
Purdue University
Purdue e-Pubs

Open Access Dissertations Theses and Dissertations

Spring 2015

Dependability where the mobile world meets the
enterprise world
Amiya K. Maji

Follow this and additional works at: https://docs.lib.purdue.edu/open_access_dissertations

Part of the Electrical and Computer Engineering Commons

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Recommended Citation
Maji, Amiya K., "Dependability where the mobile world meets the enterprise world" (2015). Open Access Dissertations. 511.
https://docs.lib.purdue.edu/open_access_dissertations/511

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Purdue E-Pubs

https://core.ac.uk/display/77954519?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F511&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F511&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/etd?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F511&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F511&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F511&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations/511?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F511&utm_medium=PDF&utm_campaign=PDFCoverPages

Graduate School Form 30
(Updated 11/20/2014)

PURDUE UNIVERSITY
GRADUATE SCHOOL

Thesis/Dissertation Acceptance

This is to certify that the thesis/dissertation prepared

By

Entitled

For the degree of

Is approved by the final examining committee:

Approved by Major Professor(s): ____________________________________

 Approved by:

Head of the Department Graduate Program Date

Amiya K. Maji

Dependability where the Mobile World Meets the Enterprise World

Doctor of Philosophy

SAURABH BAGCHI

ANAND RAGHUNATHAN

ELISA BERTINO

SAURABH BAGCHI

JAN S. RELLERMEYER

Michael R. Melloch 03/02/2015

To the best of my knowledge and as understood by the student in the Thesis/Dissertation Agreement,

Publication Delay, and Certification/Disclaimer (Graduate School Form 32), this thesis/dissertation

adheres to the provisions of Purdue University’s “Policy on Integrity in Research” and the use of

copyrighted material.

DEPENDABILITY WHERE THE MOBILE WORLD MEETS THE

ENTERPRISE WORLD

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Amiya K. Maji

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

May 2015

Purdue University

West Lafayette, Indiana

ii

Dedicated to my parents and sister whose unconditional love

is the source of my inspiration.

iii

ACKNOWLEDGMENTS

This dissertation has been shaped by the direct and indirect involvement of many

persons over the years. I shall take this opportunity to express my gratitude to them.

Firstly, my sincere thanks to my advisor Prof. Saurabh Bagchi whose support and

guidance is at the core of this thesis. His incredible patience and time-management

skills, not to mention his wide array of knowledge, are qualities I aspire to emulate. A

big Thank You for your encouragements, specially when the chips were down. Thanks

also go to my doctoral committee members—Prof. Anand Raghunathan, Prof. Elisa

Bertino, and Dr. Jan S. Rellermeyer—whose insightful questions and suggestions

helped uncover several subtle nuances in this dissertation.

I have been privileged to collaborate with few renowned researchers during the

course of the dissertation. My mentor during internship at IBM Research, Akshat

Verma, deserves special mention for teaching me the importance of preliminary exper-

iments in systems research and how they simplify the process of finding solutions. I

would also like to express my gratitude to Dr. Jan S. Rellermeyer from IBM Research,

Austin, for his active collaboration during preparation of our DSN 2012 paper. To my

other collaborators and fellow graduate students—Subrata Mitra, Dr. Fahad Arshad,

Dr. Bowen Zhou, Kangli Hao, and Dr. Salmin Sultana—whose contributions often

made the difference between meeting a deadline or not—thank you for your help.

My friends, both within and outside Purdue, played an important role in helping

reduce the stress of graduate school. Thank you for your encouragements, good

wishes, and the moments of fun which I will always cherish. Last but not the least,

my heartfelt gratitude to my family members for their incredible support during

these years. The love and kindness I have received from them is beyond words. To

my parents, sister, grandparents, and other family members—I love you and dedicate

this dissertation to you.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . ix

LIST OF FIGURES . x

ABSTRACT . xiii

1 INTRODUCTION . 1

1.1 Motivations . 3

1.2 Objectives . 5

1.2.1 Smartphones . 5

1.2.2 Cloud Services . 6

1.3 Approach . 6

1.4 Contributions . 8

1.4.1 Dependability of Smartphones 8

1.4.2 Dependability of Cloud-based Applications 10

1.5 Outline . 11

2 OVERVIEW OF SMARTPHONES: SYSTEMS AND APPLICATIONS . 13

2.1 Android . 13

2.1.1 Android Architecture . 13

2.1.2 Android Application Components 15

2.1.3 Android IPC . 17

2.1.4 Intents . 17

2.1.5 Android Security . 18

2.2 Symbian . 19

3 CHARACTERIZING FAILURES IN ANDROID AND SYMBIAN 21

3.1 Objectives . 22

3.2 Data Collection . 22

v

Page

3.3 Manifestation of Errors . 24

3.3.1 Location of Manifestation of Errors 24

3.3.2 Persistence of Bugs . 28

3.3.3 Analysis of User Forums . 29

3.4 Analysis of Code Modifications and Fixes 30

3.4.1 Data Collection . 30

3.4.2 Categorization of Code Modifications 31

3.4.3 Tension between Customizability and Reliability 32

3.4.4 Analysis of Environment Variables 34

3.4.5 Cyclomatic Complexity and Number of Bugs 36

3.5 Directions for Future Research . 38

4 ROBUSTNESS TESTING OF ANDROID IPC 40

4.1 Objectives . 40

4.2 Experimental Setup . 41

4.2.1 Design of JarJarBinks . 41

4.2.2 Generating Intents . 43

4.2.3 Machines and Firmware . 46

4.3 Results . 47

4.3.1 Results for Explicit Intents 49

4.3.2 Results for Implicit Intents 55

4.3.3 Discussions . 56

4.4 Suggestions for Robust IPC . 58

4.4.1 Subtyping/POJO Approach 58

4.4.2 Java Annotations . 59

4.4.3 IDL and Domain Specific Language 60

4.5 Directions for Future Research . 61

5 OVERVIEW OF CLOUD SERVICES . 63

5.1 Overview of Cloud Dynamics . 64

vi

Page

5.2 Performance Interference in Cloud 65

5.2.1 Effect of Interference . 66

5.2.2 Existing Solutions for Interference Mitigation 66

5.3 Web Services in Cloud . 68

5.3.1 Web Application Configurations 68

5.4 Overview of Load Balancers . 70

6 MITIGATING INTERFERENCE USING MIDDLEWARE RECONFIGU-
RATION . 72

6.1 Motivation . 72

6.1.1 The Problem . 73

6.1.2 Existing Solutions . 73

6.1.3 Our Solution Approach . 74

6.2 Is Interference Real? . 76

6.3 Interference Impacts Optimal Configuration Values 78

6.3.1 Experimental Setup . 78

6.3.2 Impact of Interference on Middleware Configurations 80

6.3.3 Change in Inter-parameter Dependency 84

6.3.4 Interference and Web Server Capacity 86

6.4 Design and Implementation . 87

6.4.1 Interference Detection: Metrics Used 89

6.4.2 Decision Tree for Detecting Interference 91

6.4.3 Configuration Controller . 92

6.4.4 Reconfiguration Actions . 93

6.4.5 Update Functions . 94

6.4.6 Implementation . 95

6.5 Evaluation . 97

6.5.1 Setup . 97

6.5.2 Results . 99

vii

Page

6.6 Discussions . 105

6.7 Directions for Future Research . 106

7 ICE: AN INTEGRATED CONFIGURATION ENGINE FOR CLOUD SER-
VICES . 108

7.1 Motivation . 108

7.1.1 The Problem . 109

7.1.2 Improving IC2 . 109

7.1.3 Solution Approach. 110

7.2 Interference Degrades Performance of Web Servers 112

7.2.1 Experimental Setup . 112

7.2.2 Interference Increases Response Time 115

7.2.3 Interference vs. Load . 116

7.3 Design and Implementation . 118

7.3.1 Overview . 118

7.3.2 Monitoring . 119

7.3.3 Interference Detection . 120

7.3.4 Load-balancer Reconfiguration 121

7.3.5 Collecting Training Data . 123

7.3.6 Estimating ξ() . 124

7.3.7 Web Server Reconfiguration 125

7.4 Evaluation . 126

7.4.1 Improvement of Response Time due to ICE 128

7.4.2 ICE has Low Detection Latency 131

7.4.3 Performance of Classifier . 132

7.5 Streaming Server Evaluation . 133

7.5.1 Monitoring and Performance Metrics 133

7.5.2 Experimental Setup . 133

7.5.3 Results . 134

viii

Page

7.5.4 Discussion: Advanced Streaming Techniques 137

7.6 Directions for Future Research . 138

8 RELATED WORK . 139

8.1 Operating System Reliability . 139

8.2 Robustness Testing . 140

8.3 Smartphone Reliability and Security 142

8.4 Autonomous Configuration Management 142

8.5 Performance Interference in Clouds 144

9 LESSONS LEARNED . 146

9.1 Study of Failures in Android and Symbian 146

9.2 Evaluation of Robustness of Android ICC 147

9.3 Mitigating Interference using Middleware Reconfiguration 147

9.4 Handling Interference by Two-level Reconfiguration 148

REFERENCES . 149

VITA . 157

PUBLICATIONS . 158

ix

LIST OF TABLES

Table Page

3.1 Breakup of Bugs Considered in our Analysis 24

3.2 Distribution of references to environment variables. 35

3.3 Cyclomatic Complexity and Bug Density of different projects in Android 37

3.4 Cyclomatic Complexity and Bug Density of different segments in Symbian 37

4.1 Summary of component crashes in different versions of Android. 50

4.2 Frequency Distribution of Crashes with Implicit Intents by Exception
Type . 57

6.1 Summary of WS VM config. and parameters during different experiments.
Values with asterisk(*) are reconfigured with IC2. 81

6.2 Summary of our experiments on evaluating the impact of interference on
optimal parameter values. 84

6.3 Knowledge base for web server reconfiguration 94

6.4 Summary of IC2 Results. Response time numbers are %change from base-
line runs across interference benchmarks. FH:=first half, SH:=second half,
INTF:=interference, NI:=no-interference 102

7.1 Summary of ICE Results. Numbers indicate % change in median response
time from baseline runs for different interference benchmarks. The arrows
indicate whether response time decreases (↓) or increases (↑). 129

x

LIST OF FIGURES

Figure Page

2.1 Android System Architecture . 14

2.2 Android Application Components . 16

3.1 A Sample Bug Report on the Android Issue Reporting Site 23

3.2 Manifestation of Bugs in Different Segments of Android. 25

3.3 Manifestation of Bugs in Different Segments of Symbian. 26

3.4 Different Types of Code Modifications. 33

3.5 Distribution of references to environment variables 36

4.1 JarJarBinks: Interaction with Android Layers 42

4.2 Distribution of different types of exceptions. 53

4.3 Partial stack trace of crash of ActivityX. 54

4.4 Code responsible for crash of ActivityX. 54

6.1 Distribution of response times of Olio running on (a) Amazon’s EC2 (b)
Private cloud. VM resource settings and workload intensity are identical
in both cases. The longer tail in EC2 (ranging up to 55X of median in
EC2 compared to 4X in private cloud) indicate presence of interference. 77

6.2 Choice of optimal parameter values with varying Dcopy and LLCProbe.
For all experiments, #concurrent clients is 1500, chosen default values
are MXC = 1700, KAT = 5, and PHP = 1000. In each experiment,
one of the parameters are varied while others are kept constant at their
default values. 82

6.3 (a–b) Response Time vs. MXC with varying KAT. Dependency between
MaxClients and KeepaliveTimeout changes with interference. 85

6.4 Effects of interference. Here we identify system level bottlenecks that
causes response time to increase by an order. 86

6.5 System architecture of IC2 . 89

6.6 High level functioning of IC2 . 89

xi

Figure Page

6.7 Interference impacts load per operation (LPO) and work done (WorkDone)
by a web server. These, together with response time, can be used as
metrics for detecting interference. The values are normalized by the factors
shown in figure for better visualization. 90

6.8 State transitions of IC2. In EC2, reconfiguration is done when the server
enters I2 or NI2. 93

6.9 IC2 improves response time of a web server during phases of interference.
Red vertical bars show when an emulated interference is started and green
vertical bars show when interference is stopped. The blue vertical bars
show the point when IC2 reconfigured with httpd-online. New parame-
ter setting at each reconfiguration point is annotated as the three tuple
|MXC|KAT |PHP |. Baseline run implies IC2 is disabled. 100

6.10 Response time with IC2 for various interferences. Numbers represent per-
centage improvement from baseline RT. 101

6.11 Accuracy of Interference Detection with varying cost matrices. The cost
values 5 : 1 : 10 are used in production. 103

7.1 Layout of virtual machines in private cloud testbed. 113

7.2 The plot shows response time of the impactedWS VM over time. Response
time here indicate the average time the web server takes to serve a single
URL. Interference increases WS response time even though the server is
behind a load balancer. The scheduling policy used here is round-robin. 116

7.3 Increase in response time during interference with varying workload sizes.
The X-axis here indicate number of concurrent client connections. The
response times shown here are the times to finish an operation (a sequence
of URL requests) as described in Cloudsuite. The plot shows interference
has greater performance impact with larger workloads and the impact
varies across interference benchmarks. 117

7.4 The plot shows response time of an affected WS VM over time. Changing
the Server Weight parameter in the load balancer can reduce its response
time significantly during interference. 118

7.5 Components of ICE and their deployment. 119

7.6 ICE control loop. This figure shows the sequence of steps performed for
two-level reconfigurations in ICE. 119

7.7 Variation in CPI and CMR with interference. Metrics are measured with a
periodic interval of 1 sec. Actual values are scaled with the factors shown
in lables for clarity. 121

xii

Figure Page

7.8 Accuracy of regression with varying degrees of polynomials. The metrics
used for regression are shown in the plot labels. 125

7.9 Response time over time. ICE improves response time significantly com-
pated to baseline and IC2 with round-robin scheduling. With least con-
nection the lines are not clearly distinguishable, however, median response
time is best with ICE. 130

7.10 Median Response time with IC2 and ICE for various interferences against
a statically configured load balancer (baseline). Note that baseline LC
is able to reduce response time significantly compared to baseline RR.
Response time with IC2 increases in LC (also with Dcopy-Low) due to
overhead of dropped connections. 131

7.11 Two replicas of media Streaming Servers behind a load-balancer is serving
10,000 clients simultaneously. (a) Shows the variation of frame-delay with
number of threads when no interference is present. With just 1 thread, the
server gets extremely overloaded hence it calculates a very high expected
delay for the frames. With 10 optimum number of threads, the server
shows negligible delay. (b) Shows the variation of frame-delay with number
of threads with LLC interference. With 150 optimum number of threads,
the server shows minimum frame-delay. (c) Shows how frame-delay of the
affected server changes with load-balancer weights - when one real-server is
under LLC interference. Two plots show how delay changes for optimum
number of threads calculated for both interference and non-interference
cases . 135

xiii

ABSTRACT

Maji, Amiya K. Ph.D., Purdue University, May 2015. Dependability where the Mobile
World Meets the Enterprise World. Major Professor: Saurabh Bagchi.

As we move toward increasingly larger scales of computing, complexity of systems

and networks has increased manifold leading to massive failures of cloud providers

(Amazon Cloudfront, November 2014) and geographically localized outages of cellular

services (T-Mobile, June 2014). In this dissertation, we investigate the dependability

aspects of two of the most prevalent computing platforms today, namely, smart-

phones and cloud computing. These two seemingly disparate platforms are part of

a cohesive story—they interact to provide end-to-end services which are increasingly

being delivered over mobile platforms, examples being iCloud, Google Drive and their

smartphone counterparts iPhone and Android.

In one of the early work on characterizing failures in dominant mobile OSes, we an-

alyzed bug repositories of Android and Symbian and found similarities in their failure

modes [ISSRE2010]. We also presented a classification of root causes and quantified

the impact of ease of customizing the smartphones on system reliability. Our evalu-

ation of Inter-Component Communication in Android [DSN2012] show an alarming

number of exception handling errors where a phone may be crashed by passing it

malformed component invocation messages, even from unprivileged applications. In

this work, we also suggest language extensions that can mitigate these problems.

Mobile applications today are increasingly being used to interact with enterprise-

class web services commonly hosted in virtualized environments. Virutalization suf-

fers from the problem of imperfect performance isolation where contention for low-

level hardware resources can impact application performance. Through a set of rig-

orous experiments in a private cloud testbed and in EC2, we show that interference

xiv

induced performance degradation is a reality. Our experiments have also shown that

optimal configuration settings for web servers change during such phases of interfer-

ence. Based on this observation, we design and implement the IC2 engine which can

mitigate effects of interference by reconfiguring web server parameters [MW2014].

We further improve IC2 by incorporating it into a two-level configuration engine,

named ICE, for managing web server clusters [ICAC2015]. Our evaluations show

that, compared to an interference agnostic configuration, IC2 can improve response

time of web servers by upto 40%, while ICE can improve response time by upto 94%

during phases of interference.

1

1. INTRODUCTION

The last decade has seen two significant evolutions in the field of computing. First,

there is an increased mobility of computing devices. Starting from the days of static

desktop-based computers we have now entered the era of mobile computing where

smartphones and tablets are more popular than any other computing devices. This

can be easily verified by the phenomenal growth of the smartphone market. Accord-

ing to surveys by Gartner [1], number of mobile phone sales from 2013 onwards far

exceed computer sales. The overall market share of PCs is expected to decline fur-

ther resulting in 87% of connected devices being tablets or smartphones by 2017 [2].

The second evolution is the tremendous increase in volume of data generated and

transferred over the Internet. Social networks and media sharing websites are the key

enablers of this evolution. To support this unforeseen increase in scale of computing

in a cost-efficient manner, organizations have adopted cloud-computing where physi-

cal resources are shared between multiple users in a virtualized environment leading

to higher utilization.

While smartphones allow users to connect to the Internet in a nearly uninter-

rupted fashion, they also open up the possibility of a new range of applications with

innovative user interfaces and input modules. On the other hand, cloud computing

allows service providers to scale up to larger numbers of users many of whom connect

via mobile devices. Today, mobile computing and cloud computing form a symbi-

otic ecosystem where each augments the functionality and utilization of the other.

Consider the example of a person posting her location to a social networking website

through her smartphone. Here, the smartphone with help of its gps sensor acts as the

key enabler for this information sharing. On the other end of the spectrum, cloud en-

ables a multitude of functionality on the smartphone—a simple example being online

search.

2

We argue that smartphones and the cloud are not disjoint computing platforms

but form the basis for a unified computing platform. Both of them are responsible

for executing parts of the use-cases described above. From an end-user’s point of

view, both of these must operate reliably to provide uninterrupted services. Hence,

improving dependability of cloud-based applictions and their mobile counterparts

are equally important. Let’s take the example of a user purchasing books (or games)

from her smartphone (a vendor-specific example can be that of Android’s Google Play

app and the cloud-based Google-play store). A complex transaction of this nature

involves successful completion of the purchase both at the mobile and the online store,

followed by the book being delivered to the user’s phone. Failure in any of the steps

may result in user inconvenience or monetary loss or both. Unfortunately, reports

show that both mobile and cloud platforms are very failure prone. An example of the

Google Play app crash can be found in [3], while its cloud counterpart, the Google

Play services crashed in January, 2014 [4].

The landscape in mobile and cloud computing is changing rapidly over time thanks

to contributions from both researchers and developers. This can be verified by the

fact that Android has released 11 revisions (3 major) to its SDK Tools in 2014 alone

(similar inferences may be drawn from the improvements in both open-source and

proprietary virtualization solutions). A short time-to-market for softwares is often

characterized by poorer testing and larger number of bugs. We believe that the

recent advances in mobile and cloud computing, and current practices for mobile app

development leave significant scope for dependability research.

In this dissertation, we look at the dependability aspects of both these plat-

forms. First, we look at the dependability of smartphone applications and their

inter-component communication (ICC). Next we look at performance anomalies (of

which service outage is a small subset) in cloud-based services. Below, we present

key motivations for our work.

3

1.1 Motivations

Characterizing Mobile Failures. The release of iPhone in 2007 started a new

revolution in mobile computing, however, it was not until 2008 (when Android was

open-sourced) that researchers had freely available source code and failure reports

to analyze their reliability. Several researchers have studied failure characteristics of

popular operating systems like Windows and Linux [5,6] in the past. But evaluations

of mobile operating systems was rarely seen before release of Android. A notable

exception is the study of failures in Symbian OS-based smart phones [7]. However,

since Symbian was not open source at the time of the analysis, the authors of this

earlier study were limited in what they could do. They used failure logs from 25 smart

phones being used by volunteers participating in the study. Our work [ISSRE2010]

extends this prior work by significant proportions. Our study of failure characteristics

in smartphones is the first of its kind in that it looks into open-source mobile OSes

and classifies their failures based on a much larger number and greater diversity of

failure reports.

IPC Robustness. Several example failures that showed propagation of errors

across different components in Android [ISSRE2010] motivated us further to experi-

mentally evaluate dependability of smartphones. In case of smartphones, sources of

inputs to applications can be significantly diverse—these include touchscreen, key-

board, radio, microphone, sensors, untrusted third-party applications, or data from

one of many network drivers—and therefore it has great potential for receiving un-

expected data. Given the unorthodox techniques people employ to bypass password

locks on their smartphones [8], receipt of unexpected data is not a rarity. Our second

experiment [DSN2012] was designed to see how well Android reacts to unexpected

data, and more specifically to test its Inter Process Communication primitives. We

define robustness as the ability to handle unexpected data gracefully, therefore, lack

of robustness would imply an application crashing in response to an IPC message. In

4

the context of Android applications, these crashes manifest as uncaught exceptions

in the stack trace.

Dependability of Cloud Services. While continuing our research on robustness

of smartphones, we realized that many of the popular mobile apps are supported by

cloud-based services, examples being, Facebook, Pandora Radio, Angry Birds, Skype

etc. (some of which showed exception handling errors in our earlier experiments). At

the same time, several incidents of cloud service outage [9, 10] motivated us to look

into the dependability aspects of cloud services. Today’s infrastructure clouds (IaaS)

are supported by some form of virtualization, which allows multiple users to run their

applications in containers called virtual machines (VM). Although one of the goals

of virtualization is to support isolation among multiple VMs, existing hardware and

software virtualization mechanisms do not provide perfect performance isolation. For

example, x86-based platforms do not allow for reservation of cache usage, memory

bandwidth, or I/O bandwidth. Lots of past work has demonstrated the extent of this

interference for production virtualization environments, such as, those using Xen or

KVM [11–13]. Existing work on mitigating interference require intrusive modifications

to hypervisors [14–17], which is infeasible in public clouds (such as EC2) due to limited

permissions of guest VMs. We were, therefore, encouraged to find innovative solutions

that would not require access to hypervisor.

Interference Mitigation using Middleware Reconfiguration. During our

experiments on evaluating impact of interference, we found that web service applica-

tions have a large number of parameters that have direct impact on performance. The

optimal values for these parameters change significantly during interference, there-

fore, we can mitigate interference by changing these parameter values when such an

event is detected. We use this observation to design and implement an autonomous

reconfiguration engine for web services middleware (called IC2, or Interference-aware

Cloud application Configuration). We further observed that in web server clusters,

interference may be mitigated by moving web requests away from the impacted web

server VM (WS-VM) to less loaded servers. This not only improves response times

5

of the requests that are directed to other servers, but also the impacted WS pro-

cesses fewer requests efficiently. This observation led to the design of a two-level

configuration engine for web server clusters (called ICE or Integrated Configuration

Engine)—the first level reconfiguration happens at the load-balancer in front of the

cluster, while the second level reconfiguration happens in individual WS VMs suffer-

ing from interference (similar to IC2). Both IC2 and ICE helped us in mitigating

interference effectively without modification to the hypervisor and, therefore, present

practical solutions for public clouds.

1.2 Objectives

In this dissertation, our objective is to improve the dependability of smartphones

and the cloud-based services that interact with them. To this end, we characterize the

failures in these platforms and develop tools and techniques to detect and mitigate

them. More specifically, we seek to answer the following questions:

1.2.1 Smartphones

1. What are the applications and libraries that fail frequently in Android and

Symbian? Are there any similarity in failure manifestations of these platforms?

2. What are the types of code fixes that are applied frequently in Android?

3. Does customizability of smartphones impact their reliability?

4. How robust are Android’s ICC primitives? Can the Android runtime contain

exceptions within an application? How well does an Android component behave

in the presence of a semi-valid or random Intent?

5. How can we refine the implementation of Intents so that input validation can

be improved?

6

1.2.2 Cloud Services

1. Does interference cause performance degradation in public clouds such as Ama-

zon EC2? If so, how often and how much degradation is observed?

2. Does interference change the optimal configuration of an application? What

are the challenges associated with finding the optimal parameter values?

3. How can we detect when an application is suffering from interference? How can

we automatically reconfigure an application to mitigate performance interfer-

ence?

4. Does interference show performance degradation in load-balanced web server

clusters? How can we reconfigure such clusters quickly and efficiently to deal

with interference?

5. How much performance improvement can be seen by reconfiguring middleware

parameters?

1.3 Approach

Smartphones. To answer the first three questions in 1.2.1, we collected a large

volume of failure data from Android and Symbian bug repositories. Based on the

collected samples (628 bugs in Android and 153 bugs in Symbian) we looked into the

manifestation of failures in different modules in Android and Symbian, and identified

which modules are reported to cause the greatest unreliability. We further collected

a sample of 233 bug fixes in Android spread over 29 projects and classified the fixes

based on the type of corrections needed in code. We also measured the complexities

of these projects (in terms of lines of code and cyclomatic complexity) and compared

their bug densities found in our sample set.

To answer the last two questions on smartphones, we developed our Android ro-

bustness testing tool, JarJarBinks (in remembrance of the Gungan warrior of Star

7

Wars fame, whose unusual accent created significant problems for the Droid). Jar-

JarBinks includes four Intent generation modules—semi-valid, blank, random, and

random with extras, and the ability to automatically send a large number of Intents

to all the components. JarJarBinks runs as a user level process, it does not require

knowledge of source codes of the tested components, and can be easily configured for

the robustness testing on any Android device. During our experiments we sent more

than 6 million Intents to 800+ application components across 3 versions of Android

(2.2, 2.3.4, and 4.0) and discovered a significant number of input validation errors.

Our most striking finding was the ability to run privileged processes from user level

applications (such as JarJarBinks) in Android without requiring the user-level appli-

cation to be granted any special permission at install time. We also suggested some

design-level guidelines for improving robustness of ICC in Android.

Cloud Services. We answer the first two questions in 1.2.2 by an extensive

empirical evaluation of the Olio [18] web-application benchmark in EC2 as well as

in a private cloud testbed. We run Olio with a variety of configuration settings and

under various cache-intensive interferences. The configuration settings we look at are

the performance critical parameters in the web application runtime, i.e. Apache and

Php runtime. These parameters are related to the parallelism (maximum number

of threads) in Apache and Php runtime (MaxClients,PhpMaxChildren), and their

idle timeouts (KeepaliveTimeout). We detect interference by using a collection of

hardware performance counters (Private Testbed) or a set of application performance

metrics (in EC2, where hardware performance counters are not available). A huristic-

driven configuration controller (IC2) is used to predict a good configuration value

during interference.

We repeated similar experiments in a load-balanced web-server setup and found

interference can degrade response time of websites significantly (question 4 in Section

refsec:conf-motiv). To mitigate interference our autonomous configuration engine

ICE performs two-level reconfigurations of the web-server cluster. The first level,

geared towards agility, is to reconfigure the load balancer in such a manner so that

8

fewer requests are forwarded to the affected WS VM. We found that this provides

the maximum benefit in terms of reduced response time. The second level of recon-

figuration, which configures Apache and Php-fpm as described in IC2, is activated

only if the interference lasts for a long time. This prevents the server from incurring

unnecessary reconfiguration overheads if the interference is short. We evaluated both

IC2 and ICE by measuring response times of Cloudsuite during periods of interfer-

ence. We compare these with the response times when IC2 or ICE are not enabled

(baseline). Overall, we found that IC2 could improve response time by upto 40% and

ICE could improve response time by upto 94% compared to baseline.

1.4 Contributions

We summarize our findings and contributions to improve the dependability of

smartphones and cloud-based applications as follows:

1.4.1 Dependability of Smartphones

1. We were the first to analyze the failure characteristics of open-source mobile

OSes based on a large number and diversity of failure samples. We found

that the kernels of both these platforms are significantly hardened (only few

bugs per million lines of code), however, we need more efforts in improving the

middleware. Our analysis of code modifications in Android showed that a large

fraction (77%) of the bug fixes needed only small changes in code, as opposed

to significant code modification. We also presented a classification of the code

fixes.

2. By measuring the number of environment variables in the Android platform

across its different versions and comparing it with Linux Kernel, we analyze

the customizability of Android. This indicates Android’s dependence on a few

critical variables, which implies that these environment variables need to be set

9

with care; else, significant error propagation can occur. We found that both

Android and Symbian provide a radically high level of customizability both in

building and executing the OS. While this customizability does lead to some

loss of reliability, especially in Development tools and Third-party applications,

such loss can be mitigated by more rigorous testing.

3. We developed a tool named JarJarBinks for evaluating the robustness of ICC in

Android. JarJarBinks runs as a user-level process, does not require knowledge

of source-code of applications, and can send semi-valid and random Intents to

any application on the same phone (either targeted, i.e. explicit Intent or via

mediation of Android runtime, i.e. implicit Intent).

4. Our experiments showed, in general, less than 10% of the components tested

crashed; all crashes are caused by unhandled exceptions. Our results suggest

that Android has a sizable number of components with unhandled NullPointer

Exceptions across all versions. The most striking finding that we have is the

ability to run privileged processes from user level applications without requiring

the user-level application to be granted any special permission at install time.

We found three instances, where we could crash the Android runtime from

JarJarBinks. Such a crash makes the Android device unusable till it is rebooted.

This has huge potential for privilege escalation, denial-of-service, and may even

lead to more security vulnerabilities, if an adversary could figure out how to

have these malformed (or “fuzzed”) Intents be sent out in response to some

external message.

5. To improve software design from the point of view of reliability, we found that

subtyping combined with Java annotations can be used very effectively to re-

strict the format and content of an Intent. Through this mechanism, the attack

surface of Android can be reduced significantly.

10

1.4.2 Dependability of Cloud-based Applications

1. We rigorously studied the performance variability of web-based applications in a

public cloud environment. In this study, we run the CloudSuite [19] benchmark

in Amazon’s EC2 for 100 hours over a 5-day period. We then compare the

statistics obtained from these runs with sample runs of CloudSuite in a private

cloud testbed. We observe that CloudSuite has much longer response time

distribution in EC2 (ranging upto 5.5s) than in the local testbed (upto 0.42s

only) with identical resource configurations. This validates our hypothesis, that

public clouds have high degree of performance uncertainty.

2. We conducted a study to understand if applications can be configured to deal

with interference. We observed that an ideal operating configuration for Apache

web server depends on the type and degree of interference. Further, parameters

in different elements of the software stack depend on each other and the inter-

dependency changes with the degree of interference; and finally, the application

performance curves with the configuration values are discontinuous in places,

making traditional control-theoretic approaches for parameter tuning [20] in-

effective. Specifically we found three parameters corresponding to the degree

of concurrency and the time to live of existing connections to be particularly

significant.

3. We present a simple, heuristic-driven configuration manager, IC2 to reconfigure

the application upon interference. IC2 solves three key challenges for dynamic

reconfiguration—first, it presents a machine learning based technique for de-

tecting interference; second, it uses a heuristic-based controller for determining

suitable parameter values during periods of interference; and finally, it reduces

the cost of reconfiguration of standard Apache distributions by implementing an

online reconfiguration option in the Httpd server. A prototype implementation

of IC2 was deployed both in EC2 and our private testbed. The experiments

11

show that IC2 can recapture lost response time by upto 29% in EC2 and 40%

in our private testbed.

4. We present the design and implementation of a two-level reconfiguration en-

gine for load-balanced web server clusters to deal with interference in cloud.

Our solution, called ICE, includes algorithms for: a) detecting interference

quickly (primarily cache and memory bandwidth contention), and b) predicting

new weights for impacted server to reduce load on them. Our evaluation ex-

periments show that on a combination of Apache+Php+HAProxy middleware,

ICE can reduce median response time of web servers by upto 94%. We evaluate

ICE for two different load balancer scheduling policies (weighted round-robin,

and weighted least-connection) in HAProxy and find that it improves response

time across both scheduling policies (upto 94% and 39% respectively). Median

interference detection latency was 3s.

