npα ](r) + vp(r)}ϕi,pα(r) = ϵi,αϕi,pα(r) (3.12)

where the fragment effective potential is given by:

veff
α [npα ](r) = vH[npα ](r) + vXC[npα ](r) + vα(r) (3.13)

Through these equations we see that each fragment density may be written as a

functional of the partition potential and the occupation number Nα = pα + να.

nα = nα[vp, Nα](r) (3.14)

Our next step is then to find how the partition potential and occupation numbers

may be found such that Ef is minimized and both constraints are satisfied.
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3.2 Partition Potential Optimization

We must choose the lagrange multiplier, vp(r), such that it correctly enforces its

constraint. To do this, we write the total molecular energy (corresponding to nf (r))

as the sum of fragment energies, Ef , and the partition energy, Ep. The partition

energy is defined exactly through this equation but may be approximated in practical

calculations:

E[{nα}] = Ef [{nα}] + Ep[{nα}] (3.15)

As mentioned in the previous section, we can write the fragment densities as function-

als of the partition potential and therefore we can also write all the energy components

of Eq. 3.15 as functionals of the partition potential:

E[vp] = Ef [vp] + Ep[vp] (3.16)

Assuming that the density is ensemble v-representable, the Hohenberg-Kohn theorem

indicates that if we find the minimum of the total energy with respect to vp(r) then

the corresponding density nf (r) must be equal to the correct total density of the

fully-interacting system, n(r).

Variation of the total energy with respect to the partition potential gives us a new

Euler equation:
0 = δE

δvp(r)

=
∑

α

δEα

δvp(r)
+ δEp

δvp(r)

(3.17)

Let us consider first the first term, which we expand by using the chain rule:

∑
α

δEα

δvp(r)
=
∑

α

∫ (
(1 − να) δEvα

δnpα(r′)
δnpα(r′)
δvp(r)

+ να
δEvα

δnpα+1(r′)
δnpα+1(r′)

δvp(r)

)
d3r′

(3.18)
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Because each of the npα comes from the solution to Eq.(3.10) we can write Eq. (3.18)

as:

∑
α

δEα

δvp(r)
=
∫

(µm − vp(r′))
∑

α

(
(1 − να)δnpα(r′)

δvp(r)
+ να

δnpα+1(r′)
δvp(r)

)
d3r′ (3.19)

Using our definition of nf (r) we find that the first term becomes
∫
(µ−vp(r′)) δnf (r′)

δvp(r) d3r′.

Because variation of the partition potential will only induce norm-conserving changes

in nf (r), the integral over the constant term µ vanishes, and therefore:

∑
α

δEα

δvp(r)
= −

∫
vp(r′)δnf (r′)

δvp(r)
d3r′ (3.20)

Now we may consider the second term of Eq. 3.17. Cohen and Wasserman established

that there is a one-to-one mapping between nf (r), the sum of fragment densities

minimizing Ef [{nα}], and the partition potential, vp(r) [22]. This indicates that

nf (r) is a functional of vp(r) allowing us to use the chain rule to expand the functional

derivative of Ep:

δEp

δvp(r)
=
∫ ∫ ∑

α

∑
x=0,1

δEp

δnpα+x(r′′)
δnpα+x(r′′)

δnf (r′)
δnf (r′)
δvp(r)

d3r′d3r′′ (3.21)

Combining Eqs. 3.20 and 3.21, we see that the only way to ensure the Euler equation

will always be satisfied for arbitrary δvp(r) is if:

vp(r) =
∫ ∑

α

∑
x=0,1

δEp

δnpα+x(r′)
δnpα+x(r′)

δnf (r)
d3r′ (3.22)

or,

vp(r) =
∫ ∑

α

∑
x=0,1

vp,α,x(r′)Qα,x(r′, r)d3r′ (3.23)

where the fragment-dependent partition potential and Q-functions are given by:

vp,α,x(r) = δEp

δnpα+x(r)
(3.24)
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Qα,x(r′, r) = δnpα+x(r′)
δnf (r)

(3.25)

The Q-functions must satisfy the sum-rule:

∑
α

∑
x=0,1

Qα,x(r′, r) = δ(r′ − r) (3.26)

3.3 Local-Q approximation

The Q-functions represent the way in which the fragment densities respond when

a small variation, δnf , is made to the molecular density. Some of this variation in

density will be distributed to each component of each fragment ensemble. These

functions are not known as explicit density functionals and in practical calculations

these functions may be approximated using the local-Q approximation [23]:

Qlocal
pα,x(r′, r) = npα,x(r)

nf (r)
δ(r − r′) (3.27)

However, it is important to note that when the exact Ep functional is used, either

through inversion [2] or through use of the exact kinetic energy density functional

(known only in limiting cases), then the choice of Q-function approximation is irrele-

vant as long as the sum rule of Eq.(3.26) is satisfied. This is due to the interesting fact

that in these cases, at convergence, the functional derivative of the partition energy

with respect to any of the fragment densities is exactly the same.

In cases where approximate non-additive functionals are used to construct the parti-

tion energy functional then using the local-Q approximation may restrict the partition

potential, leading to densities that are not necessarily optimal with respect to the to-

tal energy. A potential functional formalism such as the one described by Huang and

Carter [24] will avoid this issue and yield the optimal global partition potential.
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We can use simple numerical models to check the validity of the local-Q approxi-

mation, Eq.(3.27). For example, we use a double well potential with N = Na + Nb

non-interacting electrons:

v(x) = −Za cosh(x + R/2)2 − Zb cosh(x − R/2)2 , (3.28)

placing Na electrons on the left (a) and Nb electrons on the right (b). In these cases

we calculate a target molecular density and corresponding chemical potential ahead

of time using a one-dimensional real-space grid. We then make a search over partition

potentials and directly optimize Eq. 3.9 as discussed in chapter 5.

For this model system we can easily find the numerically exact Q-functions in order

to compare with the local-Q approximation. In the following, we chose the values

of Za = Zb = 3 and Na = Nb = 3 and considered two values of the separation

between the wells, R = 3, 10. We found the corresponding molecular density and the

resulting fragment densities. Then, for small changes in the molecular density we

re-optimized the fragment densities and occupations. The results of these variations

yield the exact Q-functions. The exact Q-functions along with the corresponding

local-Q approximation are displayed in Figure 3.1. We note that at both separations

the local-Q approximation accounts for nearly all of the exact Q-function. For R = 10,

the only non-local contribution resides close to the bond-midpoint where the fragment

densities are both very small.

3.4 Occupation Number Optimization

The occupation numbers are also be optimized to satisfy the PDFT requirement that

the sum of fragment energies is minimized. In general there are two possibilities

that may occur when Eq.(3.9) is optimized with respect to the occupations numbers,

{Nα}. The first possibility is that there will be a minimum of G at a non-integer

value of one or more of the Nα. In this case we can find the stationarity condition
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Figure 3.1. Numerically evaluated Q-functions, Qb(x′, x) =
δnb(x′)/δnf (x), for one-dimensional non-interacting electrons (no ensem-
bles are needed when calculating fragments for non-interacting electrons).
The top row consists of calculations for the separation R = 3 and the bot-
tom row is for separation R = 10. The left column shows the numerically
exact Q-function, the right column is the local-Q approximation. Note
that the local-Q approximation works well in both cases, but actually
improves at the larger separation.

by taking the derivative of G with respect to the non-integer part of the occupation

number, να.

0 = ∂G

∂να

=Eα[npα+1] − Eα[npα ] +
∫

vp(r)(npα+1 − npα) − µm

=µα − µm

(3.29)

Here we have defined a chemical potential for each fragment in a molecule and we

see that because µm is a global quantity, all of these fragment chemical potentials

must be equal [22]. It is important to note that the chemical potential derived from

PDFT fragment energies will be different from those defined by Subsystem-DFT
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and FDET, where fragment energies may be defined differently than in PDFT. The

notable difference is that in Subsystem-DFT and FDET the electron-nuclear energy

is not split into fragment and non-additive pieces, and instead each fragment energy

includes the interaction between the fragment density and all of the nuclei, rather than

just a subset of nuclei assigned to a fragment. This difference in fragment energy has

the effect that, in general, chemical potentials within Subsystem-DFT and FDET are

equalized even at fixed integer occupation numbers [25–27].

Within PDFT it is also possible for there to be no minimum at non-integer values.

In this case the occupation numbers will be locked into integer values and there will

not necessarily be chemical potential equalization between the fragments. We will

explore these two possibilities in the next section.

The partition potential and occupation numbers may be simultaneously optimized to

find the extrema of the functional of Eq. 3.9. The first derivative with respect to

the occupation numbers is given in Eq. 3.29, and its second derivative is zero. The

cross derivatives with respect to occupation numbers and the partition potential are

identified as the fragment Fukui functions:

∂

∂να

δG

δvp(r)
= fα(r) = npα+1(r) − npα(r) (3.30)

3.5 Charge transfer between fragments

In cases where the optimized occupation numbers are not integers, some charge has

transferred from one fragment to another. The PDFT occupation numbers can then

serve as a method of population analysis. We use our one-dimensional PDFT solver to

study how electrons are transferred between fragments. Placing a total of Na+Nb = 4

electrons in the potential of Eq.(3.28), we vary the strength of the well in fragment a

from Za = 1 to Za = 6 while fixing Zb = 3. This effectively tunes the electronegativity
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of fragment a. As we make the well deeper, some of the charge transfers from fragment

b to fragment a.

As a measure of the difference in electronegativity we look at the difference in the

chemical potential of the isolated fragments. The negative of the chemical potential

has been identified with the electronegativity [28, 29]. We can then observe how

this difference in chemical potential in the isolated fragments affects charge transfer

between fragments in the molecule.
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Figure 3.2. Charge transfer between fragments as a function of difference
in chemical potential of the isolated fragments. The chemical potential
difference is µ0

b − µ0
a. When this difference is above one then charge trans-

fers to fragment a, and when it is below negative one charge transfers in
the opposite direction. Between about -1 and 1 no charge transfer takes
place due to a cusp in G with respect to particle number.

The results, displayed in Figure 3.2, indicate that the fragment occupations are locked

into integers until the absolute difference in chemical potential is greater than a value
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close to µ0
b −µ0

a = 1. In this region the infimum of G has a cusp at Na = 2 and Nb = 2

which means that there is no minimum in between integers and the fragment chemical

potentials cannot equalize. In the two outer regions, charge is transferred between

the fragments and the fragment chemical potentials are equalized. See reference [3] or

chapter 8 of this dissertation for further discussion of chemical potential equalization

in PDFT.
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Figure 3.3. Fragment densities with various occupation numbers. The left-
hand column has plots of the density and the right hand column displays
the log of the densities. The first row is for occupation values: Na =
3 and Nb = 1 the second row is for occupation values Na = Nb = 2.
The last row uses occupation numbers of Na = 2.2469 and Nb = 1.7531,
the optimized PDFT occupations. This illustrates that the optimized
fragment occupations yield the most localized fragments. It also shows
that when chemical potential equalization is reached, the fragments all
have the same asymptotic behavior.

For any of these potentials we can also fix the occupation numbers to arbitrary val-

ues, provided Na + Nb = N . In Figure 3.3 we compare occupation numbers fixed

at integers with the optimized PDFT occupation numbers. We considered the cases

where Za = 5.5 and Za = 3.0 with two choices for fixed occupation numbers (Na = 3

and Nb = 1 as well as Na = Nb = 2). The optimized PDFT occupation numbers

are Na = 2.2469 and Nb = 1.7531. As in previous studies of PDFT [30], regardless
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of the choice for occupation numbers we were always able to to find a global parti-

tion potential satisfying the constraint nf (r) = n(r). When the PDFT occupation

numbers are used, the chemical potentials of all fragments are identical, but when

occupation numbers are fixed, the chemical potentials do not equalize. Because the

PDFT chemical potentials control the exponential tails of the fragment densities, this

equalization (or lack of) can be seen in the log of the density (plotted in the second

column of Figure 3.3). In the first two rows of plots, which correspond to fixed oc-

cupation numbers, the fragment densities decay at different rates while the PDFT

occupation numbers lead to densities that decay at exactly the same rate. This dif-

fers from fragment chemical potentials in Subsystem-DFT and FDET which, due to

differences in definition for the fragment energy, do not control the exponential tails

of the corresponding fragment densities [27].

We also see that the PDFT occupation numbers lead to fragment densities that

are much more localized, resulting in a smaller overlap between fragments. This has

important implications for calculations using approximate non-additive kinetic energy

functionals, when it is preferable to have as little overlap as possible, as large errors

are associated with regions of large overlap [31]. By reducing the regions of overlap

between fragments, we reduce the dependence on these approximate (non-interacting)

kinetic energy functionals.

3.6 Singularities in the exact partition potential

We now derive an exact condition that the partition potentials must satisfy. The pres-

ence of singularities in the external potential leads to cusps in the molecular density.

These cusps in turn lead to singularities in the partition potential at the location of

the singularities of the external potential. If we consider Coulomb potentials, −Z/r,

then the strength, Za
vp

, of the singularity in the partition potential at the point ra is

proportional to the ratio of fragment densities at the same point.
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To derive the condition we start with Kato’s cusp condition [32] for the molecular

density due to a singularity in the external potential Za
ext at the point ra:

∂

∂r
[n̄f (r)]|r=0 = −2Za

extnf (r)|r=ra (3.31)

Here, n̄f (r) is the spherical average of the density a distance r away from ra. In

PDFT the total density, nf (r), is the sum of the fragment density, na(r), and all

the other fragments, nother(r). The fragment a is the fragment whose potential va(r)

contains the singularity from the external potential. Because the partition potential is

global, both na(r) and nother(r) must also satisfy cusp conditions with their effective

potentials at point ra. Fragment a contains the singularity in question plus any

singularity from the partition potential:

∂

∂r
[n̄a(r)]|r=0 = −2(Za

ext + Za
vp

)na(r)|r=ra (3.32)

The other fragments live in an effective potential which, at the point ra, only contains

singularities due to the partition potential:

∂

∂r
[n̄other(r)]|r=0 = −2Za

vp
nother(r)|r=ra (3.33)

Since the derivatives and spherical averaging are linear operations, we can combine

Eqs. 3.31-3.33 to get:

Za
ext[na(r) + nother(r)]|r=ra = Za

vp
nother(r)|r=ra + (Za

ext + Za
vp

)na(r)|r=ra (3.34)

which leads directly to:

Za
vp

= Za
ext

nf (r) − na(r)
nf (r)

|r=ra = Za
ext

nother(r)
nf (r)

|r=ra (3.35)
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It can be shown that this singularity is contained entirely in the potential-energy

contribution to the partition potential when using the local-Q approximation. The

potential energy component of the partition energy is:

V nad
nuc =

∫
nf (r)vext(r)dr −

∑
α

∫
nα(r)vα(r)dr =

∑
α ̸=β

∫
nα(r)vβ(r)dr (3.36)

The functional derivative of this quantity with respect to a fragment nα is simply∑
β ̸=α vβ(r), so the contribution to the partition potential due to this portion of the

partition energy is:

vnad
nuc (r) =

∫ ∑
α

∑
β ̸=α

vβ(r′)Qα(r′, r)d3r′ (3.37)

Plugging this result into the local-Q approximation of Eq.(3.27), we find

vnad
nuc (r) =

∑
α

∑
β ̸=α

vβ(r)nα(r)/nf (r) (3.38)

If we consider the contribution from a single fragment potential which contains a

singularity, we can see that the local-Q approximation satisfies Eq.(3.35). This effect

can be seen in the partition potentials of Figure 3.4, most notably in the cases of

H+
2 and H2 where the fragments are relatively close together, and thus the ratio of

nother(r) to nf (r) is larger.
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Figure 3.4. Plots of the partition potential along the bond axis for H+
2 ,H2,

He2, Li2, and Be2. The location of the nuclei can be identified from the
small singularity features in the partition potential. This agrees with Eq.
3.35, as the equilibrium distances are larger for Li2 and Be2, so the density
from one fragment in those cases is very small at the location of the other
nucleus. For the case of He2, the density of each fragment is so small at
the location of the other nuclei that the corresponding singularity in the
partition potential is not visible in this plot.
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4. Context in Fragment-Based DFT

This section contains work from the review article entitled ‘Density-Based Partitioning

Methods for Ground-State Molecular Calculations’ written by the author and Adam

Wasserman published in the Journal of Physical Chemistry A. [1]

4.1 Atoms-In-Molecules

Chemistry relies heavily on the idea that atoms do not entirely lose their identity

when they come together to form molecules. Atoms and functional groups within

different molecules behave in similar ways. However, quantum mechanics provides no

convenient demarcation to establish which electrons belong to which fragment within

a molecular context. In order to build chemical models we would very much like to

know how we can expect atoms and functional groups within molecules to behave in

different chemical contexts, and how the molecular environment changes and deforms

them. In order to pursue this question it is helpful to provide a definition of what is

meant by an atom within a molecule. Density-Functional Theory (DFT) gives us one

possibility for keeping track of such changes. For a given molecular system we can

divide its total electronic density, n(r), into atomic or fragment densities, nα(r). The

question is then how to define the density of each fragment such that the fragment

densities sum to the total electronic density,

∑
α

nα(r) = n(r) (4.1)

There are obviously many sets of fragment densities that may satisfy this equation,

but is there an optimal way to choose them? We certainly have some intuition about



34

how we would like atoms-in-molecules to behave. Some features of isolated atomic

densities should be shared. We would expect the fragments to be well localized

spatially, and we would like them to decay monotonically with distance from the

nuclei. These ideas suggest a definition that looks for similarities to the density of

the isolated species.

