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ABSTRACT

Martin, Kaela M. PhD, Purdue University, May 2015. Maneuver Analysis for Spin-
ning Thrusting Spacecraft and Spinning Tethered Spacecraft. Major Professor:
James M. Longuski.

During axial thrusting of a spin-stabilized spacecraft undergoing orbital injec-

tions or control maneuvers, misalignments and center-of-mass offset create undesired

body-fixed torques. The effects of the body-fixed torques, which in turn cause ve-

locity pointing errors, can be reduced by ramping up (and then ramping down) the

thruster. The first topic discussed in this thesis derives closed-form solutions for the

angular velocity, Euler angles, inertial velocity, and inertial displacement solutions

with nonzero initial conditions. Using the closed-form solutions, the effect of vari-

ations in the spin-axis moment of inertia and spin-rate on the spacecraft velocity

pointing error are shown. The analytical solutions closely match numerical simula-

tions. The next topic considers various ramp-up profiles (including parabolic, cosine,

logarithmic, exponential, and cubic) to heuristically find a suboptimal solution to

reduce the velocity pointing error. Some of the considered cosine, logarithmic, expo-

nential, parabolic, and cubic profiles drive the velocity pointing error to nearly zero

and hence qualify as effective solutions. The third topic examines a large tethered

spacecraft that produces artificial gravity with the propulsion system on one end of

the tether. Instead of thrusting through the center of mass, the offset thrust occurs

at an angle to the tether which is held in the desired direction by changing the spin

rate to compensate for decreasing propellant mass. The dynamics and control laws

of the system are derived for constant, time-varying, planar, and non-planar thrust

as well as spin-up maneuvers. The final topic discusses how the Bödewadt solution

of a self-excited rigid body is unable to accurately predict the motion compared to a

numerical integration of the equations of motion.
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1. Introduction

1.1 Motivation

The motion of spacecraft subjected to body-fixed forces and torques was reported

by Leimanis in 1965 in his classic treatise, The General Problem of the Motion of

Coupled Rigid Bodies about a Fixed Point [1]. This seminal work provides a foun-

dation for aerospace engineers concerned with the motion of spacecraft subject to

body-fixed forces and torques. In many cases, spacecraft can be treated as spinning

symmetric or nearly-symmetric rigid bodies.

1.1.1 Spinning Thrusting Spacecraft Maneuvers

During axial thrusting of a spinning spacecraft, thrust misalignment and center-

of-mass offset create transverse body-fixed torques which perturb the angular momen-

tum vector from its desired inertial direction. The bias in the angular momentum

vector directly results in velocity pointing errors which cause the spacecraft to deviate

from its desired trajectory, requiring more propellant for the spacecraft to achieve its

mission.

Since 1965, much work has been done on a spinning rigid body including spinning

vehicles with changing mass [2–6], dual-spin spacecraft [7–13], and asymmetric [14,15]

and nearly axisymmetric [16–18] spacecraft. In many cases, spacecraft can be treated

as spinning symmetric or nearly-symmetric rigid bodies, and during axial thrusting,

misalignments and center-of-mass offset result in velocity pointing errors which cause

the spacecraft to deviate from its desired trajectory.

Analytical solutions for the spinning spacecraft have been found for the angular

velocity, attitude, and inertial velocity using various perturbation methods [15,16,19,
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20]. For more specific cases, non-perturbation methods are used to find analytical

results such as dual-spin spacecraft [10] and near-symmetric spinning rigid bodies

with a thruster that has constant torque [21–23] and time-varying torque [24, 25] as

well as bodies that are asymmetric [26]. The stability analysis for an asymmetric

spinning rigid body with a constant torque has also been analyzed [14] as well as

for dual-spin spacecraft [9]. Analytical solutions have also been found for spinning-

up maneuvers [27–31]. The inertial velocity and displacement solutions for constant

torque [32] and linear torque [33] are also known.

Historically, the velocity pointing error has been reduced by spinning at a high

rate [34]. One method to reduce the pointing error is to use a two-burn scheme

where the burn is momentarily suspended and then restarted to reduce the pointing

error [35, 36]. It has also been shown that if the axial thrust is a linear function of

time beginning at zero and ramping up to maximum thrust, the velocity pointing

error could be significantly decreased with respect to the usual case where the thrust

can be modeled as a step function since the average angular momentum vector for

the linear ramp now remains pointing in the desired direction [37]. Extending work

by Javorsek and Longuski [37], analytical expressions for the inertial velocity with

linear torques and nonzero initial conditions are derived which in turn are used to

predict the velocity pointing error.

While a linear thrust profile can reduce velocity pointing errors, it is unclear what

is the best scheme to ramp-up the thruster to minimize pointing error. Finding the

optimal solution for the thrust history (i.e. the control) to minimize the velocity

pointing error is difficult to solve using indirect methods since the solution involves

nine nonlinear differential equations and the ending velocity pointing error tends to

oscillate at a high frequency typically 1 rev/s with respect to the ramp-up time.

Instead, a heuristic approach is taken to find suboptimal ramp-up profiles.



3

1.1.2 Spinning Tethered Spacecraft Maneuvers

It is well known that artificial gravity may be needed for long-duration interplan-

etary missions to prevent bone and muscle loss [38–41]. Hours of daily exercise is

not enough to counteract these losses [42, 43]. A short-arm centrifuge could be in-

cluded in the cabin crew instead of rotating the entire vehicle [44–46], but unless very

high spin rates are used (causing motion sickness), it is unlikely that this centrifuge

would improve bone structural integrity [42,47,48]. Furthermore since the entire crew

cabin would not have artificial gravity, the habitat design is unable to exploit gravity

benefits, and the centrifuge would require additional spacecraft mass. Other design

approaches to produce gravity include a small tether attached to the spacecraft, but

these short tethers can only produce small levels of gravity (on the order of 10−2

g) [49–51].

A large toroidal spacecraft such as the one in Stanley Kubrick’s 2001: A Space

Odyssey could produce enough artificial gravity, but the required radius of the toroidal

to produce artificial gravity at a reasonable spin rate is very large resulting in an

unreasonable launch mass. To reduce mass, a tethered spacecraft can be used where

the human habitation module is connected by a tether to the propellant tanks or

alternatively the habitation module and the thrusters are connected by a tether to

a counterweight (empty third stage, nuclear power plant, fouod supplies, etc.). The

relatively low-mass tether is the only additional required mass for artificial gravity.

Compared to other current technologies, these tether-based missions are “attractive”

for Mars missions [52]. For a comprehensive review of space tethers, see Cartmell and

McKenzie [53], Misra and Modi [54], and Cosmo and Lorenzini [55].

For a tethered spacecraft to thrust through the center of mass, the spacecraft can

either spin down and reel in the tether during maneuvers or adjust the tether length

to burn through the changing center of mass [41, 56–59]. The first scenario requires

additional mass to despin the spacecraft (and lose artificial gravity), and the second

scenario requires a more complex spacecraft.
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The spacecraft could have artificial gravity for the entire mission with a fixed

tether configuration if the thrust is on one end of the tether similar to the Galileo

spacecraft which had control thrusters on two booms two meters away from the

main spacecraft [60]. The thrusters on Galileo could be used in either continuous

or pulsed mode [13], and performed maneuvers include spacecraft turns [60, 61], ∆V

maneuvers [60], and spin-change maneuvers [35, 62, 63]. With inspiration from the

Galileo spacecraft, the tethered spacecraft with artificial gravity will consider ∆V

and spin-change maneuvers. During maneuvers, the spacecraft orientation is fixed

relative to the spin axis by adjusting the thrust level or slightly rolling the thrust

along the tether axis, allowing the entire burn to be in the desired direction.

Although artificial gravity is considered to be an important capability to serve

human missions to Mars, no papers known to the author have appeared in the liter-

ature that address how maneuvers will be performed on a spinning tethered human

spacecraft.

1.2 Overview

The four topics of this thesis are contained in the next four chapters. Chapter 2

covers an analytical solution for the inertial velocity and displacements of a spacecraft

with a linear ramp-up thrust profile with non-zero initial conditions. Chapter 3

discusses other heuristic thrust profiles which reduce the velocity pointing error even

further. Some of these profiles (exponential, logarithmic, parabolic, cubic, and cosine)

can be considered effective solutions. Chapter 4 examines the dynamics of a tethered

spacecraft which can produce artificial gravity by spinning and thrusting at an angle

to the tether. This chapter is an expansion of work done by Landau [64]. Chapter

5 briefly examines the effectiveness of the Bödewadt solution for self-excited rigid

bodies. The final chapter summarizes the conclusions and suggests opportunities for

future work.
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2. Analytical Solution for Spinning Thrusting Spacecraft

with Transverse Ramp-Up Torques

2.1 Background

A misaligned and constant thruster can cause unwanted body-fixed constant

torques forcing the spacecraft to deviate from its desired direction consequently re-

quiring more propellant for the spacecraft to achieve its mission. Analytical results for

the attitude have been found for near-symmetric spinning rigid bodies with a thruster

that has constant torque [21–23] and time-varying torque [22,24,25] as well as bodies

that are asymmetric [26]. The inertial velocity and displacement solutions for con-

stant torque are known [32] but have only recently been reported for time-varying

torque by Ayoubi, Martin, and Longuski [33].

Analytical solutions give insight into the behavior of the motion by providing

explicit expressions for periodic motion, secular effects, and asymptotic limits. Iden-

tifying periodic and secular terms or determining the asymptotic limits arising from a

complete but complicated analytical theory can lead to simple closed-form practical

solutions. Moreover, the geometrically limiting cases such as a sphere, a thin rod, and

a flat disk usually reduce significantly the number of terms in the full-blown theory.

Such simplified expressions can give the practical engineer a way to understand the

essential motion–a back-of-the envelope calculation.

In an axial-thrusting spacecraft maneuver, the velocity pointing error has histori-

cally been reduced by spinning at a high rate [34]. One method to reduce the pointing

error is by gradually ramping up the axial thrust from zero to its maximum value [37].

While Javorsek and Longuski [37] discuss some analytical results, they did not derive

the analytical expressions for the inertial velocity with linear torques and nonzero

initial conditions.
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This chapter extends previous works [14, 24, 25] in finding closed-form solutions

for rotational and translational motion of a spinning spacecraft during thrusting ma-

neuver and when the spacecraft is subjected to ramp-up(down) body-fixed forces and

moments. Moreover, it extends the work by Javorsek and Longuski [37] for predict-

ing the velocity pointing error of a thrusting, spinning spacecraft with constant mass

properties and ramp-up(down) forcing condition. The angular velocity solution for

this case can be found in Ayoubi, Landau, and Longuski [65], but the remaining

solutions are presented here as well as in Ayoubi, Martin, and Longuski [33].

2.2 Governing Equations

Consider a spinning rigid body with constant mass properties as depicted in

Fig. 2.1. The spacecraft has undesired transverse torques of Mx and My, no ax-

ial torque, a thruster offset of d, and a thruster misalignment of α. Assume the

body-fixed reference frame, B, has its origin located at the center of mass and aligned

with the principal axes of the rigid body. Capital letters signify the vector in the iner-

tial reference frames, I and R, and lower case letters signify vectors in the body-fixed

frame, B. The inertial R-frame is an intermediate inertial frame that is rotated from

the inertial I-frame by a set of initial Euler angles. The rotated frame simplifies the

velocity and displacement solutions when using a nonzero set of initial Euler angles.

It should be noted that the velocities and displacements in this chapter are the

changes in velocity and displacement and are normally preceded by a ∆. However,

for more efficient notation, the ∆ is left out.

The angular velocity of a spacecraft is described by Euler’s equations of motion [66]

and can be written as

ω̇x(t) = Mx/Ix − [(Iz − Iy)/Ix]ωyωz
ω̇y(t) = My/Iy − [(Ix − Iz)/Iy]ωzωx
ω̇z(t) = − [(Iy − Ix)/Iz]ωxωy

(2.1)



7

YR ROC C

ZR

XR

Figure 2.1. Model for thrusting, spinning spacecraft.

where it is assumed that there is no axial torque (i.e. Mz = 0) and that Iz is either

the minimum or maximum moment of inertia (i.e. the spacecraft is spinning about a

stable axis). Since the engine ramp-up time is presumed to be short compared to the

entire burn, the principal moments of inertia are assumed to be constant.

It can be shown that for an axisymmetric, nearly-axisymmetric, and for an asym-

metric rigid body when [(Iy − Ix)/Iz]ωxωy is small, Euler’s equations of motion can

be written as

ω̇x(t) = Mx/Ix − [(Iz − Iy)/Ix]ωyωz (2.2)

ω̇y(t) = My/Iy − [(Ix − Iz)/Iy]ωzωx (2.3)

ω̇z(t) ≈ 0 (2.4)

As a practical example, in the case of the Galileo spacecraft, the assumption that

the spin rate was constant during axial thrusting was reasonable for Galileo’s ma-

neuver analysis even though Ix was not equal to Iy (i.e. the spacecraft was nearly

axisymmetric) [60].
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The kinematic equations describe the orientation of a rigid body with respect to

the inertial reference frame. For this analysis, a Type-I, Euler sequence 3-1-2 (φz, φx,

φy) given by Wertz [67] is used.

φ̇x = ωx cosφy + ωz sinφy (2.5)

φ̇y = ωy − (ωz cosφy − ωx sinφy) tanφx (2.6)

φ̇z = (ωz cosφy − ωx sinφy) secφx (2.7)

For spin-stabilized spacecraft, assume that φx, φy, and the product φyωx are small.

Thus, the kinematic equations can be simplified as

φ̇x = ωx + φyωz (2.8)

φ̇y = ωy − φxωz (2.9)

φ̇z = ωz (2.10)

When integrating Eqs. (2.8)–(2.10), initial Euler anglers appear as integration

constants. By using the intermediate R-frame (essentially setting these constants

to zero), lengthier velocity and displacement solutions are avoided. The R-frame is

always chosen such that it is initially coincident with the B-frame (i.e. having zero

initial Euler angles). Say the spacecraft is undergoing a ramp-up and a ramp-down

maneuver. If the I-frame is chosen to be initially coincident with the B-frame, there

are no initial Euler angles for the ramp-up maneuver. However for the ramp-down

maneuver, the B-frame is no longer coincident with the I-frame. To simplify the

analytical equations, a new R-frame is described which is coincident with the B-

frame at the beginning of the ramp-down maneuver. Thus the initial Euler angles for

the ramp-down maneuver describe how the I-frame is rotated initially with respect to

the B-frame or, equivalently, how the I-frame is rotated with respect to the R-frame.
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By assuming that the initial velocity constants, VX0, VY 0, and VZ0, and the ini-

tial displacement constants, dX0, dY 0, and dZ0, are in the I-frame, the velocity and

displacement solutions in the I-frame are
VX

VY

VZ

 = IRR
312


VXR

VY R

VZR

+


VX0

VY 0

VZ0

 (2.11)


dX

dY

dZ

 = IRR
312


dXR

dY R

dZR

+


VX0

VY 0

VZ0

 t+


dX0

dY 0

dZ0

 (2.12)

where the Type-I (3-1-2) direction cosine matrix [67], IRR
312, is

IRR
312 =


cφy0cφz0 − sφx0sφy0sφz0 −cφx0sφz0 sφy0cφz0 + sφx0cφy0sφz0

cφy0sφz0 + sφx0sφy0cφz0 cφx0cφz0 sφy0sφz0 − sφx0cφy0cφz0
−cφx0sφy0 sφx0 cφx0cφy0

 (2.13)

where c and s are abbreviations for cosine and sine functions, respectively. With the

assumption that φx and φy are small, the direction cosine matrix which has the same

form as Eq. (2.13) can be simplified as

RRB
312 ≈


cφz −sφz φycφz + φxsφz

sφz cφz φysφz − φxcφz
−φy φx 1

 (2.14)

Therfore, the R-frame velocities can be solved by integrating
V̇XR

V̇Y R

V̇ZR

 = RRB
312


fx/m

fy/m

fz/m

 (2.15)

2.3 Analytical Solution

In this section, analytical solutions are presented for the angular velocity, Euler

angles, inertial velocity and displacement, and velocity pointing error solutions when
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the spacecraft is subjected to ramp-up transverse forces and consequently ramp-up

moments.

2.3.1 The Angular Velocity Solution

For a linear ramp-up profile, the linear forces are defined as

fx(t) = f0x + f1xt

fy(t) = f0y + f1yt

fz(t) = f0z + f1zt

(2.16)

The torques, which are caused by forces, are

Mx(t) = c0x + c1xt

My(t) = c0y + c1yt

Mz = 0

(2.17)

where the constants in Eqs. (2.16) and (2.17) are left in general form. The specific

values depend on the force profile as given in the numerical analysis, section 2.4.

Equation (2.4) can be integrated as

ωz(t) ≈ ωz0, ωz0 = ωz(0) (2.18)

Now let ωx(0) = ωx0 and ωy(0) = ωy0. Integrating the remaining angular velocity

equations yields [24]

ωx(t) =
c1x

k2Ixω2
z0

− c0y + c1yt

kyIyωz0
+

(
ωx0 −

c1x
k2Ixω2

z0

+
c0y

kyIyωz0

)
cos (kωz0t)

−
(
ωy0

kx
k
− c1y
kkyIyω2

z0

− c0x
kIxωz0

)
sin (kωz0t)

(2.19)

ωy(t) =
c1y

k2Iyω2
z0

+
c0x + c1xt

kxIxωz0
+

(
ωy0 −

c1y
k2Iyω2

z0

− c0x
kxIxωz0

)
cos (kωz0t)

+

(
ωx0

ky
k
− c1x
kkxIxω2

z0

+
c0y

kIyωz0

)
sin (kωz0t)

(2.20)

where the parameters kx, ky, and kz are defined as

kx , (Iz − Iy)/Ix, ky , (Iz − Ix)/Iy, k ,
√
kxky (2.21)
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2.3.2 The Euler Angle Solution

To solve Eqs. (2.8) and (2.9), substitute the angular velocities found in Eqs. (2.18)

– (2.20).

φx(t) =
c0x + c1xt

Izω2
z0

+
Iyωy(t)

Izωz0
− c1y
Izω3

z0

−
(

c1x
Izω3

z0

+
c0y
Izω2

z0

− Ixωx0
Izωz0

− φy0
)

sin (ωz0t)

+

(
c1y
Izω3

z0

− c0x
Izω2

z0

− Iyωy0
Izωz0

+ φx0

)
cos (ωz0t)

(2.22)

φy(t) =
c0y + c1yt

Izω2
z0

− Ixωx(t)

Izωz0
+

c1x
Izω3

z0

−
(

c1x
Izω3

z0

+
c0y
Izω2

z0

− Ixωx0
Izωz0

− φy0
)

cos (ωz0t)

−
(

c1y
Izω3

z0

− c0x
Izω2

z0

− Iyωy0
Izωz0

+ φx0

)
sin (ωz0t)

(2.23)

φz(t) = ωz0t+ φz0 (2.24)

Note that φx0, φy0, and φz0 are the initial Euler angles which describe how the rotated

inertial R-frame is related to the original inertial I-frame.

The secular terms of Eqs. (2.22) and (2.23) are found by substituting Eq. (2.20)

into Eq. (2.22) and Eq. (2.19) into Eq. (2.23). After simplifing, the secular term in

φx is c1xt/ [ω2
z0 (Iz − Iy)] and in φy is c1yt/ [ω2

z0 (Iz − Ix)].

2.3.3 The Inertial Velocity and Displacement Solution

The desired inertial velocity and displacement solutions are in the original inertial

I-frame. In Eqs. (2.11) and (2.12), the I-frame solutions are found by rotating the

R-frame solutions using a rotation matrix which considerably lengthens the resulting

velocity and displacement solutions. Instead, the solutions are reported in the inter-

mediate R-frame which is defined to be coincident with the body-fixed B-frame at

the beginning of each maneuver.

An alternative approach to obtain the velocity equations is to substitute Eqs.

(2.22) – (2.24), including the initial Euler angles, into Eq. (2.15). After integrating,
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the solution will be in the I-frame not the R-frame. With the addition of the nonzero

Euler angles, the solutions become longer and more complicated than velocity solu-

tions found in the R-frame. Furthermore, the matrix in Eq. (2.15) assumes that φx

and φy, which would now include the initial Euler angles, are small. In the R-frame

calculation presented in section II, the rotation matrix in Eq. (2.13) does not have

small angle assumptions, so the calculation in section II is more accurate than this

alternative method.

Now returning to the R-frame, the velocity solutions in the R-frame found by

solving Eq. (2.15) are

VXR =A0 + Att+ Attt
2 +

(
Ac0 + Actt+ Acttt

2
)

cosωz0t

+ (Acc + Acctt) cos kωz0t cosωz0t+ (Acs + Acstt) sin kωz0t cosωz0t

+
(
As0 + Astt+ Asttt

2
)

sinωz0t+ (Asc + Asctt) cos kωz0t sinωz0t

+ (Ass + Asstt) sin kωz0t sinωz0t

(2.25)

VY R =B0 +Btt+Bttt
2 +

(
Bc0 +Bctt+Bcttt

2
)

cosωz0t

+ (Bcc +Bcctt) cos kωz0t cosωz0t+ (Bcs +Bcstt) sin kωz0t cosωz0t

+
(
Bs0 +Bstt+Bsttt

2
)

sinωz0t+ (Bsc +Bsctt) cos kωz0t sinωz0t

+ (Bss +Bsstt) sin kωz0t sinωz0t

(2.26)

VZR =C0 + Ctt+ Cttt
2 + Ctttt

3 + (Cc + Cctt) cosωz0t

+ (Cck + Ccktt) cos kωz0t+ (Cs + Cstt) sinωz0t

+ (Csk + Csktt) sin kωz0t

(2.27)

where the A, B, and C coefficients are constants that are functions of the moments

of inertia, ωz0, and the coefficients from the torques and forces. The A, B, and C

coefficients can be found in the Appendix. The subscripts s, c, and t are abbreviations

for the coefficient multiplied by sine, cosine, and time respectively. In Eqs. (2.25) and

(2.26), the second s and c subscript correspond to multiplying the coefficient by an

additional sine or cosine term with a frequency of kωz0. In Eq. (2.27), the subscript k

represents that the frequency of the sinusoidal multiplier is kωz0. In particular, take
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note of the secular terms (which are annotated with t subscripts) as these terms grow

without bound in time.

