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ABSTRACT

Maud, Abdur Rahman Mohammad Ph.D., Purdue University, May 2015. In Pursuit
of High Resolution Radar Using Pursuit Algorithms. Major Professor: Mark Bell.

Radar receivers typically employ matched filters designed to maximize signal to

noise ratio (SNR) in a single target environment. In a multi-target environment, how-

ever, matched filter estimates of target environment often consist of spurious targets

because of radar signal sidelobes. As a result, matched filters are not suitable for use

in high resolution radars operating in multi-target environments. Assuming a point

target model, we show that the radar problem can be formulated as a linear under-

determined system with a sparse solution. This suggests that radar can be considered

as a sparse signal recovery problem. However, it is shown that the “sensing” matrix

obtained using common radar signals does not usually satisfy the mutual coherence

condition. This implies that using recovery techniques available in compressed sens-

ing literature may not result in the optimal solution. In this thesis, we focus on the

greedy algorithm approach to solve the problem and show that it naturally yields a

quantitative measure for radar resolution. In addition, we show that the limitations of

the greedy algorithms can be attributed to the close relation between greedy matching

pursuit algorithms and the matched filter. This suggests that improvements to the

resolution capability of the greedy pursuit algorithms can be made by using a mis-

matched signal dictionary. In some cases, unlike the mismatched filter, the proposed

mismatched pursuit algorithm is shown to offer improved resolution and stability

without any noticeable difference in detection performance. Further improvements in

resolution are proposed by using greedy algorithms in a radar system using multiple

transmit waveforms. It is shown that while using the greedy algorithms together

with linear channel combining can yield significant resolution improvement, a greedy



xi

approach using nonlinear channel combining also shows some promise. Finally, a

forward-backward greedy algorithm is proposed for target environments comprising

of point targets as well as extended targets.
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1. INTRODUCTION

Radio detection and ranging, or radar for short, is a device which uses the reflection

of radio waves by objects to detect the presence, and estimate the parameters, of

an object. The development of radars can be traced back to a patent by Christian

Hulsmeyer [1] in 1904. Although the original device patented by Hulsmeyer could

only detect the presence of an object, a century of research has resulted in devices

capable of estimating multiple target parameters in stringent environments.

Although radars exist for a multitude of applications, this dissertation focuses

only on pulse echo measurement systems designed for target range or target range and

Doppler. Radars that estimate target azimuth and elevation in addition to range and

Doppler can be modeled similarly to the linear redundant dictionary model presented

later. Hence, the algorithms proposed in this dissertation may also be utilized in

those applications.

Traditionally, radar receivers have utilized matched filters to maximize the signal

to noise ratio at the output. This, in turn, maximizes the probability of detection

of a target for some fixed probability of false alarm. in a single target environment.

Assuming a point target environment, the output of linear receivers can be modeled

as a superposition of point spread function or ambiguity centered at the target po-

sitions. Ideally, for high resolution, it is desirable to have a Dirac delta function as

the ambiguity. However, Stutt [2] showed that the total volume under this ambiguity

depends on signal energies and is independent of signal design. This led Woodward

to remark in [3] “Like slums, ambiguity has a way of appearing In one place as fast as

it is made to disappear in another.”. This was, perhaps, the first sign that linear filter

receivers were not suitable for resolving point targets. However, the search for a radar

signal with suitable ambiguity function has remained a topic of intense research.
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Recently, sparse representation of signals in a redundant dictionary has received

a lot of attention in the signal processing community. Mathematically, this problem

is denoted as

y = Ax,

where x ∈ RN is a sparse vector, A ∈ RM×N , M < N is the redundant dictionary,

and y ∈ RM is the observation. Such representations have been used for signal

denoising, signal compression, super resolution, compressed sensing and for other

applications with considerable success. At the core of this sparse representation is the

problem of finding the optimal sparse representation in an efficient and stable fashion.

Unfortunately, this problem is known to be NP hard [4] making the optimal solution

computationally unfeasible in most cases. To overcome this problem, iterative greedy

matching pursuit (MP) [5–7] algorithms have been used and often lead to satisfactory

results.

Many recent papers have studied the performance and stability of MP algorithms.

In general, it has been observed that under insufficient dictionary incoherence, the

inherent greed of the MP algorithms results in non-sparse representation of the signal

in redundant dictionary [8]. To overcome this greed, regularizing constraints have

been used to improve performance. One example of a regularized algorithm is the basis

pursuit algorithm [9] which puts an `1 constraint on MP algorithm. The improved

performance, however, comes at the expense of increased computational complexity.

To obtain high resolution, radar has been formulated as a linear under determined

system with a sparse solution in [10, 11]. To guarantee recovery, signals with low

coherence dictionaries like the Alltop sequence [12] have been used. Although termed

compressed sensing radar, the proposed radars differ from traditional compressed

sensing radars proposed in [13, 14]. The focus in [13, 14] is on using fewer samples

of received signal to accurately reconstruct the target. In [10, 11], however, all the

samples of the received signal are used to achieve higher resolution.

In this dissertation, we study the application of greedy pursuit algorithms on radar

systems using signals which do not satisfy the coherence requirement. In particular,
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we show that for such signals, resolvable and nonresolvable target regions can be

computed. This naturally leads to a definition of resolution for radar systems. To

resolve targets in the nonresolvable region, we present generalizations of the MP algo-

rithm called the mismatched pursuit algorithm and the subspace mismatched pursuit

algorithm. The proposed algorithm uses two different dictionaries for improving dic-

tionary incoherence. As will be shown in this thesis, this generalization improves

the MP performance and has the same complexity as the MP algorithm. Further

improvements in resolution can be obtained by using multiple transmit signals. At

the receiver, the channels can be combined either linearly or nonlinearly. Both cases

are studied in this thesis. Finally, the greedy target recovery algorithm is modified

to recover extended targets.

Rest of this chapter is organized as follows: In section 1.1, atoms, signal dictio-

naries and their synthesis matrices are introduced. In addition, the mutual coherence

of a dictionary is defined and its relation to the sparse signal recovery problem is

discussed. In section 1.2, pulsed radar systems are introduced and signal models for

pulsed range and pulse-Doppler radar are presented. In particular, it is shown that

the pulsed radar systems can be modeled as a sparse recovery problem. Section 1.3

discusses the matched filter detection used in most radar systems. This is used to

introduce the ambiguity function and radar uncertainty principle in pulse-Doppler

radar. Section 1.4 presents uncertainty principle from the signal dictionary point

of view and shows why matched filters are not suitable for systems with redundant

signal dictionaries. Commonly used radar waveforms in this thesis are introduced in

section 1.5 which is followed by the outline of this thesis in section 1.6.

In this dissertation, vectors will be represented by lowercase boldface letters and

matrices will be represented by capital bold face variables. Sets, scalar variables and

functions will be represented by non-boldface variables. For any vector v, [v]i denotes

ith element in the vector. In general, the first element of any vector will be indexed

by zero. As a result, the first element of vector v will be [v]0. The notation [A]i,j

will be used for the element at row i and column j of the matrix A. The conjugate
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transpose of any vector or matrix will be denoted as (·)H . The column space of A

will be denoted as Col (A). For any set Z ⊂ M , |Z| and Z will represent the set

cardinality and the complement, respectively.

1.1 Atoms, dictionaries and coherence

Let D = {φ1, φ2, . . . , φP} represent a normalized redundant dictionary of CN

with atoms φk ∈ CN . Redundancy means N < P . Since D is assumed to be

normalized, 〈φj, φj〉 = 1, ∀j ∈ {1, 2, . . . , P}. A subset of dictionary D comprising

only linearly independent atoms is called the sub-dictionary. The synthesis matrix

Φ, of a dictionary D, defined as

Φ =
[
φ1 φ2 . . . φP

]
,

is an N×P matrix with atoms as its columns. We will use the notation ΦΓ to refer to

the synthesis matrix of the sub-dictionary indexed by Γ ⊆ {1, 2, . . . , P}. The adjoint

matrix of Φ, denoted ΦH , is called the analysis matrix.

For any sub-dictionary comprising of linearly independent atoms, {φn}n∈Γ, let Φ†Γ

denote the Moore-Penrose pseudoinverse of synthesis matrix ΦΓ. Then,
(

Φ†Γ

)H
is a

dual synthesis matrix with atoms that are linearly independent and form a biorthog-

onal basis to {φn}n∈Γ [15]. As a result, if
{
φ̃n

}
n∈Γ

represent the columns of
(

Φ†Γ

)H
,

then 〈
φ̃i, φj

〉
=

1, i = j

0, i 6= j

.

The set of atoms
{
φ̃n

}
n∈Γ

is called the dual basis of Col (ΦΓ). Hence, for any vector

s ∈ Col (ΦΓ), ∃α, α̌ ∈ C|Γ| such that s = ΦΓα =
(

Φ†Γ

)H
α̌. The coefficients α and their

dual basis counterpart α̌ can be computed as α = Φ†Γs and α̌ = ΦH
Γ s, respectively.

A dictionary, D , is often characterized by its mutual coherence, µ(D), defined as

µ(D) = sup
m 6=n
|〈φm, φn〉| m,n ∈ {1, 2, . . . , P},
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where 〈a, b〉 represents the inner product of a and b. For a normalized redundant

dictionary D, it can be shown that 0 < µ(D) ≤ 1. The mutual coherence of a

dictionary gives a quantitative measure of the similarity of the atoms in the dictionary.

As will be shown later, for robust sparse signal decomposition, it is desirable to

have incoherent dictionary, that is, µ(D) ≈ 0. Dictionaries that do not satisfy this

condition are the subject of this paper.

The mutual coherence of a dictionary only reflects the extreme correlations be-

tween atoms in a dictionary. In most applications, performance bounds based on

mutual coherence can be too “loose” to be useful. For this purpose, Tropp and

Donoho [16,17] use the Babel function defined as

µb(m) = max
|Λ|=m

max
l /∈Λ

∑
k∈Λ

|〈φk, φl〉| ,

where µb(0) = 0.

In general, any N dimensional signal, s, can be represented as a linear combination

of atoms in D i.e.

s =
∑
k∈Λ

akφk = ΦΛa, (1.1)

where |Λ| ≤ P and a is a column vector of coefficients ak. Since P > N , there is more

than one set Λ satisfying (1.1). The optimal sparse signal decomposition finds the

set Λ with minimum cardinality. As a result, all atoms in Λ are linearly independent.

This is true because if the atoms in Λ were linearly dependent, another Λ∗ could

be obtained by removing the dependent vectors, resulting in |Λ∗| < |Λ|.The optimal

sparse signal decomposition problem can be formulated as

min
a∈Cp

(
‖s−Φa‖2 + λ ‖a‖0

)
. (1.2)

The solution of the optimization problem in 1.2 is known to be NP hard [4]. In [9],

the basis pursuit algorithm is proposed which computes the sparse decomposition by

solving the convex problem

min
a∈Cp
‖a‖1 , s.t. s = Φa, (1.3)
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where ‖·‖1 represents the l1 norm.

Further improvement in computations can be achieved by using the greedy Or-

thogonal Matching pursuit (OMP) algorithm [6] or one of its derivatives. Although

both OMP and basis pursuit are non-optimal algorithms, in [16] it was shown that

both algorithms can recover any optimal sparse set Λ when

µ(D) <

(
1

2 |Λ| − 1

)
. (1.4)

The condition in (1.4) shows that when D is sufficiently incoherent and the optimal

set, Λ, is sufficiently sparse, both OMP and basis pursuit can recover the optimal

sparse set. For robust sparse signal decomposition, it is desirable to have incoherent

dictionary, that is, µ(D) ≈ 0. Dictionaries that do not satisfy this condition are the

subject of this paper. For rest of the paper, we will use the term incoherent for a

dictionary when (1.4) is satisfied for the sparsity |Λ| of interest.

In most applications, the objective of the sparse signal decomposition is to find

an optimal sparse decomposition of the noisy signal, r, in dictionary D,

r = s + n

= ΦΛa + n, (1.5)

where n denotes noise, usually assumed to be white Gaussian noise (WGN). The basis

pursuit algorithm is then changed to a Lagrangian problem

â = arg min
a∈Cp

(
1

2
‖r− Φa‖2 + h ‖a‖1

)
.

1.2 Radar

Depending on the positions of the radar transmitter and receiver, radars can be

broadly classified as monostatic or multistatic. In monostatic radars, the transmitter

and receiver of the radar are colocated. A multistatic radar consists of either widely

separated transmitters and receivers, or multiple monostatic radars focusing on the

same area, or a combination of the two. In this thesis, we will only focus on monostatic

radars.
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d2

s (t )e j ωc t

d1

r1(t)
r2(t )

Figure 1.1.: Illustration of a monostatic range radar
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Figure 1.1 depicts a monostatic radar looking at two stationary targets. The radar

transmits a signal s (t) which modulates a carrier with frequency ωc radians per sec-

ond. The use of a high frequency carrier not only shifts the transmitted signal to a

suitable frequency band, it also decreases the required antenna size for the radar sys-

tem. Radar systems can be further classified into continuous wave radars and pulsed

radars. As the name implies, a continuous wave radar transmits a single continuous

signal while a pulsed radar periodically transmits short pulses of signal and waits for

the target echo in between. While both types of radar have important applications

in which they are useful, the signal model used in this dissertation assumes a pulsed

radar system. Henceforth, any mention of a radar system will implicitly imply a

monostatic pulsed radar system.

1.2.1 Range estimation

Assuming the two targets in figure 1.1 are stationary, the signal echo received

from each target can be expressed as

ri(t) = αis (t− τi) ejωc(t−τi), i ∈ {1, 2} ,

where τi = 2di
c

and c is the speed of electromagnetic wave in free space. The signal

amplitude αi encapsulates signal attenuation factor due to propagation and the radar

cross section of the target. Denoting βi = αie
−jωτi , the overall received signal r (t) =

r1 (t) + r2 (t) after carrier demodulation can be written as

r (t) =
2∑
i=1

βis (t− τi) . (1.6)

Theoretically, equation (1.6) shows that high range resolution can be obtained by

using the Dirac delta function as the radar transmit waveform. Denoting the Dirac

delta function as δ (t), the received signal can be expressed as r (t) =
∑2

i=1 βiδ (t− τi).

As a result, the target delay and hence the range may be accurately determined by

observing the delays corresponding to the non-zero values in the received signal.
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Although a short duration pulse seems like an ideal waveform for range radar, it is

not suitable in practice due to three main reasons.

Firstly, the received signal in an actual system can be modeled more accurately as

a sum of signal component in equation (1.6) and random noise. Even if interference

from other signal sources in the same frequency band and multipath propagation

can be ignored, the thermal noise at the output of the receiver antenna and other

components used in the receiver still contribute to additive noise. As a result, to

make the radar system more robust, it is imperative that the transmitted radar

signal has high energy. This, however, requires a radar transmitter designed for high

instantaneous power due to the short duration of the transmitted pulse. Depending

on the range limits of the radar, such radar systems may often be impractical.

Secondly, a short duration pulse invariably requires a high frequency bandwidth.

Even if a frequency band with sufficient bandwidth is available for use in the radar,

the atmosphere itself acts as a nonlinear filter over wideband signals. As a result,

the received signal is distorted and may no longer be short duration in time. Hence,

it may not be possible to achieve high range resolution even if the duration of the

transmitted waveform is reduced.

Thirdly, as will be shown later, target Doppler appears as a low frequency carrier

on received narrowband signal. As a result, high Doppler resolution requires radar

waveforms with sufficiently long time duration. Hence, in a pulse Doppler radar,

short duration transmit waveforms are infeasible.

The first two problems can be mitigated by transmitting narrowband waveforms

and using matched filters at the receivers. Narrowband signals are defined as signals

with bandwidth much less than the carrier frequency. Thus, for a sufficiently nar-

rowband signal, the channel attenuation may be assumed constant for all frequencies.

As a result, the effect of nonlinear channel behavior can be ignored. In addition,

since narrowband signals cannot concurrently be short duration signals in time, this

reduces the instantaneous power requirements of the radar.
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For the two target scenario depicted in figure 1.1, the received signal model was

given in equation (1.6). Denoting the autocorrelation of s (t) as Ass (τ), the matched

filter output for this signal model can be written as

Γ (τ) =

ˆ ∞
−∞

r (t) s∗ (t− τ) dt,

=
2∑
i=1

βi

ˆ ∞
−∞

s (t− τi) s∗ (t− τ) dt,

=
2∑
i=1

βiAss (τ − τi) . (1.7)

Denoting the energy in signal s (t) as Es, the autocorrelation function is known to

satisfy two properties: ∀τ ∈ R, Ass (τ) ≤ Es and Ass (0) = Es. As a result, assuming

inter-target interference because of sidelobes is negligible, the target positions can be

identified by the peaks at the output of the matched filter. Additionally, the matched

filter accumulates the energy in the received signal over its complete time duration

at the output peak. Intuitively, since no energy is lost at the output of the matched

filter, such a receiver is robust in noise.

Equation (1.7) shows that using the matched filter receiver with narrowband trans-

mit waveforms can yield a high resolution radar if the autocorrelation function is

similar to δ (t). In fact, for suitably selected radar waveforms, the first null width

of the autocorrelation may be considerably less than the time duration of the signal

s (t). This phenomenon is known as pulse compression. Figure 1.2 shows an example

of pulse compression using a signal s (t) with bandwidth B. In particular, it can be

seen that the first null crossing of the autocorrelation function occurs approximately

at 1/B. Defining the ratio of original signal width and the width of the autocorrela-

tion as pulse compression ratio (PCR), the PCR for the signal in Figure 1.2 can be

expressed as

PCR =
T

(1/B)
= BT. (1.8)

Hence, for high range resolution, the transmit waveform duration and bandwidth

should be selected to achieve a high time bandwidth product. Although the result in
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Figure 1.2.: Example of pulse compression at matched filter output for two waveforms

of equal length but different bandwidths.
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Figure 1.3.: Effect of Doppler on received signals of different durations.

equation (1.8) was derived for the transmit waveform shown in Figure 1.2, it holds in

general for all signals [18]. As a result, in general, improved range resolution can be

obtained by increasing time duration or frequency bandwidth or both of the transmit

waveform.



12

1.2.2 Velocity estimation

Going back to Figure 1.1, assume the the two targets are moving at a constant

speed. In some radar applications, it is desirable to estimate the target velocity as

well as the range. Assuming the two targets have radial velocities v1 and v2 relative

to the radar, their time varying distances can be written as

di (t) = di + vit, i ∈ {1, 2} ,

where di is the distance of the target from radar at time 0. Because of the time

varying distance, the time delay between transmit signal and its received echo is also

a function of time. Define τi (t) = 2di (t) /c and τi = τi (0), the radar signal echo from

each target in figure 1.1 can be expressed as

ri(t) = αis (t− τi (t)) ejωc(t−τi(t)),

= αis

(
t− 2 (di + vit)

c

)
e
jωc

(
t− 2(di+vit)

c

)
,

= αie
−jωcτis

((
1− 2vi

c

)
t− τi

)
ejωc(1− 2vi

c )t,

= βis

((
1− 2vi

c

)
t− τi

)
ejωc(1− 2vi

c )t,

for i ∈ {1, 2} and βi = αie
−jωcτi . As a result, after carrier demodulation, the received

signal r (t) = r1 (t) + r2 (t) is given as

r (t) =
2∑
i=1

βis

((
1− 2vi

c

)
t− τi

)
e−jω

i
Dt, (1.9)

where ωiD = 2ωcvi
c

is the Doppler frequency in radians per second. Comparing equation

(1.9) with equation (1.6) shows that target motion scales the received signal and shifts

it in frequency. The frequency shift ωiD is called the Doppler frequency and is typically

much smaller than the carrier frequency because ∀i, vi � c.

In this thesis, narrowband signals are used exclusively. As a result, Doppler scaling

can be ignored and Doppler manifests itself in terms of Doppler frequency only. The

received signal in equation (1.9) can then be approximated as

r (t) =
2∑
i=1

βis (t− τi) e−jω
i
Dt. (1.10)
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Now consider a radar system with fc = 5GHz, the Doppler frequency in Hertz for

a target moving at a radial velocity of 300m/s is 10kHz. This means that one

complete cycle of the Doppler sinusoid will take TD = 100µs. From equation (1.10),

it can be seen that the Doppler frequency is only visible to the receiver during the

pulse duration. Hence, we might expect an accurate Doppler estimate and resolution

ability if the signal width T � TD. This is shown graphically in Figure 1.3. It can

be seen that for the longer duration signal, the Doppler effect is clearly visible and

therefore, easier to estimate.

In typical pulsed radar systems, pulse duration is much smaller than the time

period of Doppler carrier. As a result, to improve Doppler resolution, it is common

for a radar system to coherently process multiple pulses at the same time. This is

shown in Figure 1.4. The radar system can be seen to transmit a pulse every Tr > T

seconds. Tr is called the pulse repetition interval (PRI). At the receiver, the radar

listens for echoes for Tc seconds. Tc is called the coherent processing interval (CPI).

Assuming there are Tc/Tr = M pulses in one CPI, the receiver uses a filter matched

to a pulse train of M transmit pulses at the receiver to process the target returns. For

a sufficiently large CPI, the radar can accurately estimate and resolve target Doppler.

The selection of PRI itself requires a tradeoff. For long range radar systems, a

higher PRI is needed. On the other hand, for fast moving targets, a smaller PRI is

preferred. In this thesis, each CPI will be assumed to have only one pulse, that is,

Tc = Tr. Although practical pulse Doppler radar systems do not use such small CPI,

this assumption will simplify simulation results. However, all results presented in this

thesis hold for any CPI provided the signal s (t) in the radar model is assumed to

represent a complete CPI.
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Figure 1.4.: Pulse duration, Pulse repetition interval and Coherent processing interval

in a pulsed radar

1.2.3 Range radar

Consider a point target environment with L targets located at a distance of

d1, d2, . . . , dL from the radar transmitter and receiver. Define target delay τi as

τi =
2di
c
, (1.11)

where c denotes the speed of propagation of the electromagnetic wave. Denoting

the radar transmit signal as s(t) and the noise in the received signal with w(t), the

demodulated signal at the receiver can be modeled as

r(t) =
L∑
i=1

αis(t− τi) + w(t), (1.12)

where αi is the complex amplitude of the target return from ith target. αi depends

on the target radar cross section and the signal attenuation due to wave propagation

to a distance di.

1.2.3.1 Discrete model

Assuming all the target delays are integer multiples of the sampling period Ts, the

sampled received signal in a target ranging radar can be written as

r[n] =
L∑
i=1

αis[n− ki] + w[n], (1.13)
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where ki = τi/Ts. It is assumed that TS satisfies Nyquist sampling rate. Define

vectors r = [ r[1] r[2] . . . r[N ] ]T and w = [ w[1] w[2] . . . w[N ] ]T , (1.13) can

be written as

r =
L∑
i=1

αiski + w,

where

[si]n =

s [n− i− 1] , 1 ≤ i ≤ n ≤ N,

0 else

.

Define the receive signal dictionary as S = [s1, . . . , sN ], the receive signal model can

be written as

r = Sα + w, (1.14)

where α ∈ RN is the L sparse vector of target amplitudes.

1.2.4 Pulse Doppler radar

Assume a point target environment with L targets present at a distance of d1, d2, . . . , dL

from the radar transmitter/receiver. Furthermore, suppose that the velocity of each

point target is denoted by v1, v2, . . . , vL respectively. Let s(t) be the transmitted

signal and w(t) be the receiver noise, the demodulated signal at the receiver can be

modeled as

r(t) =
L∑
i=1

αis(t− τi)ej2πvit + w(t), (1.15)

where αi is the complex amplitude of the target return from ith target and τi is defined

in (1.11).

1.2.4.1 Discrete model

A discretized sampled version of equation (1.15) may be expressed as

r[n] =
L∑
i=1

αis[n− ki]ej2πωin/M + w[n], (1.16)
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where it is assumed that all target delays are integer multiples of the sampling

period Ts and ∀1 ≤ i ≤ L, νiTs is an integer multiple of the rational number

1/M . As a result, for all targets νiTs = ωi/M for some ωi ∈ Z. Define vectors

r = [ r[0] r[1] . . . r[N − 1] ]T , w = [ w[0] w[1] . . . w[N − 1] ]T , (1.16) can be

expressed as

r =
L∑
i=1

αiski,ωi + w,

where

[si,k]n =

s[n− i]e
j2πkn/M , 0 ≤ i ≤ n ≤ N,

0 else

. (1.17)

Define a redundant time-frequency dictionary

S = [ s0,0 s0,1 . . . s0,M s1,0 . . . s1,M . . . sN,M ].

The discrete signal model can then be expressed in a form similar to (1.14) as

r = Sα + w, (1.18)

where α ∈ CMN is an L-sparse vector of target amplitudes. The dictionary S has

an important shift invariance property. Ignoring edge effects, ∀m,m + i ≤ N and

∀n, n+ k ≤M

〈sm,n, sm+i,n+k〉 =
N∑
l=1

(s[l −m]ej2πnl/M

× s∗[l −m− i]e−j2π(n+k)l/M)

=
N∑
l=1

s[l]s∗[l − i]e−j2πkl/M

= 〈s0,0, si,k〉 . (1.19)

As mentioned earlier, the mutual coherence of a dictionary is an important char-

acteristic parameter of a dictionary. For the shift invariant time frequency dictionary

S, mutual coherence can be specified as

µ(S) = max
i,j
〈s0,0, si,j〉 . (1.20)
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Typically, in radar applications where the radar clutter can be ignored, L � N .

Hence, the target identification problem in a pulse Doppler radar can be seen to be

similar to the problem of finding the optimal sparse signal decomposition discussed

earlier.

1.3 Matched filter processing

Traditionally, the receivers used in pulse Doppler radars are designed to maximize

the signal to noise ratio (SNR). Consider a target environment with a single target

at delay τ , with velocity v. Then the received signal can be modeled as

rm(t) = αs(t− τ)ej2πvt + n(t).