5. To evaluate the generalizability of our framework, we also ran some experiments

with the Darwin media streaming server running with LVS load balancer. Our

results show that reconfiguring server weight in LVS can be used to reduce

the inter-frame delay for an affected Darwin VM. We also found that the op-

timal num_threads parameter in Darwin is vastly different with and without

interference indicating our WS reconfiguration is also applicable to Darwin.

1.5 Outline

The dissertation is organized as follows. In Chapter 2, we present relevant back-

ground material and terminology used in mobile application frameworks. Similarly,

Chapter 5 defines various terminologies used in Cloud Services. We also present an

overview of web server configurations in this chapter. Chapters 3–4 and Chapters

6–7 are organized in a manner such that each chapter, in combination with relevant

background material (Chapter 2 or Chapter 5), can be followed independently. For

each of these chapters, we first present the problem statement we address, followed by

12

our design, implementation, experimental results, and suggestions for improvements.

Chapter 3 contains our case study on failures in Android and Symbian, while, Chap-

ter 4 contains our empirical evaluation of robustness of Android ICC. Chapters 6 and

7 present our solutions for mitigating performance interference in cloud under two

different setups, one where each web server VM is managed in isolation (Chapter 6)

and another where the web server cluster is managed as a whole (Chapter 7). Chap-

ter 8 presents an overview of earlier research related to our work and compare them

with the proposed solutions. Finally, we summarize our findings from Chapters 3–7

in Chapter 9 and conclude this dissertation.

13

2. OVERVIEW OF SMARTPHONES: SYSTEMS AND

APPLICATIONS

In this chapter, we present some of the terminology and definitions used throughout

the rest of the dissertation. Here we highlight some of the key software layers of

mobile systems and identify principal components of mobile applications (also called

apps). We begin with an overview of Android which complements the discussions in

Chapters 3–4. The discussion on Symbian is relevant to Chapter 3.

2.1 Android

2.1.1 Android Architecture

Android is an open source platform for mobile system development with a stan-

dard Linux operating system, a customized runtime, a comprehensive application

framework and a set of user applications. It offers many features covering the areas

of application development, internet, media, and connectivity. These features in-

clude Application framework, Dalvik virtual machine, Integrated browser, Optimized

graphics, SQLite for structured data storage, Media support for common audio, video,

and still image formats, GSM Telephony, Bluetooth, EDGE, 3G, and WiFi, Camera,

GPS, Compass, and a rich Development environment. Based on Linux kernel, it pro-

vides a robust driver model, security features, process management, memory man-

agement, networking assistance and drivers for a large set of devices. The Android

platform primarily consists of five layers as shown in Fig. 2.1.

Applications: This includes a set of core applications that come with the Android

distribution like Email Client, Messaging application, Contacts application, Calendar,

Map browser, Web browser etc.

14

Fig. 2.1.: Android System Architecture

Application Framework: This layer has been designed to facilitate the reuse of

components in Android. With the help of Application Framework elements (such as,

Intents, Content Providers, Views, and Managers) in Android, developers can build

their applications to execute on Android Kernel and inter-operate among themselves

and with existing applications.

Libraries: Libraries include System C library, Surface Manager, 2D and 3D graph-

ics engine, Media Codecs, the SQL database SQLite and the web browser engine

LibWebCore.

Android Runtime: The Android runtime consists of two components. First, a set

of Core libraries which provides most of the functionality available in Java. Second,

the Dalvik virtual machine which operates like a translator between the application

side and the operating system. Dalvik [21] is a register based [22] virtual machine

optimized to run under constrained memory and CPU requirements. Every Android

application runs in its own process, with its own instance of the Dalvik virtual ma-

chine.

15

Linux Kernel: Android uses a modified version of Linux for core system services

such as Memory Management, Process Management, Network Stack, Driver Model

and Security. For more information on the Android platform and a schematic of the

Android architecture the readers are referred to [23].

2.1.2 Android Application Components

Here we first explain the different kinds of application components in Android and

then explain how the different components coordinate among themselves to achieve a

task. This background would be essential to understand the experimental methodol-

ogy that we have developed because we choose the inter-component messages (called

Intents in Android) as the target of our fuzz testing. To understand how Android ap-

plication components co-ordinate to achieve a task, consider two sample applications

(Email and Contacts) shown in Figure 2.2, that co-operate in replying to an email.

Consider, a user launching an email application from home screen. This starts an

Activity (user interface (UI)) showing the user’s Inbox. She then clicks on an email

she wants to read which starts another UI showing a particular Email message. To

reply, she clicks Reply button to invoke a third activity where she can type her re-

sponse. Consider, she wants to copy her reply to more recipients, so she hits the

“cc” button to find the address of the recipient. This invokes a fourth activity, i.e.,

Select Contact in Contacts application showing the available email addresses. This

fourth activity to user appears as a part of email application but in reality it is from a

separate application (Contacts) which runs in a separate process. Further, the main

activity in Contacts application, i.e., Select Contact calls a Content Provider, another

application component for data storage, to retrieve the recipient’s email address. The

sequence of called activities, Inbox, Email, Reply, Select Contact to achieve a given

task involves inter-component communication which can be either inter-application

or intra-application.

16

Fig. 2.2.: Android Application Components

Each user application in Android (a *.apk file) typically runs in a separate pro-

cess and can be composed of Activities, Services, Content Providers and Broadcast

Receivers. These four components communicate through messages called Intents that

are routed through Android runtime and the Kernel. The underlying runtime man-

ages the Inter-component Communication. At application installation time, the con-

tract with the runtime is specified in AndroidManifest.xml. This contract details on

type of components, application permissions, etc. Here we briefly define each of the

component types.

Activities: An Activity is a graphical component, which is used to provide the

client with a user interface. It is invoked when a user launches an application. An

activity can send and receive Intents to and from runtime. It is implemented by

extending the Activity class while its life cycle is managed by a module in application

framework layer called Activity Manager.

Services: A Service is used when an application task needs to run in background

for a longer time period. For example, a user can run music player in background.

Also, a component can bind to a Service to send a request, e.g., a music player Activity

can bind to a music player Service to stop the current song that is being played.

Content Providers: A Content Provider is used to manage access to persistent

data. The data can be shared between multiple Activities in different applications.

Contacts application, as an example, can use the content provider to get a person’s

phone number.

17

Broadcast Receivers: A component that is solely responsible to receive and

react to event notifications is called a Broadcast Receiver. For example, in SMS

application, the Broadcast Receiver component receives an SMS message and displays

an alert.

2.1.3 Android IPC

The inter-process communication (IPC) in Android occurs through a kernel space

component called Binder (/dev/binder), a device driver using Linux shared memory

to achieve IPC. The higher level user space components know how to use the binder,

i.e., how to pass data represented by Intents to Binder. Specifically, when a given

component, e.g. Activity Manager, wants to do IPC (either an IPC send or an IPC

receive) at OS boundary, it opens the driver supplied by the Binder kernel module.

This associates a file descriptor with the thread that called binder, and this association

is used by the kernel module to identify the caller and callee of Binder IPCs. All IPC

at OS boundary takes place through this descriptor. At the higher level, application-

runtime boundary, the application components send Intent messages, e.g., an Activity

sends Intents to Activity Manager.

2.1.4 Intents

Intent, a data container, is an abstraction for an action to be performed and

forms the core of Android’s IPC mechanism. An Intent encapsulates action, data,

component, category and extra fields in its object. As an example, an action can be

dial, with data as phone number and component as phone application’s main activity.

Category and extra fields give extra information on action and data respectively. An

Intent message can be specifically (Explicit Intent) sent to a target component by

naming it or it could be resolved by runtime to find a target component. When the

target is not explicitly specified in Intent message (Implicit Intent), the Android

runtime resolves the target component to be invoked by looking up the Intent mes-

18

sage and matching it against components that can handle the Intent. A given target

component can handle an Intent, if it is advertised in a tag called Intent-filter in

AndroidManifest.xml. Different ways in which Intents are sent by application com-

ponents are: (1). By launching an Activity using startActivity(Intent) type of

methods; (2). By sending to Broadcast Receivers using sendBroadcast(Intent)

type of methods; (3). By communicating with a service using bindService(Intent,

ServiceConnection, int) type of methods; (4). By accessing data through Content

Providers.

2.1.5 Android Security

Android provides two important security mechanisms that are different from tradi-

tional Unix systems, i.e., application sandboxing and permissions. Sandboxing means

each Android application (*.apk) is given its own unique UID at install time that re-

mains fixed throughout its lifetime. This is different from traditional desktop systems

where a single user ID is shared among different processes. In Android, since two ap-

plications run as two different users, their code may not be run in the same process,

thus requiring the need of IPC. Moreover, applications are also assigned separate

directories where they can save persistent data. Applications can specify explicitly

whether it will share its data with other applications in AndroidManifest.xml.

Application permissions is a Mandatory Access Control (MAC) mechanism for

protecting application components and data. To use resources, an application re-

quests permissions through AndroidManifest.xml file using the uses-permission tag at

installation time. For example an application that needs to monitor incoming SMS

messages would explicitly specify permission of “android.permission.RECEIVE SMS”.

To protect or share an application’s own components, an application can define and

specify a certain permission for a caller. This mechanism gives fine-grained control

of different protected features of the device but fixes these permissions to install time

as opposed to runtime.

19

2.2 Symbian

Prior to 2011, Symbian held the largest market share for smartphone OSes. It is a

lightweight operating system designed for mobile devices and smart phones, with asso-

ciated libraries, user interface, frameworks and reference implementations of common

tools, originally developed by Symbian Ltd [24].

Since mobile phones’ resources and processing environments are highly constrained,

Symbian was created with 3 design principles: (i) Real time processing, (ii) Resource

limitation, and (iii) Integrity and security of user data. To best follow these princi-

ples, Symbian uses a hard real-time, multithreaded microkernel, and has a request-

and-callback approach to services. Symbian’s system model is segmented into 3 main

layers [25]:

OS Layer: Includes the hardware adaptation layer (HAL) that abstracts all higher

layers from actual hardware and the Kernel including physical and logical device

drivers. It also provides programmable interface for hardware and OS through frame-

works, libraries and utilities etc. and higher-level OS services for communications,

networking, graphics, multimedia and so on.

Middleware Layer: Provides services (independent of hardware, applications or

user interface) to applications and other higher-level programs. Services can be spe-

cific application technology such as messaging and multimedia, or generic to the

device such as web services, security, device management, IP services and so on.

Application Layer: Contains all the Symbian provided applications, such as mul-

timedia applications, telephony and IP applications etc.

Symbian is optimized for low-power battery-based devices and ROM-based sys-

tems. Here, all programming is event-based, and the CPU is switched into a low

power mode when applications are not directly dealing with an event. Similarly, the

Symbian approach to threads and processes is driven by reducing memory and power

overheads. Readers are referred to [25] for further details on the Symbian architecture.

20

In the next chapter, we present our study on failure rates of various applications

and middleware components in Android and Symbian.

21

3. CHARACTERIZING FAILURES IN ANDROID AND

SYMBIAN

As smart phones grow in popularity, manufacturers are in a race to pack an increas-

ingly rich set of features into these tiny devices. This brings additional complexity in

the system software that has to fit within the constraints of the devices (chiefly mem-

ory, stable storage, and power consumption) and hence, new bugs are revealed. How

this evolution of smartphones impacts their reliability is the question we answer in

this chapter. Here, we analyze the reported cases of failures of Android and Symbian

based on bug reports posted by third-party developers and end users and documen-

tation of bug fixes from Android developers. First, based on 628 developer reports,

our study looks into the manifestation of failures in different modules of Android

and their characteristics, such as, their persistence and dependence on environment.

Next, we analyze similar properties of Symbian bugs based on 153 failure reports.

Our study indicates that Development Tools, Web Browsers, and Multimedia appli-

cations are most error-prone in both these systems. We further analyze 233 bug fixes

for Android and categorized the different types of code modifications required for the

fixes. The analysis shows that 77% of errors required minor code changes, with the

largest share of these coming from modifications to attribute values and conditions.

Our final analysis focuses on the relation between customizability, code complexity,

and reliability in Android and Symbian. We find that despite high cyclomatic com-

plexity, the bug densities in Android and Symbian are surprisingly low. However, the

support for customizability does impact the reliability of mobile OSes and there are

cautionary tales for their further development.

22

3.1 Objectives

In this chapter, our objective is to analyze failure manifestations in Android and

Symbian. In that regard, we ask ourselves the following questions:

• What are the applications and libraries that fail frequently in Android and

Symbian? Are there any similarity in failure manifestations of these platforms?

• What are the types of code fixes that are applied frequently in Android?

• Does customizability of smartphones impact their reliability?

We answer each of these questions by studying a large number of bugs from Android

and Symbian bug repositories. Below, we present our data collection methodology.

3.2 Data Collection

At the time of this study (May 2010), the Android issue reporting site [26] con-

tained more than 8300 bug reports that are categorized into two types, namely defects

and enhancements. We consider these as the manifestations of faults from an appli-

cation developer’s perspective. Our study considers only bugs marked as defects.

Since the “issue” descriptions are stored as unstructured texts and contained varying

amount of details, we had to go through them manually. To prune the database fur-

ther, we used a set of keywords to list bugs containing those tags. These keywords

are—crash, shutdown, freeze, broken, failure, error, exception, and security. The

motivation behind choosing these keywords is that these events typically represent

significant user inconvenience [7]. The dataset was also filtered to remove duplicate

entries. This initially gave rise to a list with 758 bugs reported between Nov 2007

and Oct 2009. Since the bugs between Nov 2007 and Oct 2008 are reported before

the official release of Android we further removed these pre-release bugs. The final

dataset for Android thus consisted of 628 distinct bugs.

To get an understanding of the terminology used in the issue database, let us

consider the bug displayed in Fig. 3.1. This is the entry of a bug related to memory

23

exhaustion (Issue ID 2203) in the Android issue reporting site [26]. The developer

claims that when she tries to rotate the UI of Android more than 20 times, it ter-

minates with an “OutOfMemoryAlert”. The bug type is specified as “Defect” and

it has medium priority. The “Closed” date in the report indicates that the bug has

been fixed and it will be released in future (hence, labeled as “FutureRelease”).

Fig. 3.1.: A Sample Bug Report on the Android Issue Reporting Site

The different categories of the pruned set of bugs (after further removing unhelpful

categories “Questions” and “Declined”) with the associated counts are shown in Table

3.1.

We applied the same methodolgy for collecting bugs from the Symbian bug tracker

[27] which had more than 2700 bugs (as on May 2010). Initially the database was

queried with the keywords mentioned earlier. The collected failure reports were

pruned by removing duplicates and entries of type “enhancement” or “feature”. This

gave us a dataset with size 275 spanning the period May 2009—April 2010. After

removing the pre-release bugs (before 4 Feb, 2010) our dataset contained 153 distinct

failures. The bugs in our Symbian dataset have the status of new (the bug has just

been reported), assigned (the bug has been assigned to an engineer for fixing), pro-

24

posed (a solution has been proposed that is awaiting verification), closed/worksForMe

(the bug is closed since it could not be reproduced), resolved/fixed (the bug has been

fixed and the suggested resolution is awaiting verification from the package owner), or

closed/fixed (the bug had been fixed and the fix is in a release or pre-release version).

Table 3.1 shows a breakup of the bugs considered in our analysis for each of the two

platforms.

Table 3.1.: Breakup of Bugs Considered in our Analysis

Android Symbian
New 330 New 106
Assigned 13 Assigned 15
Reviewed 67 Proposed 21
NeedsInfo 9 Resolved/Fixed 5
FutureRelease 119 Closed/WorksForMe 2
Released 69 Closed/Fixed 4
Unassigned 2
Unreproducible 19

Total 628 Total 153

Next, we analyze the failure reports from two viewpoints—the first one is to iden-

tify the frequency of failures in different segments of Android and Symbian, whereas,

the second one is to classify whether the bugs are permanent, intermittent, or tran-

sient.

3.3 Manifestation of Errors

3.3.1 Location of Manifestation of Errors

From the details of the bugs, we initially identified the location where a bug is

manifested. Notice that ‘location’ has different interpretations from different perspec-

tives. From a user’s point of view, the location of a bug is the application which fails

to run correctly, whereas, from a system developer’s point of view, the location is the

exact component of Android that fails (often found from stack trace). Our analysis

25

presents categorization of bugs primarily from application developers’ perspective,

however, a small fraction of the bugs are also reported by end-users (containing fair

amount of details).

Fig. 3.2.: Manifestation of Bugs in Different Segments of Android. The total number
of bugs considered here is 628.

From the bug reports, we first identified 55 different segments in Android where

bugs were reported. By segment, we mean an individual application or an individual

library at which the bug manifested itself, from an end-user’s perspective. However,

this proved to be too many segments for getting an understanding of the underlying

bugs and some segments had very few bug reports. Therefore, we performed an

aggregation of some of the related applications and libraries into aggregated segments.

Through this we arrived at 18 Android segments. ‘Segment’ now represents a built-in

application (e.g. Camera, Web Browser etc.), a library in Android (e.g. Graphics,

SSL etc.), or an aggregate. The aggregates are: Eclipse, Android Development Tool

(ADT), Android Debug Bridge (ADB) as Development Tools; GPS and Location

Manager as Location Manager; all the applications that come with Android and are

related to Google’s services, such as Gmail, Map, and Marketplace as Google Apps;

26

Fig. 3.3.: Manifestation of Bugs in Different Segments of Symbian. The total number
of bugs considered here is 153.

Networking library and Wi-Fi library as Networking; Image viewer, Media library,

and Media player as Multimedia. Though this grouping introduces disparity among

segments in terms of code sizes, they faithfully emulate a user’s view (e.g., if a user

finds a problem with wi-fi reception, she is likely to report this as a networking issue).

We present another analysis on code complexity and bug density later in this chapter

(Section 3.4.5). The results on failure manifestation for Android is displayed in Fig.

3.2. The Y-axis in the graph indicates the count of distinct bugs that were reported

against a segment.

A large collection of applications that did not have enough severity individually

(examples contain failures of Activity Manager, Content Provider, Memory Manager,

SQLite etc.) were merged to form the largest segment “Others” (91) in Fig. 3.2. The

next most failure-prone segment in Android was Development tools (67) followed by

other significant segments such as Web Browser (58), Google Apps (55), Multimedia

(54), Documentation and Installation related bugs (49), Mail Client (36), and the

27

View System (34). It is encouraging to find that a relatively few numbers of bugs are

related to Kernel and Device drivers (24 of 628), and the Dalvik and Core Library

(26 of 628).

A similar analysis of the Symbian bugs initially resulted in a distribution of 153

bugs in 41 segments (“packages” in Symbian terminology). To get a better under-

standing we again combined the related packages into a single segment, e.g., the

packages wrttools, web, websrv, and webuis as Web; the packages podcatcher, mm,

graphics, imagingext, mmappfw, and musicplayer as Multimedia; the packages home-

screen and homescreensrv as HomeScreen. This resulted in 15 segments of which

only 3 are individual packages (these are messaging, contacts, and organizer) and the

rest represent groups of related packages.

It can be seen from Fig. 3.3 that the segment web (31) is most bug prone in

Symbian followed by Multimedia (22). Bugs related to building of Symbian packages

(19), bugs in the Development tools (12), and bugs in Kernel and OS Services (12)

are also significant in number. During our analysis, we observed another interesting

pattern in Symbian—as many as 59 bugs in our data set (38.6% of all the bugs) were

due to build/compilation errors, missing files, missing references, etc. We denote these

types of bugs as “build” bugs. Some of the packages contained significant number of

“build” bugs. Examples include web (8 of 31), Multimedia (6 of 22), Development

tools (5 of 12), and UI softwares (4 of 8). We display the relative counts of “build”

bugs and “runtime” bugs by splitting the bars in Fig. 3.3. Note that the “Build

Pkg” in Fig. 3.3 represents bugs specific to the named package and it forms only a

fraction of the “build” bugs. The number of “build” bugs in Android did not have

such prominence, hence, we do not display the breakup in our analysis. We attribute

the large number of build bugs in Symbian to its recent release and believe that these

will have less prominence in future releases.

By comparing Fig. 3.2 and Fig. 3.3 it can be seen that of the top 6 bug prone

segments in both the platforms, 4 are identical. These are Web browser (Web in

Symbian), Multimedia, Development tools and Doc-Install (Build in Symbian). In-

28

terestingly, web browsing and multimedia are perhaps the most significant features

of a smartphone as perceived by the users. Unfortunately, these are also most failure

prone leading to dissatisfaction of users as seen in numerous posts in the user forums

(refer Section 3.3.3). One may argue that our findings are biased by the fact that

Web browser and Multimedia are more extensively tested by the user community than

other applications. However, this once again reiterates the need for making these ap-

plications more robust and secure. We further note that the Web browsers in both

Android and Symbian are built from the WebKit engine. This raises concern about

the reliability of third-party applications that are used in the mobile OSes. Apart

from WebKit, SQLite, SSL, and Graphics (based on OpenGL) were also found to be

error prone in Android.

The presence of large number of bugs in Development tools in both these plat-

forms (10.67% and 7.84% of all bugs in Android and Symbian respectively) draws

special attention to this segment. We believe, the efficiency and reliability of these

development environments will be a key factor in determining which platform has a

larger developer community. Moreover, faults in the development environment can

significantly affect the performance of applications and may even be responsible for

creating security holes (e.g., a development tool that does not check for known vul-

nerabilities like SQL Injection and Cross-site scripting). An encouraging finding from

our analysis is that both the platforms have lesser number of errors in the lower

layers—Dalvik and Core, Kernel and Drivers in Fig. 3.2 and Kernel and OS service,

Driver services in Fig. 3.3—compared to application level failures. Android, which

comes with more applications than Symbian, also has more application level failures

(like Mail client and Google apps in Fig. 3.2).

3.3.2 Persistence of Bugs

From the failure reports, we found that only a few bugs in Android were transient

(10) or intermittent (49). Most of the failures are permanent (566) in nature and need

29

to be fixed by modifying the Android code. A few bugs (3) could not be categorized

due to lack of sufficient information. It may be noted here that the actual number

of transient and intermittent bugs may be much higher as users often refrain from

reporting them. Furthermore, many non-permanent bugs were also declined by An-

droid engineers as they could not be reproduced. Similar analysis with the Symbian

bugs indicated that only 4 were intermittent bugs and the rest (149) were permanent.

We observe that the large number of permanent bugs in both systems (90.12% in

Android and 97.38% in Symbian) may be due to the fact these are new operating

systems and their codebases are not yet stable.

3.3.3 Analysis of User Forums

Besides the developers’ reports, we also studied publicly available data on the T-

Mobile G1 user forums for incidence of Android failures [28]. Our analysis considered

threads related to Messaging, Google Applications, Phone & Data Connection, and

Operating System & Software Development. It was observed that most of the reports

in the user forums are trivial questions or suggestions for enhancements. Therefore

we discarded these messages from our dataset. The final list consisted of 105 distinct

failures. The failures are frequently reported for Mail Client (15), SD Card (11),

Media Player (9), Messaging (9), GPS and Location Manager (8), Web browser(8),

Android Marketplace (6), and Calendar (5). This result is not identical to that when

we considered the failure reports from a wider audience (Section 3.3.1). This may

indicate that the scope of problems in the different modules varies with the hardware

device being used. We further noted that the common user-initiated recovery actions

are—Restart application, Wait for some time, Restart phone, Modify settings, Factory

reset, Take out battery, Update firmware, and Use third-party software. For example,

many users reported that the location displayed in the GPS of Android is 1-2 miles

away from where they actually were. Waiting for sometime, rebooting the phone, or

doing factory reset may solve the problem, but they do not work on every G1 phone.

30

These findings about user-initiated recovery actions are consistent with those in the

prior work on the Symbian OS [7] in terms of the categories.

3.4 Analysis of Code Modifications and Fixes

The statistics presented in the previous section primarily considered manifestation

of failures. Though valuable for identifying the impact of bugs in various segments

of mobile OSes, it does not give any indication about how these bugs originated.

It is therefore necessary to study the root causes of the bugs and to correlate the

user-visible failures with these root causes. This may also help us in identifying error

propagation. With these objectives, we studied the code modifications in some of

the bug fixes and gained useful insights about the failures. Of the two mobile OSes

analyzed in this chapter, we have details of bug fixes only for Android [29].

3.4.1 Data Collection

For this work, we looked into the Android code repositories to study the bug

fixes. The code reviews stored in [29] presented us with the details of the fixed

bugs. It is to be noted that the failures analyzed in this section have some over-

lap with the failures studied in Section 3.3 but do not form a strict subset. Sev-

eral bug-fixes were found which did not appear in the Issue listing site and vice-

versa [26]. Our dataset for this analysis contains 233 bug-fixes from 29 projects in

the Android repository. These bugs were fixed during the period October 2008 to

October 2009. The significant projects within this collection, in terms of the num-

ber of bugs, are kernel/common, kernel/msm, kernel/omap, platform/framework,

platform/dalvik, platform/build, platform/system, and some applications in

platform/packages. An exhaustive listing of all the Android projects may be found

in [30]. In the following sub-section, we present our analysis of root causes of these

bugs.

31

3.4.2 Categorization of Code Modifications

For our analysis, we considered a code-fix to be a Major change if it involved

modifications of more than 10 lines of code, or modifications at more than 5 places

in the source file(s). It was observed from the bug-fixes that most of the bugs (179

of 233) required only few lines of code changes. Among the minor modifications,

we further identified what types of code changes were most frequent. We categorize

different types of code modifications as follows.

1. Add/modify attr val: Update the value assigned to a variable (e.g. the code

A.x=B.y is corrected as A.x=C.z) or declare a new variable.

2. Add/modify cond: Add some new checks (if-stmt), or add a missing else clause, or

modify the condition expression.

3. Modify settings: Update system constants or include modification in the makefiles,

application configuration files etc.

4. Add/modify func call: Introduce a new function call, or modify the arguments of

an existing invocation.

5. Lock problems: Bug was caused because a critical segment was not locked or a

lock was not removed and deleted upon exit.

6. Add/modify lib ref: Bug was caused because code was accessing some non-existent

or incorrect libraries or classes.

7. Modify data type: Update the datatype of a variable.

8. Preprocess change: Introduce a preprocessor directive (e.g. adding an ifdef).

9. Reorganize code: Change the order of execution of certain code blocks.

10. Others: The bug fixes that could not be placed under any of the above-mentioned

categories are considered here.

We designed these categories to incorporate maximum details of root causes in

our classification while maintaining a programmer-centric view. We do not adopt

existing classification approaches like ODC [31] since ODC primarily measures the

32

effectiveness of various software development stages. Our work, on the other hand,

looks at manifestations of failures and related programming errors.

In our analysis, some minor fixes contained multiple changes (e.g. some bugs

needed both modification of settings and addition of new attribute values), hence,

they were considered under both the categories. This resulted in a list of 193 fixes

for 179 distinct failures. We show the breakup of the different bug fix categories in

Fig. 3.4. We observe that only 23% of the bugs required major changes. These mod-

ifications primarily include addition of new functions, data structures, and constants.

Among the minor changes (77% of all the bugs), most of the modifications were of the

type Add/modify attr value (21%) and Add/modify cond (19%). The large percentage

of Add/modify attr val (21%) arises due to the fact that some applications/drivers in

Android are still undergoing major code revisions. The list of changes may be seen

from the release notes of different versions of Android. Within the sizable category

Add/modify cond (19%), we observed several instances where an if-stmt did not have

a corresponding else clause. This resulted in exceptional cases not being handled

correctly. Detailed specification of the program behavior could have avoided such

errors. It is known that introducing new conditional statements adds to the cyclo-

matic complexity of a program. Hence, while implementing these fixes, the designers

must be careful so that understandability and testability of the resulting code is not

altered significantly, e.g., if a fix introduces a high degree of nesting for conditional

statements, the designers may try to simplify by reorganizing the code.

3.4.3 Tension between Customizability and Reliability

The presence of 14% Modify settings bugs motivated us to delve deeper into the

Android code base and analyze the flexibilty provided by Android runtime environ-

ment to the upper layer applications. The customizability claim is buttressed by

the fact that Android may be adapted for a wide range of mobile hardware (people

33

Fig. 3.4.: Different Types of Code Modifications. Total number of bugs considered
for this analysis was 233.

have even used it to run notebooks), it incorporates virtual machine, SQLite for data

storage, and the fact that people may use their phone to write programs.

We observed that a large chunk of the failures requiring Modify Settings surfaced

during building (compiling) the Android source code. This resulted in modifications

of the Makefiles to support new architectures and APIs, modification of environment

variables, changing application permissions etc. Note that many of the application

configuration files are also generated during the build process itself. Hence, we con-

sider that Modify settings errors relate to customizability of the system, where cus-

tomizability is defined to include both the process of building the system and of

34

executing the system. However, this category of bugs only covers a subset of the er-

rors caused by the need to support customizability. According to our categorization,

if a new condition needs to be introduced in the code file to handle a configuration

parameter, that would be classified under Add/Modify Condition, while some support

for customizability may necessitate large changes in the software (considered under

the category Major). Thus, the percentage of bugs to support customizability is non-

trivial. This suggests that customizability does have some negative impact on the

reliability. But this is not egregiously high for the level of customizability supported

by Android. Further, improvements in software practices, especially targeted at the

problematic segments that we have identified here, plus a natural maturing of the

code base (recollect that we are talking of something that has been open sourced for

only about a year and a half) will likely bring these bug incidences down.

3.4.4 Analysis of Environment Variables

We observe that applications often read system configurations and locations of

various executables from the environment variables defined in the runtime kernel.

These parameters, though not comprehensive, are a significant indicator of a frame-

work’s customizability. Extending from the conclusions in the previous section, we

counted the number of environment variables defined in the Android platform and

compared it with a standard Linux Kernel (version 2.6.32). We wrote a script to scan

the source codes of different versions of Android to find the occurrence of export or

setenv keywords. We then built lists of environment variables for each of the Android

versions and the Linux Kernel. Next, we counted the references to each environment

variable and summed them up. Though a variable may be referred multiple times

within a single line, we consider these as a single reference. The results obtained

from our analysis are presented in Table 3.2. “Max ref” is the maximum number of

references to a single environment variable in the entire code base.

35

Table 3.2.: Count of environment variables and their references in different versions
of Android and the Linux Kernel

env vars Total refs Max ref
Android 1.1 62 819 577
Android 1.5 63 854 584
Android 1.6 76 1545 584
Android 2.0 82 2083 592
Linux Kernel

2.6.32 127 953 158

The number of environment variables in different versions of Android is steadily

increasing. Though this number (82 in Android 2.0) is lower than in the Linux Kernel

(127), it is still significant considering that Android is built as a mobile OS and runs

on devices with more constrained resources than the Linux kernel. Also, the growth

in the number of references to environment variables between February 09 (Android

v. 1.1) and October 09 (Android v. 2.0), 154%, is striking evidence of the rapid

march toward a customizable mobile OS. More than 85% of the references to all the

environment variables were made from codes in external/ folder in Android which

include third-party libraries and built-in applications.

In Fig. 3.5, we illustrate the distribution of the number of references to environ-

ment variables. The number of variables with reference count of zero indicates that

a large number of environment variables were not referenced outside the line where

they were defined or “exported”. We also noted that majority of the references were

made to only a few of the variables (less than 5). For example, in Android 1.6, the

environment variables DESTDIR, MK, CFLAGS, and LDFLAGS are referenced 584, 308,

194, 117 times respectively. The maximum reference count for a single environment

variable was much higher in Android than in Linux Kernel. The references to envi-

ronment variables in Linux Kernel are almost evenly distributed, whereas, Android

is more dependent on a few critical variables. This indicates in Android a possibil-

ity of significant error propagation if these key environment variables happen to be

36

Fig. 3.5.: Distribution of references to environment variables

incorrectly set. As a corollary, Android will benefit from building in reasonableness

checks for these key environment variables.