Simply integrating the inertial velocity solution in Eqs. (2.25) – (2.27) yields the

R-frame displacement found in Eq. (2.12). The constant coefficients are the same for

both the displacement and velocity solutions.

dXR =A0t+
Att

2

2
+
Attt

3

3
+
Acsk − Asc
(k2 − 1)ωz0

− 2Astt + Actωz0 − As0ω2
z0

ω3
z0

− Acct (k2 + 1) + 2Asstk

(k2 − 1)2 ω2
z0

+

(
−Asttt

2 + Astt+ As0
ωz0

+
2Acttt+ Act

ω2
z0

+
2Astt
ω3
z0

)
cosωz0t

+
Asc + Asctt− Acsk − Acstkt

(k2 − 1)ωz0
cos kωz0t cosωz0t

+
Acct (k2 + 1) + 2Asstk

(k2 − 1)2 ω2
z0

cos kωz0t cosωz0t

+
Ass + Asstt+ Acck + Acctkt

(k2 − 1)ωz0
sin kωz0t cosωz0t

+
Acst (k2 + 1)− 2Asctk

(k2 − 1)2 ω2
z0

sin kωz0t cosωz0t

+

(
Acttt

2 + Actt+ Ac0
ωz0

+
2Asttt+ Ast

ω2
z0

− 2Actt
ω3
z0

)
sinωz0t

− Acc + Acctt+ Assk + Asstkt

(k2 − 1)ωz0
cos kωz0t sinωz0t

+
Asctt (k2 + 1)− 2Acstk

(k2 − 1)2 ω2
z0

cos kωz0t sinωz0t

+
−Acs − Acstt+ Asck + Asctkt

(k2 − 1)ωz0
sin kωz0t sinωz0t

+
Asst (k2 + 1) + 2Acctk

(k2 − 1)2 ω2
z0

sin kωz0t sinωz0t

(2.28)
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dY R =B0t+
Btt

2

2
+
Bttt

3

3
+
Bcsk −Bsc

(k2 − 1)ωz0

− 2Bstt +Bctωz0 −Bs0ω
2
z0

ω3
z0

− Bcct (k2 + 1) + 2Bsstk

(k2 − 1)2 ω2
z0

+

(
−Bsttt

2 +Bstt+Bs0

ωz0
+

2Bcttt+Bct

ω2
z0

+
2Bstt

ω3
z0

)
cosωz0t

+
Bsc +Bsctt−Bcsk −Bcstkt

(k2 − 1)ωz0
cos kωz0t cosωz0t

+
Bcct (k2 + 1) + 2Bsstk

(k2 − 1)2 ω2
z0

cos kωz0t cosωz0t

+
Bss +Bsstt+Bcck +Bcctkt

(k2 − 1)ωz0
sin kωz0t cosωz0t

+
Bcst (k2 + 1)− 2Bsctk

(k2 − 1)2 ω2
z0

sin kωz0t cosωz0t

+

(
Bcttt

2 +Bctt+Bc0

ωz0
+

2Bsttt+Bst

ω2
z0

− 2Bctt

ω3
z0

)
sinωz0t

− Bcc +Bcctt+Bssk +Bsstkt

(k2 − 1)ωz0
cos kωz0t sinωz0t

+
Bsctt (k2 + 1)− 2Bcstk

(k2 − 1)2 ω2
z0

cos kωz0t sinωz0t

+
−Bcs −Bcstt+Bsck +Bsctkt

(k2 − 1)ωz0
sin kωz0t sinωz0t

+
Bsst (k2 + 1) + 2Bcctk

(k2 − 1)2 ω2
z0

sin kωz0t sinωz0t

(2.29)

dZR =C0t+
Ctt

2

2
+
Cttt

3

3
+
Ctttt

4

4
− Cctk

2 + Cckt
k2ωz0

+
Csk + Csk

kωz0

+
Cct − (Cs + Cstt)ωz0

ω2
z0

cosωz0t+
Cckt − k (Csk + Csktt)ωz0

k2ω2
z0

cos kωz0t

+
Cst + (Cc + Cctt)ωz0

ω2
z0

sinωz0t+
Cskt + k (Cck + Ccktt)ωz0

k2ω2
z0

sin kωz0t

(2.30)

Note that Eqs. (2.28) and (2.29) have the same form but different coefficients.

2.3.4 The Velocity Pointing Error Definition and Solution

The velocity pointing error, ρ, shown in Fig. 2.2 is defined as the angle between

the desired velocity direction (i.e. along the Z-axis) and the final velocity direction,

V(tf ).
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Before thrusting occurs, it is assumed that the body-fixed z-axis is aligned with

the inertial Z-axis. During the engine burn, the velocity pointing error is caused by

undesired transverse torques and follows the average direction of the inertial angular

momentum vector, Havg, over the burn. Fig. 2.2(a) shows the velocity pointing error

due to constant torque; Fig. 2.2(b) shows how the velocity pointing error can be sig-

nificantly reduced due to linear torque (ramp-up scheme). This behavior is discussed

by Javorsek and Longuski [37].

X

Y

Z

O

Havg

H(t)

V

ρ0

(a) Constant torque

X

Y

Z

O

H(t)

V

Havg

ρ0≈0

x

(b) Linear torque

Figure 2.2. Velocity pointing error for two thrust profiles.

The velocity pointing error is defined as [37]

ρ ≡
√
ρ2X + ρ2Y (2.31)

where ρX and ρY are the velocity pointing error angles defined as

tan ρX ≡ VX/VZ

tan ρY ≡ VY /VZ

(2.32)
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Since the velocity pointing error is small (� 1 rad), the velocity pointing error angles

can be simplified to

ρX ≈ VX/VZ

ρY ≈ VY /VZ

(2.33)

2.3.5 Simplified Form of Velocity Pointing Error

The closed-form solution of the velocity pointing error has many terms when the

forces and torques occur in all three directions. To simplify the velocity pointing error

equations, assume the initial conditions are all zero, consider only the higher order

terms (Att, Btt, Ctt, and Cttt) in Eqs. (2.25)–(2.27), and let

Mx(t) = c1xt

fz(t) = f1zt

My = fy = fx = 0

(2.34)

Then the velocity pointing error equations are

VX
VZ

= −c1x (Ixkx + 2Iz cosωz0t)

IzIxkxω3
z0

(2.35)

VY
VZ

= − 2c1x
Ixkxω3

z0

sinωz0t (2.36)

A more accurate (albeit more complicated) form for the velocity pointing error that

includes ωx0, ωy0, and f1y can be found in the numerical analysis section.

Equations (2.35) and (2.36) represent a circle with a radius of 2c1x/(Ixkxω
3
z0) and

a center that is located −c1x/(Izω3
z0) away from the y-axis as shown qualitatively

in Fig. 2.2(a). It is interesting to note that Eqs. (2.35) and (2.36) can be used to

predict the behavior of the trapezoidal scheme of Javorsek and Longuski [37] which

has three phases: ramp-up, thrusting at Fmax, and ramp-down. In their scheme, the

final velocity pointing error is in agreement to that given by Eqs. (2.35) and (2.36).
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2.4 Simulation and Numerical Analysis

MATHEMATICA R© and MATLAB R© are used to verify the analytical solutions,

i.e. Eqs. (2.18) – (2.20), (2.22) – (2.24), (2.11), and (2.12). The simulation uses a built

in MATLAB R© integrator, ode45, which is based on the Dormand Prince method, an

explicit Runge-Kutta formula, to solve for the differential equations numerically. The

variable step size integral uses tight relative and absolute error tolerances (on the

order of 10−13) and normal control.

To test the accuracy of the theory for the ramp-up maneuver, the mass properties

and initial conditions are modeled on the insertion of the Ulysses spacecraft into an

interplanetary trajectory to Jupiter. The Ulysses spacecraft was launched in 1990

from the Space Shuttle and used a Payload Assist Model (PAM) for insertion. The

PAM has a total burn time of around 85 seconds with a maximum thrust, Fmax, of

76,100 N and a total impulse, I, of 5.67× 106 N·s.† The ramp time which minimizes

the velocity pointing error is given by [37]

tr = tb − I/Fmax ≈ 10.6 s (2.37)

Javorsek and Longuski [37] used a tr of 10.3 seconds, but the small difference is

negligible to the results which follow.

For the present purpose, a fictitious thrust profile is used. The Ulysses PAM mod-

eled here is a solid rocket motor, and while nontrivial, the propellant grain geometry

or the choice of fuel and oxidizers in a solid rocket can be changed to model the

fictitious thrust profile presented in this chapter. Furthermore, a liquid rocket engine

that can be throttled is also an option to achieve the linear ramp-up profile [68].

The approximate mass, moments of inertia, and initial spin rates of the Ulysses

spacecraft and attached PAM are [37]

m = 2500 kg, Ix = Iy = 858 kg ·m2, Iz = 401 kg ·m2 (2.38)

ωz(0) = 70 rpm, ωx(0) = ωy(0) = φx(0) = φy(0) = φz(0) = 0 (2.39)

†ATK Products Catalog, www.atk.com/capabilities space/documents/atk catalog may 2008.pdf
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Figure 2.3. Model of Ulysses spacecraft with attached PAM [37].

The Ulysses spacecraft is modeled as shown in Fig. 2.3 with a thruster offset, d, and a

thruster misalignment, α. The distance from the nozzle throat to the center of mass

(assumed to be constant) is h. The values used in this simulation are

d = 0.02 m, α = 0.25 deg, h = 0.8 m (2.40)

In the example of the Ulysses spacecraft, all the initial conditions for angular

velocity, Euler angles, velocity, and displacement except for ωz0 are set to zero. The

case discussed by Javorsek and Longuski [37] which involves a ramp-up to maximum

thrust, followed by an interval of maximum thrust, and completed by a ramp-down

to zero thrust, serves to highlight the generality of the analytical solution. In this

example, however, the constant burn phase is eliminated because no solution currently

exists for the constant torque and variable mass case, so a triangular thrust profile

is used. It is assumed that in the ramp-up phase, all the initial conditions except for

ωz0 are set to zero, but at the end of the ramp-up phase, the values of ωxf , ωyf , φxf ,
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φyf , φzf , VXf , VY f , VZf , dXf , dY f , and dZf are nonzero. These final conditions at

the end of the ramp-up become the initial conditions for the ramp-down phase. This

example, provides a stringent test of the nonzero initial condition analytical solution.

In the triangular thrust profile that is used, the thrust linearly increases to its

maximum value in the ramp time, tr, and then linearly decreases from its maximum

value to zero in the same amount of time. The total burn time is twice the ramp time

or 21.2 seconds. For this simulation, the force profile is

F (t) =


(Fmax/tr) t; t < tr

Fmax − (Fmax/tr) t; tr ≤ t ≤ 2tr

0 otherwise

(2.41)

As noted earlier, two different inertial reference frames are used in the analytical

solution. Because the initial Euler angles for the ramp-up phase are zero, the two

reference frames, I and R, are the same in this phase. The ramp-down analytical

solutions are first found in the R-frame by Eqs. (2.25) – (2.30) assuming zero initial

Euler angles, velocity, and displacement. The solutions are rotated into the original

inertial reference frame. Then the nonzero initial velocity and displacement values

are added as given in Eqs. (2.11) – (2.12).

Because the thruster offset, d, and the misalignment angle, α, are in the body-fixed

y-z plane, the only torque the thruster produces is Mx where

Mx(t) = F (t)(h sinα + d cosα), My = Mz = 0 (2.42)

For the simulation, the term “exact” is used to represent the results of a highly

precise numerical integration of Eqs. (2.1), (2.5) – (2.7), and (2.15). The analytical

solution is found using Eqs. (2.19), (2.20), (2.22), (2.23), and (2.11) – (2.12).

Figure 2.4 and Fig. 2.5 present the angular velocities and the Euler angles respec-

tively. The analytical and exact solutions are indistinguishable for the entire burn

for both the angular velocities and the Euler angles. All of the solutions dramatically

change at 10.6 seconds when the ramp-down phase begins.
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(a) ωx(t) (b) ωy(t)

Figure 2.4. Angular velocities for exact and analytical cases.

(a) φx(t) (b) φy(t)

Figure 2.5. Euler angles for exact and analytical cases.

The ωx solution originally oscillates around an average value of 0.013 rad/s with

an amplitude of 0.013 rad/s, but during the ramp-down phase, the solution oscillates

around -0.013 rad/s with an amplitude of 0.037 rad/s. The amplitude increase is due

to the second set of initial conditions (i.e. ωx0 and ωy0) positively contributing to the

coefficients in front of periodic terms in Eq. (2.19). The period of the oscillations

are unchanged since ωz0 is constant. The ωy solution linearly decreases to -0.55 rad/s
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and then linearly increases to 0.024 rad/s due to c1x changing signs. The ωy solution

is not symmetric because of the ramp-down phase’s nonzero initial conditions.

The Euler angles appear to have the opposite behavior. The φx solution decreases

linearly to -4.5 deg and then increases to 0.5 deg while φy oscillates from -0.4 to 0.1

deg and then from -0.6 to 0.9 deg. Once again, the sudden change in the solutions

occurs at the beginning of the ramp-down phase with the addition of nonzero initial

conditions. As a rule of thumb, the Euler angles must be less than approximately

15 deg for the exact and analytical solutions to closely match. The oscillations in

Fig. 2.4 exhibit simple harmonic motion while the oscillations in Fig. 2.5 are more

complicated because the Euler angle solutions include additional circular terms with

a frequency of kωz0.

The velocity solutions plotted in Fig. 2.6 are indistinguishable until the end of

the ramp-up phase when the analytical solution begins to diverge slightly from the

exact solution; the same is true of the exact and analytical velocity pointing error in

Fig. 2.7. The errors in the solution are relatively small and caused by compounding

errors from the angular velocities and Euler angles.

Figure 2.6. Exact and analytical VX and VY solutions.
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Figure 2.7. Exact and analytical velocity pointing errors.

Figure 2.8. Velocity pointing errors using Eq. (2.43) for varying Iz and ωz0.

The ramp-up phase in Fig. 2.6 begins at the origin and then spirals out into larger

circles. The ramp-down phase involves the off-center circles which have decreasing

radii. In Fig. 2.7, the pointing error begins away from the origin and then forms a

circular solution. During the ramp-down phase, the solution spirals asymptotically

to a point.
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The velocity pointing error is found by dividing the transverse velocity components

in Fig. 2.6 by the axial velocity. Ending at 320 m/s, the axial velocity is significantly

larger than the transverse velocities. The average velocity pointing error for the

ramp-up phase is determined by substituting values into Eqs. (2.35) and (2.36) which

results in a circle with radius of 1.9 mrad and a center at (-1.1, 0) mrad. When fitting

a circle to the ramp-up phase’s last few tenths of a second, the numerical results

compares favorably to the simplified analytical results. The simplified analytical

equations assume zero initial conditions, so they cannot predict the pointing error

for the ramp-down case. With the introduction of nonzero initial Euler angles, the

pointing error for the ramp-down case contains circular terms in both the numerator

and denominator and is no longer simple. By the end of the ramp-down phase, the

pointing error asymptotically approaches a point at around (-1, 1) mrad.

Using Eqs. (2.35) and (2.36), the average pointing error can be estimated as

ρavg = − c1x
Izω3

z0

(2.43)

Changing c1x results in a linear change in the pointing error, but the other two

variables have an inverse relationship. To see how Iz and ωz0 change the pointing error,

consider Fig. 2.8. Clearly, as the spin rate increases, the pointing error decreases.

Also as Iz increases or the spacecraft becomes more disk-like, the pointing error also

decreases. Figure 2.8 is useful to find spacecraft parameters based on desired spin

rates or pointing error. For example, if the spacecraft is to be spun at 20 rpm and

have a pointing error of less than 2 mrad, Iz would have to be greater than 1200

kg·m2. Alternatively, one could choose an acceptable pointing error for a specific

value of Iz and find the resulting initial spin rate.

At an intermediate step in the process of deriving Eqs. (2.35) and (2.36), the

velocity pointing error is as follows

VX
VZ

= −3f1z (c1x − Ixω2
z0ωx0) Ixkx + 6f1zIz cosωz0t

ωz0Iz (3f1zIxkxω2
z0 + 2f1yc1xt)

(2.44)

VY
VZ

=
3f1zω

2
z0ωy0IyIxkx − 6f1zc1xIz sinωz0t

ωz0Iz (3f1zIxkxω2
z0 + 2f1yc1xt)

(2.45)
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where f1y, ωx0, and ωy0 are no longer zero. At first glance, the time term in the

denominator suggests that the pointing error goes to zero as time goes to infinity.

However, the ramp-up time is finite, and f1y produces an insignificant effect in prac-

tice, 0.2 µrad, over the ramp-up time for this Ulysses example. The nonzero angular

velocities are included to demonstrate that it is much easier to include them than

nonzero Euler angles. By increasing α; f1z, f1y, and c1x change so that the numerator

increases faster than the denominator for a given (fixed) ramp-up time.

Figure 2.9. Velocity pointing errors for constant torque and ramp scheme.

To show how effective the ramp-up scenario is to reducing the pointing error,

the same simulation was run with a constant thrust profile as shown in Fig. 2.9.

The constant thrust profile has the same total impulse as the previous scheme with

a constant thrust of Fmax/2. The constant force has an average velocity pointing

error of around 41 mrad which is more than twenty times larger than the pointing

error of the ramp-up maneuver (followed by the ramp-down) of around 2 mrad. The

average velocity pointing error for the constant torque was determined by running
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the simulation until it converged on a point. Incidentally, a simplified analytical

expression for the velocity pointing error is [35]

ρX = −My/(Izω
2
z0)

ρY = Mx/(Izω
2
z0)

(2.46)

For this example, the average pointing error from Eq. (2.46) is 41 mrad and within

2.5% of the actual value (40 mrad). This discrepancy is due to the fact that the term

φyωx which was dropped from Eqs. (2.6) and (2.7) is much larger for the constant

burn than for the linear ramp. Adding the side force, fy, into Eq. (2.46), results in a

negligible change of the pointing error of less than 0.02%.

Figure 2.10. Displacement solution for exact (gray line) and analytical
solutions (dots).

Assuming the velocity pointing error of the constant thrust profile (about 40 mrad)

is acceptable for a 70 rpm spin rate, a spacecraft with a ramp profile could be spun

at a lower rate. Using Eq. (2.43), the spacecraft with a ramp profile would only need

to be spinning at about 21 rpm which is a 70% decrease.

Figure 2.10 presents the inertial displacement of the spacecraft obtained by Eq.

(2.12). The exact and analytical solutions are indistinguishable from each other.
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Note that the axes are not equally scaled. During the ramp-up phase, the solution

has the appearance of a stretched-out spring with smaller coils at the beginning of

the simulation and larger coils at the end. In the ramp-down phase, the coils become

smaller as the thrust decreases until the trajectory appears to become linear. At the

end of the simulation, the exact and analytical solutions are 7.9 m apart. Since the

ending displacement is around 3400 m, the difference between the two solutions is

less than 0.3%.

It is interesting to note that a remarkably simple approximation for the displace-

ment can be obtained for the ramp-up phase by multiplying the third-order term in

Eq. (2.30), Cttt
3/3, by the average velocity pointing error given by Eqs. (2.35) and

(2.36). The result of this simple approximation is illustrated by the asymptotic line

in Fig. 2.11 which passes through the center of the “stretched-out spring.” This ap-

proximation could be useful in the assessment of spinning spacecraft maneuvers that

are, for example, in proximity to the International Space Station or other spacecraft.

Figure 2.11. Ramp-up phase displacements for exact and asymptotic solutions.
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2.5 Summary

This chapter has developed an analytical theory for the ramp-up and ramp-down

thrust profiles that provide highly accurate, approximate solutions for the angular

velocity, Euler angles, inertial velocity, and inertial displacement. The solutions con-

tain both secular and circular terms that are functions of the moments of inertia,

initial spin rate, torques, forces, and time. Asymptotic solutions are derived from the

general theory which leads to compact, simple equations that capture the essential

spacecraft behavior.

Numerical tests have validated the theory including a hypothetical spin-stabilized

spacecraft with a Payload Assist Module. In this case, the velocity pointing error is

reduced by an order of magnitude over the usual constant burn profile. If the velocity

pointing error for the constant thrust profile was acceptable, the spin rate could be

reduced by as much as 70%.
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3. Velocity Pointing Error Reduction for Spinning Thrusting

Spacecraft via Heuristic Thrust Profiles

3.1 Background

The motion of spacecraft subject to body-fixed forces and torques is discussed

by Leimanis in his classic treatise, The General Problem of the Motion of Coupled

Rigid Bodies about a Fixed Point [1]. In many cases, spacecraft can be treated as

spinning symmetric or nearly-symmetric rigid bodies. During axial thrusting of a

spinning spacecraft, thrust misalignment and center-of-mass offset create transverse

body-fixed torques which perturb the angular momentum vector from its desired

inertial direction. The bias in the angular momentum vector directly results in veloc-

ity pointing errors which cause the spacecraft to deviate from its desired trajectory,

subsequently requiring more propellant for the spacecraft to achieve its mission.

Angular velocity, attitude, and inertial velocity solutions for the spinning space-

craft have been found via perturbation methods [15, 16, 19, 20]. Non-perturbation

methods are used to find analytical results for more specific cases such as nearly-

symmetric spinning rigid bodies with constant torque [21,22] and time-varying torque

[24,25] as well as bodies that are asymmetric [26]. The inertial velocity and displace-

ment solutions for constant torque [32] and linear torque [33] are also known.

Historically, the velocity pointing error has been reduced by spinning at a high

rate [34]. It has been shown that if the axial thrust is a linear function of time

beginning at zero and ramping up to maximum thrust, the velocity pointing error

could be significantly decreased with respect to the usual case where the thrust can

be modeled as a step function since the average angular momentum vector for the

linear ramp now remains pointing in the desired direction [37].
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While a linear thrust profile can reduce velocity pointing errors, it is unclear what

is the best scheme to ramp-up the thruster to minimize pointing error. Finding the

optimal solution for the thrust history (i.e. the control) to minimize the velocity

pointing error is difficult to solve using indirect methods since the solution involves

nine nonlinear differential equations and the ending velocity pointing error tends to

oscillate at a high frequency (typically 1 rev/s) with respect to the ramp-up time.

Instead, a heuristic approach is first taken to find a suboptimal ramp-up profile.

This analysis considers suboptimal ramp-up thrust profiles which are expressed as

exponential, logarithmic, parabolic, cosine, sine, and cubic functions. The minimum

velocity pointing error from each of these profiles except the sine profile is essentially

zero and so can be considered to be an effective solution.

In practice, these profiles may be difficult to realize. The intent of this analysis

is to identify a method that, in principle, can passively reduce velocity pointing

errors. Despite a thorough literature search, the author does not know of a case

where improvements from a modified thrust profile have been observed empirically.

A detailed discussion on the practical applications of this method can be found in

section 3.4.