Many possibilities exist, and as pointed out by Parr, Ayers and Nalewajski [33] the

choice is necessarily ambiguous since no experiment can distinguish one choice as more

correct than any other. In that paper they advocated for the use of the Hirshfeld

or stockholder partitioning [34] of atoms-in-molecules, but they pointed out that

various other choices may be better suited in certain circumstances. The Hirshfeld

or stockholder fragment densities are given by:

nα(r) = n0
α(r)∑

α n0
α(r)

n(r) , (4.2)

where n0
α(r) is the density of the isolated α-fragment. Nalewajski and Parr showed

that this definition of atoms-in-molecules yields fragments that are most similar to the

isolated atoms according to an information theory measurement called the Kulback

Liebler information distance [35].

Another way to achieve similarity with the isolated atomic species is to follow the

suggestion by Parr et al. [28, 36], that atoms-in-molecules be defined as the set of

fragment densities which have equal chemical potential and minimum promotion en-

ergy from their ground state. They defined the promotion energy as the difference in

energy of the atomic fragments when they are in the molecule as compared to when

they are isolated. Thus, the promotion energy is a measure of the extent to which the

isolated atomic densities must be deformed in order to satisfy the condition that all of

the fragment densities add up to the correct molecular density. This minimization of

fragment energies is also used in the Partition Theory of Cohen and Wasserman [37],

forming a basis for Partition Density-Functional Theory (PDFT) [23, 38]. Palke [39]

and Guse [40] both developed algorithms and performed calculations to find the
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atoms-in-molecules defined by Parr et al. for the hydrogen molecule and its positive

ion. Guse’s method has some similarities with the algorithms of PDFT (the details

of which are explained in chapters 3 and 5 ).

The Hirshfeld or stockholder definition of atoms-in-molecules has strong parallels

with the definition of Parr et al., since both are based on a minimization principle.

Rather than minimizing the energy difference between isolated atoms and the atoms

in their molecular environment, the Hirschfeld partitioning minimizes the information

distance between the two.

Also well known are Bader’s atoms-in-molecules [41, 42]. These are based on the

topology of the molecular density. The fragments are non-overlapping pieces of the

total density, divided by boundaries where the gradient of the density normal to the

boundary surface is zero. Bader’s quantum theory of atoms-in-molecules (QTAIM)

contrasts strongly with the proposed definition of both Hirschfeld and Parr et al. be-

cause Bader’s QTAIM fragments have sharp discontinuities and are non-overlapping,

whereas the other two fragment definitions lead to smooth fragment densities that may

overlap one another. From a density-functional viewpoint, the fragments of Parr et

al. are attractive because, as can be shown, each fragment density is v-representable.

Zhang and Wasserman studied the transferability of these fragment definitions and

found that the method based on energy minimization led to the best transferability,

at least in simple model systems [43].

On the other hand, Bader severely critiqued the promotion-energy definition of atoms-

in-molecules. He argued that QTAIM fragments are based on firm foundations of

quantum mechanics and Schwinger’s principle of stationary action, while the atoms

of Parr et al. are based on an arbitrary definition for the minimum promotion energy

[44,45]. The energies of each fragment in Bader’s method add directly to the energy of

the system, while with the atoms of Parr et al. only the densities are additive while the

energy contains non-additive contributions. In other words, Parr et al. use fragments

that are fictitious systems, not actually tied to the reality of quantum mechanics.
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Nevertheless, DFT regularly makes use of another equally fictitious system with great

success (KS electrons), so we see little merit in Bader’s argument.

4.2 Fragment-based density-functional methods

In addition to its use as an interpretive tool in chemistry, the division of the density

into fragments has also been used as a practical tool in electronic structure calcula-

tions. Gordon and Kim in 1972 [46] essentially used Eq. 4.1 to construct the molecular

density of rare-gas dimers from isolated atomic Hartree-Fock densities. They made

non-self-consistent calculations based on the assumption that the density of the dimer

was not significantly changed from superimposed atomic densities. They then used

density functionals based on the electron gas to estimate the relevant binding energy

curves. Other workers added corrections to account for self-interaction errors [47,48]

and to include induction effects and dispersion forces [49]. For an early review on the

Gordon-Kim model see ref [50]. Vela, Cedilla, and Gazquez [51] made the connection

between calculations of Gordon and Kim and the atoms-in-molecules of Parr et al.

Self-consistent versions of the Gordon-Kim model were not far behind. Senatore

and Subbaswamy were the first in 1986 [52] and in the early 1990’s several general

methods were developed which can be seen as self-consistent versions of the Gordon-

Kim model. Cortona [53], Wesolowski and Warshel [54] and Boyer and Mehl [55]

all developed formalisms for fragment-based DFT calculations. The starting point

is the same for all these methods. The total electronic energy, E, is understood as

a functional of the set of fragment densities {nα(r)}. It is divided into fragment

contributions as:

E[{nα}] = Vnuc[n] + EH[n] + EXC[n] +
∑

α

Ts[nα] + T nad
s [{nα}] (4.3)

In Eq.(4.3), Vnuc, is the electron-nuclear energy, EH is the Hartree energy, EXC is the

exchange-correlation energy, Ts is the non-interacting kinetic energy, and T nad
s is the
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non-additive non-interacting kinetic energy. This last term is simply the difference

between the kinetic energy functional evaluated for the sum of fragment densities and

the sum of energy functionals evaluated for each of the fragment densities:

T nad
s [{nα}] = Ts[n] −

∑
α

Ts[nα] (4.4)

This rewriting of the total energy is of course still in principle exact as long as Eq.(4.1)

is satisfied. However, in practical calculations, the non-additive kinetic energy term

may be evaluated using approximate functionals while fragment kinetic energies may

be calculated using KS orbitals. This is precisely the method of Gordon and Kim,

except that the fragment densities were not calculated self-consistently. Allowing the

calculations to be done self-consistently was an important step forwards.

Cortona in 1991 [53] performed calculations for a non-magnetic crystal with fragment

densities centered at each lattice point. The non-additive kinetic energy was approx-

imated using the Thomas-Fermi functional, and the fragments were approximated as

spherically symmetric. Cortona used the method to perform calculations for NaCl

and KCl, treating all the atoms in the crystal lattice as separate fragments, and find-

ing the total energy by minimizing it with respect to each of the fragment densities.

All of the fragments in Cortona’s calculation reach self-consistency and subsequent

calculations in which all fragments are fully relaxed and self-consistent are commonly

referred to as Subsystem-DFT [56].

In 1993 Wesolowski and Warshel [54] developed frozen-density embedding theory

(FDET). They considered initially a two-fragment system where one fragment was a

solute molecule and the other fragment was its solvent. Rather than self-consistently

relaxing both fragment densities, the larger solvent fragment was frozen as an ap-

proximation, and allowed to create an effective potential for the solute, which was

found self-consistently. FDET may also be made completely self-consistent by using

freeze-thaw cycles in which the fragment being held frozen is alternated. In this case

Subsystem-DFT and FDET become equivalent because they use the same underlying
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equations, the Kohn Sham equations for constrained electron density (KSCED, see

Sec. 4.3 below). These methods have been used for studying many systems including

spectroscopy of complex systems and solvatochromatic shifts [57–60]. For recent re-

views of Subsystem-DFT and FDET calculations there are several excellent reviews

available [56, 61,62].

Govind et al. in 1998 [63] developed a method to embed different levels of calculation

into a DFT calculation. The method uses the ideas of Wesolowski and Warshel and

Cortona, except that one of the subsystems may be treated with a more accurate

wavefunction method. The wavefunction method is used to calculate the energy

and density of a chosen subsystem in the presence of the embedding potential that is

generated from DFT calculations on the other fragments. This allows specific parts of

a larger DFT calculation to be treated with higher accuracy. This method is usually

referred to as Embedding-DFT. See the review of Huang and Carter for a more in

depth account of this method [64].

The self-consistent atomic deformation theory (SCAD) of Boyer, Mehl and coworkers

[55,65–69], which was also developed in 1993, can be viewed as a version of Subsystem-

DFT requiring that fragment densities be written as atomic densities. Also, although

it is not the focus of the present article, there are also time-dependent versions of

fragment-based DFT [70–75].

4.3 Fragment self-consistency within Subsystem-DFT and FDET

In order to calculate fragment densities in within Subsystem-DFT and FDET men-

tioned in the previous section, the total energy of Eq. 4.3 is minimized by allowing

each fragment density to vary subject to the constraint that it is normalized to an in-

teger number of electrons, which are then said to belong to that fragment. As we shall

see, this leads to an embedding potential for each fragment. In FDET this potential

is updated for one fragment at a time leaving the other fragments frozen, while in
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Subsystem-DFT all fragment embedding potentials are updated simultaneously. The

minimization leads to an Euler equation for each fragment:

0 = δE[{nα}]
δnα(r)

− µα (4.5)

µα = δTs[nα]
δnα(r)

+ δT nad
s [{nα}]
δnα(r)

+ vnuc[n](r) + vH[n](r) + vXC[n](r) (4.6)

where the potentials are the functional derivatives of the energy terms in Eq.(4.3).

The lagrange multiplier, µα, enforces the constraint that fragment α has Nα electrons.

It is also referred to as the chemical potential of fragment α.

We then assume that each fragment density has an auxiliary Kohn-Sham system

of non-interacting electrons with identical density [19]. This leads directly to the

fragment Kohn-Sham equations with constrained electron density (KSCED) [53, 54,

76]:

{−1
2

∇2 + vKSCED
α [nα](r)}ϕi,α(r) = ϵi,αϕi,α(r) (4.7)

where the KSCED potential, vKSCED
α , is given by

vKSCED
α [nα](r) = δT nad

s [{nα}]
δnα(r)

+ vnuc[n](r) + vH[n](r) + vXC[n](r) (4.8)

The last three potential terms simply constitute the KS potential for the entire molec-

ular system. These equations form the basis for both FDET and Subsystem-DFT.

The KSCED potential may divided further into fragment and non-additive terms as

will be explored in Sec. 4.5.

4.4 Non-uniqueness of solutions of the exact KSCED equations

If T nad
s and its functional derivatives are calculated exactly, these equations will ex-

actly reproduce a given KS calculation performed on the whole system. We refer to

this as an “exact solution to the KSCED equations”, but it should be noted that this
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does not mean that the results would exactly reproduce the fully interacting system,

unless of course the exact XC functional is used.

It is known that the exact solution to the KSCED equations is not unique. We show

below that in fact any set of non-interacting v-representable densities, {nα}, satisfying

Eq. 4.1, will necessarily be a solution to the KSCED equations. This indicates that

with the exact functional for T nad
s , a self-consistent solution to Eqs. 4.7-4.8 yields

different results dependent on the choice of initial fragment densities and the method

of convergence.

Interestingly, this non-uniqueness disappears when employing an approximation for

T nad
s . In such case, sets of fragment densities summing to the same total density

will not have the same total energy, and because the total energy is minimized, the

KSCED equations will yield the set of fragment densities that minimizes the error

due to the approximate non-additive kinetic energy functional employed. It has been

observed that local and semi-local approximations for the non-additive kinetic energy

lead to fragments that reduce their mutual overlap [77, 78]. Each approximation

to T nad
s results in a unique set of fragment densities and fragment potentials which

together satisfy the KSCED equations.

Non-unique potentials corresponding to the exact T nad
s are illustrated in Figure 4.1,

where we compare the embedding potentials and densities obtained for the helium

dimer using two different methods of convergence, the freeze-and-thaw cycle [76] and

simultaneous relaxation [53]. In both cases the densities of the isolated fragments

were used as the initial guess, but the fragment densities at convergence are clearly

different for the two convergence methods. The total energy and density from both

is the same, despite ending with differing sets of fragment densities. This occurs

whenever the non-additive terms match exactly the corresponding fragment energy

terms. In this case, the total energy will be identical for any set of fragment densities

that add up to the same total density.
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Figure 4.1. Exact embedding potentials for the helium dimer. The two
helium atoms are placed at x = ±3 and labeled as left (nucleus at x = −3)
and right (nucleus at x = +3). The top and bottom figures show different
methods for converging the calculation. In the top frame the embedding
potentials are iterated simultaneously while in the bottom frame freeze-
and-thaw cycles are applied to reach self-consistency. For each of these
sets of potentials the exact total energy and exact molecular density are
recovered, although the fragment densities are different in each case.

Unique potentials from approximate T nad
s can be seen in Figure 4.2, where the simplest

approximation for T nad
s , the Thomas-Fermi approximation [17,18], is used. In this case

both freeze-and-thaw and simultaneous relaxation yield the same fragment densities

and fragment embedding potentials, whereas in the exact case (Figure 4.1) they gave

different results. We plot the log of the density to show that the fragment densities

have very small cusps at the location of the other nuclei.

To show the non-uniqueness of the exact KSCED equations we start by identifying the

functional derivative of the non-additive kinetic energy. If the fragment densities are
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Figure 4.2. Approximate embedding potentials for the Helium dimer using
the Thomas-Fermi (TF) approximation of T nad

s . The two monomers are
placed at x = ±3 and labeled as left (nucleus at x = −3) and right
(nucleus at x = +3). The left two plots show the solution to the KSCED
equations which is unique for the TF approximation, but the potentials
are not global meaning there is a different embedding potential for each
fragment. The right two plots show results from PDFT using the local-Q
approximation, where there is a global partition potential shared by each
fragment. In each case the log of the fragment densities are plotted above
the corresponding embedding potentials. Both cases are compared with
the exact partition potential (solid black) which is unique and global.

non-interacting v-representable (nα is a ground-state density for Nα non-interacting

electrons in the potential vnα) then we write down the Euler equation for a system of

non-interacting electrons corresponding to density nα:

δTs[nα]
δnα(r)

+ vnα(r) = µα (4.9)

Also, the molecular Euler equation with chemical potential µm reads:

δTs[n]
δn(r)

+ vnuc[n](r) + vH[n](r) + vXC[n](r) = µm (4.10)
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These two expressions can be combined to find the functional derivative of the non-

additive kinetic energy:

δT nad
s [{nα}]
δnα(r)

= µm − µα + vnα(r) − vnuc[n](r) − vH[n](r) − vXC[n](r) (4.11)

Note that for approximate T nad
s this equality does not hold, but for the exact case we

can plug Eq.(4.11) into Eq.(4.8) to obtain:

vKSCED
α [nα](r) = µm − µα + vnα(r) (4.12)

Since µm−µα is just a constant, the new KSCED potential for fragment α is equivalent

to vnα(r) which is exactly the potential needed to produce the fragment density nα.