Assuming the noise,n(t), to be white Gaussian noise (WGN), it can be shown that the

linear filter maximizing the SNR is the matched filter matched to s(t− τ)ej2πvt [19].

This is equivalent to correlating rm(t) with s(t− τ)ej2πvt i.e.

Γ =

ˆ T

0

rm(t)
∗
s(t− τ)e−j2πvtdt

= αEs +N,

where Es denotes energy in s(t) and N represents the zero mean noise component at

the output of the filter. In general, the received signal, r(t), from a multiple point

target environment can be modeled as in equation 1.15. To maximize the SNR for

each target, pulse Doppler radars typically use a bank of matched filters matched to
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time delayed and Doppler shifted versions of the transmitted signal s(t). The output,

Γ(τ, ν) is then a function of delay and Doppler,

Γ(τ, ν) =

ˆ T

0

r(t)
∗
s(t− τ)e−j2πνtdt

=
L∑
i=1

αi

ˆ T

0

s(t− τi)
∗
s(t− τ)e−j2π(ν−νi)tdt

=
L∑
i=1

αie
j2π(ν−νi)τi

ˆ T

0

s(t)
∗
s(t− (τ − τi))e−j2π(ν−νi)tdt

=
L∑
i=1

βiχ(τ − τi, ν − νi), (1.21)

where βi = αie
−j2π(ν−νi)τi and

χ(τ, ν) =

ˆ
s(t)

∗
s(t− τ)e−j2πνtdt, (1.22)

is the well known asymmetric ambiguity function [18, 19]. Define the target environ-

ment, P (τ, ν) as

P (τ, ν) =
∑
i

βiδ(τ − τi, ν − νi), (1.23)

then the output of the matched filter bank can be expressed as

Γ(τ, ν) = χ(τ, ν) ∗ P (τ, ν), (1.24)

where ∗ represents the two dimensional convolution. Equation (1.24) shows that the

ambiguity function acts as a point spread function in the output of the matched filter.

Ideally, we would like to obtain an accurate estimate of P (τ, ν) from the output of

the matched filter delay Doppler scene, Γ(τ, ν). This suggests that we use transmit

signals s(t) such that the resultant ambiguity function, χ(τ, ν) is as close to a two

dimensional Dirac delta function δ(τ, ν) as possible. However, in [2], it was shown that

the volume under the cross ambiguity function is constrained by the signal energies

and is independent of the waveform design. Consider the Moyal’s identity [20](see

appendix)

ˆ ˆ
χsg(τ, ν)

∗
χyx(τ, ν)dτdν =

ˆ
f(τ)

∗
y(τ)dτ

ˆ
∗
g(τ)x(τ)dτ . (1.25)
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When s(t) = y(t) and g(t) = x(t), (1.25) simplifies to the Stutts’s invariant relation [2]ˆ ∞
−∞

ˆ ∞
−∞
|χsg(τ, ν)|2 dτdν =

ˆ ∞
−∞
|s(t)|2 dt

ˆ ∞
−∞
|g(t)|2 dt . (1.26)

Since the energy in the receive filter, g(t), does not change the signal to noise ratio,

it can be assumed that
´
|g(t)|2 dt = 1. Furthermore, since χsg(τ, ν) is continuous

if the radar transmit signal s(t) has finite energy, it follows that χsg(τ, ν) cannot be

zero around {τ, ν} = {0, 0} unless s(t) = 0, ∀t ∈ R. This result is a form of the radar

uncertainty principle and shows that it is not possible to have χsg(τ, ν) = δ(τ, ν).

For the discrete model in (1.18), the matched filter estimate of the target scene,

α̃, is written as

α̃ = SHr,

= SHSα + SHw,

=
∑

(i,j)∈Λ

[α]iM+j SHs(i,j), (1.27)

where Λ denotes the set of indexes of the targets. Furthermore, using the notation in

equation (1.17) and the structure of the synthesis matrix S, the discrete ambiguity

function of the discrete time signal s[n], can be seen to be

χ[τ, ν] =
[
SHs0,0

]
τM+ν

. (1.28)

Because of the shift invariance property (1.19) of the dictionary S, it can be seen

that

χ[τ − i, ν − j] =
[
SHsi,j

]
τM+ν

.

Hence, the estimated target scene in (1.27) can be expressed as

[α̃]τM+ν =
∑

(i,j)∈Λ

[α]iM+j χ[τ − i, ν − j], (1.29)

which is similar to the convolution model of the radar presented in equation (1.24).

Using the result in (1.20), the discrete ambiguity function in (1.28) can be seen to be

closely related to the mutual coherence of the dictionary S. In particular, they are

related as

µ(S) = max
τ 6=0,ν 6=0

χ[τ, ν] . (1.30)
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1.3.1 Matched filters and detection

Suppose the received signal

r =
∑
i∈Λ

aisi,

consists of normalized atoms, sj, from some dictionary S. In the detection stage,

the matched filter approach will compare likelihood ratio, L(j) = 〈r, sj〉, to some

threshold γ ∈ R. If L(j) = 〈r, sj〉 > γ, we say that sj is a constituent atom or signal

of r.

For dictionaries having non-negligible mutual coherence, the matched filter suffers

from false detections. To explain this, assume |Λ| = M and j /∈ Λ. Then ignoring

noise,

L(j) =
∑
k∈Λ

ak 〈sk, sj〉

≤ µ(S)
∑
k∈Λ

ak

≤ Mµ(S)(max
k∈Λ
{ak}) (1.31)

which shows that for any j /∈ Λ, as the number of similar atoms in Λ increases, the

matched filter output, L(j), is more likely to exceed γ. In fact, for dictionaries with

µ(S) ≈ 1, even M = 1 may result in false detections. This example also illustrates

why it is desirable to have µ(S) ≈ 0. Since j /∈ Λ, we want L(j) < γ, which can be

guaranteed if µ(S) ≈ 0.

The problem of false detections makes matched filters unsuitable for sparse signal

decomposition. As will be seen later, the iterative matching pursuit algorithm can

overcome this problem in certain conditions.

1.4 Uncertainty principle

Redundant dictionaries of practical interest often result in a phenomenon called

the uncertainty principle. Consider a dictionary D = [ Φ Ψ ], which is a concate-
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nation of two orthonormal bases of CN . In general, any y ∈ CN can be expressed as

a linear combination of the columns of Φ or Ψ, that is

y = Φα = Ψβ,

where α = ΦHy and β = ΨHy are uniquely defined. The uncertainty principle states

that for certain pair of bases Φ and Ψ,

‖α‖0 + ‖β‖0 ≥ 2/µ(D), (1.32)

that is, either α may be sparse or β may be sparse but not both. Assuming y = Da,

where a ∈ C2N is sparse, 1.32 says that the matched filter estimate, â = DHy = [α, β],

cannot be sparse. This result shows that the matched filter may not be suitable for

determining sparse vectors in a redundant dictionary. The time frequency dictionary

is an example of a dictionary which satisfies (1.32).

It was shown earlier in equation (1.26) that the ambiguity function of a pulse

Doppler radar has a volume constraint. This volume constraint is commonly used in

radar literature to understand the uncertainty principle. In the discrete signal model

of radar in equation (1.18), the uncertainty principle can be understood in a slightly

different way. Consider a radar system with received signal as given in equation

(1.18). The target scene estimate using a linear filter with time frequency dictionary

G is then given as

α̂ = GHr

= GHSα + GHw.

Ignoring noise, the target scene estimate is accurate when GHS = I. Hence, the

radar transmit signal and receive filter should be jointly designed to achieve GHS =

I. While this is possible in range radar where the receiver filter and receive signal

synthesis matrices G and S are full column rank, GHS is not even full rank in pulse

Doppler radar because of dictionary redundancy. As a result, even if there is no

noise, in general, it is not always possible to accurately estimate the target scene in
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pulse Doppler radar using linear filters because GHS 6= I for all possible redundant

dictionary pairs G,S. Hence, the uncertainty principle manifests itself in terms of

the rank deficiency of the matrix SHS.

1.5 Radar waveforms

As mentioned earlier, design of radar signals to improve the ambiguity function

and hence improve resolution has remained a topic of intense research for the past six

decades. As a result of this effort, there is now a plethora of radar signals and design

techniques available for different radar applications [18]. Although theoretically any

signal that minimizes ambiguity in some sense may seem suitable for use in a radar,

current high-power amplifier technology limits practical radar signals to constant

amplitude signals. This limitation further constrains the set of possible ambiguity

functions a practical radar signal can have. In general, the complex envelope of a

radar signal over a single CPI can be typically modeled as

s (t) = a (t) ejθ(t), 0 ≤ t ≤ Tc, (1.33)

where θ (t) represents phase or frequency modulation and a (t) represents the am-

plitude modulation of the carrier frequency. Assuming C pulses in one CPI, the

amplitude modulation a (t) in a pulsed radar system can be expressed as

a (t) =
C∑
i=1

xi (t) rect

(
t− (i− 1)Tr

T

)
, (1.34)

where Tr is the pulse repetition interval, T is pulse duration and

rect (t) =

1, 0 ≤ t ≤ 1

0, otherwise

.

Hence, in essence the amplitude modulation in a pulsed radar system acts as a switch

turning the radar signal on for time duration T every Tr seconds. Furthermore,

since the radar signals of interest in this dissertation are assumed to be constant
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amplitude, ∀t ∈ R, |xi (t)| will be constant for i ∈ {1, 2, . . . , C}. Using equations

(1.34) and (1.33), the radar waveform over one CPI for a pulsed radar system can be

expressed as

s (t) =
C∑
i=1

xi (t) e
jθ(t)rect

(
t− (i− 1)Tr

T

)

=
C∑
i=1

si (t) rect

(
t− (i− 1)Tr

T

)
, (1.35)

where si (t) = xi (t) e
jθ(t). In addition, if a pulsed radar system transmits the same

pulse in every PRI, si (t) = s (t− (i− 1)Tr). Although the theory and results pre-

sented in this dissertation hold for any waveform that can be expressed as (1.35), for

simplicity, the radar waveforms used for simulations will be assumed to have only one

pulse in every CPI, that is, C = 1. As a result, Tc = Tr and

s (t) = s (t) rect

(
t

T

)
, 0 ≤ t ≤ Tc.

Most of the existing radar signals in literature can be broadly classified as ei-

ther frequency modulated pulses or phase coded pulses. In this dissertation, both

frequency modulated signals and phase coded waveforms will be used for simulation

purposes.

The complex envelope of a phase coded pulse, s(t) of length T , can be expressed

as [18]

s(t) =


∑M

m=1 umrect
[
t−(m−1)tb

tb

]
0 ≤ t ≤ T

0 else

,

where tb = T/M and um = ejφm , m ∈ {1, 2, . . . ,M} is the phase code associated

with s(t). Perhaps the most well known phase codes are the Barker codes [18]. The

original Barker codes were binary phase coded sequences, that is,

φm ∈ {0, π},∀m ∈ {1, 2, ...,M},

and their autocorrelations have a peak to sidelobe ratio (PSL) of 1/M . Unfortunately,

it is known that the Barker codes do not exist for M > 13 [18]. Since, practical
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radar systems employ longer signals to obtain coherent integration gain, minimum

PSL binary codes and polyphase generalized Barker codes have been proposed [18].

The phase coded signal used most frequently in this dissertation is a nested (or

combined) code [18, 21] obtained using the Kronecker product of length 13 Barker

code, {b13
m} = {1, 1, 1, 1, 1,−1,−1, 1, 1,−1, 1,−1, 1}, and the length 4 Barker code

{b4
m} = {1, 1,−1, 1}, that is,

b13
m ⊗ b4

m = {b4
m, b

4
m, b

4
m, b

4
m, b

4
m,−b4

m,−b4
m, b

4
m, b

4
m,−b4

m, b
4
m,−b4

m, b
4
m}. (1.36)

In this dissertation, the code in (1.36) will be referred to as the combined barker

code or extended barker code. Another waveform that will be commonly used in this

dissertation is the linear frequency modulated (LFM) chirp given as [18]

s (t) =


1√
T
ejπkt

2
0 ≤ t ≤ T

0 else

, (1.37)

where k = ±B/T and B is the frequency band sweep in pulse duration T . Depending

on whether k is positive or negative, the chirp is said to be an up-chirp or down-chirp

respectively. The LFM chirp is known to provide improved range resolution compared

to a constant frequency pulse and good Doppler tolerance. As a result, the LFM chirp

is widely used in pulsed range radars. The range-Doppler coupling, however, makes

it unsuitable for high resolution pulse Doppler radar.

1.6 Thesis Outline

Sections 1.3 and 1.4 showed why the matched filters are not suitable for target

scenes with multiple targets. The primary aim of this thesis is to study detection

algorithms for improved target resolution in a multi-target environment. Towards

this goal, chapter 2 looks at the optimal detection of multiple targets using the gener-

alized likelihood ratio test. It is shown that the optimal algorithm is computationally

impractical and a greedy algorithm is proposed instead. Additionally, it is shown that

the matched filter is only suited for multi-target detection when the received signal
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dictionary is orthogonal. To be able to compare different algorithms, chapter 3, de-

fines radar resolution and proposes a quantitative measure for resolution performance

of a radar. The definition of resolution is then used to find conditions for target scene

resolution for the greedy algorithm proposed in chapter 2. In chapter 4, two greedy

algorithms using mismatched dictionaries at the receiver are used to improve resolu-

tion performance. Chapter 5 extends the greedy algorithm from chapter 2 to radar

systems with multiple transmit waveforms. It is shown that waveform diversity can

help in improving the target resolution performance. Furthermore, it is shown that

the use of greedy schemes can help in improving the performance of nonlinear channel

combining schemes in radar proposed in [22]. Chapter 6 extends the greedy target

detection algorithm of chapter 2 to extended targets. Finally, chapter 7 discusses

future work and concludes the thesis.
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2. MULTI-TARGET DETECTION IN RADAR

In chapter 1 it was mentioned that radar systems typically utilize matched filters at

the receiver for pulse compression. This is due to the fact that the matched filter is

the optimal detector for the binary hypothesis of the form

H0 : r = w,

H1 : r = αs + w,

where the noise w is assumed to be i.i.d. zero mean complex Gaussian and s is a

deterministic signal. Assuming the signal vector s is unit norm, the expected value

at the output of the matched filter under the two hypotheses H0 and H1 is given as

E
[
sHr/H0

]
= 0,

E
[
sHr/H1

]
= α.

As a result, the matched filter is suitable for use in radar when the target scene either

consists of no target or a single target with known parameters in additive Gaussian

noise.

In a multi-target environment, however, the matched filter is not always the opti-

mal detector. Consider a target scene with two targets. Assume the reflected signals

from the two targets are s1 and s2 with associated target amplitudes α1 and α2,

respectively. The received signal can then be expressed as

r = α1s1 + α2s2 + w. (2.1)

In section 1.3 it was shown that radar systems typically check for multiple targets by

matched filtering with reflected signals from each of the possible targets. Filtering

the received signal r with filters matched to s1 and s2 results in

sH1 r = α1 + α2s
H
1 s2 + sH1 w,

sH2 r = α1s
H
2 s1 + α2 + sH2 w,
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where s1 and s2 are assumed to be normalized. Hence, the expected value at the

output of each filter is

E
[
sH1 r
]

= α1 + α2s
H
1 s2,

E
[
sH2 r
]

= α1s
H
2 s1 + α2,

assuming w is zero mean i.i.d. Gaussian. It can be seen that if s1 and s2 are not

orthogonal, the reflected signal from each targets acts as an interference for other

targets and can deteriorate detection performance. In fact, if |α2| > |α1|, then sH1 s2 =

−α1/α2 can cause E
[
sH1 r
]

= 0 and hence the radar system will miss the target 1. This

shows that the matched filter is not suitable for multi-target environments unless the

reflected signals from all targets can be made orthogonal to one another. Furthermore,

since all the reflected signals depend on the radar transmitted signal directly, design

of suitable radar waveform is an important part of radar system design.

The nonsuitability of matched filters in the presence of interference has also been

observed in other applications. In fact, this is generally true for all binary hypothesis

testing problems where the hypothesis H1 has interference which is not orthogonal to

the signal component s. For example, in communication systems using binary phase

shift keying, this interference may be present in the form of intersymbol interference

when the communication channel has a nonlinear frequency response or consists of

multiple paths. Such communication systems typically use equalization at the receiver

to counter the effects of intersymbol interference.

Rest of this chapter is organized as follows: In section 2.1, the generalized like-

lihood ratio test is used to derive the optimal detector for detecting a single target

with unknown target parameters. It is shown that the optimal detector in essence

compares the maximum output of a bank of matched filters to a detection thresh-

old. Section 2.2 uses the generalized likelihood ratio test to find the optimal detector

when multiple targets may be present. It is assumed that the number of targets is

not known a priori and an iterative approach is used to derive the optimal detection

algorithm. It is further shown that the optimal algorithm is NP-hard in computa-
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tional complexity unless the dictionary synthesis matrix is orthonormal. For signal

dictionaries with orthonormal synthesis matrices, the optimal detector in multi-target

environment is observed to be the matched filter. For signal dictionaries that do not

satisfy the orthonormal property, section 2.3 presents a greedy algorithm for solv-

ing the NP-hard problem. Finally, section 2.4 compares the single target detection

performance of the matched filter with the greedy algorithm presented in section 2.3.

2.1 One target case

At the receiver, consider the scenario where we are interested in finding out if

there is a target present or not. Using (1.16), this can be written in terms of the

following hypotheses,

H0 : r = w

H1 : r = αsθ + w,

where θ ∈ T , T = {(i, k)|0 ≤ i ≤ N, 0 ≤ k ≤M} specifies target range and Doppler,

and w is assumed to be complex Gaussian noise with zero mean and covariance

matrix C. In radar terminology, if the detection algorithm at the receiver decides

hypothesis H1 when in fact H0 is true, it is called a false alarm. Conversely, if H1

is true but the detection algorithm declares hypothesis H0, it is said to be a miss.

The goal in radar system design is to minimize both, the probability of false alarm

(PFA) and the probability of a miss (PM). In a simple binary hypothesis testing

problem, the detection algorithm that minimizes PM for some PFA can be found by

using the Neyman-Pearson theorem [23]. However, since the target parameters (range

and/ or Doppler) are unknown at the receiver, H1 is a composite hypothesis. Hence,

the Generalized likelihood ratio test (GLRT) [23] will be used to derive the detection

algorithm in this chapter.

Denoting the probability density function (pdf) of received signal as f0(r) and

f1(r) under hypothesis H0 and H1 respectively, the GLRT can be written as
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Lg(r) =
maxθ f1(r)

f0(r)

H1

≷
H0

γ̃. (2.2)

Since f0(r) ∼ N (0,C) and f1(r) ∼ N (αsθ,C), Lg(r) can be simplified as

Lg(r) = max
θ

[
exp

{
− 1

2

(
(r− αsθ)

HC−1(r− αsθ) + rHC−1r

)}]
= max

θ

[
exp

{
1

2

(
∗
αsHθ C−1r + αrHC−1sθ − |α|2 sHθ C−1sθ

)}]
(2.3)

The second term in (2.3) is a constant independent of the received signal r. Fur-

thermore, since exp(x) is a monotonic function, the GLRT in (2.2) can be written

as

max
θ

(
∗
αsHθ C−1r + αrHC−1sθ

)H1

≷
H0

γ. (2.4)

The detector in (2.4) assumes knowledge of target amplitude α ∈ C. Since this is

usually not known a priori, we can replace it by its maximum likelihood estimate

(MLE). Denoting the MLE of α as α̂, from [24],

α̂ = arg max
α

exp

{
− 1

2
(r− αsθ)

HC−1(r− αsθ)

}
= arg max

α

{
−1

2
(r− αsθ)

HC−1(r− αsθ)

}
= arg max

α

{
∗
αsHθ C−1r + αrHC−1sθ − |α|2 sHθ C−1sθ

}
=

sHθ C−1r

sHθ C−1sθ
. (2.5)

Using (2.5) in (2.3), GLRT yields a detector of the form

max
θ

(∣∣sHθ C−1r
∣∣2

sHθ C−1sθ

)
H1

≷
H0

γ, (2.6)

where the threshold γ is selected based on the desired probability of false alarm [23].

Assuming a normalized signal dictionary and i.i.d noise, that is, sHθ sθ = 1, ∀θ and

C = σ2I, GLRT in (2.6) can be expressed as

max
θ

∣∣sHθ r
∣∣H1

≷
H0

γ. (2.7)
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The detector in (2.7) can be implemented using a bank of filters matched to all possible

sθ, θ ∈ T , at the receiver. Then, if
∣∣∣sH
θ̃

r
∣∣∣ = maxθ

∣∣sHθ r
∣∣, there is a target present at

parameters specified by θ̃ whenever
∣∣∣sH
θ̃

r
∣∣∣ > γ. Motivated by the hypothesis test

in (2.7), most radar implementations use a bank of matched filters at the receiver.

Another reason for its popularity is the straightforward extension of the test in (2.7)

to the multiple target scene as discussed next.

2.2 Multiple targets

In a multiple target environment, the number of targets as well as the target pa-

rameters has to be estimated. As a result, the hypothesis test is no longer a binary

hypothesis test. In this section, an iterative detection algorithm is derived by suc-

cessively increasing the assumed number of targets in the binary hypotheses. Hence,

the algorithm would first decide if there is a target or not in the target environment.

Then, if the result of first iteration shows presence of a target, the algorithm will

decide if there is only one target or two targets and so on. An advantage of this

approach is that it yields a binary hypothesis test in each iteration. In addition, in

section 2.3 it will be shown that a greedy algorithm for detecting multiple targets can

be easily derived using this iterative approach. Consider a target scene with either

K targets or K + 1 targets. The two hypotheses can be stated as

H0 : r = SαK + w,

H1 : r = SαK+1 + w, (2.8)

where αi ∈ CP denotes a target scene vector with i targets, that is,‖αi‖0 = i, and

w ∼ N (0, σ2I). Because of unknown target parameters, in this case both H0 and H1

are composite hypotheses. Let Vi =
{
x ∈ CP | ‖x‖0 = i

}
represent the space of all

possible target scenes with i targets. Denoting the pdf of received signal as f0(r) and

f1(r) under H0 and H1, the GLRT for this problem is

Lg(r) =
maxVK+1

f1(r)

maxVK f0(r)

H1

≷
H0

γ̃.
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Again, using f0(r) ∼ N (SαK , σ
2I) and f1(r) ∼ N (SαK+1, σ

2I), the log likelihood can

be written as

lnLg(r) = max
α∈VK+1,β∈VK

{
− 1

2σ2

{
‖r− Sα‖2 − ‖r− Sβ‖2}} ,

which results in a hypothesis test of the form{
min
β∈VK

‖r− Sβ‖2

}
−
{

min
α∈VK+1

‖r− Sα‖2

}
H1

≷
H0

γ. (2.9)

The test in (2.9) searches over all possible target parameters as well as target am-

plitudes. The computational complexity can be partially reduced by making the

test independent of the target amplitudes. Define the index set of signal dictionary,

I = {1, 2, . . . , P}. Then, the MLE of β, denoted β̂ is given as

β̂ = arg max
β∈VK

f0(r)

= arg min
β∈VK

‖r− Sβ‖2 .

Let Λj = {x ⊂ I | |x| = j} denote the set of all subsets of I with j elements. Denoting

the K non-zero elements in β as βK , the ML estimate of βK can be written as

β̂K = arg min
L∈ΛK ,βL

‖r− SLβL‖2

= arg min
L∈ΛK

(
S†Lr

)
(2.10)

A similar approach can be used to show that the ML estimate of α is α̂ = arg minL∈ΛK+1

(
S†Lr

)
.

Using (2.10) in (2.9), the hypothesis test can be written as

min
L∈ΛK

∥∥∥r− SLS
†
Lr
∥∥∥2

− min
L∈ΛK+1

∥∥∥r− SLS
†
Lr
∥∥∥2 H1

≷
H0

γ, (2.11)
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where the test only searches over the unknown target parameters. To obtain a test

for the presence of a single target, as in section 2.1, set K = 0 in equation (2.11).

The hypothesis test in (2.1) then simplifies to

‖r‖2 − ‖r‖2 min
L∈Λ1

∥∥∥r− SLS
†
Lr
∥∥∥2

= ‖r‖2 − min
L∈Λ1

{
‖r‖2 +

∥∥∥SLS†Lr∥∥∥2

− 2rHSLS
†
Lr

}
,

= max
L∈Λ1

{
2rHSLS

†
Lr−

∥∥∥SLS†Lr∥∥∥2
}
,

= max
L∈Λ1

{
2rHSLS

†
Lr− rH

(
S†L

)H
SHL SLS

†
Lr

}
,

= max
L∈Λ1

{
2rHSLS

†
Lr− rHSLS

†
Lr
}
,

= max
L∈Λ1

{
rHSLS

†
Lr
}
, (2.12)

where the definition of Moore-Penrose pseudo inverse S†L =
(
SHL SL

)−1
SHL was used.

Furthermore, since all the sets L ∈ Λ1 consist of only one element, SL denotes a

column of the synthesis matrix S. Hence, using the fact that the dictionary is assumed

to be normalized, that is SHL SL = 1, the expression to be maximized in equation can

be further simplified to
{
rHSLS

H
L r
}

=
∣∣SHL r

∣∣2. The simplified detector for a single

target case is then given as

max
L∈Λ1

=
∣∣SHL r

∣∣2 ,
which is equivalent to the matched filter test in (2.7).