3.2 Solution Model

Consider a spinning rigid body depicted in Fig. 3.1. The spacecraft has the unde-

sired transverse torques Mx and My, no axial torque, a thrust offset of d, and a thrust

misalignment of α. The distance from the center of mass of the vehicle to the nozzle

throat, h, is constant for these simulations since h only affects ωx and ωy which are

two orders of magnitude smaller than wz. Assume the body-fixed reference frame, B,

is located at the center of mass and aligned with the principal axes of the rigid body.

Throughout this analysis, capital letters signify the vector in inertial reference frame,

I, and lower case letters signify vectors in body-fixed frame, B.
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Figure 3.1. Model for thrusting, spinning spacecraft.

3.2.1 Velocity Pointing Error

The velocity pointing error, ρ, shown in Fig. 2.2 is once again defined as the time-

varying angle between the desired velocity direction (i.e. along the Z-axis) and the

ensuing velocity, ∆V. Before thrusting occurs, it is assumed that the body-fixed z-axis

is aligned with the inertial Z-axis. During the engine burn, the undesired transverse

torques generate the velocity pointing error; in the cases of the constant and linear

force profiles, the velocity pointing error tends to follow the average direction of the

inertial angular momentum vector, Havg. Figure 2.2(a) shows the velocity pointing

error due to constant torque; Figure 2.2(b) shows how the velocity pointing error

can be significantly reduced due to linear torque (ramp-up scheme). This behavior is

discussed by Javorsek and Longuski [37].
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The velocity pointing error is given by Eq. (2.31). Since the velocity pointing

error is small (ρ � 10 degrees), the velocity pointing error angles are simplified to

Eq. (2.33).

3.2.2 Ramp-Up Scheme

The linear ramp-up scheme given by Javorsek and Longuski [37] is used as inspi-

ration for this analysis to reduce the velocity pointing error. In the linear ramp-up

scheme shown in Fig. 3.2 (as solid lines), the thrust linearly increases from zero to

its maximum value with constant mass properties, burns at maximum with changing

mass properties, and then at burn out discontinuously decreases to zero. While the

linear ramp-up profile dramatically decreases the velocity pointing error, other ramp-

up profiles, also illustrated in Fig. 3.2 (as dashed lines), may reduce the pointing error

further.

Fmax 

Thrust 

Time 
tr tb 

Phase 1 
Ramp-Up 

Phase 2 
Constant Burn 

Figure 3.2. Linear ramp-up scheme thrust profile adapted from Ja-
vorsek and Longuski [37] modified by different ramp-up profiles.
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To fairly compare the different ramp-up profiles, the total impulse, I, remains

constant and the profiles end at the same maximum force, Fmax. To satisfy these

constraints, the ramp-up time, tr, for each profile can vary such that

I =

∫ tr

0

F (t)dt

F (tr) = Fmax

(3.1)

In addition to these two equality constraints, the force is also constrained to be

between zero and maximum thrust so that

0 ≤ F (t) ≤ Fmax (3.2)

An example of the velocity pointing error for a cubic ramp-up profile is shown in

Fig. 3.3. The other thrust profiles produce similar figures. At the beginning of Phase

1, shown in black, the velocity pointing error is large (around 4 mrad). The velocity

pointing error does not start at zero due to the nonzero thrust misalignment. By

the end of Phase 1, the velocity pointing error forms an approximate circle. During

Phase 2, shown in gray, the pointing error spirals down to a very small circle (with

a radius of 0.02 mrad) which is obscured by the many revolutions of the converging

trajectory. The ending velocity pointing error in Fig. 3.3 is approximately 0.

Ideally, one could analytically solve for the velocities where the optimal control

for F (t) is found by setting the final velocity components to have zero pointing error.

This approach was considered and rejected because the equations of motion governing

Phase 2 are analytically intractable.

A second approach is to use indirect optimization. To find the optimal ramp-up

profile, a two-point boundary-value problem (TPBVP) was previously explored (see

Appendix B). To solve the TPBVP, the velocity pointing error was evaluated at the

end of Phase 1 to obtain a transversality condition. Even with this simplification, no

converged solution was found. A new approach was deemed necessary.

Finally, a direct approach, in which heuristic solutions were considered, led to

practical solutions. Some of these solution provide such small velocity pointing errors

that they can be considered an effective solution.
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Figure 3.3. Velocity pointing error example for Phase 1 (black) and
Phase 2 (gray) for a cubic ramp-up profile.

3.2.3 Equations of Motion for the Ramp-Up Phase

The heuristic force profiles considered in this analysis which begin at zero have

the form of

F (t) = c1 [exp(c2t)− 1] (3.3)

F (t) = c1 log (c2t+ 1) (3.4)

F (t) = c1 sin c2t (3.5)

F (t) = c1(1− cos c2t) (3.6)

F (t) = c1t+ c2t
2 (3.7)

F (t) = c1t+ c2t
2 + c3t

3 (3.8)

where c1, c2, and c3 are constants.
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The force profiles in Eqs. (3.3)–(3.7) have three unknown parameters, two constant

coefficients (c1 and c2) and the ramp-up time. With the two equality constraints in

Eq. (3.1), varying the ramp-up time will yield all available force profiles. The ramp-up

time range is limited by the inequality constraints in Eq (3.2).

The cubic force profiles in Eq. (3.8) have an additional unknown parameter, c3.

With the two equality constraints in Eq. (3.1) and the inequality constraints in

Eq. (3.2), varying the the ramp-up time and one free parameter c1 will yield all

available force profiles. Since the two inequality constraints in Eq. (3.2) severely limit

the search space, a two-dimensional grid search (i.e. a two parameter optimization)

can find the best case for a certain total impulse and maximum force.

To find the velocity of a spinning spacecraft, three sets of differential equations

are needed: angular velocity rate equations, kinematic equations to describe how the

B-frame is moving relative to the I-frame, and acceleration equations which rotate

the B-frame forces to the I-frame.

Since the engine ramp-up time is much shorter than the total burn time, the mass

properties are assumed to be constant for the ramp-up phase. Then the angular

velocity of a spacecraft, described by Euler’s equations of motion [66], is

ω̇x(t) = Mx/Ix − [(Iz − Iy)/Ix]ωyωz
ω̇y(t) = My/Iy − [(Ix − Iz)/Iy]ωzωx
ω̇z(t) = Mz/Iz − [(Iy − Ix)/Iz]ωxωy

(3.9)

where ωx, ωy, and ωz are components of the angular velocity vector in the B-frame;

Ix, Iy, and Iz are constant principal moments of inertia; and Mx, My, and Mz are

torques along the body-fixed x, y, and z axes, respectively.

Without loss of generality, assume the spin axis is the z-axis which may be ei-

ther the minimum or maximum moment-of-inertia axis. If Iz were the intermediate

moment-of-inertia, it is well known that the spacecraft attitude motion would be un-

stable. In this analysis, the vehicle is assumed to be a thrusting, spinning spacecraft

in which the axial torque, Mz, is zero. The non-axial torques have the same heuristic

profile as the forces.
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The kinematic equations describe the orientation of a rigid body with respect to

the inertial reference frame, I. For this analysis, a Type-I, Euler sequence 3-1-2 (φz,

φx, φy) given by Wertz [67] is used where

φ̇x = ωx cosφy + ωz sinφy

φ̇y = ωy − (ωz cosφy − ωx sinφy) tanφx

φ̇z = (ωz cosφy − ωx sinφy) secφx

(3.10)

The velocity solution can be found by rotating the body-fixed forces from the B-

frame to the I-frame by using the following Type-I 3-1-2 direction cosine matrix [67]

IRB
312 =


cφycφz − sφxsφysφz −cφxsφz sφycφz + sφxcφysφz

cφysφz + sφxsφycφz cφxcφz sφysφz − sφxcφycφz
−cφxsφy sφx cφxcφy

 (3.11)

where c and s are abbreviations for cosine and sine functions, respectively.

The I-frame velocities can be solved by integrating
∆V̇X

∆V̇Y

∆V̇Z

 = IRB
312


fx/m

fy/m

fz/m

 (3.12)

where fx, fy, and fz are the body-fixed forces.

3.2.4 Equations of Motion for the Constant Burn Phase

The second portion of the burn, at maximum thrust, is much longer than the

ramp-up phase, so the mass properties of the spacecraft are no longer assumed to

be constant. During this phase, the mass and moments of inertia are modeled as

linearly decreasing as assumed by Javorsek and Longuski [37]. The mass-flow rate,

ṁ, is assumed to be constant.

The velocity in Phase 2 is found similarly to the velocity in Phase 1 with three

sets of differential equations. Equations (3.10)–(3.12) remain the same but now have

constant forces and changing mass. The angular velocity equations, however, are
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different from Phase 1 and now include jet-damping for a higher fidelity model. Fol-

lowing Thomson [69], the angular velocity equations for Phase 2 are

ω̇x(t) = Mx/Ix − ωyωz(Iz − Iy)/Ix −
[
İx − ṁ(h2 + d2)

]
ωx/Ix

ω̇y(t) = My/Iy − ωzωx(Ix − Iz)/Iy −
(
İy − ṁh2

)
ωy/Iy

ω̇z(t) = Mz/Iz − ωxωy(Iy − Ix)/Iz −
(
İz − ṁd2

)
ωz/Iz

(3.13)

where h is the distance from the spacecraft’s center of mass to the nozzle throat and is

assumed to be constant. The axial torque, Mz, is zero, and the remaining body-fixed

torques are constant since the spacecraft is burning at a constant maximum thrust.

A detailed discussion on jet damping can be found in van der Ha and Janssens [70].

3.3 Simulation and Numerical Analysis

MATLAB R© is used to calculate the velocity pointing error for these heuristic

thrust profiles. The simulation uses a built in MATLAB R© integrator, ode45, which

is based on the Dormand Prince method, an explicit Runge-Kutta formula, to solve

for the differential equations numerically. The variable step size integral uses tight

relative and absolute error tolerances (on the order of 10−13).

To test the accuracy of the theory for the ramp-up maneuver, the mass properties

and initial conditions are modeled on the insertion of the Ulysses spacecraft into an

interplanetary trajectory to Jupiter [37]. For this simulation, fictitious thrust profiles

are used. The Ulysses spacecraft with attached PAM is modeled as shown in Fig. 2.3.

The constant values for the offset and misalignment used in this simulation are

d = 0.02 m, α = 0.25 deg (4.4 mrad) , h = 0.8 m (3.14)

Because the thrust offset, d, and the misalignment angle, α, are in the body-fixed y-z

plane, the thrust only produces an x-direction torque, Mx, such that

Mx = F (t)(h sinα + d cosα), My = Mz = 0 (3.15)
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where F (t) is given by Eqs. (3.3)–(3.8) for Phase 1 and Fmax for Phase 2. Since the

spacecraft is axisymmetric, the y-z plane is defined to be the plane which the thrust

offset lies in.

The Ulysses spacecraft was launched in 1990 from the Space Shuttle and used

a Payload Assist Model (PAM) for insertion. The PAM has a total burn time of

around 85 seconds with a maximum thrust, Fmax, of 76,100 N and a total impulse,

I, of 5.67 × 106 N s.† To find the total impulse for Phase 1, the linear profile ramp

time for Phase 1 is defined as [37]

trlin = tb − I/Fmax ≈ 10.6 s (3.16)

Then the total impulse of the ramp-up phase, which is constant for all the profiles, is

determined by

Ir = Fmax trlin/2 ≈ 4.03× 105 N · s (3.17)

To have the total impulse of the entire burn (Phase 1 and Phase 2) equal the total

impulse of the actual PAM, the Phase 2 burn at maximum thrust which is identical

for all profiles, lasts for 69.2 seconds. If instead the thruster burns only at maximum

thrust (i.e. with no ramp-up), the total burn time for the same total impulse as the

PAM would be 74.5 seconds. This burn is shorter than the actual PAM’s 85 second

burn due to the assumption that the PAM always burns at maximum thrust whereas

in reality, the PAM has a smaller average thrust of 67,200 N. An actual PAM is not

able to reproduce these thrust profiles but is used for an estimate for maximum thrust

and total impulse values. The maximum thrust and total impulse values could be

replicated by a liquid or hybrid engine.

In this example, all the initial conditions for angular velocity, Euler angles, and

inertial velocity except for ωz0 are set to zero for Phase 1. The initial spin rate, wz0,

is set to 70 rpm. The constant mass properties for Phase 1 are [37]

m(0) = 2500 kg, Ix(0) = Iy(0) = 858 kg ·m2, Iz(0) = 401 kg ·m2 (3.18)

†ATK Products Catalog, http://www.atk.com/wp-content/uploads/2013/02/ATK-Motor-Catalog-
2012.pdf
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The initial conditions for Phase 2 are the final conditions of Phase 1. The moments

of inertia at the end of the burn and the constant mass flow rate are [37]

ṁ = −24 kg/s, Ix(tb) = Iy(tb) = 222 kg ·m2, Iz(tb) = 102 kg ·m2 (3.19)

3.3.1 Heuristic Profiles

The heuristic force profiles are shown in Fig. 3.4 with various ramp-up times.

These profiles all end at Fmax and have the same total impulse. The profiles shown in

Fig. 3.4 are representative of the studied profiles and do not result in the minimum

velocity pointing errors. The complete force profile for the entire ramp scheme (not

shown) would also include a constant burn for 69.2 seconds after the ramp-up phase

for all of the profiles in Fig. 3.4. The particular force profile which results in the

minimum velocity pointing error depends on the mass properties, initial spin rates,

thrust misalignment and offset, as well as the distance from the thrust nozzle to the

center of mass.
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Figure 3.4. Force profile examples for linear, exponential, logarithmic,
sine, cosine, parabolic, and cubic (c1 of 800 N/s) force profiles.
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With the exception of the sine and cosine profiles, the heuristic profiles can have

ramp-up times that are shorter or longer than the linear ramp-up profile (shown as

the black line in Fig. 3.4). The range of available tr for these profiles is limited due

to the inequality constraints.

The cosine and sine profiles are restricted from having longer or shorter ramp-up

profiles due to the definition of profiles in Eqs. (3.5) and (3.6) and the fact that they

must be shorter than a half period to adhere to the inequality constraints. The sine

and cosine profiles could have a larger range of ramp-up times if a phase angle (or

equivalently another degree of freedom) was added to Eqs. (3.5) and (3.6). However,

adding this additional variable is not considered here since a similar analysis is done

with cubic profiles.

A cubic force profile with a c1 (the free parameter) value of 800 N/s is also shown

in Fig. 3.4. Since the cubic force profiles have an additional free variable, there is a

range of available c1 values for this ramp-up time unlike the other profiles which only

have one solution for a particular tr.

As the cubic solutions approach the linear ramp-up time, they become more similar

to the cosine curves. Conversely, as the solutions diverge from the linear ramp-up

profile, the cubic profiles tend toward the shape of parabolic or exponential profiles.

For the remaining profiles (logarithmic, sine, exponential, and parabolic), the profiles

become more linear as they approach the linear ramp-up time.

3.3.2 Velocity Pointing Error

The velocity pointing error is found by dividing the transverse velocity components

by the axial velocity. At the end of Phase 2, the velocity pointing error has spiraled

down to a very small circle (around 0.02 mrad) as represented in Fig. 3.3.

Due to stochastic errors in the real system, it is expected that the velocity pointing

error could end at any point on this small circle, so in this analysis, the ending velocity

pointing error is defined as the point on the circle which is farthest away from the
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origin as shown in Fig. 3.5. This velocity pointing error or ρmax is the center, ρcent,

plus the radius, ρr, of the small circle. The radius and center are determined by fitting

the last 4% of the data to a circle. This definition of ρmax slightly overestimates the

actual velocity pointing error and can never be zero.

x 

ρ(tb) 

ρcent 

ρr 

ρX 

ρY 

Circle fit to last 

portion of ρ 

ρmax = ρcent  + ρr 

Figure 3.5. The definition of ρmax is based on a circle fit of the last
portion of the velocity pointing error, ρ.

The maximum ending velocity pointing errors for the one parameter profiles are

shown in Fig. 3.6. In general, the exponential, parabolic, logarithmic, and sine profiles

with ramp-up times that are much shorter than the linear ramp-up time have larger

ρmax. Only when the ramp-up time of these profiles approaches the linear ramp-

up time does ρmax become smaller than the linear ρmax. As the ramp-up times of

the parabolic, logarithmic, exponential, and cosine profiles initially increase over the

linear ramp-up time, the profiles have a smaller ρmax than the linear profile. If the

engine burned at Fmax for the entire burn, the ρmax would be around 74 mrad.

Near the linear ramp-up time, the logarithmic, exponential, sine, and parabolic

profiles have similar ρmax because the force profiles in this range are almost identical.

However, the ρmax for the exponential, sine, and logarithmic profiles are not available
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Figure 3.6. Velocity pointing error for linear, parabolic, sine, cosine,
logarithmic, and exponential profiles.

less than 0.2 seconds away from the linear ramp-up time because of mathematical

convergence problems when solving for the constant coefficients in Eqs. (3.3)–(3.6).

As the ramp-up time increases further, the ρmax of the heuristic profiles diverge. At

around 14 seconds, the logarithmic profile diverges from the parabolic and exponential

profiles and begins to linearly increase with smaller oscillations to around 7 mrad at

25 seconds. The cosine, parabolic, and exponential profiles appear to approach 1.7

mrad.

The parabolic, sine, logarithmic, and exponential profiles have sensitivities to tr

as shown by the large oscillations in ρmas in Fig. 3.6. However, the cosine profile,

which does not produce the minimum ρmax, is overall less sensitive to changes in tr.

To compare cubic profiles with the one parameter profiles, consider Fig. 3.7. Here

of the linear profile (black “x”), parabolic profiles (gray dashed line), logarithmic

profiles (lighter gray dashed and dotted line), and cosine profiles (lightest dashed

and dotted line) of Fig. 3.6 are plotted against a range of cubic profiles (solid lines).
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Figure 3.7. Comparison of velocity pointing errors for linear, loga-
rithmic, cosine, parabolic, and a small set of cubic profiles.

The exponential profiles (not shown in Fig. 3.7) have similar results to the parabolic

profiles.

The best solution for the one parameter profiles is a logarithmic solution which

has a minimum velocity pointing error of 0.04 mrad with a ramp-up time of 11.1

seconds. Some of the cubic profiles in Fig. 3.7 not only have a lower minimum

velocity pointing error than the logarithmic profile with a minimum of 0.02 mrad but

also have smaller oscillation amplitudes. While the cubic profiles shown in Fig. 3.7

have a lower minimum than the cosine profile, the cosine profile is once again less

sensitive to changing ramp-up time. As the ramp-up time increases, the ρmax of the

low c1 cubic profiles approaches 1.7 mrad.

Figure 3.8 shows the velocity pointing error for the entire search space of the

cubic thrust profiles. The shape of the search space is determined by the inequality
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Figure 3.8. Velocity pointing errors for all possible cubic profiles fol-
lowing criteria in Eqs. (3.1) and (3.2) with an initial spin rate of 70
rpm.

constraints in Eq. (3.2). The thrust in the lightest shaded exceeds the maximum

value, the thrust in the next lightest area is negative, and the thrust in the darkest

areas both exceeds Fmax and is negative. The coefficient c1 must remain positive

otherwise the force will at some point be negative, representing a non-physical case.

In general, the cubic force profiles that have lower c1 values have smaller ending

pointing errors. For a given c1 value, the velocity pointing error oscillates as shown

by the vertical lines in Fig. 3.8. The minimum velocity pointing error for this search

space is 0.020 mrad for a c1 value of 634 N/s and a ramp-up time of 10.71 seconds.

The region with the lowest c1 values is in the lower left corner of Fig. 3.8. The cubic

velocity pointing errors in Fig. 3.7 are horizontal lines in the lower region of Fig. 3.8.

One might wonder if a cycloid, the solution to the classical brachistochrone prob-

lem, could also reduce the velocity pointing error. However, it turns out that only one

cycloid solution exists and the resulting velocity pointing error of 5.3 mrad is much

larger than the linear ramp-up profile’s 1.7 mrad velocity pointing error.
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Table 3.1 gives the minimum velocity pointing error for each of the heuristic

profiles. The heuristic profiles, except for the cycloid, have smaller pointing errors

than the linear case which is much less than the 74 mrad ρmax when the engine burns

at Fmax for the entire burn. The two cubic profiles with the smallest pointing error are

presented to show the robustness of the cubic profile. The minimum ending pointing

error in Table 3.1 is 0.0200 mrad for a cubic force profile which is essentially zero. The

velocity pointing error for this minimum cubic profile is shown earlier when describing

the velocity pointing error behavior in Fig. 3.3.

Table 3.1. Minimum ρmax for all force profiles with α = 0.25 deg (4.4
mrad), d = 0.2 cm

Force Profile tr, s ρmax, mrad

Constant – 74

Linear 10.6 1.70

Cubic (c1 = 634 N/s) 10.71 0.0200*

Cubic (c1 = 3950 N/s) 11.14 0.0202*

Cosine 11.38 0.0701*

Parabolic 11.14 0.0398*

Exponential 11.14 0.0400*

Logarithmic 11.14 0.517

Sine 10.29 0.512

Cycloid 8.20 5.28

* For all practical purposes, ρmax < 0.1 mrad can be

considered essentially zero.

For the heuristic profiles investigated in this analysis, the radius of the ending

circle is, at a minimum, around 0.02 mrad. As a smaller radius is not produced, the

best possible solution for the current definition of the velocity pointing error is this

radius of 0.02 mrad which is found with one of the cubic profiles. Further decreases

could occur if a ramp-down phase was added, but the slight theoretical improvements
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would not be practical given the difficulties of implementing a ramp-down phase in an

actual thruster. Thus the cubic solution with a velocity pointing error of 0.02 mrad

is the best solution found in this analysis.

3.3.3 Velocity Pointing Error for Various Moments of Inertia

Several moments of inertia were considered to determine if the heuristic profiles

had improvements over the linear case. Table 3.2 lists the velocity pointing errors

for different moments of inertia. All of the profiles resulted in improvements over the

linear ramp-up profile. For all of these moments of inertia, the cosine profiles had

relatively flat ρmax with respect to tr, and the exponential curves were more sensitive.

When the spacecraft was almost symmetric (Ix/2 and 2Iz), the cosine profiles were

a slight improvement over the linear case, and the exponential curves had the lowest

minimum. Conversely when the transverse and axial moments of inertia were furthers

apart (2Ix and Iz/2), the cosine profiles still had low sensitivities to tr and had the

largest improvement over linear profile.

Table 3.2. Minimum ρmax for force profiles with α = 0.25 deg (4.4
mrad), d = 0.2 cm, and varying moments of inertia.