3.4.5 Cyclomatic Complexity and Number of Bugs

Cyclomatic complexity, which measures the number of linearly independent paths

through a program’s source code, is frequently used as a metric of code complexity. To

understand the relation between cyclomatic complexity and bug density in Android

and Symbian, we selected a set of projects (packages) in these two platforms that

had the maximum number of bugs. Since, the Android issue reporting site [26] does

not contain the root cause of a bug, we considered the bug counts in section 3.4

for computation of bug density. For Symbian, we found that each bug was assigned

to its corresponding project. Hence, the bug density in Symbian is computed with

the counts presented in Fig. 3.3. We computed cyclomatic complexities (CC) of

these projects (packages) with Understand 2.0—a source code analysis and metrics

generation tool [32]. The unit for computation of cyclomatic complexity is a function,

as is typically done. Source codes for these projects (packages) were downloaded from

Android [30], and Symbian [33] repositories. Note, that the Android repository gives

37

Table 3.3.: Cyclomatic Complexity and Bug Density of different projects in Android

Projects Bug Den-
sity × 104

No. of
bugs

Source
LOC

Avg. Cyclo-
matic

Max Cyclo-
matic

kernel/omap 0.04 21 5,311,427 1.12 4,973
kernel/msm 0.06 29 4,724,260 5.60 4,973
kernel/common 0.07 31 4,688,175 5.82 4,973
dalvik 0.18 14 771,865 2.23 766
development 0.46 10 216,344 2.18 169
framework/base 0.79 51 645,978 2.40 221
packages/apps/camera 1.33 2 14,962 2.15 20
packages/apps/mms 1.74 4 23,013 2.02 46
system/core 1.90 13 68,798 4.31 167
hardware/msm7k 2.42 3 12,382 4.00 23

Table 3.4.: Cyclomatic Complexity and Bug Density of different segments in Symbian

Segments (Fig. 3.3) Bug Den-
sity × 104

No. of
bugs

Source
LOC

Avg. Cyclo-
matic

Max Cyclo-
matic

Kernel and OS Services 0.03 12 3,684,192 3.02 1,470
Security 0.08 6 752,148 2.29 134
Multimedia 0.12 22 1,866,577 2.44 558
Web 0.17 31 1,807,828 3.01 2,442
HomeScreen 0.38 10 263,305 2.25 149
Build Pkg 0.63 19 299,868 2.24 268

us the latest source codes, whereas, our bug pool is older than the source code. Hence,

the calculated bug density is not completely consistent. Nevertheless, this gives an

approximate measure of code complexity in Android and may be used to suggest

improvements in code quality. Table 3.3 and Table 3.4 show the results obtained

from our analysis.

It was observed that in Android many projects in kernel/* have large overlap

in their code files. As a result, the Max cyclomatic complexity and Source Lines of

Code (SLOC) of these projects are similar or identical. Qualitatively, the bug density

is quite low for both these systems indicating a high standard of code development,

even though these are relatively new software projects. For reference, the pre-release

bug density in Windows XP was 2.66 × 10−3 [34]. However, the bug density in the

Kernel and OS Services of Symbian was lower compared to Android Kernel.

38

In standard literature, it is suggested that cyclomatic complexity of functions

should be limited to 20 for manageability of code. Hence, the Max. cyclomatic

complexity figures presented in the table may initially appear erroneous. A careful

examination of the source code, however, revealed that some functions extensively use

macros inline, each of which contains multiple if-else statements. When the macros

are replaced by the preprocessor with their corresponding codes this gives rise to

high cyclomatic complexity. Such inlining is the main reason for our high cyclomatic

complexity in both these tables. We further noted that large case-switch statements

were, in many cases, responsible for cyclomatic complexity above 100. The presence of

long case-switch statements necessitates the creation of extensive code documentation

explaining each of the cases. Verifying that all the cases have been handled properly is

a challenging task. Going forward, as mobile OSes increases in complexity, developers

will need to pay careful attention to managing the long switch statements.

Average cyclomatic complexity (CC) per function, on the other hand, was sig-

nificantly lower (between 1.12 and 5.82 in Android and between 2.24 and 3.02 in

Symbian). This is primarily due to the presence of a large number of default and

inherited functions which have complexity 1. We also measured the CC of the Linux

kernel (version 2.6.32). This system consisting of 6,082,112 lines of source code had

a maximum CC of 4,973 which is identical to the Android kernel. This can be ex-

plained by the fact that Android kernel is built using a modified version of Linux

kernel (v2.6). It was observed that the max CC in Symbian Kernel and OS Services

is much lower than that in Android and the Linux Kernel, while their average CCs

are comparable.

3.5 Directions for Future Research

In this chapter, we presented a failure characterization of mobile OSes based on

large number of bugs in Android and Symbian. This lays the foundation for further

research on smartphone reliability by highlighting the components that fail often.

39

However, the results presented in this chapter were based on data collected during

early phases of Android and Symbian release (2008-2010). We surmise that the failure

frequency of various components may have changed over the years. We find some

evidence of this in our next work on Android IPC Robustness, where the number

of crashes in Android 4.0 were far fewer than Android 2.2. Moreover, Android has

released many new and interesting components (or significantly redesigned older ones)

over the years for which we did not have failure data. An example of this may be

Android’s “In-App Billing” APIs. We find the following to be an exciting research

direction for analyzing smartphone reliability.

Reliability with Software Evolution in Android: A study on Android reliability

across its versions would help us understand how its reliability has changed over the

years. We found that during major releases of Android components, several new issues

have surfaced and often older phones were no longer compatible with new services. As

an example, [35] shows that a large number of users had problems accessing Google

Play Services after they upgraded to newer versions. A study across versions would

help us identify the components that has a (possibly) faulty regression testing setup.

40

4. ROBUSTNESS TESTING OF ANDROID IPC

Android has a modular framework with multiple components in each application,

and a security-conscious design where each application is isolated in its own virtual

machine. However, its isolation guarantees would be rendered ineffectual if an ap-

plication were to deliver erroneous messages to targeted applications and thus cause

the target to behave incorrectly. In this section, we present an empirical evaluation

of the robustness of Inter-component Communication (ICC) in Android through fuzz

testing methodology, whereby, parameters of the inter-component communication are

changed to various incorrect values. We show that not only exception handling is a

rarity in Android applications, but also it is possible to crash the Android runtime

from unprivileged user processes. Based on our observations, we highlight some of

the critical design issues in Android ICC and suggest solutions to alleviate these

problems.

4.1 Objectives

Of the two Inter Component Communication (ICC) primitives in Android—Intent

and Binder—we use Intent as the subject of our robustness study due to its flexibility.

Intents are used for a variety of purposes in Android applications which include but

are not limited to—starting a new activity, sending and receiving broadcast messages,

receiving results from another activity, starting and stopping a service etc. To sup-

port these operations across a myriad applications from multiple vendors over many

versions, Intent messages have a flexible structure and therein lies the potential for

vulnerability. In a vulnerability analysis of Android IPC, Chin et al. [36] argued

that it is easy to spoof, snoop, and target Intents to specific application components

unless these are protected by explicit permissions, which is a rare occurrence. Our

41

experimental results concur with this analysis and show that the attack surface can

go even deeper (i.e. up to the framework layer or lower as shown in [23]). Due to

these reasons we chose Intents as the primary focus of our study. In essence, we try

to answer the following questions:

(A) How well does an Android component behave in the presence of a semi-valid or

random Intent?

(B) How robust are Android’s ICC primitives? Can the Android runtime contain

exceptions within an application?

(C) How can we refine the implementation of Intents so that input validation can

be improved?

To evaluate (A), we sent explicit Intents to each Activity, Service, and Broadcast

Receiver registered in the system. We evaluate (B) by sending a set of implicit

Intents and answer (C) by presenting a qualitative assessment in Section 4.4.

4.2 Experimental Setup

4.2.1 Design of JarJarBinks

We built our robustness testing tool, JarJarBinks, from Intent Fuzzer at [37]. The

initial codebase contained basic functions like displaying set of components registered

in the system, and sending blank Intent messages to Broadcast Receivers, and Ser-

vices. However, it did not support testing Activities. We added this key feature

in JarJarBinks along with an Intent generation module described in Section 4.2.2.

Fig. 4.1 shows the location and operation of JarJarBinks (JJB) with reference to

Android architecture [23]. It queries Android PackageManager to get a list of com-

ponents (Activities, Services, and Broadcast Receivers) registered in the system and

then uses ActivityManager to send Intents to these components. We use the following

methods from Android API to send Intents: startActivityForResult for Activities,

startService for Services, and sendBroadcast for Broadcast Receivers.

42

Fig. 4.1.: JarJarBinks: Interaction with Android Layers

One of the major challenges in automated testing of Android Activities is to

close a callee Activity after sending an Intent. Typically, once a new Activity is

displayed, it expects some interaction from the user and pauses the caller Activity.

We resolved this by using startActivityForResult() and finishActivity() APIs

in Android. Unlike startActivity(), startActivityForResult() can force-finish

a child activity by using its requestCode as a handle. This way we could avoid

manual intervention in most cases. Another design issue with automated testing

of ICC in Android is to avoid resource exhaustion in the system (e.g., sending a

continuous stream of Intents very fast would create a large number of Activities

(windows) causing WindowManager to run out of resources). For this purpose, we

used a pause of 100ms between sending of each successive Intent. This was sufficient

to launch and finish a new Activity (or Service) in our testing environment. Though

we did not explicitly test Content Providers in JarJarBinks, semi-valid content URIs

were specified in some of our fault injection campaigns triggering parsing of these

content URIs and corresponding permission checks.

It may be highlighted that one of our goals was to keep the implementation of

JJB simple and less intrusive, thereby, not introducing new bugs in the firmware. We,

instead, focus on a rigorous analysis of the results obtained from our experiments.

Despite its simplicity, the volume and severity of failures generated through JJB is

truly astonishing. One shortcoming of JJB is its semi-manual approach—our strategy

43

of killing a child Activity (by calling finishActivity) did not work well in two

situations: first, when a system alert was generated due to application crash, this

could not be closed programmatically (we consider this as a good security design; JJB

being a user-level application cannot hide system alerts), second, when an activity was

started as a new task the caller could not close it by calling finishActivity() (this

mostly happened while launching login screens of applications like Skype, Facebook,

Settings etc.). Both these cases required manual intervention and will be addressed

in our future work. In the following section, we present an overview of our Intent

generation module.

4.2.2 Generating Intents

An Intent message is essentially a data container having a set of optional fields—

{Action, Data, Type, Package, Component, Flags, Categories, and Extras}

—which can be specified by a caller. Of these, Action (an action to perform, e.g. to

view or edit a contact) and Data (a URI for a data item, e.g. URI for a contact record

on phone) are most frequently specified by a caller. Component specifies the target

component, Flags control how an Intent is handled, Category specifies additional

information about the action to execute, and Extras include a collection of name-

value pairs to deliver more inputs to the target component. Type (content mime-

type) is usually determined from Data (when it is specified), while, Package can be

determined from Component if one is specified.

In JarJarBinks, we modify the fields Action, Data, Component, and Extras

in a structured manner as part of a fault injection campaign and keep the other

fields blank (we select Extras since this can potentially include random or mali-

cious data from users). For most experiments Action is selected from a set of

Android-defined action strings found at [38]. Generation of data URIs is a non-

trivial operation due to the presence of a multitude of URI schemes. A URI consists

of three parts URI := scheme/path?query, where scheme denotes URI type, path

44

gives the location to the data, and query is an optional query string. At present

we support the following URI schemes—"content://", "file://", "folder://",

"directory://", "geo:", "google.streetview:", "http://", "https://",

"mailto:", "ssh:", "tel:", and "voicemail:" in JarJarBinks. For each of these

except "content://", we created a predefined set of semi-valid URIs. For "content

://" URIs, JarJarBinks first queried the PackageManager to get a list of registered

Content Providers in the system and then randomly selected one of them to build a

content://provider URI. Our Intent generation can be broadly classified into two

types.

Implicit Intents

Components in the system can advertise their ability to handle Intents by speci-

fying Intent-filters in their manifest file. Implicit Intents do not specify a target, but

are delivered to the best matching component in the system. The matching between

sender and receiver is the responsibility of the Intent delivery mechanism of the plat-

form. Intent-filters can restrict the Action of the Intent, the Category, or the Data

(through both the URI and the data type fields) or any combination of the three. The

test set for implicit Intents is therefore any Intent that matches at least one Intent-

filter in the system. In order to generate Intents, we collect all Intent-filters of all

applications and all restrictions of either the Action or the Category. On our target

platform, we could not find components using the Data in Intent-filters. For each

application and each of its Intent-filter, the following experiments were performed:

(A) Valid Intent, unrestricted fields null: We generate an Intent that matches

exactly all the restricted attributes of the Intent-filter but leave all other fields blank.

For example, if the Intent-filter specifies <action android:name="ACTION EDIT" />,

only this information is used to populate the Intent fields.

(B) Semi-valid Intent: We pick all Intent-filters that have at least one degree of

freedom and set these fields sequentially to each of the valid literals we discovered in

45

any other Intent-filter. For the above example, the Category field would be subject

to fuzzing since only Action is restricted through the filter. Thus, the fuzzed fields

are individually valid for some component in the system, but not their combination.

Since each individual field in the generated Intent is valid, there is still a high chance

that it is routed to a component.

Explicit Intents

Our goal here is to find how well the receiver of an Intent behaves after getting

unexpected data. At a high level, our fuzz campaign on explicit Intents is distributed

over three component types—Activities, Services, and Broadcast Receivers. For each

component type, JarJarBinks first queries PackageManager to retrieve a list of com-

ponents of that type in the system (e.g. all the Services, or Activities). After this,

for each selected component (e.g. Calender Activity) JarJarBinks runs a set of four

fuzz injection campaigns (FIC).

FIC A: Semi-valid Action and Data: Here a semi-valid Action string, and Data

URI are generated as described earlier (refer Section 4.2.2). However, the combination

of the two may be invalid. For example, an Intent of this category may be Intent

{act=ACTION EDIT data=http://www.google.com cmp=com.android.someCompo

-nent}. During this FI, the Action and Data sets are combined to generate all

known {Action, Data} pairs each generating a new Intent. Total number of Intents

generated are |Action| × |Data| for each component. Fields other than Action and

Data are kept blank.

FIC B: Blank Action or Data: In this experiment, we specified either Action

OR Data in an Intent but not both together. Other fields are left blank. Intent

{data=http://www.google.com cmp=com.android.someComponent} is an example

of this FI. This campaign generates |Action|+ |Data| Intents for each component.

FIC C: Random Action or Data: Here either Action OR Data is specified as de-

scribed earlier, and the other is set to random bytes. An example of this type of Intent

46

may be Intent {act=ACTION EDIT data=a1b2c3d4 cmp=com.android.someCompo

-nent}.

FIC D: Random Extras: For this FI, we first created a set of 100 valid {Action,

Data} pairs following Android documentation. For each of these pairs, 1-5 Extra

fields were added randomly. The name of an Extra was selected from the set of

Android defined Extra strings, while its value was set to random bytes. An ex-

ample Intent can be shown as, Intent {act=ACTION DIAL Data=tel:123-456-7890

cmp=com.android.someComponent has Extras}.

Our choice of experiments is justified by the fact that an application component

may get a malformed Intent either due to error propagation from other applications

or from an active adversary. While FICs A and B verify the robustness of a callee

component against null objects and incompatible actions, FICs C and D emulate the

behavior of a potential adversary.

4.2.3 Machines and Firmware

We conducted our robustness test on three versions of Android, distributed on

three phones and three computers—two of the phones (Motorola Droid) had Android

2.2 as its firmware (release date: June 2010 and nicknamed “Froyo”), while one (HTC

Evo 3D) had Android 2.3.4 (release date: April 2011 and nicknamed “Gingerbread”);

the computers all ran Emulators loaded with Android 4.0 in Linux environments

(release date: October 2011 and nicknamed “Ice Cream Sandwich”, the image of

which was useful during long late night experiments with it). The HTC Evo was used

for running experiments on implicit Intents. Experiments on explicit Intents, where

we sent a large number (9000) of Intents to each Android component, being more

time consuming, was run in parallel on two Droid phones (having identical hardware

and firmware). The emulators were used for testing Android 4.0, the latest version of

Android, for which a physical device has been available only in late November 2011,

clearly not enough time for us to carry out experiments. Android 4.0 is a promising

47

target of the study since it has been widely hailed as “the biggest Android update

in ages” (PC Magazine) and is touted to bring real improvements to the Android

platform. Initially, it was noted that the devices as well as the emulator had nearly

800 components (Activities, Services, and Broadcast Receivers combined) per version

of Android which include a large number of third-party applications. In this work,

we focus our attention to Android framework and common applications that are

pre-loaded into every Android distribution (e.g. contacts, calendar, messaging etc.).

These application are also used by third-party application in implementing common

functionalities. Hence, rigorous evaluation of these built-in applications are of prime

importance. In Android namespace hierarchy, these applications all share the package

name prefix of com.android. After filtering the list of components with this prefix

we found 398 components (297 Activities, 42 Services, and 59 Broadcast Receivers)

in Droid and 455 components (332 Activities, 54 Services, and and 69 Broadcast

Receivers) in Emulator.

In addition to built-in applications, we also tested 5 Most popular (as on 3 Dec,

2011) free apps from Android Marketplace (recently renamed Google Play). These

apps—Facebook, Pandora Radio, Voxer Walkie Talkie, Angry Birds, and Skype—

had a total of 103 Activities and 11 Service components. Even though our set of

Marketplace apps is small, the large number of Activities (103 as opposed to 294 in

Droid) gives us a realistic comparison of their robustness with that of Android. Our

experiments started by subjecting all these (Android and Marketplace) components

to a flow of Intents from JarJarBinks over a seven day period. In the following section,

we present our findings.

4.3 Results

During the course of our experiments, more than 6 million Intents were sent to

800+ components across 3 versions of Android. We define an experiment as follows:

Choose one particular component and inject all the Intents targeted to that component.

48

The injection is done according to the Fault Injection Campaigns (thus, if we are doing

FIC A, the <Action, Data> pairs are changed to semi-valid values).

We collected execution logs from the mobile phones and emulators using logcat,

a logging application in Android platform tools. This generated more than 3GB

of log data which were later analyzed to gather information about the failures and

their root causes. We define a crash to be a user visible failure, i.e., a system alert

displaying the message "Force Close" (in Android 2.2) or "Application x stopped

unexpectedly" (in Android 4.0). These failure messages manifest in the log files as a

log entry stating "FATAL EXCEPTION: main" and are essentially effects of uncaught

exceptions thrown by the Android runtime. It is to be noted that sending(receiving) of

certain Intents (e.g. <action=ACTION SHUTDOWN> or Intents with "content:" URIs

in Data field) in Android are protected by permissions and when JJB sends these

Intents SecurityExceptions are generated. JJB is able to handle these exceptions

gracefully and we discard these from our results. At present we focus on crash failures

as opposed to thread hangs due to their visibility and negative user experience.

We discuss our results from three perspectives: (i) prevalence of crashes caused in

the application components due to the fuzzed Intents for the various types of compo-

nents and different fault injection campaigns; (ii) distribution of uncaught exceptions

thrown by components in response to the fuzzed Intents; and (iii) error propagation

from a user-level application to the Android framework.

In general, Android 2.2 displayed many more crashes than Android 4.0 and compo-

nents in all the versions were vulnerable to NullPointerExceptions. It was possible

to crash some components by sending them an implicit Intent that matched exactly

with their Intent-filter (i.e. nothing other than the mandatory fields were specified).

In Android 2.2, three of the application crashes caused cascading failures which even-

tually restarted the Android runtime. The Android Emulator also showed signs of

stress-related failures, whereby, the system server (the framework component that

coordinates interaction between Kernel space and user space) restarted periodically

after testing a fixed number of components. The system server is a key part of

49

the Android environment—it runs a host of essential services (Power Manager, De-

vice Policy, Search Service, Audio Service, Dock Observer, etc.). A crash of the

system server kills all user level application and services and restarts the Android

runtime.

Below we present our experimental results organized into three discussions.

4.3.1 Results for Explicit Intents

In Section 4.2.2, we described how we generated explicit Intents for four different

fault injection campaigns. In FIC A we sent an invalid <Action, Data> pair to

components, in FIC B we sent an Intent with either Action or Data blank, in FIC C

random bytes were assigned to either Action or Data, and finally in FIC D random

bytes were assigned to Extras values. During our experiments we found a large

number of crashes—2148 in Android 2.2, 641 in Android 4.0, and 152 for Marketplace

apps. One may argue that a comparison between Android 2.2 on a real phone and

Android 4.0 on an emulator compromises the validity of our results. To verify this,

we conducted a smaller-scale test of Android 2.2 on emulator and Droid and did not

find any major difference. Our choice of Android 4.0 on emulator was driven by the

lack of a physical device in a timely fashion. Even if results obtained from a physical

device change from its emulator (i.e. absolute numbers of crashes change), it does not

invalidate the general trends described in our results. Below, we present an analysis

of the observed crashes.

Distribution of Failed Components

We define a failed component to be a program that crashes at least once during a

fuzz injection campaign. Due to the nature of our Intent generation it is possible that

a component fails repeatedly in one experiment where that component is targeted,

e.g. an activity that dereferences Data field without null check will crash for all

Intents that has a blank Data field. Counting such repeated crashes masks the actual

50

Table 4.1.: Summary of component crashes in different versions of Android in response to fuzzed Intents in four different
injection campaigns. Here one component crashing one or more times in response to one or more malformed Intents directed
at it counts as one crash.

Droid (Android 2.2) Emulator (Android 4.0) Marketplace Apps on Droid (Android 2.2)
Activities Services Broadcast Activities Services Broadcast Activities Services Broadcast

Receivers Receivers Receivers
297 42 59 332 54 69 103 11 10

#crash % #crash % #crash % #crash % #crash % #crash % #crash % #crash % #crash %
A. Semi-valid 30 10.1 1 2.4 2 3.4 29 8.7 3 5.6 2 2.9 4 3.9 0 0.0 0 0.0
B. Blank 21 7.1 1 2.4 6 10.2 8 2.4 3 5.6 6 8.7 2 1.9 1 9.1 0 0.0
C. Random 18 6.1 1 2.4 4 6.8 9 2.7 3 5.6 2 2.9 2 1.9 0 0.0 0 0.0
D. With Extra 13 4.4 1 2.4 1 1.7 7 2.1 3 5.6 0 0.0 3 2.9 0 0.0 0 0.0

51

number of faults at source code, therefore, for a fault injection campaign like ours,

a better metric of a framework’s reliability can be obtained by finding how many

failed components it has. Table 4.1 presents the number of failed components for

various types (Activity, Broadcast Receiver, and Services) in each of our experiments.

The number at the top, under the component type represents the total number of

components of that type, e.g., Android 2.2 has 297 Activities. The number in the

column “#crash” denotes the number of components that crashed.

It is encouraging to see that in all cases but two, the percentage of failed compo-

nents is less than 10. The percentage of failed components in Android 4.0 is generally

lower than in Android 2.2, with the exception of Services. Across experiments, Ac-

tivities display higher fraction of failed components in FIC A than the rest. However,

this may also be due to the fact that FIC A sends nearly twice as many Intents than

FICs B, C, and D combined. The high count of failed components across component

types in FIC B is another key finding of our experiments. This indicates that many

Android components do not perform null checks before dereferencing a field from an

Intent and, therefore, are vulnerable to blank fields. This fact is also verified by our

data in the next section.

The failure percentages of Marketplace apps are nearly identical to that of Android

4.0 components with the exception of FIC A for Activities and for Services, where

Marketplace apps are significantly more robust. However, it was observed that 3 of

the apps had at least one component that failed one or more experiments. Though our

sample size for Marketplace apps (5) is too small to make any claims about general

robustness of third-party apps, we expected the Top 5 to be more robust as they

come from reputed vendors. This intuition is only partially borne out by the analysis

results.

52

Distribution of Exception Types

To understand how well the Android framework handles exceptional conditions, we

measured the distribution of exception types from failure logs. Here, we are focused

on uncaught exceptions, because they result in the crashes. Since we are interested

in measuring what percentage of all the crashes are constituted by a given exception

type, here we count each crash individually. Thus, if in one experiment, 100 fuzzed

Intents are sent to a component and the component crashes 20 times, we will have 20

data points (unlike in Section 4.3.1 where we would have counted the component as

having crashed and it would have resulted in a single data point). It can be seen from

Fig. 4.2 that NullPointerExceptions (NPE) make up the largest share of all the

exceptions. Though the percentage of NPEs in Android 4.0 (36.50%) has improved

since Android 2.2 (45.99%), this is still significant and concurs with our findings in

Section 4.3.1. The results are given in terms of percentage of all the exceptions, thus

for a given Android version, all the exceptions’ numbers should sum to 100%. Other

exceptions like ClassNotFoundException and IllegalArgumentException are sig-

nificantly lower in Android 4.0 than in its previous version. Though exception types

are sensitive to input data, we are applying similar inputs to the two different versions

of Android. Therefore, our comparisons across the two versions are still valid.

However, the most significant finding from this study is the introduction of unpre-

dictable environment-dependent errors in Android 4.0. Fig. 4.2 shows that the second,

third and fourth largest exception types in Android 4.0 are android.view.Window

Manager$BadTokenException (26.83%), java.lang.IllegalStateException

(23.56%), and java.lang.RuntimeException (3.12%). These exceptions are almost

non-existent in Android 2.2. A dominant reason for these crashes was garbage collec-

tion, where resources allocated to activities were released—a severe side-effect being

restart of the Android system server. It was observed that the same fuzzed Intent

sent to the same component at a different time point in the experiment did not always

53

Fig. 4.2.: Distribution of different types of (uncaught) exceptions in Android 2.2 and
4.0. The bars represent percentage of all the exceptions, thus will sum to 100 (for
each Android version). Note that we do not include Marketplace apps for this study.

cause the failure, or caused a different failure. The exact manifestation depended on

the state of the device (the Emulator of the device to be more precise).

Another important point to note for Android 2.2 is the presence of exceptions that

are typically thrown by the framework to notify the calling component of erroneous

input or state, e.g., java.lang.IllegalArgumentException, java.lang.Security

Exception, java.lang.UnsupportedOperationException etc. It is the responsi-

bility of the calling function to implement proper exception handling, however such

behavior is often missing in standard Android components.

System Crash from User Level Applications

Another significant discovery from our experiments was the cascading failure of

the Android runtime system. We found a total of three Activities in the built-in

applications that caused Android’s system server to restart. Due to the sensitive

nature of these bugs and their potential security impact on millions of Droid users,

we shall not disclose the names of the applications or the Activities in this forum.

54

Fig. 4.3.: Partial stack trace of crash of ActivityX, which eventually causes the entire
device to crash

Instead, we use the generic name ActivityX for purposes of explanation. All of the

failures occurred due to NullPointerExceptions. Upon inspection of the configu-

ration files of these activities, it was revealed that all these activities run under the

“system” process of Android (i.e. system server). When these activities tried to

access some fields inside an Intent, they did not catch the NullPointerException,

which crashed the current thread and eventually sent Signal 9 (SIGKILL) to Android

system server. A special concern is that to test these components JarJarBinks did

not need any extra permission at install time. Thus, potentially, any user level ap-

plication is capable of sending the malformed Intents to these vulnerable Activities,

causing the entire device to crash. Such promiscuous use of privileged operations is

a concern for millions of customers using Android 2.2/2.3 handsets.

Fig. 4.4.: Code responsible for crash of ActivityX, which eventually causes the entire
device to crash

Let us take a look at the stack trace for one of these crashes. This crash occurred

when we sent an Intent

{act=ACTION PACKAGE DATA CLEARED cmp= android/.ActivityX} to the Activity.

The stack trace for this crash (refer Fig. 4.3) showed an error at line 58 of the source

55

file ActivityX.java. The relevant code snippet is shown in Fig. 4.4. This code tries

to read the extra field EXTRAS ACCOUNT. However, since our Intent did not specify an

Extras field, it raises a NullPointerException. This uncaught NPE kills the thread

of this activity and eventually the process, which, in this case, is system server.

The problem can be avoided by verifying that the extras object in line 57 is not

null before accessing it, or by handling the exception gracefully. The severity of this

bug lies in its ability to crash Android system server, in other words, to render the

device unusable till the Android runtime is restarted.

4.3.2 Results for Implicit Intents

In experiment A, we sent implicit Intents that applications had opted in to

receive but we left all unspecified fields blank, e.g., when a filter only restricts

the Action, there is no Category, Data, or Extras field set. Overall, the HTC

phone had 211 applications registered from which we could derive 1910 Intent-filters.

For each Intent-filter, we sent out exactly one Intent matching the filter through

startActivity(). Note that some of these Intent-filters are registered by Services,

hence, sending a matching Intent through startActivity() simply results in an

ActivityNotFoundException. Those Intents that were delivered to an application,

crashed 5 of the recipients. 12 unexpected exceptions occurred during the experiment,

which are exceptions other than ActivityNotFound or any flavor of security excep-

tion. Most frequent exception was once again the NullPointerException followed

by IOException and Resources$NotFoundException. All three are the result of in-

sufficient input validation either causing a missing value to get dereferenced (NPE)

or, even worse, propagated as an argument to a IO or resource loading call. At the

end of the experiment, the phone crashed with a system reboot in 50% of the cases

due to cascading failures. Even though the number of failures is not large relative

to the number of applications tested, it has to be pointed out that all Intents we

sent are completely valid according to what a sender is able to find out through the

56

Intent-filters. The problem arises from the fact that there is a significant amount of

unspecified assumptions about the Intents that the receivers take for granted and fail

to verify (e.g., a specific information in the Extras data being present).

Experiment B goes a step further by combining all valid combination of Action

and Category, thereby, significantly enlarging the number of Intents sent.

From the Intent-filters, we were able to derive 643 distinct Actions and 37

Categories that were used in at least one of the filters. For each application, we

now generated all possible combinations of Action and Category that were valid

according to the filter. The experiment consistently crashed the phone after 26 out

of the 211 applications tested. This happened even though we set the delay between

the Intents to 2 seconds to allow for manual interaction (e.g., closing dialog boxes)

and thereby avoiding resource exhaustion.

From this small set of 26 tested applications, we observed 83 exceptions. The dis-

tribution of the specific exception types is shown in Table 4.2 with NullPointerExcep

-tion and IOException again being the most frequent ones. Overall, 14 applications

crashed during the experiment and showed a dialog to the user and only half of them

were actually targeted directly, i.e., were the applications from which the filter was

derived. The majority of the applications (including basic apps like Clock, Inter-

net, Gallery, etc.) were most likely affected due to collateral failures, e.g., an Intent

matching more than one filter and getting routed to more than one component.

4.3.3 Discussions

Our experiments have so far revealed three important aspects of Android—first

is the presence of many components with poor exception handling code (most of

these relate to NullPointerExceptions), second is the prevalence of environment-

dependent errors in Android 4.0, and third is the presence of privileged components

with unrestricted access. The first problem can be addressed by a methodical training

of developers on good exception handling practices. Application developers should

57

Table 4.2.: Frequency Distribution of Crashes with Implicit Intents by Exception
Type

Exception Type #Crashes
NullPointerException 32
IOException 22
RuntimeException 13
ArrayIndexOutOfBoundsException 6
android.content.res.Resources$NotFoundException 4
ClassCastException 3
TimeoutException 1
com.sprint.internal.SystemPropertiesException 1
IllegalArgumentException 1

always check for exceptional conditions when dealing with inputs (Intents) from ex-

ternal sources. Resolution of the second and third problems need more work at the

Android framework level. The third issue also exposes some potential problems with

Android’s default policy for process-assignment of an application component. At

present a component X in application A can run in the process of application B if A

and B are signed with the same developer key. Despite signature-based permissions,

this may pose a problem for vendors that build custom ROMs. If a component (C)

of this custom build is permitted to run as privileged process, it may wreak havoc

like ActivityX in a similar fashion (note that component C and the kernel of this

build are signed with the same key). A potential solution is to restrict accessibility of

component C with an explicit permission, in other words, every component running

in a privileged process must be protected by explicit permissions.

JJB Limitations: Apart from its handling of new tasks and alert dialogues

(where a tester must manually close these), JJB has another limitation—it cannot

distinguish between thread hang, resource exhaustion, and UI wait. Detecting thread

hangs in response to a malformed Intent would require knowledge of a component’s

life cycle which is currently not visible in logs generated by logcat. Our future work

would look into adding this capability in JJB.

58

4.4 Suggestions for Robust IPC

The key challenge in making Intents more robust is the lack of a formal schema.

Intents are effectively untyped; their application-level type is only determined by

a String identifier but is not reflected by the Java type system. Therefore, there

is no explicit contract between a sender and a receiver of an Intent and mutual

agreement is expected among the two about what format of data a specific Intent

needs to have and what an invalid message is. Additional data is stored in a map-like

data structure that is not fully type safe either. The data structure keeps separate

key spaces for values of different types and provides typed methods for adding and

retrieving data but it is again not formally specified what the expected additional

values are and which type they are supposed to have. It is up to the author of the

receiver code to perform the input validation, which is a repetitive and error-prone

task. To make matters worse, primitive types are stored and retrieved as actual

primitives, which means that in the absence of the value the result is the neutral

element of the type, e.g., false in the case of a boolean value. The absence of a

primitive value in the extra data is therefore not detectable by the receiver. Another

problem arises from software evolution. Implicit message formats are hard to keep

consistent across different versions of the applications, especially within an ecosystem

where components are contributed by different sources. There is no way to version a

specific Intent or to indicate compatibility between a sender and a receiver.