When the number of targets in a target scene is unknown a priori, the hypothesis

test in (2.11) suggests that an iterative algorithm can be used to estimate the number

and position of targets. This is shown as algorithm (2.1). Appendix B shows that al-

gorithm (2.1) is an iterative implementation of the optimal sparse problem (1.2) when

λ = γ. Therefore, application of algorithm (2.1) to radar problems is computation-

ally infeasible in general. However, recently a number of computationally tractable

algorithms have been proposed to find the solution of the sparse recovery problem

in (1.2). Most of these algorithms assume that the dictionary is incoherent. This is
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discussed in more detail in the next section. For now, assume that the normalized

signal dictionary, S, is perfectly non coherent, that is

µ(S) = 0.

This means that the synthesis matrix is orthonormal. Now suppose the iterative

application of the test in (2.11) shows that there are at least K targets in the target

scene. Let L̂ = arg minL∈ΛK

∥∥r− SLS
H
L r
∥∥2

. Then, appendix C shows that the GLRT

for hypothesis H0 and H1 in (2.8) can be written as

max
θ∈Λ1/L̂

∥∥sHθ r
∥∥2 H1

≷
H0

γ. (2.13)

Comparing (2.13) with (2.7), (2.13) can be seen to be an extension of matched

filters to the multiple target case. In addition, the decision in any iteration of the

matched filter detector in (2.13) can be seen to be independent of all other iterations.

Hence, for a perfectly non-coherent dictionary S, the test in (2.13) can be modified

to estimate the set of all unknown target positions at once as

L =

{
θ |
∥∥sHθ r

∥∥H1

≷
H0

γ, θ ∈ T
}
. (2.14)

The target amplitude, aθ, corresponding to each target position θ can then be esti-

mated using the MLE

âθ = sHθ r.

Although a receiver implementing the hypothesis test in (2.14) can be implemented

using the same hardware used in one target case, non-coherent dictionaries rarely

arise in practice. This is especially true when the signal dictionary is redundant as

in pulse Doppler radar. Nevertheless, because of its simplicity, the hypothesis test in

(2.14) is widely used in radar systems.

The limitations of the matched filter hypothesis test (2.14) in a system with non-

coherent dictionary can be seen by considering a range radar using the combined

barker sequence. Figure 2.1a shows the matched filter output when the target scene

consists of a target at delay 0 and a second target at delay 6tb. The presence of
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(a) Targets at 0 and 6tb with normalized amplitudes 1 and 0.8

respectively.
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(b) Targets at 0 and 6tb with normalized amplitudes 1 and 0.3

respectively.

Figure 2.1.: Matched filter output for two targets located at delays of 0 and 6tb.
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significant sidelobes at −3tb and 3tb can cause a false alarm if the threshold γ is not

chosen appropriately. Conversely, Figure 2.1b shows that choosing a higher value of

threshold γ can cause the weaker targets to remain invisible from the radar system.

Linear filters designed to reduce sidelobe levels have been proposed to overcome this

problem in matched filters [25–27]. Such filters are commonly called mismatch filters.

Figure 2.2 shows the output of a radar system using a length 52tb mismatched filter

designed using the least squares technique proposed in [25]. It can be seen that the

reduced sidelobe level makes it easier to resolve targets with small radar cross sections

close to stronger targets. It is, however, important to point out that Figures 2.1 and

2.2 were obtained by ignoring noise in the received signal. In chapter 3 it will be

shown that although mismatched filter performs better in high signal to noise ratio

(SNR), the detection performance can suffer in low SNR. This trade-off between algo-

rithmic performance and performance in noise will be discussed in detail in chapter 3.

Compared to the mismatched filter, the greedy detector presented in section 2.3 can

overcome the sidelobe problem of the matched filter detector (2.14) without losing

detection performance in noise.

2.3 Greedy Iterative detection

The hypothesis tests in (2.9) and (2.11), though optimal, are impractical because

of their computational complexity. Computationally tractable, but suboptimal al-

gorithms can be obtained by imposing constraints on αK and αK+1 in (2.8). In

this section, we assume the target coefficient vectors, αK and αK+1 under the two

hypotheses are related as

αK+1 = αK + α1, (2.15)

where ‖α1‖0 = 1. In the (K + 1)th iteration, the two hypothesis can be written as

H0 : r = SαK + w,

H1 : r = SαK + asθ + w,
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Figure 2.2.: Mismatched filter output for targets located at delays of 0 and 6tb with

normalized amplitudes 1 and 0.3 respectively.
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Algorithm 2.1 Optimal algorithm for sparse signal decomposition of r =
∑

i∈Λ siαi+

n, si ∈ S. The position of the non-zero coefficients is specified by Λ̂ and the corre-

sponding coefficient values are given by α̂.

• Initialize Λ̂ = Ø, k = 1, ε = ‖r‖2.

• L̂k = arg minL∈Λk

∥∥∥r − SLS†Lr∥∥∥2

.

• β =
∥∥∥r − SL̂kS†L̂kr∥∥∥2

.

• while (ε− β) > γ

– Λ̂ = L̂k.

– k = k + 1.

– ε = β.

– L̂k = arg minL∈Λk

∥∥∥r − SLS†Lr∥∥∥2

.

– β =
∥∥∥r − SL̂kS†L̂kr∥∥∥2

.

• α̂ = S†
Λ̂
r.



38

where αK is assumed to be known from the previous K iterations. The log likelihood

ratio can be written as

lnLg(r) = min
θ∈T

{
‖r− SαK − asθ‖2 − ‖r− SαK‖2} ,

= min
a∈R,θ∈T

{
‖r̄− asθ‖2 − ‖r̄‖2} , (2.16)

where r̄ = r− SαK is called the residual vector. From (2.10), the MLE of a is given

as â = sHθ r̄. Using this in (2.16), the hypothesis test can be written as

max
θ

∣∣sHθ (r− SαK)
∣∣H1

≷
H0

γ. (2.17)

In a general radar application, the number of targets and their locations are unknown

a priori. Algorithm (2.2) shows an iterative implementation of the hypothesis test in

(2.17). In each iteration, the MLE of the target vector from the previous iteration is

canceled from the received signal vector to obtain the residual vector. This approach

to multiple target detection was first proposed by Hogbom [28] for deconvolution of

images with point sources. More recently, this algorithm was rediscovered [6, 7] as

an effective way to solve the sparse problem in (1.2). In sparse signal processing

community, this algorithm is commonly known as the Orthogonal Matching Pursuit

(OMP) algorithm. As a result, we will refer to algorithm (2.2) as OMP for the rest

of the paper.

If the greedy assumption in equation (2.15) is not valid in any iteration of the

OMP algorithm, the selected target may not be in the optimal sparse set Λ. When

this happens, the targets selected in successive iterations may also be wrong. Hence,

while greedy approach may yield good results in some cases, a wrong target selection

in one iteration may throw the algorithm off track. The conditions for correct target

recovery are analyzed in more detail in chapter 3.

2.3.1 Matched filters vs Matching Pursuit

Although not apparent, there is an inherent similarity between the the OMP al-

gorithm and the matched filter. Consider for example, the sparse representation of
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Algorithm 2.2 Matching pursuit solution for signal decomposition of r =
∑

k akφk+

n

• Initialize Λ̂ = Ø, r̄ = r, γ

• σ = maxθ
∣∣sHθ r∣∣

• while σ > γ

– θ̂ = arg maxθ
∣∣sHθ r̄∣∣

– Λ̂ = Λ̂ ∪ θ̂

– α̂ = arg minα ‖r − SΛ̂α‖
2

– r̄ = r − SΛ̂α̂

– σ = maxθ
∣∣sHθ r̄∣∣



40

r =
∑

k∈Λ aksk, where Λ is the optimal sparse set and sk ∈ S, k ∈ {1, 2, . . . , P}.

Furthermore, assume the greedy assumption in equation (2.15) is satisfied in all iter-

ations of OMP algorithm. The likelihood ratio is then related to the atom, sk1 ∈ S,

chosen by the first iteration of the OMP algorithm as

sk1 = arg max
k
L(k),

where L(j) = 〈r, sj〉 , j ∈ {1, 2, . . . , P} denotes the likelihood ratio. The residue,

r̄, is then calculated by subtracting the estimated targets from r. In general, in

the jth iteration, the OMP algorithm selects skj = arg maxk L
j(k), where Lj(k) =

〈r̄, sk〉 , k ∈ {1, 2, . . . , P}. Assuming the iterations are continued until Lj(k) < γ, ∀k ∈

{1, 2, . . . , P}, the OMP algorithm is seen to be an iterative implementation of the

matched filter if γ is the matched filter threshold.

The iterative nature of the OMP algorithm makes it more robust to false detections

compared to the matched filter. To explain this, consider the jth iteration of the

OMP algorithm. Assuming condition in (2.15) is satisfied in all iterations, let skm ∈

S, m ∈ {1, . . . , j} denote the atoms selected by OMP algorithm. Ignoring noise, the

assumption implies km ∈ Λ, m ∈ {1, 2, . . . , j}. Define Λj = {km|m ∈ {1, 2, . . . , j}} as

the set of indexes of all atoms selected by the OMP algorithm in j iterations. Then

∀l /∈ Λ, an upper bound on the likelihood Lj(l) is

Lj(l) =
∑

k∈Λ\Λj

ak 〈sk, sl〉

≤ (|Λ| − j)µ(S) max
k∈Λ\Λj

{ak}. (2.18)

A comparison of the upper bounds in (2.18) and (1.31) shows how false detections

decrease in OMP algorithms with iterations. In fact, if the algorithm correctly selects

target from the optimal sparse set Λ in all iterations, after |Λ| iterations,

LM(l) = 0,

which implies there are no false detections.
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2.4 Detection threshold and probability of false alarm

One important aspect of both the matched filter detector and the greedy algorithm

in 2.2 is their dependence on the detection threshold γ. The detection threshold, in

turn, directly affects the probability of false alarm (PFA) and the probability of miss

(PM). Typically, the maximum tolerable PFA in a radar is a known system design

parameter. The goal of detection algorithms is to minimize PM while keeping false

alarm rate tolerable.

Consider the following binary hypothesis

H0 : r = w

H1 : r = αs + w, (2.19)

where s is a known signal and w ∼ CN (0, σ2I). Since the signal s is known at the

receiver, the optimal detector for this problem is a simplified version of the one target

matched filter given in equation (2.7). In particular, hypothesis H1 is no longer a

composite hypothesis and the Neyman Pearson detector in this case can be written

as ∣∣sHr
∣∣H1

≷
H0

γ. (2.20)

By definition, if
∣∣sHr

∣∣ > γ when in fact hypothesis H0 is true, it is said to be a

false alarm. Hence, for the detector in (2.20), PFA can be stated as

PFA = P
(∣∣sHr

∣∣ > γ|H0

)
. (2.21)

Define z = sHr, the mean and variance of the random variable under H0 is given

as

E (z|H0) = 0,

E (zz∗|H0) = σ2,
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where it is assumed that ‖s‖2 = 1. Additionally, since z is a weighted sum of zero

mean normal random variables, z ∼ CN (0, σ2) under H0. Hence, x = |z| is a

Rayleigh random variable with probability density function

p (x) =
x

σ2
e−x

2/2σ2

,

when hypothesis H0 is true. As a result, the probability of false alarm PFA is given

as

PFA = e−γ
2/2σ2

.

Thus, if ρ is the maximum tolerable false alarm rate in a system, the detection

threshold should be selected as

γ =

√
2σ2 ln

(
1

ρ

)
. (2.22)

Similarly, the probability of a miss can be computed as

PM = P
(∣∣sHr

∣∣ < γ|H1

)
,

where z = sHr is a complex Gaussian random variable with mean and variance

E (z|H1) = α,

E ((z − α) (z − α)∗ |H1) = σ2.

Hence, |z| is a random variable following the Rician distribution with parameters |α|,

σ. Denoting the Marcum Q-function as Q1, the probability of miss is given as

PM = 1−Q1

(
|α|
σ
,
γ

σ

)
.

In radar literature, instead of probability of a miss (PM), it is more common to

use probability of detection (Pd) for comparing radar system performance. Since

probability of detection is defined as the probability that hypothesis H1 is correctly

selected at the receiver, it is related to PM as

Pd = 1− PM .
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Another important parameter affecting the radar system performance is the signal

to noise ratio (SNR). For the simple hypothesis in equation (2.19), SNR is defined as

the ratio of signal power to noise power under hypothesis H1, that is

SNR =
|α|2

σ2
. (2.23)

As a result, the probability of single target detection is given as

Pd = Q1

(
√

SNR,

√
2 ln

(
1

ρ

))
, (2.24)

where ρ is the maximum tolerable probability of false alarm. Equation (2.24) shows

that the radar system detection performance can be completely determined by SNR

and the probability of false alarm. Because of this, detection algorithms in radar are

frequently compared by fixing one of these parameters while varying the other.

Figure 2.3 shows the receiver operating characteristics (ROC) of the matched filter

designed for single target. The ROC is frequently used to study the relation between

Pd and PFA of a radar system for some fixed SNR. From figure 2.3, it can be seen

that improving the probability of false alarm requires a tradeoff with probability of

detection. The ROC can provide a visual guide to selecting an appropriate probability

of false alarm for the system.

Unlike the ROC, figure 2.4 shows the relation between probability of detection and

SNR for a fixed probability of false alarm. This will be referred to as the detection

performance graph in this dissertation. As can be seen in figure 2.4, for a fixed false

alarm rate, the detection performance is improved as SNR increases. This shows that

a radar system will perform better for “strong” targets compared to “weaker” targets.

This aspect of radar performance dependence on targets will be looked into in more

detail in Chapter 3.

Till now, all the results for single target detection in this section have been ob-

tained assuming matched filter processing. Similarly, if the OMP algorithm is used

to detect a known signal as in hypothesis (2.19), the number of iterations can be con-

strained to a maximum of one. Then, the algorithm 2.2 gives a false alarm under H0



44

when
∣∣sHr

∣∣ > γ. Comparing this condition with (2.21), it can be seen that matched

filter and OMP have the same false alarm rate for the same γ. Hence, the formula for

detection threshold in equation (2.22) can also be used for OMP algorithms. Further-

more, because the OMP algorithm is essentially doing matched filtering (
∣∣sH r̄∣∣ > γ)

of the received signal in the first iteration, the detection probability for both will also

be the same.

Before ending this section, it is important to mention that the detection thresh-

old in equation (2.22) was derived assuming a constraint on PFA in a single target

environment. In a multi-target environment, the target sidelobes can increase the

false alarm rate at some range and Doppler bins. The false alarm rate and hence the

detection threshold in this case depends on the location of the targets as well as their

amplitudes. For simplicity, however, detection thresholds are commonly designed

assuming a hypothesis of the form (2.19).

In a multi-target environment with unknown number of targets, the ROC and

detection performance graphs obtained for a single target are not sufficient to study

a radar system. This is due to the fact that the matched filters for single target and

multi-target environment are very different filters. In Chapter 3, modified ROC and

detection performance graphs will be proposed for comparing radar systems in multi-

target environments. These will be used to show that unlike the single target case,

performance of OMP algorithm and matched filters in a multi-target environment is

different.
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3. RADAR RESOLUTION

Radar system performance is typically measured in terms of detection and resolution.

Detection performance of a radar refers to the ability of a radar system to detect

targets in noise. This has been extensively studied and it is well known that the

matched filter yields optimal detection performance in additive white Gaussian noise

when the target scene consists of a single target only or no target at all.

The resolution of a radar refers to its ability to separate multiple targets. Depend-

ing on the problem of interest, resolution depends on two main ambiguity function

characteristics. For example, the ability of a radar to separate two closely spaced tar-

gets is often called resolution. This definition of resolution depends on the mainlobe

of the ambiguity function and is usually measured using the same measures as the

single target case. Another common use of resolution in multiple target scene refers to

the ability of the radar to resolve a weak target in presence of a strong target. Total

sidelobe energy, peak sidelobe level (PSL) and variance of the ambiguity function are

a few measures that are used to compare this type of resolution. Unlike the previous

definitions of resolution, this definition of resolution takes into account the sidelobe

behavior of the ambiguity function.

In the rest of this chapter, we discuss some of these commonly used definitions of

radar resolution in more detail. We discuss examples of target scenarios where each

one of these definitions is unsuitable for use in general, and with iterative algorithms

in particular. This is due to the fact that most definitions of resolution either focus

on the mainlobe behavior of the ambiguity function or just account for the sidelobes.

A good radar resolution measure should be a balance of both of these in some way.

For the case of iterative algorithms in radar, we intuitively discuss what resolution

means. From the discussion, we will naturally obtain a definition of resolution suitable

for iterative algorithms. We then generalize this resolution definition and use it to
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propose a single metric which can be used to quantitatively compare the resolution

performance of different radar systems. Finally, the resolution performance of the

OMP algorithm is analyzed using the proposed framework.

3.1 Signal model

The complex envelope of a phase coded pulse, s(t) of length T , can be expressed

as [18]

s(t) =
M∑
m=1

umrect

[
t− (m− 1)tb

tb

]
,

where tb = T/M and um = ejφm , m ∈ {1, 2, . . . ,M} is the phase code associated with

s(t). In this chapter, we will use phase coded pulses to compare different resolution

definitions. For simplicity, we will limit ourselves to M = 7 binary phase coded

sequences, that is,

φm ∈ {0, π},∀m ∈ {1, 2, ..., 7}.

The two binary phase coded pulses used in this chapter have phase codes {u1
m} =

{−1, 1,−1, 1,−1, 1,−1} and {u2
m} = {1, 1, 1, 1,−1,−1, 1} and will be referred to as

sequence 1 and sequence 2 from now on. The absolute value of the autocorrelation

for these two sequences is shown in figure 3.1. It can be seen that sequence 1 has

higher sidelobes but a narrower mainlobe compared to sequence 2.

3.2 Resolution based on mainlobe

In radar literature, resolution is most commonly associated with the ability of

the radar system to separate and identify closely spaced targets. Figure 3.2 shows

the matched filter output corresponding to two nearby targets when sequence 1 and

sequence 2 are used. In each case, the two targets are located at 8.125τ/tb and

9.25τ/tb. We observe that the presence of the two targets results in two distinct peaks

in figure 3.2a, but the two peaks in figure 3.2b are not as easily distinguishable. This

will be specially true in practice when noise is present. This shows that sequence 1
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Figure 3.2.: Matched filter output, A(τ), for two targets separated by 1.125τ/tb

should be preferred over sequence 2 for separating nearby targets. In radar literature,

sequence 1 would be said to have a higher resolution compared to sequence 2.

This difference in resolution between sequence 1 and sequence 2, when using

matched filters, can be traced to the mainlobe width of their autocorrelation functions.

Suppose a radar pulse has a continuous autocorrelation function A(τ). Assuming the

pulse has been normalized to have unit energy, A(τ) satisfies [29]

∀τ ∈ R, |A(τ)| ≤ 1.

Furthermore, it can be shown that A(τ) = 1 if and only if τ = 0. Assume

τr ∈ R, τr > 0 is the smallest delay at which A(τr) = γ, 0 < γ < 1. Then by symmetry

of the autocorrelation function and the continuity assumption, A(τ) ≥ γ, |τ | < τr.

Now assume we have a target environment with two targets located at τ = τ0 and

τ = τ0 + 2τm. By linearity of the matched filter, the output Γ(τ), can be expressed as

Γ(τ) = A(τ − τ0) + A(τ − (τ0 + 2τm)).

Ideally, to be able to separate and distinguish the two targets, Γ(τ) must have two

distinct peaks at τ = τ0 and τ = τ0 + 2τm. This in turn depends on the transmit
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pulse used by the radar system. However, for the two target case and γ = 0.5, we

observe that

Γ(τ − (τ0 + τm)) ≥ 1, ∀τm < τr,

which guarantees detection of a false target at τ = τ0+τm, irrespective of the transmit

waveform, when the matched filter processing is used. Because of this, 2τr is often

used as a measure of resolution in radar literature. In pulse-Doppler radars where

targets may be close in delay and Doppler, γ < 0.5 may be more suitable when more

than two close targets are of interest.

Before ending this section, it is important to note that there may be other points,

τk /∈ {τ0, τ0 + τm, τ0 + 2τm}, such that Γ(τk) ≥ 1 depending on the radar pulse used.

In fact, depending on the transmit pulse used, there may be points τk /∈ {τ0, τ0 +2τm}

such that Γ(τk) ≥ 1 for some τm > τr. Figure 3.3 shows the magnitude of the matched

filter output for two targets located at 11τ/tb and 15τ/tb, when sequence 1 (2τr < 1)

is used. In this example, ∀τ ∈ {10τ/tb, 12τ/tb, 13τ/tb, 14τ/tb, 16τ/tb}, Γ(τ) > 1. For

such pulses, a different resolution measure would be more suitable. In section 3.4,

we propose such a resolution measure which accounts for the intricacies of transmit

pulse.
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Figure 3.4.: Matched filter output, A(τ), for a strong target at 10τ/tb and a weak

target located at 13τ/tb

3.3 Resolution based on sidelobes

The last section showed the importance of using pulses having narrow autocor-

relation mainlobes for separately identifying nearby targets. In radar community,

resolution is sometimes also used to refer to the ability of a radar to detect a weak

target in the presence of a strong nearby target. Figure 3.4 shows the matched filter

output when the target scene consists of a strong target at 10τ/tb and a weak target

at 13τ/tb. The magnitude of the weak target is −7dB relative to the strong target.

A comparison of matched filter outputs for sequence 1 and sequence 2 shows that

sequence 2 should be preferred when identification of weak targets close to strong

targets is important. This result can be attributed to the sidelobe levels relative to

the mainlobe. As figure 3.1 shows, the PSL of sequence 1 is −0.7dB relative to the

mainlobe making it difficult to distinguish weak targets from the sidelobes. The PSL

level in sequence 2, however, is approximately −8dB relative to the mainlobe. This

makes sequence 2 much more suitable for identifying targets with magnitudes greater

than −8dB relative to the strong target.
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Figure 3.5.: Matched filter output for strong target at 11τ/tb and weak target at

15τ/tb.

It is important to note that the results in figure 3.4 show the difficulty in identifying

weak targets even in the absence of noise. In this case, the sidelobe levels are unwanted

signal components interfering with nearby targets. Because of this, sidelobes are

often called waveform self-clutter in radar literature. Designing waveforms with low

sidelobe levels has been an active area of research for the past few decades. Apart from

PSL, the total sidelobe energy is another measure often used to compare self-clutter.

Although PSL has been discussed as a measure for resolution in this section, it

should be noted that identification of weak targets close to strong targets is dependent

on the relative position of the targets. For example, figure 3.5 shows the matched

filter output when the target scene consists of a strong target at 11τ/tb and a weak

target at 15τ/tb.The relative magnitudes of the targets are same as in figure 3.4. It

can be seen that identification of the weak target is now more difficult.

3.4 Proposed radar resolution

The resolution of a radar is its ability to correctly detect all the targets in the

target scene without detecting false targets. Consider a target scene with L < N
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targets. Let Λ = {θ1, . . . , θL}, θi ∈ T ,∀1 ≤ i ≤ L represent the set of all targets. The

received signal can be written as

r =
L∑
i=1

αisθi + w. (3.1)

Let Λ̂ denote the set of target parameters recovered by the radar system. The target

scene is called resolvable if Λ̂ = Λ. Hence, the resolution of a target scene is equivalent

to the target recovery performance of the radar system. One factor affecting resolution

of a target scene is the received signal noise (3.1). This is commonly characterized

by the probability of detection (Pd) of a target for the received signal to noise ratio

(SNR). In this paper, it will be assumed that the SNR of each target is sufficiently

large, that is,
‖αisθi‖

2

‖w‖2 =
|αi|2

‖w‖2 � 1, ∀1 ≤ i ≤ L, (3.2)

and as a result, the effect of noise on resolution will be ignored.

The second factor influencing resolution of a target scene is the recovery algo-

rithm used at the receiver. Assuming the noise in the received signal can be ignored,

solution of the optimal sparse recovery problem (1.2) or algorithm (2.1) will perfectly

reconstruct the target scene. However, as mentioned before, radar systems typically

use suboptimal algorithms for target scene recovery because of the computational

complexity of the optimal algorithms. Hence, even when the received signal has no

noise, not all target scenes are correctly recovered by the radar system. For example,

Figure 2.1 shows that using the matched filter at the receiver to detect multiple tar-

gets can result in false alarms due to signal dictionary coherence. This phenomenon

is usually called self clutter in radar literature.

It should be mentioned here that when noise in the receive signal cannot be

ignored, it is important to consider probability of detection along with the resolution

of the radar. For example, Figure 2.2 shows that radar systems using mismatched

filters may have a better resolution than the systems using matched filter (see Figure

2.1b). However, in this particular example, this comes at the expense of 1.83dB loss in

signal to noise ratio. While the effect of this loss in SNR on probability of detection
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may be negligible in low noise, it may severely reduce the probability of detection

when there is significant noise present. This trade off between detection performance

in noise and algorithmic resolution is a common theme in many high resolution radar

schemes [22,25]. Unless explicitly mentioned, resolution in this paper will refer to the

algorithmic resolution assuming noise can be ignored.

In general, the resolution of a radar system will depend on the radar transmit

signal and the detection algorithm used. In this paper, this will be termed absolute

resolution of a radar system. A framework is now proposed to compare the absolute

resolution of different recovery algorithms as well as different radar transmit signals.

Definition 3.4.1 Let Λ = {θ1, . . . , θL}, θi ∈ T ,∀1 ≤ i ≤ L represent the set of all

L target parameters in a target scene. Assume the radar cross sections associated

with the targets in Λ are α = [α1, . . . , αL], respectively. Let Λ̂ = {η1, . . . , ηL} be the

set of target parameters recovered by a radar system. The target scene with target

parameter set Λ is called absolutely resolvable by the radar system if and only if

Λ̂ = Λ, ∀α ∈ CL.