Moment Linear* Cosine Exponential

of ρmax,
tr, s

ρmax,
tr, s

ρmax,

Inertia mrad mrad mrad

Ix, Iz 1.7 11.4 0.070 11.1 0.040

Ix/2, Iz 1.4 10.6 1.3 10.4 0.29

2Ix, Iz 1.9 10.7 0.011 11.1 0.24

Ix, Iz/2 3.6 10.8 0.041 11.1 0.20

Ix, 2Iz 0.68 15.0 0.64 9.8 0.13

* The linear profiles all have tr of 10.6 sec.
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3.3.4 Velocity Pointing Error for Various Spin-Rates

Taking an entirely different perspective, if the velocity pointing error of the con-

stant burn (at 74 mrad) is acceptable, the spacecraft could spin at a lower rate while

using one of these ramp-up thrust profiles. Figure 3.9 shows the available c1 values

and ramp-up times for cubic profiles with a spin rate of 25 rpm and 35 rpm that

produce ending velocity pointing errors that are less than or equal to the constant

burn of 74 mrad. For a spin rate of 50 rpm (not shown), the entire search space

has velocity pointing errors which are less than the constant burn. As the spin rate

decreases, the available c1 values decrease, but when spinning at 25 rpm (about a

third of the original spin rate), there is still a range of c1 and tr values which give

velocity pointing errors that are smaller than the constant burn.

The one parameter profiles (not shown here) have similar increases in their ending

velocity pointing errors. Once again, the cosine profiles are close to the cubic profiles

with low c1 values and are relatively flat compared to the other results. The logarith-

mic, parabolic, and exponential profiles produce velocity pointing errors with even

larger sensitivities and similar differences to the cosine profiles as shown in Fig. 3.6.

With a cosine ramp-up profile, the minimum spin rate to achieve a 74 mrad velocity

pointing error is 11 rpm which is around 15% of the original spin rate.

The minimum velocity pointing errors are reported for the various one parameter

profiles and the cubic profiles in Table 3.3. The cycloid and sine values are not in-

cluded since the minimum ending velocity pointing errors are larger than the other

profiles listed. The minimum velocity pointing errors for these various profiles at dif-

ferent spin rates are all smaller than the respective linear velocity pointing error. The

cubic profiles have the smallest values of the tested heuristic profiles with minimums

that are all less than the linear velocity pointing error of 1.7 mrad at 70 rpm.
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Figure 3.9. Cubic velocity pointing errors that are less than the con-
stant burn value of 74 rpm at 35 and 25 rpm.
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Table 3.3. Minimum ρmax for force profiles with α = 0.25 deg (4.4
mrad), d = 0.2 cm, and varying spin rates

Profile

50 rpm 35 rpm 25 rpm

tr, s
ρmax,

tr, s
ρmax,

tr, s
ρmax,

mrad mrad mrad

Linear 10.6 2.22 10.6 7.98 10.6 51.7

Cosine 11.3 0.0663* 11.1 0.346 10.6 2.47

Parabolic 10.8 0.601 11.7 1.77 11.7 16.3

Exponential 10.8 0.602 11.6 1.82 11.7 17.0

Logarithmic 10.8 0.602 27.9 0.431 11.7 18.1

Cubic 11.1 0.0498* 13.5 0.153 10.8 0.347

(Cubic c1) (337 N/s) (4,600 N/s) (15,900 N/s)

* For all practical purposes, ρmax < 0.1 mrad can be considered essen-

tially zero.

3.3.5 Velocity Pointing Error for Various Thrust Misalignment and Offset

As another test, the thrust misalignment and offset are varied to see if the heuristic

profiles still produce smaller velocity pointing errors since in most practical cases, d

and α are not known. The results are given in Table 3.4 while using the original

spin rate of 70 rpm. The sine and cycloid profiles are excluded because the velocity

pointing errors are larger than the remaining profiles.

In Table 3.4, the minimum ρmax values are for the smallest engine offset and

misalignment. As the engine offset and misalignment grow, ρmax also grows. In

this table, the parabolic, exponential, and logarithmic profiles produce similar ending

pointing errors because the corresponding force profiles are close to each other.

If Figs. 3.6 and 3.7 are reproduced for the various d and α values in Table 3.4, the

figures will be similar. The ending velocity pointing errors for parabolic, logarithmic,

and exponential will still be highly sensitive as in Fig. 3.6, but the oscillations tend
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Table 3.4. Minimum ρmax for various d and α

α, deg d, m Force Profile tr, s ρmax, mrad

0.25

0.02*

Linear 10.6 1.70

Cosine 11.4 0.0701†

Parabolic 11.1 0.0398†

Exponential 11.1 0.0400†

Logarithmic 11.1 0.0395†

Cubic (c1 = 634 N/s) 10.7 0.0200†

0.2

Linear 10.6 7.43

Cosine 11.0 0.355

Parabolic 12.3 0.458

Exponential 12.3 0.535

Logarithmic 12.3 0.413

Cubic (c1 = 6270 N/s) 15.9 0.349

2.5

0.02

Linear 10.6 4.18

Cosine 10.9 0.266

Parabolic 11.1 0.218

Exponential 11.1 0.218

Logarithmic 11.1 0.218

Cubic (c1 = 1810 N/s) 11.1 0.0767†

0.2

Linear 10.6 15.8

Cosine 10.8 0.656

Parabolic 12.9 0.887

Exponential 12.9 0.689

Logarithmic 12.9 0.945

Cubic (c1 = 440 N/s) 11.4 0.350

*Table 3.1 information is duplicated here.

† ρmax < 0.1 mrad can be considered an effective solution.
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to have larger amplitudes and do not approach the same minimum velocity pointing

errors. The cosine curve meanwhile will stay relatively flat around the minimum

value. The minimum value for the parabolic, exponential, and logarithmic cases will

switch between ending on the first (around 11 seconds) or second oscillation (around

12 seconds).

In addition, the cubic force profiles with a thrust offset of 20 cm and a misalign-

ment of 0.25 deg (4.4 mrad) have multiple local minima that are within 0.1 mrad of

the reported values. For example, a cubic profile with a ramp-up time of 11.1 seconds

has a ending pointing error that is within 0.001 mrad of the minimum reported in

Table 3.4.

For these offset and misalignment changes, the linear profiles have the largest ρmax

values. For small thrust offsets, the parabolic, exponential, and logarithmic profiles

have almost identical results, and the cosine profiles have the second largest minimum

values. For large thrust offsets, the parabolic, exponential, and logarithmic profiles

still have close results within 0.3 mrad, but the cosine profiles have the second smallest

minimum values. The cubic profiles produce the minimum velocity pointing errors

for these thrust offsets and misalignments.

The order-of-magnitude change in α has less of an effect on the velocity pointing

error than an order-of-magnitude change in d due to Eq. (3.15) where the torque

is dependent on d and the cosine or sine of α. Furthermore, using a ramp-up time

of around 11 seconds will produce minimum values for cubic profiles and the less

sensitive cosine profiles.

3.4 Practical Applications

One might wonder if these heuristic profiles are physically realizable with the

current engine technology for solid, liquid, or hybrid engines. Two problems exist:

throttling the engine to a very low thrust level, called deep throttling, and starting

the engine at this very low thrust.
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While nontrivial, the propellant grain geometry or the choice of fuel and oxidizers

in a solid rocket can be changed to model various profiles [68]. Solid rockets can be

throttled [71], but it is difficult to deeply throttle solid rockets due to the coupling

between the propellant gasification rate and the chamber pressure [72]. Furthermore,

thrust profiles are easier to design with liquid propellant rocket engines which also

have the additional benefit of multiple burns [73].

Numerous throtteable liquid propellant rockets have been tested [73] including a

few deep throttling rockets which can throttle to less than 40% thrust [74]. One of

the most famous throttling engines is the Lunar Module Descent Engine which had a

10-to-1 throttling capability and could achieve a cold start at 10% thrust [74]. Other

deep throttling engines include, the RL10A-1 which was throttled to below 10% [75],

the RD-0120 which was throttled to 25% [76], the Space Shuttle main engine which

was throttled down to 17% [77], and the TR202 which was throttled to 7.5% [78]. In

addition, the Common Extensible Cryogenic Engine can be throttled down to 5.9%

thrust with a cold start at 10% [79]. To prevent flame out (when the flame in the

combustion chamber is extinguished), the liquid propellant engines need to start at

a non-zero thrust level.

Hybrid rockets, while not as efficient as liquid rockets, are another option for

throttling rockets. Hybrid rockets have been throttled down to 10% of thrust and

then throttled up from 10% to full power [80]. One of the deepest throttling engines

is a hybrid rocket which has a turndown ratio of 67:1 or 1.5% of thrust [72].

Current throttleable engines are primarily tested by throttling down for applica-

tions (such as landing) which do not require an engine to throttle up. However, it can

be argued that the same technology could be used to throttle up an engine as shown

by Austen, et al. [80]. While current off-the-shelf engine technology may be unable

to perform these heuristic profiles starting at zero thrust, deep throttling engines are

close to implementing this passive control scheme.

To demonstrate that a ramp-up scheme can reduce velocity pointing errors even

when not starting at zero thrust, the simulation is run again where the initial thrust
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value is now a percentage of Fmax, given by β. The total impulse for the ramp-

up phase remains the same as when starting at zero thrust to fairly compare the

simulations. Table 3.5 gives the resulting minimum ending velocity pointing errors

for the various heuristic profiles. The velocity pointing errors increase with increasing

initial force, but are all much less than the 74 mrad from the constant thrust case.

In Table 3.5, the cubic profile has the minimum velocity pointing error for when

the initial thrust is at or below 1% Fmax. For the larger initial thrust values, the loga-

rithmic profile results in a smaller velocity pointing error. To achieve these minimum

velocity pointing errors for the logarithmic profiles, the solutions are highly sensitive.

For example, less than a half a second after the 5% initial Fmax logarithmic minimum

ρmax, the velocity pointing error is above 7 mrad. This difference in velocity pointing

error increases with increasing initial Fmax. Less dramatic sensitivities occur for the

cubic, parabolic, and exponential profiles.

For the cubic values with initial forces (i.e. β values) at 5%, 10%, and 20% Fmax,

the minimum values occur at c1 values which are on the bounds of the search space

where a larger c1 value would result in a partially negative thrust profile. Unlike the

previous simulations, the search space changes with the initial thrust value. Due to

the minimum ρmax being on the bounds, the cases with β larger than 1% do not have

a smaller minima than the logarithmic case. Once again to achieve these low ρmax

values with a higher initial thrust level, the velocity pointing error is highly sensitive.

To decrease the sensitivity, a lower c1 value should be used which gives results that

are slightly less than the cosine ρmax values.

Table 3.5 only shows the minimum ρmax, but the profiles, specifically the cubic

profiles, have multiple local minima that are within 10% of the reported value. With

the exception of an initial thrust of 5% Fmax, the cubic profiles have multiple minima

within 5% of the reported value. These ρmax may not be the minimum values but

are still smaller than the other profiles except the logarithmic profiles as well as the

exponential profile in the 10% Fmax case. The cubic cases with various β all have a

local minimum at 12.7 seconds. The cases with smaller sensitivities but higher ρmax
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values also have local minima around 12.7 seconds. If the initial thrust level is not

precisely known, this ramp-up time of 12.7 seconds would be a practical ramp-up

time to use.

3.5 Summary

Ideally, the ramp-up profile which minimizes the velocity pointing error would

be found by implicit optimization. However, due to the complicated nature of the

problem, no solution has been found. Instead heuristic solutions for ramp-up profiles

have been found which lead to highly effective solutions. The sine profiles tested

here present an order-of-magnitude velocity pointing error improvement over the lin-

ear ramp-up profile, while the cosine, parabolic, exponential, logarithmic, and cubic

profiles reduce the velocity pointing error further, by up to two orders of magnitude.

These profiles have more than a three order-of-magnitude improvement compared to

the typical constant burn profile.

With a small thrust misalignment and offset, the velocity pointing error for co-

sine, parabolic, exponential, logarithmic, and cubic profiles is essentially zero. These

profiles are an improvement over the linear ramp-up profile for various moments of

inertia, spin-rates, and thrust offset and misalignment. In the simulation, a ramp-

up time around 11 seconds for different engine misalignments and offsets results in

velocity pointing errors which are either the minimum value or very close to the

minimum.

While current engine technology may not be able to duplicate ramp-up profiles

starting at zero, ramp-up profiles, especially the cubic profile, decrease the velocity

pointing error over the typical constant burn even with an initial non-zero thrust.
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4. Method to Maintain Artificial Gravity during Transfer

Maneuvers for Tethered Spacecraft∗

4.1 Background

One of the most recognizable spacecraft with artificial gravity is a large toroidal

space station similar to the one in 2001: A Space Odyssey. With a toroidal spacecraft

such as the one in Fig. 4.1(a), the engines thrust through the center of mass along

the spin axis to preserve artificial gravity. However, to produce artificial gravity at

a practical spin rate, the spacecraft must have a large radius can lead to prohibitive

launch masses.

Spin

Top Side

g

g

g g

L

(a) Cabin provides spin length.

L

Spin

g

(b) Tether or truss provides spin length.

Figure 4.1. Potential spacecraft configurations to provide artificial
gravity. Adapted with permission from Landau [64].

To minimize mass, the crew cabin could be tethered to the propellant tanks and

spun up to produce artificial gravity as in Fig. 4.1(b). Instead of propellant tanks,

a riskier counterweight such as a power system, lander, or consumables could be

∗This chapter resulted from a collaboration with Dr. Damon Landau at JPL who first published this
control method [64]. A journal article with Dr. Damon Landau on the subject is currently under
preparation.
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used, but this counterweight would separate the crew from potential life supporting

systems. Alternatively, the crew cabin and propulsion system could reside on one side

of the tether with a counterweight of spent rocket engines. For any of these scenarios,

the required additional mass to produce artificial gravity is the relatively low-mass

tether.

Two scenarios exist to thrust through the center of mass of a tethered spacecraft.

As depicted in Fig. 4.2(a), the spacecraft can spin down and reel in the tether, but

the resulting engine burn would decrease or potentially reverse the gravity direction.

The tether in Fig. 4.2(a) could be replaced with a truss but the spacecraft would still

be required to despin and lose artificial gravity during a manuever. The other case

occurs in Fig. 4.2(b) where the tether length is constantly adjusted during the burn

so that the center of mass remains fixed with the engine [41,56–59].

No spin

g(t0)

g(t) 

Thrust

(a) Non-spinning spacecraft.

Spin

g(t0), g(t)
Thrust

Reconfiguration as

propellant is spent

(b) Spacecraft with moving thrust.

Figure 4.2. Issues with thrusting through the center of mass for teth-
ered systems. When Fig. 4.2(a) despins and thrusts, the gravitational
acceleration reverses direction from g(t0) to g(t). The gravity direc-
tion in Fig. 4.2(b) remains the same at the cost of moving the thruster
to the center of mass. Adapted with permission from Landau [64].

To provide artificial gravity for the entire mission with a fixed tether configuration,

consider Fig. 4.3 where the thrust is no longer aligned with the center of mass. In

this scenario, the crew habitat is pulled along by the thrusters at an angle to the spin

axis. The resulting moment from the offset thrust cancels out the moment caused

by the product of inertia, and the angular momentum circles the spin axis. During
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Spin at t

Thrust

Spin at t0

g(t0), g(t)

g(t0)

g(t)

Figure 4.3. Spacecraft configuration which keeps the gravity direction
and system configuration the same while thrusting. Adapted with
permission from Landau [64].

maneuvers, the orientation is fixed relative to the spin axis by adjusting the thrust

level or slightly rolling the thrust along the tether axis, allowing the entire burn to

be in the desired direction.

The spacecraft configuration in Fig. 4.3 is more desirable than the design options

in Fig. 4.2 since the fixed tether length and thruster position are more robust and

less expensive to manufacture. Furthermore, the design in Fig. 4.3 does not change

the gravity direction during maneuvers. This chapter expands work by Landau [64]

to derive the dynamics and control for such a tethered spacecraft with various mass

assumptions and to apply the control scheme to a round-trip mission to Mars. For

completeness, sections 4.2.5 and 4.3 are included from Landau’s paper [64], but the

remaining sections are original work.

4.2 Dynamics of Tethered Spacecraft with Offset Thruster

A major transfer maneuver such as insertion from Earth orbit to an interplanetary

orbit with a chemical system may use more than half of a spacecraft’s propellant over

several minutes. Not only does the spacecraft undergo large accelerations, but the

spacecraft’s orientation will dramatically change due to the large torques from high

thrust and the large changes in the center-of-mass location. A low-thrust system
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produces the same orientation changes but over a much longer period of time making

the maneuver more controllable. While the governing equations of motion for the

system will remain the same for either propulsion system, the simulation in the next

section assumes a chemical system for a shorter simulation time.

The orientation errors from such a large burn translate into additional propellant

costs and the potential for a lost mission. To reduce these errors, it is necessary that

the desired ∆V direction be controlled either through a change in the thrust level or

a small rotation of the thrust along the tether axis.

The orientation of the spacecraft is defined in Fig. 4.4 with a body-fixed 3-2

rotation sequence. For this scenario, the propulsion and habitation systems are on

opposite sides of the tether, but the resulting equations also hold for the case where

the habitation module and the propulsion system are attached to a counterweight,

possibly of spent rocket bodies.

T

mp

mh

ˆ ˆ,  planex y

ẑ





̂

̂

ˆ ˆ ˆinertial: 

ˆˆ   

x,y, z

z θ

r̂

ˆ ˆˆbody: , ,r  
L





Figure 4.4. Spacecraft orientation angles, a body-fixed 3-2 rotation
sequence, for a spacecraft with total tether length L. Adapted with
permission from Landau [64].

In this derivation, the propulsion system and crew habitat are assumed to be

point masses, so there is no dynamical significance to a rotation about the r̂ axis.

Furthermore, the tether is modeled as massless and inelastic. To keep the thrust

direction along ẑ, the tether offset from ẑ, namely θ, is controlled to be along the
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thrust offset from the tether, ψ, so that when θ = ψ, the thrust is in the direction of

ẑ.

The angular velocity for the given rotation sequence is

xωr = γ̇ẑ + θ̇θ̂ (4.1)

where γ is the angle of rotation about ẑ. Rotating the ẑ component in Eq. (4.1) into

the body frame results in

xωr = −γ̇ sin θr̂ + θ̇θ̂ + γ̇ cos θφ̂ (4.2)

4.2.1 Constant Mass

The simplest case occurs when the spacecraft has a fixed mass and is forced to

rotate at a constant rate, γ̇, at a fixed angle, θ = ψ. To maintain the spin rate and

angle, a transverse torque along θ̂ is required. This scenario is analogous to a ceiling

fan rotating at a fixed angle. (See Greenwood [66] where a thin rod is forced to rotate

at a constant rate around an inertially-fixed, nonprincipal axis.)

One approach to solve for the required transverse torque is to derive the results in a

rotated body-fixed coordinate frame where the body-fixed coordinate frame (r̂−θ̂−φ̂)

in Fig. 4.4 is rotated such that φ̂ is aligned with ẑ. The principal moments of inertia

in the body-fixed coordinate frame r̂− θ̂− φ̂ shown in Fig. 4.4 are

Ir = 0

Iθ = Iφ =
mpmhL

2

m

(4.3)

where L is the total length of the tether (from the crew habitat to the propulsion

module), mp is the mass of the propulsion system, and m is the total mass of the
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system (the habitat and propulsion system). The moments and products of inertia

in the rotated body-fixed frame are then found by

I =


cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ



Ir 0 0

0 Iθ 0

0 0 Iφ




cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ



=
mpmhL

2

m


sin2 θ 0 sin θ cos θ

0 1 0

sin θ cos θ 0 cos2 θ


(4.4)

Using the inertia values in Eq. (4.4) and the assumption that the angular velocities

do not change with time, the general rotational equations [66] become

Mx = Ixzωxωy + (Izz − Iyy)ωyωz

My = (Ixx − Izz)ωxωz + Ixz
(
ω2
z − ω2

x

)
Mz = −Ixzωyωz + (Iyy − Ixx)ωxωy

(4.5)

Since the only force is from the spacecraft‘s thruster in the ẑ direction, the only

torque present is in the ŷ direction (aligned with θ̂). Furthermore, the spacecraft is

forced to rotate such that ωx and ωy are zero. These assumptions cause the first and

third equations in Eq. (4.5) to drop out leaving

My = Ixzω
2
z =

mpmhL
2

m
γ̇2 sin θ cos θ (4.6)

The torque caused by the spacecraft’s thrust is

My =
mhL

m
T cosψ (4.7)

Since θ equals ψ, Eq. (4.7) can be substituted into Eq. (4.6) resulting in

T = γ̇2mpL sinψ (4.8)

In this case, γ̇, mp, and T are constant. The thrust cannot use the typical thruster

modeled (−ṁgIsp) since the mass is constant. Even if ṁ is very small, the correspond-

ing thrust and the spin rate would also be relatively small. However, the thrust from

a solar sail (based on distance from the Sun, solar flux, sail area, sail reflection, and

sail tilt [81]) could be used to model a constant mass spacecraft with thrust.
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4.2.2 Constant Thrust

Building on the previous model, now consider the case when the mass changes

linearly with time. Here the mass of the propulsion system, mp, is variable with a

mass flow rate, ṁ, which is negative as propellant is expelled from mp. The mass of

the habitation system is assumed to remain constant. In this case, the thrust is given

by

T = −ṁgIsp (4.9)

where ṁ is constant and the mass is modeled as

m = m0 + ṁt (4.10)

The principal moments of inertia are now time varying but of the same form as

Eq. (4.3) with

İr = 0

İθ = İφ =
ṁm2

hL
2

m2

(4.11)

Euler’s equations of motion for a system with changing mass are [69]

Mr = Irω̇r + İrωr + (Iφ − Iθ)ωθωφ

Mθ = Iθω̇θ + İθωθ + (Ir − Iφ)ωrωφ

Mφ = Iφω̇φ + İφωφ + (Iθ − Ir)ωrωθ

(4.12)

The effect of jet damping cancels out the changing moments of inertia terms since

this model assumes that habitation module and propulsion system are both point

masses [69]. Then Eq. (4.12) becomes

Mr = Irω̇r + (Iφ − Iθ)ωθωφ

Mθ = Iθω̇θ + (Ir − Iφ)ωrωφ

Mφ = Iφω̇φ + (Iθ − Ir)ωrωθ

(4.13)

Substituting Eq. (4.3) into Eq. (4.13) results in

Mr = 0

Mθ = Iω̇θ − Iωrωφ

Mφ = Iω̇φ + Iωrωθ

(4.14)
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where I = Iθ = Iφ.