Thus, provided T nad
s is exact, we have shown that any arbitrary set of non-interacting

v-representable densities that satisfy ∑
α nα(r) = n(r) is a solution to the KSCED

equations.

In this way we see that the nature of the KSCED equations with approximate non-

additive functionals differs qualitatively from that of exact non-additive functionals;

in the first case there is a unique solution, while in the second there are many. Non-

uniqueness in the exact case is an important consideration because several methods

have been developed to perform calculations with the exact KSCED equations using

OEP-like techniques. [2, 24, 25, 61, 79–82]. While computationally expensive, these

techniques can be used as a benchmark to compare with calculations using approx-

imate T nad
s functionals. To this end it would be ideal to have a method known to

provide a unique solution when using the exact non-additive functionals. In the next

section we explore how to achieve unique solutions, even in the exact case.
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4.5 Paths to Uniqueness

Uniqueness has been achieved from two directions. First, through the development

of Partition Density-Functional Theory (PDFT) [23,38] in 2010, based on the earlier

Partition Theory [37], and second through a reformulation of Embedding-DFT by

Huang, Pavone and Carter in 2011 [24,82]. In both cases the key to ensuring unique-

ness of the fragment densities is a global embedding potential. While each fragment

density in standard Subsystem-DFT is independently varied to minimize the total

energy, the requirement that some portion of each fragment’s effective potential is

global (i.e. the same for all fragments) constrains the solution to be unique. This

does not mean that each fragment KS system sits in the same potential (although

this would clearly lead the unique set of fragment densities that are all identical), but

instead just the part of each fragment’s effective potential which depends on other

fragment’s densities is identical for all fragments. Cohen and Wasserman proved that

there is a one-to-one mapping between this type of global one-body potential, shared

by all fragments, and the corresponding set of fragment densities [22]. Both PDFT

and the method of Huang, Pavone and Carter rely on this theorem to ensure the

uniqueness of the fragment densities.

The first step in both of these developments is to define the energy associated with

each fragment. In other words, each piece of the energy in Eq. 4.3 must be divided

into additive contributions from the fragments and non-additive contributions from

the interaction:

E[{nα}] =
∑

α

Eα[nα] + Eint[{nα}] (4.13)

This partitioning leads to a definition of fragment energies and a corresponding in-

teraction energy. The interaction energy is defined as the quantity which makes Eq.

4.13 exact, but it can also be written as a sum of non-additive functionals:

Eint[{nα}] = T nad
s [{nα}] + Enad

H [{nα}] + Enad
xc [{nα}] + V nad

nuc [{nα}] (4.14)
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In order to do make this division the external potential, vnuc(r), is divided into frag-

ments vα
nuc(r). This can be done arbitrarily as long as the fragment potentials sum

to the total external potential. There are a few subtle differences between the PDFT

and Huang-Pavone-Carter definition of fragment energies, as we will mention later.

Huang, Pavone and Carter continue the derivation along the same lines as Subsystem-

DFT, by minimizing the total energy with respect to fragment densities. The cor-

responding KSCED potentials are then divided into contributions from the local

fragment and a term arising from the interactions between the fragments:

vKSCED
α [nα](r) = vα

eff [nα](r) + vα
emb[{nα}](r) (4.15)

The first potential, vα
eff , depends just on the fragment density,

vα
eff [nα](r) = vα

nuc(r) + vα
coul[nα](r) + vα

XC[nα](r) (4.16)

while the embedding potential, vα
emb, depends on all the other fragment densities:

vα
emb[{nα}](r) =

∑
β ̸=α

(vβ
nuc(r) + vβ

H[nβ](r)) + vnad
XC [{nα}](r) + vnad

kin [{nα}](r) (4.17)

Huang, Pavone and Carter then impose the additional constraint that this embedding

potential must be the same for all fragments [82]. In a later paper, they formulate

the embedding problem as a potential functional of this global embedding potential

[24]. The globality of the embedding potential ensures that the fragments are unique

through the theorem of Cohen and Wasserman [22].

PDFT [23,38,83] takes a slightly different route. Rather than directly minimizing the

total energy, the sum of fragment energies (first term of equation 4.13), is minimized

subject to the constraint that the sum of fragment densities is equal to the molecular

density. This minimization of fragment energies guarantees the uniqueness of the
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fragment densities and the globality of the embedding potential, due to the same

theorem [22].

This slightly different route will still lead to the exact ground state energy of the

molecular system given the same assumptions made in the more general case of

Subsystem-DFT. The KSCED equations will lead to fragments which sum to the

exact molecular density as long as the molecular density is non-interacting pure

state v-representable and it is decomposable into fragment densities which are non-

interacting pure state v-representable [84]. These requirements apply to PDFT as

well, except that the fragment densities in PDFT need only be non-interacting en-

semble v-representable. Additionally, in both the formulation of reference [24] and

in PDFT there is the requirement that there exists a global embedding potential

which is added to the external potential of all fragments. The proof of Cohen and

Wasserman establishes the existence and uniqueness of this global potential [22].

4.6 Connection to Subsystem-DFT

In the formalism of Huang, Pavone, and Carter [82], the connection to Subsystem-

DFT is clear: an additional constraint forces the fragment embedding potentials to

be identical. In PDFT, it is the Q-functions which allow us to connect to Subsystem-

DFT calculations. The fragment contributions to the partition potential, vp,α,x(r),

given in Eq.(3.22), are closely related to the embedding potentials of Subsystem-

DFT or FDET. However in PDFT calculations these fragment contributions to the

partition potential are averaged together using the Q-functions to obtain a global

vp. In this way any code capable of performing Subsystem-DFT calculations could

use the local-Q functions to average the embedding potentials for each fragment and

obtain the unique partition potential for a PDFT calculation. Thus the Q-functions

provide a bridge between Subsystem-DFT calculations and PDFT calculations. This
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averaging has interesting features that may help address some issues encountered with

approximate Subsystem-DFT embedding potentials, as indicated next.

Examining Eq. 4.17, we see that the embedding potential for a given fragment has

attractive Coulomb singularities at the nuclei belonging to all other fragments. Jacob

et al. showed in 2007 that the exact non-additive kinetic energy potential cancels

these contributions in the limit of large separation between fragments [85]. However,

approximate non-additive kinetic energy potentials do not cancel these singularities

and leave significant Coulomb attraction near nuclei from other fragments. This is

illustrated in Figure 4.3 for the helium dimer by decomposing the embedding po-

tential for one fragment into its kinetic, nuclear, hartree, and exchange-correlation

components. The figure shows the components of the embedding potential for the

left fragment centered at x = −3 bohr, but it shows them near the right fragment,

centered at x = +3 bohr. In the top frame, the components of the embedding poten-

tial are calculated exactly while in the bottom frame the Thomas-Fermi functional

is used for the kinetic component. In the exact case, the large components of the

embedding potential nearly cancel out leaving an embedding potential which in the

case of He2 varies on the order of 10−2 hartree. On the other hand, the potential

from the approximate kinetic energy functional cannot balance the other components

in the region of the non-active fragment, and as a result there is a relatively large

singularity in the embedding potential at the location of the non-active nuclei.

In purely electrostatic embedding this can lead to orbitals from fragment α localizing

at the nuclei from other fragments (known as the electron leak problem), but it has

been shown that this does not happen in Subsystem-DFT [86]. In Subsystem-DFT,

the non-additive kinetic energy potential provides enough repulsion at these nuclei so

that occupied orbitals do not localize. However, unoccupied orbitals could localize at

those points, with implications for fragment-based linear response [73].

Jacob et al. [85] and Lastra et al. [87] both proposed non-decomposable approxima-

tions to the embedding potential to correct this problem. These non-decomposable
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Figure 4.3. Comparison of the components of an embedding potential
in the region of the non-active fragment. The total is in solid black,
the potential energy component is in dashed green, the kinetic energy
component is in dot-dash blue and and the XC component is in dotted red.
In the top figure the exact kinetic energy is used, while in the bottom the
Thomas Fermi kinetic energy is used. In the top figure the kinetic energy
has a positive singularity which cancels a large portion of the potential
energies negative singularity so overall the embedding potential is fairly
flat. In the bottom figure the Thomas Fermi kinetic energy does not cancel
well with the negative singularity and as a result the embedding potential
is not accurate in this region.

approximations are ones for which the embedding potential can not be directly split

into two pieces, one coming from the molecule and the other coming from the frag-

ment. Jacob et al. proposed such an approximation that switches off the embedding

potential near the frozen nuclei in order to fulfill the exact limit they found [85],

and Fux et al. used this correction to improve the description of coordination bonds

in FDET calculations [88]. Lastra et al. also proposed an approximation based on

switching, but instead focused correcting just the kinetic contribution to the embed-

ding potential in two-fragment cases where one fragment is negligible and the other

fragment contains two electrons [87]. An attractive feature of PDFT is that the Q-
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function averaging of Eq.(3.22), even within the local-Q approximation of Eq.(3.27),

leads to fragment effective potentials that have the correct behavior at the location

of nuclei in other fragments, according to the formula derived in Sec. 3.6.
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Figure 4.4. Comparison of exact vs. Thomas-Fermi (TF) approximations
for Subsystem-DFT and PDFT for the Helium dimer. The two monomers
are placed at x = ±3 and we refer to these fragments as left (nucleus at
x = −3) and right (nucleus at x = +3). The solid black line is both the
exact partition potential and an exact embedding potential for the left
monomer (they are slightly different but indistinguishable here, but may
differ greatly as in Figure 4.1). The two dotted lines represent calculations
using the Thomas-Fermi kinetic energy functional. The dash dotted line is
the global TF partition potential and the dashed line is the TF embedding
potential for the left monomer.

Figure 4.4 compares partition and embedding potentials for the helium dimer. The

solid line shows the potentials obtained with the exact Ts[n]. When the exact func-

tional is used the partition potential is virtually indistinguishable from the two em-

bedding potentials of Subsystem-DFT (however, the embedding potentials are not

unique as discussed in Sec. 4.4). Figure 4.4 makes it clear that when the Thomas-

Fermi functional is used, the partition potential and the embedding potentials differ

significantly. The partition potential is global and therefore the same for both frag-

ments, while the embedding potential is different for both (Figure 4.4 shows it for the

left fragment, centered at x = −3 bohr).
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5. Algorithms

Several algorithms have been developed to perform PDFT calculations. Some these

algorithms are designed to yield the exact partition potential which reproduces a given

KS-DFT calculation. In general these algorithms involve solving an inverse problem

and are in general less computationally efficient than a standard KS-DFT calculation.

However they can provide useful insight into the behavior of the exact partition

potential and the exact fragment densities for comparison with approximations. In

this chapter we will discuss the various algorithms used for PDFT calculations in

this dissertation. We will start with the inversion-based algorithms which yield exact

partition potentials and then discuss the algorithms for use with approximations to

the partition energy.

5.1 Inversion Algorithms

Initial Guess for 

Calculate New 

Fragment 

Densities

Update 

Partition 

Potential

Converged?

Done

yes

no

Update 

Fragment 

Densities

Figure 5.1. Flow diagram of simple PDFT SCF cycle used in inversion
algorithms.
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All the algorithms described here use a basic SCF algorithm or at least a variation of

it as shown in figure 5.1. In many calculations in this dissertation simple linear mixing

is used between newly calculated fragment densities and the fragment densities from

the previous iterations.

ni
α(r) = βnα(r) + (1 − β)ni−1

α (r) (5.1)

Where β is a chosen parameter between 0 and 1. The primary difference between

the algorithms described here is in the ’Update Partition Potential’ step, where each

algorithm specifies a different choice for the δvp(r).

The conceptually simplest methods are achieved in cases where the molecular density

may be precomputed. This precomputed molecular density, nm(r), provides a target

density for the fragment densities. The partition potential is updated at each iteration

by simply comparing the sum of fragment densities with the target molecular density.

δvp(r) = γ(
∑

α

nα(r) − nm(r)) (5.2)

Here, γ must be a carefully chosen positive number. This algorithm may be under-

stood in very simple terms. In regions of space where the sum of fragments has higher

density than the target density the partition potential will increase and therefore push

density away from these areas in the next iterations and similarly in regions where

the fragment densities are less than the target density the partition potential will

decrease, thereby pulling more electron density into that region. As expected this

algorithms is slow and may not converge if γ is not well chosen. In particular, regions

with small density may converge extremely slowly.

An alternative update procedure is to use a scaled error:

δvp(r) = γ
(∑α nα(r) − nm(r))

nm(r)
(5.3)
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This works in a similar fashion to 5.2 but the asymptotic regions are given more

importance. This update procedure works better than the previous update procedure,

but still requires a carefully chosen parameter.

A more sophisticated update procedure is essentially a newton gradient-descent algo-

rithm and uses the linear response of the fragments to determine the update to the

partition potential.

δvp(r) =
∫

χ−1
f (r, r′)(

∑
α

nα(r′) − nm(r′))dr′ (5.4)

Where, χ is the response of the fragments to changes in the partition potential:

χp(r, r′) =
∑

α

nα(r)
vp(r′)

(5.5)

These fragment responses may be calculated from first order perturbation theory

using the occupied and unoccupied fragment orbitals [89]:

nα(r)
vp(r′)

= 2
occ.∑

i

unnoc.∑
j

ϕ∗
i (r)ϕa(r)ϕ∗

a(r′)ϕi(r′)
ϵi − ϵj

+ c.c. (5.6)

An alternative update procedure is used by Elliot et al. in 2010 [38] and Nafziger

et al. in 2011 [2] (also Chapter 7). Unlike the previous update procedures this one

does not rely on a precomputed density. The full derivation of the update formula

can be found in Elliot et al., but we briefly describe how it works. At each step,

k, the current guess for the partition potential is used to determine each fragment

density. Then the sum of fragment densities is inverted to obtain its corresponding

potential, v[nk
f (r)](r). This potential is compared to the molecular potential (which

is the potential that produces the correct molecular density) in order to update the

partition potential according to:

δvp(r) = (v(r) − v[nf ](r)) (5.7)



54

We can see that this update will only have a fixed point when v(r) − v[nf (r)](r) = 0.

The Hohenberg Kohn theorem ensures that this can only occur when the sum of

fragment densities is equal to the molecular density.
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Figure 5.2. Comparison of convergence for simple 4-electron double-well
1-dimensional system using three different update procedures for the par-
tition potential. The blue diamonds correspond to equation 5.2, the green
triangles correspond to equation 5.3, red squares correspond to 5.4 and
the cyan stars correspond to 5.7. The vertical axis shows the 1-norm of
the error between the sum of fragment densities and the target density
and the horizontal axis is the iteration number.

All these update equations are compared in figure 5.2. It is clear that the response

update (equation 5.4) and the update from Elliot et al. [38] converge much faster than

the other two update methods. However, the downside is that in the case of equation

5.4 the responses of each fragment must be calculated at each iteration and in the

case of equation 5.7 the sum of the fragment densities must be inverted. Inverting

the sum of fragment densities is a rather expensive procedure and so even though this

procedure converges faster the calculation overall is slower. This method does have
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the nice property that the molecular density does not need to be calculated ahead of

time.

A final option for these inversion based algorithms is to use a pre-made constrained

optimizer to directly minimize the fragment energy subject to the density constraint.

This will generally be generally be more robust than fixed update equations and may

also be integrated directly with the optimization of fragment occupations.

A number of other methods have been developed that use inversion techniques to

calculate embedding potentials exactly [2, 24, 25, 61, 79–82] within other fragment-

based DFT methods. The inversion calculations used in these algorithms can have

added difficulties when used with basis sets. We use a real-space grid and thus avoid

many of the problems associated with inversions using basis sets. While inversions

with basis sets are possible, greater care must be taken to ensure that the result is

unambiguous [90].

5.2 Algorithms using the Non-Additive Kinetic Energy

If a model for the non-additive kinetic energy, T nad
s , is available then it is possible

to calculate all the functional derivatives of the partition energy with respect to the

fragments. In this case equation 3.23 indicates how to calculate a new partition

potential based on a set of fragment densities. Figure 5.3 displays a flow diagram

indicating an SCF procedure that may be used.