The definition of absolute resolution of a target scene does not assume any constraints

on the radar cross section (RCS) of each individual target. Hence, if the detection of

a target scene Λ with a radar system results in an α̃ ∈ RL such that Λ 6= Λ̂, the target

scene is not absolutely resolvable. In some radar applications, the target amplitudes

may be known to satisfy some constraints a priori. In such cases, the definition of

absolute resolution may be too stringent to be useful.

Definition 3.4.2 Let Λ = {θ1, . . . , θL}, θi ∈ T , ∀1 ≤ i ≤ L represent the set of all L

target parameters in a target scene. Assume the amplitudes associated with the targets

in Λ are α = [α1, . . . , αL], respectively. Furthermore, assume α ∈ H, where H ⊂ CL

is known a priori. Let Λ̂ = {η1, . . . , ηL} be the set of target parameters recovered

by a radar system. The target scene with target parameter set Λ is called partially

resolvable by the radar system if and only if Λ̂ = Λ, ∀α ∈ H.
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Resolution of weak targets located close to strong targets is an important example of

constrained target amplitudes. In this case, the ability of the radar to correctly detect

the target scene, given prior constraints on the receiver filter output for each target,

is of particular interest. Consider a radar system with transmit signal dictionary

S and receive filter dictionary S̃. For the received signal model in (3.1), the filter

output corresponding to target parameters can be written as α̌Λ =
∣∣∣S̃HΛ Sα

∣∣∣, where

Λ = {θ1, . . . , θL}. Denoting α̌∗ = maxi [α̌Λ]i , ∀1 ≤ i ≤ L, assume all the receiver

filter outputs corresponding to actual targets are constrained as [α̌Λ]i ≤ ρiα̌
∗, 0 <

ρi ≤ 1, ∀1 ≤ i ≤ L. Targets for which ρi ≈ 1 are known as strong targets. Conversely,

targets satisfying ρi � 1 are called the weak targets. The set of constrained target

amplitudes is given as

H =
{
α ∈ CL | [α̌Λ]i ≤ ρiα̌

∗, ∀1 ≤ i ≤ L
}
, (3.3)

where α = [α1, . . . , αL], α̌Λ =
∣∣∣S̃HΛ Sα

∣∣∣ and α̌∗ = maxi [α̌Λ]i , ∀1 ≤ i ≤ L. When the

radar uses a matched filter, that is S̃ = S, the filter output at the target parameters

α̌Λ are the coefficients of the received signal in the dual basis of SΛ. Hence, the weak

target constraints can be considered as constraints on the coefficients of the dual basis

of the target scene dictionary. Finally, it should be observed that since H ⊆ CL, by

definition, absolute resolution of a target scene guarantees partial resolution. The

converse, however, is not true.

The absolute resolution and the partial resolution of a target scene convey little

information about the resolution capabilities of a radar system in general. To be able

to compare two radar systems or radar transmit signals, it will be more useful to

define a quantitative measure that is independent of the target positions.

Definition 3.4.3 Let I = {1, 2, . . . , P} represent the set of indexes of the atoms in

signal dictionary S, and let P (I) denote the power set of I. The absolute (partial)

resolution of any radar system is defined as the ratio of the number of χ ∈ P (I) which

are absolutely (partially) resolvable, and the total number of elements in P (I). More
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formally, define G(I) as the set of all χ ∈ P (I) that can be absolutely (partially)

recovered by the radar system. Then,

resolution =
|G(I)|
|P (I)|

(3.4)

=
|G(I)|
2P − 1

,

where |S| denotes the cardinality of set S.

For large dictionaries, calculation of total performance can be unfeasible. Since the

number of targets in the target scene is usually small, it may be more reasonable to

consider a subset of P (I) as a performance metric. In this paper, a subset P2(I) ⊆

P (I) consisting of all sets in P (I) with 2 elements will be used. Denoting the set

of all χ ∈ P2(I) that can be recovered as G2(I), resolution of dictionary S can be

formally defined as

resolution =
|G2,Z(I)|
|P2(I)|

(3.5)

=
|G2,Z(I)|
C(P, 2)

,

where C(P, 2) = P !
2×(P−2)!

.

Let Λ1 = {θ1, θ2} ⊂ P2(I) and Λ2 = {θ1 + ε, θ2 + ε} ⊂ P2(I) be two target scenes

consisting of two targets each. The detection algorithms discussed in this paper

are shift invariant with respect to resolution, that is, if Λ1is absolutely (partially)

resolvable, then so is Λ2 and vice versa. For such algorithms, it may be unnecessary

to compute the resolution measure for target scenes which are shifted versions of each

other. Let m ∈ I and let Ic = I/{m}. Define the set PSI(I) = {{m, k},∀k ∈ Ic},

PSI(I) ⊆ P2(I). For detection algorithms with shift invariant resolution, resolution

can be defined as

resolution =
|GSI(I)|
P − 1

(3.6)

where GSI(I) is the set of all χ ∈ PSI(I) that are resolvable. Practical radar systems

are designed for a finite range of target scene. Hence, to overcome boundary effects,
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it is desirable to choose the fixed target index, m ∈ I, which is approximately in the

centre of the target scene.

A close inspection of (3.6) shows that all resolvable sets of the form {m, k} ∈

PSI(I), for some m ∈ I and k ∈ Ic, have equal weight in the performance measure. In

radar applications, sometimes it may be more desirable to emphasize some region of

the target scene relative to a fixed target. For example, to separately identify targets

in a convoy of vehicles using a pulse Doppler radar, it may be more useful to focus

on the targets in the same Doppler bin but different nearby range bins. In such an

application, range bins may be more heavily weighted to accentuate the difference in

resolution measure for resolving convoys of vehicles.

Consider a target scene with a priori known conditional probabilities pi, i ∈ Ic.

pi represents the probability of second target being located at index i given that the

first target is located at index m. Define an indicator function

=i =

1, r{i,m} < 1

0, otherwise

where r{i,m} < 1 implies that the two targets at index i and m are resolvable. A

generalized resolution performance which takes into account the a priori probabilities

can be defined as

resolution =
∑
i∈Ic

=ipi. (3.7)

3.5 Multi-target receiver operating characteristics

The receiver operating characteristic (ROC) was introduced in Chapter 2 as a

tool to compare radar detection performance. The ROC compared the probability

of detection (Pd) of a known single target in noise for different probability of false

alarms. For any target scene consisting of more than one target, the performance of

different radar systems can be compared by using the probability of resolution (Pr)

instead of Pd.
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Consider any target scene with target parameter set Λ. By definition, the target

scene is resolvable using a radar system if the recovered target parameter set Λ̂ = Λ.

This means that the radar system correctly detects all the targets without any false

alarm. The probability of resolution (Pr) is defined as the probability that the target

parameter set is correctly recovered in noise. In a multi-target environment, it is

more useful to compare Pr for different PFA and signal to noise ratio. Henceforth,

this will be called the multi-target ROC and will be an important tool for comparing

different algorithms.

Before ending this section, it should be pointed out that no assumptions were

made regarding target amplitudes. Hence, the multi-target ROC for target scenes

with same parameter set but different amplitudes will be different. As a result, when

comparing multi-target ROC curves, it is important to clearly mention the relative

amplitudes of the targets in the target environment.

3.6 Resolution of OMP algorithm

The fundamental difference between OMP algorithm (2.2) and algorithm (2.1)

is that OMP assumes greedy selection (2.15) in each iteration. Hence, if for any

target scene the greedy assumption in (2.15) is not true, OMP will not be able to

correctly detect all the targets. Consider a target scene with target parameter set

Λ = {θ1, . . . , θL} , θi ∈ T , ∀1 ≤ i ≤ L. The OMP algorithm (2.2) correctly detects all

the targets if, in each iteration of the algorithm, θ̂ ∈ Λ and hence,

max
θ∈Λ

∣∣sHθ r̄
∣∣ > max

θ∈Λ

∣∣sHθ r̄
∣∣ . (3.8)

where r̄ is the residual vector at each iteration. The condition for target scene recovery

in equation (3.8) can be rewritten as∥∥SH
Λ

r̄
∥∥
∞

‖SHΛ r̄‖∞
< 1. (3.9)

Assuming the first j < L iterations of the OMP algorithm correctly detect targets,

the set of partially recovered targets, Λ̂ satisfies
∣∣∣Λ̂∣∣∣ = j and Λ̂ ⊂ Λ. Furthermore,
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r ∈ Col (SΛ), since received signal noise is assumed to be negligible (3.2). Hence,

from the definition of residue vector, r̄, in algorithm (2.2), r̄ ∈ Col (SΛ). As a result,

the condition for absolute resolution of a target scene with target parameter set Λ

can be restated as

sup
h∈Col(SΛ)

∥∥SH
Λ

h
∥∥
∞

‖SHΛ h‖∞
< 1. (3.10)

The condition in (3.10) was first proposed by Tropp [16] for sparse signal decom-

position using OMP. It is commonly known as the exact recovery condition (ERC)

of a sparse basis set Λ [15, 16]. In general, ERC is difficult to compute because of

nonlinear optimization over a column space. This can, however, be overcome using

the result in [16],

sup
h∈Col(SΛ)

∥∥SH
Λ

h
∥∥
∞

‖SHΛ h‖∞
= max

θ∈Λ

∥∥∥S†Λsθ

∥∥∥
1
. (3.11)

It was also shown in [16] that an upper bound to ERC, that depends only on |Λ|,

is given as

ERC ≤ |Λ|µ(S)

1− (|Λ| − 1)µ(S)
,

where µ(S) is the mutual coherence of the radar received signal dictionary. Hence,

any target scene with |Λ| targets is guaranteed to be absolutely resolved by OMP if

µ(S) <
1

2 |Λ| − 1
. (3.12)

When equation (3.12) is not satisfied for a radar signal, there may exist some target

scenes with |Λ| targets which are not absolutely resolvable using the OMP algorithm.

Hence, it may be useful in this case to consider the resolvability of all the target scenes

of interest. The following theorem shows the condition for absolute resolvability of a

target scene Λ.

Theorem 3.6.1 Let Λ = {θ1, . . . , θL} , θi ∈ T , ∀1 ≤ i ≤ L denote the set of target

parameters in an L target scene with associated amplitudes α = {a1, . . . , aL}, respec-

tively. Let S denote the synthesis matrix of the receive signal dictionary. Then, the

target scene is absolutely resolvable using OMP if

max
θ∈Λ

∥∥∥S†Λsθ

∥∥∥
1
< 1.
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If maxθ∈Λ

∥∥∥S†Λsθ

∥∥∥
1
> 1, then there is at least one target amplitude vector α, for which

OMP will not correctly detect all the targets.

Proof From (3.11), if maxθ∈Λ

∥∥∥S†Λsθ

∥∥∥
1
< 1, then the condition in (3.10) is satis-

fied. Hence a target scene with target parameter set Λ is absolutely resolvable if

maxθ∈Λ

∥∥∥S†Λsθ

∥∥∥
1
< 1.

Conversely, from (3.11), when maxθ∈Λ

∥∥∥S†Λsθ

∥∥∥
1
> 1, there is some h ∈ Col (SΛ)

for which the condition in (3.10) is not satisfied.

The result in (3.11) is based on the inequality

∥∥SH
Λ

h
∥∥
∞ ≤

∥∥SHΛ h
∥∥
∞max

θ∈Λ

∥∥∥S†Λsθ

∥∥∥
1
. (3.13)

The inequality in (3.13) is tight when

[
SHΛ h

]
i

=
∥∥SHΛ h

∥∥
∞ , ∀1 ≤ i ≤ |Λ| . (3.14)

From section 1.1, the dual basis target amplitude vector is given as α̌ = SHΛ h. Hence,

the condition in (3.14) is satisfied when all the targets in the target scene have equal

amplitudes in the dual basis, that is , [α̌]i ≈ ‖α̌‖∞ , ∀1 ≤ i ≤ |Λ|. As a result, the

condition in Theorem 3.6.1 for absolute resolution may be unsuitable for finding the

partial resolution of a target scene containing weak targets.

Theorem 3.6.2 Assume Λ = {θ1, . . . , θL} , θi ∈ T , ∀1 ≤ i ≤ L denotes the set of

target parameters in a target scene. Let {ši}i∈Λ be the dual basis of {si}i∈Λin Col (SΛ),

with associated synthesis matrices ŠΛ and SΛ respectively. Furthermore, suppose the

residue vector in the jth iteration of the OMP algorithm is given as r̄ = SΛα = ŠΛα̌.

Then, the OMP correctly selects a target in Λ in the jth iteration if

max
θ∈Λ

∥∥∥DS†Λsθ

∥∥∥
1
< 1,

where D is a diagonal matrix with [D]i,i = |[α̌]i| /maxk |[α̌]k|.
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Proof The OMP algorithm correctly selects a target in an iteration when (3.8) is

satisfied. It can be restated as

maxq∈Λ |〈r̄, sq〉|
maxp∈Λ |〈r̄, sp〉|

< 1.

Since r̄ ∈ Col (SΛ),

maxq∈Λ |〈r̄, sq〉|
maxp∈Λ |〈r̄, sp〉|

=
maxq∈Λ

∣∣∣〈SHΛ r̄,S†Λsq

〉∣∣∣
maxp∈Λ |〈r̄, sp〉|

=
maxq∈Λ

∣∣∣〈α̌,S†Λsq

〉∣∣∣
maxi |[α̌]i|

≤ max
q∈Λ

∥∥∥DS†Λsq

∥∥∥
1
.

Hence, the selected target in this iteration belongs to Λ if maxq∈Λ

∥∥∥DS†Λsq

∥∥∥
1
< 1.

Observation 3.6.1 Let ŠΛ represent the synthesis matrix of the dual basis of the

radar signal sub-dictionary for a target parameter set Λ. In some iteration of the

OMP algorithm, let r̄1 = ŠΛα̌1 and r̄2 = ŠΛα̌2 be two possible residue vectors

with the constraint arg maxi |[α̌1]i| = arg maxi |[α̌2]i|. Assume |α̌1| /maxi |[α̌1]i| =[
a1, . . . , a|Λ|

]
, 0 ≤ ai ≤ 1∀i ∈ {1, 2, . . . , |Λ|} and |α̌2| /maxi |[α̌2]i| =

[
b1, . . . , b|Λ|

]
, 0 ≤

bi ≤ ai ∀i ∈ {1, 2, . . . , |Λ|}. If OMP algorithm correctly selects a target in Λ in this

iteration from r̄1, then the target selected from r̄2 will also be from Λ.

Proof Define diagonal matrices D1 and D2 with diagonal values [D1]i,i = |α̌1| /maxi |[α̌1]i|

and [D2]i,i = |α̌2| /maxi |[α̌2]i|. Then, because of the constraints on α̌1 and α̌2,

max
θ∈Λ

∥∥∥D2S
†
Λsθ

∥∥∥
1
≤ max

θ∈Λ

∥∥∥D1S
†
Λsθ

∥∥∥
1
.

Hence, if maxθ∈Λ

∥∥∥D1S
†
Λsθ

∥∥∥
1
< 1, then maxθ∈Λ

∥∥∥D2S
†
Λsθ

∥∥∥
1
< 1.

This corollary shows an important difference in weak target resolution between matched

filter and the OMP algorithm. In a matched filter receiver, weak targets can be dif-

ficult to differentiate from the sidelobes caused by the strong target. Hence, if the

matched filter can resolve two strong targets at θ1 and θ2, it does not guarantee
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resolvability of a target scene with a strong target and weak target at θ1 and θ2 re-

spectively. On the contrary, in any iteration, the greedy target selection step in OMP

algorithm performs better if the residue also contains weak targets. For example, for

the target scene Λ = {0, 6T}, shown in Figure 2.1, maxθ∈Λ

∥∥∥S†Λsθ∥∥∥
1

= 0.5. Hence, Λ

is absolutely resolvable using the OMP algorithm.

3.6.1 Resolution of two targets

As mentioned in section 3.4, the resolution of two target scenes is of particular

interest in this paper. This is due to the simple resolution metric that can be de-

fined for comparing radar algorithms and signals. Two such metrics were proposed

in equations (??) and (??). Furthermore, in section 3.6.2, it will be shown that the

resolution of two target scenes can also be visualized using resolution plots. A condi-

tion for resolution of a target scene comprising of a weak target and a strong target

is now presented based on Theorem 3.6.2.

Theorem 3.6.3 Suppose the OMP algorithm is used to recover a two target target

scene from the received signal r = α̌1šθ1 + α̌2šθ2, where {šθ1 , šθ2} is the dual basis

of {sθ1 , sθ2} and |α̌1| > |α̌2|. Furthermore, assume it is known that |α̌2| / |α̌1| ≤

ρ. Denoting the target parameter set as Λ = {θ1, θ2}, the target scene is partially

resolvable if
∥∥SH

Λ
šθ2
∥∥
∞ < 1 and

max
θ∈Λ

∥∥∥∥∥∥
 1 0

0 ρ

S†Λsθ

∥∥∥∥∥∥
1

< 1.

Proof From Theorem 3.6.2, the first iteration of OMP algorithm will select a target

in Λ if maxθ∈Λ

∥∥∥∥∥∥
 1 0

0 ρ

S†Λsθ

∥∥∥∥∥∥
1

< 1. Furthermore, since
∣∣sHθ1r∣∣ = |α̌1| >

∣∣sHθ2r∣∣,
the target selected in the first iteration is θ1. In the second iteration, the test for

resolvability in Theorem 3.6.2 becomes maxθ∈Λ

∥∥šHθ2sθ∥∥1
< 1, which is equivalent to∥∥SH

Λ
šθ2
∥∥
∞ < 1.
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Theorems 3.6.1 and 3.6.2 provide conditions for resolvability of target scenes with

known target parameter set Λ. In section (3.4), a generalized resolution measure (3.7)

was proposed to compare resolution performance of different algorithms independent

of the target scene. In a target scene with two targets, however, the resolution

performance of a radar system can be visualized graphically. For example, a useful

tool for resolution analysis of two targets in a pulse-Doppler radar is the resolution

plot. In these plots for pulse-Doppler radar, one target is fixed at τ/T = 0 and

νT = 0 and the second target is moved. A binary color scheme can then be used to

differentiate the resolvable and non-resolvable range Doppler bins. In this dissertation,

white color will be used to show the position of the second target for which the target

scene is not absolutely resolvable and black color will signify resolvable bins.

3.6.2 Simulation results

Barker codes were introduced in Chapter 1. It was mentioned there that the

longest known binary Barker code is length 13 with phase code

{b13
m} = {1, 1, 1, 1, 1,−1,−1, 1, 1,−1, 1,−1, 1}.

Figure 3.6 shows the ambiguity function and the resolution diagram of the length 13

barker sequence when matched filters and OMP algorithm are used at the receiver.

Since long Barker codes do not exist, in section 1.5 it was shown that longer

codes can be obtained by combining known Barker codes. In particular, a length 52

extended barker code was shown in equation (1.36).

Figure 3.8a shows the ambiguity function of a chirp which was defined in equa-

tion (1.37). It can be seen that most of the volume of the ambiguity function is

concentrated on a ridge. Intuitively, it should be expected that the radar would have

difficulty in resolving multiple targets on the same ridge. This is evident in the reso-

lution diagram for this signal in figure 3.8b obtained when matched filter is used at

the receiver. The resolution diagram and the ambiguity function show that the LFM

is suitable for resolving targets in the same range with different Doppler or vice versa.
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(a) Ambiguity function of a length 13 barker sequence

(b) Resolution of a length 13 barker sequence with matched filter receiver

Figure 3.6.: Ambiguity function and resolution diagram of length 13 barker sequence
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(a) Ambiguity function.
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(b) Resolution plot.

Figure 3.7.: Resolution plot of extended barker code defined in (1.36).
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(a) Normalized ambiguity function of LFM chirp with BT = 40
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(b) Resolution of LFM chirp with BT = 40. All delay-Doppler bins in black are resolvable

Figure 3.8.: Ambiguity function and the resolution diagram of an LFM chirp
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It is important to note that the condition for resolution in Theorem 3.6.1 is nec-

essary for absolute resolution of the target scene. Hence, even when the condition

in Theorem 3.6.1 is not satisfied, it may still be possible to recover the target scene

for some target amplitudes. Figure 3.9 shows a target scene with 7 targets. All

targets are assumed to have the same amplitude and phase. The recovery condi-

tion, maxθ∈Λ

∥∥∥S†Λsθ

∥∥∥
1

= 2.99 for this particular target scene. Assuming the combined

barker code as the radar transmit signal, the matched filter output after applying a

threshold of 0.1 is shown in Figure 3.10a. The output of the OMP algorithm is shown

in Figure 3.10b. It can be seen that the OMP exactly recovers the target scene even

though it is not absolutely resolvable using the OMP algorithm.

In section 2.2 it was mentioned that the threshold selection in a matched filter

receiver is a trade-off between the ability to resolve weak targets and false alarm.

The ability of OMP algorithm to overcome this limitation of the matched filter is

shown in Figure 3.11 for two different target scenes. In Figure 3.11, for each SNR,

the threshold was selected using the result in equation (2.22) for a probability of false

alarm of 10−4. As a result, the value of the detection threshold decreases as SNR

is increased. This results in decreased probability of resolution of the matched filter

output because of the false alarms caused by the sidelobes. Furthermore, since the

recovery condition of the target scene is indicative of the peak sidelobe to mainlobe

ratio, Figure 3.11 shows that a target scene with a higher value of ERC is liable to

be unresolvable at a lower SNR.
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Figure 3.9.: Target scene with maxθ∈Λ

∥∥∥S†Λsθ

∥∥∥
1

= 2.99.
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(a) Normalized matched filter output with a threshold of 0.1.
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(b) Target scene recovered using OMP algorithm.

Figure 3.10.: Estimation of target scene in (3.9) with a radar using the combined

barker sequence. Matched filter output is shown in (3.10a) and OMP output is

shown in figure (3.10b).
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Figure 3.11.: Probability of resolution of Matched filter and OMP for two different

target scenes: ERC = 0.5 and ERC = 0.32. Probability of false alarm was set at

10−4.
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4. PURSUIT USING MISMATCHED DICTIONARIES

The key to resolution performance of the OMP algorithm is the greedy hypothesis test

(2.17) in every iteration. Since r̄ ∈ Col (SΛ), the greedy hypothesis test in equation

(2.17) can be written as

max
θ

∣∣sHθ h
∣∣H1

≷
H0

γ, (4.1)

where h ∈ Col (SΛ). The hypothesis test in equation (4.1) has the same form as the

matched filter test for one target shown in equation (2.7). Hence, the resolution of the

OMP algorithm might be expected to be closely related to the resolution of matched

filter. Suppose h = Sx where x ∈ CN is a sparse target amplitude vector such that

∀i /∈ Λ, [x]i = 0. The OMP algorithm can absolutely resolve the target scene if,

θ̂ = arg max
θ

∣∣sHθ Sx
∣∣ ∈ Λ.

Thus a target scene is resolvable using OMP if the application of one target matched

filter test always selects a target in Λ. If the signal dictionary is perfectly incoherent,

that is, SHS = I, correct selection of target is guaranteed. Hence, all target scenes

are absolutely resolvable if the signal dictionary is incoherent. In section 1.2 it was

shown that the signal dictionaries satisfy a structure that depends on the type of

radar. Because of this structure and other practical considerations, it is usually

hard to design a radar signal with incoherent dictionaries. Mismatched filters have

been proposed to achieve this incoherence while trading off performance in noise.

In mismatched linear filters, a receive signal dictionary with synthesis matrix S̃ is

designed such that S̃HS ≈ I. In this dissertation, we will focus on mismatch filters

which reduce the mismatched mutual coherence, µ(S, S̃), defined as

µ(S, S̃) = sup
m 6=n
|〈sm, s̃n〉| m,n ∈ {1, 2, . . . , P} (4.2)
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where s̃k ∈ S̃, k ∈ {1, 2, . . . , P} are the atoms belonging to the mismatched dictionary

S̃. Here, we assume S̃ satisfies the following two conditions

〈sk, s̃k〉 = 1, k ∈ {1, 2, . . . , P}

S̃HI SI > 0, ∀I ⊂ {1, 2, . . . , P}, |I| ≤ N

µ(S, S̃) < µ(S). (4.3)

We start by looking at the use of mismatched dictionaries in non redundant dictio-

naries in section 4.1. The algorithms and results in this section hold for all dictionaries

not constrained by the uncertainty principle. In addition, an iterative algorithm for

designing mismatched dictionaries is also introduced. In section 4.2, we extend the

mismatched pursuit algorithm to redundant dictionaries with uncertainty constraints.

In particular, we propose a subspace mismatching pursuit algorithm to improve the

resolution performance of the standard pursuit algorithms.

4.1 Nonredundant dictionaries

The key to resolution performance of the OMP algorithm is the greedy hypothesis

test (2.17) in every iteration. Since r̄ ∈ Col (SΛ), the greedy hypothesis test in (2.17)

can be written as

max
θ

∣∣sHθ h
∣∣H1

≷
H0

γ, (4.4)

where h ∈ Col (SΛ). The hypothesis test in (4.4) has the same form as the matched

filter test for one target (2.7). Hence, the resolution of the OMP algorithm might be

expected to be closely related to the resolution of matched filter. Suppose h = Sx

where x ∈ CN is a sparse target amplitude vector such that ∀i /∈ Λ, [x]i = 0. The

OMP algorithm can absolutely resolve the target scene if,

θ̂ = arg max
θ

∣∣sHθ Sx
∣∣ ∈ Λ.

Thus a target scene is resolvable using OMP if the application of one target matched

filter test always selects a target in Λ. If the signal dictionary is perfectly incoherent,
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that is, SHS = I, correct selection of target is guaranteed. Hence, all target scenes

are absolutely resolvable if the signal dictionary is incoherent. In section 1.2 it was

shown that the signal dictionaries satisfy a structure that depends on the type of

radar. Because of this structure and other practical considerations, it is usually hard

to design a radar signal with incoherent dictionaries.