Recall the angular velocity components from Eq. (4.2) as

ωr = −γ̇ sin θ

ωθ = θ̇

ωφ = γ̇ cos θ

(4.15)

Differentiating these components results in

ω̇r = −γ̈ sin θ − γ̇θ̇ cos θ

ω̇θ = θ̈

ω̇φ = γ̈ cos θ − γ̇θ̇ sin θ

(4.16)

Substituting Eqs. (4.15) and (4.16) into Eq. (4.14) gives

Mθ = Iθ̈ + Iγ̇2 sin θ cos θ

Mφ = Iγ̈ cos θ − 2Iγ̇θ̇ sin θ
(4.17)

The goal of this derivation is to find the thrust and mass history which results in

θ equal to the constant body-fixed thrust direction, ψ. Assuming θ is constant and

equal to ψ, Eq. (4.17) becomes

Mθ = Iγ̇2 sinψ cosψ

Mφ = Iγ̈ cosψ
(4.18)

When the thrust is in the r̂− φ̂ plane as shown in Fig. 4.4, the torque is

MCM = rCMp ×T = −mhL

m
r̂×

(
−T sinψr̂ + T cosψφ̂

)
=
mhL

m
T cosψθ̂ (4.19)

Substituting Eqs. (4.3) and (4.19) into Eq. (4.18) and reducing the equations results

in

T = mpLγ̇
2 sinψ

γ̈ = 0
(4.20)

where the first equation is the same control law as Eq. (4.8). The control law shows

how the changing mass of the propulsion system, mp, affects the spacecraft’s orien-

tation. When the spacecraft is burning propellant, the thrust must decrease or the
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spin rate, γ̇, must increase to keep the spacecraft configuration of θ = ψ. To maintain

this orientation, the tether length or the thruster angle, ψ, could also be modified but

would then require a more complex reconfigurable spacecraft.

For this particular derivation, T , γ̇, L, and ψ are constant and therefore force the

time-varying mp to also be constant, a contradiction. With a constant planar thrust,

there is no means to control the system, so the control law breaks down.

To overcome this contradiction, a slight roll, η along r̂, would point a portion of

the thrust along θ̂ resulting in a control force and allowing Mφ to be nonzero. For a

roll along r̂, the thrust is

Tη = −T sinψr̂− T cosψ sin ηθ̂ + T cosψ cos ηφ̂ (4.21)

where η is the roll along r̂. The torque is then

MCM =
mhL

m
T cos η cosψθ̂ +

mhL

m
T sin η cosψφ̂ (4.22)

To maximize the amount of thrust in the desired direction, η is kept small. Then

cos η is assumed to be unity so that

Mθ =
mhL

m
T cosψ

Mφ =
mhL

m
T sin η cosψ

(4.23)

Equation (4.18) becomes

T = mpLγ̇
2 sinψ

sin η = mpLγ̈/T
(4.24)

where the first equation is once again the same control law as Eq. (4.8).

Since the thrust and mass are known, the first equation in Eq. (4.24) gives the

spin rate where

γ̇2 =
T

mpL sinψ
(4.25)

Differentiating Eq.(4.25) results in

γ̈ = − Tṁ

2m2
pLγ̇ sinψ

(4.26)
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After substituting for γ̇ and γ̈, the equation for η in Eq. (4.24) becomes

sin η = −ṁ
2

√
L

Tmp sinψ
(4.27)

The system is now controlled by η determined by Eq. (4.27) with a spin rate governed

by Eq. (4.25). Since ṁ is likely to be much smaller thanmp and the thrust is a function

of ṁ, η will remain small. When initializing the maneuver, ṁ is chosen such that

Eq. (4.25) holds for the current spin rate, and then the burn time is found based on

the maneuver’s propellant mass.

4.2.3 Planar Non-Constant Thrust

A more complicated scheme occurs when the thrust is no longer constant (so that

ṁ can vary) but is constrained in the r̂− φ̂ plane. Then Euler’s equations of motion

are the same as Eq. (4.17) with the torque given in Eq. (4.19). Assuming θ is constant,

these equations reduce into

T = mpLγ̇
2 sinψ

γ̈ = 0
(4.28)

Once again γ̇ is constant, but since the thrust is not constant, it can vary according

to the first equation in Eq. (4.28). Using T = −ṁgIsp and γ̇ = γ̇0, the first equation

in Eq. (4.28) becomes
ṁ

mp

= − L

gIsp
γ̇20 sinψ (4.29)

To find the mass time history, Eq. (4.29) is integrated to obtain

mp = mp0 exp

(
−Lγ̇

2
0 sinψ

gIsp
t

)
(4.30)

The mass is then substituted into Eq. (4.29) to find the required ṁ (and corresponding

thrust) which results in a constant θ.
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4.2.4 Non-Planar Non-Constant Thrust

Instead of a planar thrust, consider a spacecraft with a non-constant and non-

planar thrust. Using Eq. (4.21) as the new thrust, the torques are the same as in

Eq. (4.23). Assuming θ is constant, Eq. (4.17) reduces into

T = mpLγ̇
2 sinψ

sin η = mpLγ̈/T
(4.31)

where T = −ṁgIsp and ṁ is time varying. In this case, γ̇ is no longer constant and

varies according to

γ̈ = −m̈gIsp + γ̇2ṁL sinψ

2γ̇mpL sinψ
(4.32)

which is found by differentiating the first equation in Eq. (4.31). Substituting Eq.

(4.32) into the second equation in Eq. (4.31) gives

sin η =
m̈gIsp + γ̇2ṁL sinψ

2ṁgIspγ̇ sinψ
(4.33)

If ṁ is constant, Eq. (4.33) becomes Eq. (4.27). The spin rate is found from the first

equation in Eq. (4.31) where

γ̇2 = − ṁgIsp
mpL sinψ

(4.34)

which is identical to Eq. (4.8). After choosing the desired mass history (and conse-

quently the thrust history), the required spin rate follows Eq. (4.34) which is then

used to solve for the necessary η in Eq. (4.33) to control θ.

4.2.5 Newtonian Analysis of Non-Constant Thrust

Alternatively instead of deriving the control law from Euler’s equations of motion,

one could start with the center of mass as Landau did in Ref. [64]. The derivation is

included here for completeness.

When the thrust is assumed to be non-constant, the resulting solutions match

Eqs. (4.33) and (4.34). The spacecraft is still assumed to have a fixed configuration

where L and ψ are constant and a fixed habitation system mass.
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The position of the habitat with respect to the center of mass is

rh − rcm =
Lmp

m
r̂ (4.35)

Taking into account the angular velocity in Eq. (4.2), the velocity and acceleration

of the habitat with respect to the center of mass are

vh − vcm =
Lṁmh

m2
r̂ +

Lmp

m
γ̇ cos θθ̂− Lmp

m
θ̇φ̂ (4.36)

ah − acm =

[
−2Lṁ2mh

m3
+
Lm̈mh

m2
− Lmp

m

(
γ̇2 cos2 θ + θ̇2

)]
r̂

+

[
2Lṁmh

m2
γ̇ cos θ +

Lmp

m

(
γ̈ cos θ − 2γ̇θ̇ sin θ

)]
θ̂

+

[
−2Lṁmh

m2
θ̇ − Lmp

m

(
γ̇2 cos θ sin θ + θ̈

)]
φ̂

(4.37)

Similarly, the position, velocity, and acceleration of the propulsion system with

respect to the center of mass are

rp − rcm = −Lmh

m
r̂ (4.38)

vp − vcm =
Lṁmh

m2
r̂− Lmh

m
γ̇ cos θθ̂ +

Lmh

m
θ̇φ̂ (4.39)

ap − acm =

[
−2Lṁ2mh

m3
+
Lm̈mh

m2
+
Lmh

m

(
γ̇2cos2θ + θ̇2

)]
r̂

+

[
2Lṁmh

m2
γ̇ cos θ − Lmh

m

(
γ̈ cos θ − 2γ̇θ̇ sin θ

)]
θ̂

+

[
−2Lṁmh

m2
θ̇ +

Lmh

m

(
γ̇2 cos θ sin θ + θ̈

)]
φ̂

(4.40)

By the definition of the center of mass, the position of the center of mass is

rcm = (mhrh +mprp) /m (4.41)

The velocity and acceleration of the center of mass are found by differentiating

Eq. (4.41) which yields

vcm = [mhvh +mpvp + ṁ (rp − rcm)] /m (4.42)

acm = [mhah +mpap + 2ṁ (vp − vcm) + m̈ (rp − rcm)] /m (4.43)
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For a planar thrust,

T = −T sinψr̂ + T cosψφ̂ (4.44)

For a more general derivation, the system also includes control forces in the θ̂ or φ̂

direction applied at either the habitat (Rθh and Rφh) or propulsion system the (Rθp

and Rφp) so that

R = (Rθh +Rθp) θ̂ + (Rφh +Rφp) φ̂ (4.45)

Since the system has time-varying mass, Newton’s second law must be carefully

applied. For time-varying mass, Newton’s second law is

F + vrel
dm

dt
= m

dv

dt
(4.46)

where F are the external forces, vrel is the velocity of the departing mass with respect

to the center of mass, and v is the system’s velocity. However, as revealed by Belknap,

the effect of jet damping cancels out the effects from the decreasing spacecraft inertia

[82]. Then mass that leaves the spacecraft with zero relative velocity does not change

the angular velocity but affects the translational motion according to Eq. (4.43). Any

mass that departs with non-zero relative velocity is modeled as thrust or

T = −ṁgIsp (4.47)

Then ṁvrel in Eq. (4.46) can replaced with the thrust (−ṁgIsp), so that the acceler-

ation for the entire system is

mhah +mpap = −T sinψr̂ + (Rθh +Rθp) θ̂ + (T cosψ +Rφh +Rφp) φ̂ (4.48)

Substituting Eqs. (4.37)–(4.40) and (4.43) into Eq. (4.48), the acceleration of the

center of mass in body coordinates is

acm =

(
−T sinψ

m
+

2Lṁ2mh

m3
− Lm̈mh

m2

)
r̂

+

(
Rθh +Rθp

m
− 2Lṁmh

m2
γ̇ cos θ

)
θ̂

+

(
T cosψ

m
+
Rφh +Rφp

m
+

2Lṁmh

m2
θ̇

)
φ̂

(4.49)
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To convert the acceleration into an inertial frame, the direction cosine matrix is used

for the rotation sequence depicted in Fig. 4.4, so that the acceleration in Eq. (4.49)

becomes

acm =


cos γ cos θ − sin γ cos γ sin θ

sin γ cos θ cos γ sin γ sin θ

− sin θ 0 cos θ



×


−T sinψ/m+ 2Lṁ2mh/m

3 − Lm̈mh/m
2

(Rθh +Rθp) /m− (2Lṁmh/m
2) γ̇ cos θ

T cosψ/m+ (Rφh +Rφp) /m+ (2Lṁmh/m
2) θ̇


(4.50)

If instead the particles are considered separately, internal tether forces must be

taken into account where frh = −frp is the tether tension and fθh = −fθp, fφh = −fφp
are transverse forces applied at the tether endpoints. The transverse forces are in

opposite directions at a distance L from each other, so they would produce a torque on

the tether. However, the tether is massless, so a net torque is not possible. Therefore

the transverse forces must be zero or fθh = fθp = fφh = fφp = 0.

The acceleration for the habitat can be found by substituting Eq. (4.49) into

Eq. (4.37). Using Newton’s second law, the equations of motion for the habitat are

r̂ : frh = −mh

m
T sinψ − Lmpmh

m

(
γ̇2cos2θ + θ̇2

)
θ̂ : Rθh + fθh =

mh

m
(Rθh +Rθp) +

Lmpmh

m

(
γ̈ cos θ − 2γ̇θ̇ sin θ

)
φ̂ : Rφh + fφh =

mh

m
T cosψ +

mh

m
(Rφh +Rφp)

− Lmpmh

m

(
γ̇2 cos θ sin θ + θ̈

)
(4.51)
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Similarly, the accelerations for the propulsion system are found by substituting

Eq. (4.49) into Eq. (4.40). The resulting equations of motion for the propulsion

system are

r̂ : − T sinψ + frp = −mp

m
T sinψ +

Lmpmh

m

(
γ̇2cos2θ + θ̇2

)
θ̂ : Rθp + fθp =

mp

m
(Rθh +Rθp)−

Lmpmh

m

(
γ̈ cos θ − 2γ̇θ̇ sin θ

)
φ̂ : T cosψ +Rφp + fφp =

mp

m
T cosψ +

mp

m
(Rφh +Rφp)

+
Lmpmh

m

(
γ̇2 cos θ sin θ + θ̈

)
(4.52)

Since fθh and fφh are zero, the θ̂ and φ̂ components in Eq. (4.51) or Eq. (4.52)

provide the equations of motion for the system or

γ̈ = 2γ̇θ̇ tan θ +
mpRθh −mhRθp

Lmhmp cos θ

θ̈ = −γ̇2 cos θ sin θ +
T cosψ

Lmp

− mpRφh −mhRφp

Lmhmp

(4.53)

To enforce θ = ψ (so that the thrust is along ẑ), θ̈ and the control forces are set

to zero in the second equation of Eq. (4.53) to obtain

T/γ̇2 = mpL sinψ (4.54)

which is the same equation as Eq. (4.8) as found in all the earlier cases.

The second equation in Eq. (4.54) can be differentiated to produce a control law

for the spin rate or

γ̈ = −m̈gIsp + γ̇2ṁL sinψ

2γ̇Lmp sinψ
(4.55)

The desired change in spin rate is then substituted into the first equation of Eq.

(4.53) to solve for the control force required to track Eq. (4.55) or

Rθhmp −Rθpmh = −mh (m̈gIsp + γ̇2ṁL sinψ)

2γ̇ tanψ
(4.56)

If the engine is throttled as shown in section 4.2.3, no additional control forces are

required, and the mass history follows Eq. (4.30). Whenever the engine does not

conform to this thrust profile, the spin rate has to be adjusted by thrusting along θ̂
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to maintain θ = ψ. From the second equation in Eq. (4.53), the control force could

be along φ̂ to maintain θ, but this control force would be of the same magnitude as

the main thruster T .

Slightly rolling the thrust along r̂ points a portion of the main thrust along θ̂

to provide a control force. The new thrust vector in body coordinates is given by

Eq. (4.21). The control force is the difference between Eqs. (4.21) and (4.44) or

Rp = Tη −T = −T cosψ sin ηθ̂ + T cosψ (cos η − 1) φ̂ (4.57)

By adjusting the roll angle, the control force in Eq. (4.57) follows the nonlinear

control input. Then Rθp in Eq. (4.56) may be replaced with the θ̂ component in

Eq. (4.57) resulting in

sin η =
m̈gIsp + γ̇2ṁL sinψ

2ṁgIspγ̇ sinψ
(4.58)

where the control force on the habitat or Rθh is zero. This equation matches the roll

angle equation, Eq. (4.33), found previously.

For small angles, the Rφp component in Eq. (4.56) is essentially zero, and the spin

rate is adjusted for almost no cost. Therefore to maintain Eq. (4.54), Eq. (4.58) is

used so that a spacecraft can maintain artificial gravity when undergoing a maneuver.

The rotational motion is governed by Eq. (4.53), and the inertial accelerations are

found by Eq. (4.50).

4.2.6 One Thruster Spin Up

Consider the necessary propellant needed to spin up the tethered spacecraft. As-

suming the spin up is done by a thruster on the propulsion system, the only force

on the spacecraft is Rθp = −ṁgIsp. The propulsion system mass changes with time

while the crew habitat’s mass remains constant, so the moments of inertia can still
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be modeled as Eq. (4.3). Including jet damping which cancels out some of the effects

from the changing inertia [69], Euler’s equations of motion reduce to

0 = −L
2m2

hṁ

m2
η̇

0 = Iθ̈ + İ θ̇

Mφ = Iφ̈

(4.59)

where η̇ is the angular velocity around r̂ and φ̇ is the angular velocity around φ̂.

From Eq. (4.59)

η̇ = 0

θ̇ =
I0θ0
I

(4.60)

For a positive spin around φ̂, the thruster must point in the negative θ̂ direction

with a torque of

Mφ = −LgIspmhṁ

m
(4.61)

Integrating the third equation in Eq. (4.59) with this torque gives

φ̇ =
gIsp
L

log
mp0

mp

+ φ̇0 (4.62)

The artificial gravity level sensed by the crew when the spacecraft is not thrusting

is

φ̇2
AG =

aAGm

Lmp

(4.63)

where aAG is the desired artificial gravity level. The propellant required to reach this

artificial gravity level is found by substituting Eq. (4.63) into Eq. (4.62) for

mp0 = mp exp

(
1

gIsp

√
aAGLm

mp

− Lφ̇0

gIsp

)
(4.64)

with

mp0 = mp +mprop (4.65)

where mprop is the mass of the propellant. Then the mass required to spin up the

spacecraft to a certain artificial gravity level is

mprop = mp

[
exp

(
1

gIsp

√
aAGLm

mp

− Lφ̇0

gIsp

)
− 1

]
(4.66)
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For the one thruster spin-up case, the difference between including and excluding

jet damping is very small (less than 1%). When jet damping is not included in the

model and there is no initial spin, the expression becomes

mpropNoJet = m

[
1− exp

(
− 1

gIsp

√
aAGLmp

m

)]
(4.67)

To find the inertial velocities, consider Eq. (4.49). For the spin-up case, the only

force is Rθp in the negative θ̂ direction. Then the body fixed accelerations are

acm =

(
2Lṁ2mh

m3
− Lm̈mh

m2

)
r̂ +

(
ṁgIsp
m

− 2Lṁmh

m2
φ̇

)
θ̂ +

2Lṁmh

m2
θ̇φ̂ (4.68)

where Rθp is −ṁgIsp.

If θ̇ is zero, the only angular velocity is φ̇, so the spacecraft is only rotating about

the φ̂ axis. Then the inertial accelerations are

acm =

[(
2Lṁ2mh

m3
− Lm̈mh

m2

)
cosφ+

(
ṁgIsp
m

− 2Lṁmh

m2
φ̇

)
sinφ

]
x̂

+

[(
Lm̈mh

m2
− 2Lṁ2mh

m3

)
sinφ+

(
ṁgIsp
m

− 2Lṁmh

m2
φ̇

)
cosφ

]
ŷ

(4.69)

The single thruster causes an undesired velocity in the x̂ and ŷ directions which

can be reduced using a two-burn scheme [30]. The two-burn scheme momentarily

suspends the thrust so that when restarted, the velocity is redirected to more desirable

position.

4.2.7 Coupled Thruster Spin Up

If an additional equal thruster is added to the habitation system, the spacecraft

would not have an inertial acceleration since the force from the thrusters cancel each

other out. In this case, the mass of the habitation system and the propulsion system

are both changing with time and have the same mass flow rate. The moments of

inertia are the same as before, but the time rate of change of the moments of inertia

are different where

İ =
L2ṁ

(
m2
h +m2

p

)
m2

(4.70)
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Including jet damping [69], Euler’s equations of motion reduce to

0 = −
L2
(
m2
h +m2

p

)
ṁ

m2
η̇

0 = Iθ̈ + İ θ̇

Mφ = Iφ̈

(4.71)

where once again

η̇ = 0

θ̇ =
I0θ0
I

(4.72)

For a positive spin around φ̂, the thrusters are aligned in opposite directions

where

Mφ = −LṁgIsp (4.73)

Then the equation for φ̈ is

φ̈ = −mṁgIsp
Lmpmh

(4.74)

The mass of the habitation system can be written as

mh = mp +mh0 −mp0 (4.75)

where mh0 and mp0 are the initial mass values for the habitation and propulsion

systems. Equation (4.74) can be rewritten as

φ̈ = −ṁgIsp (2mp +mh0 −mp0)

Lmp (mp +mh0 −mp0)
(4.76)

which can be integrated into

φ̇ =
gIsp
L

log
mp0mh0

mpmh

+ φ̇0 (4.77)

To determine the amount of propellant to spin up the spacecraft to a certain

artificial gravity level, substitute Eq. (4.63) for φ̇ and solve for mprop noting that

mp0 = mprop/2 +mp

mh0 = mprop/2 +mh

(4.78)
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Then the required mass propellant assuming no initial spin is

mprop = −m+

√√√√m2 − 4mpmh

[
1− exp

(
1

gIsp

√
aAGLm

mp

)]
(4.79)

The difference between including and excluding jet damping is even smaller in

this case (less than 0.25%). Without jet damping, the required propellant mass is

mpropNoJet = 2
mh

gIsp

√
aAGLmp

m
(4.80)

For a coupled spin up, the forces from the two thrusters cancel out leaving no

external forces resulting in no accumulated velocity. While a zero net velocity is

attractive, including an additional thruster on the habitation system adds complexity

and expense over the simple and elegant single-thruster system discussed throughout

this chapter.

4.3 Round Trip Mission to Mars Application

For this analysis, a stop-over mission architecture [83] is assumed in which the

unoccupied interplanetary transfer vehicle (Fig. 4.3) stars off in a long period, ellipti-

cal orbit around Earth. The crew rendezvous with the transfer vehicle via a smaller

“taxi” vehicle which liftoffs from Earth and transfers to the same orbit as the transfer

vehicle. A 1 km/s ∆V Earth departure is preformed, and the crew, taxi, and transfer

vehicle proceed on a several-month journey to Mars. When approaching Mars, the

crew departs the transfer vehicle in the taxi and lands on the surface of Mars. The

transfer vehicle performs a 1.5 km/s ∆V to capture into another long period ellip-

tical orbit where it remains in orbit while the crew is on Mars. At the end of the

surface stay, the taxi and crew rendezvous with the transfer vehicle in Mars orbit

and undergo another 1.5 km/s ∆V burn to escape Mars. Following another several-

month journey, the crew departs the transfer vehicle in the taxi and lands on Earth.

The transfer vehicle captures into Earth orbit with a 1 km/s ∆V and waits to be

resupplied for subsequent missions. The key design parameters for this mission are

provided in Table 4.1.
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Table 4.1. Mission design assumptions. Reproduced with permission
from Landau [64].