4.4.1 Subtyping/POJO Approach

One way to make the message format more explicit and therefore possible to

capture for an automated message verification system is to use subclasses for Intents

instead of a single flat type. Extra data belonging to a message would be expressed

as fields of the subtype. In the spirit of Plain Old Java Objects (POJOs), there

would be getters and setters for the field. As a side effect, the Java compiler can now

do automatic type checking since the messages use a type schema that the compiler

59

is able to understand and enforce. What this approach does not achieve is further

constraints on the values of data. For instance, there is no way to enforce a certain

reference-type value to be not null or a numeric value to be always smaller than

10. Furthermore, there is currently no way in Java to express version information

of classes in a standardized and accessible way. The cost for using the subtyping

approach is that the total footprint of the platform is slightly increased since every

Intent type now becomes a separate class in a separate file.

With a little experiment we found that a single class (subclass of Intent) with 3

fields (String, int, URL) having bean-like setters and getters adds 273 bytes to the

footprint of an Android application, while the increase in size for a class with 6 fields

is 403 bytes. Considering a handset where we have 200 Intent types, this implies a

80KB additional footprint for turning all these Intents into Subtypes with 6 fields.

We argue that this is, in fact, an upper bound on footprint increase since we consider

average 4-6 fields per Intent. In reality, most Intents have only between 2-3 fields,

with few having a large number of fields (e.g., informative Intents like Battery Status).

4.4.2 Java Annotations

One way to express additional constraints about the message format when choos-

ing the subtyping approach is the use of Java Annotations. Annotations are fully

embedded into the language (since Java 1.5) and can be processed by the Java com-

piler. Therefore, it is possible to use the annotations already at compile time for

criteria that are amenable to static checking. For dynamic checks, the corresponding

code can either be realized as a common generic checker facility implemented as part

of the Intent delivery mechanism of the platform or synthesized and injected into

Intent receivers.

60

4.4.3 IDL and Domain Specific Language

Extended input validation requires additional knowledge about the message for-

mat since the semantic gap between the implicit message format and what can ex-

plicitly be expressed by classes and the Java type system is still large. For instance,

an Intent responsible for a contact lookup might want to be able to do approximate

matching and return the contact names together with a matching factor between zero

and one. In the Java type system, it would have to use a float type for the latter

data but thereby would extend the range of permitted values to the entire IEEE 754

floating point number range. Another example is the problem that every reference

type can always be set to null so that there is no way to express mandatory data in

messages. One way to more expressiveness is to use a domain specific language to

express the schema of the Intents.

Historically, a similar approach has been taken with many RPC systems which

used an interface definition language (IDL). This IDL describes exactly the format

of a remote invocation in enough detail so that the stub and skeleton code can be

synthesized from this description. Systems like CORBA extensively used IDLs but

arguably also web services employ the same principle, e.g., through the WSDL files.

For instance, a type system like XML Schema allows value restrictions and would

be a viable candidate for a domain specific language approach to specifying Intents.

A well-designed domain specific language can express any type of constraint and

therefore permit full input validation including version checks.

There are two different possibilities to interface general-purpose languages with

domain-specific languages. External DSLs are free-standing and independent of the

host language. IDLs, for instance, are external DSLs. As a result, however, code

written in the host language and the meta-data written in the DSL have to be devel-

oped independently and cannot easily be cross-validated by existing tools. Internal

or embedded DSLs are themselves implemented in the host language and therefore

61

agree much better with existing tools. They are, however, restricted to what the host

language can express.

4.5 Directions for Future Research

In this chapter, we presented the design and implementation of JarJarBinks (JJB),

a tool for testing the robustness of Android’s IPC primitives. With the help of JJB,

we found a large number of exception handling bugs (some of which even crashed

the runtime system) in various versions of Android. Despite its success JJB had

few limitations—i) Since JJB is a user-space application, it could not automatically

close alert dialogues or new processes. This made our testing process semi-manual.

ii) JJB cannot distinguish between thread hang, resource exhaustion, and UI wait.

Detecting thread hangs in response to a malformed Intent would require knowledge

of a component’s life cycle which is currently not visible in logs generated by logcat.

Both of these may be solved by implementing JJB in the ActivityManager layer.

However, such changes would require the users to have root access on their phones.

Based on these observations, we find several exciting research directions for im-

proving smartphone dependability.

1. Extending JJB by Instrumenting ActivityManager: By moving parts of JJB

in ActivityManager we can perform several new tests that were not possible

with a user-space app. Examples are: testing for thread hangs and testing

components that require authentication tokens (e.g. Facebook or Twitter apps

in our experiments). By bypassing the authentication phases of these apps

and intercepting network traffic, we can test these components more rigorously.

However, the downside of moving JJB in ActivityManager is that it would

require changes in firmware of the tested phones.

2. Robustness of Mobile Payment Services: In recent times, both Android and

iPhone have introduced their mobile payment systems (Google Wallet and Apple

Pay respectively). These present lucrative targets for hackers and malware

62

writers (note that owner of the phone himself may be the adversary against these

services). Few existing research show security vulnerabilities of such payment

APIs, however, the robustness of these applications and (cloud-based) services

are not well understood. This present a promising direction for dependability

research.

63

5. OVERVIEW OF CLOUD SERVICES

Cloud Computing, which started as a way to maximize server utilization and reduce

IT costs, has evolved into a ground-breaking technology changing our everyday lives.

Amazon Web Service got its start in 2006 and from then to now, it has grown to

revenues of $2.25B in 2013 and store 2 trillion objects by Q2 of 2013 [39]. This

statistic, although representative of the growth in the overall cloud adoption, only

shows a small fraction of cloud utilization in the public domain. Benefits provided

by cloud services such as massive scalability, on-demand provisioning (elasticity), and

reduced operational cost have enticed small and large businesses alike.

Cloud computing provides high efficiency in part by multiplexing multiple cus-

tomer workloads onto a single physical machine. Access to the CPU is given to mul-

tiple virtual machines (VMs) in the form of virtual CPUs (vcpu). To share compute

resources fairly, each vcpu is given a pre-specified amount of scheduler credits. Simi-

larly, physical memory (RAM) of the computer is also shared among VMs, typically in

an on-demand basis. Often, physical resources of the servers are overcommitted (i.e.

the sum of virtual resources assigned to VMs is greater than the physical resources)

with the assumption that all VMs do not utilize their requested resources to the full

extent simultaneously. Server Virtualization, the key enabling technology underlying

infrastructure clouds (IaaS), has seen a staggering amount of research in recent years

leading to many excellent algorithms for efficient sharing of cpu and memory [40,41].

However, with this efficiency comes performance interference. When two VMs exe-

cute on the same physical machine, they not only contend for cpu and memory but

also contend for low level hardware resources such as cache, memory bandwidth, io

bandwidth etc.. Existing hardware and software virtualization mechanisms do not

provide perfect isolation for sharing these resources resulting in serious concerns about

unpredictable application performance in the cloud. Our work primarily deals with

64

such performance issues and helps improve application performance in the face of

resource contention.

5.1 Overview of Cloud Dynamics

An IaaS cloud is a dynamic environment, where virtual machines are frequently

created, cloned and deleted. Further, the resources allocated to virtual machines are

transparently modified using VM live resizing and virtual machines migrated from one

host to another using dynamic live migration [42]. In theory, virtualization promises

perfect isolation between virtual machines. In practice, an application running in

a VM can get impacted by cache contention [43] or network contention [44]. Page

sharing mechanisms and lack of reservation for memory bandwidth may further lead

to lack of isolation across virtual machines [45].

This lack of isolation combined with frequent VM resizings and VM live migration

lead to frequent changes in the environment for a VM. Verma et al. [46] report that

an average of 25% of all virtual machines may get migrated in a 2 hour period due

to dynamic consolidation. The impact of co-located VMs and VM resource settings

on an application is captured by operating context, first introduced in [47].

Definition 1 An operating context of an application captures the impact on a virtual

machine due to the environment outside the virtual machine. The operating context

for a VM VMi is defined as a 2-tuple consisting of the physical host H(VMi) and the

set of co-located VMs VMj on the host.

Static environments have a fixed operating context, whereas VM creation, cloning,

deletion, and live migration lead to frequent changes in the operating context for an

application running in the cloud.

Similarly, we define the resource context of a VM as the resource assigned to the

virtual machine.

Definition 2 Resource Context for a virtual machine captures the resources assigned

to a VM and consists of the CPU and memory entitled to the VM.

65

A VM’s resource context changes when it uses live resizing. This is usually more

prevalent is private cloud platforms but is rarely seen in public clouds such as EC2.

5.2 Performance Interference in Cloud

Performance isolation in multicore systems has traditionally been a hard problem

since partitioning low level hardware resources, such as cache and memory bandwidth

is not only challenging but also has high overhead. For example, to partition cache or

memory bandwidth, the controllers of these subsystems would need to maintain a list

of all running VMs, their current allocations, and resource demands. Fundamentally,

the cache and memory controllers are at a much lower level in the system stack than

VMs and therefore, allowing visibility of VM resource issues to these controllers will

need a profound re-design of the system stack. Such a solution will also reduce the

overall utilization of the resources, which is particularly important considering that

these resources are more scarce than the resources for which isolation works well. For

example, the latest generation Intel i7 processor has 12 MB of L3 cache, compared to

memories of several GBs which are standard on even low-end servers. Contention for

these shared hardware resources can, therefore, lead to variable performance across

VMs. We define performance interference in cloud as follows.

Definition 3 Performance interference in cloud platforms is defined as the situation

where performance of a VM (application response time or throughput) suffers due to

the activity of other VM(s) co-located on the same physical machine.

For example, if two VMs A and B are running on the same physical machine and

A starts using a larger share of the memory bandwidth, then throughput of B may

degrade. Note, that the cause of performance anomaly is external to the affected VM

B and beyond its control. Performance interference can be considered as a special

case of change in operating context (or effect thereof) defined earlier.

66

5.2.1 Effect of Interference

Several existing papers have highlighted the problem of interference due to con-

tention of shared resources and their extent of performance degradation [13,48,49]. [13]

reports that contention between two network intensive VMs can increase benchmark

runtime upto 2x, while disk-disk and cache-cache contention can increase runtimes

by 4.5x and 5.5x respectively. Another interesting observation here is that a network

intensive VM can degrade performance of a cache intensive VM by upto 7x. We found

similar results in our experiments, where a cache intensive benchmark can increase

average response time of a web server from a fraction of a second (10−1) to several sec-

onds. End customers in today’s commodity clouds have no way of efficiently dealing

with such interference except hoping that the cloud providers detect such interference

and take action. For example, Amazon EC2 does not allow customers to migrate their

VMs to less busy servers. An alternative in EC2 is to run a VM on a dedicated host,

thereby, nearly eliminating performance interference (note that storage and network

contention may still exist) and side-channel attacks—but this comes at a significantly

higher price.

5.2.2 Existing Solutions for Interference Mitigation

Existing solutions primarily try to solve the problem from the point of view of a

cloud operator. The core techniques used by these solutions include a combination of

one or more of the following: a) Scheduling, b) Live migration, c) Resource contain-

ment. Research on novel scheduling policies look at the problem at two abstraction

levels. Cluster schedulers (consolidation managers) try to optimally place VMs on

physical machines such that there is minimal resource contention among VMs on the

same physical machine [16]. For example, it will try to schedule two VMs that are

running network-hungry applications on different physical machines. Novel hypervi-

sor schedulers [14] try to schedule VM threads so that only non-contending threads

run in parallel. An example may be the following execution schedule: a cpu intensive

67

VM can be running parallely with an IO intensive VM, whereas two IO intensive

VMs are run at different time slices. Another approach in scheduling is to allocate

extra time slices to suffering VMs to minimize lost work [17]. Live migration involves

moving a VM from a busy physical machine to a free machine when interference is

detected [15]. Resource containment is generally applicable to containers such as

LXC, where the cpu cycles allocated to batch jobs is reduced when interference is

detected [50,51].

However, all these approaches have their shortcomings. Firstly, a VM’s resource

usage pattern may change over time, often unpredictably. A consolidation manager

(cluster scheduler) cannot foresee such usage changes without knowing of the applica-

tions running within the VM, and that is usually considered too intrusive and hence,

not made available to the consolidation manager. Secondly, all these approaches re-

quire access to the hypervisor (or kernel in case of LXC), which is beyond the scope

of a cloud consumer. These solutions need to be incorporated by cloud providers

in their virtualization infrastructure. We found that, despite having (arguably the

best of) schedulers, the public cloud service, Amazon Web Service, shows significant

amount of interference as we show in Section 6.2.

Solutions that use live migration for avoiding interference have their drawbacks

as well. In [46], the authors show that VM live migration is very resource intensive,

especially when the source server is highly loaded. Live migration in such a scenario

is often long drawn and fails frequently. Further, it significantly impacts application

performance during the migration. So, it is not suitable to deal with short-lived

interference, which we observe is prevalent in EC2.

We therefore need to find practical solutions that do not require modification of the

hypervisor. We observe that, to improve application performance during interference,

we must reduce contention for the shared resources. One approach to achieve this

would be to reconfigure the affected application in a manner that reduces its load. We

found that standard web servers and application servers have several configuration

parameters that allow an administrator to control its load. We use these parameters

68

to build our interference mitigation framework. In the next two chapters, we show

that this is indeed a practical solution with promising results.

5.3 Web Services in Cloud

In this dissertation, we focus on improving the performance of cloud applications

that are latency sensitive. More specifically, we consider the response times of web

service applications. We selected web services as our preferred application domain

for two primary reasons. First, web applications constitute a large portion of cloud

workload. [52] reports that nearly 25% of all ip-addresses in Amazon EC2 host a pub-

lic website. Our interference-aware configuration manager has the potential to reduce

a large fraction of performance anomalies of these websites in the face of interference.

Second, web applications and middleware components typically have a large number

of tunable parameters with known performance benefits. For example, 2 of the pa-

rameters (MaxClients1 and KeepaliveTimeout) that we use for reconfiguration in

IC2, has been used by researchers [20] for tuning Apache in other contexts.

5.3.1 Web Application Configurations

Enterprise web applications typically follow a three-tier architecture consisting of a

Front-end Server, an Application Server, and a Database Server. The front end server

receives web requests from clients, while the application server processes the request,

fetches results from the database and sends the desired responses back. We use the

Apache Httpd server as our front-end server and Php runtime engine (Php-fpm)

as our application server. In this dissertation, we argue that optimal configuration

parameters of these applications and middleware depend on the operating context in

which they are running.

Apache web server (HTTP server version 2.4) has 258 configuration directives

(Only counting the directives in the core, the base, and the multi-threaded module.)

1These are concurrency and timeout related parameters in Apache httpd server.

69

Adjusting these configuration parameters in a non-virtualized environment is difficult

enough—for example, the configuration may need to change with the type of workload

and the intensity of the workload. This task becomes even more challenging when the

reconfiguration has to be done at runtime in response to changes in other customer’s

applications over which the service consumer has no control. We next highlight the

configuration parameters that are adjusted by our interference mitigation engine. It

may be noted that the parameters we select are generic thread-pool management pa-

rameters and are applicable to a wide variety of multi-threaded enterprise middleware.

MaxClients: MaxClients (MXC) captures the maximum number of parallel threads

the web server employs to serve requests. This is typically configured based on

the workload intensity, number of hardware threads available on the physical server,

and its RAM capacity. Virtualization replaces hardware threads by virtualized cpus

(vcpu), and provisions memory dynamically based on VM activity. Presence of co-

located VMs may change actual number of hardware threads or physical memory

available to a web server impacting performance.

KeepaliveTimeout: KeepaliveTimeout (KAT) indicates how long a web server

would keep an idle client connection in its connection pool (typically occupying a

thread). KeepaliveTimeout is known to be sensitive to the nature of web application

and users’ browsing patterns. We found it is sensitive to both operating context and

resource context changes.

PhpMaxChildren: We refer to pm.max children parameter of Php fastcgi process

manager (php-fpm) as PhpMaxChildren (PHP) in this dissertation. This defines the

maximum number of threads used by the Php interpreter. PhpMaxChildren generally

has high sensitivity to resource context and low sensitivity to operating context.

Our interference mitigation tools (IC2 and ICE) update these three parameters

autonomously to maintain stable application performance.

70

5.4 Overview of Load Balancers

Load balancers are used to scale websites to serve larger number of users by dis-

tributing load among multiple servers. Existing research on load balancing can be

primarily categorized into two orthogonal problems: i) Routing: How to redirect

or route traffic for a web server to its internal “real” servers transparently and effi-

ciently? ii) Scheduling: How to decide which server would get the current request

so that the servers have equal load?

There are many load balancing solutions that are available in the market. A major-

ity of these operate at the network layer and tries to balance network load between

servers. Both IBM and Cisco have commercially available hardware load balancers

that provide high availability and good performance. Among the open source soft-

ware load balancers, HAProxy [53] and Linux Virtual Server (LVS) [54] are popular

choices. These two load balancers have complementary features which are good for

different situations. While Linux Virtual Server operate at layer 4 of the network

stack (transport), HAProxy operate at layer 7 (i.e. application). LVS is therefore

good at network load balancing, whereas, HAProxy can understand http requests

and balance application sessions across servers. Another key difference between the

two is that LVS operate at Kernel level (by using custom modules that have been

integrated with Linux mainline), but HAProxy operate at application level. Both

these load balancers implement four major scheduling policies. These are:

Round Robin (RR): Each server is picked in a circular order.

Least Connection (LC): Server with the least number of active connections are

chosen. This is better than round robin in general since it considers server state

(num connections).

Weighted Round Robin (WRR): This policy helps when servers have unequal

capacity. The scheduler picks a server based on its weight. For example if servers

S1, .., Sn have weights w1, .., wn, then Sk is chosen if wk = max(w1, .., wn). Note that

weight wk is reduced every time a server is selected, hence it keeps track of how many

71

requests a given server has served so far. When all the servers have weight 0 they are

reset to their initial values.

Weighted Least Connection (WLC): Similar to LC, but server weight is also con-

sidered for scheduling decision. If Wi is the weight of server i and Ci is the current

number of connections to it, then the scheduler picks server j for the next request

such that, Cj/Wj = min{Ci/Wi}, i=[1, .., n].

In rest of the paper, we use the terms RR and WRR (LC and WLC) synonymously

since the concept of weight is often implicit. Apart from these there are also load

balancing policies that are based on source address of a client. In this case, an ap-

propriate hash function is used to map the source address to a server. Often load

balancing policies also consider geographical location of a client and forwards the

request to the server farm that is closest to the client location. Such policies are

typically implemented by a DNS based load balancing, where the same domain name

maps to different IP addresses.

Once a client session has been established, the load balancer remembers which

server is processing requests originating from that client. In HAProxy, the session

mapping is performed by inserting a cookie SERV ER ID in the HTTP header.

When HAProxy finds the cookie in a new request, it directly forwards the request

to that server instead of computing a destination. In LVS, a connection table is

maintained which maps a given client to a server. If an entry exists in this table, LVS

uses the same server for sending subsequent requests. Note that this is required since

most web servers maintain sessions and relevant application state locally.

72

6. MITIGATING INTERFERENCE USING

MIDDLEWARE RECONFIGURATION

Application performance has been and remains one of top five concerns since the

inception of cloud computing. A primary determinant of application performance is

multi-tenancy or sharing of hardware resources in clouds. While some hardware re-

sources can be partitioned well among VMs (such as CPUs), many others cannot (such

as memory bandwidth). In this chapter, we focus on understanding the variability in

application performance on a cloud and explore ways for an end customer to deal with

it. Based on rigorous experiments using CloudSuite, a popular Web2.0 benchmark,

running on EC2, we found that interference-induced performance degradation is a

reality. On a private cloud testbed, we also observed that interference impacts the

choice of best configuration values for applications and middleware. We posit that

intelligent reconfiguration of application parameters presents a way for an end cus-

tomer to reduce the impact of interference. However, tuning the application to deal

with interference is challenging because of two fundamental reasons — the configura-

tion depends on the nature and degree of interference and there are inter-parameter

dependencies. We design and implement the IC2 system (Interference-aware Cloud

application Configuration) to address the challenges of detection and mitigation of

performance interference in clouds. Compared to an interference-agnostic configu-

ration, the proposed solution provides up to 29% and 40% improvement in average

response time on EC2 and a private cloud testbed respectively.

6.1 Motivation

In the brief history of cloud computing, unpredictable application performance has

been one of the two key issues preventing widespread adoption of the cloud paradigm.

73

In a recent survey of IT buyers, about 40% cited application performance as a key

concern [55]. Operational support for critical applications was another key concern

with 40% IT buyers, making performance-related issues two of the top five concerns

for cloud customers.

6.1.1 The Problem

Performance issues in the cloud are often attributed to misconfigurations of virtual

machines (VMs), storage, and networks [47, 56, 57]. Another key reason for perfor-

mance issues, which has not received adequate attention, is imperfect isolation of

hardware resources across multiple VMs. Some resources, such as CPU and memory

can be partitioned among VMs with little interference. However, current hypervisors

do not isolate low level hardware resources, such as cache and memory bandwidth.

Contention for these shared hardware resources leads to variable performance across

VMs—a situation commonly referred to as performance interference (or interference

in short). In the previous chapter, we presented a formal definition of interference

and showed how much performance degradation can be seen during interference (re-

fer Section 5.2). Partitioning low-level hardware resources in software (hypervisor)

will introduce significant overheads and we do not envision that processor caches and

memory bandwidth will be isolated on a per-VM basis in the foreseeable future. We,

therefore, need practical solutions to deal with interferences when such situations

arise.

6.1.2 Existing Solutions

Existing work on handling interference in clouds are driven primarily from a pri-

vate cloud perspective. The key idea is to either schedule interfering VMs at different

points in time on the same host (e.g., [14]) or place interfering VMs on different hosts

(e.g., [15, 16]). The first approach is limited in terms of the choices of VMs available

on a host that can be co-scheduled. The second approach requires frequent live mi-

74

grations, which is very resource intensive, especially when the source server is highly

loaded [46]. Live migration in such a scenario is often long drawn and fails frequently.

Further, it significantly impacts application performance during the migration. So, it

is not suitable to deal with short-lived interference, which we observe is prevalent in

EC2. Finally, these approaches are application-oblivious and cannot accurately judge

the real impact on application performance.

6.1.3 Our Solution Approach

In this chapter, we present a complementary approach of handling interference by

application reconfiguration. We argue that an application can mitigate the ill effects of

short-term interference — rise in response time and drop in throughput — by deploy-

ing an intelligent configuration manager. This configuration manager continuously

monitors for interference and when it is observed, reconfigures the application and/or

middleware (e.g., web server, database) to reduce contention for the bottlenecked re-

sources. Our solution gives power in the hands of the application owners, and does

not rely on the infrastructure provider making prompt changes to help the application

with its periods of interference. This is also important because interferences in public

clouds are often short-lived, less than a minute, and therefore application reconfig-

uration, which can be more agile than infrastructure reconfiguration, is particularly

well suited. In this chapter, we make the following key contributions:

1. We rigorously study the performance variability of web-based applications in a

public cloud environment. In this study, we run the CloudSuite [19] benchmark in

Amazon’s EC2 for 100 hours over a 5-day period. We then compare the statistics ob-

tained from these runs with sample runs of CloudSuite in a private cloud testbed. We

observe that CloudSuite has much longer response time distribution in EC2 (ranging

up to 55X of median) than in the local testbed (up to 4X of median) with identical

resource configurations. This validates our hypothesis, that public clouds have high

degree of performance uncertainty.

75

2. We conduct a study to understand if applications can be configured to deal with

interference. We observed that an ideal operating configuration for Apache web

server depends on the type and degree of interference. Further, parameters in differ-

ent elements of the software stack depend on each other and the inter-dependency

changes with the degree of interference; and finally, the application performance

curves with the configuration values are discontinuous in places, making traditional

control-theoretic approaches for parameter tuning [20] ineffective. Specifically we

found three parameters corresponding to the degree of concurrency and the time to

live of existing connections to be particularly significant.

3. We present a simple, heuristic-driven configuration manager, IC2, to reconfig-

ure the application upon interference. IC2 solves three key challenges for dynamic

reconfiguration—first, it presents a machine learning based technique for detecting

interference; second, it uses a heuristic-based controller for determining suitable pa-

rameter values during periods of interference; and finally, it reduces the cost of recon-

figuration of standard Apache distributions by implementing an online reconfiguration

option in the Httpd server. A prototype implementation of IC2 was deployed both

in EC2 and our private testbed. The experiments show that IC2can recapture lost

response time by up to 29% in EC2 and 40% in our private testbed.

The rest of the chapter is organized as follows. In Section 6.2, we verify the

presence of interference in cloud platforms and present a quantitative evaluation of

performance degradation. We next show the impact of interference in a private cloud

testbed and identify how interference changes optimal configuration values for appli-

cations. The design of our proposed solution and performance improvement achieved

by it are highlighted in Sections 6.4 and 6.5. Finally, we conclude the chapter by

discussing few shortcomings of the proposed solution and highlight future research

directions.

76

6.2 Is Interference Real?

We performed an experimental study to see if the performance concerns due to

interference are real. Our objectives here are to answer two questions: i) Does an

application suffer from unpredictable latencies in EC2? ii) What happens when a

co-located VM starts accessing memory very fast? To answer the first question, we

ran an application benchmark on Amazon EC2 with a constant workload setting and

collected periodic performance data over 100-hours. We then analyzed the collected

data to detect outliers and see how much performance variability there is. The ap-

plication benchmark we selected for our experiments is CloudSuite, a popular web

application benchmark [19]. CloudSuite internally uses Olio, a social event calendar

application as the base package1. The web server and database of CloudSuite were

installed on separate EC2 VMs each of type m1.large instances (equivalent to 2 vcpus

or 4 EC2 compute units, and 7.5GB memory).

Observations. We see that as a result of interference, there is significant variance in

the performance of Olio on EC2 with regard to the response time (Fig. 6.1(a)), and

correspondingly, the throughput. The median response times in EC2 and the private

testbed were found to be 0.10s and 0.12s respectively. The histogram in Fig. 6.1(a) is

plotted such that the value represents response time between the two marks on the X-

axis, e.g., there are 539 measurement intervals with response times (RT) between 0.5

and 1 sec (which is more than 5X of median RT). In contrast, for a similar experiment

on local testbed (measurements taken over 60 hours) we found the response time was

always < 0.5s (i.e. < 4X of median). The response time distribution in EC2 has a

much longer tail indicating periods of unpredictable performance. In EC2, we also

measured the duration of interference using an outlier detection method as shown in

Equation 6.1. Our results indicate that there are several instances when interference

lasted for 30s or longer, the longest duration being 140s. While these interference

instances are a small portion of the total number of requests, there are two condi-

1In this dissertation, we use the terms “CloudSuite,” “Olio,” and “Application benchmark” inter-
changeably.

77

tions that suggest we need to deal with them—they are unpredictable and therefore,

worst-case provisioning for performance critical applications suggests we must put

in place mechanisms to deal with them; when interferences do happen, they cause

pathologically poor behavior of the application and may push the application into a

“death spiral”. Evidence of death spiral in applications due to transient degradation

has been given in the past, such as, due to overfilling of application queues [58].

| Pi − PN/2 |> C ×median(| {Pi}
N
i=1
− PN/2 |) (6.1)

response time (second)

fr
eq

ue
nc

y

0.5 1.5 2.5 3.5 4.5 5.5

1

10

100

1000

10000

1e+05 median=0.1

(a)

response time (second)

fr
eq

ue
nc

y

0.06 0.12 0.18 0.24 0.3 0.36 0.42

1

10

100

1000

10000 median=0.124

(b)

Fig. 6.1.: Distribution of response times of Olio running on (a) Amazon’s EC2 (b)
Private cloud. VM resource settings and workload intensity are identical in both
cases. The longer tail in EC2 (ranging up to 55X of median in EC2 compared to 4X
in private cloud) indicate presence of interference.

To answer the second question raised earlier, we ran another set of experiments

both on EC2 and private cloud testbed. The results indicate cache-intensive interfer-

ence from co-located VMs can increase response time of a web server by an order of

magnitude. Our experiments in following sections substantiate this point.

78

6.3 Interference Impacts Optimal Configuration Values

In this section, we endeavor to understand the relationship between optimal con-

figuration values of middlewares and interference. To do so, we ran an extensive

set of experiments with Cloudsuite in a private cloud testbed. We first describe our

experimental setup and then highlight our findings.

6.3.1 Experimental Setup

Hardware. Our private cloud testbed consisted of three Poweredge 320 servers with

Intel Xeon E5-2440 processors. Each server has 6 cores (or 12 hardware threads with

hyperthreading enabled), 15 MB cache and 16 GB memory. We installed the KVM

hypervisor on these machines. We co-located our custom interference VMs on the

same host as the web server, while database VM was run on a separate physical ma-

chine. In this work we focus only on web server performance and over-provisioned

the DB VM to eliminate any DB bottleneck. The database (approx. 1.6GB) was also

loaded in memory to reduce disk contention. The third machine of our setup was

used to run the benchmark driver and rest of the client emulators. All the computers

were connected via a dedicated 1 Gbps switch. Table 6.1 lists the values of different

configurations for each experiment presented in this chapter. It is to be noted that,

we never created contention for CPU and memory on the physical server. With two

interference threads running and 4 vcpus for WS, the physical server’s CPU utiliza-

tion was at the 50% mark or lower for all experiments. Similarly, memory utilization

of the host was never an issue. Our maximum WS memory utilization was well below

3GB for all workloads.

Application Benchmark. The application benchmark we selected for our exper-

iments is CloudSuite, a popular web application benchmark [19]. In our setup,

we hosted Cloudsuite on a multi-threaded Apache server (apache-worker v2.4) and

used Php Fastcgi Process Manager (php-fpm) for dynamic content generation. Our

79

setup closely resembles a typical three-tier application with php-fpm v5.3 as the busi-

ness logic (BL) tier. We use identical CloudSuite setup in all our experiments—

homogeneous VMs with Ubuntu 12.04/Apache 2.4/php-fpm 5.3/Java 1.7. Cloud-

Suite uses the Faban harness to emulate clients. Client emulation is done using a

pre-defined distribution (negative exponential) of think times and operation mixes as

defined in [59]. Workload size is given in terms of #concurrent clients.

Interfering Application. We emulated interference from co-located VMs by run-

ning two different benchmarks–LLC-Probe and Dcopy–on two VMs (also referred to

as interference VMs). Dcopy is an application under the BLAS [60] benchmark suite,

which copies contents of a source array to a destination array. LLCProbe [13] creates

an LLC (Last Level Cache) sized array in memory and then accesses each cache line

very frequently. Both Dcopy and LLCProbe are cache intensive, however, rate of cache

access is higher in LLCProbe than in Dcopy. Moreover, by using Dcopy with a large

array size we can also emulate memory bandwidth contention. Interferences of this

type may arise in reality if a co-located VM runs data mining applications like Hadoop

or even under periodic consolidation operations. Earlier work has shown [13,46] that

such interferences are a routine occurrence in present-day cloud infrastructures.

Parameter Selection. In our experiments and subsequent evaluations, we consider

three key configuration parameters – MaxClients (MXC) and KeepaliveTimeout

(KAT) from Apache web server2 and pm.max children from Php runtime. These

parameters greatly impact Apache’s web application performance [20].

MaxClients captures the maximum number of parallel threads the web server

employs to serve requests. This is typically configured based on the workload intensity,

number of hardware threads available on the physical server, and its RAM capacity.

KeepaliveTimeout indicates how long a web server would keep an idle client

connection in its connection pool (typically occupying a thread).

2We use the terms Apache and Httpd synonymously to identify the Apache web server.

80

pm.max children defines the maximum number of threads used by the Php in-

terpreter. We refer to pm.max children as PhpMaxChildren in this dissertation.

It is pertinent to note that these parameters are generic thread-pool manage-

ment parameters and have their counterparts in most commercial server distributions

making our study applicable to most enterprise middleware (e.g. thread pool size in

Glassfish).

Metric Collection. CloudSuite (Olio) uses Faban harness to emulate clients and

generates high level benchmark metrics for each run (Response Time and Through-

put). For each data point in our plots (i.e. a given setting of configuration values

or workload) we consider an average of three runs. Each run lasted for 10 minutes

(excluding ramp-down) of which last 5 minutes were considered as steady state and

reported. The experimental VMs were rebooted after each run to clear any state.

For monitoring hardware performance counters we started oprofile [61], a low over-

head profiler, on the hypervisor of the web server VM. We use the observation that

a guest VM in KVM is represented as a qemu process in the hypervisor. We used

oprofile to monitor the hardware events corresponding to the qemu process of the WS

VM. We next report some of our key experimental results.