This algorithm requires the calculation of functional derivative of all components of

the partition energy as given in equation 3.3. Typically the hartree and exchange-

correlation partition energy components are chosen to exactly reproduce KS-DFT

calculations on the molecular system. In chapter 10 we will explore different approx-

imation for these components which will reduce static-correlation and delocalization

error. The most difficult component to calculate is the T nad
s term. Exact calculation

of this term as well as approximations to it will be discussed in the next chapter.
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and access to all functional derivatives of the partition energy.
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6. Non-Additive Kinetic Energy

PDFT and other fragment based methods rely on explicit density-functionals for

the non-additive non-interacting kinetic energy in order to improve computational

efficiency as compared to standard KS-based methods. However, explicit density-

functionals for the non-additive non-interacting kinetic energy come with many of the

same problems as explicit density-functionals for the regular non-interacting kinetic

energy. It is straightforward to write the kinetic energy as a functional of a set of

orbitals, but it is much less clear how to write the kinetic energy as a functional of

the density. This is in fact the reason for the success of the Kohn-Sham method

in DFT as compared to the alternative computationally attractive orbital-free DFT.

Nevertheless explicit density-functional modeling of non-additive kinetic energy hold

some advantages over completely orbital-free methods. First, the non-additive kinetic

energy is a smaller piece of the total energy and therefore a larger portion of the total

energy expression is treated exactly. Second, as will be explored in the first section of

this chapter, unlike the kinetic energy density, the non-additive kinetic energy density

is unambiguously defined. Third, the fragments provide a new component with which

to construct approximations. This idea will be explored in the final section of this

chapter.

6.1 Unambiguous Non-Additive Kinetic Energy Density

There are several commonly used expressions which yield the kinetic energy of a set

of orbitals. In general they may all be written as an integral over all points in space:

Ts =
∫

ts(r)dr (6.1)
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While Ts is uniquely defined by the orbitals, there are actually an infinite number of

expressions for ts(r) which will integrate to Ts. Two commonly used expressions are:

tI
s(r) = −1

2

N∑
i

ϕ∗
i (r)∇2ϕi(r) (6.2)

and,

tII
s (r) = 1

2

N∑
i

|∇ϕi(r)|2 (6.3)

These expressions are related by adding a term of 1
4∇2n(r) to tI

s(r) [91]. An infinite

number of expressions may be found by adding any arbitrary multiple of ∇2n(r) to

equations 6.2 or 6.3. In general tII
s has the advantage that it is positive definite,

while tI
s has the advantage of being closely related to the KS equations. In general,

designers of density functionals need to pay attention to which of these two kinetic

energy densities their approximation is trying to model [92].

The non-additive kinetic energy is typically expressed as a difference between func-

tionals as in equation 4.4 however it may also be written as:

T nad
s =

∫
tnad
s (r)dr (6.4)

This non-additive kinetic energy density may be written:

tnad
s (r) = tm

s (r) −
∑

α

tα
s (r) (6.5)

Where tm
s (r) is the kinetic energy density corresponding to the sum of fragment

densities and tα
s (r) is the kinetic energy density corresponding to the fragment α. As

long as the same kinetic energy expression is used for both tm
s (r) and tα

s (r) then tnad
s (r)

will be the same. This is because ∇2nf (r) = ∑
α ∇2nα(r). Therefore differences

between kinetic energy density expressions cancel out in the non-additive expression.
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6.2 Implicit T nad
s Functionals

The exact Ts may be formulated as an implicit density functional by performing a

constrained search over wavefunctions yielding a particular density [89]:

Ts[n] = min
Ψ→n

⟨Ψ| T̂ |Ψ⟩ (6.6)

This expression can in turn be used to construct the non-additive kinetic energy.

This constrained search is typically transformed into an unconstrained search with

the addition of a lagrange multiplier:

Ts[n] = min
Ψ

[⟨Ψ| T̂ |Ψ⟩ +
∫

vs(r)(⟨Ψ| n̂(r) |Ψ⟩ − n(r))dr] (6.7)

Here, n̂(r) is the density operator, which will yield the density of |Ψ⟩ corresponding

to the point r. The lagrange multiplier, vs(r), can be identified as the KS potential.

This optimization may then be performed numerically, by searching over potentials

for vs. |Ψ⟩ may be represented as a single slater determinant and each orbital may

be optimized by solving the euler equation 2.14. First and second derivatives may be

used in the optimization of vs as outlined in [89].

In order to calculate the functional derivatives of the kinetic energy, which is necessary

for constructing the partition potential, we use the method mentioned by Jacob et

al. [85] and implemented by both Fux et al. [61] and Goodpaster et al. [25]. This

inversion yields the potential vs(r), and the corresponding chemical potential, µm.

We can then use use the euler equation 4.11 to find the functional derivative of the

first term of Eq. 4.4. We can similarly use the potentials and chemical potentials

corresponding to each np and np+1 to obtain the functional derivative of the second

term of equation 4.4. These potentials are available without the need for an inversion.
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In the end we arrive at an expression for the functional derivative of the non-additive

non-interacting kinetic energy with respect to one of the fragment densities.

δT nad
s [{nα}]
δnα(r)

= µm − µα + vs[nα](r) − vs[nf ](r) (6.8)

6.3 Two-Orbital approximation

In two orbital homonuclear diatomics one Kohn-Sham orbital will have gerade sym-

metry while the other orbital will have ungerade symmetry. By treating the fragment

densities of these systems as somewhat like localized molecular orbitals we can con-

struct approximations to these two orbitals. We first construct an approximation to

the ungerade orbital:

ϕug(r) = C(n1(r)
1
2 − n2(r)

1
2 ) (6.9)

This approximate orbital will have the correct symmetry and will be normalized by

setting C = 1
2N/(

∫
(n1(r) 1

2 −n2(r) 1
2 )2d3r) 1

2 . After normalization we can construct the

remaining gerade orbital from the remaining density.

ϕg(r) =
(

nm(r)
2

− ϕ2
ug(r)

) 1
2

(6.10)

Each approximate orbital will be normalized to half the total number of electrons.

For a simple visualization of how this approximation works we perform these cal-

culations non-self consistently on a simple one-dimensional double-well system. We

compare the approximated orbitals to orbitals obtained from inverting the sum of

fragment densities as in 6.2. This comparison is made in figure 6.1. This approxima-

tion becomes exact as the separation goes to infinity, but still does quite well in the

bonding region even at relatively short bond lengths.
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Figure 6.1. Approximated (dashed red) and Inverted (solid black) orbital
comparison for two different bond separations. The top shows a bond
separation of 1 atomic unit and the bottom shows a separation of 2 atomic
units. The approximation gets significantly better with increasing bond
separation, but even at smaller separation it does well in the bonding
region between the two wells.

These approximated orbitals are then used to construct the non-additive kinetic en-

ergy:

T nad
s,T O = M

2

∫
(|∇ϕug(r)|2 + |∇ϕg(r)|2 − |∇n1(r)

1
2 |2 − |∇n2(r)

1
2 |2)dr (6.11)

We expect the optimal scale factor, M , should be a bit less than 1 for the Helium

dimer. This is because the approximate orbitals are correctly normalized and do

correspond to the sum of fragment densities. The kinetic energy follows a variational

principle and therefore the correct kinetic energy for the two orbitals of the helium

dimer must be less than the kinetic energy of our approximate orbitals. For other

systems it is yet clear what an optimal choice for M should be.

6.4 Rare-Gas Dimers

The two orbital approximation is based on systems in which each fragment density

is represented by a single orbital and the molecular density is represented by two

orbitals, such as the Helium dimer. However, we can still apply the approximation
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to any two fragment system. Figure 6.2 compares binding energy results for the

smallest six rare-gas dimers for KS calculations, Thomas-Fermi T nad
s and the Two-

Orbital T nad
s . These calculations are results of non-self-consistent calculations. In

other words, isolated fragment densities are calculated and then superimposed in

place at some fixed bond length. Then the partition energies are calculated for these

frozen densities. This eliminates the need to calculate functional derivatives, and is

equivalent to the method of Gordon and Kim [46].

It is clear that the M = 1 Two-Orbital T nad
s by itself only works well in the case

of the Helium dimer. However, we also plot a scaled version of the approximation

where an optimal M is chosen for each system. When the optimal M value is chosen

for each system there is nearly perfect agreement throughout the entire dissociation

curve. These M values were chosen so that the depth of the binding energy matched

the depth of the Kohn-Sham kinetic energy. Nevertheless the agreement between the

scaled two-orbital approximation and the KS binding energies is impressive.
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Figure 6.2. Binding energies for a variety of rare-gas dimers using the
LDA. The solid black lines correspond to KS results. The other lines
correspond to non-self consistent PDFT calculations performed on the
isolated fragment densities fixed at various separations. The dotted and
dashed lines correspond to using different non-additive kinetic energies.
The dotted green line correspond to using the Thomas-Fermi kinetic en-
ergy functional. The cyan dot-dashed line corresponds to the two orbital
approximation with M = 1. And the red dashed line corresponds to the
two orbital approximation with optimally scaled M values. The opti-
mal M values for each dimer are as follows: HeHe M = 0.9249, HeNe
M = 2.1187, HeAr M = 3.8641, NeNe M = 2.7930, NeAr M = 3.9959,
ArAr M = 4.9287
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7. NWChem Implementation

This section contains work from an article entitled ‘Molecular binding energies from

partition density functional theory’ written by the author, Qin Wu and Adam Wasser-

man, published in the Journal of Chemical Physics [2].

Approximate molecular calculations via standard Kohn-Sham Density Functional

Theory are exactly reproduced by performing self-consistent calculations on isolated

fragments via Partition Density Functional Theory [Phys. Rev. A 82, 024501 (2010)].

We illustrate this with the binding curves of small diatomic molecules. We find that

partition energies are in all cases qualitatively similar and numerically close to actual

binding energies. We discuss qualitative features of the associated partition poten-

tials.

In this work, by employing the Wu-Yang algorithm [89] for iterative inversion, we

demonstrate convergence of the PDFT equations in small diatomic molecules using

basis sets, and discuss qualitative features of partition potentials and partition-energy

binding curves for He2, H2, and LiH. We show that the partition energies and poten-

tials are interesting quantities in themselves, as they can be used as conceptual and

interpretative tools.

First, we summarize the PDFT procedure in Sec.7.1, providing details of our imple-

mentation. Convergence of the PDFT equations is demonstrated in Sec.7.2 for the

binding curves of He2, H2, and LiH, along with implications, qualitative features of

partition potentials, and Ep-binding curves (in addition to actual binding curves).

Concluding remarks are given in Sec.7.3.
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7.1 Method

For the simplicity of discussion, we consider a compound with only two parts (A and

B), but the method is equally applicable to any number of fragments. We also limit

ourselves to fragments with fixed integer number of electrons, as in related recent work

on embedding-DFT [25,81,82], only briefly discussing the issue of chemical potential

equalization and fractional electron numbers.

In PDFT, the total energy is expressed as

E[n] = EA[nA] + EB[nB] + Ep[nA, nB] (7.1)

where n(r) = nA(r) + nB(r), and a common functional for E, EA and EB is assumed.

As in standard DFT, the fragment energies Eα (α = A, B) are given by:

Eα[nα] = Ts[nα] + EHXC[nα] +
∫

drvα(r)nα(r) , (7.2)

Where vα(r) stands for the nuclear potential of fragment α (i.e. the fixed “external

potential” for the electrons in the isolated fragment), the sum of which equals the

molecular external potential v(r) = ∑
α vα(r). In Eq.7.2, Ts[nα] is the non-interacting

kinetic energy, and EHXC[nα] is the sum of the Hartree and exchange-correlation en-

ergies for density nα.

Equation 7.1 can be viewed as a formal and exact definition of Ep for the case of

binary fragmentation. To minimize E by variations of fragments’ densities, which are

built from their own sets of orbitals, we have the following Kohn-Sham equations:

[
−1

2
∇2 + vα(r) + vp(r) + vHXC[nα](r)

]
ϕα

i (r) = εα
i ϕα

i (r) (7.3)
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Here, α is a fragment index, i.e A or B in this work, for the sum of the Hartree and

exchange-correlation potential corresponding to density nα. The partition potential

vp(r) is common to both fragments, thus has no α-index.

vp(r) could be derived explicitly if we knew the functional form of Ep[{nα}] by taking

its functional derivative with respect to variations of any fragment density: vp(r) =

δEp[{nα}]/δnα, to be evaluated at the densities that minimize ∑α Eα[nα]. Without

an expression for Ep as an explicit functional of the {nα}, it is also possible to derive

vp(r) through an iterative procedure, which was first proposed in ref. [38] and we

reiterate here.

Suppose that we are at the beginning of the k-th iteration. We obtain the fragment

densities n(k)
α by solving Eq. 7.3. We then construct a total pro-molecule density as

ñ(k)(r) = ∑
n(k)

α (r). Because the effect of vp(r) is to make ñ(r) the same as the true

ground-state density of the whole system ns(r), the difference between ñ(k)(r) and

ns(r) should be used as guidance to update v(k)
p (r). For that, we do a constrained

search to find the energy of ñ(k), i.e.

E[ñ(k)] = min
n→ñ(k)

E[n]. (7.4)

This equation is to be interpreted together with an algorithm chosen to force an

arbitrary density n(r) to tend to a prescribed density ñk(r). We employ the direct

optimization algorithm of Wu and Yang [89], as used in calculating the frozen density

energy in a recently-developed density based energy decomposition analysis [93]. Thus

we rewrite the above equation as

E[ñ(k)] = Ev[ñ(k)] + EHXC[ñ(k)] + min
Ψ→ñ(k)

{Ts[Ψ] + EX[Ψ]} (7.5)

for a general hybrid functional, where EX[Ψ] represents a fraction of the HF exchange

energy calculated from a Slater determinant Ψ that is constrained to yield ñ(k). At
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the end of this minimization, the effective potential for the molecular Kohn-Sham

orbitals is

veff(r) = vα(r) + vHXC[ñ(k)](r) − vλ(r) , (7.6)

where vλ(r) is just the Lagrange multiplier corresponding to the density constraint and

is expanded by a linear combination of atom-centered Gaussian functions. Because

vλ(r) is used to force the density of the whole system to be ñ(k), its reverse should

have the effect of making ñ(r) more like ns(r). That is: we can set vp(r) = −vλ(r)

and start the next iteration of fragment calculations. In practice, we update vp(r) as

follows:

v(i)
p (r) = v(i−1)

p (r) − θ ∗ v
(i)
λ (r) , (7.7)

where i is the iteration number, and θ is a damping factor between 0 and 1 used

to control convergence. In our calculation, we have used θ = 1 or θ = 0.25. The

convergence criterion we use is |E[ñk] − E[ns]| < ϵ, where ϵ = 10−6; this guarantees

the converged energy is the same at the ground-state energy. The alternative choice

of |E[ñk] − E[ñk−1]| < ϵ gives essentially the same results.

The partition potential obtained this way is given by [38]:

vp(r) = v(r) + vHXC[n](r) − vs[n](r)

− vα(r) − vHXC[nα](r) + vs[nα](r) , (7.8)

This expression is identical to the one derived by Wesolowski and Warshel for the

orbital-free embedding potential in Frozen-Density Embedding [84], and to the “crys-

talline potential” introduced by Cortona [53]. At self-consistency, however, the po-

tential obtained by those methods differs in general from our vp(r) because they are

evaluated at different fragment densities: vp(r) results from a variational procedure

that lies outside the domain of DFT: It is the Lagrange multiplier that relaxes the con-

straint that the sum of fragment densities be equal to the molecular density, while at

the same time minimizing the sum of fragment energies. This minimization effectively
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selects a unique vp(r) [22] out of the infinite set of acceptable orbital-free embedding

potentials [84,94]. Furthermore, we emphasize that in our procedure we never fix the

density of any part of our system, and all fragment densities are self-consistent with

respect to one another.