Parameter Value Notes

Earth orbit capture or

departure ∆V

1 km/s Long period elliptical orbit and

moderate interplanetary V∞

Mars orbit capture or

departure ∆V

1.5 km/s Long period elliptical orbit and

moderate interplanetary V∞

Crew habitat mass 40 t Crew of 6

Engine Isp 450 s Liquid hydrogen/liquid oxygen

engine

Engine inert/propellant

mass ratio

0.16 Cryogenic upper stage

Propulsion system staging After Mars orbit

insertion

Mass optimal to split mission

∆V equally with Earth-Mars

stage expended at Mars

Engine throttle range 60–100 % Limited range simplifies engine

design

Engine

ramp-up/ramp-down

5 s Time between zero thrust and

full throttle

Artificial gravity level 1 g at Earth

0.38 g at Mars

Vary linearly during

interplanetary transit to

acclimate crew

Maximum spin rate 4 rpm Avoid motion sickness

Maximum acceleration 2 g Limit stress to crew and tether

tension

To size the propulsion system, the rocket equation is used where

mp =
mpayload exp (∆V /gIsp)

1− µ [exp (∆V /gIsp)− 1]
−mpayload (4.81)
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where mpayload is the payload mass and µ is the engine inert-to-propellant mass ratio

(0.16 in this case). The propellant mass, mprop, is found by

mprop = m [1− exp (−∆V /gIsp)] (4.82)

To calculate the required vehicle masses, the Mars departure and Earth arrival are

first considered where mpayload is only the crew habitat. Then mp for Mars departure

is found by Eq. (4.81) with a ∆V that includes both the Mars departure and Earth

arrival ∆V (i.e. 2.5 km/s). The propellant mass, mprop, for Mars departure is calcu-

lated by Eq. (4.82) with a ∆V of only the 1.5 km/s (i.e. Mars departure ∆V ). The

mass of the propulsion system at Earth arrival is found by subtracting the propellant

used for the Mars departure from the Mars departure propulsion system mass. The

propellant required at Earth arrival is calculated by Eq. (4.82) with a ∆V of 1 km/s.

The inert mass, minert is found by subtracting the propellant used for Earth arrival

from the mass of the propellant system at Earth arrival. The resulting vehicle masses

are provided in Table 4.2 where mprop is the propellant mass for a single maneuver.

For Earth departure and Mars arrival sizing, the payload is the total mass of the

system at Mars departure. Then mp for Earth departure is found by Eq. (4.81) with

a ∆V of 2.5 km/s (i.e. Earth departure and Mars arrival ∆V ), and mprop for Earth

departure is given by Eq. (4.82) with a ∆V of 1 km/s (i.e. Earth departure ∆V ). At

Mars arrival, mp is the mass of the propulsion system at Earth departure minus the

propellant needed for Earth departure. The propellant required for Mars arrival with

a ∆V of 1.5 km/s is calculated by Eq. (4.82). The inert mass for the Earth-Mars

stage, which is discarded after Mars orbit insertion, is the difference between the mass

of the propulsion system at Mars arrival and the masses of the propulsion system at

Mars departure and the propellant needed for Mars arrival. These values are listed

in Table 4.2.

When the spacecraft is not thrusting, the artificial gravity, aAG, sensed by the

crew is

aAG = ω2Lmp/m (4.83)
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Table 4.2. Vehicle mass at major events. Reproduced with permission
from Landau [64].

Event m, t mp, t mprop, t minert, t

Earth departure 161 121 32.6

Mars arrival 128 88.4 37.0 11.1

Mars departure 80.3 40.3 23.1

Earth arrival 57.1 17.1 11.6 5.5

To determine the tether length, the smallest mp/m of the four maneuvers is obtained

which occurs at Earth arrival from Table 4.2. Assuming a maximum angular velocity

of 4 rpm [45], the tether length at Earth arrival needed to produce 1 g of artificial

gravity is, from Eq. (4.83), at least 187 m. For additional margin, a tether length of

200 m is selected. For improved physiological and psychological health, a spin rate of

1 to 2 rpm is desired [43,84], but at this spin rate, the tether length would be almost

2 km for 1 g of artificial gravity which was deemed less feasible than a high spin rate.

From the first equation in Eq. (4.51), the sensed acceleration is determined by

athrusting =
T sinψ

m
+
Lmp

m

(
γ̇2cos2θ + θ̇2

)
(4.84)

During the controlled burns, θ = ψ and θ̇ = 0. After the maneuver when there is no

thrust with θ = ψ and θ̇ = 0, Eq. (4.84) becomes

aAG =
Lmp

m
γ̇2cos2ψ (4.85)

The largest acceleration is most likely to happen at Earth arrival because the

artificial gravity level begins at 1 g and increases with increasing thrust. To reduce

the gravity level, the spacecraft could be spun down slightly with additional propellant

or alternatively the spacecraft could have a lower artificial gravity level for the return

trajectory which may have physiological consequences. In this simulation, however,

the crew is not on the spacecraft during Earth arrival since they left on the taxi
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Table 4.3. Thrust design points. Reproduced with permission from Landau [64].

Event aAG, g γ̇, rpm T , kN

End of Earth departure 1 3.60 1,781

Beginning of Mars arrival 0.38 2.22 677

End of Mars departure 0.38 3.37 301

Beginning of Earth arrival 1 5.46 793

previously to land on Earth, so the Earth departure maneuver is where the crew will

sense the largest acceleration.

To find the spin rate at Earth departure, γ̇, the maximum acceleration limit of

2 g is used in Eq. (4.83) where the masses are at the end of the Earth departure

burn (from Table 4.2, mp = 121 − 32.6 = 88.4 t). The body-fixed thrust angle,

ψ = 45 deg is then found by Eq. (4.85) where the artificial gravity level is set to 1

g and the mass values are again at the end of the Earth departure burn. Using the

values for ψ and γ̇, the thrust at the end of the Earth departure burn is determined

by Eq. (4.54). The values for γ̇ and T at the end of the Earth departure are given

in Table 4.3. The thrust and body-fixed thrust angle could be found similarly for a

maximum acceleration at Earth arrival with Eq. (4.85) applied to the beginning of

the burn and Eq. (4.83) applied at the end of the burn, when the largest acceleration

is most likely to occur.

The spin rates for the required artificial gravity and associated thrust values for

the remaining maneuvers are provided in Table 4.3. The spin rates are found from

Eq. (4.85) where the mass values are for either the beginning of the burn or the end

of the burn when the mass is diminished by the appropriate mprop. The thrust values

are then determined by Eq. (4.54). Since the thrust values in Table 4.3 are sized based

on the required artificial gravity before or after the maneuver, additional propellant

is not needed to adjust the spin rate.
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The Earth departure manuever has the highest thrust level since the spacecraft is

the most massive during this burn, so the thrust at the end of the Earth departure

burn is used to size the engine. The Earth and Mars arrival maneuvers require half

of the Earth departure thrust, and the Mars departure maneuver requires one sixth

of the Earth departure thrust. Since the spacecraft rotates on a shorter radius to

maintain the desired thrust direction, the spin rate during thrusting, γ̇, is larger than

a simple spin about φ̂.

The spacecraft design would be complete at this point if the engines could throttle

to any thrust level to match the spin rate and mass according to Eq. (4.54). How-

ever, many engines are unable to operate at low thrust levels due to combustion

instability [73], so for this simulation, the engine has a throttle range of 60–100%. By

adjusting the spin rate before maneuvers, the spacecraft can still be controlled with

a more limited throttle range, but the large difference between required thrust levels

imply that the design should incorporate more than one engine. With a 60% thrust

level, four 500 kN engines are needed for the maneuvers with four engines at Earth

departure, two engines at Mars arrival and Earth arrival, and a single engine at Mars

departure as provided in Table 4.4. Four engines of the same size have the additional

benefit of reducing the cost of each engine since only one engine would need to be

built and qualified.

After the Mars arrival maneuver, the Earth-Mars inert mass is discarded. When

releasing the inert mass, the angular velocity does not change, but the spacecraft does

gain a few m/s of ∆V .

The angular velocities at the end of the Mars arrival maneuver and the beginning of

the Mars departure maneuver should be equal so that no additional thrust is required

between the two maneuvers. To achieve the same angular velocity, the thrust at the

end of the Mars arrival and the beginning of the Mars departure are throttled so the

angular velocities are equal.

After the Earth arrival maneuver, a new 121 t propulsion system replaces the 5.5

t inert Mars-Earth mass to start the cycle again. The new propulsion system docks at
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Table 4.4. Derived spacecraft parameters. Reproduced with permis-
sion from Landau [64].

Parameter Value

Tether length 200 m

Engine thrust 500 kN

Number of Earth departure engines 4

Number of Mars arrival engines 2

Number of Mars departure engines 1

Number of Earth arrival engines 2

Thruster offset angle 45 deg

the center of mass and crawls to the end of the tether so that angular momentum is

conserved during the acquisition of the new propulsion system. The angular velocity,

however, is reduced by
mp0/m0

mpf/mf

=
5.5/45.4

121/161
= 0.160 (4.86)

To decrease the difference between the angular velocities at the end of the Earth

arrival and Earth departure burn, the engines are throttled to maximize the angular

velocity at the end of the Earth arrival burn and to minimize the angular velocity at

the beginning of Earth departure.

When the engines are starting and ending, the burn is not controlled. Since the

spacecraft is spinning at 4 rpm, it undergoes a full revolution every 15 seconds, so the

start-up and ending thrust is only aligned in the desired direction for a fraction of

time. Even for a few seconds of ramp-up time, the thrust will be misaligned from the

desired direction causing a ∆V pointing error. To include these effects, the engines

are assumed to take five seconds to linearly ramp-up to the desired thrust level and

five seconds to linearly ramp-down to zero. The ramp-up and ramp-down phases of

the burn affect the angular velocities, so additional propellant is needed to have equal

angular velocities between the Earth maneuvers and the Mars maneuvers.
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4.4 Simulation

MATLAB R© is used to numerically find the artificial gravilty level and inertial

velocity for the four maneuvers. The simulation uses a built in MATLAB R© integrator,

ode45, which is based on the Dormand Prince method, an explicit Runge-Kutta

formula, to solve for the differential equations numerically. The variable step size

integral uses tight relative and absolute error tolerances (on the order of 10−13).

For this simulation, the thrust is assumed to vary linearly for the controlled and

uncontrolled portions of the burn so that m̈ is constant or equivalently

m = m0 + ṁ0t+ m̈t2 (4.87)

The propellant required for each maneuver in Table 4.2 assumes all of the velocity

occurs in one direction. However, the maneuvers discussed here require slightly more

propellant than given in Table 4.2 (totaling around 7 kg for the four maneuvers)

to correct small transverse velocities to achieve the required ∆V in Table 4.1. The

engines here can only throttle to 60% unlike in Table 4.1 where the engines can achieve

any thrust level. The number of engines for each maneuver is also given in Table 4.4.

4.4.1 Earth Departure

For the Earth departure burn, this simulation assumes that the mprop in Table 4.2

plus a small margin is used during the controlled and uncontrolled burns. The next

step is to find the initial ṁ and constant m̈ values for each of the three sections of

the thrust profile: ramp-up (1), controlled (2), and ramp-down (3).

Table 4.2 gives the required spin rate at the end of the Earth departure burn, γ̇2.

Ideally this spin rate would be targeted at the end of the ramp-down phase, but since

there is no relationship between thrust and spin rate in the uncontrolled sections, the

spin rate is targeted at the end of the control burn where the spin rate and thrust
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level are related by Eq. (4.54). After some algebra, the mass of propellant for the

ramp-up and controlled burn is

mprop12 = (mprlp − βm0 + βmh) / (1− β) (4.88)

where mprop is the propellant used for the Earth departure burn plus the propel-

lant margin, m0 is the mass of the spacecraft at the beginning of the burn plus the

propellant margin, and β is

β = L trγ̇
2
2 sinψ/ (2gIsp) (4.89)

where tr is the ramp-up time (5 seconds).

The propellant for the ramp-down section, mprop3, is the difference between the

total propellant, mprop, and the propellant for the ramp-up and controlled sections,

mprop12. The mass flow rate at the end of the controlled section is

ṁ2f = −2mprop3/tr (4.90)

and the mass flow rate at the beginning of the controlled section is

ṁ20 = − (2mprop12 + ṁ2f ) / (t2 + tr) (4.91)

where t2 is the time of the controlled burn which is adjusted to achieve the desired

ending ∆VZ .

Since the maximum thrust is limited and equal to −ṁgIsp, the mass flow rates at

the beginning and end of the controlled section must be below the maximum thrust.

However, the calculated mass flow rates from Eqs. (4.90) and (4.91) both exceed the

maximum thrust because the mprop in Table 4.2 is now split over the three sections

of the burn. The thrust linearly increases during Earth departure, so the maximum

thrust is set to be at the end of the controlled section where

ṁ2f = −Tmax/ (gIsp) (4.92)

Then the propellant for the ramp-up and ramp-down sections is

mprop1 = −ṁ20tr/2

mprop3 = −ṁ2f tr/2
(4.93)
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The mass flow rate at the beginning of the controlled section is found by Eq. (4.91)

where mprop12 is the total propellant minus mprop3 found in Eq. (4.93). The initial

thrust does not fall below the 60% throttle range, so ṁ20 does not have to be modified

further.

The m̈ values are calculated by

m̈1 = ṁ20/tr

m̈2 = (ṁ2f − ṁ20) /t2

m̈3 = −ṁ2f/tr

(4.94)

Then the mass for each section of the thrust is

m1 = m0 + m̈1t
2/2

m2 = m0 −mprop1 + ṁ20t+ m̈2t
2/2

m3 = m0 −mprop12 + ṁ2f t+ m̈3t
2/2

(4.95)

where t starts at 0 and goes to tr or t2.

Since the thrust level at the end of the controlled thrust is now at maximum

thrust, the spin at the end of the burn must be reevaluated by the control law in

Eq. (4.54) or

γ̇22f = − ṁ2fgIsp
L sinψ (m0 −mh −mprop12)

(4.96)

To simulate the ramp-up phase, the final conditions of the ramp-up phase must

match the initial conditions of the controlled phase to ensure that the controlled

burn occurs when θ = ψ. Since θ is constant during the controlled burn, the only

unknown initial condition is the initial spin rate, γ̇20. To find the initial spin rate,

the controlled burn is integrated backwards with the spin rate as given by Eq. (4.96)

and the constant θ = ψ. The mass is given by the second equation in Eq. (4.95). The

angular rates are found by integrating Eq. (4.17) with the moment of inertia given by

Eq. (4.3) and the torques given in Eq. (4.22) where cos η is not reduced to unity and

η follows Eq. (4.58). The inertial velocities arise from the integration of Eq. (4.50).

Once the conditions at the start of the burn are known, they are used as the final

conditions for the 5 second ramp-up phase. Here the same equations are used to
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simulate the motion except that η is constant and fixed to be the η at the beginning

of the controlled burn. The mass is given by the first equation in Eq. (4.95).

The ramp-down phase uses the conditions at the end of the controlled burn as

the initial conditions, and the same differential equations are now integrated forwards

with a fixed η that is the η at the end of the controlled burn. The mass is found by

the third equation in Eq. (4.95).

To achieve a 1 km/s ∆VZ at the end of the ramp-down phase, the controlled

burn time and propellant margin are adjusted. During the three burn sections, the

artificial gravity level is found by Eq. (4.84).

4.4.2 Mars Arrival

For the Mars arrival burn, the spin rate in Table 4.3 is the spin rate at the

beginning of the controlled burn. Then the propellant mass used during the ramp-up

is

mprlp1 = (m0 −mh) β/ (1 + β) (4.97)

where m0 is the mass of the spacecraft plus the propellant margin at the beginning

of the manuever and β is found by Eq. (4.89). The initial and final mass flow rates

of the controlled burn are

ṁ20 = −2mprop1/tr

ṁ2f = − (2mprop23 − ṁ20t2) / (tr + t2)
(4.98)

where mprop23 is the mass of the propellant used during the controlled and ramp-down

sections (mprop −mprop1).

According to Table 4.4, the Mars arrival manuever uses two of the four engines

which have a minimum thrust of 600 kN. Since the thrust linearly decreases during

the Mars arrival maneuver, ṁ2f must have a resulting thrust that is above 600 kN. In

this simulation, the minimum thrust ends below this threshold, so the thrust at the

end of the controlled burn and its corresponding ṁ are fixed at the minimum level
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(i.e. ṁ20 remains the same). Then the propellant used during the ramp-down section

is determined by Eq. (4.93), and the controlled burn time is determined by

t2 = −2mprop12/ (ṁ20 + ṁ2f ) (4.99)

The initial spin rate is then reevaluated by Eq. (4.54) or

γ̇220 = − ṁ20gIsp
L sinψ (m0 −mh −mprop1)

(4.100)

The m̈ values are given by Eq. (4.94) and the masses are given by Eq. (4.95).

Since γ̇20 is known, the ramp-up phase is first simulated backwards with a constant

η given by Eq. (4.58) using the initial conditions of the controlled burn. The angular

rates are found by integrating Eq. (4.17) with the moment of inertia given by Eq. (4.3)

and the torques given in Eq. (4.22). The inertial velocities arise from the integration

of Eq. (4.50).

The controlled burn is propagated forward using these same equations except that

η now follows Eq. (4.58). The ramp-down phase uses the conditions at the end of the

controlled burn as the initial conditions, and the same equations are now simulated

forwards with a fixed η that is the the value of η at the end of the controlled burn.

During the three burn sections, the artificial gravity level is found by Eq. (4.84).

Since the controlled burn time is fixed in this case, only the propellant margin can

be changed to achieve the ending ∆VZ of 1.5 km/s.

4.4.3 Mars Departure

Similar to the Earth departure scenario, the spin rate given in Table 4.3 for Mars

departure occurs at the end of the manuever. Then the propellant for the ramp-up

and controlled burns is given by Eq. (4.88) while β is obtained from Eq. (4.89). The

initial and final mass flow rates for the controlled section are found from Eqs. (4.90)

and (4.91).

From Table 4.4, the Mars departure has one engine, and the resulting thrust from

ṁ20 and ṁ2f is in the throttable range of the engine. Then the propellant required



88

for the ramp-down burns are found by Eq. (4.93), the m̈ values are found by Eq.

(4.94), and the spacecraft mass is found by Eq. (4.95).

The new spin rate is determined by Eq. (4.96), and the simulation of the manuever

follows the description of the Earth departure simulation.

4.4.4 Earth Arrival

The Earth arrival maneuver follows the same procedure as the Mars departure

maneuver. The Earth arrival maneuver also uses two engines, and the minimum

thrust must be kept above 600 kN with a procedure similar to the Mars arrival

maneuver.

4.4.5 Simulation Results

The mass flow rates, the propellant margin, and the controlled burn time for the

four maneuvers are given in Table 4.5. The arrival maneuvers have a larger propellant

margin than the departure maneuvers since the controlled burn time is fixed and only

the propellant margin can be adjusted to achieve the required ∆VZ . The undesired

transverse velocities from the Mars maneuvers are smaller than the Earth maneuvers,

so the propellant margin is also smaller for the Mars maneuvers.

Table 4.5. Spacecraft parameters for the maneuvers.

Maneuver ṁ20, kg/s ṁ2f , kg/s Prop margin, kg t2, s

Earth departure -412 -453 2.7 71

Mars arrival -153 -136 0.27 251

Mars departure -112 -69 0.05 250

Earth arrival -175 -136 3.5 70
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Figure 4.5. Thrust histories for the four maneuvers.

The resulting thrust profiles for the four maneuvers which include the ramp-up

and ramp-down portions are shown in Fig. 4.5. As expected from Table 4.3, the

largest thrust occurs at Earth departure when the spacecraft is most massive, and

the smallest thrust occurs at Mars departure. The final thrust at Earth departure is

at maximum thrust so that the corresponding spin rate from Eq. (4.54) can achieve

1 g artificial gravity at the end of the ramp-down burn.

Figure 4.6 shows that the controlled burn tracks ψ (at 45 degrees) when the

thrust is at operating at high thrust levels. For this simulation, ψ is the same for

each maneuver, but if the spacecraft began a maneuver at a different orientation, ψ

must be changed so that Eq. (4.54) holds. The uncontrolled burns (ramp-up and

ramp-down) shown by the vertical lines demonstrate the transition from free motion

where θ oscillates as the spacecraft spins at an angle to ẑ to controlled flight when θ

is constant.

The control angle, η, is shown in Fig. 4.7 which adjusts the thrust direction along

the positive r̂ direction. The horizontal sections at the beginning and end of the

η curves (most clearly evident at Earth arrival) arise from a constant η during the
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Figure 4.6. θ for the four maneuvers.

ramp-up and ramp-down phases. The Earth maneuver values of η are larger than

the Mars maneuvers, but all values for η are less than one degree. Therefore the

small angle assumption made to find Eq. (4.33) holds. These small angles are the

only adjustment needed to achieve the required spin rate specified in Eq. (4.54) to

maintain the desired thrust direction.

The spin rates shown in Fig. 4.8 are below 4 rpm except for the Earth arrival

maneuver. During the Earth arrival maneuver, however, the crew has already de-

parted the transfer vehicle to land on Earth, so the high spin rate will not cause crew

physiological problems. A large final spin rate at the Earth arrival is necessary since

the spin rate will decrease once the propulsion system for the next mission to Mars is

added. With the additional mass, the final spin rate of 4.4 rpm will fall to 0.71 rpm

following the reduction ratio in Eq. (4.86). Additional propellant must be spent to

increase the spin rate from 0.71 rpm to 2.3 rpm, the spin at the beginning of Earth

departure. Propellant is also needed for a 0.04 rpm increase in spin rate between the

Mars arrival and Mars departure maneuvers.
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Figure 4.9. Artificial gravity level for the four maneuvers.

The maximum artificial gravity level shown in Fig. 4.9 occurs during Earth depar-

ture instead of Earth arrival. Replacing γ̇ in Eq. (4.83) with the thrust as indicated

by Eq. (4.54), the sensed artificial gravity is proportional to T/m. Since the thrust

during Earth departure is decreasing faster than the mass, the artificial gravity also

decreases. Contrarily, at Mars arrival, the artificial gravity is increasing while the

thrust is decreasing, but the change in thrust level over the maneuver is much smaller.

If the Earth arrival thrust was less variable, the artificial gravity could increase and,

by the end of the controlled burn, become larger than the artificial gravity at Earth

departure.

The maximum acceleration at Earth departure exceeds the design limit of 2 g

which is expected since the corresponding thrust of 2,000 kN is above the design

level of 1,800 kN. The artificial gravity level at the beginning of Mars arrival is at

0.36 g, and the artificial level at the end of Mars departure is 0.34 g which are both

slightly below the 0.38 g requirement. The artificial gravity level at the beginning of

the Earth arrival maneuver is 0.73, and the artificial gravity level at the end of the

Earth departure maneuver is 0.61 g which are also both below the 1 g requirement.
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Additional propellant is needed to increase these artificial gravity levels to conform

with the requirements listed in Table 4.1.
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Figure 4.10. Transverse velocities for the four maneuvers.

Figure 4.10 shows the ∆V errors (i.e. undesired transverse velocities) during the

maneuvers. The largest errors occur during Earth arrival and Earth departure mainly

due to the poor thrust direction during the uncontrolled portions of the burn. The

transverse velocity gained by the ramp-down burn at Earth arrival is larger than the

Earth departure because the spacecraft is spinning at a higher rate (above 8 rpm at

the end of the controlled burn) causing the engine to thrust at a larger misaligned

angle. The transverse velocities at Earth arrival have large oscillations since the roll

angle, η, is the at its largest, causing the most unwanted velocity. These velocities,

however, are very small compared to the final ∆VZ of 1 km/s or 1.5 km/s.