6.3.2 Impact of Interference on Middleware Configurations

In this experiment, we evaluate the impact of interference on the choice of optimal

values for the three parameters—MaxClients, KeepaliveTimeout in Apache and

PhpMaxChildren in Php-fpm. For each of these parameters, we ran the web server

with different interference intensity - LLCProbe with array size of 15MB and Dcopy

with array sizes 15MB and 1.5GB. Due to its fast cache access, LLCProbe emulates

a strong interference, while Dcopy 15MB emulates a low interference. With Dcopy

size of 1.5GB we emulate contention for both cache and memory bandwidth, and its

overall effect is that of a moderate interference. Here a Dcopy size of 0.0MB implies

81

Table 6.1.: Summary of WS VM config. and parameters during different experiments. Values with asterisk(*) are reconfig-
ured with IC2.

Experiment # Vcpus Memory(GB) MaxClients KeepaliveTimeout PhpMaxChildren Load Size
Sec. 6.3.2 4 4.5 Variable 5 1000 1500
Sec. 6.3.2 4 4.5 1700 Variable 1000 1500
Sec. 6.3.3 4 4.5 Variable Variable 1000 1500
Sec. 6.2,6.5 2 7.5 650* 5* 50* 550

82

a run where no interference benchmark was run (baseline). For each interference

intensity, we varied one parameter of Apache while the other was set to an observed

good value. Run configurations for each experiment can be seen from Table 6.1.

For all the experiments, we kept the workload intensity (#concurrent clients) to a

fixed value of 1500 which was found to be lower than the saturation point of the web

server3. Note that although we have a constant number of concurrent clients, Faban

may generate bursty traffic in some intervals due to is stochastic “wait time”.

Effect on MaxClients

0.5

1.0

1.5

2.0

2.5

800 1200 1600 2000
MaxClients

R
es

po
ns

e
T

im
e(

s)

Interference
dcopy−0.00MB
dcopy−15.00MB
dcopy−1.50GB
llcprobe−15.00MB

Response Time vs MaxClients

(a) Response Time vs. MXC

1

2

10 20 30 40
KeepaliveTimeout

R
es

po
ns

e
T

im
e(

s)

Interference
dcopy−0.00MB
dcopy−15.00MB
dcopy−1.50GB
llcprobe−15.00MB

Response Time vs KeepaliveTimeout

(b) Response Time vs. KAT

Fig. 6.2.: Choice of optimal parameter values with varying Dcopy and LLCProbe. For
all experiments, #concurrent clients is 1500, chosen default values are MXC =
1700, KAT = 5, and PHP = 1000. In each experiment, one of the parameters are
varied while others are kept constant at their default values.

Figure 6.2(a) show the choice of optimal MaxClients (MXC) values for different

interference intensities. In the baseline case (Dcopy 0MB), best response time can

be obtained by setting MXC to 1700. However, the optimal value reduces to 1100

for Dcopy-1.5GB and LLC-15MB. Interestingly, with a smaller interference of Dcopy-

15MB, the optimal value increased to 2000 (although the gain in response time was

3We define saturation point to be the minimum workload intensity when the web server exhausts
its cpu or memory capacity.

83

small compared to at 1700). Even though all the curves show concave nature before

saturation, they diverge from each other significantly clearly highlighting a change in

the operating environment.

It can also be seen that interference causes the response time of WS to go up from

fraction of a second (< 0.5s) to several seconds. If we keep MXC constant at the

baseline optimal value of 1700 (refer Fig. 6.2(a)), with LLCProbe it increases up to

2.5s. However, with a different MXC value (1100), this degradation can be limited

to only 1.5s. One may argue that we can always keep MXC fixed at 1100, but this

wastes server resources (e.g. baseline throughput at 1100 is 13% lower than that at

1700). A better alternative is to configure it for the dominant case (no-interference)

and to reconfigure when interference is detected.

Effect on KeepaliveTimeout

We found similar results for variable KeepaliveTimeout (KAT) which suggests

different optimal KAT values for varying interference intensity (refer Fig. 6.2(b)). For

this experiment, we kept the MXC value fixed at the optimal baseline MXC value of

1700 and varied KAT from 2 to 40 seconds. The curves show very different patterns

with varying interference intensity. In the baseline case, increasing KAT beyond 5s

increases response time. On the other hand, with strong interferences increasing KAT

reduces response time significantly. Based on this, one may argue that we can always

keep KAT fixed at a high value (e.g. 20). We see from the plot that such a choice is

suboptimal for no-interference; it also shows poor throughput. As a general rule we

found that interference from co-located VMs increases the optimal KAT value. This

emphasizes that a web application needs to reconfigure its KAT value in the presence

of interference and finding the optimal is a non-trivial problem.

Due to space limitations we only present the key findings of varying PhpMaxChildren

(PHP). In general, increasing PHP had almost no impact in no-interference response

time. We therefore choose a low PHP value (100) with lower memory footprint

84

as the no-interference optima. With interference, optimal response time is seen for

PhpMaxChildren= 800 or higher although the performance improvement is smaller

compared to MaxClients. Interested readers may find the details in [62].

Table 6.2 presents a summary of our observations about optimality of parameters

and the relationship with interference. Each cell in this table summarizes the impact

of interference on the optima of a given parameter (whether it increases or decreases)

and the degree of impact this parameter has on performance (high or low).

Table 6.2.: Summary of our experiments on evaluating the impact of interference on
optimal parameter values.

Application runtime Apache and Php
Operating context
changes

Cache, memory bandwidth pressure

General impact on optimal configuration values
Context MXC KAT PMC

No interference
Initial value High Low Low
With Interference Decrease Increase Increase
Performance Impact High High Low
Memory Pressure Decrease Increase Decrease
Performance Impact High High High

6.3.3 Change in Inter-parameter Dependency

In this section, we answer a commonly asked question on configuration management–

are two parameters independent? We verify this with the specific example of two

parameters that had the most profound effect on the performance of our benchmark

applications, namely, MaxClients and KeepaliveTimeout. We find that dependency

does exist between these parameters and it changes with interference.

For this experiment, we varied both MXC and KAT for the Apache server under

two scenarios. In the first, we ran the web server with no interference, while in

the second, we ran it with LLCProbe-15MB. We found that the nature of curves

changed significantly across these experiments (refer figures 6.3(a) and 6.3(b)). For

the case with no interference, the curves generally have a negative slope, while with

85

interference, the curves display both positive and negative slopes. Choice of optimal

KAT for a given MXC is significantly different in the two. As a general observation,

we find that lower KAT is better at baseline while higher KAT is better during

interference.

One may argue that the following simple equation suffices to determine KAT value

for a given MXC:

KAT = MXC/#new connections/sec

However, this does not work well during interference. For example, during interfer-

ence, if we reduce MXC then according to this formula we should also reduce KAT to

maintain a constant connection rate. But such an action would further increase load

on the server. Due to shorter KAT, a larger fraction of established client connections

would time out, necessitating new connection establishment. A better alternative is

to be aware of interference and select a different value for #new connections. This

emphasizes the need for the tuning algorithm to be context aware. Depending on the

presence or absence of interference it must select a different optimal KAT value for a

given MXC.

0.4

0.8

1.2

1.6

750 1000 1250 1500 1750 2000
MaxClients

R
es

po
ns

e
T

im
e(

s)

KeepaliveTimeout
KAT−10
KAT−20
KAT−30
KAT−40
KAT−5

Response Time vs MaxClients

(a) No interference

1.0

1.5

2.0

2.5

3.0

750 1000 1250 1500 1750 2000
MaxClients

R
es

po
ns

e
T

im
e(

s)

KeepaliveTimeout
KAT−10
KAT−20
KAT−30
KAT−40
KAT−5

Response Time vs MaxClients

(b) With LLCProbe

Fig. 6.3.: (a–b) Response Time vs. MXC with varying KAT. Dependency between
MaxClients and KeepaliveTimeout changes with interference.

86

6.3.4 Interference and Web Server Capacity

In the previous section, we found that interference has a significant impact on the

response time of a web server. In this section, we ask ourselves what is the root cause

for such increase? To answer this question, we analyzed the system metrics obtained

from the previous experiments (Section 6.3.2). We also evaluated the impact of

interference with varying workload sizes. Our observations are presented below.

0

10

20

30

800 1200 1600 2000
MaxClients

Id
le

C
P

U
 (

%
)

Interference
dcopy−0.00MB
dcopy−1.50GB
dcopy−15.26MB
llcprobe−15.00MB

IdleCPU vs MaxClients

(a) Rise in CPU utilization

1.75

2.00

2.25

800 1200 1600 2000
MaxClients

C
P

I Interference
dcopy−0.00MB
dcopy−1.50GB
dcopy−15.26MB
llcprobe−15.00MB

CPI vs MaxClients

(b) CPI of WS-VM

Fig. 6.4.: Effects of interference. Here we identify system level bottlenecks that causes
response time to increase by an order.

Interference increases CPU utilization of WS-VM. We found that for a mem-

ory allocation of 4.5GB, the WS was never constrained for memory. But the cpu

utilization (Fig. 6.4(a)) values showed significant bottleneck. It can be seen that for

a given choice of MaxClients, the IdleCPU values for with-interference curves are

lower than baseline. Note that the IdleCPU values are virtual utilization measured

inside the WS VM. Intuitively, for a constant workload this should remain fixed ir-

respective of the functioning of a co-resident VM. To understand this behavior, we

measured the CPI (cycles per instruction retired) values for the WS VM with vary-

ing degrees of interference. Due to the large number of cache misses induced by the

interference VM, the WS VM uses more of its cpu cycles fetching data from memory

to cache and consequently the CPI increases. It can be seen from Fig. 6.4(b) that

87

the CPI values for the WS with interference is between 2 and 2.25, whereas, baseline

CPI is only 1.5. It implies that, on average, a WS thread takes longer time to finish

execution. The overall effect is that a larger fraction of the WS VM’s time slice is

occupied by some busy thread. This is reflected as increased cpu utilization inside

the guest VM.

Interference increases active memory of WS-VM. Similar to Section 6.3.4, we

found active memory of the web server increased during interference. This happens

since with interference, Apache threads are active for a longer duration on aver-

age (higher response time). Note that an active Apache thread has larger memory

footprint than in an idle one (in Apache terminology an active thread includes the

request pool, a large block of memory for storing the request and response data,

in addition to server and configuration pools), therefore longer response time

implies increased active memory. We found that this observation becomes even more

significant if the web server is under memory pressure. In such a case, if a web server’s

memory footprint is just below capacity in a baseline case, with interference it is likely

to start swapping. This again has catastrophic impact on performance. We verified

this hypothesis by running the WS VM with 2GB RAM in a separate experiment and

found evidence of swapping with interference even though no swapping happened in

a baseline run. Details of this experiment may be found in [62]. Based on Fig. 6.4,

we conclude interference reduces the capacity of a web server.

6.4 Design and Implementation

In the previous section, we found that the choice of optimal configuration values

for web services middleware depend significantly on interference created by co-located

VMs. Here we propose the design of a configuration manager that is aware of the

operating context [47] of the web server VM. Although most of our implementation

focuses on mitigating impact of cache-intensive interference, the same principles can

88

be applied for other types of interferences (e.g. network). To design an interference-

aware configuration manager we need to answer three important questions:

i) How do we detect a web server is suffering from interference?

ii) Which parameters can be configured to mitigate interference?

iii) For the parameters determined in step (ii), how should their values be set as a

function of the degree of interference?

We answer each of these questions in rest of this section.

Fig. 6.5 presents a high level system architecture of the proposed solution. IC2

consists of two primary modules: a) Performance monitor, and b) Config manager.

For all the VMs that are part of a web application (e.g. web server, database and mail

server) and managed by IC2, performance monitor collects performance data at three

levels. At the application level it collects aggregate response time and throughput

measurements, whereas at system level, it collects utilization values for CPU, memory,

IO, and network. If hardware performance counters are available (on our local testbed,

but not on AWS), it also collects CPI (cycles per instruction) and CMR (last level

cache-miss rate) data for the monitored VMs. Based on the collected data, config

manager can detect if any system context has changed. This can either be a change

in workload, VM resource allocation or presence of interference. There are several

existing solutions that can handle workload and resource changes [20, 63] and these

can run concurrently with our solution.

A high level functioning of IC2 is shown in Fig. 6.6. After collecting metrics, IC2

tries to detect if the web server is under interference. Based on the detection result it

maintains a state machine for the web server. The state machine, in turn, is used to

decide when reconfigurations are needed. Finally, the config controller actuates the

reconfiguration action. Details of this configuration loop is presented below.

89

Fig. 6.5.: System architecture of IC2

Fig. 6.6.: High level functioning of IC2

6.4.1 Interference Detection: Metrics Used

Any interfering VM that is accessing large amounts of memory, such as our two

experimental interference VMs running DCopy or LLCProbe, will ultimately cause

a pressure on the shared cache on the physical machine. We find empirically that

a sharp increase in CMR and CPI is a leading indicator of interference. Since in

this dissertation, we focus on cache intensive interference, CMR was chosen as a

representative trigger in the local testbed. We determined two thresholds for CMR

as CMRthres
low = max(CMR of Cloudsuite no-interference) and CMRthres

high = min(CMR

of Cloudsuite with interference). CMRthres
high detects when interference is in effect and

CMRthres
low detects when interference has gone away. This approach, however, cannot

be used in public clouds due to the policy of disallowing access to hardware counters.

90

For our experiments on EC2, we used a sharp rise in CPU, reduction in throughput

(THPT) , and increase in response time (RT) of the application VM as secondary

evidence of interference.

Interference Interference0

4

8

12

2000 2500
Time

LPO(*1000)
Response Time(*2)
WorkDone(/100)

Variation of various metrics with interference

Fig. 6.7.: Interference impacts load per operation (LPO) and work done (WorkDone)
by a web server. These, together with response time, can be used as metrics for
detecting interference. The values are normalized by the factors shown in figure for
better visualization.

Instead of using raw CPU utilization which may show sharp fluctuations due to

stochastic nature of request arrivals, we use a normalized metric Load Per Operation

(LPO). LPO is defined as LPO = CPUutil

Throughput
. We also define another derived met-

ric WorkDone = RT ∗ THPT ∗ CPUutil. Intuitively, Workdone approximates the

number of CPU cycles spent to serve all the requests during current measurement

interval. Without interference, assuming the server is not saturated, Workdone is

small since RT < 1s even though throughput is high. With interference, however,

Workdone is large as response time increases significantly even though throughput

reduces. To determine applicability of LPO and Workdone for interference detection,

we ran CloudSuite in EC2 for multiple 1-hour runs. During these runs we periodi-

cally start Dcopy on a co-located VM at fixed intervals of 8 minutes (4 minutes of

interference followed by 4 minutes of no-interference). The collected metrics for one

1-hour run is shown in Fig. 6.7. It can be seen from the figure that both LPO and

Workdone form distinct clusters with and without interference. It may be argued that

interference detection based on CPU utilization may fail to detect small interferences

that does not increase utilization above threshold. In our experiments, we found such

91

interferences have minimal impact on response time. Here, our primary focus is to

detect pathological cases that saturate server resources.

6.4.2 Decision Tree for Detecting Interference

To detect interference in EC2 we built a Decision Tree classifier using the at-

tributes LPO, Workdone, and Response time. A decision tree generates a finite set

of “tests” on attribute values to determine the class of a given sample. Our choice

of decision tree is due to its two key advantages: i) simplicity—it is easy to visu-

alize the rules in a decision tree ii) customizability—an administrator can manually

change the thresholds of various attribute values based on expert knowledge or QoS

requirements. Our classifier consists of 3 classes: Interference, No-interference, and

Transient. The Transient class is introduced to capture temporary fluctuations in

performance (e.g. immediately after starting or stopping of emulated interference).

Based on current observation values the classifier tries to predict if the web server is

suffering from interference or interference has gone away.

A key challenge in building the decision tree is to deal with changes in parame-

ter values. When IC2 reconfigures a web server during interference, its performance

metrics also change. A decision tree trained with baseline runs (with and without

interference, but default parameters only), doesn’t work well to capture parameter

changes. For example, during interference, when IC2 reduces ResponseTime and LPO

by modifying parameters, the decision tree incorrectly classifies this as no-interference.

A possible solution for this is to collect metrics with various combination of param-

eter values, with and without interference. However, collecting training data for all

combinations of parameter values is time consuming and may even be impractical.

We therefore select an alternate bootstrapping approach where the classifier is trained

in 3 phases. Each training phase consists of 10-hour run of Cloudsuite and is done

offline. In phase I, we run Cloudsuite with baseline optimal setting (IC2 disabled),

92

periodically generating interference. The collected data is used for training the phase

I (base) classifier. In Phase II, we repeat the experiment with IC2 enabled and use

the base classifier for interference detection. The metrics collected approximate mea-

surements with random parameter combinations. We use 50% data from Phase I

(thereby, still biasing it towards default parameter values) and 50% data from phase

II measurements to train the phase II classifier. Finally, in phase III we use phase

II classifier and collect more data with IC2 enabled. The data collected in phase III

is used for training the final classifier. Note that, during training we use only Dcopy

with varying array sizes and intensity (#dcopy threads) as our interference bench-

mark, while in evaluations we use both Dcopy and LLCProbe to test our detection

module. We used the Weka [64] toolkit to create the decision tree.

6.4.3 Configuration Controller

IC2 internally uses a simple state machine to keep track of current operating

context of the web server and generate reconfiguration triggers (Fig. 6.8). In local

testbed, the state machine consists of only two states and interference detection is

merged with the state machine. We use response time in the trigger to ignore cases

where response time was within QoS values, this prevents the server from incurring

reconfiguration overheads during less-intense interferences. Self-loops in the state di-

agram are the negations of the trigger conditions on outgoing edge. In EC2, however,

we use a 5-state machine, two representing interference and two representing normal

(no-interference) runs, and one for the transient phase described in the previous para-

graph. The transition labels are classifier outputs based on recent observations. Our

choice of 5-states instead of two serves two purposes: i) Due to ambient interference

in EC2, state changes may be short lived. Reconfiguring frequently in such cases may

impact throughput. Our design forces IC2 to reconfigure only after it has seen two

successive periods under interference or no-interference (assuming the current phase

93

will last a while). ii) This hides classifier false positives. For example, if the server

is under no-interference but the classifier predicts interference, it would take at least

three successive misclassifications for a reconfiguration (No-interference → Transient

→ Interference → Interference), the probability of which is much smaller than the

classifier error rate. IC2 performs reconfiguration actions when the server enters the

states I2 or NI2 as shown in Fig. 6.8.

Fig. 6.8.: State transitions of IC2. In EC2, reconfiguration is done when the server
enters I2 or NI2.

6.4.4 Reconfiguration Actions

Our reconfiguration actions in IC2 are currently implemented as a heuristic backed

by a knowledge base (refer Table 6.3). This knowledge base directs IC2 which pa-

rameters to reconfigure when a trigger is detected. It does not include precise values

of the parameters but instead specifies a set of rules. The knowledge base can be

created in two ways: i) with the help of a domain expert, ii) analyzing performance

logs from training runs. Note that most commercial web applications go through load

testing phase before going to production. A systematic variation of critical middle-

ware parameters (as in Section 6.3.2) during these tests can generate insights about

application performance. Our current implementation deals with row 3 of Table 6.3,

94

i.e. increased CMR. Our earlier experiments suggest that the actions MXC↓, KAT↑,

and PHP↑ can improve application performance during phases of cache interference.

We reconfigure all three parameters simultaneously.

Table 6.3.: Knowledge base for web server reconfiguration

Context Change Config. Heuristic
Increased Workload (High Idle Memory) MXC↑ and PHP↑
Increased Virtual/Physical CPU ratio MXC↓ and KAT↑
Increased LLC Miss Rate MXC↓, KAT↑, PHP↑
Increased Host Memory Contention MXC↓ and PHP↓
Increased Page Faults (Active Memory Low) PHP↓

Algorithm 1 Parameter update functions for IC2

1: procedure reconfigure for interference()

2: δMXC ← ((MXC ∗
LPO−LPOnointf median

LPO
))

3: δMXC ← checkBounds(δMXC)
4: δKAT ← (δresponse ∗ CKAT)
5: δKAT ← checkBounds(δKAT)
6: update params(δMXC , δKAT , (400− PHP))
7: end procedure

6.4.5 Update Functions

The quantitative update functions for the three parameters are shown in Algo-

rithm 1. The update objective for MXC is to reduce CPU demand of the web server.

We therefore decrease it proportional to the increase in CPU utilization (approxi-

mated by δLPO). We restrict the new value to be within a min-max bound so that

throughput does not degrade alarmingly. A similar objective function can be realized

for a memory constrained web server by considering memory utilization. An underly-

ing assumption here is that the server’s CPU utilization is dominated by the Apache

Httpd server. In our setup, though Php-fpm was used for dynamic content genera-

tion, we found the impact of PhpMaxChildren on response time/throughput was much

95

smaller than MaxClients. This likely indicates that the effect of PhpMaxChildren on

CPU utilization of the VM was marginal.

On the other hand, increase in response time implies the server’s average request

cycle time (response time + wait time) is increased. We increase KAT proportional

to the δresponse time to offset increased cycle time, i.e., to keep a connection alive for

longer since the server is taking longer time to respond to client requests. During

experiments in Fig. 6.2(b), it was found that the increase in optimal KAT value

(KAT intf
opt −KAT nointf

opt) during interference is several times larger than δresponse time.

Therefore, a constant multiplicative factor (CKAT) is used with δresponse time to come

up with the change in the KAT value. We empirically determined the value of CKAT

to be 3. For PhpMaxChildren, we found performance improvement beyond a certain

value (400, for a VM with 2vcpus) is negligible. We therefore select two constant

values of PHP for interference and no-interference scenarios.

6.4.6 Implementation

IC2 currently has been implemented as a Java application which combines the

functionalities of Performance Monitor and Config Manager described in Fig. 6.5.

One instance of IC2 is designed to handle an application group as shown in Fig.

6.5, e.g., an application group may consist of web server, database server, and e-

mail server. In current implementation, we focus on managing the web server. IC2

uses remote scripts to fetch performance metrics from various levels of the monitored

systems. It uses Faban logs to collect application level metrics (in periodic intervals

of 5s), and uses sysstat utilities (inside WS VM) for cpu and memory utilization.

In the local testbed, we also collect hardware counters from the hypervisor. Based

on the collected data and configured threshold values, it detects if an interference

has started or stopped. It then sends reconfiguration commands to the Apache and

Php servers. A separate program was implemented to start and stop the interference

benchmarks in periodic intervals.

96

Redesigning Httpd. During initial testing with IC2, we found that CloudSuite had

significant increase in response time and decrease in throughput immediately after a

reconfiguration. This transient phase lasted between 30-60s and was determined to

be a limitation of Apache Httpd server. In order to update configuration values, the

server has to restart all child processes. This is essential because Httpd internally

assumes that configuration values are never changed (read-only)—doing so allows it

to avoid synchronization overhead during request processing.

To avoid the penalty of restarting Httpd, we implemented an online reconfigura-

tion option for Httpd. The online reconfiguration option enables Httpd to gracefully

change over from old parameter values to new parameter values without needing to

shut down and restart all worker processes. We noted that MaxClients is used only

in Httpd master process to control the number of worker threads. The children pro-

cesses (workers) are oblivious of MXC. Therefore MXC can be updated in master

(and subsequently propagated to children) without requiring restart. KAT value is

read at the end of every request processing, therefore any change to it is reflected

in the next request. Assuming a relaxed consistency model, we can modify KAT in

master and propagate the changes to children later.

We implemented a custom signal handler (SIGUSR2) and an online reconfigura-

tion command (apachectl reconfigure) in the Httpd server (worker mpm) to ini-

tiate online reconfiguration of these two parameters. The signal is delivered to the

master process by apachectl and later propagated to children via Httpd’s Pipe of

Death (POD) implementation. We also updated the Scoreboard structure to store

runtime values of MXC and KAT. The reconfiguration decisions are implemented in

server main loop() in master and child main() in children. Our implementation

involved adding/modifying 500 lines of code in current Apache codebase (v2.4.3).

With our implementation of online Httpd, the server showed significantly less over-

head of reconfiguration as explained in the next section. The modified version of

Apache can be downloaded from [65].

97

6.5 Evaluation

In this section, we evaluate the effectiveness of IC2 in detecting and remediating

interference. The high level objective here is to reduce the response time for the web

server during periods of interference. Therefore, if the average response time after

reconfiguration is lower than that before reconfiguration, we consider IC2 to have

achieved its objective. More specifically, we ask ourselves the following questions,

individually for the local testbed and Amazon EC2:

i) Can IC2 successfully detect interference?

ii) How much improvement in response time can be obtained by running IC2?

iii) What is the overhead of reconfiguration in IC2?

6.5.1 Setup

To quantify the performance change due to IC2, we compare IC2 with the perfor-

mance of an interference-agnostic controller. We assume that an interference-agnostic

controller is able to achieve optimal parameter setting under normal runs and does

not react to interferences. We found that for resource configurations equivalent to

EC2 m1.large instances, the optimal parameter values for no-interference runs were

< MXC = 650, KAT = 5, PMC = 50 >. For all the experiments, we consider a

CloudSuite workload with 550 concurrent clients which is below the saturation point

of the web server.

Interference Emulation. To emulate interference we star-ted the interference

benchmarks with varying array sizes at different instants in time. To simplify im-

plementation, we consider a periodic interference behavior as opposed to a stochastic

behavior. Due to transient behavior of httpd-basic immediately after reconfiguration,

we found it difficult to precisely evaluate benefits of IC2 with a bursty interference.

For our evaluations the interference benchmarks are on for 240s followed by an off

98

period of 240s. We selected emulated interference to evaluate IC2 instead of natural

interference in EC2 primarily because of two reasons: 1) Interferences occur infre-

quently enough to make statistically significant results difficult within a reasonable

experimental time. 2) The nature (intensity and duration) of interference may change

every time making it hard to draw comparable results. We run LLCProbe with an

array size of 20MB, Dcopy with 20MB (also referred to as Dcopy-low) and Dcopy

with 1.5GB (Dcopy-high). On EC2, this synthetic interference happened in addition

to ambient interference in the environment. On the local testbed, we ensured that no

other VM, extraneous to our experiment, was running.

Co-location in EC2. In order to evaluate IC2 in EC2 we needed to co-locate some

of our VMs on the same machine as the WS VM. This is necessary to emulate in-

terference on the web server. We iteratively started 10 EC2 instances in batches (as

described in [52]) and were able to successfully co-locate 2VMs after some trial and

error. We found that the co-located instances had sequential domids and were able to

pass messages among themselves using xenstore (write in one VM and read from an-

other). We used this as verifying evidence that co-location was achieved. Our results,

in themselves, are also secondary validation of co-location since we found noticeable

impact of interference on WS performance. The co-located VMs on EC2 were hosted

on a Xeon-2650 machine having 8(16) physical(logical) cores and 20MB L3.

Baseline Formation. To form baseline observations for both private testbed and

EC2 we first configured their corresponding web servers to the no-interference op-

timal settings. These settings, with IC2 disabled, emulate an interference-agnostic

controller. We then used Faban to generate client requests for a 1-hour run. During

the run we started our interference controller described above to generate periodic

interferences. The application metrics for CloudSuite (response time and through-

put) were collected at intervals of 5s. These metrics when plotted against time axis

represent performance of one baseline run. In general, we found that interference

99

had more performance impact in EC2 than in local testbed. For this experiment,

we reconfigured the WS VM on the local testbed to match Amazon EC2’s m1.large

instances. To achieve noticeable impact, we had to use 4 threads of the interference

benchmark on the local testbed compared to 2 in EC2. We found that with this

utilization of the local server (6 of 12 hardware threads) the effects of interference in

local and EC2 were of comparable magnitude.

Similar to baseline measurements, we also ran CloudSuite with IC2 enabled. In

both testbeds, we evaluate IC2 under two scenarios: one where Apache is reconfig-

ured with traditional apachectl -k graceful command (httpd-basic) and the other

where our instrumented version of Apache is reconfigured online (httpd-online). We

iteratively start 1-hour of baseline run followed by 1-hour of IC2 with httpd-online,

and 1-hour of httpd-basic. This was repeated 16 times for a total runtime of 48 hours

(3× 16). We restart the web server between each 1-hour run.

6.5.2 Results

Improvement in Response Time

Fig. 6.9 shows the variation in Response time with Time in local testbed and

in EC2 for a set of representative runs. In each plot, red vertical lines show the

point on time axis when an emulated interference is started and green vertical lines

show when interference is stopped. The blue vertical lines show the point when

IC2 reconfigured with httpd-online. New parameter settings at each reconfiguration

point is annotated as the three tuple |MXC|KAT |PHP |. It can be seen that in

general both httpd-online and httpd-basic are able to reduce response time during

interference. In case of httpd-basic, there is a spike in response time following a

reconfiguration, an indication that Apache is restarting all of its child processes. With

httpd-online this spike is nearly eliminated, although, some overhead remains due to

updating of PhpMaxChildren. Interference detection is faster in Local than EC2

since we use cache miss rate. Another interesting fact is that the effect of interference

100

||400|9|400|| ||650|5|50|| ||425|8|400|| ||650|5|50||

llc dcopyhigh stop
0

1

2

3

4

5

2800 3000 3200 3400
Time

R
es

po
ns

eT
im

e

ExptId
Local−baseline
Local−httpdbasic
Local−httpdonline

ResponseTime vs Time

(a) On Private Testbed.

||525|11|400|| ||650|5|50|| ||475|13|400|| ||650|5|50||

llc dcopyhigh stop
0

1

2

3

4

5

2800 3000 3200 3400
Time

R
es

po
ns

eT
im

e

ExptId
EC2−baseline
EC2−httpdbasic
EC2−httpdonline

ResponseTime vs Time

(b) On EC2 Testbed.

Fig. 6.9.: IC2 improves response time of a web server during phases of interference.
Red vertical bars show when an emulated interference is started and green vertical
bars show when interference is stopped. The blue vertical bars show the point when
IC2 reconfigured with httpd-online. New parameter setting at each reconfiguration
point is annotated as the three tuple |MXC|KAT |PHP |. Baseline run implies IC2

is disabled.

persists longer in EC2 even after emulated interference is stopped. This happens for

two reasons, i) ambient interference in EC2, ii) max throughput in EC2 is lower than

in the local testbed, hence queued requests persist for longer in EC2.

To quantify improvement in response time, we analyze response time during in-

terference in two halves—a) From onset of interference (red line in Fig. 6.9) up to

60 seconds is considered first half. This is the period when interference detection and

reconfiguration take place effectively showing overhead of IC2, specially in case of

httpd-basic. b) From 60s after interference to stopping of interference (green line in

Fig. 6.9) is considered the second half. This is the steady state performance of IC2

during interference.

101

18.5%
24.7% 5.5%

20.1%

10.7%

21.6%

0

1

2

3

dcopyhigh dcopylow llc
Interference Type

R
es

po
ns

eT
im

e

expt
baseline
httpdbasic
httpdonline

(a) Firsthalf RT (Private)

−10.2%

8.3%

−6.5%

10.0%

−5.1%
2.7%

0

1

2

3

dcopyhigh dcopylow llc
Interference Type

R
es

po
ns

eT
im

e

expt
baseline
httpdbasic
httpdonline

(b) Firsthalf RT (EC2)

39.9%39.9%
34.3%31.6% 36.8%36.0%

0

1

2

3

4

dcopyhigh dcopylow llc
Interference Type

R
es

po
ns

eT
im

e

expt
baseline
httpdbasic
httpdonline

(c) Secondhalf RT (Private)

19.1%
26.4%

18.3%

29.3%

21.5%20.8%

0

1

2

3

4

dcopyhigh dcopylow llc
Interference Type

R
es

po
ns

eT
im

e

expt
baseline
httpdbasic
httpdonline

(d) Secondhalf RT (EC2)

Fig. 6.10.: Response time with IC2 for various interferences. Numbers represent
percentage improvement from baseline RT.

We found that, across different interference types in EC2, httpd-basic degraded

response time by 5-10% in the first half, but httpd-online improved response time by

3-10%. This proves that the online version of Apache is able to reconfigure faster. In

local testbed, during the first half, httpd-basic showed improvement between 5 and

19% while httpd-online showed improvement between 20 and 25%. The measurements

are better in the local testbed compared to EC2 since interference detection happens

faster. In steady state or second half (60-240s from onset of interference), httpd-

online showed improvements of 21-29% in EC2 and 32-40% in the local testbed (refer

Fig. 6.10). The numbers for httpd-basic are 18-22% in EC2 and 34-40% in Local.