Mismatched filters have been proposed to achieve dictionary incoherence while

trading off performance in noise. In mismatched linear filters, a receive signal dictio-

nary with synthesis matrix S̃ is designed such that S̃HS ≈ I. Algorithm 4.1 shows

a modified OMP algorithm in which the greedy target selection is done using a mis-

matched receive dictionary. The atoms in the mismatched dictionary are denoted

s̃θ. For rest of the paper, algorithm 4.1 will be called mismatched OMP (MOMP)

algorithm. A similar algorithm called oblique matching pursuit has been proposed

before in [30, 31]. However, oblique matching pursuit differs from algorithm 4.1 in

two key ways. Firstly, unlike oblique matching pursuit, the mismatched dictionary

is only used during the greedy selection step and not during the projection step to

compute the residue vector. This makes the resolution analysis of MOMP in terms of

Tropp’s exact recovery condition [16] relatively simple. Secondly, in every iteration,

the MOMP algorithm uses matched filter output to decide if another target is present

or not. The advantage of this will be studied in section 4.1.2.

4.1.1 Pursuit Recovery

Consider a radar system with transmit signal dictionary S and receive filter dic-

tionary S̃. Let Λ = {θ1, . . . , θL} , θi ∈ T , ∀1 ≤ i ≤ L represent the target parameters

of a target scene. Similar to the development in section 3.6, the MOMP algorithm

correctly recovers the target set if, in every iteration∥∥∥S̃H
Λ

r̄
∥∥∥
∞∥∥∥S̃HΛ r̄
∥∥∥
∞

< 1.
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Algorithm 4.1 Mismatching pursuit solution for signal decomposition of r =∑
k aksk + n

• Initialize Λ̂ = Ø, r̄ = r, γ

• σ = maxθ
∣∣sHθ r∣∣

• while σ > γ

– θ̂ = arg maxθ/∈Λ̂

∣∣s̃Hθ r̄∣∣
– Λ̂ = Λ̂ ∪ θ̂

– α̂ = arg minα ‖r − SΛ̂α‖
2

– r̄ = r − SΛ̂α̂

– σ = maxθ
∣∣sHθ r̄∣∣
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Once again, the definition of residue signal, r̄, in algorithm 4.1 ensures that r̄ ∈

Col (SΛ). Hence, in general, the target scene with parameter set Λ is resolvable if

sup
h∈Γ

∥∥∥S̃H
Λ

h
∥∥∥
∞∥∥∥S̃HΛ h
∥∥∥
∞

< 1, (4.5)

where Γ = Col (SΛ) for absolute resolution and Γ = H for weak target resolution.

The set H was previously defined in (3.3).

Theorem 4.1.1 Let Λ = {θ1, . . . , θL} , θi ∈ T , ∀1 ≤ i ≤ L denote the set of target

parameters in an L target scene with associated target amplitudes α = {a1, . . . , aL},

respectively. Let S denote the synthesis matrix of the receive signal dictionary and S̃

represent the synthesis matrix of the receive filter dictionary. Then, the target scene

is absolutely resolvable using MOMP if

max
θ∈Λ

∥∥∥∥(SHΛ S̃Λ

)−1

SHΛ s̃θ

∥∥∥∥
1

< 1.

If maxθ∈Λ

∥∥∥∥(SHΛ S̃Λ

)−1

SHΛ s̃θ

∥∥∥∥
1

> 1, then there is at least one target amplitude vector

α, for which MOMP will not correctly detect all the targets.

Proof Using definition of matrix norm, the numerator in (4.5) can be simplified as∥∥∥S̃HΛ h
∥∥∥
∞

= max
q∈Λ
|〈h, s̃q〉| = max

q∈Λ
|〈SΛα, s̃q〉|

= max
q∈Λ

∣∣∣∣〈SΛ

(
S̃HΛ SΛ

)−1

S̃HΛ SΛα, s̃q

〉∣∣∣∣
= max

q∈Λ

∣∣∣∣〈S̃HΛ SΛα,
(
SHΛ S̃Λ

)−1

SHΛ s̃q

〉∣∣∣∣
≤

∥∥∥S̃HΛ SΛα
∥∥∥
∞

max
q∈Λ

∥∥∥∥(SHΛ S̃Λ

)−1

SHΛ s̃q

∥∥∥∥
1

, (4.6)

where SHΛ S̃Λ is invertible because of the assumptions in (4.3). Since h = SΛα, using

(4.6) in (4.5) yields

sup
h∈Γ

∥∥∥S̃H
Λ

h
∥∥∥
∞∥∥∥S̃HΛ h
∥∥∥
∞

≤ max
q∈Λ

∥∥∥∥(SHΛ S̃Λ

)−1

SHΛ s̃q

∥∥∥∥
1

.
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Let q∗ = arg maxq∈Λ

∥∥∥∥(SHΛ S̃Λ

)−1

SHΛ s̃q

∥∥∥∥
1

. Denote GΛ = SΛ

(
S̃HΛ SΛ

)−1

, and the ith

column of GΛ as gi. Then equality is achieved if h =
∑|Λ|

i=1 sgn (〈gi, sq∗〉) gi, where

sgn represents the complex signum function, maxq∈Λ

∥∥∥∥(SHΛ S̃Λ

)−1

SHΛ s̃q

∥∥∥∥
1

= |〈h, sq∗〉|.

Hence, suph∈Γ

‖S̃H
Λ
h‖∞

‖S̃HΛ h‖∞
= maxq∈Λ

∥∥∥∥(SHΛ S̃Λ

)−1

SHΛ s̃q

∥∥∥∥
1

.

For target scenes containing weak targets, a tighter condition for resolution similar

to Theorem 3.6.2 can be obtained. The following theorem presents this condition.

Theorem 4.1.2 Assume Λ = {θ1, . . . , θL} , θi ∈ T , ∀1 ≤ i ≤ L denotes the set of

target parameters in a target scene. Suppose the residue vector in the jth iteration of

the MOMP algorithm is given as r̄ = SΛα. Let α̌Λ =
∣∣∣S̃HΛ r̄

∣∣∣ denote the receive filter

output corresponding to the target parameters. Then, the MOMP correctly selects a

target in Λ in the jth iteration if

max
θ∈Λ

∥∥∥∥D(SHΛ S̃Λ

)−1

SHΛ s̃θ

∥∥∥∥
1

< 1,

where D is a diagonal matrix with [D]i,i = |[α̌Λ]i| /maxk |[α̌Λ]k|.

Proof The proof of this theorem is very similar to that of Theorem 3.6.2. The

MOMP algorithm correctly selects a target in an iteration when (4.5) is satisfied.

Since r̄ ∈ Col (SΛ),

maxq∈Λ |〈r̄, s̃q〉|
maxp∈Λ |〈r̄, s̃p〉|

=

maxq∈Λ

∣∣∣∣〈S̃HΛ SΛα,
(
SHΛ S̃Λ

)−1

SHΛ s̃q

〉∣∣∣∣
maxp∈Λ |〈r̄, s̃p〉|

=

maxq∈Λ

∣∣∣∣〈α̌Λ,
(
SHΛ S̃Λ

)−1

SHΛ s̃q

〉∣∣∣∣
maxi |[α̌Λ]i|

≤ max
q∈Λ

∥∥∥∥D(SHΛ S̃Λ

)−1

SHΛ s̃q

∥∥∥∥
1

.

Hence, the selected target in this iteration belongs to Λ if maxq∈Λ

∥∥∥∥D(SHΛ S̃Λ

)−1

SHΛ s̃q

∥∥∥∥
1

<

1.
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Theorems 4.1.1 and 4.1.2 are useful for checking the resolvability of target scenes

with known target locations. However, for radar waveform and filter design, it is

more useful to have a resolution condition independent of the target location. For

OMP algorithm, such a condition (1.4) was presented by Tropp [16] in terms of mutual

coherence of the receive signal dictionary. An equivalent condition in terms of the

mismatched mutual coherence defined in (4.2) is presented in the following theorem.

Theorem 4.1.3 Consider a radar system with received signal dictionary S and re-

ceiver filter dictionary S̃. Let S and S̃ denote the synthesis matrices of the two

dictionaries. Then, any target scene with |Λ| targets is absolutely resolvable using

MOMP algorithm if
|Λ|µ(S, S̃)

1− (|Λ| − 1)µ
(
S, S̃

) < 1.

Proof In equation (4.5), since h ∈ Col (SΛ), the recovery condition can be rewritten

as

sup
α∈C|Λ|

∥∥∥S̃H
Λ

SΛα
∥∥∥
∞∥∥∥S̃HΛ SΛα
∥∥∥
∞

< 1.

For any α ∈ C|Λ|, the numerator in the recovery condition can be bounded as∥∥∥S̃HΛ SΛα
∥∥∥
∞

= max
i∈Λ

∣∣s̃Hi SΛα
∣∣

≤ µ
(
S, S̃

)
‖α‖1 .

Similarly, the denominator in the recovery condition can be bounded as∥∥∥S̃HΛ SΛα
∥∥∥
∞

= max
i∈Λ

∣∣s̃Hi SΛα
∣∣

= max
i∈Λ

∣∣s̃Hi siαi + s̃Hi SΛ/iαΛ/i

∣∣
≥ max

i∈Λ

{∣∣s̃Hi siαi
∣∣− ∣∣s̃Hi SΛ/iαΛ/i

∣∣}
≥ max

i∈Λ

{
|αi| −

∣∣s̃Hi SΛ/iαΛ/i

∣∣}
≥ max

i∈Λ

{
|αi| − (‖α‖1 − |αi|)µ

(
S, S̃

)}
≥ max

i∈Λ

{
‖α‖∞ − (‖α‖1 − ‖α‖∞)µ

(
S, S̃

)}
.
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Combining the two bounds, the recovery condition can be bounded as

sup
α∈C|Λ|

∥∥∥S̃H
Λ

SΛα
∥∥∥
∞∥∥∥S̃HΛ SΛα
∥∥∥
∞

≤
µ
(
S, S̃

)
(

1 + µ
(
S, S̃

))
‖α‖∞
‖α‖1
− µ

(
S, S̃

)
≤ |Λ|µ(S, S̃)

1− (|Λ| − 1)µ
(
S, S̃

) .
Hence, whenever the condition in Theorem 4.1.3 is satisfied, any target scene consist-

ing of |Λ| or less targets is absolutely resolvable using MOMP algorithm.

Theorem 4.1.3 can be written in a slightly different form,

µ
(
S, S̃

)
<

1

2 |Λ| − 1
,

which is more similar to equation (1.4). Hence, if a target scene is expected to

consist of a maximum of L targets, the mismatched mutual coherence should satisfy

µ
(
S, S̃

)
< (2L− 1)−1.

4.1.2 Detection threshold and probability of detection

Consider the simple binary hypothesis problem in equation (2.19). The mis-

matched filter detector for this hypothesis can be written as∣∣̃sHr
∣∣H1

≷
H0

γ̃,

where s̃ is the mismatched signal corresponding to signal s and satisfies conditions

in (4.3). A direct consequence of the mismatched signal conditions is that ‖s̃‖2 ≥ 1.

Assuming the noise is i.i.d. zero mean Gaussian, the mean and variance of z = s̃Hr

under hypothesis H0 can be written as

E (z/H0) = 0,

E (zz∗/H0) = σ2Es̃,

where Es̃ = ‖s̃‖2. Compared to the matched filter output in section 2.4, it can be seen

that the mismatched filter has higher noise power at the output. In addition, since
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|z| is a Rayleigh random variable under H0, the detection threshold can be written

as

γ̃ =

√
2σ2Es̃ ln

(
1

ρ

)
, (4.7)

where ρ is the desired false alarm rate. The detection threshold γ̃ for mismatched

filters can be seen to be greater than the corresponding threshold for matched filters

given in equation (2.22).

Under hypothesis H1, the mean and variance of the random variable z = s̃Hr is

given as

E (z/H1) = α,

E ((z − α) (z − α)∗ /H1) = σ2Es̃.

Also, since z is a complex Gaussian random variable with nonzero mean, |z| is a

Rician random variable. Hence, the probability of detection using the mismatched

filter can be expressed as

Pd = Q1

(√
SNR

Es̃

,

√
2 ln

(
1

ρ

))
, (4.8)

where SNR is defined in equation (2.23). Comparing equation (4.8) with (2.24), it

can be seen that the mismatched filter has reduce probability of detection for the

same SNR and false alarm rate. This loss is sometimes called the mismatching loss

and is completely determined by Es̃. Figure 4.1 compares the probability of detecting

a single target using matched filter and a mismatched filter in a range radar using the

combined Barker code. The mismatched dictionary with a mismatching loss of 1.83dB

was designed using the algorithm presented in the next section. It can be seen that

unless the SNR is sufficiently high, the matched filter outperforms the mismatched

filter in noise.

Figure 4.1 also shows the single target detection performance of the MOMP algo-

rithm. It can be seen that even though MOMP essentially uses mismatched filtering

to decide the position of the target, the detection performance is very similar to the
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matched filter. While this may seem surprising initially, a close inspection of the

while-loop condition in MOMP algorithm shows why this is true. As alluded to ear-

lier, MOMP differs from some other modifications of OMP algorithm in that it uses

the matched filter threshold test to decide if a target is present or not. This means

that for some known false alarm rate, the detection threshold in MOMP should be

calculated using equation (2.22) instead of the threshold in (4.7). Furthermore, in a

single target case with known target parameters, once the while-loop condition de-

cides a target is present, we are guaranteed to select the correct target. Hence, the

probability of detection of MOMP is similar to that of the matched filter.

In general, the threshold γ should always be calculated using equation (2.22) to

achieve a given false alarm rate. Furthermore, this “trick” of using the matched filter

to decide on the presence of a target and then using a different algorithm to select

the target parameters will be used throughout this dissertation. As will be seen later,

this will improve the resolution performance of these modified algorithms.

4.1.3 Design of mismatched dictionary

To improve the resolution performance as defined in equation (3.7), theorem 4.1.3

shows that it is sufficient to reduce the mismatched mutual coherence µ
(
S, S̃

)
. This

is equivalent to reducing the peak sidelobe level at the output of the receiver filter

bank. Design of mismatched filters to reduce sidelobes has remained a topic of interest

to radar engineers [25–27,32]. The design approach presented in this thesis is adapted

from [32] and is equivalent to iterative re-weighted least squares technique.

While it is possible to design the complete mismatched synthesis matrix S̃ with-

out imposing any constraints, the resulting filter output will not be shift invariant.

This makes it harder to analyze the resolution performance of the MOMP algorithm

in general. Among existing techniques for designing mismatched filters, it is more

common to design a signal g (t) corresponding to the radar transmit waveform s (t).
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Figure 4.1.: Single target probability of detection of matched filter, mismatched filter

and MOMP algorithm for PFA = 10−3. Both MOMP and mismatched filter use the

same filter at the receiver. However, the mismatch loss of 1.83dB using mismatched

filter can be avoided by using MOMP algorithm.
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The mismatched synthesis matrix is then assumed to have a structure similar to that

of S in section 1.2.4.1.

Assuming sampling g (t) yields the discrete sequence g [n], let g represent the

sampled discrete sequence in vector form, that is [g]n = g [n] for 1 ≤ n ≤ N . Denoting

the time-frequency shifts of g as gi,k, where

[gi,k]n =

g [n− i] ej2πkn/M , 0 ≤ i ≤ n ≤ N

0, else

,

the mismatched synthesis matrix S̃ is defined as

S̃ = [ g0,0 g0,1 . . . g0,M g1,0 . . . g1,M . . . gN,M ]. (4.9)

As already mentioned, designing a mismatched dictionary with structure as in equa-

tion (4.9) simplifies dictionary design as well as analysis. This is due to the shift

invariance property of the cross correlation between gm,n and si,k. Ignoring delay-

Doppler edge effects, ∀m,m+ i ≤ N and ∀n, n+ k ≤M ,

〈gm,n, sm+i,n+k〉 =
N∑
l=1

(g[l −m]ej2πnl/M

× s∗[l −m− i]e−j2π(n+k)l/M)

=
N∑
l=1

g[l]s∗[l − i]e−j2πkl/M

= 〈g0,0, si,k〉 . (4.10)

As a result, the mismatched mutual coherence between S and S̃ can be computed as

µ
(
S, S̃

)
= max

(i,j)6=(0,0)
|〈s0,0,gi,j〉| ,

= max
(i,j)6=(0,0)

|〈g0,0, si,j〉| .

In general, to reduce delay-Doppler edge effect, it is more suitable to calculate the

mismatched mutual coherence using N/2 and M/2 for the location of the fixed point,

that is µ
(
S, S̃

)
= max(i,j) 6=(N/2,M/2)

∣∣〈gN/2,M/2, si,j
〉∣∣. In terms of matrix norm, the

mismatched mutual coherence using any fixed point θ can be expressed as

µ
(
S, S̃

)
=
∥∥SHθ̄ gθ

∥∥
∞ .
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Hence, the mismatched filter design problem may be stated as the following optimiza-

tion problem,

ĝθ = arg min
g

∥∥SHθ̄ g
∥∥
∞ s.t. sHθ g = 1, (4.11)

where the constraint is necessary to satisfy the assumptions in (4.3). Assuming there

are P columns in the matrix Sθ̄, this optimization problem can be solved using the

linear program

minimize t

subject to t ≥
[∣∣SHθ̄ x

∣∣]
i
, ∀1 ≤ i ≤ P

sHθ x = 1.

with variables x and t ∈ R. In [25,32], closed form expressions for mismatched filters

are obtained by replacing the `∞ norm in (4.11) with `2 norm. Let sθ be the kth

column of S. The Lagrangian function for the new optimization problem can be

expressed as

L (x, λ) = xHSFSHx + λ
(
xHsθ − 1

)
, (4.12)

where F is an (P + 1) by (P + 1) diagonal matrix with diagonal values

[F]i,i =

1, i 6= k

0, i = k

. (4.13)

The optimization problem in (4.12) is equivalent to a constrained least squares prob-

lem and was first proposed in [25]. In terms of sidelobes, the optimization problem

in (4.12) minimizes the energy in the sidelobes of the filter output. Taking derivative

of L (x, λ) with respect to x and λ,

∂L (x, λ)

∂x
= 2SFSHx + λsθ = 0,

∂L (x, λ)

∂λ
= xHsθ − 1 = 0.

Combining both, the column of S̃ corresponding to parameter θ that minimizes the

energy in the sidelobes is given as

gθ =
(
sHθ
(
SFSH

)−1
sθ

)−1 (
SFSH

)−1
sθ (4.14)
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Algorithm 4.2 Iterative re-weighted least squares approach to design of mismatched

filters

1. Initialize F as in equation (4.13).

2. Generate mismatched filter using result in equation (4.14).

3. Update weight matrix F using equation (4.15).

4. Go to step 2 until convergence.

Although the mismatched filter designed using equation (4.14) minimizes the total

energy in the sidelobes, it does not guarantee minimizing of the peak sidelobe level.

As a result, there is no guarantee that the mismatched mutual coherence µ
(
S, S̃

)
would be reduced. To overcome this problem, a scheme that iteratively adapts F to

reduce the peak sidelobe level is proposed in [32]. The basic idea behind this scheme

is that after every iteration, the filter output is computed and is used to change the

weights in the matrix F. Hence, for larger filter output, a larger weight is assigned

to the corresponding diagonal element in F so that the filter designed in the next

iteration suppresses that sidelobe.

Let giθ be the mismatched filter obtained after i iterations. The filter output is

then computed as r = SHgiθ. The new matrix Fi+1 is then computed as

[
Fi+1

]
j,j

=

[Fi]j,j ×
|SHgiθ|
P

, j 6= k

0, j = k

, (4.15)

where k is the column number of S corresponding to sθ and F is a (P + 1) by (P + 1)

diagonal matrix. Algorithm 4.2 summarizes the mismatched filter design approach.

It is important to point out that the iterative re-weighted least squares approach

to mismatched filter design is not guaranteed to converge to the true minimum peak

sidelobe filter. However, it has been shown to yield good filters in [32].
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4.1.4 Sparse Spike Deconvolution

An important problem in signal processing is that of recovering a sparse spike

train. The signal model can be written as

r[n] = (u ∗ f)[n] + w[n], n ∈ {1, 2, . . . , N} (4.16)

where ∗ represents the convolution, u is the convolution kernel, w is additive noise

and f is a linear combination of Dirac delta functions to be recovered. Denoting

Dirac delta function as δ[n], f can be expressed as

f [n] =
∑
k

akδ[n− k], n ∈ {1, 2, . . . , N} (4.17)

This signal model is encountered in seismic exploration and in target ranging

radars. In seismic exploration, r represents the reflected pressure waves and f is the

underground reflectivity to be estimated. The convolution kernel u in this case is the

seismic wavelet. In target ranging radars, f represents the point target environment

with the position of each Dirac delta indicating the position of a target. The convo-

lution kernel, u is the signal transmitted by the radar. In both of these applications,

obtaining a good estimate of f is desired.

Let uk denote an N dimensional vector defined as uk[l] = u[l−k], k, l ∈ {1, . . . N}.

Using (4.17) in (4.16), we can express the sparse spike signal model as [15]

r =
∑
k

akuk + w = Ua+ w, (4.18)

where the matrix U = [ u1 u2 . . . uN ]. The model in (4.18) is analogous to (1.5)

and by analogy, we can use the OMP algorithm with a dictionaryD = {u1, u2, . . . , uN}

to estimate a.

The dependence of the dictionary on the convolution kernel u shows that recovery

of f using MP depends on u. Indeed, design of optimal transmit waveforms in radar

has been a topic of extensive research. In seismic exploration, u depends on the

transmitted pressure wave as well as other processing. Ideally, optimal recovery of f
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requires u that satisfies 〈uk, ul〉 ≈ δ[k−l], ∀k, l ∈ {1, 2, . . . , N}. However, high energy,

constant modulus and constrained bandwidth requirements on u in radar applications

often make it difficult to satisfy this requirement. As a result, it becomes difficult to

recover f if it has closely spaced Dirac functions in . In target ranging radar, the

closely spaced Diracs case is particularly important for high resolution radars since

it implies two targets nearby. In seismic exploration, closely spaced Diracs imply the

presence of a thin geophysical layer which may be important in some applications.

To understand the difficulty in resolving closely spaced Diracs, consider a dictio-

nary D with a convolution kernel u defined as

u[n] = (1− σ−2n2)e−σ
−2n2/2, n ∈ {1, ..., N} (4.19)

which is the second derivative of a Gaussian. Mallat used this kernel as an example

to show the problems encountered when f has closely space Diracs. Figure (4.2a)

shows a plot of the convolution kernel for σ = 10. Although there are a number of

possibilities for the mismatched dictionary, D̃, we will define D̃ as

D̃ = { ũ1 ũ2 . . . ũN },

ũk[n] = uk[n]× h[n], n ∈ {1, ..., N}

where h[n] is the windowing function. For this example, we define the windowing

function as

h[n] =

1, n < 12

0.2, otherwise

.

Figure (4.2b) shows a plot of the mismatched convolution kernel, ũ. The resulting

ERCs for recovery of f composed of a linear combination of two Diracs using the OMP

and MOMP algorithms is shown in figure (4.3). Suppose f = a1δ[n−k1]+a2δ[n−k2].

Assuming negligible noise, the results show that the MOMP algorithm can correctly

recover f when |k2 − k1| > 36. The OMP algorithm, however, can only recover f

accurately when |k2 − k1| > 44.
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Figure 4.2.: The convolution kernels, u and the mismatched convolution kernel ũ
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4.1.5 Simulation results

Figure (4.4) shows a comparison of the absolute recovery conditions of OMP

(3.6.1) and MOMP (4.1.1) algorithms in a range radar for two targets with dif-

ferent separations. The extended barker code in equation (1.36) was used as the

radar transmit signal. The mismatched dictionary was designed using Algorithm

4.2 and the resulting mismatched filter had a mismatching loss of 1.83dB. It can

be seen in figure (4.4) that even though a target scene with two targets is re-

solvable using OMP algorithm for all target separations, the MOMP algorithm re-

sults in a smaller value of recovery condition. This suggests that for target scenes

with recovery condition maxθ∈Λ

∥∥∥S†Λsθ

∥∥∥
1
> 1, it may be that the recovery condi-

tion for MOMP, maxθ∈Λ

∥∥∥∥(SHΛ S̃Λ

)−1

SHΛ s̃θ

∥∥∥∥
1

< 1. For example, consider a tar-

get scene Λ = {0, 2tb, 4tb, 6tb, 11tb} consisting of 5 targets. For this target scene,

maxθ∈Λ

∥∥∥S†Λsθ

∥∥∥
1

= 1.053 whereas maxθ∈Λ

∥∥∥∥(SHΛ S̃Λ

)−1

SHΛ s̃θ

∥∥∥∥
1

= 0.1244. Hence, this

particular target scene is absolutely resolvable using MOMP algorithm but not using

OMP algorithm.

In section (3.4), it was mentioned that mismatched filtering can improve resolu-

tion at the expense of probability of detection of a single target. This is true when

detecting a single target with known parameters at the receiver. In a multiple target

environment with unknown target parameters, the sidelobe structure of filter output

can cause false alarm. The recovery condition (ERC) of the target scene indicates

the peak sidelobe to mainlobe level of the filter output. For example, an ERC = 0.5

shows that it is possible to have a peak sidelobe to mainlobe level of 0.5. Such large

sidelobe levels can make a big impact on the probability of false alarm. Hence, instead

of using probability of detection to consider the resolution performance in noise, it is

reasonable to consider the probability of resolution of the target scene in noise.

Figure (4.5) shows the probability of resolution of OMP and MOMP for three

different target scenes. The threshold γ for each SNR was selected using equation

(2.22) for a single deterministic target for a fixed probability of false alarm of 10−3.
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Figure 4.4.: Comparison of recovery condition (ERC) for OMP and MOMP algorithm

in a range radar using combined barker code for different target separations τ .