4.4.6 Mass to Adjust Spin Rate

To compare the scenario examined here with a spacecraft that is not spinning

during maneuvers, consider the additional propellant required in Table 4.6. The

spacecraft is spun down before the Earth and Mars arrival maneuvers and then spun
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Table 4.6. Propellant for single and coupled thruster with and without jet damping.

Spin-Up Maneuver
mpropSJ mpropSNJ mpropCJ mpropCNJ

kg kg kg kg

Earth departure 1,408 1,396 699 696

Mars arrival 661 658 412 411

Mars departure 353 351 351 351

Earth arrival 194 193 272 271

Sum 2,616 2,598 1,734 1,729

up to the required artificial level after the Earth and Mars departure maneuvers.

The propellant for the single thruster with jet damping, mpropSJ , is calculated from

Eq. (4.66), the propellant for the single thruster without jet damping, mpropSNJ , is

calculated from Eq. (4.67), the propellant for the coupled thruster with jet damping,

mpropCJ , is calculated from Eq. (4.79), and the propellant for the coupled thruster

without jet damping, mpropCNJ , is calculated from Eq. (4.80). The same specific

impulse of 450 seconds is assumed for these calculations. This specific impulse may

be high for a control system, but it is used to compare the propellant with the

thrusting while spinning case explored earlier.

The difference between including and excluding jet damping is very small as Table

4.6 demonstrates. The coupled thruster require less propellant (almost 1,000 kg less),

but the complexities and expense of requiring a thruster far away from the propulsion

system may not be worth the mass savings.

The additional propellant needed for the thrusting while spinning case is given

in Table 4.7. The propellant to correct the transverse ∆V errors is found by Eq.

(4.82). The artificial gravity corrections refer to adjusting the artificial gravity levels

to those given in Table 4.1 ranging from the beginning through the ending of the

long interplanetary trajectories. The mass for these correction is approximated by

Eq. (4.80). The artificial gravity between the Earth and Mars maneuvers does not
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Table 4.7. Additional propellant costs associated with maneuvers.

Correction Manuever Mass, kg

Transverse ∆V End of Earth departure 47

End of Mars arrival 4

End of Mars departure 6

End of Earth arrival 24

Artificial Gravity End of Earth departure 8

Beginning of Mars arrival 11

End of Mars departure 68

Beginning of Earth arrival 55

Spin Rate End of Earth arrival 377

End of Mars arrival 33

Propellant margin (see Table 4.5) 7

Sum 640

have to be corrected to either 1 g or 0.38 g since the crew is not on board the transfer

vehicle. However, the spin rates between the Earth and Mars maneuvers must match

requiring a spin rate maintenance maneuver. The spin rate correction is determined

by matching the artificial gravity levels between the Earth and Mars maneuvers via

Eq. (4.80).

Clearly the spinning while thrusting method requires much less propellant, over

1,000 kg less, than spinning down the spacecraft between burns. The majority of the

additional propellant for the spinning and thrusting spacecraft occurs when adjusting

the spin rate before the new propulsion stage is added between Earth maneuvers. To

reduce the additional propellant, the engine throttle range could be increased and the

controlled burn times could be adjusted to better match the artificial gravity levels

and spin rates.
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4.4.7 Two-Burn Scheme

As mentioned earlier, a two-burn scheme where the burn is momentarily suspended

and then re-started could be used to reduce the transverse velocities while spinning up

a spacecraft with one thruster [30]. Applied to the initial spin up before the first Earth

departure maneuver, Eq. (4.59) is used to find the angular velocities assuming the

spacecraft is not initially spinning. The inertial velocities are calculated by integrating

Eq. (4.69).
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Figure 4.11. Transverse velocities for a one thruster spin up.

The transverse velocity components for a constant, uninterrupted burn are shown

in Fig. 4.11(a). The transverse velocities initially grow rapidly, but eventually end

up spiraling towards a point with a center at around 4 m/s. The two-burn scheme is

applied to move the center of that circle to zero as shown in Fig. 4.11(b). In this case,

the burn is interrupted after 39.4 seconds for 107.4 seconds resulting in a transverse

velocity of 0.25 m/s. If instead the ending velocity is minimized, the burn should be

suspended after 38.4 seconds for 116.8 seconds with an ending veloicty of 1.4 mm/s.
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4.5 Summary

A tethered spacecraft with a propulsion system on one end of the tether can

perform large transfer maneuvers while spinning by adjusting the thrust magnitude

and spin rate. With this control law, artificial gravity is present during the entire

mission, and the spacecraft is not required to despin or to change the tether length.

Furthermore, the angular momentum vector does not need to be reoriented. Thus

the new maneuver reduces spacecraft mass and complexity.

To control the thrust in a desired direction, the thrust can either change magnitude

or slightly roll along the tether axis. Since the spacecraft is not despinning between

maneuvers, a considerable amount of propellant is saved while artificial gravity is

continuously supplied on the spacecraft. Thus a simple spacecraft design provides an

attractive alternative to other proposed configurations.
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5. Motion of a Self-Excited Rigid Body

5.1 Background

It is well known that the attitude solution for a self-excited rigid body given in

Leimanis [1] based on work done by Bödewadt [85] is more limited than presented

[23, 86]. Longuski proved that Bödewadt’s solution still holds when the spin vector

doesn’t change but the solution breaks down when a spacecraft has a variable spin

rate [86]. It was uncertain if Bödewadt’s solution could be used as an approximation

for the attitude angles for a spacecraft with a changing spin rate, so this analysis

was completed to determine how different the Bödewadt solution is to a numerical

integration of the equations of motion.

5.2 Solution Model

To solve for the attitude, the following equation must be solved

Ȧ = AW (5.1)

where A is an Euler rotation matrix and

W =


0 −ωz ωy

ωz 0 −ωx
−ωy ωx 0

 (5.2)

The solution to the differential equation in Eq. (5.1) is found by multiplying by an

integration factor

Ȧe−U −AWe−U = 0 (5.3)
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The matrix U is defined as

U =


0 −ξ λ

ξ 0 −ζ

−λ ζ 0

 =

t∫
t0

Wdt (5.4)

where

ζ =

t∫
t0

ωxdt

λ =

t∫
t0

ωydt

ξ =

t∫
t0

ωzdt

(5.5)

The matrix exponential is defined as [87]

eU(t) =
∞∑
k=0

1

k!
U (t)k = I + U (t) +

1

2
U (t)2 + ... (5.6)

The derivative of the matrix exponential is

d

dt

[
eU(t)

]
=
∞∑
k=

d
[
U (t)k

]
dt

=
d [U (t)]

dt
+

1

2

d
[
U (t)2

]
dt

+ ... (5.7)

For any value of k, Eq. (5.7) can be expanded into

d
[
U (t)k

]
dt

=
d
[
U (t)k−1

]
dt

U (t) + U (t)k−1
d [U (t)]

dt
(5.8)

For k = 1, Eq. (5.8) becomes

d [U (t)]

dt
=
d
(∫

Wdt
)

dt
= W (5.9)

For k = 2, Eq. (5.8) becomes

1

2

d
[
U (t)2

]
dt

=
1

2

d
(∫

Wdt
)

dt
U +

1

2
U
d
(∫

Wdt
)

dt
=

1

2
WU +

1

2
UW (5.10)

When W and U commute, Eq. (5.10) equals WU. A similar analysis can be done

for the remaining k entries which all require W and U to commute in order to equal
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the corresponding entry in W times Eq. (5.6). If commutation holds, Eq. (5.1) can

be solved as

A = A (t0) e
U(t) = A (t0)

[
I + U (t) +

1

2
U (t)2 + ...

]
(5.11)

which is the solution given by Bödewadt [1]. However, for W and U to commute,

ω×M = 0 which true in only a few cases [86].

5.3 Numerical Simulation of a Spinning, Thrusting Spacecraft

Consider the case of an axisymmetric spacecraft with an offset and misaligned

thrust undergoing a constant burn. The offset and misaligned thrust cause a torque

in the x-direction where

Mx = F (h sinα + d cosα) (5.12)

where F is the force from the thruster, α is the thrust misalignment, d is the thrust

offset, and h is the distance from the center of mass of the spacecraft to the nozzle.

These constant variables have values of

d = 0.02 m, α = 0.25 deg, h = 0.8 m, F = 76, 000 N (5.13)

The mass properties of the spacecraft are

Ix = Iy = 858 kg m2, Iz = 401 kg m2, m = 2500 kg (5.14)

The spacecraft is initially spinning about the z-axis with ωz equal to 70 rpm. All

other initial conditions are zero.

A highly precise numerical integration is compared against the analytical solution

of Bödewadt. For the numerical simulation, Euler’s equations of motion are used to

find the angular velocities [66] with

ω̇x(t) = Mx/Ix − [(Iz − Iy)/Ix]ωyωz
ω̇y(t) = My/Iy − [(Ix − Iz)/Iy]ωzωx
ω̇z(t) = Mz/Iz − [(Iy − Ix)/Iz]ωxωy

(5.15)
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The kinematic equations, which describe the orientation of a rigid body with respect

to the inertial reference frame, are found using a Type-I, Euler sequence 3-1-2 (φz,

φx, φy) given by Wertz [67] where

φ̇x = ωx cosφy + ωz sinφy

φ̇y = ωy − (ωz cosφy − ωx sinφy) tanφx

φ̇z = (ωz cosφy − ωx sinφy) secφx

(5.16)

After integrating Eqs. (5.15) and (5.16), the Euler angles are compared against

the Euler angles found using Eq. (5.11). The matrix A is a Type I, 3-1-2 rotation

matrix [67] where

A =


cφycφz − sφxsφysφz −cφxsφz sφycφz + sφxcφysφz

cφysφz + sφxsφycφz cφxcφz sφysφz − sφxcφycφz
−cφxsφy sφx cφxcφy

 (5.17)

where c and s are abbreviations for cosine and sine functions, respectively.

To find the Bödewadt solution, analytical solutions must first be found for the

angular velocities and their integrals. Since the spacecraft is symmetric and there is

no torque in the z-direction, the third equation in Eq. (5.15) simplifies to

ω̇z(t) = 0 (5.18)

Then clearly ωz is a constant or

ωz = ωz0 (5.19)

The remaining two other angular velocities are [1]

ωx =ωx0 cos kωz0t+ ωy0 sin kωz0t+
Mx

Itkωz0
sin kωz0t+

My

Itkωz0
(1− cos kωz0t)

ωy =ωy0 cos kωz0t− ωx0 sin kωz0t+
My

Itkωz0
sin kωz0t−

Mx

Itkωz0
(1− cos kωz0t)

(5.20)

where It is Ix = Iy and k is (It − Iz) /It
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The integrals of the angular velocities are

ζ =
Myt

Itkωz0
+

(
ωy0
kωz0

+
Mx

Itk2ω2
z0

)
(1− cos kωz0t)

+

(
ωy0
kωz0

− My

Itk2ω2
z0

)
sin kωz0t

λ =
Mxt

Itkωz0
+

(
− ωx0
kωz0

+
My

Itk2ω2
z0

)
(1− cos kωz0t)

+

(
ωy0
kωz0

+
Mx

Itk2ω2
z0

)
sin kωz0t

ξ = ωz0t

(5.21)

The Euler angles are found by Eq. (5.11) where A (t0) is Eq. (5.17) evaluated at the

initial conditions.

Figure 5.1 shows φx and φy for a highly precise numerical integration of Euler’s

equations of motion and the kinematic equations (black lines) as well as the Bödewadt

solution (gray dashed line). The two results are close since the angles are small, but

the Bödewadt solution fails to capture the behavior of the actual attitude angles.

For this reason, the Bödewadt solution is not a good approximation for the attitude

angles.

The Bödewadt solution does capture the φz behavior as shown in Fig. 5.2 where

the solutions differ by an order of 10−5 degrees. The solutions match because the

constant ωz dominates the other angular velocities which have maximum values that

are three orders of magnitude less than ωz. However, in this case, φz is very easy to

find analytically, so the Bödewadt solution is not needed.

5.4 Summary

While the Bödewadt solution was previously known to be erroneous [86], a nu-

merical study of the effect has not been shown. This chapter shows that while the

Bödewadt solution can predict φz fairly accurately for a spacecraft with changing

spin, it is unable to accurately predict the other attitude angles.
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Figure 5.1. Euler angles using numerical integration (black line) and
the Bödewadt solution (gray dashed line).
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solution (gray dashed line) for φz are almost identical.



106



107

6. Conclusion and Future Work

6.1 Summary of Methodology and Results

6.1.1 Spinning Thrusting Spacecraft

Spin-stabilized rockets and assist modules are typically affected by center-of-mass

offsets and misalignments of the thrusting engine, causing the intended velocity vector

to have undesired pointing errors. Often high spin rates of the order of 70 rpm are re-

quired to maintain an acceptable pointing error. A major source of the pointing error

is the step-function profile of the thruster history. If instead the thruster has a linear

profile beginning at zero and gradually ramping up to maximum thrust, the pointing

error may be greatly reduced. Alternatively, the linear profile can significantly reduce

the required spin rate to achieve the same acceptable pointing error.

An analytical theory for the ramp-up and ramp-down schemes is developed. Af-

ter integrating Euler’s equations of motion and the kinematic equations, the inertial

velocities are found. These inertial velocities are simplified to lead to a compact equa-

tion that captures the essential spacecraft behavior. Numerical tests have confirmed

the accuracy of the theory. Simulations are provided for a hypothetical case involving

a spin-stabilized spacecraft with a Payload Assist Module. The velocity pointing error

for the ramp-up case is reduced by an order of magnitude. If the acceptable pointing

error is the same as the constant thrust profile, the spin rate could be reduced by

around 70% while maintaining the acceptable pointing error.

Implicit optimization could, in principle, be used to solve for the ramp-up pro-

file which minimizes the velocity pointing error, but due to the oscillatory behavior

of the velocity pointing error with respect to ramp-up time, no solution has been

found. Instead heuristic solutions for ramp-up profiles are found which reduce the

velocity pointing error further than the linear ramp-up profile. The tested sine pro-
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files produce an order-of-magnitude improvement over a linear ramp-up profile while

cosine, parabolic, exponential, logarithmic, and cubic profiles can produce up to two

orders-of-magnitude improvement. In addition, these profiles result in more than

three orders-of-magnitude improvement over the typical constant burn.

For small engine misalignment and offset, the velocity pointing error for cosine,

parabolic, exponential, logarithmic, and cubic profiles is essentially zero. For an

unknown thrust offset and misalignment, the cubic profile appears to be the best

force profile to use. In the simulation shown here, choosing a ramp-up time around

11 seconds for different engine misalignment and offset results in velocity pointing

errors which are either the minimum value or very close to the minimum.

6.1.2 Spinning Tethered Spacecraft

On long duration mission, some artificial gravity may be needed for human space-

flight. Instead of a rigid spacecraft with a large radius (and thus large mass), a

tethered spacecraft can produce artificial gravity with the additional cost of a rela-

tively low-mass tether. Instead of requiring the spacecraft to despin or reel in the

tether for maneuvers, the spacecraft can have a thrust offset from the center of mass

by balancing the magnitude of the thrust and the spin rate of the spacecraft.

Analytical theory has been developed for a spacecraft with constant and time-

varying mass as well as for planar and non-planar thrust. These theories lead to

similar relationships between the thrust and spin rate. Single and coupled spin-up

maneuvers are also considered which find the required propellant to spin up to a

specified artificial gravity level. The theory is applied to a round trip mission to

Mars which results in a propellant mass reduction of over 1000 kg over the tethered

spacecraft that needs to despin to perform the same maneuvers.
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6.2 Future Work

6.2.1 High Fidelity Model of a Spinning, Thrusting Rocket

When applying the ramp-up scheme, the spacecraft modeled here is assumed to

be a rigid body. A higher fidelity (i.e. more realistic) model of a spacecraft could be

investigated to verify (or disprove) the effectiveness of the ramp-up scheme. Methods

to increase the spacecraft’s complexity include incorporating fuel sloshing into the

spacecraft via spherical pendulums or modeling a more flexible spacecraft. To improve

the robustness of the ramp-up scheme, the scheme could be applied to these models

to determine if the velocity pointing errors will also decrease with a ramp-up profile

instead of the typical constant force profile.

6.2.2 Method to Maintain Artificial Gravity for a Higher Fidelity Model

of a Tethered Spacecraft

The tethered spacecraft modeled in Chapter 4 consists of two point masses at-

tached by a massless tether. While the control scheme derived here is valid for this

simplistic model, a more complex model will require a different control law. To find

these control laws, a more complicated tether system could be used such as cylinders

for the habitation and propulsion systems instead of point masses. The tether could

also have mass and be flexible. These control schemes could also be applied to a

system with relatively smaller end masses e.g. two tethered CubeSats.

6.3 Conclusion

An analytical theory is developed for the ramp-up and ramp-down schemes. The

theory includes highly accurate, approximate solutions for the angular velocity, Euler

angles, inertial velocity, and inertial displacement. The expressions involve secular

and circular terms that are functions of the moments of inertia, initial spin rate,

torques, forces, and time. Asymptotic solutions are derived from the general the-
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ory which leads to compact, simple equations that capture the essential spacecraft

behavior. Numerical simulations verify the accuracy of this analytical theory.

Ideally, implicit optimization would be used to solve for the ramp-up profile, but

due to the complicated nature of the problem, no solution has been found. Instead

heuristic solutions for ramp-up profiles are given here which drive the velocity pointing

error to essentially zero. Current technology may not be able to duplicate ramp-up

profiles starting at zero, but even with an initial non-zero thrust, ramp-up profiles, es-

pecially the cubic profile, decrease the velocity pointing error over the typical constant

burn.

Most tethered spacecraft perform maneuvers with the thrust aligned with the

center of mass either by despinning the spacecraft or by reeling in the tether. Here

an analytical theory is presented which allows a tethered spacecraft with an offset

thruster to perform large maneuvers while spinning by balancing the magnitude of

the thrust and the spin rate of the spacecraft. Thus this new maneuver reduces mass

and spacecraft complexity. The control needed to maintain the desired thrust direc-

tion can occur through a specific thrust history or a slight roll along the tether axis. A

large amount of propellant mass is saved since the spacecraft spins continuously. Fur-

thermore, this maneuver can lead to simpler spacecraft design since artificial gravity

is always present and the spacecraft configuration is fixed during the maneuvers.

Lastly, a numerical study of the Bödewadt solution has shown that while the

Bödewadt solution can predict φz fairly accurately for a spacecraft with changing

spin, it is unable (even in the best case) to accurately predict the other attitude

angles.
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A. Coefficients for Displacement and Velocity Solutions

The coefficients for the velocity and displacement solutions are listed in the following

sections. For clarity, the X-axis coefficients all begin with A, the Y-axis coefficients

begin with B, and the Z-axis coefficients begin with C. The coefficients starting with

f0 are the constants in the force equations, and the coefficients starting with f1 are the

constants multiplied by t in the force equations. The same is true of the coefficients

beginning with c which relate to the torques.

A.1 X-Axis Constants for Inertial Velocity and Displacement Solutions

A0 =
c0xf0z [Iyky + Ix (k2 − 2)]

mIxIz (k2 − 1)ω3
z0

− c1yf0z [Ixkx + Iy (2k2 − 3)]

mIyIz (k2 − 1)ω4
z0

− c1xf1z [2Iyky (k2 − 2) + Ix (6− 7k2 + 3k4)]

mIxIz (k2 − 1)2 ω5
z0

− c0yf1z [Ixkx (k2 − 3) + Iy (3− 2k2 + k4)]

mIyIz (k2 − 1)2 ω4
z0

− f1x + f0yωz0
mω2

z0

+
ωx0f1z [Ix − (3Iy − Iz) ky]

mIz (k2 − 1)2 ω3
z0

+
ωy0f0z (Iz − 2Iy)

mIz (k2 − 1)ω2
z0

(A.1)

At = −f0z (c1x + c0yωz0 − Ixωx0ω2
z0)

mIzω3
z0

, Att = −f1z (c1x + c0yωz0 − Ixωx0ω2
z0)

2mIzω3
z0

(A.2)

Ac0 =
c1yf0z [(2Iz − Ix) kx − Iy]

mIyIzk2ω4
z0

− f0zc0x
mIxkxω3

z0

+
f1x + f0yωz0

mω2
z0

+
c0yf1z

mIykyω4
z0

+
c1xf1z [(3Iz − Iy) ky − Ix]

mIxIzk2ω5
z0

(A.3)

Act = −c1xf0z + c0xf1z
mIxkxω3

z0

+
c1yf1z [(3Iz − Ix) kx − Iy]

mIyIzk2ω4
z0

+
f1y
mωz0

(A.4)

Actt = − c1xf1z
mIxkxw3

z0

(A.5)
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Acc =
f1z (c1xIy − c0yIxkxωz0 − IxIyk2ω2

z0ωx0) [Ix − (3Iy − Iz) ky]
mIxIyIzk2 (k2 − 1)2 ω5

z0

+
f0z (c1yIx + c0xIykyωz0 − IxIyk2ω2

z0ωy0) (Ixkx − Iy)
mIxIyIzk2 (k2 − 1)ω4

z0

(A.6)

Acct =
f1z (c1yIx + c0xIykyωz0 − IxIyk2ω2

z0ωy0) (Ixkx − Iy)
mIxIyIzk2 (k2 − 1)ω4

z0

(A.7)

Acs =− f1z (c1yIx + c0xωz0Iyky − IxIyk2ω2
z0ωy0) [Ix − (3Iy − Iz) ky]

mIxIyIzkky (k2 − 1)2 ω5
z0

+
f0z (c1xIy − c0yIxkxωz0 − IxIyk2ω2

z0ωx0) (Ixkx − Iy)
mIxIyIzkkx (k2 − 1)ω4

z0

(A.8)

Acst =
f1z (c1xIy − c0yIxkxωz0 − IxIyk2ω2

z0ωx0) (Ixkx − Iy)
mIxIyIzkkx (k2 − 1)ω4

z0

(A.9)

As0 =
c1xf0z (2ky − 1)

mIxk2ω4
z0

+
f1zc0x

mIxkxω4
z0

+
c0yf0z

mIykyω3
z0

+
f0xωz0 − f1y

mω2
z0

− c1yf1z (3kx − 1)

mIyk2ω5
z0

(A.10)

Ast =
c1xf1z (3ky − 1)

mIxk2ω4
z0

+
c0yf1z + c1yf0z
mIykyω3

z0

+
f1x
mωz0

(A.11)