The steady state performance of httpd-basic and httpd-online are comparable in the

102

Table 6.4.: Summary of IC2 Results. Response time numbers are %change from
baseline runs across interference benchmarks. FH:=first half, SH:=second half,
INTF:=interference, NI:=no-interference

Response Time
(%change)

Detection
Latency

httpd-online httpd-basic
FH SH FH SH INTF NI

Local 20-25↓ 32-40↓ 6-19↓ 34-40↓ 15s 10s
EC2 3-10↓ 21-29↓ 5-10↑ 18-22↓ 20s 65s

local testbed, although httpd-online outperforms httpd-basic in EC2. Overall IC2

showed higher improvement in response time in the local testbed since it was able to

compute δMXC and δKAT more precisely (no ambient interference as in EC2). We find

that the response time improvements are significant considering the simplicity of our

controller. It further establishes our point that, in a cloud deployment, an application

configuration manager must be interference-aware. A summary of our results can be

found in Table 6.4.

Detection Latency

From the collected metrics we also measured how long it takes for IC2 to detect

interference in EC2 and in the local testbed. We define detection latency to be

time from the starting or stopping of an emulated interference to the time when IC2

reconfigures Apache server. In Fig. 6.9 these are the times between a red line and the

next blue line (we call this interference detection latency) or time between a green

line and the next blue line (no-interference detection latency). We found that in local

testbed, median values for interference and no-interference detection latencies are 15s

and 10s respectively. In comparison, IC2 detects interference in EC2 with a median

latency of 20s. Detection of no-interference in EC2 takes much longer—a median

value of 65s. This happens since effect of interference persists much longer in EC2

as described in the previous section (Fig. 6.9(b)). Our future work includes finding

ways to reduce detection latency even further in both testbeds.

103

Classifier Accuracy

To measure the accuracy of our classifier we apply it on the data collected from our

experiments in Section 6.5. For each experiment type (httpd-online and httpd-basic),

we create a test set comprising measurements collected by IC2 in that experiment.

Due to space constraints, we present only the first type here. We label the test

data based on its timestamps and our knowledge of when an emulated interference is

started and stopped. Data from the start(stop) of an interference up to 30s is labeled

Transient, rest are labelled according to which interval it is (Interference or No-

interference). Note that this labeling does not take into account ambient interference

in EC2 and therefore may manifest as poorer precision, although the classifier works

well in practice as seen in results from Section 6.5.2. We found the Transient class had

significant overlap with both Interference and No-interference in the training data, as

a result it had very low precision. But since IC2 does not perform any reconfiguration

in this state, the cost of misclassification is zero. We therefore ignore the results for

Transient and focus primarily on interference detection.

0

25

50

75

100

[1:1:1] [5:1:5] [5:1:10] [10:1:10]
Cost Matrices

P
er

ce
nt

ag
e

Miss (FN) Rate
Precision Interference
Recall Interference

Fig. 6.11.: Accuracy of Interference Detection with varying cost matrices. The cost
values 5 : 1 : 10 are used in production.

During the training phase, it was found that with default cost for misclassification,

the decision tree had significant number of False Negatives (FN). This causes IC2 to

perform badly, e.g. using baseline parameter setting while in interference may have

significant performance degradation and vice versa. We tried several combinations

104

of cost matrices and selected the one with lowest miss rate. Fig. 6.11 shows the

interference detection rate of our classifier with different cost matrices for httpd-

online test data. Here a cost value of {a : b : c} represent a 3 × 3 cost matrix, a is

the cost of No-interference (NI) detected as Interference (I), b is the cost of Transient

misclassified as any other class, c is the cost of (I) classified as (NI), and cost of

correct prediction is 0. We define Miss Rate as (I classified as NI + NI classified as

I)/Total Samples. It can be seen that, initially with default cost of 1 : 1 : 1, miss

rate was 12%, but with higher cost values miss rate reduced to 6%. We used the

cost values of 5 : 1 : 10 in our production runs based on the fact that response time

penalty for misconfiguration in (I) is much higher than cost of misconfiguration in

(NI). The largest percentage of FNs (98.7%) arise from NI being detected as I (with

cost 10 : 1 : 10). This happens since impact of interference persists longer in EC2 as

seen in Fig. 6.9(b) (but our labeling does not account for this). This also manifested

as lower precision of (I) and lower recall of (NI). In general, our interference detection

achieved 89% recall and 73% precision.

Cost of IC2

The cost of IC2 can be defined in terms of two metrics—(a) Apache performance

immediately after a reconfiguration, and (b) execution cost of IC2. We already found

in Section 6.5.2 that IC2 with httpd-online improves response time during first half,

both in EC2 and in private testbed. This indicates httpd-online is able to reduce cost

of reconfiguration significantly (compared to httpd-basic, response time improved by

up to 17%). Note that IC2 is trained offline, therefore it does not have any runtime

cost for building the classifier. Since the classifier has only 3 attributes, the tree has

a simple structure and classification decision is made in the order of 10 comparisons.

This is insignificant compared to our measurement period of 5s, which is also the

frequency at which the classifier is invoked. Therefore, the execution cost of IC2 is

negligible.

105

6.6 Discussions

How generic is the knowledge base in IC2?

Even though we work with Apache, most parameters we work with are common

to thread-pool based middleware. Parameters like MXC, PHP capture concurrency,

whereas timeout parameters capture state preservation. Hence, we believe the knowl-

edge base (KB) in Table 6.3 to be applicable to other thread-pool based servers (e.g.

Glassfish, WebSphere, DB2, MySql etc.). In a small scale experiment with Glassfish,

we found that it has sensitivity to thread-pool size (similar to MXC). Our KB, how-

ever, is not applicable to event-driven architectures (e.g. Nginx).

How expensive is it to generate the knowledge base?

The knowledge base in IC2 can be created empirically by systematically varying im-

portant parameters as described in Sec. 6.3.2. It can be done in parallel with the

load testing phase of web applications. Note that the KB does not include precise

values of parameters, rather IC2 can figure out the parameter values depending on

runtime conditions, including interference. Once created, it can be used for a given

application and middleware distribution irrespective of deployment (assuming similar

architectures, e.g. x64 or x86).

Can IC2 handle other types of interference?

Network interference is another major problem that seriously affects performance of

cloud applications. IC2 can also be useful in mitigating some of the effects of network

interference through application reconfiguration. In our preliminary experiments, we

simulated an environment where bandwidth available to the WS-VM became con-

strained (by up to 20%) due to a co-located VM using up a major share of the net-

work. We observed, as the level of network interference increases (i.e. the available

bandwidth to WS-VM reduces) the response time of the webserver sharply degrades.

IC2 can improve response time by employing an admission control mechanism, which

is equivalent to reconfiguring the MaxClients parameter in Apache to a lower value.

We empirically verified that optimal MXC setting with network interference is lower

106

than no-interference optima [62]. IC2 can be trained to use response time along with

packets pruned from send-buffer as a trigger to detect such network interference.

6.7 Directions for Future Research

In this chapter, we presented the design and implementation of IC2, an au-

tonomous middleware configuration engine for mitigating performance interference

in clouds. IC2 has the distinct advantage that it can be used by website administra-

tors who usually do not have access to the hypervisor in public clouds. In such cases,

the simple heuristic-driven controller in IC2 is able to reduce the response times of

web server VM(s). However, the design of IC2 requires substantial expert knowledge

in determining which parameters should be reconfigured during interference and how

their values should be changed (increased or decreased). We generated this knowledge

base (KB) for popular web services middleware such as Apache Httpd and Php-fpm

engine by running an extensive set of experiments. The KB tells us how the opti-

mal values of various parameters change with and without interference. In further

experiments, we found that the knowledge base is applicable to a specific class of

middleware: e.g., in our setup the IC2 knowledge base was applicable to thread-pool

based middleware (such as Apache web server and Darwin streaming server). How-

ever, for event-based middleware (such as Nginx) we didn’t find any change in optimal

parameter values with interference. Further research is required to automatically find

application parameters that are performance-critical.

Below we present some future research directions for enhancing IC2.

1. Automatically Finding Performance-critical Parameters in IC2: Finding per-

formance critical parameters for applications and especially finding optimal pa-

rameter values has been a long-standing “open” problem in the systems com-

munity. The difficulty of the problem arises from three facts: i) the exploration

space for configuration values is huge, ii) there are dependency among param-

eters and often this dependency spans across machines in the server cluster,

107

iii) it is very difficult and time-consuming to gather sufficient training data for

all possible combinations of parameter values. Significant research is required

to address these challenges and find optimal values for performance-critical pa-

rameters in a completely autonomous and efficient manner.

2. Handling Other Types of Interference: In IC2, we detect and mitigate inter-

ferences due to cache contention. A possible direction for future research is

to extend IC2 to handle other types of interferences such as network or IO

bandwidth. Such a solution would require designing new modules for detecting

these interferences and finding which parameters can mitigate their ill effects.

We highlight a possible solution in Section 6.6.

108

7. ICE: AN INTEGRATED CONFIGURATION ENGINE

FOR CLOUD SERVICES

Performance degradation due to imperfect isolation of hardware resources such as

cache, network, and I/O has been a frequent occurrence in public cloud platforms. A

web server that is suffering from performance interference degrades interactive user

experience and results in lost revenues. Existing work on interference mitigation tries

to address this problem by intrusive changes to the hypervisor, e.g., using intelli-

gent schedulers or live migration, many of which are available only to infrastructure

providers and not end consumers. In this chapter, we present a framework for admin-

istering web server clusters where effects of interference can be reduced by intelligent

reconfiguration. Our controller, ICE, improves web server performance during inter-

ference by performing two-fold autonomous reconfigurations. First, it reconfigures

the load balancer at the ingress point of the server cluster and thus reduces load on

the impacted server. ICE then reconfigures the middleware at the impacted server

to reduce its load even further. We implement and evaluate ICE on Cloudsuite, a

popular web application benchmark, and with two popular load balancers - HAProxy

and LVS. Our experiments in a private cloud testbed show that ICE can improve

median response time of web servers by upto 94% compared to a statically configured

server cluster. ICE also outperforms an adaptive load balancer (using least connection

scheduling) by upto 39%.

7.1 Motivation

Performance issues in web service applications are notoriously hard to detect and

debug. In many cases, these performance issues arise due to incorrect configurations

or incorrect programs [66]. Web servers running in virtualized environments also

109

suffer from issues that are specific to cloud, such as, interference [50, 67] or incor-

rect resource provisioning [47]. Among these, performance interference and its more

visible counterpart performance variability cause significant concerns among IT ad-

ministrators [55]. These concerns are justified since a slow website almost always

implies customer dissatisfaction and missed revenues. Performance interference also

poses a significant threat to the usability of Internet-enabled devices that rely on

hard latency bounds on server response (imagine the suspense if Siri took minutes to

answer your questions!). For other latency sensitive tasks such as web search, delayed

tasks are simply discarded resulting in wasted computation. Existing research shows

that interference is a frequent occurrence in large scale data centers [50, 68]. There-

fore, web services hosted in the cloud must be aware of such issues and adapt when

needed.

7.1.1 The Problem

Interference happens because of sharing of low level hardware resources such as

cache, memory bandwidth, network etc. Partitioning these resources is practically

infeasible without incurring high degrees of overhead (in terms of compute, memory,

or even reduced utilization). Existing solutions primarily try to solve the problem

from the point of view of a cloud operator. The core techniques used by these solu-

tions include a combination of one or more of the following: a) Scheduling, b) Live

migration, c) Resource containment. We presented a high level overview of these

techniques and their shortcomings in Chapter 5. Our principal objective here is to

mitigate effects of interference without requiring modification of the hypervisor.

7.1.2 Improving IC2

In the previous chapter, we saw how IC2 mitigates interference by reconfigur-

ing web server parameters in the presence of interference [67]. The parameters

considered are MaxClients (MXC) and KeepaliveTimeout (KAT) in Apache and

110

pm.max_children (PHP) in Php-fpm engine. We found that IC2 could recapture

lost response time by upto 29% in Amazon’s EC2 and 40% in private cloud testbed.

However, the drawback of this approach is that web server reconfiguration usually

has high overhead (the web server need to spawn or kill some of the worker threads).

We found that with a standard Apache distribution, the response time immediately

after a reconfiguration shot up by 1s and the negative effects lasted for about 30s.

This limits how frequently the web server can be reconfigured. Moreover, IC2 alone

cannot improve response time much lower without drastically degrading throughput.

We observe that the key goal in IC2 is to reduce the load on the web server (WS)

during periods of interference. The reconfiguration actions to reduce MXC and to

increase KAT help in achieving this objective. However, this is an indirect way of

implementing load reduction. We also observe that most deployments have multiple

instances of web servers placed behind a load balancer. Therefore, implementing ad-

mission control at the gateway (load balancer) is a more direct way of reducing load

to the affected web server. An out-of-box load balancer is agnostic of interference and

therefore treat the WS equallly irrespective of whether it is suffering from interference

or not. We aspire to make this context aware, and evaluate how much performance

gain can be achieved.

7.1.3 Solution Approach.

Our solution approach relies on leveraging the admission control functions of load

balancer to make the system more agile. We observe that existing load balancers

(e.g. HAProxy with least-connection scheduling) can mitigate the effects of interfer-

ence to some extent. However, if we can detect and mitigate interference sooner, it

can improve system stability and reduce response time even further. The proposed

solution, called ICE, uses hardware counter values to detect the presence of inter-

ference and therefore provides fast detection. Access to hardware counters does not

always require hypervisor (root) access as these may be virtualized [69]. Our evalu-

111

ations showed that ICE could detect and reconfigure the WS cluster with a median

latency of 3s. This is better than existing techniques which would incur a detection

latency of 15-20s [67].

When interference is detected, ICE performs two-level reconfigurations of the web-

server cluster. The first level, geared towards agility, is to reconfigure the load balancer

in such a manner so that fewer requests are forwarded to the affected WS VM. We

found that this provides the maximum benefit in terms of reduced response time. The

second level of reconfiguration, which configures Apache and Php-fpm as described in

IC2, is activated only if the interference lasts for a long time. This prevents the server

from incurring unnecessary reconfiguration overheads if the interference is short. The

second level reconfiguration ensures that the WS does not incur overhead of idle

threads (note that since the LB has been reconfigured this WS VM will receive fewer

client requests). Moreover, it also works as a fail-safe for situations where the WS

VM still receives lot of requests because of a sudden spike in client load at the LB.

Our key contributions in this chapter are as follows:

1. We present the design and implementation of a two-level reconfiguration engine

for web server clusters to deal with interference in cloud. Our solution, called ICE,

includes algorithms for: a) detecting interference quickly (primarily cache and mem-

ory bandwidth contention), and b) predicting new weights for impacted server(s) to

reduce load on them.

2. We deploy our solution on a popular web application benchmark called CloudSuite.

Our evaluation experiments show that on a combination of Apache+Php+HAProxy

middleware, ICE can reduce median response time of web servers by upto 94%.

We evaluate ICE for two different scheduling policies (weighted round-robin, and

weighted least-connection) in HAProxy and find that it improves response time across

both scheduling policies (upto 94% and 39% respectively). Median interference de-

tection latency was 3s.

3. To evaluate the generalizability of our framework, we also ran some experiments

with the Darwin media streaming server running with LVS load balancer. Our results

112

show that reconfiguring server weight in LVS can be used to reduce the inter-frame

delay for an affected Darwin VM. We also found that the optimal num_threads pa-

rameter in Darwin is vastly different with and without interference indicating our WS

reconfiguration is also applicable to Darwin.

The rest of the chapter is organized as follows. In Section 7.2, we show that

interference can degrade response time of a WS VM even in a load-balanced setup.

It is followed by a detailed description of the design of ICE. Section 7.4 shows

the performance improvement of ICE over a simple load-balanced WS cluster and

IC2. Next, we show the generalizibilty of our solution approach by illustrating how

ICE can be applied in a media streaming server cluster. We use the Apple Darwin

media streaming server and LVS load-balancer for this work. We finally discuss the

shortcomings of ICE and conclude the chapter.

7.2 Interference Degrades Performance of Web Servers

In this section, we present an empirical evaluation of the impact of interference

on web server (WS) performance. The metric of interest in this dissertation is the

average response time of the WS, which is a dominant factor for customer satisfaction.

7.2.1 Experimental Setup

Testbed. Our experiments were conducted in a private cloud testbed consisting of

three poweredge 320 servers. Each server is equipped with an Intel Xeon E5-2440

processor consisting of 6 cores (or 12 threads with hyperthreading), 15MB L3 cache

and 16GB main memory. The hypervisor used to manage this cloud testbed is the

popular KVM hypervisor. Each of our experimental virtual machines (VM) were con-

figured with 2 vcpus and 3GB RAM except the DB VM. The DB VM was provisioned

with 4 vcpus and 4GB RAM to eliminate any DB bottleneck. All the machines were

connected by a 1 Gbps switch.

113

Application Benchmark. For our experiments with web servers, we use the pop-

ular CloudSuite [19] web application benchmark. CloudSuite emulates a social event

calendar application written in PHP. It is an example of a dynamic web application,

where most of the responses are generated by executing PHP scripts and running

database queries. The benchmark also includes a custom workload generator based

on real-life distribution of user requests.

Fig. 7.1.: Layout of virtual machines in private cloud testbed.

Virtual Machines and Middleware. We used a multi-threaded Apache web server

(Apache-worker) to host CloudSuite, while PHP scripts were interpreted using the

PHP-Fastcgi Process Manager (php-fpm). Note that one instance of Apache and php-

fpm runs in a single virtual machine (called WS VM). We replicated the WS VM three

times to create a web server cluster with 3 virtual servers. These were distributed

across 2 physical machines (refer Fig. 7.1). The third machine was used to emulate

clients. Note that the physical machine with one WS VM was chosen to run interfer-

ence to limit the impact of interference across the cluster. Unless otherwise specified,

we refer to this WS VM as the monitored web server (or impacted web server, also

denoted WSX). All our measurements and analysis below pertain to this single WS

VM instance (WSX). This also makes sure that our measurements are free from

WS-WS (intra-cluster) interference. The CloudSuite database was hosted in MySql

and placed on the same physical machine as the other two WS VMs. Note that the

combined utilization of these VMs (2WS VM + 1DB VM, for a total of 8 vcpus) was

114

below the total capacity of the phycial machine (12 vcpus) and the physical machine

never contended for CPU or RAM. We used the popular HAProxy load balancer to

distribute requests equally among the WS VMs. HAProxy was deployed in a VM on

the same physical machine as the client emulator. This was done to reduce network

overhead. We found that the CPU and Memory utilizations of HAProxy and Client

VM were always well below their provisioned capacities.

Interference Benchmarks. We use the LLCProbe and Dcopy benchmarks de-

scribed in [67] for generating interference on the monitored WS VM. LLCProbe cre-

ates an LLC Sized array in memory and then accesses each cache line very frequently.

On the other hand, Dcopy from the linear algebra suite (BLAS) copies contents of one

array to another. While LLCProbe is an example of a cache read benchmark, Dcopy

is an example of cache read+write benchmark. We found that in general LLCProbe

has greater cache access frequency than Dcopy and therefore emulates a stronger in-

terference. Interferences of these types occur frequently in cloud platforms during

computation of data mining tasks [50], or during periodic consolidations [47].

Configuration Parameters. We consider several parameters in Apache, PHP and

HAProxy for reconfiguration tasks in ICE. The HAProxy parameter that ICE man-

ages is the server weight parameter which determines what fraction of all client

requests go to a particular WS VM. In Apache, we automatically reconfigure the

MaxClients (MXC) and KeepaliveTimeout (KAT) parameters for improving re-

sponse times. While MXC indicate the maximum number of worker threads that

an Apache server can spawn, KAT determines how long a client connection is per-

sisted in idle state before terminating it. Both these parameters have large impact

on response time of an Apache server. In Php, we consider the pm.max_children

(PHP) parameter for autonomous reconfiguration. Similar to MXC, PHP indicates

the maximum number of worker threads in the Php-fpm engine. Note that although

our current experiments are geared towards Apache+Php+HAProxy setup, similar

115

parameters exist for most threadpool-based web services middleware and load bal-

ancers. Therefore, our design principles can be easily adapted for other web servers.

We show this with an example of the Darwin media streaming server with LVS load

balancer in Section 7.5.

7.2.2 Interference Increases Response Time

In this experiment, we run CloudSuite with a given load size (#concurrent clien

-ts) for several 1-hour runs. Note that all the clients direct their requests to the

HAProxy load balancer which distributes the requests equally among WS VMs. The

scheduling policy selected by HAProxy for distributing client requests is round-robin

in this experiment. During each run, LLCProbe benchmarks were started and stopped

in the interference VMs periodically. We show the response times of each WS VM

over time in Fig. 7.2. It can be seen that with interference the response time of the

impacted WS VM (WSX) increases sharply from 10x ms to 100x ms. This clearly

shows that interference can degrade performance of few WS VMs, although, we found

that rest of the cluster remained under-utilized. The reason behind this sharp rise in

response time is that interference reduces capacity of the WS. Therefore, an impacted

WS may saturate with fewer number of clients than in a no-interference scenario. For

a detailed treatment on how interference impacts performance of WS, the readers are

referred to [67].

This shows that a load-balancer which has no knowledge of which WS VM is suf-

fering from interference, would continue to send the same number of requests to the

impacted server(s), as to the other WSs (assuming same default weight). We there-

fore need to make the load-balancer aware of dynamic situations (interference) and

make intelligent scheduling decision.

116

0

100

200

300

400

3600 3700 3800 3900 4000
Time

R
es

po
ns

e
T

im
e

(m
s)

Server
ee258vm8

Response Time vs Time

Fig. 7.2.: The plot shows response time of the impacted WS VM over time. Response
time here indicate the average time the web server takes to serve a single URL.
Interference increases WS response time even though the server is behind a load
balancer. The scheduling policy used here is round-robin.

7.2.3 Interference vs. Load

In a separate experiment, we ran CloudSuite on a standaloneWS VM (no HAProxy)

with varying workload sizes and interference types. Unlike the previous experiment,

each run here indicates a 15-minute run of CloudSuite with a specific combination

of (workload x interference). The interference benchmark is executed for the entire

duration of a run. The results from our experiments is displayed in Fig. 7.3. Note

that each data point in the plot indicate the average of all observations during a

15-minute run for a given combination of workload and interference. An interference

of type Dcopy-0.0MB indicate no interference was run. It can be seen that the rise

in response time due to interference, for a given interference, varies with workload

size. For example, with very low workload (< 1000), the impact of interference is

negligible and all the plots overlap with each other. However, as the workload size

increases (> 1000), the slopes of the curves increase upto a saturation point (2000)

beyond which the slope decreases again. In other words, the rise in response time

(RT) depends on the server load. Therefore, if the load of a WS can be reduced

sufficiently (in this experiment < 1000 clients), then the impact of interference can

117

0

2

4

500 1000 1500 2000 2500
Workload

R
es

po
ns

e
T

im
e(

s)

Interference
dcopy−0.00MB
dcopy−15.26MB
llcprobe−15.00MB

Response Time vs Workload

Fig. 7.3.: Increase in response time during interference with varying workload sizes.
The X-axis here indicate number of concurrent client connections. The response
times shown here are the times to finish an operation (a sequence of URL requests)
as described in Cloudsuite. The plot shows interference has greater performance
impact with larger workloads and the impact varies across interference benchmarks.

be reduced (or nearly eliminated). This observation provides a key motivation in the

design of ICE.

In a load-balanced WS setup, reducing load on an impacted WS VM implies for-

warding fewer client requests to that server. This can be achieved by reducing the

scheduling weight of the corresponding server in the load-balancer configuration. To

validate this hypothesis, we ran another simple experiment on our Apache+HAProxy

setup. Here, we run CloudSuite with periodic interferences as described before. How-

ever, the scheduling weight of the monitored WS (WSX) is set to 100 and 80 (100

being the default value) in two separate runs. It can be seen from Fig. 7.4 that

the average response time of WSX reduces quite significantly while using a lower

weight during interferences. In the following section, we describe how we automate

the reconfiguration actions in ICE.

118

0

100

200

300

400

3700 3800 3900 4000 4100
Time

R
es

po
ns

e
T

im
e

(m
s)

Weight
ServerWeight−100
ServerWeight−80

Response Time vs Time

Fig. 7.4.: The plot shows response time of an affected WS VM over time. Chang-
ing the Server Weight parameter in the load balancer can reduce its response time
significantly during interference.

7.3 Design and Implementation

7.3.1 Overview

ICE primarily consists of four components: i) monitoring engine (ME), ii) in-

terference detector (DT), iii) load balancer configuration engine (LBE), and iv) web

server configuration engine (WSE) as shown in Fig. 7.5. These components are coor-

dinated by ICE-Core. Fig. 7.6 shows the high level functioning of this configuration

engine. First the monitoring engine collects performance metrics from the web server

cluster. These are then fed as inputs to the subsequent modules. In the second stage,

the interference detector analyzes observed metrics to find which WS VM(s) are suf-

fering from interference. Once the affected VM(s) are identified, the load-balancer

configuration engine then reduces the load on these VMs by diverting some traffic

to other VMs in the cluster. We chose the LBE as the first level configuration en-

gine since reconfiguring load balancer has much less overhead than reconfiguring web

servers (the first one involves updating global variable(s), whereas, the second one

involves creation or destruction of processes). If interference lasts for a long time, the

web server configuration engine reconfigures the web server parameters (MXC, KAT,

and PHP) to improve response time further. Finally, when interference goes away the

load balancer and web server configurations are reset to their default values. Fig. 7.5

119

shows how these components are distributed across the web server cluster and their

dependencies. Note that the exact deployment of a given component is flexible and

choices are driven by the need to reduce network and computation overhead. As an

example, our ICE core is deployed in the hypervisor of the monitored WS VM. We

present the details of each module in the following sections.

Fig. 7.5.: Components of ICE and their deployment.

Fig. 7.6.: ICE control loop. This figure shows the sequence of steps performed for
two-level reconfigurations in ICE.

7.3.2 Monitoring

ICE monitors the performance metrics of WS VMs at three levels of the system.

The sensor placements are shown in Fig. 7.5. At the hypervisor level, the hard-

ware counter sensor collects values for cycles per instruction (CPI) and cache miss

120

rate (CMR) for all monitored VMs, whereas, CPU utilization (CPU) of each VM

is monitored inside the VM. The application level sensor at HAProxy gives us the

average response time (RT), and requests/second (RPS) metrics for each VM. While

the hardware counter values are primarily used for interference detection, system and

application metrics are used for reconfiguration actions. We chose a monitoring in-

terval of 1 second for all the metrics. During training, we found that system and

application metrics give better accuracy with an interval of 5 sec (refer paragraph on

Estimating ξ()). Therefore, we also maintain a periodic average of 5 sec for those

metrics. In the later sections, we discuss how using different measurement intervals

help in improving responsiveness and accuracy of various modules.

7.3.3 Interference Detection

We found that the CPI and CMR values of affected WS VMs increase significantly

during phases of interference. This is shown in Fig. 7.7 where the red vertical lines

(start of interference) are followed by a sudden rise in CPI and CMR. Both these

metrics are leading indicators of interference (as opposed to response time which is

a lagging indicator) and therefore allow us to reconfigure quickly and prevent the

web sever from going into a death spiral (i.e., one where the performance degrades

precipitously and does not recover for many subsequent requests). Prior work has also

shown that distribution of CPI values can be used to detect interference in web server

clusters [50]. In our experiments, we found that during interference CPI values had

larger variance than CMR, hence, the latter provided better accuracy for interference

detection. This matches with our intuition that for cache intensive interference such

as LLCProbe or Dcopy, CMR is a good indicator of interference.

Interference detection in ICE is performed by a Decision Tree (DT) classifier which

uses CPI and CMR as the attributes. Our choice of classifier is primarily due to

the simplicity and understandability of the clasification rules generated by DT. The

classifier is trained using sample runs of the Cloudsuite benchmark. We postpone the

121

Interference InterferenceInterference
InterferenceInterference InterferenceInterference
InterferenceInterference InterferenceInterference
InterferenceInterference InterferenceInterference
InterferenceInterference InterferenceInterference
InterferenceInterference InterferenceInterference
InterferenceInterference InterferenceInterference
InterferenceInterference Interference

0.00

0.25

0.50

0.75

1.00

1.25

2000 2200 2400
Time

CMR*2
CPI/4

Variation of CPI and CMR with interference

Fig. 7.7.: Variation in CPI and CMR with interference. Metrics are measured with
a periodic interval of 1 sec. Actual values are scaled with the factors shown in lables
for clarity.

description of training runs until the next section since the same data is also used to

train the LB reconfiguration engine. It was found that although both CPI and CMR

were used as attributes for training the DT, the final classifier included thresholds

on CMR only. This happens because CMR alone is able to classify most samples

correctly. The classifier showed a detection accuracy (TP+TN) of 99.12% on the

training data using 10-fold cross-validation. In contrast, a DT constructed with CPI

only, showed detection accuracy of 98.15%. We used the first classifier (with CMR)

for our evaluation experiments.

7.3.4 Load-balancer Reconfiguration

A key component of ICE is the load-balancer configuration engine, which reduces

load to an impacted web server by forwarding traffic to other servers in the cluster.

In Section 7.2, we found that the impact of interference (rise in response time) on

a web server is a function of its load. During high server load, interference creates

greater performance degradation since it can easily saturate the CPU [67]. Therefore,

the goal of ICE is to reduce traffic to the affected WS so that it does not cross a

CPU utilization setpoint (uthres). We achieve this by updating the weight of the

corresponding WS VM in the load balancer configuration. Note that, #requests

forwarded to a WS is a function of its scheduling weight. Formally,

r = f(w, T),

122

where r is the requests per second (RPS) received by a WS, w is the scheduling

weight, and T is total requests received at front-end (HAProxy).

Similarly, it is traditionally known that the CPU utilization (u) of a WS is a

function of its load, i.e., u = g(r). [67] also showed that u depends on interference.

The degree of interference on a WS can be approximated by its CPI measurements

(c). Therefore, u = h(c). We approximate the dependence of u on r and c with the

empirical function

u = ξ(r, c)

During our experiments we also found that CPU utilization ut at time t is often

dependent on the utilization ut−1 at time t− 1. This happens because execution of a

task may often last multiple intervals. For example, a request that started executing

just before taking measurement for interval tmay be served in interval t+1. Therefore,

the measurements in intervals t and t + 1 are not independent. This dependence is

captured by taking into account the cpu utilization at the previous interval (we denote

this as Oldcpu or o) in our empirical function. The final function for estimating u is

represented as

u = ξ(o, r, c)

Our LB reconfiguration engine works as shown in Algorithm 2:

Assume that CPI, RPS and CPU values at time t are ct, rt, and ut. When the

DT detects interference it sends a reconfiguration trigger to LBE. The LBE then

computes the predicted CPU utilization (ût), given the current metrics ct, rt, and

ut−1. Notice that we use the estimated CPU utilization ût to compare with setpoint

uthres since rise in u often lags behind rise in c. If ût is found to exceed the setpoint, we

predict a new RPS value r̂t s.t. the CPU utilization falls below setpoint. To predict a

new load-balancer weight we first compute the percentage reduction in RPS (δ) that

is required to achieve this. This is then used to reduce weight w proportionately.

Note that during periods of heavy load, the estimated δ may be very high, practically

marking the affected server offline (very low wnew). To avoid this, we limit the change

123

in w within a maximum bound (40% of its default weight). In the following sections,

we present how to train the estimator function ξ().

Algorithm 2 LB reconfiguration function for ICE

1: procedure update lb weight()
2: if DT detected interference then
3: Estimate ût ← ξ(ut−1, rt, ct)
4: if ût > uthres then
5: Estimate r̂t, s.t. uthres = ξ(ut, r̂t, ct)
6: Compute δ ← (rt − r̂t)/rt
7: Set weight wnew ← (1− δ)wcurrent

8: Check Max-Min Bounds (wnew)
9: end if

10: else
11: Reset default weight
12: end if
13: end procedure

7.3.5 Collecting Training Data

To collect training data for estimating the function ξ(), we ran CloudSuite under

various scenarios. Each run involved running the Faban workload emulator for 90

minutes with a constant number of concurrent clients. For each run, we collected

application and system metrics as decribed earlier. During a run, we periodically

started various interference benchmarks (LLCProbe and Dcopy) every 5 minutes.