The target amplitudes were also selected to achieve peak sidelobe to mainlobe ratio

equal to the ERC. It can be seen from figure (4.5) that even though the use of

mismatched filtering in MOMP can reduce SNR, the decrease in false alarm due to

the decreased sidelobe levels can make up for it.

Unlike the range radar, the resolution of pulse-Doppler radar is restricted by the

uncertainty principle. This manifests itself in the form of the volume constraint on

the ambiguity function in equation (1.26). The uncertainty principle, in general,

holds for all linear systems with a redundant dictionary. Because of this, the MOMP

algorithm cannot be used to improve the resolution performance defined in (3.7) when

all targets are equally likely. Figure 4.6 shows the resolution plot of pulse-Doppler

radar using MOMP algorithm when the radar transmit signal is the combined barker

sequence. The receive filter was designed using the iterative reweighted least squares

technique proposed in [32] to minimize the peak sidelobe level. Comparing Figure

4.6 to Figure 3.7, it can be seen that there is no resolution improvement when using

MOMP algorithm in a system with redundant dictionary. The next section discusses

an algorithm which can be used in such cases.
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Algorithm 4.3 Subspace mismatching pursuit solution for signal decomposition of

r =
∑

k aksk + n in a redundant dictionary S with a subspace selection threshold η

• Initialize Λ̂ = Ø, r̄ = r, γ, 0 < η < 1

• σ = maxθ
∣∣sHθ r∣∣

• while σ > γ

– Ψ =
{
θ |
∣∣sHθ r̄∣∣ > max (ησ, γ)

}
– Design S̃Ψ∪Λ̂

– θ̂ = arg maxθ∈Ψ

∣∣s̃Hθ r̄∣∣
– Λ̂ = Λ̂ ∪ θ̂

– α̂ = arg minα ‖r − SΛ̂α‖
2

– r̄ = r − SΛ̂α̂

– σ = maxθ
∣∣sHθ r̄∣∣

4.2 Redundant Dictionaries

Although the mismatch pursuit algorithm proposed in section 4.1 works well for

non redundant dictionaries, it is not suitable for redundant dictionaries constrained

by the uncertainty principle. Consider, for example, the signal delay-Doppler dic-

tionary of a pulse Doppler radar. Assume that the mismatch dictionary comprises

of time delayed, and Doppler shifted versions of mismatched signal g(t). Stutt’s [2]

invariant relation (1.26) shows that the total volume under the cross ambiguity func-

tion, χsg(τ, ν), remains constant if the energy of signal g(t) is fixed. This means

that although g(t) could be designed to reduce the ambiguity in some delay Doppler

region, the total volume of the cross ambiguity and hence the overall resolution, de-

fined in (3.7), cannot be improved. To overcome this limitation, a mismatched pursuit

algorithm based on a subspace of Col(S) is proposed in 4.3.
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In each iteration, the subspace mismatching algorithm (SMOMP) obtains the

matched filter output for the residue. Suppose the maximum value of the output is κ.

The algorithm obtains a peak set consisting of all the atoms in the dictionary which

satisfy

|〈r̄, sθ〉| ≥ ησ,

where η is a user specified threshold parameter and 0 < η < 1. The selection of

this threshold depends on the transmit signal and the desired resolution. Assuming

a sparse target scene environment, it is reasonable to assume that the cardinality of

the peak set in each iteration satisfies

|Ψ| < N, (4.20)

where N is the dimension of each atom sθ ∈ S. Under this assumption, it is possible to

design a sub-dictionary mismatched to Ψ. The goal of the mismatched subdictionary

is to satisfy ∣∣∣Φ̃HΦΥj

∣∣∣ ≈ I. (4.21)

The mismatched sub-dictionary is then used to select the atom to be removed in

iteration j. Once the atom is selected, all other steps in each iteration are similar to

the steps performed in the mismatched pursuit algorithm.

4.2.1 Mismatched sub-dictionary design

The synthesis matrix corresponding to the peak set, ΦΥj , will usually have more

rows than columns because of assumption (4.20). As a result, the least squares

solution to the design problem in (4.21) is given by the Moore-Penrose pseudo inverse,

that is

S̃H = S†Υj = (SHΥjSΥj)
−1SHΥj . (4.22)
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4.2.2 Resolution

The resolution of the adaptive subspace algorithm in 4.3 depends on the mis-

matched subspace dictionary design in every iteration and the value of the constant

η, where 0 < η < 1. In this section, it will be assumed that |Υ| < N and that

the designed mismatched synthesis matrix S̃Ψ∪Λ̂ approximately forms a bi-orthogonal

pair to SΨ∪Λ̂, that is,
∣∣∣S̃H

Ψ∪Λ̂
SΨ∪Λ̂

∣∣∣ ≈ I. Furthermore, assuming a target set Λ, the

SMOMP algorithm in 4.3 will fail to correctly recover Λ if, in any iteration, Ψ∩Λ = ∅.

Equation (3.11) shows that ∀h ∈ Col (SΛ),

∥∥SH
Λ

h
∥∥
∞ ≤ max

θ∈Λ

∥∥∥S†Λsθ

∥∥∥
1

∥∥SHΛ h
∥∥
∞ .

Hence, in algorithm 4.3, the peak set Ψ is guaranteed to have at least one element

` ∈ Ψ such that ` ∈ Λ if

η < min

{(
max
θ∈Λ

∥∥∥S†Λsθ

∥∥∥
1

)−1

, 1

}
. (4.23)

The condition on η in (4.23) is necessary for absolute resolvability of target set Λ and

will be assumed to hold for the following analysis. Consider a target scene with L

targets and target parameter set Λ = {θ1, . . . , θL}. Without loss of generality, assume

after j < L iterations of SMOMP, the estimated target set Λ̂ = {θ1, θ2, . . . , θj}. Define

the set of remaining targets Λr = Λ/Λ̂ = {θj+1, . . . , θL}. In general, the peak set Ψ

in the j + 1 iteration will be composed of some target elements ξ ∈ Λr and some

non target elements ϑ ∈ Λ. Let Ψ = ΛΨ ∪ Λ̄Ψ, where ΛΨ ⊆ Λr and ΛΨ ⊂ Λ. The

residue vector in the j + 1 iteration can be written as r̄ = SΛΨ
αΛΨ

+ SΛ̂αΛ̂ + SΥαΥ,

where Υ = Λr/ΛΨ. For η � 1, the effect of SΥαΥ on greedy target parameter

selection can be ignored. This is due to the fact that for η � 1, |Υ| � |Λr| and∥∥SHΥ r̄
∥∥
∞ �

∥∥SHΛΨ
r̄
∥∥
∞. Hence, the result of correlating the residue vector with the

mismatched subspace atoms can be approximated as

∣∣s̃Hθ r̄
∣∣ ≈

0, θ ∈ ΛΨ

αθ, θ ∈ ΛΨ

. (4.24)
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When the approximation in (4.24) holds, the SMOMP selects a correct target in the

j + 1 iteration. Furthermore, the result in equation (4.24) is exact when Υ = ∅.

Therefore, it is desirable to choose η � 1 so that |Υ| = 0. However, depending on

the transmit signal being used in the radar, a small η may result in a large peak set

and the condition in (4.20) may not be met. Thus, the selection of η requires trade

off between the ability to design a good mismatched subdictionary and the resolution

of the algorithm. The following theorem summarizes these results.

Theorem 4.2.1 Let Λ = {θ1, . . . , θL} , θi ∈ T , ∀1 ≤ i ≤ L denote a target scene with

L targets. In any iteration of the SMOMP algorithm, the algorithm correctly selects

a target in Λ if Λ̂ ⊆ Λ and Λ ⊆ Λ̂ ∪Ψ.

Proof Since r ∈ Col (SΛ) and Λ̂ ⊆ Λ, the residue vector satisfies r̄ ∈ Col (SΛ).

Denote ΛΨ ⊆ Λ such that ΛΨ ⊆ Ψ and ΛΨ ∩ Λ̂ = ∅. Then, the residue vector can be

expressed as

r̄ = SΛ̂αΛ̂ + SΛΨ
αΛΨ

.

Then, because of the bi-orthogonality property of the mismatched subspace, ∀θ ∈

Ψ, θ /∈ Λ, ∣∣s̃Hθ r̄
∣∣ =

∣∣s̃Hθ SΛ̂αΛ̂ + s̃Hθ SΛΨ
αΛΨ

∣∣
= 0.

Furthermore, ∀θ ∈ Ψ, θ ∈ Λ, ∣∣s̃Hθ r̄
∣∣ =

∣∣s̃Hθ s̃θαθ
∣∣

≥ 0.

Hence, the selected target is guaranteed to be in Λ.

4.3 Simulation results

Figure 4.7 shows a target scene containing 8 total targets. In this particular scene,

the targets are assumed to have the same magnitude and phase. The radar transmit
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Figure 4.7.: Target scene with maxθ∈Λ

∥∥∥S†Λsθ

∥∥∥
1

= 3.07.

signal is assumed to be the combined barker sequence. The OMP recovery condition

of Theorem 3.6.1 for the target scene is 3.07. The matched filter bank output for the

signal received from the target scene is shown in Figure 4.8a. It can be seen that

since the signal dictionary does not satisfy the incoherence property, estimation of

the actual target scene from the matched filter output is hard. Furthermore, since

maxθ∈Λ

∥∥∥S†Λsθ

∥∥∥
1

= 3.07, this particular scene is not absolutely resolvable using OMP

algorithm. Figure 4.8b shows the target scene estimate obtained using OMP. Finally,

Figure 4.8 shows that the SMOMP algorithm correctly estimates the target scene.

All results in Figure 4.8 were obtained by assuming no noise in the received signal.
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(c) Target scene estimate using SMOMP

Figure 4.8.: Comparison of radar recovery algorithms for target scene in Figure 4.7

assuming ∞ SNR.
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5. PURSUIT USING MULTIPLE CHANNELS

Radars using multiple transmit signals and multiple receive antennas have received

increasing interest in recent years. Because they borrow concepts from multiple input

multiple output (MIMO) communications, these radars are commonly referred to as

MIMO radars. It has been shown that they can result in improved resolution [33,

34], detection [34, 35], parameter identifiability [36] and estimation, target tracking,

jamming and clutter suppression [35]. Even though the term MIMO is relatively new

in radar literature, the concept has existed for a few decades. For example, multistatic

radars are a type of MIMO radar which have been studied for some time. However,

the recent explosion in MIMO communications research has given added impetus to

the MIMO radar research.

MIMO radars can be classified into two broad categories: coherent MIMO radar

and the statistical MIMO radar [34]. In statistical MIMO radar, antennas transmit-

ting different waveforms are widely separated resulting in independent target scat-

tering response. As a result, this type of radar can yield improved detection perfor-

mance compared to the traditional radars. In coherent MIMO radar, all transmit

antennas are closely spaced so that the target scattering response is same for each

transmit-receive pair. This type of radar can provide improved resolution and param-

eter estimation. In this chapter, we focus exclusively on the coherent MIMO radar

from a resolution perspective. In particular, we show that suitable chosen transmit

waveforms can result in improved resolution even in the presence of cross correlation

terms.

The rest of the chapter is organized as follows: In section (5.1), we present the sig-

nal model of a coherent MIMO radar. Section 5.2 studies the resolution performance

of greedy pursuit algorithms applied to radar system using linear channel combining.

It is shown that significant resolution improvement can be obtained by using mul-
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tiple transmit waveforms. Nonlinear channel combining is analyzed in section 5.3.

It is shown that combining nonlinear channel combining can help in mitigating the

problems associated with nonlinear channel combining. Finally, sections 5.4 and 5.5

present simulation results comparing the recovery performance and the performance

in noise of the MIMO radar systems using greedy algorithms.

5.1 Signal model

Consider a coherent MIMO radar system withK transmit waveforms s1(t), s2(t),...,

sK(t). Assume all K transmit signals have the same bandwidth and the receive time

frequency dictionary corresponding to each waveform is S1,S2, . . . ,SK respectively.

Each dictionary, Si, is assumed to be formulated as in section 1.2.4.1. The baseband

received signal from a single point target can be written as

r(t) =
K∑
i=1

αsi(t− τ)ej2πvt + w(t), (5.1)

where α is the complex amplitude of the target return and τ, ν are the time delay and

Doppler corresponding to the target. Since the MIMO radar is assumed to be coherent

with colocated antennas and all the transmit signals have the same bandwidth, carrier

frequency and are transmitted simultaneously, the target parameters α, τ, ν are same

for all the waveforms. The multiple target extension of the signal model in (5.1) can

be expressed as

r(t) =
K∑
j=1

L∑
i=1

αisj(t− τi)ej2πvit + w(t), (5.2)

where the target scene is assumed to consist of L point targets. Furthermore, in

this chapter, it is assumed that for a sampling period Ts, the discrete time signal

corresponding to (5.2) can be written as

r[n] =
K∑
j=1

L∑
i=1

αisj [n− ki] ej2πωin/M + w [n] , 1 ≤ n ≤ N,
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where ki = τi/Ts, ki ∈ Z is the delay and ωi/M = νiTs, ωi ∈ Z is the Doppler

corresponding to the ith target. The receive signal model in (5.2) can be written in a

vector form similar to (1.18) as

r =
K∑
j=1

Sjα + w

= Sα + w, (5.3)

where S =
∑K

j=1 Sj is the new signal dictionary and α is the target scene vector as in

(1.18). The model in (5.3) can be seen to similar to the received signal model for a

radar using one transmit signal (1.18). Hence, the OMP algorithm with a normalized

receive signal dictionary S̄ = 1
K

∑K
j=1 Sj may be used to recover the target scene from

(5.3).

5.1.1 Signal pairs

In [22], a MIMO radar system with two different LFM waveforms has been studied.

The LFM waveform was previously introduced in section 1.5. In particular, Rasool

[22] showed significant improvement in the composite ambiguity function of a MIMO

system using an LFM upchirp and an LFM downchirp with the same time-bandwidth

product. For some simulations in this chapter, a MIMO radar system using an LFM

upchirp and an LFM downchirp with a time-bandwidth product of 40 will be used.

Another signal pair that will be used frequently in this chapter is based on the

combined barker codes which were also introduced in section 1.5. The signal pair

used in this chapter is defined as

s1 = b13
m ⊗ b4

m,

s2 = b4
m ⊗ b13

m ,

where ⊗ denotes the Kronecker product, and b13
m and b4

m represent the length 13 and

length 4 Barker sequences respectively.
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5.2 Linear Channel combining

The received signal model in (5.3) shows that the MIMO radar is equivalent to

a radar with a single transmit waveform when the transmit signal is given as s(t) =∑K
i=1 si(t). Since practical radar signals must have constant amplitude to overcome

the constraints of high power amplifiers, the set of achievable ambiguity functions in

pulse-Doppler radars is severely constrained. With a MIMO radar, this constraint can

be overcome since the individual signals, si(t) are required to be constant amplitude

but their linear sum can effectively form a signal with varying amplitude. Hence, as

long as a desired radar transmit signal can be expressed as a linear sum of constant

amplitude signals, it can be implemented in practice using the MIMO radar approach.

Denoting the normalized composite signal dictionary S̄ = 1
K

∑K
j=1 Sj, the matched

filter estimate of the target scene is given as

α̂ = S̄Hr =
1

K

(
SHSα + SHw

)
. (5.4)

Furthermore, similar to the definition of discrete ambiguity function in (1.28), the

discrete composite ambiguity function is defined as

χC [τ, ν] =
[
SHs0,0

]
τM+ν

.

Hence, using the shift invariance property of the signal dictionary S, the target scene

estimate at the output of the matched filter can be expressed as a linear sum of shifted

composite ambiguity functions

[α̃]τM+ν =
1

K

∑
(i,j)∈Λ

[α]iM+j χ
C [τ − i, ν − j],
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which is similar to equation (1.29) for radar systems with single transmit waveform.

The composite ambiguity function itself is related to the ambiguity function of each

of the K radar transmit signals as

χC [τ, ν] =
[
SHs0,0

]
τM+ν

=

[(
K∑
i=1

SHi

)(
K∑
j=1

sj0,0

)]
τM+ν

=

[
K∑
i=1

K∑
j=1

SHi sj0,0

]
τM+ν

=

[
K∑
i=1

SHi si0,0

]
τM+ν

+

 K∑
m=1

K∑
n=1

m6=n

SHmsn0,0


τM+ν

=
K∑
i=1

χi,i[τ, ν] +
K∑
m=1

K∑
n=1

m 6=n

χm,n[τ, ν], (5.5)

where χm,n[τ, ν] represents the discrete cross ambiguity function between mth and nth

radar transmit signals. Assuming the effect of cross ambiguity function χm,n [τ, ν]

is negligible in (5.5), it can be seen that ∀ [τ, ν] 6= [0, 0] the composite ambiguity

function satisfies

χC [τ, ν] ≈
K∑
i=1

χi,i [τ, ν]

≤
K∑
i=1

µ (Si) , (5.6)

where µ(Si) is the mutual coherence of the dictionary Si as defined in equation (1.30).

Additionally, when the cross ambiguity functions are negligible, χC [0, 0] ≈ K. Hence,

using (5.6), the mutual coherence of the normalized composite signal dictionary S̄ =

1
K

∑K
j=1 Sj can be bounded as

µ(S̄) ≤
∑K

i=1 µ(Si)

K
. (5.7)
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Define the set Ti = {[τ, ν] | |χi,i [x, y]| ≈ µ(Si)}. In general, if the set of radar transmit

signals is carefully chosen in such a way that ∀1 ≤ i, j ≤ K and i 6= j,

∀ [τ, ν] ∈ Ti, |χjj [τ, ν]| ≈ 0, (5.8)

the bound in (5.7) is very loose and µ(S̄) �
(∑K

i=1 µ(Si)
)
/K. In chapter 3 it

was shown that for high resolution using OMP algorithm, it is desirable to have

a signal dictionary with small mutual coherence (3.12). Hence, for a set of radar

signals satisfying the condition in (5.8), the MIMO radar using OMP algorithm with

a normalized composite signal dictionary S̄ = 1
K

∑K
j=1 Sj can result in considerable

improvement in target resolution. Furthermore, the condition in (5.8) also provides

suitable constraints for designing the set of radar signals.

5.2.1 Resolution

Comparing the MIMO received signal model in equation (5.3) with the radar

model presented in section 1.2, the equivalence is readily apparent. As a result, the

sparse recovery performance using OMP algorithm on the MIMO radar signal model

in equation (5.3) is also applicable to MIMO radar. The following theorem restates

the conditions under which a target scene is resolvable in noiseless conditions when

OMP algorithm is used.

Theorem 5.2.1 Consider a MIMO radar with receive signal dictionaries correspond-

ing to each transmit signal denoted as S1, . . . ,SK. Let Λ = {θ1, . . . , θL} , θi ∈ T , ∀1 ≤

i ≤ L denote the set of target parameters in the target scene with associated target

amplitudes . Then, the target scene is absolutely resolvable using the OMP algorithm

at the radar receiver with a receive dictionary S = S1 + . . .+ SK, if and only if

max
θ∈Λ

∥∥∥S†Λsθ

∥∥∥
1
< 1.
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(a) Composite ambiguity function for linear channel

combining.

|Γ(τ,ν)| (Multiplication)

ν T

τ
/T

 

 

−40 −30 −20 −10 0 10 20 30

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Channel combining by multiplying the ambigu-

ity functions.
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(c) Channel combining using minimum of the two

ambiguity functions.

Figure 5.1.: Comparison of different MIMO channel combining techniques for a single

target located at (τ, ν) = (0, 0) using two transmit signals: An LFM upchirp and an

LFM downchirp.
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(a) Composite ambiguity function for linear channel

combining.
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(b) Channel combining by multiplying the ambigu-

ity functions.
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(c) Channel combining using minimum of the two

ambiguity functions.

Figure 5.2.: Comparison of different MIMO channel combining techniques for a single

target located at (τ, ν) = (0, 0) using two transmit signals: Combined 13 by 4 barker

code and combined 4 by 13 barker code.
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5.2.2 Simulation results

Consider a coherent MIMO radar system utilizing two transmit waveforms, s1(t)

and s2(t). Both transmit signals are chosen to be LFM chirps with different chirp

rate, that is

si(t) =
1√
T
rect

(
t

T

)
ejπkit

2

.

For this particular example, we use k1 = −k2. Figure 5.1a shows the composite am-

biguity function of the radar system when matched filters are used at the receiver.

Figure 5.3b shows the corresponding resolution diagram for the MIMO system. Com-

pared to the resolution plot of an individual LFM chirp shown earlier in Chapter 3, it

can be seen that transmitting more than one waveform yields considerable improve-

ment in resolution.

Figure 5.3a presents the resolution plot of a radar system using the pair of com-

bined Barker codes. Once again, the improvement compared to transmitting a single

combined Barker code is apparent.

5.3 Nonlinear channel combining

The matched filter output α̂ in the previous section is equivalent to filtering the

received signal with a bank of matched filters matched to each of the K signals

si(t), 1 ≤ i ≤ K and then linearly combining the result. Ignoring noise, this can be

seen by using the definition S̄ = 1
K

(∑K
i=1 Si

)
to rewrite the equation (5.4) as

α̂ =
1

K

K∑
i=1

SHi Sα. (5.9)

Nonlinear channel combining techniques have been proposed recently in radar liter-

ature [22] to improve the resolution of MIMO radar. Let f (x) , x ∈ RK denote a

nonlinear function. In this dissertation, it will be assumed that f (x) is a monotonic

function over RK
+ = [0,∞]. Hence, ∀x,y ∈ RK such that [x]i ≤ [y]i , ∀1 ≤ i ≤ K,

the function satisfies f (x) ≤ f (y).
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(a) Resolution diagram for the two waveform coherent MIMO radar system using

combined 13 by 4 and 4 by 13 barker sequences.
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(b) Resolution diagram for the two waveform coherent MIMO radar system using

an up-chirp and a down-chirp with BT = 40

Figure 5.3.: Resolution plots of coherent MIMO radar systems.
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Assuming f (·) as the nonlinear channel combining function, the matched filter

estimate of the target scene using nonlinear channel combining techniques proposed

in [22] can be expressed as

[α̂]i =
1

K
f
([∣∣SH1 Sα

∣∣]
i
,
[∣∣SH2 Sα

∣∣]
i
, . . . ,

[∣∣SHKSα
∣∣]
i

)
. (5.10)

Denoting the vector element wise nonlinear operator ♦, the matched filter estimate

in (5.10) can be expressed in vector form as

α̂ =
1

K

(∣∣SH1 Sα
∣∣♦ ∣∣SH2 Sα

∣∣♦ . . .♦ ∣∣SHKSα
∣∣) . (5.11)

Using the notation Γ [τ, ν] = [α̂]τM+ν for the delay Doppler image of α̂. Then, for a

single target located at [τ, ν] = [0, 0], the delay Doppler image using (5.11) can be

expressed as

Γ [τ, ν] =
1

K

([∣∣SH1 s0,0

∣∣]
τM+ν

|[α]0| ♦ . . .♦
[∣∣SHKs0,0

∣∣]
τM+ν

|[α]0|
)
,

=
1

K

(∣∣χC1 [τ, ν]
∣∣ |[α]0| ♦ . . .♦

∣∣χCK [τ, ν]
∣∣ |[α]0|

)
, (5.12)

where χCi [τ, ν] = SHi s0,0, ∀1 ≤ i ≤ K. Figures 5.2 and 5.1 compare the delay Doppler

image obtained after channel combining for a single target located at [τ, ν] = [0, 0]

with the composite ambiguity function. In general, it can be seen that in a single

target environment, nonlinear combining techniques result in considerably reduced

sidelobes compared to the linear combining of channels. In a multi-target environ-

ment, however, it has been shown that nonlinear channel combining can cause the

creation of virtual targets [22]. These are false targets created due to the nonlin-

ear interaction of the off diagonal elements in the matrices SHi S. To overcome this

problem, the authors in [22] have suggested using a larger number of diverse radar

signals to reduce the affect of virtual targets. In this section, however, we combine

the nonlinear channel combining idea (5.11) with the OMP algorithm to propose an

algorithm that can improve resolution without suffering from some problems with

the nonlinear technique. Algorithm 5.1 shows the new algorithm which will be called

Nonlinear MIMO matching pursuit (NLMMP) from now on. Like the MOMP algo-

rithm presented in chapter 4, the NLMMP differs from OMP algorithm only in the
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Algorithm 5.1 Nonlinear MIMO pursuit solution for signal decomposition of r =∑
k aksk+w. The nonlinear channel combining operator is denoted♦ and S̃ represents

the normalized version of the composite signal dictionary S =
(∑K

i=1 Si

)
. All columns

of S̃ are assumed to be unit norm.

• Initialize Λ̂ = Ø, r̄ = r, γ

• σ = maxθ
∣∣s̃Hθ r

∣∣
• while σ > γ

– zi =
∣∣∣S̃Hi r̄

∣∣∣ , ∀1 ≤ i ≤ K

– z = z1♦z2♦ . . .♦zK

– θ̂ = arg maxθ [z]θ

– Λ̂ = Λ̂ ∪ θ̂

– α̂ = arg minα

∥∥∥r− S̃Λ̂α
∥∥∥2

– r̄ = r− S̃Λ̂α̂

– σ = maxθ
∣∣s̃Hθ r̄

∣∣

greedy target selection step. Intuitively, since the nonlinear combining step in (5.11)

reduces the sidelobes, it results in decreased mutual coherence and hence improved

resolution.