We now mention a few differences with the numerical procedures employed in recent

related work [25, 61, 79, 81]. On the technical level, Fux et al. [61] used the same

inversion algorithm we use in this work, whereas Goodpaster et al. [81] and Roncero

et al. [79] employed the ZMP procedure [95]. The numerical problems associated with

the use of a finite basis set are nicely explained in ref. [61], where a regularization

procedure was used to smooth out the potentials. On the theoretical level, there is

a difference on whether (and how) self-consistency is achieved. In refs. [79] and [61]

the inversions are performed for a fixed density, since the main purpose in those

works is to employ the resulting potentials for non-DFT calculations. Goodpaster

et al. [81] perform the inversions self-consistently, as we do, but the self-consistency

condition is different: Whereas we minimize the total energy calculated just like in

usual DFT with chosen functionals (but under the density constraint), they minimize

the kinetic energy by ZMP (Levy constrained search), and calculate EXC with the

resulting density on a grid.

7.2 Results

We demonstrate our calculations of vp(r) with three simple examples of diatomic

systems: He2, H2, and LiH. In all calculations, Dunning’s aug-cc-pvTz basis set is

used for molecular orbitals.

The counter-poise (CP) method is used to account for any Basis Set Superposition

Error (BSSE). This approach is crucial in PDFT since vp(r) adds features to the

fragment’s effective potential directly at the location of the other atom, precisely

where the ghost basis functions are added [96].
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The partition potential is expanded onto a set of basis functions. The size of the

basis set for the partition potential determines how closely the KS molecular density

is reproduced. In the limit of a complete basis set for the partition potential the sum of

the fragments exactly matches the KS molecular density. We used five atom-centered

Gaussian functions, and each center has five s-type functions, with even-tempered

exponents of 2n; n=0; ± 2; ± 4.

In the following discussion, we will use several energy terms. Suppose E0
A and E0

B are

the energies of the fragments with no influence of the partition potential; Ep
A and Ep

B

are their energies with the converged partition potential; and EAB is the energy of

the compound. Therefore the binding energy is Ebind = EAB − (E0
A + E0

B), and the

partition energy is Ep = EAB − (Ep
A + Ep

B). We also define the preparation energy

as Eprep = (Ep
A + Ep

B) − (E0
A + E0

B), which is the energy increase associated with the

deformation of fragments. Clearly, Ebind = Eprep + Ep. We can also separate Eprep

into the sum of fragment contributions, Eprep = ∑
α(Eα

prep) = ∑
α(Ep

α − E0
α).

Table 7.1.
Comparison between molecular energies (a.u.) obtained from PDFT and
from standard KS-DFT calculations using the same functional (B3LYP)
and basis set (aug-cc-pvTz) for both.

E(PDFT) E(DFT) Error
He2 (R = 0.5) -5.569777622113 -5.569777624227 -3.80E-10
He2 (R = 0.8) -5.709621657286 -5.709621657554 -4.69E-11
H2 (OSH) -1.180048619032 -1.180048623628 -3.89E-09
H2 (CSH) -1.180048619388 -1.180048623628 -3.59E-09

7.2.1 Helium Dimer

Rare-gas dimers are known to be weakly bound due to van der Waals interactions,

which are not accurately captured by most density-functional approximations. How-

ever, because our procedure is general and independent of the exchange-correlation
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functional, it is not critical to have the correct binding curve. Instead, for a clear

demonstration, we use Hartree-Fock exchange only, which is known to be purely re-

pulsive between nonpolar closed-shell systems. As shown in Fig. 7.1, the binding

energy for He2 is all positive and increases rapidly when the internuclear distance is

shortened. It also shows that the preparation energy is very small, which means the

deformation in He atoms is small, as expected in this system, though it starts to grow

when the atoms are too close to each other. The repulsive nature of the interaction

means that electron densities are pushed away from each other when the two He

atoms are in close contact. Thus the internuclear region has a density decrease, as

shown in Fig. 7.2. In PDFT, this density difference is achieved through deformation

of each atom, due to the action of the partition potential. In Fig. 7.3 we plot vp

along the internuclear axis at a few representative internuclear distances. Clearly, vp

is most positive in the internuclear region, corresponding to the density deficiency.

The magnitude of vp decreases as the internuclear distance increases, until to a point

that no vp is needed.
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Figure 7.1. The Hartree-Fock energies for He2 at different internuclear
distances.

It is notable that there are significantly more oscillations in the partition potential

than in the density differences. Some of the oscillations are physical. But there
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Figure 7.2. The density differences in He2 as compared to the original
atoms along the line through both nuclei. The total difference (dashed
line) is the sum of the deformation in each atom (solid line). The nuclei
coordinates are R = ±0.8 Å.
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Figure 7.3. The partition potentials for He2 at different internuclear dis-
tances. The nuclei are at ±R.

are at least two other possible reasons contributing to the oscillations in vp. One is

pathological with gaussian densities, as nicely explained by Schipper, Gritsenko and

Baerends [97]. The other is numerical and due to the fact that we expand vp in a

finite basis set [98]. We have used a small number of functions so as to limit the
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oscillations caused by the expansion. However, we are unable to use non-gaussian

densities yet, which makes it difficult to determine the nature of the oscillations.

Fig.7.4 demonstrates the agreement between the total density obtained via a direct

molecular calculation, and the sum of fragments’ densities obtained via PDFT. The

numerical error can be made as small as desired by improving the quality of the basis

set. Note that when the aug-cc-pvtz basis set is employed, the magnitude of the errors

is no larger than 5% of the difference between the PDFT densities and isolated-atom

densities, which amounts to error of less than 0.03% when compared to the actual

molecular density. Table 7.1 gives the comparison between the molecular energies

calculated via PDFT and those from a separate standard KS-DFT calculation.
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Figure 7.4. In each panel a different expansion is used for the partition
potential of the Helium dimer (ng stands for n gaussians). The black curve
is the difference between the sum of the densities and the molecular density
from a standard DFT calculation (along the bond axis of the molecule).
The red and blue curves are the differences between the PDFT fragments
and the isolated fragments.

7.2.2 Hydrogen Molecule

For the covalently bonded molecule H2, the natural choice of partition is to use two

open-shell H (OSH) atoms (spin up on the left, spin down on the right, or viceversa).

Because the electronic ground-state of H2 is a spin-singlet, we only consider the total

charge density. Mathematically one could also use half-occupied closed-shell H atoms
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(CSH) as the fragments (both left and right atoms having half spin-up, half spin

down), thus without polarizing the spin. We study the energetics of both partitions

as a function of the internuclear distance, using the B3LYP approximation to the

exchange-correlation functional. For the H2 molecule, we only consider restricted

Kohn-Sham (RKS) calculations. It is well-known that a restricted calculation does

poorly for large internuclear distances. The erroneous behavior is evident from the

binding energy curve when the OSH atoms are used as the reference. As shown in

figure 7.5, Ebind approaches a positive value instead of zero. On the other hand, when

the CSH atoms are used as the reference, Ebind does go to zero. However, it becomes

too large at the optimal bond length. The two binding curves are simply different by

a constant shift, and this shift comes from the fact that OSH and CSH have different

energies in the B3LYP approximation, while they should be degenerate with the exact

functional [99].

In PDFT, the differences in the choice of fragments will not matter if the partition

energy can compensate for the difference and yield identical total energy. In our

case here, the two Ep are indeed quite different. However, the two Ep curves differ

more than by a simple constant shift. The non-uniform difference can be appreciated

by comparing the preparation energies. Eprep of OSH fragments is smaller at short

internuclear distances than that of CSH fragments. However, the latter goes to zero

at long distances while the former does not. At long distances, a restricted H2 is

essentially two half-occupied closed-shell H atoms, so the asymptotic behavior is not

surprising. But it is interesting to see that at short distances, the OSH fragments pay

less penalty to make their densities resemble that of the molecule.

7.2.3 Lithium Hydride

As another example, we consider the heteronuclear LiH. Within the formal partition

theory, there is a unique choice of the fragments, with their chemical potentials equi-
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librated. Achieving equilibration requires treating fragments with fractional number

of electrons in the spirit of PPLB [21]. In that case, the number of electrons in a

fragment is also a variable to be optimized. Because the partition potential will be

different when the fragments change, the optimization of both the partition potential

and the number of electrons is mutually dependent and has to be achieved simultane-

ously. We will treat this complexity in the future. In this work, we simply use fixed

fragments and derive the corresponding partition potential, which we denote as vc
p(r)

to indicate that the fragment occupations are constrained to integers.

Table 7.2.
Table of energies (in a.u.) for the two Lithium Hydride partitions. The
molecular energy for LiH is -8.088129 and its HOMO is -0.1953916.

Ionic Neutral
Li+ H− Li H

Ep
α -7.2847 -0.5033 -7.4450 -0.4968

E0
α -7.2859 -0.5364 -7.4927 -0.5023

Eα
prep 0.0013 0.0331 0.0477 0.0055

Eprep 0.0344 0.0533
Ep -0.3002 -0.1464

Without the optimal fragments, we consider all possible partitions. For LiH, there

are two possibilities. First, we use neutral atoms. Second, we use Li+ and H−. We

do the partition at the optimized internuclear distance of 1.59 Å. Table 7.2 contains

partition and preparation energies for both partition choices. The preparation energy

of the ionic partition is lower than that of the neutral partition. This means it takes

less energy to deform the ionic fragments so that they add to the molecular density

than it does for the neutral fragments. This indicates that the correct partition is

closer to the ionic case than the to neutral case. We also note that the partition

energy is larger in the ionic case, which could be the result of Coulomb attraction.

It is interesting that the hydrogen atom contributes the dominant portion of Eprep

in the neutral case, whereas the lithium atom provides the dominant contribution in

the ionic case.
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Note that the ionic/neutral ratio of partition energies at the equilibrium bond length

is close to two, and so is the inverse ratio of preparation energies. Assuming the

fragment energy varies approximately linearly with occupation numbers, we speculate

that the sum of fragment energies is minimized close to where the occupation number

of the H atom is 5/3 and the occupation number of the Li atom is about 7/3 (this

corresponds to 2/3rds of an electron transferred from Li to H). The correct answer

can only be found by properly doing the calculation with the PPLB functional for the

fragment energies. It will be very interesting to compare the resulting PDFT formal

charges with the ones provided by other standard methods.

One surprising aspect of our results for integer numbers is that the partition potential

for the ionic case is much stronger along the internuclear axis than the neutral one

(Fig. 7.6), despite causing less distortion in fragments’ energies.

o
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Figure 7.6. The B3LYP partition potentials for LiH (constrained to fixed
integer occupation numbers). The Li atom is at x = 0 and H at x = 1.59
Å.
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7.3 Concluding Remarks

Without having to solve directly the KS equations for the total external potential, we

have shown how the PDFT algorithm of ref. [38] provides in practice the same an-

swers via fragment-KS equations. In addition, this method yields fragment densities,

fragment energies, and a partition potential that is shared by all fragments such that

the sum of their densities reproduces the correct total density.

Although no physical meaning can be attached to a partition potential beyond the

one implied by its definition (i.e. that it is the potential common to all fragments

such that the sum of the fragment densities equals the total molecular density), some

generic features of partition potentials seem to go in line with chemical intuition: they

are positive when the interaction between fragments is repulsive (case of He2 within

Hartree-Fock), and their average magnitude is larger when the interaction between

fragments is stronger. Similarly, the strength of the interaction between fragments is

loosely measured by the magnitude of the partition energy. No such conclusion can

be drawn for the preparation energy, however, as shown for the case of LiH where

a somewhat larger preparation energy is associated with a much smaller partition

potential (neutral vs. ionic partition). But the preparation energy can tell us about

the character of the bond, an aspect that we plan to study further in future work.

It would also be useful to employ PDFT as a tool for the bond decomposition anal-

ysis suggested by Ruedenberg et al. [100–103] studied through the lens of variational

reasoning. The difference between isolated and PDFT fragment densities encodes

information about contraction and polarization and the energy associated with con-

traction and polarization is included in Eprep. Portions of the quasi-classical and

electron-sharing shifts are included in Ep [100].

The case of LiH also highlights the need to go beyond integer numbers of electrons

in our implementation of PDFT.
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PDFT calculations also allow us to look at the dissociation problem from a differ-

ent angle. For example, we found that open-shell fragments in H2 are preferred at

short inter-nuclear separations in the sense that they pay less penalty to make their

densities resemble that of the molecule, but close-shell fragments are preferred at

long separations. The respective preparation energies cross near the Coulson-Fischer

point.

Finally, we point out that from weak (He2) to relatively strong (H2) chemical bonds,

partition energies are qualitatively similar to actual binding energies, and numerically

close to them (i.e. preparation energies are small in the cases studied). This similar-

ity of Ep-curves to their corresponding binding curves suggests that approximations

of Ep[{nα}] as explicit functionals of the {nα} might be very useful for practical

computations. Not only would they provide a direct way to obtain the partition po-

tentials by functional differentiation, circumventing the need of expensive inversion

steps; sensible approximations would also lead to energies that are close to actual

binding energies. This is analogous to what happens in KS-DFT, whose success is

largely due to the fact that the sum of KS orbital energies is typically close to actual

ground-state energies in chemical applications.
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8. Near-Additivity and Non-Integer Occupations

This section contains work from an article entitled ’Fragment occupations in partition

density functional theory’, written by Rougang Tang, the author, and Adam Wasser-

man, published in Physical Chemistry Chemical Physics. [3]

In this chapter we investigate two interrelated aspects of PDFT: the connections be-

tween fragment densities obtained via different choices of fragmentation, for which

we find “near-additivity”, and the nature of their corresponding fragment occupa-

tions. Whereas near-integer occupations arise for very large inter-fragment separa-

tions, strictly integer occupations appear for small inter-fragment separations. Cases

where the fragment chemical potentials cannot be equalized lead to fragment occupa-

tions that lock into integers. These two interrelated aspects of PDFT that are critical

to its further development both as a computational tool and as a conceptual tool in

chemistry:

(1) In PDFT, a given choice of fragmentation yields a unique set of fragment densities

[22]. Any choice of {vα(r)} is allowed as long as equation 3.1 is satisfied. Different

partitions lead to different partition potentials, but to the same total density n(r), by

construction. The question arises as to whether the set of fragment densities {nI
α(r)}

of one partition (partition I, with N I
f fragments) is connected to the set {nII

α (r)} of

a different partition (partition II, with N II
f fragments) in any way other than the

obvious:
N I

f∑
α

nI
α(r) =

N II
f∑

α

nII
α (r) . (8.1)

This is the question we explore in Sec.8.1. The importance of addressing it stems from

the fact that, as in other fragment-based computational methods [25, 54, 61, 82, 104],

PDFT might lead to electronic-structure algorithms that scale linearly with system-
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size. It is thus desirable that the fragment densities be as transferable as possible,

in the sense that once obtained for a given system, they can be used effectively as

the starting point for electronic-structure calculations on other systems. It is also

desirable that the fragment densities be additive, or near-additive, in the sense that

when a molecule is partitioned in two different ways, I and II, the sum of fragment

densities in a subset of partition I is close to the sum of the corresponding densities

in partition II. We investigate when near-additivity holds, and when it does not.

(2) In order to demonstrate convergence of the algorithm to the exact molecular

density and energy, the method has been applied in the past to one-dimensional model

systems where the number of electrons per fragment did not exceed Nα = 2 [38, 83],

and to the homonuclear diatomic molecules H2, where Nα = 1 (α labels the nuclei),

and He2, where Nα = 2 [2]. We demonstrate here convergence of the algorithm

when Nα > 2, and show that a difference in the number of occupied orbitals among

fragments leads to the possibility of cusps in Ef as a function of occupation numbers,

rather than minima. The number of electrons in each fragment may then lock into

integers, an interesting result whose consequences we discuss. This is connected with

point 1 above in that different choices of fragmentation lead naturally to different

values of fragment occupations.

We focus on problem (1) in Section 8.1, and on problem (2) in Section 8.2. We

summarize and conclude in Section 8.3.