The interference benchmark was run for the first 3 minutes of this interval followed

by no-interference for 2 minutes. To emulate various degrees of interferene, we run

LLCProbe and Dcopy with varying number of interference threads (between 2 and 4)

and varying array sizes (between 8MB and 750MB per thread). This gave us sufficient

variance in the values of CPI and CMR. To collect measurements with varying server

loads, we changed the HAProxy weights of the monitored server between 100, 80 and

60 across runs. This allowed us to collect measurements with sufficient variance in

RPS values. The benchmark was run for a total of 9 runs amounting to observation

124

data collected over 13.5 hours. Note that we used this data for training both the

Decision Tree and the Estimator. For building the DT, we labeled the observations

based on whether an interference benchmark was running at that time or not (we use

the class labels IF and NI for Interference and No-interference respectively). Since the

WS has different performance characteristics during interference and no-interference,

we use only the data collected during interference for training the estimator (note

that the estimator is used only when interference is in effect).

7.3.6 Estimating ξ()

We approximate ξ() using multi linear regression on variables r, c, and o, where

o is a time-shifted version of the vector u (observed CPU utilization). We found

that although RPS values were tightly centered around the median there were a few

observations when RPS varied widely from the median. We removed these outliers

with standard IQR (inter-quartile range) measures. The thresholds for the selected

obeservations were chosen as r > 1Q− 1.5 ∗ IQR and r < 3Q+1.5 ∗ IQR, where 1Q

and 3Q are first and third quartile values and IQR = 3Q − 1Q. For other metrics,

we found the values to have much fewer outliers. The metrics were also scaled to a

value between 0 and 1 by normalizing them with their range (max−min). The final

dataset was fed to the lm regressor in R. We measure the accuracy of a regression

model by its coefficient of determination or R2 score. The R2 score is defined as

R2= 1−
SSres

SStot

,

where SSres is the residual sum of squares and SStot is the total sum of squares

(proportional to variance of the dataset). Intuitively, R2 measures how much of the

variance in the dataset is captured by the predicted model. Therefore, a higher R2

score implies a better model. Initially, we found that the metrics collected with 1

sec interval had high variance in RPS and CPU and therefore resulted in a lower R2

score. On the other hand, using a larger measurement interval (5 sec) averages most

125

of the noises, thereby, giving a better model fit. Based on this observation, we used

the measurements collected at 5 sec period as input to the estimator.

To check if a higher degree polynomial in o, r, and c produces a better fit for the

training data, we also ran regression with various degrees. The R2 scores for models

with varying degrees of polynomials are shown in Fig. 7.8. We found that models that

include dependence of u with past CPU utilization (i.e., u ∼ (o, r, c)i) have better fit

than those not considering this dependence (u ∼ (r, c)i). It can also be seen from

Fig. 7.8, although higher degrees give a better fit, the improvements in R2 values for

degrees > 1 are very low. Moreover, in a linear model, the estimated values of u and

r can be computed easily and the model can be updated over time with relative ease.

We therefore choose a linear model in (o, r, c) as our estimator. The final prediction

function ξ() was computed as:

u = 0.06 + 0.64 ∗ o+ 0.21 ∗ r + 0.24 ∗ c

0.7

0.8

0.9

1.0

1 2 3 4
Ploynomial Degree

R
2

CPU ~ (OLDCPU,RPS,CPI)
CPU ~ (RPS,CPI)

Fig. 7.8.: Accuracy of regression with varying degrees of polynomials. The metrics
used for regression are shown in the plot labels.

7.3.7 Web Server Reconfiguration

The final level of reconfiguration in ICE is performed by updating parameters

of web server middleware (Apache, Php-fpm, Darwin etc.) hosting an application.

126

Note that reconfiguring middleware parameters is costly since it often involves pro-

cess creation or destruction. Also, the effects of parameter changes are only visible

after a lag (usually 5-10 sec). Due to this, ICE performs Web Server reconfiguration

only if an interference lasts for a long time (> 20 sec). Our WS reconfiguration de-

cisions are based on a knowledge base described in earlier research. [67] found that

during interference the optimal parameters of Apache and Php changes significantly.

More specifically, the following reconfiguration actions are necessary to improve WS

response time during interference: MXC ↓, KAT ↑, PHP ↑, i.e., the optimal values

of KAT and PHP increases during interference, while the optimal MXC values de-

creases. New values for the parameters are computed based on proportinal increase

in CPU utilization (MXC) or response time (KAT). We use the controller described

in [67] as the WS reconfiguration engine in ICE.

ICE is currently implemented as a Java program (ICE-Core) and a collection of shell

scripts distributed across the WS cluster (refer Fig. 7.5). Logically, ICE-Core com-

bines the functionalities of DT, LBE, and WSE in a multi-threaded application. We

used the Weka toolkit for generating the DT, while R was used to compute the esti-

mator function ξ(). Monitoring and reconfiguration actions are performed with the

help of shell scripts and are also driven by ICE-Core.

7.4 Evaluation

We hypothesized earlier that the response time of a web server can be improved

during periods of interference by taking two measures: a) by diverting traffic away

from the impacted VM and b) by reconfiguring the web server parameters. This is

the core design principle of ICE. Therefore, if we find that the average response time

of a WS VM during interference is reduced by using ICE, we may conclude that our

hypothesis is validated. More specifically, to evaluate the benefits of ICE, we ask the

following questions:

127

i) How much improvement in response time is achieved by using ICE over a statically

configured load-balancer?

ii) Does the performance of ICE vary across selection of scheduling policies (WRR

and WLC)? If so, how much?

iii) How fast can ICE reconfigure in presence of interference?

We answer each of these questions in the following sections.

Setup. We use the same CloudSuite setup described in Sec. 7.2 to run our eval-

uation experiments. Only one of the VMs in the web server cluster was subjected

to interference as before and we use the metrics collected from the impacted VM

to perform our analysis. To quantify the response time improvement with ICE, we

compare it against two scenarios: i) when the WS cluster is statically configured (i.e.

the LB weight and WS parameters never change), we call this the baseline run, and

ii) when the LB is statically configured, but the WS VMs are reconfigured using IC2.

While the improvement over baseline shows the overall benefit of ICE, its compar-

ison against IC2 shows how ICE outperforms existing solutions. The experiments

are repeated with different scheduling policies at HAProxy to answer question (ii)

earlier.

Interference Emulation. We emulate interference by running Dcopy and LL-

CProbe in a periodic manner. The array sizes chosen for our evaluation were LL-

CProbe (32MB), Dcopy-Low (30MB), and Dcopy-high (3GB) with 4 threads of inter-

ference. Note that only a subset of these interferences (LLCProbe 32MB and Dcopy-

high 3GB, 4 threads) were present in our training set. To analyze results across

interfernce types, only one type of interference is run at any given point in time.

Each run of CloudSuite is an emulation lasting 1 hour, during which interfernces are

run with a period of 8 minutes. Within each period, an interference benchmark runs

for 4 minutes followed by 4 minutes of no-interference.

Data Collection. Note that our experiments involve measuring response time across

various combinations of scheduling policies (WRR, WLC) and configuration con-

128

trollers (Baseline, IC2, and ICE). Each such combination is considered one ex-

periment. Within one experiment, we run CloudSuite as described above for 5 X 1

hour runs. This gives us enough measurements for each interference type (LLCProbe,

Dcopy-Low, and Dcopy-High) to have statistically significant results. The cumulative

runtime of the evaluation experiments was more than 30 hours. The metrics observed

by ICE during each run are stored in a log file. These are analyzed offline to extract

measurements during a given interference run (using the timestamps when interfer-

ences are started and stopped). Below, we present the results from our experiments.

7.4.1 Improvement of Response Time due to ICE

The performance of ICE compared to baseline and IC2 is shown in Fig. 7.9.

The plots here show the response times of the monitored WS VM during periods of

interference. The starting(stopping) points of interferences are shown with red(green)

vertical lines. The magenta(blue) vertical lines show the points when HAProxy(WS)

are reconfigured. The texts associated with the blue lines indicate new parameter

values for reconfiguration. It can be seen from Figures 7.9(a) and 7.9(b) that the

WS response times show very different characteristics depending on scheduling pol-

icy. With round-robin, response time of the impacted WS always goes up and the

degradation lasts as long as the interference. On the other hand, with least con-

nection scheduling, response time shows occassional spikes. Since least connection

scheduling implicitly accounts for server state (#busy_connections), an out-of-box

load balancer with least connection can mitigate the effects of interference to a large

extent. However, in both cases, ICE outperforms a baseline run. With round-robin

scheduling, this improvement is markedly visible. With dynamic weight assignment

and WS reconfiguration, ICE can reduce response time to the same level as (or bet-

ter than) a baseline least connection run. It can also be seen in Fig. 7.9(b) that

although the response time spikes in baseline are not very high or long-lasting, they

129

Table 7.1.: Summary of ICE Results. Numbers indicate % change in median response
time from baseline runs for different interference benchmarks. The arrows indicate
whether response time decreases (↓) or increases (↑).

Scheduling
Policy

LLCProbe Dcopy-
High

Dcopy-
Low

IC2 ICE IC2 ICE IC2 ICE

WRR 29%↓ 94%↓ 18%↓ 92%↓ 59%↑ 82%↓
WLC 5%↑ 39%↓ 15%↑ 21%↓ 35%↑ 25%↓

persist throughout the entire duration of interference. In contrast, with ICE, after

LB reconfiguration these spikes are much fewer. The performance of IC2 falls midway

between a baseline run and ICE. Although IC2 is able to reduce the response time

during stronger interferences, the reduction is not as significant as ICE. Moreover,

a baseline least-connection run outperforms IC2 with round-robin. This is because

of the fact that reducing MXC as in IC2 is an indirect and milder way of reducing

load on an impacted WS, while using load-balancer is a more direct way of preventing

server overload.

Fig. 7.10 shows the median response time of the monitored WS VM across in-

terference types with various scheduling policies. We find that, when using a WRR

scheduler, ICE shows an improvement of 82-94% over baseline response time while

improvement with IC2 is 20-30%. Across interference types, LLCProbe, which is

the strongest interference, shows the most performance benefit. Interestingly, with

Dcopy-Low IC2 shows performance degradation.

With WLC scheduling the performance benefits are significantly less compared to

round-robin. WLC by itself is able to direct some traffic away from the congested

WSs and therefore help mitigate interference to a significant extent. However, using

ICE alongside WLC improves response time even further. Across interference types

this improvement varies between 21 and 39%. However, using IC2 alongside WLC

shows poorer performance compared to baseline (degradation of 5-35%). This is pri-

marily beacuse of the fact that, even though the WS is reconfigured to handle fewer

clients the LB has no knowledge of it and it continues sending nearly the same num-

130

||475|12|400|| ||650|5|50|| ||500|10|400|| ||650|5|50||

||90|| ||100|| ||60|| ||100||

llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc llc dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh dcopyhigh stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop stop

0

100

200

300

400

1250 1500 1750 2000
Timestamp

R
es

po
ns

eT
im

e

Expt
Baseline
IC2
ICE

ResponseTime vs Time

(a) Scheduling policy is round-robin

||475|7|400|| ||650|5|50|| ||475|7|400|| ||650|5|50||

||64|| ||100|| ||60|| ||100||

llc dcopyhigh
stop

0

50

100

150

200

1250 1500 1750 2000
Timestamp

R
es

po
ns

e
T

im
e

(m
s)

Expt
Baseline
IC2
ICE

ResponseTime vs Time

(b) Scheduling policy is least connection

Fig. 7.9.: Response time over time. ICE improves response time significantly com-
pated to baseline and IC2 with round-robin scheduling. With least connection the
lines are not clearly distinguishable, however, median response time is best with ICE.

ber of requests to the WS as before. This results in increased overhead of queuing or

connection dropping, thereby, increasing processing times over existing connections.

This effect is most prominent with WRR scheduling and DcopyLow benchmark (58%)

in IC2, where the effect of interference is much less than stronger interferences. The

response time values during our experiments may be seen in Table 7.1.

To summarize, we found that using WLC as a scheduling algorithm instead of

WRR can mitigate much of the performance degradation during interference. ICE

outperforms baseline LB with both types of scheduling (WRR and WLC). It also

outperforms IC2 by a large margin.

131

0

50

100

150

200

DcopyHigh DcopyLow LLCProbe
Interference Type

M
ed

ia
n

R
es

po
ns

e
T

im
e

WhichExpt
baseline
ic2
ice

(a) Load balancer scheduling policy is round-
robin

0

10

20

30

DcopyHigh DcopyLow LLCProbe
Interference Type

M
ed

ia
n

R
es

po
ns

e
T

im
e

WhichExpt
baseline
ic2
ice

(b) Load balancer scheduling policy is least con-
nection

Fig. 7.10.: Median Response time with IC2 and ICE for various interferences against
a statically configured load balancer (baseline). Note that baseline LC is able to
reduce response time significantly compared to baseline RR. Response time with IC2
increases in LC (also with Dcopy-Low) due to overhead of dropped connections.

7.4.2 ICE has Low Detection Latency

To measure how fast ICE can mitigate the effects of interference, we computed

the detection latency of ICE from our evaluation runs. Note that detection latency

defines the duration between the onset of an interference and the first reconfiguration

action at HAProxy in response to that interference. This includes the performance of

the DT classifier (how quickly and accurately it can detect interference) as well as any

lag between detection and the corresponding reconfiguration action. Since HAProxy

is only configured in the runs with ICE enabled, only these samples are used for

measurement of detection latency. We found that across interference types, ICE had

a median detection latency of 3 sec (the maximum being 4s). We observe that this

is a very fast response considering most interferences in public clouds last for 10s of

seconds. This is also much faster compared to IC2 where reconfiguration happened

with a delay of 15-20 sec. In IC2, the authors didn’t have access to HW counter data

and they had to rely on CPU Utilization and Response Time which increases with

a delay, whereas, in ICE, use of hardware counters allows us to have much lower

detection latency.

132

7.4.3 Performance of Classifier

To evaluate the accuracy of the classifier we also ran it on the data collected dur-

ing our evaluation experiments. The collected data was labeled based on whether

an interference benchmark was running. We found that the decision tree showed an

accuracy (TP+TN)/(Total Samples) of 99.6%. Notice that the decision tree gener-

ated in our evaluations of ICE has ranges on a single attribute (CMR) (7.3). It is

therefore identical to a threshold-based detection, therefore the cost of classification

is negligible.

We found that ICE incurred about 10% cpu overhead in the HAProxy load bal-

ancer for calculating average response time. Note that the total cpu utilization of

the HAProxy was less than 60%. Therefore, our monitoring overhead does not skew

the results. This can be eliminated by moving the response time from HAProxy to

a dedicated ICE VM. The monitoring overhead of other metrics (sysstat + ocount)

was negligible.

So far, we have described the implementation of ICE only in the context of

CloudSuite setup. However, the general concepts used here can also be used to adapt

to other server setups and other types of workloads. We validate this by showing a

set of simple experiments on the Darwin streaming media server in the next section.

Darwin and Apache+Php are two very different server frameworks (the first one

optimized for delivery of media streams, i.e. static content, while the second one

is optimized for generating dynamic responses) and they have different workload

characteristics (the former has long client sessions, while the latter is usually short).

Therefore by validating ICE’s design principles on both of them, we provide strong

evidence of generalizability.

133

7.5 Streaming Server Evaluation

We evaluated ICE’s capabilities for widely used open source Darwin streaming

server [70] (originally developed by Apple), which shares the same code base as

QuickTime streaming server.

7.5.1 Monitoring and Performance Metrics

For video streaming server, ICE uses sensors in each VM to monitor CPU uti-

lization and CPI and CMR measurements are collected from the hypervisor. Video

streaming servers do not follow a strict request-response pattern during its operation.

Typically clients requests for videos and some protocol messages are exchanged be-

fore the server starts streaming the videos to client devices. In the absence of strict

request-response pattern, we define a metric called frame-delay to quantify the per-

formance of the streaming server. While streaming, the server sends video frames

to multiple clients. Based on the frames per second (fps) playing rate of the videos

and clients’ remaining buffer size, the server calculates an expected sending time for

each frame. The time difference between when a frame was actually sent by the

server to its expected sending time, is called the frame-delay. Under normal circum-

stances, this delay should be non-positive, i.e. the server will send the frame no later

than its expected time for sending. When the server is overloaded or in the presence

of interference, server will not be able to sustain its performance and frame-delay

will increase. In our setup, the streaming server was instrumented to output average

frame-delay encountered by all the clients in every second and we use that to quantify

the performance of the streaming server.

7.5.2 Experimental Setup

In our private-cloud, we set up two Streaming Server(SS) VMs in two physical ma-

chines and put a load-balancer in front. Each SS VM (we also call real-servers) was

134

allocated 2-vcpus and 2GB of RAM. SS typically communicates using RTSP protocol

and sends data using RTP transport protocol. Since majority of the RTP implemen-

tation is built on top of UDP, we use Linux Virtual Server (LVS) as our load-balancer

as it can handle both UDP and TCP traffic. Specifically we used the Direct Routing

(DR) configuration for LVS for our load-balancing purpose. We used CloudSuite’s

media streaming benchmark [71] to test the performance of media streaming servers.

CloudSuite’s media streaming benchmark clients emulates real-world user requests

for different videos using Faban engine. Benchmarks clients request various videos at

different resolutions. Some videos are requested more frequently by the clients than

others to emulate popular videos. Client also stops watching (by closing the connec-

tion) after different duration - a real-world usage pattern found in many studies [72]

[73]. Using CloudSuite-benchmark we emulated 10,000 clients in a separate physical

machine connected to the same LAN as the load-balancer. We started with a weight

of 100 to each machine so that the LVS load-balancer divides the client load equally.

Thus each SS gets request for videos from 5000 clients. In all the experiments, we

used default values for all the configuration parameters for Darwin streaming server,

except maximum connections (maximum number of allowed RTSP connections) and

maximum bandwidth (maximum allowed bandwidth usage), which we set to -1, i.e.

removing any restrictions. For each experiments we used average values from 3 sets

of experiments.

7.5.3 Results

a) Variation of frame-delay with number of threads: without interference

In this experiment, we wanted to find the optimum number threads that is sufficient

for handling 5,000 clients connected to each SS. We modified the run num threads

(number of threads created by the server to handle concurrent connections) config-

uration parameter. We used 600 seconds of steady state period for the Faban client

emulation engine. We found that memory foot-print of the SS is not significant (less

135

15000

15500

16000

16500

17000

1 5 10 20 30 40 50 100
Num of threads

0

20

40

60

80

100

Av
g
de
la
y(
in
 m
se
c)

Average Delay with no interference

(a) Frame-delay - normal condition

1000

2000

3000

4000

5000

6000

5 10 20 30 40 50 100 150 200 300 500
Num of threads

0

100

200

300

400

500

600

Av
g

de
la

y(
in

 m
se

c)

Average Delay under interference

(b) Frame-delay - with LLC interference

3000

3300

3600

100 90 80 70
Weight assigned to the affected server

0

50

100

150

200

Av
g
de

la
y(
in
 m

se
c) # threads = 10

threads = 150

Average delay vs load-balancer weights, under interference

(c) Frame-delay vs load-balancer weights

Fig. 7.11.: Two replicas of media Streaming Servers behind a load-balancer is serving
10,000 clients simultaneously. (a) Shows the variation of frame-delay with number of
threads when no interference is present. With just 1 thread, the server gets extremely
overloaded hence it calculates a very high expected delay for the frames. With 10
optimum number of threads, the server shows negligible delay. (b) Shows the variation
of frame-delay with number of threads with LLC interference. With 150 optimum
number of threads, the server shows minimum frame-delay. (c) Shows how frame-
delay of the affected server changes with load-balancer weights - when one real-server
is under LLC interference. Two plots show how delay changes for optimum number
of threads calculated for both interference and non-interference cases

than 1 GB) and it is mostly CPU bound. As Fig. 7.11(a) shows, we found when only

1 thread is used, the server experiences massive frame-delay. But the delay quickly

drops and we found 10 is the optimum number of threads giving almost negligible

136

delay. For higher number of threads, frame-delay remained negligible and we did not

observe any significant increase due to context switching overhead.

b) Variation of frame-delay with number of threads: with LLC interference

We wanted to find how the streaming server behaves under cache-interference and

what would be the optimum number of threads under such situation. Even if memory

foot-print of Darwin streaming server is not significant we found LLC interference

causes a significant disruption in the service. We created LLC interference by running

LLC-probe benchmark on another co-located VM (similar to WS experiments). As

shown in Fig. 7.11(b), even with optimum number of threads, i.e. 10, found under

normal usage, the SS experiences significant frame-delay (3,200 msec). As we increase

the number of threads, we found 150 is the optimum number where we observed the

least amount of frame-delay. Beyond that we observed slight increase in frame-delay.

Thus, in the presence of interference, the optimum number of threads differs from

normal operating environment.

c) Variation of frame-delay with reconfiguration of the load-balancer

Similar to WS, interference in media streaming servers can be detected early from the

change in CPI and CMR. Once interference is detected, weights in the load-balancer

can be dynamically reconfigured for reducing frame-delay. In this experiment, we

show how frame-delay improves as we decrease the relative weight of the affected SS.

We ran 2 sets of experiments, one with optimum number of threads (10 threads) found

under normal condition and another with optimum number of threads (150 threads)

found when the Streaming Server’s performance is affected by interference. As can be

seen in Fig. 7.11(c), as we decrease the relative weight of the affected SS (i.e. move the

clients to the other server), the frame-delay metric improves. For relatively higher

weights (100 and 90), using optimum number of threads for interference scenario

gives better performance. But with further decrease in weight, performance of the

Streaming Server converges for both type of optimum thread counts. With a relative

weight of 70, the frame-delay of the affected SS becomes almost negligible. In fact,

at this point, performance with 10 threads is marginally better than performance

137

with 150 threads. We interpret that such behavior is due to higher context switching

overhead with 150 threads. Thus, the same design principle of ICE applies to two

very different kinds of servers (web server and media streaming server) to improve on

the metrics of interest.

7.5.4 Discussion: Advanced Streaming Techniques

While naive load-balancing technique by redirecting new requests for videos away

from the affected server will bring down the frame-delay in a highly dynamic (i.e.

lot of new requests coming in every second, and old streams end) streaming service.

The responsiveness of the mitigation mechanism would work best if a significant per-

centage of the streams are short lived, which is the case in reality [73]. However, our

technique will work best (for both short and long lived streams) if state-of-the-art

streaming techniques such as Dynamic Adaptive Streaming over HTTP (DASH) [74]

is used. By augmenting basic DASH protocol (as done by [75]), it is possible to

request the next slices of videos from a different server which is not affected by in-

terference. Thus, even for long running streams we can effectively migrate the load

to a different server which in turn will improve the frame-delay of the affected server

as shown by Fig. 7.11(c). We leave implementation of such augmented DASH based

load-balancing as our future work.

Summary

From the experimental evaluations in Sections 7.4 and 7.5, we have the following

three key take-aways:

1. An off-the-shelf Load Balancer can mitigate the effects of interference in VMs

significantly by using the Least Connections scheduling strategy.

2. ICE improves the WS performance in the face of interference further, by detecting

interference quickly and dynamically adjusting the weights of the Load Balancers.

138

3. These results are generalizable to a very different kind of server (media streaming

server) with a different metric of interest.

7.6 Directions for Future Research

In the previous sections, we presented the design and implementation of ICE, a

two-level reconfiguration engine for web server clusters, which mitigates interference

by reconfiguring load-balancers as well as web services middleware. We found that

ICE showed significant improvement in web service response time compared to IC2.

However, the effectiveness of ICE is dependent on the length of user sessions. In

Chapter 5, we showed that once a client session is established on a server X, all

subsequent requests in the same session go to server X irrespective of load-balancer

policy. This is especially bad for media streaming servers where a client’s stream

can be active for a long time. Moving such long-lasting sessions from one server to

another during interference is part of our future work as described below.

Improving Effectiveness of ICE for Long-lasing Sessions: To be able to move

client sessions from one WS VM to another without interruption we need to store

session specific data in a distributed datastore such as memcached. In case of media

streaming server, the server must also support advanced streaming techniques like

DASH (refer Section 7.5.4). We are currently finding techniques for integrating DASH

with Darwin streaming server.

139

8. RELATED WORK

In this chapter, we present some of the earlier research work related to this disser-

tation. We have already introduced few of these solutions in Chapters 2 and 5 to

build the motivations for our work. Here we revisit those in greater details and add

comparison of our work with other related research domains. We organize the chapter

into a set of research topics so that it may be easily compared with our work in earlier

chapters. While Section 8.1 is primarily related to our work in Chapter 3, Sections

8.2–8.3 are related to our work in Chapter 4. In Sections 8.4–8.5, we present research

related to our work in Chapters 6 and 7.

8.1 Operating System Reliability

The goal of research in software reliability analysis has been to classify software

errors, as well as to characterize various properties of failures. Such characterization

enables us to not only assess the effects of failures but also to prevent and detect new

bugs. Reliability literature over the years contains the results of many research efforts

directed at analyzing bug reports for popular operating systems [5, 6, 76–78]. In one

of the early works on OS reliability, Sullivan et al. [76] analyzed defects of the MVS

operating system based on empirical failure records documented by field IBM staff.

This work categorized defects as overlay (errors that corrupt memory) and regular

(those that do not corrupt memory). The frequency and effects of both types of errors

were analyzed. Chou et al., in [5], presented their finding on OS errors by compiler

attachments, which checks code for certain types of bugs, and counts bug density. The

work discovered the correlation of different types of bugs with directories, function

size, and file age. Our work looks into similar problem with different scope: instead

140

of compiler attachments, our research is based on the developers’ view and how bugs

are fixed.

In another work on software reliability, Chandra et al. [78] contradicted a popular

belief that most application faults can be tolerated using generic techniques such as

process pairs. They categorized faults into 3 types: environment-dependent transient,

environment-dependent non-transient, and environment-independent. It was found

that only 5-14% of the faults were triggered by transient conditions and 72-87% of

faults were environment-independent. A similar trend is observed in our analysis

where an overwhelming majority of the bugs (more than 90%) are permanent.

In [77], Liang et al. highlighted the failure characteristics of BlueGene/L super-

computer by correlating data obtained from event loggers. Applying similar concept

of failure event loggers, Cinque et al. [7] performed one of the few pieces of work

that focuses on mobile OS reliability. In this work, the authors attached fault event

loggers to a set of 25 Symbian OS based mobile phones to record failure events and

panics (kernel-generated warnings for Symbian). Through this, the authors unveiled

characteristics of the panics (burst, etc.) and the relation between panics and user-

visible failures. However, since Symbian was not open-sourced at the time of this

analysis, their research was limited to the manifestation of failures. Our work in

Chapter 3 extends the scope beyond these findings by classifying failures according

to their root causes in the source code (for Android). We also present an analysis on

customizability and complexity of mobile OSes which is distinct from previous work.

8.2 Robustness Testing

Robustness evaluation of software systems is broadly categorized into functional

and exceptional testing. Functional testing [79] employs generation of expected test

inputs with the intention of checking the functionality of a software module, while

exceptional testing employs generation of specially crafted test inputs to crash the

system in order to check its robustness. Generated input test data can be random,

141

a pure fuzz approach [80], or semi-valid (intelligent fuzzing) [81, 82]. UNIX utilities

were first fuzzed by Miller et al. [80] by feeding random inputs to show that 25-

33% of utility programs either crashed or hanged on different versions of UNIX.

This simple technique has caught a variety of bugs like buffer overflows, unhandled

exceptions, read access violations, thread hangs, memory leaks, etc. A later work by

the authors [83] showed that robustness of UNIX utilities improved little over five

years. A study [84] of similar nature on Windows NT and Windows 2000 showed

their weakness against random Win32 messages, while, blackbox random testing on

MacOS [85] reported a considerable lower failure rate (7%). Our research extends

these works to a mobile platform where we fuzz the ICC of Android and show a variety

of exception handling errors. In terms of knowledge about the target application (i.e.

whitebox [82, 86] vs. blackbox testing [87]), our tool takes a combined approach

(blackbox for explicit Intents and whitebox for implicit Intents).

Fuzz tools reported in literature can also be classified based on their input gener-

ation techniques and their intrusiveness. The input data produced by a fuzzer tool

may be either generation based or mutation based [88]. Generation based fuzzers

generate test inputs based on specification of a protocol or an API to be tested while

mutation based fuzzers rely on capturing and replaying a mutated version of valid

input. Our tool (JJB) in Chapter 4 falls under generation-based fuzz tools, as it

generates input data, i.e., Intents conforming to Android Intent API specifications.

JJB is also intelligent in that it has knowledge of Android APIs (e.g. known Action,

Category, and Extras strings) and partial knowledge of the target applications (e.g.

Intent-filters). Fuzzing tools typically produce input received across trust bound-

aries [89], i.e., Runtime-OS and Application-Runtime boundary. At a lower layer,

fuzzing can be done at Runtime-OS interface as shown by [90]. Another similar work,

Ballista [81], identified ways to crash operating systems with a single function call

at Runtime-OS boundary. At a higher layer, fuzzing can be done at Application-

Runtime boundary where runtime is responsible for validating data. In this work, we

142

fuzz at Application-Runtime boundary with the aim of crashing Android runtime by

fuzzing Intents that are passed between application components.

8.3 Smartphone Reliability and Security

A malformed Intent delivered to a receiver through ICC exposes attack surfaces

as pointed out by [36], example vulnerabilities being triggering of components that

are unintentionally exported by a developer (i.e., an Intent spoof) or unauthorized

receipt of an implicit Intent by malicious component. ComDroid [36], a static analysis

tool, detects these two vulnerabilities in Android applications. We narrow down

these attack surfaces to a set of input validation errors by runtime testing, however,

actual exploit of these errors may require combining these with other vulnerabilities

(e.g. improper permission assignment). Our approach discovers vulnerabilities in the

application components, but, we do not provide exploits to use these vulnerabilities

from an external source, i.e., we do not show external requests that will generate

malformed Intents for actually exploiting these vulnerabilities. That is part of our

ongoing work.

Other work on Android security looked at permission assignment of applications,

misuse of sensitive information [91], and provided future directions for application

certification [92]. Our work does not directly detect privacy leaks, but can be used

for giving insight to good application design practices (specially input validation).

These practices in turn can be incorporated in an application certification process

that is geared towards improving application robustness.

8.4 Autonomous Configuration Management

Configuration management of complex software systems has been an area of active

research over the last decade leading to many interesting solutions to the correctness

problem [93–97]. Most of these approaches try to identify causality between a config-

uration event and a detected failure and then predict (correct) the error [93–95]. Yin

143

et al. presented a wealth of real-world examples of configuration errors from both

commercial and open-source applications (CentOS, MySQL, Apache, and OpenL-

DAP) in [66] which served as a key motivation of our work. The authors found that

parameter mistakes accounted for 70-85% of the configuration errors. However, all

of this work focuses on correctness errors and in non-virtualized settings, whereas we

focus on performance configuration in a virtualized setting.

In one of the early works on tuning of Apache servers [98], Liu et al. showed that

MaxClients exhibits a concave upward behavior on response time—an observation

that led to the design of a tuning agent using hill-climbing algorithms. Our results

also highlight this behavior of MaxClients, but we find that the gradients of the

curves change frequently due to interference and dependence on other parameters. In

another work [20], Diao et al. presented a multi-input multi-output (MIMO) feedback

control for optimizing web server performance, however, their controller only considers

stabilizing CPU and Memory utilization with changes in workload intensity—one of

the many challenges we present in our work. A more recent work [99] looks into

automatic generation of configuration files in multi-tier web servers. The authors

considered dependency with a different set of configuration parameters, however,

their work is in a non-virtualized setting where reconfiguration events are infrequent

(addition of physical nodes).

The question of how to performance tune applications that are executing in vir-

tualized environment has been addressed by several prior works. Such approaches

were applied to configuration of software systems like Apache server [94], application

server [100], database server [101] and online transaction services [99, 102]. Some of

these consider coordinated tuning of resources allocated to VMs and associated ap-

plication configurations [101, 103]. We note that doing so is disadvantageous for two

reasons—i) it increases the exploration space, ii) it underutilizes a wealth of research

on cloud hypervisors. In our work, we assume the cloud provider already employs

sophisticated provisioning algorithms and we use resource changes as a trigger for

reconfiguration.

144

8.5 Performance Interference in Clouds

The issue of interference in virtualized environments has been pointed out by sev-

eral researchers [12,13,104,105] and some efforts have been made for providing better

resource isolation [12,105,106]. However, due to the intrusive nature of these changes

and the impact on the performance, today’s production virtualized environments still

do not provide isolation for cache usage and memory bandwidth, which are relevant

to the results that we presented here.