Consider a target scene with target parameter set Λ. The received signal, r, from

such a target scene is then in the column space of S̄Λ. Hence if the first i iterations

of the NLMMP algorithm select targets in Λ, that is Λ̂ ⊆ Λ, then by definition the

residue vector in i+ 1 iteration is also in the column space of S̄Λ. As a result, to be

able to absolutely resolve a target scene with target parameters Λ, it is necessary to

satisfy

sup
h∈Col(S̄Λ)

∥∥∥∣∣∣SH
1,Λ

h
∣∣∣♦ . . .♦ ∣∣∣SH

K,Λ
h
∣∣∣∥∥∥
∞∥∥∣∣SH1,Λh

∣∣♦ . . .♦ ∣∣SHK,Λh
∣∣∥∥
∞

< 1, (5.13)
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where Si,Λ and SH
1,Λ

denote the subdictionaries of Si consisting only of columns indexed

by the set Λ and Λ, respectively. The exact recovery condition in (5.13) is, in general,

difficult to compute. Instead, it may be useful to find an upperbound to the exact

recovery condition. Using the notation from algorithm 5.1, in any iteration of the

NLMMP algorithm, a correct target is selected if

∀j ∈ Λ, ∃i ∈ Λ s.t. [z]i > [z]j .

Since r̄ ∈ Col (SΛ), let r̄ = SΛα. Then, ∀i ∈ Λ,

[z]i =
∣∣sH1,iSΛα

∣∣♦ . . .♦ ∣∣sHK,iSΛα
∣∣ ,

≤
{∥∥sH1,iSΛ

∥∥
1
‖α‖∞

}
♦ . . .♦

{∥∥sHK,iSΛ

∥∥
1
‖α‖∞

}
, (5.14)

where sl,i represents the ith column in the synthesis matrix Sl of the lth transmit

signal. Similarly, ∀i ∈ Λ and 1 ≤ l ≤ K,

[zl]i =
∣∣sHl,iSΛα

∣∣
=

∣∣∣∣∣sHl,isiαi +
∑

j∈Λ,j 6=i

sHl,jsjαj

∣∣∣∣∣
≥

∣∣sHl,isiαi∣∣−
∣∣∣∣∣ ∑
j∈Λ,j 6=i

sHl,jsjαj

∣∣∣∣∣ , (5.15)

where αi denotes the target amplitude corresponding to target with parameters i ∈ Λ.

Define

ηl = min
i∈Λ

∣∣sHl,isi∣∣ , (5.16)

and

µlΛ = max
i,j∈Λ,i 6=j

∣∣sHl,isj∣∣ . (5.17)

Using (5.16) and (5.17) in (5.15), ∀i ∈ Λ, [zl]i can be bounded as

[zl]i ≥ ηl |αi| − (‖α‖1 − |αi|)µ
l
Λ.

Furthermore, since the nonlinear channel combining is assumed to be monotonic,

∀i ∈ Λ, the elements of vector z in algorithm 5.1 can be bounded as

[z]i ≥
{
η1 |αi| − (‖α‖1 − |αi|)µ

1
Λ

}
♦ . . .♦

{
ηK |αi| − (‖α‖1 − |αi|)µ

K
Λ

}
.
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Hence, the maximum absolute value at a target position after nonlinear channel

combining can be bounded as

max
i∈Λ

[z]i ≥
{
η1 ‖α‖∞ − (‖α‖1 − ‖α‖∞)µ1

Λ

}
♦ . . .♦

{
ηK ‖α‖∞ − (‖α‖1 − ‖α‖∞)µKΛ

}
.

The NLMMP algorithm will select a target θ ∈ Λ in this iteration if

maxi∈Λ [z]i
maxi∈Λ [z]i

< 1.

As a result if received signal noise is negligible, for any residue vector r̄ = SΛα, the

greedy target selection step chooses a correct target if

maxi∈Λ

{∥∥sH1,iSΛ

∥∥
1
‖α‖∞

}
♦ . . .♦

{∥∥sHK,iSΛ

∥∥
1
‖α‖∞

}
{η1 ‖α‖∞ − (‖α‖1 − ‖α‖∞)µ1

Λ}♦ . . .♦{ηK ‖α‖∞ − (‖α‖1 − ‖α‖∞)µKΛ }
< 1.

(5.18)

The recovery condition in (5.18) requires knowledge of the target amplitudes α in the

residue vector. In the following sections, the recovery performance of two nonlinear

operations proposed in [22] is further analyzed and conditions for absolute resolution

are derived.

5.3.1 Point-wise Multiplication

Consider a MIMO radar using the NLMMP algorithm with a nonlinear function

f (x) = [x]0 [x]1 . . . [x]K−1. It can be easily verified that f (x) is a monotonic function

and hence satisfies the necessary requirements for a valid channel combining function.

For any two vectors x,y ∈ RL, the nonlinear operator ♦ corresponding to f (·) is
[x]0

...

[x]L−1

♦


[y]0
...

[y]L−1

 =


[x]0 [y]0

...

[x]L−1 [y]L−1

 .
As a result, the nonlinear operator ♦ in this section will be called the pointwise

multiplication operator. To understand why using this operator makes sense, it is

useful to compare the composite ambiguity function with the output of pointwise
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(b) Point-wise multiplication combining
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(c) Point-wise minimum combining

Figure 5.4.: Comparison of linear channel combining and nonlinear channel combining

in a multi-target environment using LFM upchirp and downchirp. The target scene

consists of three targets at (τ1, ν1) = (0, 0), (τ1, ν1) = (0.15T, 3/T ) and (τ1, ν1) =

(0.1375T,−9/T ).
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multiplication combining for a single target located at [τ, ν] = [0, 0]. Figures (5.2b)

and (5.1b) show that the sidelobes at the output of NLMMP algorithm, when point-

wise multiplication is used, are much smaller than the sidelobes in the corresponding

composite ambiguity functions in (5.2a) and (5.1a) respectively. Since the recovery

condition of pursuit algorithms is, in general, related to the peak sidelobe to peak

mainlobe ratio, smaller sidelobes indicate better recovery performance. However, it is

important to point out that unlike the linear channel combining approach, the output

of nonlinear channel combining can no longer be related to an imaging system (1.24)

where the ambiguity function acts as the point spread function. Consequently, in a

target scene with multiple targets, the nonlinearly combined output can no longer

be expressed as a linear combination of shifted versions of the function Γ [τ, ν] shown

in figures (5.2b) and (5.1b). Instead, the nonlinear interaction between the channels

can sometimes cause significant sidelobes in a multi-target environment. These un-

desirable sidelobes have been termed virtual targets in [22]. Figure 5.4b shows the

result of channel combining using pointwise multiplication in a target environment

with 3 targets. It can be seen that it is difficult to differentiate between actual targets

and virtual targets. In this section, it will be shown that the NLMMP algorithm can

remove these sidelobes in certain conditions.

Theorem 5.3.1 Consider a MIMO radar with receive signal dictionaries correspond-

ing to each transmit signal denoted as S1, . . . ,SK. Let Λ = {θ1, . . . , θL} , θi ∈ T , ∀1 ≤

i ≤ L denote the set of target parameters in the target scene. Then, the target scene

is guaranteed to be absolutely resolvable using NLMMP algorithm with pointwise mul-

tiplication if

κΛ

{η1 + (1− |Λ|)µ1
Λ} × . . .× {ηK + (1− |Λ|)µKΛ }

< 1, (5.19)

where κΛ = maxi∈Λ

[{∥∥sH1,iSΛ

∥∥
1

}
× . . .×

{∥∥sHK,iSΛ

∥∥
1

}]
and ηi and µiΛ are defined in

(5.16) and (5.17), respectively. Furthermore, if the condition in (5.19) is not satisfied,

the target scene may or may not be absolutely resolvable.
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Proof From equation (5.18), the condition for correct recovery when pointwise mul-

tiplication operator is used can be written as

maxi∈Λ

[{∥∥sH1,iSΛ

∥∥
1
‖α‖∞

}
× . . .×

{∥∥sHK,iSΛ

∥∥
1
‖α‖∞

}]
{η1 ‖α‖∞ − (‖α‖1 − ‖α‖∞)µ1

Λ} × . . .× {ηK ‖α‖∞ − (‖α‖1 − ‖α‖∞)µKΛ }
< 1.

Dividing both numerator and denominator by ‖α‖∞, the recovery condition can be

expressed as

maxi∈Λ

[{∥∥sH1,iSΛ

∥∥
1

}
× . . .×

{∥∥sHK,iSΛ

∥∥
1

}]
{η1 − (‖α‖1 / ‖α‖∞ − 1)µ1

Λ} × . . .× {ηK − (‖α‖1 / ‖α‖∞ − 1)µKΛ }
< 1.

Also, since ‖α‖1 / ‖α‖∞ ≤ |Λ|, if

maxi∈Λ

[{∥∥sH1,iSΛ

∥∥
1

}
× . . .×

{∥∥sHK,iSΛ

∥∥
1

}]
{η1 − (|Λ| − 1)µ1

Λ} × . . .× {ηK − (|Λ| − 1)µKΛ }
< 1,

then correct recovery of Λ is guaranteed irrespective of the target amplitude vector

α.

Figure 5.5 shows the resolution plot obtained using Theorem 5.3.1 for the LFM and

combined Barker code pairs. Compared to the resolution plots obtained for linear

channel combining technique, the NLMMP algorithm seems to have poor resolution.

However, it should be kept in mind that these plots were obtained using a loose

bound. In section 5.5, it will be shown that the actual recovery performance of

NLMMP algorithm using multiplication is much better than that suggested by these

plots.

The recovery condition in (5.19) can sometimes be too loose to be useful. Fur-

thermore, it is difficult to relate the condition in (5.19) to the recovery conditions of

each of the K individual radar transmit signals.

Consider the recovery condition in (5.13) for the NLMMP algorithm. For point-

wise multiplication operator, the left side of the condition in (5.13) can be restated

as

sup
h∈Col(S̄Λ)

∥∥∥∣∣∣SH
1,Λ

h
∣∣∣× . . .× ∣∣∣SH

K,Λ
h
∣∣∣∥∥∥
∞∥∥∣∣SH1,Λh

∣∣× . . .× ∣∣SHK,Λh
∣∣∥∥
∞

≤ sup
h∈Col(S̄Λ)

∥∥∥SH
1,Λ

h
∥∥∥
∞
× . . .×

∥∥∥SH
K,Λ

h
∥∥∥
∞∥∥∣∣SH1,Λh

∣∣× . . .× ∣∣SHK,Λh
∣∣∥∥
∞

≤ r1 (Λ) r2 (Λ) . . . rK (Λ) ρ (Λ) (5.20)
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(a) Resolution plot of NLMMP algorithm for LFM upchirp and downchirp.
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(b) Resolution plot of NLMMP algorithm for the two combined barker codes.

Figure 5.5.: Resolution bound of NLMMP algorithm using pointwise multiplication

for channel combining.
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where ri (Λ) denotes the recovery condition of the received signal r = SΛα using the

mismatched dictionary Si (theorem 4.1.1) and

ρ (Λ) = sup
h∈Col(S̄Λ)

∥∥SH1,Λh
∥∥
∞ × . . .×

∥∥SHK,Λh
∥∥
∞∥∥∣∣SH1,Λh

∣∣× . . .× ∣∣SHK,Λh
∣∣∥∥
∞

. (5.21)

In general, when the targets in the target scene have significantly different radar cross

sections, the maximum magnitude in the mismatched filter output will occur at the

same target for all K banks of mismatched filters. This implies that ∀1 ≤ j ≤ K, the

index î = arg maxi
[∣∣SHj,Λh

∣∣]
i
will be same. Similarly, when multiple targets in the tar-

get scene have radar cross sections approximately equal to the maximum radar cross

section in the target scene,
∥∥SH1,Λh

∥∥
∞× . . .×

∥∥SHK,Λh
∥∥
∞ ≈

∥∥∣∣SH1,Λh
∣∣× . . .× ∣∣SHK,Λh

∣∣∥∥.

Hence, in general, ρ (Λ) ≈ 1 and a rough test for resolvability of a target scene is

r1 (Λ)× . . .× rK (Λ) < 1.

Equation (5.20) also shows that to obtain high resolution using channel multipli-

cation in NLMMP, it is important to select a set of waveforms with diverse resolution

plots. For example, in a MIMO radar with two transmit signals, it is important to se-

lect a transmit signal pair that have resolution plots with no common non-resolvable

points. Consider a target scene Λ that is resolvable using signal 1 but not using

signal 2. This means that r1 (Λ) < 1 and r2 (Λ) > 1. Then, for resolution of this

target scene using pointwise multiplication, it is desirable to have r1 (Λ)× r2 (Λ) < 1.

Hence, when designing a set of radar transmit signals for use with NLMMP algorithm

utilizing pointwise multiplication, a rough rule of thumb is to ensure that the product

of individual recovery factors is less than 1.

5.3.2 Point-wise Minimum

Another nonlinear channel combining operator proposed in [22] is the pointwise

minimum operator which is equivalent to the nonlinear function f (x) = mini [x]i.

Since f (x) is monotonic, it is a valid function for use in NLMMP algorithm. For any
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two vectors x,y ∈ RL, the nonlinear operator ♦ corresponding to pointwise minimum

operation can be expressed as
[x]0

...

[x]L−1

♦


[y]0
...

[y]L−1

 =


min ([x]0 , [y]0)

...

min
(
[x]L−1 [y]L−1

)
 .

Intuitively, it is easy to see why channel combining using minimum operator can

improve the resolution of a radar. Although all the sidelobes in a pulse Doppler radar

cannot be made zero due to the uncertainty principle, it is possible to design a set of K

radar signals with non overlapping sidelobes. This means that if a transmit signal has

a significant sidelobe at [τ1, ν1], there is at least one waveform in the set of transmitted

signals which has negligible sidelobe at [τ1, ν1]. Figures 5.2c and 5.1c show the output

of NLMMP algorithm using pointwise minimum for a target located at [τ, ν] = [0, 0].

Compared to the composite ambiguity functions in figures 5.2a and 5.1a, it can be

seen that the pointwise minimum combining reduces the sidelobes in the output.

However, as was discussed in section 5.3.1, nonlinear channel combining techniques

suffer from virtual targets when a target scene consists of multiple targets. Figure

5.4c shows the effect of pointwise minimum channel combining of the matched filter

outputs of all channels. Compared to linear channel combining output in figure 5.4a,

it is apparent that pointwise minimum combining decreases the sidelobes. However,

the presence of virtual targets in figure 5.4c can increase the false alarm rate of the

radar system.

Theorem 5.3.2 Consider a MIMO radar with receive signal dictionaries correspond-

ing to each transmit signal denoted as S1, . . . ,SK. Let Λ = {θ1, . . . , θL} , θi ∈ T , ∀1 ≤

i ≤ L denote the set of target parameters in the target scene. Then, the target scene

is guaranteed to be absolutely resolvable using NLMMP algorithm with pointwise min-

imum combining if
κΛ

min1≤j≤K
{
ηj + (1− |Λ|)µjΛ

} < 1, (5.22)
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where κΛ = maxi∈Λ

[
min1≤j≤K

{∥∥sHj,iSΛ

∥∥
1

}]
and ηi and µiΛ are defined in (5.16) and

(5.17), respectively. Furthermore, if the condition in (5.22) is not satisfied, the target

scene may or may not be absolutely resolvable.

Proof From equation (5.18), the condition for correct recovery when pointwise mul-

tiplication operator is used can be written as

maxi∈Λ

[
min1≤j≤K

{∥∥sHj,iSΛ

∥∥
1
‖α‖∞

}]
min1≤j≤K

{
ηj ‖α‖∞ − (‖α‖1 − ‖α‖∞)µjΛ

} < 1.

Dividing both numerator and denominator by ‖α‖∞, the recovery condition can be

expressed as

maxi∈Λ

[
min1≤j≤K

{∥∥sHj,iSΛ

∥∥
1

}]
min1≤j≤K

{
ηj − (‖α‖1 / ‖α‖∞ − 1)µjΛ

} < 1.

Also, since ‖α‖1 / ‖α‖∞ ≤ |Λ|, if

maxi∈Λ

[
min1≤j≤K

{∥∥sHj,iSΛ

∥∥
1

}]
min1≤j≤K

{
ηj − (|Λ| − 1)µjΛ

} < 1,

then correct recovery of Λ is guaranteed irrespective of the target amplitude vector

α.

Theorem 5.3.3 Suppose a MIMO radar with receive signal dictionaries S1, . . . ,SK is

used to estimate a target scene with target parameters Λ = {θ1, . . . , θL}. Assume that

the targets selected in the first j iterations of the NLMMP algorithm using pointwise

minimum combining are in Λ. If the residue vector in the j + 1 iteration of the

NLMMP algorithm is r̄ = SΛαΛ, then the selected target in j + 1 iteration is also in

Λ if

ri (Λ) = max
θ∈Λ

∥∥∥(SHΛ Si,Λ
)−1

SHΛ si,θ

∥∥∥
1
< 1,

where i = arg mini
∥∥SHi,Λr̄

∥∥
∞.

Proof Let i = arg mini
∥∥SHi,Λr̄

∥∥
∞. Then the recovery condition in equation (5.13)

for h = r̄ can be written as

min1≤j≤K

∥∥∥SH
j,Λ

r̄
∥∥∥
∞∥∥SHi,Λr̄

∥∥
∞

< 1. (5.23)
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(a) Resolution plot of NLMMP algorithm for LFM upchirp and downchirp.
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(b) Resolution plot of NLMMP algorithm for the two combined barker codes.

Figure 5.6.: Resolution bound of NLMMP algorithm using pointwise minimum for

channel combining.
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However, since min1≤j≤K

∥∥∥SH
j,Λ

r̄
∥∥∥
∞
≤
∥∥∥SH

i,Λ
r̄
∥∥∥
∞

, the left term in equation (5.23) can

be bounded as ∥∥SHi,Λr̄
∥∥
∞∥∥SHi,Λr̄
∥∥
∞

≤ sup
r̄∈Col(SΛ)

∥∥SHi,Λr̄
∥∥
∞∥∥SHi,Λr̄
∥∥
∞

,

= ri (Λ) .

Hence, correct recovery of the target scene in noiseless conditions is guaranteed when

ri (Λ) < 1.

Since theorem 5.3.3 holds for all r̄ ∈ Col (SΛ), a direct consequence is that a target

scene with target parameters given by the set Λ is absolutely resolvable using NLMMP

with minimum channel combining if

max
1≤i≤K

ri (Λ) < 1.

This shows that if a target scene is resolvable using MOMP algorithm with each of

the K signal dictionaries S1, . . . ,SK , then it is also resolvable using NLMMP with

pointwise minimum combining. However, it should be kept in mind that both theo-

rems 5.3.2 and 5.3.3 give a lower bound on the resolution performance. Hence, the

resolution plots in Figure 5.6 should be considered with a grain of salt. Simulation

results later in this chapter will show that NLMMP with minimum channel com-

bining provides improved resolution performance compared to the OMP or MOMP

algorithm.

5.4 Resolution in noise

Detection performance of a single target using nonlinear channel combining tech-

niques was analyzed by Rasool in [22]. In comparison to the matched filter, it was

shown that the channel combining using multiplication and minimum operation re-

quire approximately 1dB and 2dB more SNR to achieve the same probability of

detection. It was argued that the decrease in sidelobes merits the relatively small loss

in detection performance.
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The detection performance of NLMMP algorithm is, however, different from the

results derived in [22]. This is because the NLMMP algorithm uses matched filtering

in every iteration to decide if a target is present or not. This was discussed earlier in

section 4.1.2. As a result, irrespective of the channel combining operation used, the

threshold γ in NLMMP algorithm is the same as matched filter threshold derived in

section 2.4.

Figure (5.7) shows the probability of resolution of NLMMP algorithm in compar-

ison with the OMP algorithm. Three different target scenes with peak sidelobe to

peak mainlobe ratio of 0.53, 0.65 and 0.71 were used. In all three cases, figure (5.7)

shows that NLMMP algorithm using pointwise multiplication has resolution perfor-

mance similar to the OMP algorithm using composite signal dictionary. At lower

SNR however, NLMMP algorithm using pointwise minimum operator requires about

0.5dB more SNR to achieve the same resolution performance in all three cases. This

can be attributed to the loss in SNR associated with channel combining using the

minimum operation as compared to the linear channel combining.

5.5 Target scene recovery examples

Although the resolution plots in section 5.3 using loose recovery bounds leave

much to be desired, our simulations show that the actual performance of NLMMP

algorithm is much better. In this section, a radar system using the combined Barker

code pair in section 5.1 is assumed.

Figure 5.8 shows three different target scenes with all targets having same phase

and amplitude. Matched filter output using linear channel combining and two nonlin-

ear channel combining techniques is shown in Figure 5.9. It can be seen that although

the nonlinear channel combining can reduce the total sidelobe energy, the presence

of virtual targets still makes target resolution difficult.

The recovery of target scenes A, B and C is shown in Figures 5.10, 5.11 and 5.12

respectively. It can be seen that there may be scenarios where the linear channel
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equal amplitude for a fixed PFA = 10−3.
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combining fails to recover correctly even though the NLMMP algorithm works fine.

In general, however, the NLMMP algorithm seems to perform much better than the

resolution plots in section 5.3 suggest.
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(a) Target scene A
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(b) Target scene B
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(c) Target scene C

Figure 5.8.: Three different target scenes used for comparing recovery performance.
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(a) Target scene A recovery using matched filtering

and linear channel combining
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(b) Target scene A recovery using matched filtering

and channel combining using multiplication.
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(c) Target scene A recovery using matched filtering

and minimum channel combining

Figure 5.9.: Recovery of target scene A using matched filtering.
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(a) Target scene A recovery using OMP algorithm.
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(b) Target scene A recovery using NLMMP with chan-

nel combining using multiplication.
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(c) Target scene A recovery using NLMMP with min-

imum channel combining.

Figure 5.10.: Recovery of target scene A using greedy pursuit algorithms.
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(a) Target scene B recovery using OMP algorithm.
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(b) Target scene B recovery using NLMMP with chan-

nel combining using multiplication.
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(c) Target scene B recovery using NLMMP with min-

imum channel combining.

Figure 5.11.: Recovery of target scene B using greedy pursuit algorithms.



128

MIMO OMP

τ/T

ν
 T

−1 −0.5 0 0.5 1

−25

−20

−15

−10

−5

0

5

10

15

20

25

(a) Target scene C recovery using OMP algorithm.
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(b) Target scene C recovery using NLMMP with chan-

nel combining using multiplication.
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(c) Target scene C recovery using NLMMP with min-

imum channel combining.

Figure 5.12.: Recovery of target scene C using greedy pursuit algorithms.
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6. RECOVERY OF EXTENDED TARGETS

All of the target scene recovery algorithms presented previously in Chapters 2 through

5 assumed a sparse point target model. While this assumption holds for low resolution

search radar systems, targets in a high resolution radar with target identification

capability can typically span multiple delay-Doppler bins. As a result, the point

target assumption is no longer valid. Such targets are often called extended targets.

Under certain conditions, a radar system operating in a target environment con-

sisting of extended targets can be modeled as

r = Sα + w, (6.1)

where α is now assumed to be block sparse [37]. Block sparsity will be formally defined

in section 6.1. The signal model in equation (6.1) can be seen to be similar to the

signal model in (1.18) for point target environment. Hence, using the likelihood ratio

test to obtain suitable detection algorithms for the extended target model will still

result in the same algorithms discussed previously. Therefore, it may seem pointless

to consider algorithms specifically designed for recovering extended targets. However,

a close inspection of the resolution plots in Chapters 3-5 shows that most recovery

algorithms are more likely to fail when two targets are close in range and/or Doppler.

This is because the sidelobes and mainlobes of nearby targets can interfere with each

other creating spurious peaks and suppressing actual peaks which can throw off the

greedy algorithms. The recovered vector α̂ is then no longer the optimal sparse

solution as the greedy algorithm tries to reduce the energy in the residue signal r̄.

Extended targets can be modeled as contiguous clusters of point targets in discrete

time. As a result, the OMP algorithm and its variants discussed earlier are unlikely to

perform well in such target environments. This problem is also experienced in other

applications of compressed sensing and sparse recovery. For example, block sparsity
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has been shown to occur in multiple measurement vector (MMV) [38] problem and

the measurement of gene expression levels [39]. They have also been shown to arise in

sampling of signals that lie in a union of subspaces [37,40]. As a result, the recovery

of sparse blocks has received considerable recent interest [37,41–43].

Most of the existing work in recovering block sparse signals is focused towards

utilizing a known structure in the data. For example, in [37], variants of OMP and

MP algorithm called Block OMP (BOMP) and Block MP (BMP) are studied. The

key difference between OMP and BOMP algorithms is in the target selection step.

Recall, in each iteration of the OMP algorithm, the selected atom is the one most

correlated with the residue vector r̄, that is,

θ̂ = arg max
θ

∣∣sHθ r̄
∣∣ .

In BOMP, however, it is assumed that all the possible clusters are known a priori.

Then, rather than matching to each individual atom, the BOMP algorithm matches

the residue to the sub-dictionaries corresponding to the permissible clusters. This has

the effect of reducing the dictionary size at the receiver. Now assuming the target

scene vector α has the form

α =
[
α(1) α(2) . . . α(L)

]T
,

where α(i) denotes the ith target cluster ∀i ∈ {1, 2, . . . , L}. Assuming the sub-

dictionary corresponding to the ith target cluster is denoted as S(i), the BOMP algo-

rithm selects cluster î such that

î = arg max
i

∥∥∥(S(i)
)H

r̄
∥∥∥

2
.

Similar modifications have also been proposed to the basis pursuit algorithm [9]

for recovery of sparse clusters. In [41], Yuan et al. propose the group lasso algorithm

which is based on the optimization

α̂ = min
α

{
1

2
‖r− Sα‖2

2 + λ
L∑
i=1

√
ρi
∥∥α(i)

∥∥
2

}
,
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where ρi is the length of cluster i, that is, ρi =
∥∥α(i)

∥∥
0
. When each cluster has size 1,

the group lasso algorithm simplifies to the basis pursuit algorithm. For applications

where the groups/ clusters themselves are sparse, Simon et al. [42] proposed the

sparse-group lasso which can be formulated as the optimization problem

α̂ = min
α

{
1

2
‖r− Sα‖2

2 + (1− η)λ
L∑
i=1

√
ρi
∥∥α(i)

∥∥
2

+ ηλ ‖α‖1

}
,

where η ∈ [0, 1]. The parameter η can be used to select between the basis pursuit on

one extreme and the group lasso on the other.