8.1 Near-Additivity

We investigate how the fragment densities obtained via different choices of fragmenta-

tion (different choices for the set {vα(r)}) are related to each other. Since there is only

one sensible way of partitioning a diatomic molecule (in two fragments), the smallest

molecular systems necessary for addressing this problem require at least three atoms.
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Triatomics: Consider a generic triatomic molecule ABC, and two possible partitions:

Partition I: A+B +C (N I
f = 3), and partition II: A+BC (N II

f = 2). We ask: Could

it ever be true that a fragment density for partition II exactly equals the sum of the

corresponding fragment densities for partition I, i.e.,

nII
BC(r) = nI

B(r) + nI
C(r) ? (8.2)

We prove that this is impossible. If equation 8.2 were true, then it would also have to

be true that nII
A(r) = nI

A(r) because equation 8.1 guarantees: nI
A(r)+nI

B(r)+nI
C(r) =

nII
A(r) + nII

BC(r). This in turn would imply that N I
A = N II

A . Therefore, nI
A(r) would

be the ground-state density of N I
A electrons in vA(r) + vI

p(r) and nII
A(r) would be the

ground-state density of the same number of electrons in vA(r) + vII
p (r). Since vA(r)

is the same in both cases (the external potential due to nucleus A), the Hohenberg-

Kohn theorem requires vI
p(r) = vII

p (r), but this is impossible because vI
p(r) must

develop features between nuclei B and C that are absent from vII
p (r), since the latter

treats BC as one entity. In the vicinity of atom A and the A − B bond, however, it

is natural to expect vI
p(r) ≈ vII

p (r). This leads to

nII
BC(r) ≈ nI

B(r) + nI
C(r) , (8.3)

i.e. near-additivity (see left panel of figure 8.1). From this perspective, near-additivity

appears equivalent to Kohn’s nearsightedness principle [105], but expressed in the

framework of PDFT.

Figure 8.1 shows a simple numerical illustration of near-additivity for the case of one-

dimensional linear chains. The fragment potentials vα of equation 3.1 are given by

inverse squared hyperbolic cosines of unit strength: vα(x) = cosh−2(x + Rα), where

the separation R = Rα+1 − Rα between fragments is fixed at R = 2a.u. The number

of electrons is set equal to the number of sites (but they are kept non-interacting,

so first two terms of equation 3.13 vanish). The thick solid line corresponds to the
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Figure 8.1. Comparison of the densities obtained for partitions I and II
described in the text (Sec.8.1), for 3-site (left) and 6-site (right) linear
chains, with 3 and 6 non-interacting electrons, respectively.

difference between nII
BC(x) and nI

B(x)+nI
C(x). The difference is small, but clearly not

zero. This near-additivity becomes more pronounced as the number of sites increases,

as illustrated in the right panel of figure 8.1 for a 6-site chain. The difference between

the two densities is smaller in magnitude (and of opposite sign) than that of the 3-site

chain.

Returning to the 3-site chain, figure 8.2 shows how the fragment occupations change

when N = 2 as the separation between the left and central wells is varied from

zero to R = 5a.u. while the separation between the two rightmost wells (B and C)

is kept constant at R = 3a.u. Near-additivity can be observed by comparing the

occupation of fragment A from both partitioning schemes (N I
A and N II

A ). They are

essentially equal for all R > 2, so only at small separations N I
B + N I

C ̸= N II
BC . The

R-dependence of occupation numbers is consistent with the one discussed in ref. [106]

for heteronuclear diatomics. Four regions can be distinguished. Significant charge

transfer from A to B (or to BC) is observed at large R, where the A − B bond could

be called ionic (region 1). The covalent character increases as R decreases down to

a value where a plateau is observed (region 2), and further decreasing R leads to a

rapid decrease of N I
A and N II

A down to zero, indicating a new ionic state (region 3).

It is interesting that for unphysically small separations, the occupation numbers are
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Figure 8.2. Change in the fragment occupations when one well of a two-
electron triatomic system is separated from the other two. The variable
R is the distance between the left well (A) and the central well (B). The
distance between the center and right wells is 3.0a.u. The labels I and
II indicate two different ways of partitioning. In I, each well has its own
fragment, and in II the two rightmost wells share a fragment. The numbers
1→4 on the top horizontal axis correspond to the regions described in the
text. Near-additivity can be observed by comparing the occupation of the
first fragment from both partitioning schemes.

strictly integers, with N I
A = N II

A = 0 (united-atom region 4), and that this region

is smaller for partition I than for partition II. We return to this point in Sec.8.2.

We note that the value of R that determines the boundary between regions 1 and 2,

where the electronic-structure of the molecule changes from being covalent to mixed

ionic-covalent, coincides with that separation above which near-additivity holds.

Tetratomics: Consider a general tetratomic molecule ABCD, and two possible parti-

tions: Partition I: A + B + C + D (N I
f = 4), and partition II: AB + CD (N II

f = 2).

Any partitioning is allowed, even one with fragments whose atoms are not chemically

bonded to each other. We ask the same question as before, equation 8.2: Could it

be that nII
CD(r) = nI

C(r) + nI
D(r) ? This time, that possibility cannot be ruled out.

The proof given above for triatomics does not hold anymore, as that proof required

partitions I and II to share an identical fragment potential, which is not the case any-

more. Interestingly, our numerical results in 4-site 1D chains would seem to suggest
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that nII
CD is indeed identical to nI

C + nI
D (see figure 8.3), but a formal proof has not

been found.
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Figure 8.3. Two ways of fragmenting a 4-atom chain. Left: complete
atomic fragmentation (partition I); Center: Binary fragmentation (parti-
tion II), where one fragment potential equals the sum of the two leftmost
wells, and the other fragment potential equals the sum of the two wells
on the right. The corresponding partition potentials are shown by thin
solid lines; Right: Comparison of nI

C(x) + nI
D(x) and nII

CD(x). They are
identical within numerical accuracy.

For a third partition of the type ABC + D it is again true that nIII
ABC(r) is different

from but nearly equal to nI
A(r)+nI

B(r)+nI
C(r) (not shown). These results suggest that

there is a rich structure of interconnections between different choices of fragmentation,

and further investigation in real systems with interacting electrons is worthwhile.

Specifically, how general is the exact additivity result of figure 8.3? Is this due to the

conservation of symmetry of vp(r) when going from partition I to partition II ?

8.2 Integers vs. Non-integers

Physically meaningful fractional occupations are obtained by treating the fragments

in PDFT as open systems that can exchange electrons with an infinite and distant

reservoir [22]. Each fragment energy Eα[nα] is thus the ensemble ground-state energy

of Nα electrons in the external potential vα(r), given by [21,107]:

Eα[nα] = (2 − να)Eα[npα ] + ναEα[npα+2] , (8.4)
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where 0 < να < 2, and pα and pα+2 are the even bordering integers of Nα =
∫

drnα(r).

PDFT finds the set {να} that minimizes Ef = ∑
α Ea[nα] for preselected sets of

{pα}, to be varied as well. The resulting fragment densities are ensemble ground

state densities of Nα = pα + να electrons in vα(r) + vp(r). For fixed potentials,

the fragment energies have a piece-wise linear dependence on να yielding constant

fragment chemical potentials as dictated by PPLB [21]. However, for small changes in

constrained occupation numbers, vp(r) may be allowed to change to ensure satisfaction

of equation 3.5. This change in vp(r) has the effect of introducing small non-linearities

in the dependence of Ef on the constrained occupation numbers. However, as long

as these changes in vp(r) are small compared with the fragment potentials, vα(r), the

να-dependence of Eα[nα] remains close to piece-wise linear, and the να-dependence of

fragment chemical potentials remain close to piecewise constant.

The minimum of Ef is to be found with respect to variations of the {nα} and the

{Nα}. At that minimum, achieved in general for non-integer numbers, all fragments

have the same HOMO energy, and electronegativity equalization holds throughout the

molecule [37]. There are cases, however, where electronegativity equalization cannot

be established, and the fragment occupation numbers lock into integers.

Cusps in Ef vs. {Nα}: Start with a case where we know in advance the optimum

set of {Nα}. For example, for a homonuclear diatomic molecule with 4 electrons,

we know in advance that a partition in two atomic fragments will place 2 electrons

per fragment. The left panel in figure 8.4 shows the behavior of Ef along with the

individual fragment contributions for all fragment occupations between 0 and 4. Since

no more than 2 electrons are allowed in the same orbital, and the energy spectrum of

each fragment is discrete, the cusp at Nα = 2 appears because the chemical potential

of both fragments jumps discontinuously at Nα = 2 (bottom right panel of figure 8.4),

and the transfer of even να → 0+ electrons from left to right (or viceversa) raises Ef .

But what happens with this cusp as the fragments become inequivalent? The right

panels of figure 8.4 show analogous plots for the 1d-model of a heteronuclear diatomic
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molecule: 4 electrons are placed in the double-well potential v(x) = −ZA cosh−2(x −

1.5) − ZB cosh−2(x + 1.5), with ZA = 3 > ZB = 1. Although the chemical-potential

discontinuities persist at Nα = 2, Ef reaches a true minimum, rather than an infimum,

when the two fragment chemical potentials cross at NA = 1.018 and NB = 2.982. For

the parameters chosen in figure 8.4, approximately 1 electron transfers from B to

A, minimizing Ef . The cusp remains an infimum as long as ZA is not more than

about one unit of charge higher than ZB. But as ZA becomes larger than ∼ 2ZB, the

infimum becomes a minimum at non-integer occupations, and this minimum shifts

smoothly from NA ≈ 2 to NA ≈ 4 as ZA increases from about 2 to 4 (figure 8.5).

We may also be interested in the chemical quality of the fragments in the integer

versus non-integer regions. Do the fragments still behave as expected while they are

in this integer region? figure 8.5 compares the fragment densities for three different

values of ZA. In each case we can see that the fragment densities are well localized

and decay monotonically from their maxima.

We also observed the appearance of cusps in Ef for a family of 1-d chains such

as those discussed in Sec.8.1. We report results for 1-d chains with inverse cosh2(x)

potentials of unit strength, separated by a distance of 2.0a.u. Each chain has as many

electrons as potential wells (non-interacting, but satisfying Pauli’s principle). For a

3-site chain, within the A − BC partition, the infimum of Ef is not a minimum but

a cusp that appears clearly when fragment A has exactly one electron, and fragment

BC has two. The discontinuity of Ef vs. {Nα} arises again from the impossibility to

equalize the two HOMOs. The BC fragment has a fully occupied HOMO whereas the

A-fragment has a singly occupied HOMO that lies in between the BC-HOMO and the

BC-LUMO. Because the BC-HOMO is fully occupied, the transfer of even a small

fraction of an electron from the A-HOMO would have to move into the BC-LUMO

raising Ef . The transfer of a fraction of an electron from the BC-HOMO would go

into the higher-lying A-HOMO, also raising Ef . The partition potential at the cusp

is able to reproduce the exact molecular density, but not to level the HOMOS.
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Figure 8.4. Top left: Fragment energies and their sum versus constrained
occupation number of fragment 1 for a homonuclear double-well potential
with 4 non-interacting electrons. The correct PDFT occupation num-
bers are the ones which minimize the sum of the fragment energies. The
cusp at N1 = 2 forces the occupation numbers to be integers. Bottom
left: Fragment chemical potentials versus constrained occupation num-
ber of fragment 1. The correct PDFT occupation numbers are the ones
which equalize the fragment chemical potentials. The discontinuities in
the chemical potentials for the homonuclear case are such that equalization
can not be obtained, and instead the occupation numbers are forced to be
integers. Top right: Same as top-left, but for a heteronuclear double-well,
v(x) = −ZA cosh−2(x−1.5)−ZB cosh−2(x+1.5), with ZA = 3 and ZB = 1.
Left: The infimum is no longer a cusp, but a minimum near NB = 1.0.
Bottom right: The two chemical potentials cross near NB = 1.0, where
Ef is minimized.

Partitioning a 6-site chain (with 6 non-interacting electrons) into 3 equivalent frag-

ments also shows a cusp at Nα = 2. The partition potential lowers the HOMO of

the central fragment relative to the HOMO of the two side fragments. Fractions of

electrons would tend to flow from the sides into the central fragment, but its HOMO

is fully occupied, and occupying the LUMO would raise Ef . On the other hand, when

a 5-site chain with 5 non-interacting electrons is partitioned into a 4-site and a 1-site

fragment, there is no cusp in Ef , which gets minimized when the occupation of the



90

nB
nA

Z =1.5
A

Z

N

NA

B
nB

nA

A
Z =3.0

A
Z =2.0

nB

nA

 0

 0.1

−4 −2  0  2  4
X (Atomic)

de
ns

ity
 0

 1

 2

 3

 4

 1  1.5  2  2.5  3  3.5  4

O
cc

up
at

io
n 

N
um

be
r

A

 0
 0

−4 −2  2  4

 0.1

de
ns

ity

X (Atomic)

X (Atomic)
 0

 0.1

−4 −2  0  2  4

de
ns

ity

Figure 8.5. The top right panel shows fragment occupations versus ZA,
for v(x) = −ZA cosh−2(x−1.5)−cosh−2(x+1.5). For ZA < 2, the cusp in
Ef forces the occupation numbers into integer values as seen in the upper
left panel of figure 8.4. Above this value the occupation numbers take on
non-integer values as seen in the top right panel of figure 8.4. The other
panels show the fragment densities at the various ZA values indicated in
the top right panel.

.

1-site fragment is close to 0.9. The partition potential pulls the 4-site LUMO down

enough so that 0.1 electron flows into it from the 1-site HOMO, minimizing Ef while

equalizing the chemical potentials.

Finally, we return to the case of a heteronuclear diatomic molecule and point out a

connection between fragment occupations and inter-fragment separations:

Small separations lead to integer occupations: As noted in relation to figure 8.2, very

small separations between neighboring fragments lead to the occupation numbers

which are locked into integers. The left panel of figure 8.6 shows the occupation of the

weaker fragment in a 1D hetero-nuclear double well with 2 non-interacting electrons.

The horizontal axis is the separation between the wells. Each curve corresponds to

a different value of ∆Z, the difference in strength between the two wells. When
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the separation goes below some finite value (which decreases as ∆Z decreases), the

electron ends up 100% in the fragment with the deeper well. In these cases with

integer fragment occupations the two fragment chemical potentials never cross and

the partition potential is exactly equal to the potential for the unoccupied fragment.

New qualitative features appear with the possibility of occupying different number

of orbitals in different fragments. For example, with 4 non-interacting electrons in

the same external potential as before, the covalent character of the bond may return

at very small separations, leaving only a range of separations for which the chemical

potentials cannot be equalized. For our model system, when ∆Z = 1.4, the fragment

occupations are integers only within the range 0.6 < R < 1.2. For smaller values of

∆Z there is no covalent bond formation at small separations; for larger values of ∆Z

there are no separations for which the fragments have strictly integer occupations.

At intermediate separations (region 2 in figure 8.2), the two chemical potentials cross

at a fractional number that remains approximately constant for a relatively large range

of separations. The smaller the value of ∆Z, the larger the extent of this plateau, and

the smaller the range of separations for which chemical potential equalization cannot

be achieved.

Large separations lead to near-integer occupations: As the separation grows to infin-

ity, the crossing of the two chemical potentials occurs at fractional occupations that

approach the integers asymptotically, becoming strictly integers only at R = ∞.

An alternative method for treating non-integer occupations was very recently pro-

posed in the context of embedding theory [24]. It would be interesting to see if that

method leads to the same conclusions reported here.
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Figure 8.6. Occupation number of the shallower well versus separation
(R) for a heteronuclear double well v(x) = −ZA cosh−2(x − R/2) −
ZB cosh−2(x + R/2) populated with 2 electrons (left panel), and 4 elec-
trons (right panel). Various values of ∆Z = ZA − ZB are shown. Left: As
the separation grows to infinity, the occupation numbers approach inte-
gers and for certain ∆Z at close separations the occupations are strictly
integers. Right: The vertical axis on the right panel corresponds to the
occupation of the deeper well (A) minus the occupation of the shallower
well (B). The shallower well is fixed at a strength of 1.0 and the deeper
well has a strength of ZA which varies from 2.1 to 2.5. We can again
observe that as the separation goes to infinity the occupation numbers
approach integers and for certain ∆Z at close separations the occupations
are integers. We also note that compared to the 2-electron case, the oc-
cupation numbers are much stiffer and require much larger heteronuclear
differences to cause transfer.