Effect of interference on application performance has been evaluated by many

researchers over the years [11, 13, 48, 49, 106]. In terms of contended resources, the

papers can be classified as either related to memory interference (cache, memory-

bandwidth) [13,48,49], or network interference [11,106,107]. While most researchers

have looked at performance isolation (or the lack of it) in a security oblivious man-

ner [11,48,49,106], others have pointed this as a source of vulnerability in the public

cloud [13,52]. In most cases, the performance degradation observed is severe enough

to encourage implementation of sophisticated mitigation strategies. Among the mit-

igation strategies, better scheduling [14, 16, 17] and live migration [15, 49] are most

common. However, each of these solution strategies has its shortcomings. Firstly, a

VM’s resource usage pattern may change over time, often unpredictably. A consolida-

tion manager cannot foresee such usage changes without knowing of the applications

running within the VM, and that is usually considered too intrusive and hence, not

made available to the consolidation manager. Secondly, both types of solutions oper-

ate at a level which is beyond the scope of an end-customer. Solutions that use live

migration for avoiding interference have their drawbacks as well. In [46], the authors

show that VM live migration is very resource intensive, especially when the source

server is highly loaded. Live migration in such a scenario is often long drawn and

fails frequently.

In this work we try to mitigate the effects of performance interference using intel-

ligent reconfiguration of load balancers and web servers. We observe that Live migra-

145

tion is an example of infrastructure reconfiguration and usually takes several minutes

to complete. In comparison, our work ICE is an example of application adaptation

and may be finished in seconds. Our work is also partially related to research on

building adaptive web servers using intelligent configuration engines [20,98–101,103].

However, most of these are evaluated in a non-virtualized environment and the re-

configuration actions are performed in the order of minutes. This is unsuitable in

a cloud environment, where transient interferences may render the choice of a given

parameter value sub-optimal.

146

9. LESSONS LEARNED

To answer the questions raised in Section 1.2, we have taken several steps to evaluate

and improve the dependability of smartphones and cloud-based applications. We have

described our design, implementation, and results in Chapters 3–7. Here, we present

a summary of our findings from earlier Chapters.

9.1 Study of Failures in Android and Symbian

In Chapter 3, we presented a measurement based failure analysis of two operating

systems—Android and Symbian—by studying publicly available bug databases. The

key findings are: (1) Most of the bugs (more than 90%) in both these platforms are

permanent in nature, suggesting that the codebases are not yet mature. (2) The Ker-

nel layer in both the platforms is sufficiently robust, however, much effort is needed

to improve the Middleware layer (Application Framework and Libraries in Android).

(3) Development tools, Web, Multimedia, and Build failures are most prevalent in

both the platforms. This suggests the necessity for better mobile application devel-

opment tools and need for caution in using third-party libraries. (4) Android offers a

great degree of customizability in both the build and the execution processes. This

customizability comes at a cost for a significant fraction of bugs—between 11% and

50% (assuming all of Modify settings, Add/modify cond, Preprocess changes, and

Major changes are due to customizability). At present, the percentage of build errors

is also high in Symbian (38.6%). (5) According to our analysis, a significant minority

of the bugs in Android (22%) needed major code changes. Among various types of

code modifications, fixing configuration parameters and control flow update (adding

if-else clause) are most widespread.

147

9.2 Evaluation of Robustness of Android ICC

In Chapter 4, we have successfully conducted an extensive robustness testing

on Android’s Inter-component Communication (ICC) mechanism by sending a large

number of semi-valid and random Intents to various components across 3 versions of

Android. Our learnings from this fault injection campaign are many, most prominent

ones being: 1) Many components in Android have faulty exception handling code

and NullPointerExceptions are most commonly neglected, 2) It is possible to crash

Android runtime by sending Intents from a user-level process in Android 2.2, 3)

Across various versions of Android, 4.0 is the most robust so far in terms of exception

handling; it, however, displays many environment dependent failures.

Based on our observations, we have highlighted the guideline that any component

that runs as a thread in a privileged process should be guarded by explicit permis-

sion(s). We have also proposed several enhancements to harden implementation of

Intents; of these, subtyping in combination with Java annotations can be easily en-

forced.

9.3 Mitigating Interference using Middleware Reconfiguration

In Chapter 6, we investigated one of the major sources of performance variability

in clouds, namely, interference and presented ways in which an end-customer can

mitigate its ill-effects. More specifically, we evaluated the frequency and impact

of interference in public clouds like Amazon EC2. Our experiments suggest that

performance anomaly due to interference is a reality. We designed and evaluated an

interference-aware application configuration manager (IC2), which is able to detect

interference and find suitable parameter values during these phases. Through an

extensive set of experiments, we also identify the challenges associated with finding

optimal application parameter values during interference.

IC2 solves three key challenges for dynamic reconfiguration—first, it presents

a machine learning based technique for detecting interference; second, it uses a

148

heuristic-based controller for determining suitable parameter values during periods

of interference; and finally, it reduces the cost of reconfiguration of standard Apache

distributions by implementing an online reconfiguration option in the Httpd server.

Our solution reduced response time of CloudSuite, a dynamic web application bench-

mark, by upto 29% in EC2 and 40% in a private cloud testbed during periods of cache

interference.

9.4 Handling Interference by Two-level Reconfiguration

In Chapter 7, we presented a two-level configuration manager for web server clus-

ters which can mitigate effects of performance interference in cloud. Our solution

called ICE consists of a decision engine, a load-balancer configuration engine, and

a web server configuration engine. The decision engine detects interference with the

help of a decision tree (trained on hardware performance counter measurements). We

found that the decision engine can detect and reconfigure very fast (∼ 3s). The load

balancer configuration engine uses an estimator to predict how much reduction in

request rate is required to improve response time.

We observed that, an off-the-shelf Load Balancer can mitigate the effects of in-

terference in VMs significantly by using the Least Connections scheduling strategy.

However, ICE improves the WS performance in the face of interference further, by

detecting interference quickly and dynamically adjusting the weights of the Load Bal-

ancers. The proposed configuration controller (ICE) improves the median response

time of the WS by upto 94% compared to a static configuration. We find that ICE

also gives better resposne time by upto 39% compared to an adaptive load balancer

(least-connection). We also show the applicability of ICE to a media streaming server

(Darwin). This shows that ICE can be generalized to other cloud services that do

not use Apache+Php middleware.

REFERENCES

149

REFERENCES

[1] Gartner, “Gartner says worldwide traditional pc, tablet, ultramo-
bile and mobile phone shipments to grow 4.2 percent in 2014,”
http://www.gartner.com/newsroom/id/2791017, July 2014.

[2] IDC, “Idc: 87% of connected devices sales by 2017 will be tablets and
smartphones,” http://www.forbes.com/sites/louiscolumbus/2013/09/12/idc-
87-of-connected-devices-by-2017-will-be-tablets-and-smartphones/, September
2013.

[3] Google Play Store Crashes or Refuses to Open, http://forums.android
central.com/google-nexus-7-tablet/246334-google-play-store-crashes-refuses-
open.html.

[4] B. Treynor, “Todays outage for several google services,” http://googleblog.blog
spot.com/2014/01/todays-outage-for-several-google.html, January 2014.

[5] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler, “An empirical study of
operating systems errors,” in Proceedings of the eighteenth ACM symposium on
Operating systems principles, ser. SOSP ’01. New York, NY, USA: ACM, 2001,
pp. 73–88. [Online]. Available: http://doi.acm.org/10.1145/502034.502042

[6] W. Gu, Z. Kalbarczyk, Ravishankar, K. Iyer, and Z. Yang, “Characterization
of linux kernel behavior under errors,” in Dependable Systems and Networks,
2003. Proceedings. 2003 International Conference on, 2003, pp. 459–468.

[7] M. Cinque, D. Cotroneo, Z. Kalbarczyk, and R. K. Iyer, “How do mobile phones
fail? a failure data analysis of symbian os smart phones,” in Proceedings of
the 37th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks, ser. DSN ’07. Washington, DC, USA: IEEE Computer Society,
2007, pp. 585–594. [Online]. Available: http://dx.doi.org/10.1109/DSN.2007.54

[8] R. Golijan, “Fridge magnet poses security threat to ipad 2,” http://
www.technolog.msnbc.msn.com/technology/technolog/fridge-magnet-poses-
security-threat-ipad-2-119905, April 2012.

[9] Details on Facebook Outage 2010, https://www.facebook.com/note.php?note id
=431441338919&id=9445547199.

[10] Summary of the December 24, 2012 Amazon ELB Service Event in the US-East
Region, http://aws.amazon.com/message/680587/.

[11] S. K. Barker and P. Shenoy, “Empirical evaluation of latency-sensitive
application performance in the cloud,” in Proceedings of the First
Annual ACM SIGMM Conference on Multimedia Systems, ser. MMSys
’10. New York, NY, USA: ACM, 2010, pp. 35–46. [Online]. Available:
http://doi.acm.org/10.1145/1730836.1730842

150

[12] T. Moscibroda and O. Mutlu, “Memory performance attacks: Denial of mem-
ory service in multi-core systems,” in Proceedings of 16th USENIX Security
Symposium on USENIX Security Symposium. USENIX Association, 2007, pp.
1–18.

[13] V. Varadarajan, T. Kooburat, B. Farley, T. Ristenpart, and M. M. Swift,
“Resource-freeing attacks: improve your cloud performance (at your neighbor’s
expense),” in Proceedings of the 2012 ACM conference on Computer and
communications security, ser. CCS ’12. New York, NY, USA: ACM, 2012,
pp. 281–292. [Online]. Available: http://doi.acm.org/10.1145/2382196.2382228

[14] S. Govindan, A. R. Nath, A. Das, B. Urgaonkar, and A. Sivasubramaniam,
“Xen and co.: communication-aware cpu scheduling for consolidated xen-based
hosting platforms,” in Proceedings of the 3rd international conference on Virtual
execution environments, ser. VEE ’07. New York, NY, USA: ACM, 2007, pp.
126–136. [Online]. Available: http://doi.acm.org/10.1145/1254810.1254828

[15] D. Novakovic, N. Vasic, S. Novakovic, D. Kostic, and R. Bianchini, “Deepdive:
Transparently identifying and managing performance interference in virtualized
environments,” in USENIX ATC, 2013.

[16] C. Delimitrou and C. Kozyrakis, “Paragon: Qos-aware scheduling for
heterogeneous datacenters,” in Proceedings of the eighteenth international
conference on Architectural support for programming languages and operating
systems, ser. ASPLOS ’13. New York, NY, USA: ACM, 2013, pp. 77–88.
[Online]. Available: http://doi.acm.org/10.1145/2451116.2451125

[17] R. Nathuji, A. Kansal, and A. Ghaffarkhah, “Q-clouds: Managing
performance interference effects for qos-aware clouds,” in Proceedings of
the 5th European Conference on Computer Systems, ser. EuroSys ’10.
New York, NY, USA: ACM, 2010, pp. 237–250. [Online]. Available:
http://doi.acm.org/10.1145/1755913.1755938

[18] R. Olio, “Olio deployment,” 2010, http://radlab.cs.berkeley.edu/wiki/Olio
Deployment.

[19] EPFL, “CloudSuite,” http://parsa.epfl.ch/cloudsuite/cloudsuite.html.

[20] Y. Diao, N. Gandhi, J. Hellerstein, S. Parekh, and D. Tilbury, “Using mimo
feedback control to enforce policies for interrelated metrics with application to
the apache web server,” in Network Operations and Management Symposium,
2002. NOMS 2002. 2002 IEEE/IFIP, pp. 219–234.

[21] “Dalvik virtual machine,” http://www.dalvikvm.com/, 2008.

[22] Y. Shi, K. Casey, M. A. Ertl, and D. Gregg, “Virtual machine showdown:
Stack versus registers,” ACM Trans. Archit. Code Optim., vol. 4, pp. 153 – 163,
January 2008.

[23] “What is android?” http://developer.android.com/guide/basics/what-is-
android.html.

[24] Symbian OS on Wikipedia, http://en.wikipedia.org/wiki/Symbian OS.

151

[25] Symbian SystemModel, http://developer.symbian.org/wiki/index.php/Symbian
System Model.

[26] Android Bug Listing, http://code.google.com/p/android/issues/list.

[27] http://developer.symbian.org/bugs/.

[28] T-Mobile G1 Forum, http://forums.t-mobile.com/tmbl/?category.id=Android.

[29] Android Code Review, https://review.source.android.com/Gerrit#all,merged,n,z.

[30] Android Source Code Repository, http://android.git.kernel.org/.

[31] R. Chillarege, I. S. Bhandari, J. K. Chaar, M. J. Halliday, D. S. Moebus,
B. K. Ray, and M.-Y. Wong, “Orthogonal defect classification-a concept for
in-process measurements,” IEEE Trans. Softw. Eng., vol. 18, no. 11, pp.
943–956, Nov. 1992. [Online]. Available: http://dx.doi.org/10.1109/32.177364

[32] Understand 2.0: A source code analysis tool, http://www.sci-
tools.com/products/understand/.

[33] Symbian Source Code Repository, http://developer.symbian.org/main/source/
packages/index.php.

[34] O. H. Alhazmi, Y. K. Malaiya, and I. Ray, “Measuring, analyzing and predicting
security vulnerabilities in software systems,” Computers & Security, vol. 26,
no. 3, pp. 219–228, 2007.

[35] Android-Central, “Why are my google play services crashing after i did an up-
date?” http://forums.androidcentral.com/general-help-how/445114-why-my-
google-play-services-crashing-after-i-did-update.html, October 2014.

[36] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner, “Analyzing inter-application
communication in android,” in Proceedings of the 9th international conference
on Mobile systems, applications, and services, ser. MobiSys ’11. New York,
NY, USA: ACM, 2011, pp. 239 – 252.

[37] “Intent fuzzer,” http://www.isecpartners.com/mobile-security-tools/intent-
fuzzer.html.

[38] “Intent class overview,” http://developer.android.com/reference/android/con-
tent/Intent.html.

[39] T. Register, “Amazon’s cloud on track for $2bn in revenue in 2013,” http:
//www.theregister.co.uk/2013/04/26/aws revenue analysis/.

[40] L. Cherkasova, D. Gupta, and A. Vahdat, “Comparison of the three cpu sched-
ulers in xen,” ACM SIGMETRICS Performance Evaluation Review, vol. 35,
no. 2, pp. 42–51, 2007.

[41] C. A. Waldspurger, “Memory resource management in vmware esx server,”
ACM SIGOPS Operating Systems Review, vol. 36, no. SI, pp. 181–194, 2002.

[42] C. Clark, K. Fraser, S. Hand, J. Hansen, E. Jul, C. Limpach, I. Pratt, and
A. Warfield, “Live migration of virtual machines,” in Proc. Usenix NSDI, 2005.

152

[43] R. Koller, A. Verma, and R. Rangaswami, “Generalized ERSS Tree Model:
Revisiting Working Sets,” in IFIP Performance, 2010.

[44] L. Cherkasova and R. Gardner, “Measuring cpu overhead for i/o processing in
the xen virtual machine monitor,” in Usenix ATC, 2005.

[45] C. A. Waldspurger, “Memory resource management in vmware esx server,” in
Proc. Usenix OSDI, 2002.

[46] A. Verma, G. Kumar, R. Koller, and A. Sen, “Cosmig: Modeling the impact of
reconfiguration in a cloud.” in IEEE MASCOTS, 2011.

[47] B. Sharma, P. Jayachandran, A. Verma, and C. Das, “Cloudpd: Problem de-
termination and diagnosis in. shared dynamic clouds,” in Proc. DSN, 2013.

[48] A. Verma, P. Ahuja, and A. Neogi, “pmapper: Power and migration cost aware
application placement in virtualized systems,” in Proc. Middleware, 2008.

[49] R. Koller, A. Verma, and A. Neogi, “Wattapp: An application aware power
meter for shared data centers,” in ICAC, 2010.

[50] X. Zhang, E. Tune, R. Hagmann, R. Jnagal, V. Gokhale, and
J. Wilkes, “Cpi2: Cpu performance isolation for shared compute
clusters,” in SIGOPS European Conference on Computer Systems (EuroSys),
Prague, Czech Republic, 2013, pp. 379–391. [Online]. Available: http:
//eurosys2013.tudos.org/wp-content/uploads/2013/paper/Zhang 2.pdf

[51] N. Rameshan, L. Navarro, E. Monte, and V. Vlassov, “Stay-away,
protecting sensitive applications from performance interference,” in Proceedings
of the 15th International Middleware Conference, ser. Middleware ’14.
New York, NY, USA: ACM, 2014, pp. 301–312. [Online]. Available:
http://doi.acm.org/10.1145/2663165.2663327

[52] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey, you, get off of
my cloud: exploring information leakage in third-party compute clouds,” in
Proceedings of the 16th ACM conference on Computer and communications
security, ser. CCS ’09. New York, NY, USA: ACM, 2009, pp. 199–212.
[Online]. Available: http://doi.acm.org/10.1145/1653662.1653687

[53] HAProxy, “The Reliable, High Performance TCP/HTTP Load Balancer,” http:
//www.haproxy.org/.

[54] W. Zhang et al., “Linux virtual server for scalable network services,” in Ottawa
Linux Symposium, vol. 2000, 2000.

[55] R. P. Mahowald and M. Rounds, “It buyer market guide: Cloud services,” in
IDCReport, July, 2013.

[56] K. T. (PCWorld), “Thanks, Amazon: The Cloud Crash Reveals Your Im-
portance,” 2011, http://www.pcworld.com/article/226033/thanks amazon for
making possible much of the internet.html.

[57] R. J. F. Inc.), “More details on today’s outage,” 2011, https://www.facebook.
com/note.php?note id=431441338919&id=9445547199.

153

[58] Oracle, “Jdk-6558100 : Cms crash following parallel work queue overflow,”
2011, http://bugs.sun.com/view bug.do?bug id=6558100.

[59] Olio, “The Workload,” http://incubator.apache.org/olio/the-workload.html.

[60] Basic Linear Algebra Subprograms. http://www.netlib.org/blas.

[61] OProfile, “OProfile,” http://oprofile.sourceforge.net/about/.

[62] A. K. Maji, S. Mitra, B. Zhou, S. Bagchi, and A. Verma, “IC2: Interference-
aware Application Configuration in Clouds,” May 2014, technical Report,
School of Electrical and Computer Engineering, Purdue University, http://docs.
lib.purdue.edu/ecetr/.

[63] C.-Z. Xu, J. Rao, and X. Bu, “Url: A unified reinforcement learning approach
for autonomic cloud management,” Journal on Parallel and Distributed
Computing (JPDC), vol. 72, no. 2, pp. 95–105, Feb. 2012. [Online]. Available:
http://dx.doi.org/10.1016/j.jpdc.2011.10.003

[64] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and
I. H. Witten, “The weka data mining software: An update,” SIGKDD
Explor. Newsl., vol. 11, no. 1, pp. 10–18, Nov. 2009. [Online]. Available:
http://doi.acm.org/10.1145/1656274.1656278

[65] A. K. Maji, “Httpd with Online Reconfiguration,” 2014, https://github.com/
amaji/httpd-online-2.4.3.git.

[66] Z. Yin, X. Ma, J. Zheng, Y. Zhou, L. N. Bairavasundaram, and S. Pasupathy,
“An empirical study on configuration errors in commercial and open source
systems,” in Proceedings of the Twenty-Third ACM Symposium on Operating
Systems Principles, ser. SOSP ’11. New York, NY, USA: ACM, 2011, pp.
159–172. [Online]. Available: http://doi.acm.org/10.1145/2043556.2043572

[67] A. K. Maji, S. Mitra, B. Zhou, S. Bagchi, and A. Verma, “Mitigating
interference in cloud services by middleware reconfiguration,” in Proceedings
of the 15th International Middleware Conference, ser. Middleware ’14.
New York, NY, USA: ACM, 2014, pp. 277–288. [Online]. Available:
http://doi.acm.org/10.1145/2663165.2663330

[68] J. Dean and L. A. Barroso, “The tail at scale,” Commun. ACM,
vol. 56, no. 2, pp. 74–80, Feb. 2013. [Online]. Available: http:
//doi.acm.org/10.1145/2408776.2408794

[69] PAPI, “PAPI on Virtualization Platforms,” http://icl.cs.utk.edu/projects/
papi/wiki/PAPITopics:PAPI on Virtualization Platforms.

[70] MacOSforge, “Darwin Streaming Server,” http://dss.macosforge.org/.

[71] EPFL, “CloudSuite Media Streaming Benchmark,” http://parsa.epfl.ch/
cloudsuite/streaming.html.

[72] A. Rao, A. Legout, Y.-s. Lim, D. Towsley, C. Barakat, and W. Dabbous, “Net-
work characteristics of video streaming traffic,” in CoNEXT, 2011.

154

[73] A. Finamore, M. Mellia, M. M. Munafò, R. Torres, and S. G. Rao, “Youtube
everywhere: Impact of device and infrastructure synergies on user experience,”
in IMC, 2011.

[74] T. Stockhammer, “Dynamic adaptive streaming over http –: Standards and
design principles,” in MMSys, 2011.

[75] R. K. P. Mok, X. Luo, E. W. W. Chan, and R. K. C. Chang, “Qdash: A
qoe-aware dash system,” in MMSys, 2012.

[76] M. Sullivan and R. Chillarege, “Software defects and their impact on system
availability-a study of field failures in operating systems,” in Fault-Tolerant
Computing, 1991. FTCS-21. Digest of Papers., Twenty-First International
Symposium, 1991, pp. 2–9.

[77] Y. Liang, Y. Zhang, A. Sivasubramaniam, M. Jette, and R. Sahoo, “Bluegene/l
failure analysis and prediction models,” in Proceedings of the International
Conference on Dependable Systems and Networks, ser. DSN ’06. Washington,
DC, USA: IEEE Computer Society, 2006, pp. 425–434. [Online]. Available:
http://dx.doi.org/10.1109/DSN.2006.18

[78] S. Chandra and P. Chen, “Whither generic recovery from application faults? a
fault study using open-source software,” in Dependable Systems and Networks,
2000. DSN 2000. Proceedings International Conference on, 2000, pp. 97–106.

[79] B. Beizer, Black-Box Testing: Techniques for Functional Testing of Software
and Systems. Verlag John Wiley & Sons, Inc, 1995.

[80] B. P. Miller, L. Fredriksen, and B. So, “An empirical study of the reliability of
unix utilities,” Commun. ACM, vol. 33, pp. 32 – 44, December 1990.

[81] P. Koopman and J. DeVale, “The exception handling effectiveness of posix
operating systems,” Software Engineering, IEEE Transactions on, vol. 26, no. 9,
pp. 837 – 848, sep 2000.

[82] P. Godefroid, M. Y. Levin, and D. A. Molnar, “Automated whitebox fuzz test-
ing,” in Network Distributed Security Symposium (NDSS). Internet Society,
2008.

[83] B. P. Miller, D. Koski, C. Pheow, L. V. Maganty, R. Murthy, A. Natarajan, and
J. Steidl, “Fuzz revisited: A re-examination of the reliability of unix utilities
and services,” University of Wisconsin-Madison, Tech. Rep., 1995.

[84] J. E. Forrester and B. P. Miller, “An empirical study of the robustness of win-
dows nt applications using random testing,” in Proceedings of the 4th conference
on USENIX Windows Systems Symposium - Volume 4. Berkeley, CA, USA:
USENIX Association, 2000.

[85] B. P. Miller, G. Cooksey, and F. Moore, “An empirical study of the robustness
of macos applications using random testing,” SIGOPS Oper. Syst. Rev., vol. 41,
pp. 78 – 86, January 2007.

[86] J. DeMott, “The evolving art of fuzzing,” http://www.vdalabs.com/tools/,
June 2006.

155

[87] P. Godefroid, “Random testing for security: blackbox vs. whitebox fuzzing,” in
Proceedings of the 2nd international workshop on Random testing: co-located
with the 22nd IEEE/ACM International Conference on Automated Software
Engineering (ASE 2007), ser. RT ’07. New York, NY, USA: ACM, 2007.

[88] P. Oehlert, “Violating assumptions with fuzzing,” Security Privacy, IEEE,
vol. 3, no. 2, pp. 58 – 62, march-april 2005.

[89] J. Neystadt, “Automated penetration testing with white-box fuzzing,”
http://msdn.microsoft.com/en-us/library/cc162782.aspx, February 2008.

[90] A. Johansson, N. Suri, and B. Murphy, “On the selection of error model(s) for
os robustness evaluation,” in Dependable Systems and Networks, 2007. DSN
’07. 37th Annual IEEE/IFIP International Conference on, june 2007, pp. 502
–511.

[91] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri, “A study of android ap-
plication security,” in Proceedings of the 20th USENIX conference on Security,
ser. SEC’11. Berkeley, CA, USA: USENIX Association, 2011.

[92] W. Enck, M. Ongtang, and P. McDaniel, “On lightweight mobile phone appli-
cation certification,” in Proceedings of the 16th ACM conference on Computer
and communications security, ser. CCS ’09. New York, NY, USA: ACM, 2009,
pp. 235 – 245.

[93] Y.-Y. Su, M. Attariyan, and J. Flinn, “Autobash: improving configuration
management with operating system causality analysis,” in Proceedings of
twenty-first ACM SIGOPS symposium on Operating systems principles, ser.
SOSP ’07. New York, NY, USA: ACM, 2007, pp. 237–250. [Online]. Available:
http://doi.acm.org/10.1145/1294261.1294284

[94] A. Whitaker, R. S. Cox, and S. D. Gribble, “Configuration debugging as search:
Finding the needle in the haystack,” in Proceedings of the 6th conference on
Symposium on Opearting Systems Design & Implementation, vol. 6, 2004, pp.
1–14.

[95] M. Attariyan and J. Flinn, “Automating configuration troubleshooting with
dynamic information flow analysis,” in Proceedings of the 9th USENIX
conference on Operating systems design and implementation, ser. OSDI’10.
Berkeley, CA, USA: USENIX Association, 2010, pp. 1–11. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1924943.1924960

[96] L. Keller, P. Upadhyaya, and G. Candea, “Conferr: A tool for assessing re-
silience to human configuration errors,” in Dependable Systems and Networks
With FTCS and DCC, 2008. DSN 2008. IEEE International Conference on,
June, pp. 157–166.

[97] H. J. Wang, J. C. Platt, Y. Chen, R. Zhang, and Y.-M. Wang, “Automatic
misconfiguration troubleshooting with peerpressure,” in Proceedings of the 6th
conference on Symposium on Opearting Systems Design & Implementation -
Volume 6, ser. OSDI’04. Berkeley, CA, USA: USENIX Association, 2004,
pp. 17–17. [Online]. Available: http://dl.acm.org/citation.cfm?id=1251254.
1251271

156

[98] X. Liu, L. Sha, Y. Diao, S. Froehlich, J. L. Hellerstein, and S. Parekh,
“Online response time optimization of apache web server,” in Proceedings
of the 11th international conference on Quality of service, ser. IWQoS’03.
Berlin, Heidelberg: Springer-Verlag, 2003, pp. 461–478. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1784037.1784071

[99] W. Zheng, R. Bianchini, and T. D. Nguyen, “Automatic configuration
of internet services,” in Proceedings of the 2nd ACM SIGOPS/EuroSys
European Conference on Computer Systems 2007, ser. EuroSys ’07.
New York, NY, USA: ACM, 2007, pp. 219–229. [Online]. Available:
http://doi.acm.org/10.1145/1272996.1273020

[100] B. Xi, Z. Liu, M. Raghavachari, C. H. Xia, and L. Zhang, “A smart hill-climbing
algorithm for application server configuration,” in Proceedings of the 13th in-
ternational conference on World Wide Web. ACM, 2004, pp. 287–296.

[101] L. Wang, J. Xu, and M. Zhao, “Application-aware cross-layer virtual machine
resource management,” in Proceedings of the 9th international conference on
Autonomic computing, ser. ICAC ’12. New York, NY, USA: ACM, 2012, pp.
13–22. [Online]. Available: http://doi.acm.org/10.1145/2371536.2371541

[102] I.-H. Chung and J. K. Hollingsworth, “Automated cluster-based web service
performance tuning,” in High performance Distributed Computing, 2004. Pro-
ceedings. 13th IEEE International Symposium on. IEEE, 2004, pp. 36–44.

[103] X. Bu, J. Rao, and C.-Z. Xu, “Coordinated self-configuration of virtual ma-
chines and appliances using a model-free learning approach,” Parallel and Dis-
tributed Systems, IEEE Transactions on, vol. 24, no. 4, pp. 681–690, 2013.

[104] A. Gulati, A. Merchant, and P. J. Varman, “mclock: handling throughput vari-
ability for hypervisor io scheduling,” in Proceedings of the 9th USENIX confer-
ence on Operating systems design and implementation. USENIX Association,
2010, pp. 1–7.

[105] A. Shieh, S. Kandula, A. Greenberg, and C. Kim, “Seawall: performance iso-
lation for cloud datacenter networks,” in Proceedings of the 2nd USENIX con-
ference on Hot topics in cloud computing (HotCloud). USENIX Association,
2010, pp. 1–6.

[106] D. Gupta, L. Cherkasova, R. Gardner, and A. Vahdat, “Enforcing per-
formance isolation across virtual machines in xen,” in Proceedings of the
ACM/IFIP/USENIX 2006 International Conference on Middleware. Springer-
Verlag New York, Inc., 2006, pp. 342–362.

[107] A. Shieh, S. Kandula, A. G. Greenberg, C. Kim, and B. Saha, “Sharing the
data center network.” in NSDI, 2011.

VITA

157

VITA

Amiya Maji earned his B.Tech (Bachelor of Technology) and M.S. (Master of

Science) degrees from the Department of Computer Science and Engineering at Indian

Institute of Technology, Kharagpur, India in the years 2005 and 2008 respectively.

He has been a Ph.D. student in the School of Electrical and Computer Engineering

at Purdue University since then. Amiya is currently working towards his doctoral

dissertation in the Dependable Computing Systems Laboratory under the supervision

of Prof. Saurabh Bagchi. His research focuses on dependability aspects of large-

scale distributed system. More specifically he has published several peer-reviewed

papers on reliability and security of mobile devices; reliability and performance of

cloud services; web application reliability; and security of Pub-Sub networks in top

conferences such as ISSRE, DSN, ICAC, Middleware, and SecureComm. Prior to

joining Purdue, Amiya did several projects on Telemedicine during his bachelor’s

and master’s degrees. Amiya has also served as secondary reviewer in top reliability

conferences such as DSN, SRDS and PRDC.

PUBLICATIONS

158

PUBLICATIONS

ISSRE2010 A. K. Maji, K. Hao, S. Sultana, S. Bagchi. “Characterizing Failures

in Mobile OSes: A Case Study with Android and Symbian,” in 21st

International Symposium on Software Reliability Engineering, ISSRE

2010, November 1-4, 2010, San Jose, California.

DSN2012 A. K. Maji, F. A. Arshad, S. Bagchi, J. S. Rellermeyer. “An Em-

pirical Study of the Robustness of Inter-component Communication

in Android,” in 42nd Annual IEEE/IFIP International Conference

on Dependable Systems and Networks, DSN 2012, June 25-28, 2012,

Boston, MA.

MW2014 A. K. Maji, S. Mitra, B. Zhou, S. Bagchi, A. Verma. “Mitigating In-

terference in Cloud Services by Middleware Reconfiguration,” in 15th

International Middleware Conference, MIDDLEWARE 2014, Decem-

ber 8-12, 2014, Bordeaux, France.

ICAC2015 A. K. Maji, S. Mitra, S. Bagchi. “ICE: An Integrated Configuration

Engine for Interference Mitigation in Cloud Services,” in 12th In-

ternational Conference on Autonomic Computing, ICAC 2015, July

7-10, 2015, Grenoble, France. (Under review)

DSN2009s A. K. Maji, K. Hao, S. Sultana, S. Bagchi. “Characterization of

Failures in Android Operating System,” in 39th Annual IEEE/IFIP

International Conference on Dependable Systems and Networks, DSN

2009 (Fast Abstract), June 29-July 2, 2009, Lisbon, Portugal.

159

Other Publications

ICAC2014 Fahad A. Arshad, Amiya K. Maji, Sidharth Mudgal, Saurabh

Bagchi. “Is Your Web Server Suffering from Undue Stress due to Du-

plicate Requests?” in 11th International Conference on Autonomic

Computing, ICAC 2014, June 18-20, 2014, Philadelphia, PA (short

paper).

SECCOM11 Amiya K. Maji, Saurabh Bagchi. “v-CAPS: A Confidentiality and

Anonymity Preserving Routing Protocol for Content-Based Publish-

Subscribe Networks,” in 7th International ICST Conference on Se-

curity and Privacy in Communication Networks, SecureComm 2011,

September 79, 2011, London, UK.

	Purdue University
	Purdue e-Pubs
	Spring 2015

	Dependability where the mobile world meets the enterprise world
	Amiya K. Maji
	Recommended Citation

	Blank Page