Similar enhancements have been made to other sparse recovery algorithms for

recovering block sparse signals [37,44]. However, all of these algorithms assume that

the block structure of the sparse signal is known a priori. In radar application, this

implies that the location and extent of the targets should be known beforehand.

Since this is not true, most of these existing algorithms are not valid for use in radar

applications.

Radar specific block sparse recovery algorithms have been studied by R. Bose

in [45,46]. In Sequence CLEAN [45], a tree search algorithm is presented that chooses

the m largest peaks in each iteration. The tree nodes corresponding to the minimum

energy or “mass” at the end of the algorithm then specify the target positions. An-

other variation of the CLEAN algorithm called LEAN CLEAN [46] uses post pro-

cessing after the CLEAN algorithm to “cluster” the contiguous targets. However, the

LEAN CLEAN algorithm uses some parameters that require making assumptions

about the output of the CLEAN algorithm in the first stage. In any case, the key

idea behind these algorithms is to utilize the block nature of the sparse vector α to

improve recovery performance.

In this chapter, we present a forward-backward greedy algorithm designed for

block targets. In the forward stage, the algorithm selects a target location and starts

clustering the neighboring target points. In the backward step, the algorithm goes

through the selected target locations to make sure they are all contributing towards
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reducing the energy in the residue vector r̄. The resulting algorithm will be shown to

perform well compared to the OMP algorithm in the presence of block targets.

Rest of this chapter is organized as follows: Section 6.1 formally defines extended

targets and block sparsity. The problems associated with using OMP algorithm are

discussed in Section 6.2. Section 6.3 presents the forward-backward algorithm for

block targets. Finally, Section 6.4 shows simulation results comparing the recovery

performance of OMP algorithm and forward-backward algorithm for block targets.

6.1 Extended target model and Block sparsity

The radar signal model in Chapter 1 was derived assuming point targets. As a

result, each delay-Doppler bin at the radar output was assumed to be composed of

independent targets scattered around. In a high resolution radar, however, many real

life targets are contiguous. Hence, single targets may span multiple delay-Doppler

bins. Furthermore, since these nearby delay-Doppler bins correspond to the same

target, the radar output can no longer be assumed to be composed of independent

targets in each delay-Doppler bin. In this Chapter, any target that spans multiple

delay-Doppler bins at the radar output will be called an extended target. It should be

noted that, by definition, an extended target for one radar may be a point target for

another. Therefore, it is important to know the radar resolution when talking about

an extended target.

In general, the receive signal for a range radar can be modeled as

r (t) = α (t) ∗ s (t) + w (t) ,

=

ˆ ∞
−∞

α (τ) s (t− τ) dτ + w (t) ,

where ∗ denotes continuous time convolution. For a point target environment, α (t) =∑L
i=1 αiδ (t− τi), which leads to the point target model in equation (1.18). Figure

6.1 shows simple examples of extended targets and point targets in a range radar.

In this chapter, support of the extended targets in time will be assumed to be much

smaller than the total signal duration. This assumption is necessary to ensure that
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(b) Extended targets

Figure 6.1.: Comparison of Extended target and Point targets in range. Ts denotes

sampling period.
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the discrete sampled target vector is sparse. Assuming both signal s (t) and the target

scene function α (t) are band limited in frequency domain, the sampled discrete time

received sequence can be written as [47]

r [n] = α [n] ? s [n] + w [n] ,

=
N∑
i=1

α [i] s [n− i] + w [n] , (6.2)

where ? denotes the discrete time convolution and N is the length of the sampled

sequence. It can be seen that the discrete time receive signal model in equation

(6.2) is similar to the model presented in equation 1.13 for point targets. Define

vectors r = [ r[1] r[2] . . . r[N ] ]T and w = [ w[1] w[2] . . . w[N ] ]T , (6.2) can

be written as

r =
N∑
i=1

α [i] si + w,

where

[si]n =

s [n− i− 1] , 1 ≤ i ≤ n ≤ N,

0 else

.

Define the receive signal dictionary as S = [s1, . . . , sN ], the receive signal model can

be written as

r = Sα + w, (6.3)

where α ∈ RN is the vector of target amplitudes. The vector model of the received

signal in equation (6.3) can be seen to be similar to the vector model of point targets

presented in equation (1.14). However, the two models differ in the structure of the

target vector α. For example, for the two target scenes in Figure 6.1, the sampled

target amplitude vectors are equal to

αp = [. . . , 0, 0.4, 0, 0, 0, 0.7, 0, . . . , 0, 1, 0, 0.5, 0, . . .] ,

αe = [. . . , 0, 0.1, 0.35, 0.07, 0, . . . , 0, 0.1, 0.7, 0, . . .] ,

where αp and αe represent target vectors for point target scene and extended target

scene, respectively. It can be seen that while both target vectors are sparse, the
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nonzero elements of αe tend to occur in groups or clusters. Such sparse signal vectors

where the nonzero values are clustered together are known as block sparse signals.

In a radar system, the groups or clusters in a block sparse signal represent extended

targets.

Similarly, for a range-Doppler radar, the sampled received signal in vector form

can be expressed as

r = Sα + w, (6.4)

where the target amplitude vector α and the synthesis matrix S are given as

S = [ s0,0 s0,1 . . . s0,M−1 s1,0 . . . s1,M−1 . . . sN−1,M−1 ],

α = [ α0,0 α0,1 . . . α0,M−1 α1,0 . . . α1,M−1 . . . αN−1,M−1 ], (6.5)

and

[si,k]n =

s[n− i]e
j2πkn/M , 0 ≤ i ≤ n ≤ N,

0 else

.

The receive signal model in equation (6.4) is once again similar to the receive signal

model in a point target environment (1.18). However, unlike the target amplitude

vector in a point target environment, the target amplitude vector α is block sparse

in extended target environment.

It should be mentioned here that block sparsity does not always imply that the

indices of the nonzero values in α are consecutive integers. For example, using the

notation in (6.5), an extended target in Doppler may form a target vector with nonzero

values separated by M . Hence, when talking about block sparsity of extended target

model, the term block will imply clustering in terms of radar target parameters rather

than in the target amplitude vector α.

Figures 6.2 and 6.3 show two extended targets in range and Doppler together with

the matched filter estimate. It was assumed that the radar transmit waveform in use

is the combined Barker sequence. It can be seen that the high sidelobe structure of

the transmit waveform makes target resolution difficult. The result of using OMP
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(a) Extended target scene 1.
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(b) Matched filter output for extended target 1.

Figure 6.2.: Extended target 1 and its matched filter estimate.

algorithm to recover the extended targets is shown in Figure 6.4. For both extended

targets, the sidelobe behavior can be seen to throw the OMP algorithm off track.
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(a) Extended target scene 2.
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(b) Matched filter output for extended target 2.

Figure 6.3.: Extended target 2 and its matched filter estimate.
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(a) OMP recovery of extended target scene 1.
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(b) OMP recovery of extended target 2.

Figure 6.4.: Recovery of extended target scene 1 and 2 using OMP algorithm.
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6.2 Extended targets and OMP algorithm

Considering extended targets as clusters of point targets, it is clear that correct

recovery requires a transmit waveform with an incoherent receive signal dictionary.

When this is not true, Figure 6.4 shows that the OMP algorithm is completely un-

suitable for recovering extended targets. A close inspection of the OMP output for

extended targets shows that there are three major problems with OMP which limit

its performance.

Firstly, the OMP algorithm performs poorly when the first few iterations select

the wrong target. The subsequent iterations of the OMP algorithm are then used

to mitigate the effect of earlier mistakes and, as a result, the output is no longer

sparse. This problem can be seen in the recovery of extended target 1 in Figure 6.2.

The matched filter output in this case has two peaks at (τ, ν) = (0,−15νT ) and

(τ, ν) = (0, 15νT ). Since both of these peaks do not correspond to an actual target,

the first few iterations of the OMP algorithm select wrong target locations. This can

be seen in the OMP output in Figure 6.4. The subsequent iterations of the algorithm

are then spent trying to cancel out the newly created sidelobes.

Secondly, the recovery performance of the OMP algorithm is limited by the fact

that there is no way to correct for mistakes in previous iterations. For example, con-

sider the output of OMP algorithm for the extended target 2 in Figure 6.4. Although

the first few iterations of the algorithm select correct targets, a wrong selection in

subsequent iteration again causes the algorithm to get off track.

Thirdly, due to the complex interaction between the mainlobes and sidelobes

in an extended target, the target amplitudes at the output of matched filter can

vary greatly. Consequently, even when the OMP algorithm selects a correct target

location, the maximum likelihood estimate of the amplitude may be very different

from the actual target amplitude. Suppose, for example, that the amplitude of a

target constructively interferes with the sidelobes of neighboring range-Doppler bins.

The maximum likelihood estimate of the target amplitude in this case may be much
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greater than the actual amplitude. As a result, the following iterations of the greedy

algorithm may be spent trying to compensate for excessive target cancellation. This

problem can be seen during the recovery of extended target 2.

The first problem can be mitigated in a number of different ways. One approach

to overcome this obstacle may be to use an approach similar to the SMOMP algo-

rithm together with a tree algorithm. In this Chapter, a simpler approach utilizing

the weighted volume of the neighborhood will be used. The intuition behind this

approach can be seen in Figure 6.2. While the peaks in the matched filter output do

not correspond to any target, volume is still maximum in the neighborhood of the

actual target. Hence, instead of selecting a target based on the peak of the matched

filter output alone, the selected target location is one that maximizes the weighted

volume in the neighborhood. Consider the received signal model in equation (6.4)

with amplitude vector as defined in equation (6.5). Assume that for any length MN

vector g,

g = [ g0,0 g0,1 . . . g0,M−1 g1,0 . . . g1,M−1 . . . gN−1,M−1 ],

the image matrix G can be written as

G =


g0,0 g0,1 . . . g0,M−1

g1,0 g1,1 . . . g1,M−1

...
...

...

gN−1,0 gn−1,1 . . . gN−1,M−1

 .

Denoting the image matrix of any vector g as (g)im, The selected target location θ

satisfies

θ = arg max
θ

[
W ⊗

(
SHr

)
im

]
θ
,
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where W represents the weighting matrix and ⊗ denotes 2 dimensional autocorrela-

tion. For example, one simple weighting matrix W that uses the immediate neighbors

only is given as

W =


0.2 0.5 0.2

0.5 1 0.5

0.2 0.5 0.2

 .
The simulation results presented in section (6.4) will use this weighting matrix. In

practice, the weighting matrix should be designed taking into account the types of

targets expected in the environment. Hence, if the targets are expected to be extended

in range, a higher weight should be assigned to range than Doppler.

Solution to the second problem was recently proposed by T. Zhang in [48]. The

key idea behind the proposed forward backward algorithm is that the contribution

of the wrongly selected atoms to the cost function decreases as number of iterations

increase. Thus, in every backward step, the algorithm in [48] goes through all the

selected atoms in the forward steps to make sure they are all contributing towards

minimizing some cost function. Algorithm 6.1 shows the backward step proposed

in [48]. In each iteration of the greedy algorithm, after the forward step, the backward

algorithm is called with the recovered sets in current and previous iterations Λ̂k and

Λ̂k−1 as inputs. Since the goal of the recovery algorithm is to minimize cost function

f (Λ) =
∥∥∥r − SΛS†Λr

∥∥∥2

+ λ
∥∥∥S†Λr

∥∥∥
p
,

using a sparse set Λ, the backward step searches for an element in j ∈ Λ with least

contribution towards minimizing f (·). Then, if the increase in cost function is much

less than the improvement in cost in the previous forward step, j is removed from

Λ. The intuition behind this algorithm is that if the greedy algorithm selects the

correct atoms in every iteration, the cost function should continue to decrease with

each successive iteration yielding a smaller improvement. The backward step ensures

such a progression is being made.

Finally, the third problem in recovering extended targets can be mitigated to some

extent by limiting the algorithm to one extended target until it is fully recovered.
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Algorithm 6.1 Backward step.

• Input: Λ̂k, Λ̂k−1.

• Initialize η ∈ [0, 1]

• do

– j = arg minj∈Λ̂k

{
f
(

Λ̂k/j
)}

.

– if
[
f
(

Λ̂k/j
)
− f

(
Λ̂k
)]
≤ η

[
f
(

Λ̂k−1
)
− f

(
Λ̂k
)]

∗ Λ̂k = Λ̂k/j

– else break

• while true

• return Λ̂k
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Intuitively, this is because the maximum likelihood estimate of the amplitude of

the extended target will be more accurate when the target location is completely

known. As a result, the algorithm is less likely to create large sidelobes that can

cause interference in subsequent iterations. More formally, suppose Λ is a set of

target parameters. Denote the set of contiguous neighbors of all the elements in Λ as

CΛ. Then, a suitable algorithm for extended targets would first select some target θ,

and then search for suitable targets in Cθ. In this Chapter, for any target location

θ = (τ, ν), the neighborhood will be defined as

Cθ = {(τ − 1, ν) , (τ + 1, ν) , (τ, ν − 1) , (τ, ν + 1)} .

6.3 Forward-Backward algorithm for extended targets

An algorithm incorporating all the ideas discussed in the previous section is pre-

sented as Algorithm 6.2. For rest of this Chapter, the algorithm will be referred to as

forward backward algorithm for extended targets (FBE). The algorithm uses nested

loop structure for target selection. The main loop uses the weighted volume to se-

lect the location θ̂ of an extended target. Then, the inner loop searches for suitable

target locations in the neighborhood of θ̂. The set of target locations in the current

extended target is denoted as Λg. Every time the set Λg is expanded by searching

over the neighborhood, the algorithm calls the backtracking algorithm 6.1 to correct

for any wrong selections. The search over the neighborhood continues until no more

suitable locations are found. The algorithm then moves on to the outer loop where

the location of next extended target is computed.

Although the algorithm was designed to improve the recovery performance of

extended targets, it still performs well for point targets. In particular, when the

weighting matrix is selected as [1], and using an empty set for the neighborhood,

the algorithm simplifies to the adaptive forward backward greedy algorithm proposed

in [48].
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Algorithm 6.2 Forward backward algorithm for recovery of extended targets in

received signal r.

• Initialize Λ̂ = ∅, r̄ = r, W,η, λ, γ.

• σ = maxθ
[
W ⊗

(
SHr

)
im

]
θ

• while σ > γ

– θ̂ = arg maxθ
∣∣sHθ r̄

∣∣
– Λ̂ = Λ̂ ∪ θ̂

– α̂ = arg minα ‖r− SΛ̂α‖
2

– r̄ = r− SΛ̂α̂

– Initialize Λg =
{
θ̂
}

– Repeat

∗ Find the set CΛg of neighbors of Λg.

∗ N =
{
i ∈ CΛg |

∣∣sHi r̄
∣∣ ≥ γ

}
∗ if (N = ∅), break.

∗ Λg = Λg ∪N

∗ Call backward step with Λ̂k = Λg ∪ Λ̂, Λ̂k−1 = Λ̂.

∗ Set returned set from backward step asΛ̂

∗ α̂ = arg minα ‖r− SΛ̂α‖
2

∗ r̄ = r− SΛ̂α̂

– σ = maxθ
[
W ⊗

(
SH r̄

)
im

]
θ
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Figure 6.5.: Extended target 1 recovery using FBE.

6.4 Simulation results

Figures 6.5 and 6.6 show the result of using FBE to recover extended target 1 and

2. The radar transmit waveform was assumed to be the combined Barker code. It

can be seen that the FBE seems to mitigate the three problems discussed in section

6.2 and correctly recovers the extended targets.

Figure 6.7 shows a target scene with two extended targets and two point targets.

Once again, the target scene is correctly recovered using FBE as shown in Figure 6.8.



146

τ/T

ν
 T

−1 −0.5 0 0.5 1

−25

−20

−15

−10

−5

0

5

10

15

20

25

Figure 6.6.: Extended target 2 recovery using FBE.
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Figure 6.7.: Target scene with multiple targets.
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(a) Recovery of target scene in Figure 6.7 using OMP.
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(b) Recovery of target scene in Figure 6.7 using FBE.

Figure 6.8.: Recovery of Multi-target scene in Figure 6.7.
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7. SUMMARY AND FUTURE WORK

This thesis began with the goal of achieving improved multi-target resolution in range

and delay Doppler radar. Towards this goal, Chapter 1 formulated multi-target re-

covery problem as a sparse solution to an under determined linear system. While this

model can be readily obtained for both range and pulse Doppler radar, it has only

recently been applied to radar systems [10, 49]. Additionally, mutual coherence of

the receive signal dictionary is an important parameter often used in sparse recovery

literature to analyze the recovery performance of a system. Radar engineers, on the

other hand, typically use autocorrelation and ambiguity functions to compare the

resolution of a radar system. It was shown in Chapter 1 that the two are closely

related and improving one entails improving the other.

Chapter 2 applied the likelihood ratio test to the sparse multi-target signal model

presented in Chapter 1. In particular, it was shown that the optimal detector is com-

putationally infeasible. As a result, a greedy solution was presented. Furthermore, it

was shown that the optimal detector simplifies to the matched filter only when the

received signal dictionary is orthogonal. In addition, single target detection perfor-

mance of the matched filter and the proposed greedy algorithm were shown to be

equal.

In radar literature, the ambiguity function is often used to graphically compare the

resolution of a radar in noiseless conditions. In additive noise, single target probability

of detection and false alarm are used for analyzing performance. In chapter 3, we

show that these performance metrics do not always scale naturally to a multi-target

scene. As a result, we formally define radar resolution and propose a quantitative

measure to compare it. The proposed quantitative measure was used to analyze the

resolution performance of the greedy algorithm. This allowed us to show that iterative
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greedy algorithms may work in some target environments even when the coherence

condition is not satisfied.

In chapter 4, we used the similarity between matched filters and the matching

pursuit algorithms to propose a pursuit algorithm using mismatched dictionaries.

Resolution performance was analyzed and the algorithm was found to be suitable for

non-redundant dictionaries. In particular, it was shown that combining mismatched

filters with greedy algorithms allow improved resolution without always losing de-

tection performance. An extension of the mismatched pursuit algorithm was then

proposed for redundant dictionaries which was based on adaptive signal processing.

Simulation results were presented to show the efficacy of the proposed algorithms.

In chapter 5, we presented multiple channel pursuit algorithms in radar. It was

shown that the receive signal model is similar to the sparse linear model presented

in Chapter 1 when the channels are combined linearly. As a result, the greedy target

recovery algorithm can be applied directly using a composite signal dictionary. Fur-

thermore, target recovery performance of the greedy algorithm was used to analyze

the performance of multiple transmit signals. Simulation results further confirmed

the improvement in resolution obtained using multiple channels.

Radar systems with multiple transmit waveforms using nonlinear channel com-

bining techniques have been proposed recently [22] to improve resolution. These

combining schemes suffer from ghost targets and reduced detection probability due

to loss in SNR. In Chapter 5, we showed that the nonlinear combining schemes can be

used with greedy algorithms to eliminate ghost targets. Furthermore, it was shown

that these algorithms also have a better detection performance.

While all the previous algorithms assumed point target environment, targets in

high resolution radars can often be modeled as extended targets. Chapter 6 analyzed

radar signal model for extended targets and it was shown that the target scene vector

in this case has additional structure in the form of block sparsity. A forward backward

greedy algorithm for recovering extended targets was then presented. It was shown
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using simulations that the proposed algorithm works well in target scenes comprised

of a mixture of point and extended targets.

In future, there are a number of ways the work in this thesis can be expanded on.

For example, all of the algorithms in this thesis were derived assuming narrowband

radar waveforms. When this assumption is not valid, the received signal is time

delayed, frequency shifted and time scaled version of the transmitted signal. In this

case, the receive signal dictionary needs to be expanded to take into account the time

scaling effect of Doppler on broadband signals. Similarly, the radar system in this

thesis was assumed to have one pulse in each coherent pulse interval. In practice,

radar systems typically utilize much longer coherent pulse intervals. This results in

the well known “bed of nails” ambiguity function. It would be interesting to see the

resolution performance and also to see if there is a way the range ambiguity in pulsed

systems can be avoided using greedy algorithms.

Another key assumption in this thesis was the absence of straddle losses. Recall

the receive signal model in vector form, the target delay and Doppler were assumed

to be integer multiples of sampling periods in time and frequency. In an actual radar

system, there is no way to ensure this. When this assumption is not true, there is

a loss in SNR which is known as straddle loss. While for sufficiently high sampling

period, the straddle losses may be negligible, its effect on greedy algorithms remains

a topic of interest for the future.

Another interesting problem for future is that of the MIMO waveform design. In

Chapter 5, two pairs of radar waveforms were used to simulate the performance of

MIMO radar systems. However, design of optimal set of transmit waveforms is an

important problem for future radar systems. In this direction, we believe that the

analysis of MIMO radar recovery performance may prove to be useful.

The advantage of using backward steps to correct for the greedy nature of the

recovery algorithms in this thesis was discussed in Chapter 6. Conditions under which

such an algorithm correctly recovers the targets may be another way this thesis can
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be extended. Furthermore, although the backward algorithm was only discussed for

extended targets, it may prove to be useful for recovering point target scenes also.

Finally, the ultimate goal of this thesis has always been to study the possibility

of using pursuit algorithms on real radar data. While actual data is not available at

this time, it is known that real radar data suffers from clutter which makes greedy

algorithms unsuitable. In [50], it was shown that application of clutter cancellation

before using iterative algorithms yields suitable results. For future, the possibility

of applying iterative greedy algorithms on radar data with clutter by incorporating

prior information in the signal dictionary remains another topic of research.
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A. MOYAL’S IDENTITY

Define

ψfg(τ, t) = g(t)
∗
f(t+ τ)

ψ̃fg(τ, t) =
∗
g(−t)f(τ − t)

then it can be shown that the following identity holds

(ψfg ∗ ψ̃yx)(t, τ) = (ψfy ∗ ψ̃gx)(τ, t) (A.1)

where ∗ represents one dimensional convolution with respect to the first variable.

Using Fν,t to represent Fourier transform from t domain to ν domain, we can write

the ambiguity function as

χgf (τ, ν) = Fν,tψfg(τ, t)

=

ˆ
g(t)

∗
f(t+ τ)ej2πνtdt

We also define

χgf (f, t) = Ff,τψgf (τ, t)

=

ˆ
g(τ)

∗
f(t+ τ)ej2πfτdτ

Now taking Fourier transform of equation (A.1),

Fν,t(ψfg ∗ ψ̃yx)(t, τ) = Fν,tF
−1
f,τ Ff,τ (ψfy ∗ ψ̃gx)(τ, t)

χgf
∗
χxy(τ, ν) = Fν,tF

−1
f,τ χyf

∗
χxg(f, t)

which is known as the Sussman’s identity. Moving the Fourier transforms to the left

side results in

F−1
ν,t Ff,τχgf

∗
χxy(τ, ν) = χyf

∗
χxg(f, t)ˆ ˆ

χgf
∗
χxy(τ, ν)e−j2πνtej2πfτdτdν = χyf

∗
χxg(f, t)
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In particular, for f = t = 0, χyf (0, 0) =
´
y(τ)

∗
f(τ)dτ and χxg(0, 0) =

´
x(τ)

∗
g(τ)dτ ,

so ˆ ˆ
χgf

∗
χxy(τ, ν)dτdν =

ˆ
y(τ)

∗
f(τ)dτ

ˆ
∗
x(τ)g(τ)dτ

which is the Moyal’s identity.
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B. EQUIVALENCE OF ALGORITHMS

Consider a target scene with K targets. Then, to recover the target scene correctly,

the optimal sparse problem (1.2), results in

‖r− ΦaK‖2 + λ ‖aK‖0 < ‖r− ΦaK+1‖2 + λ ‖aK+1‖0 , (B.1)

where ai = arg mina∈Vi ‖r− Φa‖2 represents target coefficient vector with i targets.

Using this in (B.1),

‖r− ΦaK‖2 − ‖r− ΦaK+1‖2 < λ,

which is equivalent to (2.9).
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C. GLRT FOR ORTHONORMAL DICTIONARY

From equation (2.11), the GLRT for multiple target environment can be written as

min
L∈ΛK

∥∥∥r− SLS
†
Lr
∥∥∥2

− min
L∈ΛK+1

∥∥∥r− SLS
†
Lr
∥∥∥2 H1

≷
H0

γ,

where r denotes received signal and S denotes the signal dictionary. Define σ =

minL∈ΛK+1

∥∥∥r− SLS
†
Lr
∥∥∥2

. Assuming all the atoms in S are orthonormal, for any

subdictionary SL, SHL SL = I and hence, SLS
†
L = SLS

H
L . The second term in (2.11)

can then be written as

σ = min
L∈ΛK+1

∥∥r− SLS
H
L r
∥∥2

= min
L∈ΛK ,θ∈Λ1/L

∥∥r− SLS
H
L r− sθs

H
θ r
∥∥2

= min
L∈ΛK ,θ∈Λ1/L

[∥∥r− SLS
H
L r
∥∥2 −

∥∥sHθ r
∥∥2
]

= min
L∈ΛK

∥∥r− SLS
H
L r
∥∥2 − max

θ∈Λ1/L̂

∥∥sHθ r
∥∥2
, (C.1)

where L̂ = arg minL∈ΛK

∥∥r− SLS
H
L r
∥∥2

. Using (C.1) in (2.11), for an orthonormal

dictionary the test can be written as

max
θ∈Λ1/L̂

∥∥sHθ r
∥∥2 H1

≷
H0

γ.
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