8.3 Concluding Remarks

Even though PDFT provides an unambiguous prescription for obtaining a set of

fragment densities for a given choice of fragmentation, the formalism itself does not

tell us how to optimize that choice. It should be possible to establish principles

or rules to determine an optimal choice of fragmentation according to pre-defined

criteria. Maximization of the near-additivity discussed in this work could be one such

criterion. If near-additivity holds, then the vast empirical knowledge encompassed

by many rules of organic chemistry, for example, could be phrased in a simple but

rigorous way in the language of PDFT [37].
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To summarize, we have found that the sum of fragment densities belonging to a

subset of the PDFT densities obtained for a given partition can be exactly equal

(case of tetratomics) or nearly equal (case of triatomics) to elements of the set of

densities corresponding to a different partition. As a function of separation between

fragments, the onset of near-additivity coincides with a change of character in the

relevant chemical bonds, at least in the 1d-models studied in this work.

As a function of fragment occupations, we observed the appearance of cusps in the

sum of fragment energies, causing the fragments to accept only integer numbers of

electrons. The cusps disappear when the fragment chemical potentials are equalized at

non-integer fragment occupations. These cusps are connected with other discontinuity

problems in ground-state DFT [21,99], a topic we will explore in future work.

Future work also includes determining the performance of PDFT for prototype cova-

lent, ionic, and metallic bonds. We plan to test the transferability of atomic properties

and compare with other popular density-partitioning schemes. Our results on model

systems [43] indicate that the fragment dipoles obtained by PDFT are more adjusted

to chemical intuition and more transferable than those obtained by the partition-

ing schemes of Bader, Voronoi, and Hirschfeld. To establish the generality of these

statements, it is critical to carry out more extensive studies.

This work is also a step towards a larger goal that should provide new opportunities for

QM/MM applications and linear-scaling algorithms for efficient electronic-structure

calculations of large systems.
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9. CADMium

9.1 Benchmark PDFT calculations for Homo-nuclear Diatomic Molecules

This section contains work from the review article entitled ‘Density-Based Partitioning

Methods for Ground-State Molecular Calculations’, written by the author and Adam

Wasserman published in the Journal of Physical Chemistry A. [1]

In order to obtain benchmark PDFT results free of basis-set errors, we use our own all-

electron real-space code (CADMium, for “Chemical Atoms in Diatomic Molecules”).

Following the work of many others [108–112] we use prolate spheroidal coordinates

to create a two-dimensional mesh. We then solve the Kohn Sham equations on this

mesh, treating the cylindrical problem analytically. We used the Libxc package to

evaluate XC-functionals [113].

Table 9.1 displays energies for several diatomic molecules along with the sum of

fragment energies, the partition energy, and its components. The partition energy

is strictly electronic and does not include contributions from non-additive nuclear-

nuclear repulsion V nad
nn . However, it is interesting to note that the magnitude of

the electronic partition energy is consistently close to, but not equal to, V nad
nn . The

classical electrostatic terms: V nad
nn , V nad

nuc , and Enad
H sum to approximately zero.

Also, in Figures 9.1 - 9.2, the partition potentials for several diatomics are compared

along with the density difference between one of the two fragments and the corre-

sponding isolated fragment density. The isolated fragment and the fragment in the

molecule share the same potential except for the partition potential which deforms the

fragment in the molecule. In general, we can see that the partition potential typically

has an attractive well in between the two fragments, pulling some of the fragment
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Table 9.1.
Energies and components of Ep, in atomic units. The LDA is used in all
calculations (except in the first line corresponding to H+

2 , where the exact
functional for H+

2 is used). Calculations are performed at equilibrium
geometries, except for He2.

D Ef Ep V nad
nn V nad

ext T nad
s Enad

H Enad
XC

H+
2 (ex) 2.0 -0.4470 -0.6556 0.5 -0.5704 -0.0852 -0.0421 0.0421
H+

2 2.0 -0.4250 -0.6589 0.5 -0.5654 -0.0818 -0.0457 0.0341
H2 1.446 -0.9119 -0.9173 0.6916 -1.3476 -0.1521 0.5842 -0.0019
He2 6 -5.6689 -0.6668 0.6667 -1.3334 0.00004 0.6668 -0.0001
Li2 5.122 -14.6750 -1.8068 1.7571 -3.6781 0.0049 1.8866 -0.0201
Be2 4.522 -28.8749 -3.5770 3.5383 -7.1230 0.0604 3.5338 -0.0001

density into the bonding region. It also contains features closer to the nuclei, where

it reshapes the spherical isolated fragments into fragments that fit into the molecule.

Figure 3.4 displays these same partition potentials but only along the bond axis, to

compare vp for the different molecules. The singularities in the partition potentials

of H+
2 and H2 are clearly visible, and are also visible but smaller for Li2 and Be2. We

note that the partition potentials for H+
2 and H2 are the largest, followed by Be2 and

then Li2. He2 has the smallest partition potential.

To analyze vp(r), it is useful to split it into components, in the same way as the

energy. These components are compared in Figure 9.3. The Hartree and the external

potential components are larger in magnitude than the other components, but they

have opposite sign so their sum is plotted for better comparison. We may compare

the relative sizes of the components in each partition potential. For H2, the Hartree

plus external contribution plays a dominant role, while in the molecules with larger

bond lengths the kinetic component plays an increasingly important role. In He2,

the exchange-correlation and kinetic components play comparable roles, while the

Hartree plus external potential term is relatively small.

For the case of H+
2 we can compare results using LDA with exact PDFT results.

Figure 9.4 displays the components of the partition potential for H+
2 using LDA. In
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Figure 9.1. PDFT(LDA) calculations on H+
2 and H2. The left column

displays the difference between the left fragment density and the isolated
atomic density while the right column displays the corresponding parti-
tion potential. The density for the fragment in the molecule sits in the
same potential but with the addition of the partition potential. Thus, the
partition potential is responsible for deformations of the isolated density
into the fragment density in the molecule. In both plots, the partition po-
tential is depressed in the bonding region (see also Figure 3.4), increasing
the density in that region.

the exact case, the Hartree term exactly cancels with the exchange term leaving a

total HXC contribution of zero. We can see that while the LDA XC component is

close to canceling the Hartree contribution, it does not completely succeed.

Spin decomposition is tricky, as usual. Consider the case of Li2, shown in Figure

9.5. Each of the Li fragments has 3 electrons. Since the ground state of the molecule
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Figure 9.2. PDFT(LDA) calculations on He2, Li2, and Be2. The left
column displays the difference between the left fragment density and the
isolated atomic density while the right column displays the corresponding
partition potential. In all three plots, the partition potential is depressed
in the bonding region (see also Figure 3.4), increasing the density in that
region. In the case of Be2, the partition potential squeezes each fragment
and elongates it along the bond axis. In the case of Li2, the partition po-
tential displays distinct plateau structures surrounding both nuclei. The
edges of this plateau correspond to the transition between regions where
the lowest occupied orbital contributes the most density and regions where
the HOMO contributes the most density.
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Figure 9.3. Components of the partition potential for H2, He2, Li2 and Be2
using the LDA. The total partition potential is solid black, the Hartree
plus external potential component is in brown, the kinetic energy compo-
nent is in blue and the XC component is in green.

is spin-unpolarized, each of the fragment densities is calculated as an ensemble of

two oppositely spin-polarized systems: One system has two spin-up electrons and

one spin-down electron while the other has two spin-down electrons and one spin-

up electron. These component densities are averaged together to form a closed-shell

density. The up-spin densities of the two ensemble components are shown on a log-

scale in the right panel of Figure 9.5. These spin densities are averaged together to

obtain the ensemble spin density for the fragment, shown in the left panel, where it

is also compared with an isolated Li-atom density.
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Figure 9.5. Left: One of the Li fragments within a Li2 molecule as com-
pared to an isolated Li atom and the density for the Li2 molecule. Right:
Each Li fragment has 3 electrons and come from an open shell calcula-
tion, however the Li2 molecule is closed shell. This figure displays the
ensemble spin up component with one electron and the ensemble spin up
component with two electrons which combine to give a fragment density
corresponding to a fractional spin up density.

9.2 Fractional Charges and Spins

Various fragment-based methods formulated for wavefunction-in-DFT embedding do

not admit fractional numbers of electrons in the fragments. While wavefunction
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methods could in principle be defined for fractional numbers of electrons through

ensembles, this would require additional calculation using already expensive methods

[24]. In these cases, it is simpler to fix the fragments to have integer values. However,

as was demonstrated in Figure 3.3, there are certainly cases where chemical intuition

and practicality indicate that a fragment contain fractional numbers of electrons.

As mentioned in the first Section, it is difficult to assign physical meaning to fragments

within a molecule. However, to the extent that it is possible, PDFT seeks to treat

these fragments as physical systems. These fragments represent open systems and

therefore, in the case of non-integer occupations, the correct representation is achieved

through ensembles [21]. Other authors [24]have favored an alternative option for

treating fractional numbers of electrons, in which the density is constructed by simply

fractionally occupying the HOMO:

n(r) =
∑
iα

fiα |ϕiα |2 (9.1)

Here the fiα will be 1 when its eigenvalue is less than the chemical potential, 0 when

its eigenvalue is greater than the chemical potential. However, when the HOMO

eigenvalue is equal to the chemical potential, the corresponding occupation number

can take on a value in between 0 and 1. We refer to this method for constructing

densities with fractional numbers of electrons as fractional orbital occupation (FOO).

Table 9.2.
Table of PDFT energies in atomic units comparing ensemble (ENS) vs
FOO treatment of fractional charges and spins. All calculations used the
LDA.

D Eiso Ef Ep Vnn Etot
H+

2 (ENS) 2 -0.4787 -0.4250 -0.6589 0.5 -0.5839
H+

2 (FOO) 2 -0.5787 -0.5438 -0.5401 0.5 -0.5839
H2 (ENS) 1.446 -0.9574 -0.9119 -0.9173 0.6916 -1.1377
H2 (FOO) 1.446 -0.8913 -0.8293 -1 0.6916 -1.1377
Li2 (ENS) 5.122 -14.6867 -14.6750 -1.8068 1.7571 -14.7246
Li2 (FOO) 5.122 -14.6693 -14.6553 -1.8264 1.7571 -14.7246
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We use our CADMium code to illustrate the differences between these two methods of

handling fractional numbers of electrons. Table 9.2 displays results for a few diatomic

molecules using both our ensemble method (ENS) and FOO. These calculations were

performed using LDA exchange and correlation. Both calculations use exact expres-

sions for the partition energy, in the sense that they exactly reproduce a molecular

LDA KS-DFT calculation. Thus, the total energy is not affected by the choice of

ENS vs FOO. However, this choice affects both the sum of fragment energies, Ef ,

and the partition energy, Ep, even when their sum is not affected.

For the case of ensembles, the partition energy is given by:

EENS
p [{nα}] = E[nf ] −

∑
α

((1 − να)Eα[npα ] + ναEα[npα+1]) , (9.2)

whereas with FOO, the partition energy is:

EFOO
p [{nα}] = E[nf ] −

∑
α

(Eα[nα]) (9.3)

The key difference between the two options is that the npα always integrate to inte-

ger values, while the nα may integrate to non-integer values. In the ensemble case,

this means that the fragment energy functionals are never evaluated with fragment

densities with fractional charges and spins. This difference is important due to the

well known problems associated with approximate density functionals and fractional

spins and charges. For a recent overview of these issues of XC functionals, see the

work of Cohen, Mori-Sanchez and Yang [99,114–116]. The dependence of the energy

on particle number is known for the exact case due to the work of Perdew, Parr,

Levy, and Balduz using ensembles [21], and independently via arguments based on

size-consistency and translational invariance [107].

The errors incurred in by local and semi-local XC functionals are illustrated in Figure

9.6 for the simple case of a hydrogen atom with a fractional number of electrons. The

errors that are due to approximate non-interacting kinetic energy functionals are



103

illustrated in Figure 9.7. In these cases, the functionals perform best for densities

closest to the integers, and perform poorly for densities corresponding to a fractional

number of electrons.

Fractional Charge

E
ne

rg
y 

(h
ar

tr
ee

)

0 0.5 1

−0.5

−0.4

−0.3

−0.2

−0.1

0

Exact

PBE

LDA

Fractional Spin

E
ne

rg
y 

(h
ar

tr
ee

)

0 0.5 1

−0.5

−0.49

−0.48

−0.47

−0.46

−0.45

−0.44

Exact

LDA

PBE

Figure 9.6. Energies of the hydrogen atom with fractional charge (left)
and fractional spin(right). In both cases the exact is linear and is shown
in solid black. PBE is shown in the dashed line and the LDA is shown in
dot dashed line.
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Clearly, these errors need to be addressed in any fragment-based method that allows

for fractional charges and spins, but the inability of standard density functionals to
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correctly handle these densities also causes well-known issues in standard Kohn-Sham

calculations with integer numbers of electrons. In particular, dissociation curves are

strongly affected. The two paradigmatic systems exhibiting such errors are the hy-

drogen molecule and its ion in the case where their bonds are stretched. When a

closed-shell molecule, such as H2, dissociates into open-shell fragments, unless sym-

metry is broken, there will be regions with fractional spins. The associated error

caused by incorrect treatment of these fractional spins is known as static-correlation

error. Similarly, in cases such as H+
2 , where a charge is shared between two distant

nuclear centers, incorrect treatment of the fractional charges on each center leads to

delocalization error. The question of how to best correct these shortcomings remains

largely open in DFT, in spite of recent progress on the development of explicit density

functionals that yield the correct behavior [117,118].

Part of the difficulty in addressing this issue is that it is not enough for functionals

to be able to treat a whole system with fractional numbers of electrons, but the

functional must also be able to recognize when a system with an integer number of

electrons contains regions with fractional numbers of electrons or spins (e.g. stretched

H+
2 and stretched H2). It is not possible for standard local or semi-local functionals

to properly describe the delocalized electron of stretched H+
2 . On the other hand,

many standard density-functional approximations do quite well for localized densities

that integrate to an integer number of electrons. The use of ensembles within PDFT

suggests a possible solution. The fragments of PDFT have always been found to

be well localized, and if a fragment does contain a fractional number of electrons or

spins, then it is calculated as an ensemble of two systems with integer numbers of

electrons and spins, and therefore the fragment energy will have the correct linear

behavior for fractional numbers. Thus, if we look at the behavior of the energy for

a fragment with arbitrary fractional spin and fractional charge within a molecule for

fixed partition potential, it will exhibit precisely the “flat-plane behavior” required

by the exact functional [114]. It will have linear dependence on fractional charge

and spin even when using the LDA. This flat-plane behavior will remain even as the
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molecule is stretched, so in the case of stretched H2 and H+
2 the sum of fragment

energies will be very close to the correct molecular energy. The partition energy,

on the other hand, might ruin the correct behavior, restoring the errors of LDA.

Clearly, we “simply” need to correct the behavior of the partition energy in order to

improve molecular dissociation within DFT. In this way, PDFT provides a different

framework for addressing the issue. The goal is to develop improved functionals

for the XC components of the partition energy rather than the XC functional itself.