Astt =
c1yf1z

mIykyω3
z0

(A.12)

Asc =
f1z (c1yIx + c0xkyωz0 − IxIyk2ω2

z0ωy0) [(3Ix − Iz) kx − Iy]
mIxIyIzk2 (k2 − 1)2 ω5

z0

+
f0z (−c1xIy + c0yIxkxωz0 + IxIyk

2ω2
z0ωx0) (Ix − Iyky)

mIxIyIzk2 (k2 − 1)ω4
z0

(A.13)

Asct =
f1z (−c1xIy + c0yIxkxωz0 + IxIyk

2ω2
z0ωx0) (Ix − Iyky)

mIxIyIzk2 (k2 − 1)ω4
z0

(A.14)

Ass =
f1z (−c1xIy + c0yIxkxωz0 + IxIyk

2ω2
z0ωx0) [Iy − (3Ix − Iz) kx]

mIxIyIzkkx (k2 − 1)2 ω5
z0

+
f0z (c1yIx + c0xIykyωz0 − IxIyk2ω2

z0ωy0) (Ix − Iyky)
mIxIyIzkky (k2 − 1)ω4

z0

(A.15)

Asst =
f1z (c1yIx + c0xIykyωz0 − IxIyk2ω2

z0ωy0) (Ix − Iyky)
mIxIyIzkky (k2 − 1)ω4

z0

(A.16)
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A.2 Y-Axis Constants for Inertial Velocity and Displacement Solutions

B0 =− c1yf1z [2Ixkx (k2 − 2) + Iy (6− 7k2 + 3k4)]

mIyIz (k2 − 1)2 ω5
z0

+
c0yf0z [Ixkx + Iy (k2 − 2)]

mIyIz (k2 − 1)ω3
z0

+
c1xf0z [Iyky + Ix (2k2 − 3)]

mIxIz (k2 − 1)ω4
z0

+
c0xf1z [Iyky (k2 − 3) + Ix (3− 2k2 + k4)]

mIxIz (k2 − 1)2 ω4
z0

+
f0xωz0 − f1y

mω2
z0

+
ωy0f1z [Iy − (3Ix − Iz) kx]

mIz (k2 − 1)2 ω3
z0

+
ωx0f0z (2Ix − Iz)
mIz (k2 − 1)ω2

z0

(A.17)

Bt = −f0z (c1y − c0xωz0 − Iyω2
z0ωy0)

mIzω3
z0

, Btt = −f1z (c1y − c0xωz0 − Iyω2
z0ωy0)

2mIzω3
z0

(A.18)

Bc0 =− c1xf0z (2ky − 1)

mIxk2ω4
z0

− f0zc0y
mIykyω3

z0

+
f1y − f0xωz0

mω2
z0

− c0xf1z
mIxkxω4

z0

+
c1yf1z (3kx − 1)

mIyk2ω5
z0

(A.19)

Bct = −c1yf0z + c0yf1z
mIykyω3

z0

− c1xf1z (3ky − 1)

mIxk2ω4
z0

− f1x
mωz0

(A.20)

Bctt = − c1yf1z
mIykyω3

z0

(A.21)

Bcc =
f1z (c1yIx + c0xIykyωz0 − IxIyk2ω2

z0ωy0) [Iy − (3Ix − Iz) kx]
mIxIyIzk2 (k2 − 1)2 ω5

z0

+
f0z (c1xIy − c0yIxkxωz0 − IxIyk2ω2

z0ωx0) (Ix − Iyky)
mIxIyIzk2 (k2 − 1)ω4

z0

(A.22)

Bcct =
f1z (c1xIy − c0yIxkxωz0 − IxIyk2ω2

z0ωx0) (Ix − Iyky)
mIxIyIzk2 (k2 − 1)ω4

z0

(A.23)

Bcs =
f1z (c1xIy − c0yωz0Ixkx − IxIyk2ω2

z0ωx0) [Iy − (3Ix − Iz) kx]
mIxIyIzkkx (k2 − 1)2 ω5

z0

+
f0z (c1yIx + c0xIykyωz0 − IxIyk2ω2

z0ωy0) (Iyky − Ix)
mIxIyIzkky (k2 − 1)ω4

z0

(A.24)

Bcst =
f1z (c1yIx + c0xIykyωz0 − IxIyk2ω2

z0ωy0) (Iyky − Ix)
mIxIyIzkky (k2 − 1)ω4

z0

(A.25)

Bs0 =
c1yf0z (2kx − 1)

mIyk2ω4
z0

− f0zc0x
mIxkxω3

z0

+
f1x + f0yωz0

mω2
z0

+
c0yf1z

mIykyω4
z0

+
c1xf1z (3ky − 1)

mIxIzk2ω5
z0

(A.26)
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Bst = −c1xf0z + c0xf1z
mIxkxω3

z0

+
c1yf1z (3kx − 1)

mIyk2ω4
z0

+
f1y
mωz0

(A.27)

Bstt = − c1xf1z
mIxkxω3

z0

(A.28)

Bsc =
f1z (−c1xIy + c0yIxkxωz0 + IxIyk

2ω2
z0ωx0) [(3Iy − Iz) ky − Ix]

mIxIyIzk2 (k2 − 1)2 ω5
z0

+
f0z (c1yIx + c0xIykyωz0 − IxIyk2ω2

z0ωy0) (Ixkx − Iy)
mIxIyIzk2 (k2 − 1)ω4

z0

(A.29)

Bsct =
f1z (c1yIx + c0xIykyωz0 − IxIyk2ω2

z0ωy0) (Ixkx − Iy)
mIxIyIzk2 (k2 − 1)ω4

z0

(A.30)

Bss =
f1z (c1yIx + c0xIykyωz0 − IxIyk2ω2

z0ωy0) [(3Iy − Iz) ky − Ix]
mIxIyIzkky (k2 − 1)2 ω5

z0

+
f0z (c1xIy − c0yIxkxωz0 − IxIyk2ω2

z0ωx0) (Ixkx − Iy)
mIxIyIzkkx (k2 − 1)ω4

z0

(A.31)

Bsst =
f1z (c1xIy − c0yIxkxωz0 − IxIyk2ω2

z0ωx0) (Ixkx − Iy)
mIxIyIzkkx (k2 − 1)ω4

z0

(A.32)

A.3 Z-Axis Constants for Inertial Velocity and Displacement Solutions

C0 =
(c0xf1y − c1xf0y) (Iy + Ixk

2kx)

mIxIzk2kxω4
z0

+
(c1yf0x − c0yf1x) (Ix + Iyk

2ky)

mIyIzk2kyω4
z0

− (c0xf0x + c0yf0y − f1xIxωx0 − f1yIyωy0) (k2 − 1)

mIzk2ω3
z0

− (c1xf1x + c1yf1y) (k4 − 1)

mIzk4ω5
z0

+
f0ykyωx0 − f0xkxωy0

mk2ω2
z0

(A.33)

Ct =
f0z
m
− (c1xf0x + c1yf0y) (k2 − 1)

mIzk2ω3
z0

+
c0xf0y

mIxkxω2
z0

− c0yf0x
mIykyω2

z0

(A.34)

Ctt =
f1z
2m

+
c1xf0y + c0xf1y

2mIxkxω2
z0

− c1yf0x + c0yf1x
2mIykyω2

z0

− (c1xf1x + c1yf1y) (k2 − 1)

2mIzk2ω3
z0

(A.35)

Cttt =
c1xf1y

3mIxkxω2
z0

− c1yf1x
3mIykyω2

z0

(A.36)

Cc =
c1xf0y − c1yf0x + (c0xf0x + c0yf0y)ωz0

mIzω4
z0

+
c1xf1x + c1yf1y + (c0yf1x − c0xf1y)ωz0

mIzω5
z0

− f1xIxωx0 + f1yIyωy0
mIzω3

z0

+
f0xIyωy0 − f0yIxωx0

mIzω2
z0

(A.37)
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Cct =
c1xf1y − c1yf1x + (c0xf1x + c0yf1y)ωz0

mIzω4
z0

+
f1xIyωy0 − f1yIxωx0

mIxω2
z0

(A.38)

Cck =− c0xf0x + c0yf0y − f1xIxωx0 − f1yIyωy0
mIzk2ω3

z0

− c1xf1x + c1yf1y
mIzk4ω5

z0

+
(c1xf0y − c0xf1y) Iy
mIxIzk2kxω4

z0

+
(c0yf1x − c1yf0x) Ix
mIyIzk2kyω4

z0

+
f0xIxkxωy0 − f0yIykyωx0

mIzk2ω2
z0

(A.39)

Cckt =− c0xf1x + c0yf1y
mIzk2ω3

z0

+
c1xf1yIy

mIxIzk2kxω4
z0

− c1yf1xIx
mIyIzk2kyω4

z0

+
f1xIxkxωy0 − f1yIykyωx0

mIzk2ω2
z0

(A.40)

Cs =
c1xf0x + c1yf0y + (c0yf0x − c0xf0y)ωz0

mIzω4
z0

− f0xIxωx0 + f0yIyωy0
mIzω2

z0

+
c1yf1x − c1xf1y − (c0xf1x + c0yf1y)ωz0

mIzω5
z0

+
f1yIxωx0 − f1xIyωy0

mIzω3
z0

(A.41)

Cst =
c1xf1x + c1yf1y + (c0yf1x − c0xf1y)ωz0

mIzω4
z0

− f1xIxωx0 + f1yIyωy0
mIzω2

z0

(A.42)

Csk =
c0xf1x + c0yf1y − c1xf0x − c1yf0y

mIzk3ω4
z0

− c0xf0yIy
mIxIzkkxω3

z0

+
c0yf0xIx

mIyIzkkyω3
z0

− c1xf1yIy
mIxIzk3kxω5

z0

+
c1yf1xIx

mIyIzk3kyω5
z0

+
f1yIykyωx0 − f1xIxkxωy0

mIzk3ω3
z0

+
f0xIxωx0 + f0yIyωy0

mIzkω2
z0

(A.43)

Cskt =
c1xf1x + c1yf1y
mIzk3ω4

z0

− c0xf1yIy
mIxIzkkxω3

z0

+
c0yf1xIx

mIyIzkkyω3
z0

+
f1xIxωx0 + f1yIyωy0

mIzkω2
z0

(A.44)
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B. Two-Point Boundary-Value Problem for Heuristic

Ramp-up

To justify using heuristic solutions to minimize the pointing error, a two-point

boundary-value problem (TPBVP) is set-up to determine if an implicit solution can

be found. To simplify the equations as much as possible, the thruster misalignment,

α, is assumed to be zero. Furthermore, the only torque is Mx and the only forces are

fz and fy similar to the Ulysses simulation in this paper.

B.1 State Equations

To simplify further, a few additional assumptions were made. The spacecraft is

axisymmetric so that the third equation in Eq. (2.1) simply becomes ωz is constant.

Also φx, φy, and the product φyωx are assumed to be small so that Eq. (3.10) becomes

φ̇x = ωx + ωz0φy

φ̇y = ωy − ωz0φx
φ̇z = ωz0

(B.1)

Then clearly

φz = ωz0t (B.2)

With these assumptions, Eq. (2.13) becomes

IRB
312 =


cosωz0t − sinωz0t φycosωz0t+ φxcosφz0t

sinωz0t cosωz0t φysinωz0t− φxcosωz0t

−φy φx 1

 (B.3)
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The acceleration is then found by
∆V̇X

∆V̇Y

∆V̇Z

 = IRB
312


fx/m

fy/m

fz/m

 = IRB
312


0

0

F/m

 (B.4)

Since φz and ωz are known, the TPBVP has seven states which are

ω̇x = Mx/Ix − kωyωz0 = Fd/Ix − kωyωz0
ω̇y = kωz0ωx

φ̇x = ωx + φyωz0

φ̇y = ωy − φxωz0
∆V̇X = F/m(φy cosωz0t+ φx sinωz0t)

∆V̇Y = F/m(φy sinωz0t− φx cosωz0t)

∆V̇Z = F/m

(B.5)

where

k =
Iz − Ix
Iy

=
Iz − Iy
Ix

(B.6)

B.2 Cost Function

Ideally, the cost function would be the velocity pointing error at the end of Phase 2,

but the state equations only apply to Phase 1. By including the state equations from

Phase 2, the costate equation formulation would involve two different Hamiltonians.

Usually when faced with two sets of governing differential equations, an analytical

solution is found for the second set of equations and substituted into the cost function

so that the cost function becomes a function of the final state of the first set of

differential equations. In this case, the Phase 2 equations are analytically intractable.

Instead, only Phase 1 is considered. To simplify the cost equation, the cost function

is the ending velocity pointing error at the end of Phase 1 or

ρf =
√
ρ2Xf + ρ2Y f =

√
∆V 2

Xf + ∆V 2
Y f

∆V 2
Zf

(B.7)
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Since the ending Z-velocity is positive, the Mayer problem can be written as

Min J =

√
∆V 2

Xf + ∆V 2
Y f

∆VZf
(B.8)

B.3 Hamiltonian

The Hamiltonian is defined as

H = L+ λᵀ~̇x (B.9)

where L is the Lagrangian, λ is the costate vector, and

~̇x =



ω̇x

ω̇y

φ̇x

φ̇y

∆V̇X

∆V̇Y

∆V̇Z



(B.10)

In this case, the cost function in Eq. (B.8) has no path cost (i.e. Lagrangian term).

Substituting Eq. (B.5) into Eq. (B.9), the Hamiltonian is

H =λ1

(
Fd

Ix
− kωyωz0

)
+ λ2kωz0ωx + λ3 (ωx + ωz0φy) + λ4 (ωy − ωz0φx)

+ λ5
F

m
(φy cosωz0t+ φx sinωz0t) + λ6

F

m
(φy sinωz0 − φx cosωz0t)

+ λ7
F

m

(B.11)

B.4 Costate Equations

The costate equations are found by differentiating Eq. (B.11), the Hamiltonian,

by

λ̇i = −∂H
∂xi

(B.12)
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Applying Eq. (B.12) to Eq. (B.11),

λ̇1 = λ2kωz0 − λ3
λ̇2 = λ1kωz0 − λ4
λ̇3 = λ4ωz0 − λ5 Fm sinωz0t+ λ6

F
m

cosωz0t

λ̇4 = −λ3ωz0 − λ5 Fm cosωz0t− λ6 Fm sinωz0t

λ̇5 = 0

λ̇6 = 0

λ̇7 = 0

(B.13)

From Eq. (B.13) λ5, λ6, and λ7 are constants.

B.5 Transversality

The transversality condition is

Hfdtf − λᵀdxf + dg = 0 (B.14)

The final term in the transversality condition is

dg =
7∑
i=1

∂g

∂xif
dxif +

∂g

∂tf
dtf (B.15)

For this TPBVP, none of the final conditions are fixed. Substituting Eq. (B.11)

into Eq. (B.14), the transversality condition is

0 =[λ7f (Fd/Ix − kωyfωz0) + λ2fkωxfωz0 + λ3f (ωxf + ωz0φyf )

+ λ4f (ωyf − φxfωz0)λ5f (φxf cosωZ0t+ φxf sinωz0t)F/m

+ λ6f (φxf sinωz0t− φxf cosωz0t)F/m+ λ7fF/m]dtf

− λ1fdωxf − λ2fdωyf − λ3fdφxf − λ4fdφyf − λ5fd∆VXf

− λ6fd∆VY f − λ7fd∆VZf

+ ∆VXf/
(

∆VZf

√
∆V 2

Xf + ∆V 2
Y f

)
d∆VXf

+ ∆VY f/
(

∆VZf

√
∆V 2

Xf + ∆V 2
Y f

)
d∆VY f

−
√

∆V 2
Xf + ∆V 2

Y f/∆V
2
Zfd∆VZf

(B.16)
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Comparing similar terms in Eq. (B.16) provides

λ1f =λ2f = λ3f = λ4f = 0

λ5f =∆VXf/
(

∆VZf

√
∆V 2

Xf + ∆∆2
Y f

)
λ6f =∆VY f/

(
∆VZf

√
∆V 2

Xf + ∆V 2
Y f

)
λ7f =−

√
∆V 2

Xf + ∆V 2
Y f/∆V

2
Zf

0 =F/mλ5f (φyf cosωz0t+ φxf sinωz0t)

+ F/mλ6f (φyf sinωz0t− φxf cosωz0t) + F/mλ7f

(B.17)

For this TPBVP, sixteen boundary conditions are needed. Eight are given in

Eq. (B.17) and the other eight boundary conditions are the assumed initial conditions

t(0) = 0

ωx(0) = ωy(0) = 0

φx(0) = φy(0) = 0

∆Vx(0) = ∆Vy(0) = ∆Vz(0) = 0

(B.18)

B.6 Switching Function

The Hamiltonian in Eq. (B.11) is a switching function of the form

H = H0(x, λ, t) +H1(x, λ, t)u (B.19)

where u is the control, F , and H1 is the switching function. From Eq. (B.11), the

switching function is

H1 = λ1d/Ix +λ7/m+ cosωz0t (λ5φy − λ6φx) /m+ sinωz0t (λ5φx + λ6φy) /m (B.20)

When using the minimum principle, the control is

F =


Fmax if H1 < 0

undetermined if H1 = 0

−Fmax if H1 > 0

(B.21)
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Since all of the states oscillate, it is unlikely that the switching function is zero for

a long period of time. Then the force will either be negative or positive maximum.

Burning at positive Fmax results in very large pointing errors and is the thrust profile

that is being improved. Having a negative force makes little sense.

Instead fix the force at the beginning and the end and assume that the control

is not bounded. Realistically, the force is bounded to be above zero and below the

maximum force, but to continue the implicit optimization, a control law is necessary.

If a parameter optimization is used instead, these bounds could be utilized.

B.7 Control Law

To find the control law, differentiate the switching function with respect to time

until the control appears which takes two derivatives in this case. The second time

derivative is

d2

dt2
(H1) =

∂

∂t

(
dH1

dt

)
+

∂

∂x

(
dH1

dt

)
ẋ+

∂

∂λ

(
dH1

dt

)
λ̇+

∂

∂u

(
dH1

dt

)
u̇ = 0 (B.22)

where
dH1

dt
=
∂H1

∂t
+
∂H1

∂x
ẋ+

∂H1

∂λ
λ̇+

∂H1

∂u
u̇ (B.23)

Substituting the switching function into Eq. (B.22), the second time derivative of

the switching function is

d2

dt2
(H1) =− dωz0

(
λ4 − kλ4 + k2λ1ωz0

)
/Ix

+ Izωz0 cosωz0t (ωxλ5 + ωyλ6) / (Ixm)

+ Izωz0 sinωz0t (ωxλ6 − ωyλ5) / (Ixm)

− 2dFλ6 cosωz0t/ (Ixm) + 2dFλ5 sinωz0t/ (Ixm)

(B.24)

By setting Eq. (B.24) to zero and solving for the force, the control law is (from

the Kelley condition [88])

F =
Izωz0 [(ωxλ5 + ωyλ6) cosωz0t+ (ωxλ6 − ωyλ5) sinωz0t]

2d (λ6 cosωz0t− λ5 sinωz0t)

+
mωz0 (λ4 − kλ4 + k2λ1ωz0)

2 (λ6 cosωz0t− λ5 sinωz0t)

(B.25)
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B.8 Implementation in MATLAB

The MATLAB R© TPBVP optimizer, tpb4c, is used to solve the TPBVP. Since the

ending time is not fixed, an integration time of one is used and a dummy variable, r,

is incorporated into the differential equations where

ṙ = 0 (B.26)

To implement the integral constraint of the total impulse, the total impulse is also

used as a state where

İ = F (B.27)

Now there are 16 states to integrate and only 16 boundary conditions, but when

implementing in MATLAB, only one more boundary conditions is needed. The total

impulse provides the final boundary condition with

I(tf ) = Ir (B.28)

where Ir is found in Eq. (3.17).

For better convergence, some of the equations were scaled. Most of the states

stay relatively small except for the total impulse and the Z-velocity. Then the total

impulse is scaled by Ir, the Z-velocity is scaled by V the ∆VZf guess, and the time

(now τ) is scaled by r. After re-deriving the costate equations and control law, the

TPBVP becomes

MinimizeJ =

√
∆V 2

Xf + ∆V 2
Y fV

∆VZf
(B.29)
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subject to

ω′x = Fdr/Ix − kωyωz0r

ω′y = kωz0ωxr

φ′x = ωxr + φyωz0r

φ′y = ωyr − φxωz0r

∆V ′X =
Fr

m
(φy cosωz0rτ + φx sinωz0rτ)

∆V ′Y =
Fr

m
(φy sinωz0rτ − φx cosωz0rτ)

∆V ′Z =
Fr

mV

(B.30)

λ′1 = λ2kωz0r − λ3r

λ′2 = λ1kωz0r − λ4r

λ′3 = λ4ωz0r − λ5r
Fr

m
sinωz0rτ + λ6

Fr

m
cosωz0rτ

λ′4 = −λ3ωz0r − λ5
Fr

m
cosωz0rτ − λ6

Fr

m
sinωz0rτ

λ′5 = 0

λ′6 = 0

λ′7 = 0

r′ = 0

I′ =
Fr

Ir

(B.31)

The control law was used to define the force at each step, and the force was defined

to be zero at the beginning and Fmax at the end.

For an initial guess, the heuristic profiles are used to find the minimum velocity

pointing error at the end of Phase 1. The best profile is an exponential profile with a

ramp-up time of 11.141 seconds. This guess provides an initial guess for r and V but

does not provide an initial guess for any of the costates. The last three costates are

constant, and the transversality condition gives guesses for these three states. Using

the control law, the initial guess for λ4 can be found from λ1. Now only three initial
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guesses are needed. A grid search was performed by searching from -10 to 10 by 0.05

(a total of 64 million guesses) over the first three costates but none of these guesses

produced converged solutions.

The next approach was to input a different guess into each time step. The same

exponential force profile was used to find guesses for the costates by simply propagat-

ing the costate differential equations. By changing the initial propagation points from

-10 to 10, the costates initially varied, but by the end of Phase 1, they converged.

Then using 0 for the first three costates, the exponential force profile was used to find

the initial guess for the TPBVP at each time step. The solution did converge, but

the force varied from ±4× 1012 which is not a valid solution.

Clearly the TPBVP is not finding the correct force profile. The main problem is

that the control (i.e. the force) should be bounded, but in order to use a control law,

the force is left to be unbounded. Even when defining the total impulse as the integral

of the absolute value of the force, the force varies from ±8× 108 which is still not a

valid solution. Since the optimization problem is to minimize the velocity pointing

error at the end of Phase 2, this implicit optimization approach is relinquished in

favor of a parameter optimization.
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