The partition energy is a functional of the fragment densities, and thus contains

information about how overlapped or dissociated the fragments in a system may

be. Exact conditions for the partition energy can aid in this process of functional

development. This idea is explored further in reference [4].
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10. Static-Correlation and Delocalization Errors

This work may also be found on the arxiv. [4]

Two open problems in DFT are the delocalization and static correlation errors of

approximate functionals, arising from improper treatment of fractional charges and

spins, respectively [99,114–116]. Delocalization error causes underestimation of ener-

gies in dissociating molecular ions, chemical reaction barrier heights, charge-transfer

excitations, band-gaps of semiconductors, as well as overestimation of binding energies

of charge-transfer complexes and response to electric fields. Static correlation error

is responsible for the problems with degenerate and near-degenerate states, incorrect

dissociation limit of neutral diatomics and poor treatment of strongly correlated sys-

tems. The simplest systems that display these errors are stretched H+
2 and H2. Local

and semi-local approximations to the exchange-correlation energy (EXC) severely un-

derestimate the dissociation energy of H+
2 due to delocalization, and overestimate the

dissociation energy of H2 due to static correlation (See Table 10.1).

In this work we demonstrate that partition density-functional theory (PDFT) [38]

is a suitable framework to solve these problems. The partition energy of PDFT

(denoted Ep, to be defined below) is amenable to simple approximations which can

handle delocalized and statically correlated electrons, greatly improving dissociation

energies in both cases. For example, Table 10.1 reports on the results we obtained by

applying PDFT with the Local Density Approximation (LDA) and a simple “Overlap

Approximation” (OA) for Ep (defined in Eq.10.2). We are not aware of approximate

XC-functionals that yield similar accuracy for both H+
2 and H2 within standard KS-

DFT.
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Table 10.1.
Dissociation energies for H+

2 and H2 in units of milihartrees.

KS-DFT PDFT exact
(LDA) (OA-LDA)

H+
2 18.1 102.0 102.6

H2 246.1 180.0 174.5

10.1 Ensembles in PDFT

Within PDFT each individual fragment calculation is a standard DFT calculation

for the ensemble ground-state density of Nα electrons in an effective potential. We

denote the αth fragment density as nα and the sum of fragment densities as nf . The

number of electrons in each fragment, Nα, is determined from the principle of chemical

potential equalization [22] and is not necessarily an integer number. The effective

external potential for each fragment is the sum of the fragment’s potential, vα, and the

partition potential, vp. The latter is a global quantity ensuring that all of the fragment

calculations produce densities that sum to yield the correct molecular density while

minimizing the sum of the fragment energies, Ef . The partition potential enters

formally as a lagrange multiplier, but can be calculated as the functional derivative

of Ep with respect to the total density [23].

The partition energy, Ep, central to our work, is the difference between the total

molecular energy, E[n], and the sum of the fragment energies, Ef = ∑
α Eα[nα]. Each

fragment energy, Eα[nα], is the total electronic energy for Nα electrons in the fragment

potential vα(r) (the partition potential does not contribute to Eα). If Nα is not an

integer then Eα[nα] is the energy of an ensemble of two systems, one with p = ⌊Nα⌋

electrons and another one with p + 1 = ⌈Nα⌉ electrons. As argued in ref. [23], the

minimum value of Ef with respect to variations of the nα’s is a functional of the total

density. Subtracting this quantity from the true ground-state energy yields Ep[n] =

E[n] − Ef [n], an implicit functional of the molecular density. We may also write Ep
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as an explicit functional of the fragment densities: Ep[{nα}] = E[nf ] − Ef [{nα}]. In

the two-fragment case, Ep can be divided into components and written out explicitly

in terms of fragment densities:

Ep[n1, n2] = ∆Ts[n1, n2] + ∆Vext[n1, n2] + ∆EH[n1, n2] + ∆EXC[n1, n2] (10.1)

where ∆F ≡ F [nf ] − ∑
α Fα[nα]. This is similar to the non-additive functionals of

embedding theory [24, 53, 54] except that the functional values for each fragment

are calculated from ensembles, as noted previously. In practice, a choice of density-

functional approximation (DFA) must be made for EXC and ∆EXC. In addition, the

∆Ts term requires writing the non-interacting kinetic energy as a functional of the

density. Approximate kinetic energy functionals may be used [119], although ∆Ts

can also be obtained from an inversion of the sum of fragment densities as in ref. [25].

(We use von Weizsäcker inversion here, since both of our illustrative systems, H+
2 and

H2, have a single occupied orbital).

For a given choice of XC functional, we may exactly reproduce the corresponding

KS-DFT calculation as long as the same DFA is employed for ∆EXC and Ef [2]. We

can also trivially reproduce a KS-DFT calculation by setting the number of fragments

equal to one. In these ways PDFT subsumes KS-DFT.

However, PDFT also goes beyond KS-DFT. For example, the following “Overlap

Approximation” produces the results reported on the 2nd column of Table 10.1 (when

used with LDA):

EOA
p = ∆Ts + ∆Vext + f (Ns, S) ∆EH + S∆EXC , (10.2)

where S[n1, n2] = N−1
s

∫
dr
√

n1(r)n2(r), Ns =
√

N1N2, and f (Ns, S) = (⌊Ns⌋ + S (1 − ⌊Ns⌋)).

The overlap measure, S, is designed to go to zero at infinite fragment separation and

to one at the united-fragment limit (reminiscent of the work of [120]). Why this

works will be made clear later on. We note that although EOA
p produces accurate
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dissociation energies for the paradigm systems H+
2 and H2, the actual binding curves

are inaccurate at intermediate separations. Nevertheless, Table 10.1 suggests that the

route is promising. One strategy for improving upon OA is to investigate different

choices for the overlap S and for f(Ns, S). Another promising route that we explore

here is choosing one XC functional for the fragment calculations and another for the

∆EXC term, thus producing a molecular density and energy different from those of a

KS-DFT calculation performed using either XC functional. The separation of Ep[n]

and Ef [n] opens opportunities for new approximations within a self-consistent frame-

work. In particular, when the error of a DFT calculation is due to fragmentation, as

in bond-stretching, expressing Ep[n] as a functional of the set of fragment densities

has the potential of fixing the error from its root. The physics of inter-fragment

interactions is contained in Ep while the intra-fragment interactions are contained in

Ef .

This is the main idea we wish to explore in the remainder of this chapter. We first

discuss a consequence of using different levels of approximation for Ep and Ef . As

shown in ref. [23], the partition potential is determined from the chain rule: vp(r) =∑
α

∫
dr′vp,α(r′)Qα(r′, r) , where the αth-partition potential is given by vp,α(r) =

δEp/δnα(r) and Qα(r′, r) = δnα(r′)/δn(r) satisfies the sum-rule: ∑
α Qα(r′, r) =

δ(r′ − r). As long as the same level of approximation is employed for Ep and Ef ,

then at convergence vp,α(r) = vp,β(r) ∀α, β so the choice of Qα is inconsequential

provided the sum-rule is satisfied. When different levels of approximation are used

for Ep and Ef , however, the vp,α(r) are not necessarily identical at convergence, and

it becomes critical to specify the approximation being used for the Qα. Future work

will need to establish the effect of different approximations for Q on final energies and

densities. Throughout the present work, we employ the Local-Q approximation sug-

gested in ref. [23], which directly leads to an expression for the two-fragment partition

potential:

vp(r) = n1(r)
n(r)

vp,1(r) + n2(r)
n(r)

vp,2(r) (10.3)
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We now have all of the necessary tools to perform PDFT calculations with separate

approximations for Ef and Ep. We implemented these calculations on a real-space

prolate spheroidal grid, following the work of Becke and other workers [108–112], and

found XC potentials and energies through use of the Libxc library [113]. We validated

the code through calculations on H+
2 and H2 at equilibrium geometries for both PDFT

and standard KS-DFT calculations where our code yields the same energies to within

10−7 hartrees for all calculations (see table 10.2 for comparison to the literature). We

now look at the delocalization and static-correlation errors from the point of view of

PDFT, and demonstrate our proposed solutions.

Table 10.2.
Comparison of total energies in hartree, for our PDFT code, and from
benchmark KS-DFT calculations.

H2 PW91 H2 LDA H+
2 Exact

R (bohr) 1.414 1.446 2.0
KS-DFT (hartree) -1.1706931 -1.1376921 -0.6026342144(7)2

PDFT (hartree) -1.17071 -1.1376923 -0.60263425

10.2 Delocalization Error

We first consider the accuracy of Ef in H+
2 . Since the Hamiltonian has inversion

symmetry, the correct ground-state density has “half an electron” on the left and “half

an electron” on the right, but the correct ground-state energy at infinite separation is

that of an isolated hydrogen atom (-0.5 hartree). A correct size-consistent electronic-

structure method must therefore assign an energy of -0.25 hartree to a hydrogen atom

with half an electron. This same argument may be extended to dissociating hydrogen

chains, resulting in the conclusion that the energy is a piecewise-linear function of

electron number [107]. This is of course accomplished by the exact grand-canonical
1Reference [111]
2Reference [112]
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ensemble functional [21], but it is not accomplished by most approximate functionals,

as can be seen in Fig.10.1 for PBE [20] and LDA [121, 122]. While PBE yields

an excellent value for the energy of a single electron in a hydrogen atom, the self-

interaction error SIE = EH[n] + EXC[n] is a convex function of electron number N .

As a consequence, PBE underestimates the energy for half an electron in a hydrogen

atom by 53mH. Two times this error is precisely ∆EH(∞) + ∆EXC(∞) in Eq.(10.1),

the PBE delocalization error of H+
2 at infinite separation. The OA of Eq.10.2 works

by suppressing this error as S(∞) = 0 and happens to be accurate at the equilibrium

separation as well, but is inadequate at intermediate separations.

-0.5

0

en
er
g
y
(h
ar
tr
ee
)

}

-0.1

0

-0.5

0

0 0.5 1.0

en
er
g
y
(h
ar
tr
ee
)

Electron Number

}

2 4 6 8 10

-0.1

0

H-H distance (bohr)

LDA

PBE

   eq. 4 

 w/ PBE

½ SIE H   

   R→ ∞

PBE

LDA

½ SIE H   

   R→ ∞

ELDA

EPBE

   eq. 4 

 w/ LDA

Figure 10.1. Plots on the left: Energies of a hydrogen atom with fractional
number of electron. Exact energies are plotted in solid black along with
DFA and ensemble-DFA results. Note that ensemble-PBE and the exact
curve are indistinguishable. The origin of the self interaction error of
stretched H+

2 is indicated in both frames. Plots on the right: The exact
dissociation energy of H+

2 is plotted in solid black along with standard
KS-DFT results and PDFT results using Eq.(10.4).
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Because PDFT treats each fragment using an ensemble, the fragment calculation for

the left or right half of stretched H+
2 is a linear interpolation between calculations for

zero and one electron. We call this interpolation ensemble-PBE (EPBE) for PBE or

ensemble-LDA (ELDA) for LDA, and plot the resulting curves in Fig. 10.1. Note that

the EPBE curve is indistinguishable from the exact curve leading us to the conclusion

that our calculation of Ef is reasonably accurate.

We therefore focus on improvements to the Ep functional and look to range-separated

hybrid (RSH) functionals for inspiration [123]. In RSH functionals a larger portion

of exact exchange is included in long-range interactions to improve accuracy. The

distinction between long-range and short-range is made by a tunable parameter. In

our case the distinction between long and short range is the distinction between Ef

and Ep. This suggests inclusion of exact exchange in Ep should improve its long-range

behavior.

We explore this idea by using exact-exchange for the ∆EXC term of Eq.10.1:

∆EXC[n1, n2] ≈ ∆EEXX
X [n1, n2] (10.4)

For single-orbital systems, exact exchange can be calculated directly from the density.

For larger systems it could be obtained via inversion along with the kinetic energy.

The results of a self-consistent PDFT calculation with this functional are shown in

Fig.10.1. ∆EEXX
X exactly cancels ∆EH, making Ep exact for H+

2 . The remaining error

is due to Ef [n]. PBE and even LDA provide good approximations for Ef [n] because

each fragment calculation is done for a well-localized density with an integer number

of electrons. The ensemble formulation then gives us the correct scaling for the energy

of each half-electron fragment.
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10.3 Static Correlation Error

We next see how this idea might be applied to handle static correlation, taking H2 as

an example. As in the H+
2 case, we first consider the dissociation products of H2: two

isolated hydrogen atoms, with a total energy of -1.0 hartree. However, the molecular

calculation is spin-neutral, and it remains spin-neutral throughout dissociation due

to inversion symmetry. Therefore each dissociating hydrogen atom has an electron

which is “half spin up” and “half spin down”. The exact functional assigns an energy

to this fragment equal to that of a spin-up electron in a hydrogen atom. This is

known as the constancy condition [114]. However, approximate functionals do not

show this behavior and typically overestimate the energy of a system with fractional

spins. This overestimation exactly matches the static correlation error of dissociated

H2, and is given by ∆EXC(∞). Once again Eq.10.2 works by suppressing this error

as S(∞) = 0 and is accurate at the equilibrium separation as well, but is inadequate

at intermediate separations.

Each fragment in an H2 PDFT calculation contains one electron, but the energies and

spin-densities are considered to be ensembles of a spin-up and a spin-down electron.

The energies and densities are then linear interpolations between a spin-up calculation

and a spin-down calculation. These two cases are degenerate so the fragment energies

satisfy the constancy condition. Once again, Ef is accurate with standard DFA’s and

we simply need to improve Ep.

We may at first consider a similar approach to what we used for H+
2 :

∆EXC[n1, n2] ≈ ∆EEXX
X [n1, n2] + ∆EDFA

C [n1, n2] , (10.5)

where ∆EDFA
C is the non-additive correlation energy from the DFA used in fragment

calculations. The results using both PBE and LDA are plotted in the top frame of

Fig.10.2 along with the exact Ep for both PBE and LDA. We see that inclusion of

exact exchange actually worsens the dissociation behavior.
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exact [124] (solid black) Bottom: The H2 overlap, S, for a PDFT-LDA
calculation in comparison to an OWA-LDA calculation. We see that the
OWA slightly suppresses the overlap.

However, size-consistency imposes another constraint on the partition energy: at

infinite separation Ep must go to zero. For H2 the only part of Ep which does not go

to zero is the ∆EXC term. We propose the following overlap-weighted approximation

(OWA):

∆EXC ≈ ∆EOWA
XC =S(∆EEXX

X + ∆EDFA
C ) , (10.6)



116

where S is the same overlap measure introduced in Eq.10.2. It is plotted in the

bottom frame of Fig.10.2. Clearly, the OWA only slightly suppresses the overlap.

The middle frame of figure 10.2 shows OWA results using PBE and LDA for ∆EDFA
C .

We see that both OWA-PBE and OWA-LDA follow the exact curve closely and ap-

proach the correct dissociation limit.

10.4 Peak and Step in XC potential

To understand the success of OWA we go further and examine the molecular XC

potential that yields the same molecular density as our PDFT calculations. This can

be done in the present case through von Weiszäcker inversion:

vXC(r) = 1
2

∇2
√

nf (r)√
nf (r

+ ϵ − vext(r) − vH[nf ](r) (10.7)

ϵ is the KS eigenvalue and vH[nf ] is the Hartree potential due to the sum of fragment

densities.

Fig.10.3 compares the effective XC potential from two PDFT calculations on stretched

H2 (internuclear separation of 10 bohrs). For the first we use the LDA in both Ef

and Ep. For the second we use LDA in Ef and OWA-LDA for ∆EXC in Ep.

There has been significant previous work on exact Kohn-Sham potentials and it is

well known that stretched H2 develops a peak at the bond midplane [125–131]. This

exact feature of vs(r), essential for the correct description of dissociation and electron

dynamics [132, 133], is absent from most approximate DFA’s but is nicely captured

by our OWA, motivating further development of time-dependent PDFT [74].
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= 10 bohr. The top two plots show an entire 2D plane along the bonding
axis while the bottom plot compares the effective XC-potential in a 1D
slice along the bond axis. Nuclei are at +5 and −5 on the bond axis.

10.5 Concluding Remarks

The techniques described thus far are specific to homonuclear diatomics, but work is

ongoing to extend these ideas to more general multifragment systems. Our results

suggest that local and semi-local density-functional approximations already do well

for the localized fragments involved in the calculation of Ef and attention needs to

be placed on developing general approximations for Ep. This chapter indicates that

the path is worth taking, as even simple approximations for Ep can achieve via frag-
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ment calculations what sophisticated XC-functionals cannot via standard molecular

calculations.
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