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ABSTRACT

Lee, Dennis Joseph Ph.D., Purdue University, May 2015. Computational Optical
Imaging: Applications in Synthetic Aperture Imaging, Phase Retrieval, and Digital
Holography. Major Professor: Andrew M. Weiner.

Computational imaging has become an important field, as a merger of both al-

gorithms and physical experiments. In the realm of microscopy and optical imaging,

an important application is the problem of improving resolution, which is bounded

by wavelength and numerical aperture according to the classic diffraction limit. We

will investigate the resolution enhancement of phase objects such as transparent bi-

ological cells. One key challenge is how to measure phase experimentally. Standard

interferometric techniques have the drawback of being sensitive to environmental vi-

brations and temperature fluctuations, and they use a reference arm which requires

more space and cost. Non-holographic methods provide a way to overcome these

disadvantages. Another challenge is how to reconstruct phase and amplitude from a

digital hologram. The typical method of applying a filter in the frequency domain is

limited by finite filter size. Optimization approaches offer a solution to this problem.

The work presented here spans three main aspects of phase imaging microscopy

including synthetic aperture imaging, phase retrieval, and digital holography. We

develop a non-holographic microscope that uses off-axis illumination for resolution

enhancement and demonstrate the first experimental measurements of referenceless

phase retrieval at multiple angles. We implement a synthetic aperture microscope

using an electrically tunable lens to defocus images, which avoids the need to mechan-

ically move a camera on a translation stage. Finally, we improve the reconstruction

of images from a digital hologram based on an iterative algorithm that alternatively

updates amplitude and phase.
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1. INTRODUCTION

Much of our research focuses on a classic imaging problem: how can we surpass the

diffraction limit? Physically, this limit arises from the finite aperture of the objective.

When light strikes a sample, higher orders of diffraction will miss the lens aperture

as depicted in Fig. 1.1. The numerical aperture (NA) of a lens quantifies how much

light is collected. It is defined as NA = n sin θ, where n is the refractive index of

the medium between sample and lens, and θ is the half angle of the maximum cone

of light that can enter the lens. According to Abbe’s diffraction limit, resolution is

roughly λ/NA. Correspondingly, the highest spatial frequency that can be captured

by a lens is about NA/λ. In many practical imaging systems, wavelength is fixed or

too difficult to change. Numerical aperture is practically bounded at 1.4; there are

challenges in manufacturing larger NA objectives.

If λ and NA are practically fixed or bounded, are there other ways to increase

resolution? Various techniques have been proposed over the years [1], and we will

mention a few in passing. Confocal microscopy relies on a spatial pinhole placed at

Fig. 1.1. The objective lens (OL) captures some spatial frequencies
but misses others.
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Fig. 1.2. Example of intensity (left) and phase (right) images of an
onion skin cell. The phase image reveals cellular structure such as the
nucleus. Adapted from [2].

the confocal plane of the lens to eliminate out-of-focus light. 4π microscopy uses two

opposing objectives for excitation and detection. Structured illumination microscopy

applies patterned illumination to the sample, shifting higher frequencies into the lens.

These techniques are well-known, and they work well for fluorescent samples.

However, not all samples are easily fluorescently tagged. We will consider phase

objects such as transparent biological cells. Fortunately, transparent samples have

an important property that we can exploit for visualization, namely the refractive

index contrast between the sample and background. This index contrast gives rise

to a path length difference. By imaging phase, or path length differences, we can

visualize transparent samples as shown in Fig. 1.2. In addition, amplitude and phase

comprise an electric field, which can be numerically propagated to adjust focus on a

computer [3, 4].

Our goal is to enhance the resolution of these phase images. A common technique

is to use off-axis illumination. By illuminating the sample at multiple angles, different

orders of diffraction and spatial frequencies can be captured as illustrated in Fig.
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Fig. 1.3. Illustration of synthetic aperture imaging. (a) Original spec-
trum. (b) Passband centered at DC. (c) Passband with oblique illu-
mination 1. (d) Passband with oblique illumination 2.
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1.3. Synthetic aperture imaging combines the images measured over all the angles to

obtain an enhanced image. Experimentally, a standard way of measuring the complex

electric field is to use holography, a form of interferometry. Holography is commonly

used, but it does have its drawbacks. The interferometric configuration is subject to

environmental vibrations and temperature fluctuations. Phase-shifting interferometry

requires extra parts such as a high frame rate camera. These drawbacks motivate us

to develop algorithms and experiments to measure phase in a referenceless, non-

interferometric manner.

In addition to solving phase retrieval problems non-interferometrically, this dis-

sertation also tackles problems in digital holography. A classic problem is to extract

amplitude and phase from an interference pattern, or hologram, measured on a cam-

era. A standard solution is to take the Fourier transform of the interference pattern

and apply a filter in the frequency domain. However, this approach is limited by

the finite filter window size, which may cut off higher frequencies. This drawback

motivates us to extend some of the techniques in the current literature to improve

image reconstruction from a measured hologram.

The unifying theme of this dissertation is computational imaging, a field that is

a merger of algorithms and experiment. In particular, the application of phase imag-

ing microscopy relies on various algorithms to form images of transparent samples

from raw camera data. This dissertation covers numerous aspects of phase imaging

microscopy including synthetic aperture imaging, phase retrieval, and digital holog-

raphy.

1.1 Organization of the Dissertation with Summary of our Contributions

Imaging phase objects such as transparent biological cells is an important ap-

plication in microscopy. In Chapter 2, we develop a microscope for enhancing the

resolution of phase objects. The developed microscope measures phase in a refer-

enceless, non-holographic manner. This approach avoids interferometric issues with
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stability due to environmental vibrations or temperature fluctuations, and it reduces

the expense and number of parts needed since a reference arm is not required. Exper-

iments are carried out to test the proposed method. To verify phase measurements

and demonstrate resolution enhancement, we image 10 µm polystyrene beads. We

apply an iterative phase retrieval algorithm to compute phase at each angle, and we

formulate a procedure to combine the angular electric field images to form a synthe-

sized enhanced image. The resulting phase shows a 56% reduction in background

noise with 11 total angles. To quantify resolution enhancement, we image particles

on a glass slide. The estimated resolution with on-axis illumination is 1.59 µm. Af-

ter synthetic aperture imaging, the resolution improves to 1.24 µm, verifying our

technique.

In Chapter 3, we extend the idea of synthetic aperture microscopy based on ref-

erenceless phase retrieval. A slight drawback of our earlier implementation is that it

requires a mechanical translation stage to physically move the CCD camera for defo-

cusing images. To eliminate this mechanical motion, we propose to defocus images by

changing the focal length of an electrically tunable lens (ETL), a relatively compact

and inexpensive device compared to the translation stage. We develop a calibration

algorithm to correct for image shifts and magnifications that may occur as the ETL

changes focal length. We fabricate a 1 µm grating on PMMA film to demonstrate

resolution enhancement. Based on phase measurements of our grating, we are able

to see sub-µm resolution, with an increase in NA to 0.97 from 0.75. Finally we apply

our techinique to imaging biological cells. Using our ETL-based setup for synthetic

aperture imaging, we are able to observe enhanced features in the cell compared to

using only on-axis illumination.

Besides phase retrieval, digital holography is a common way to characterize the

amplitude and phase of a sample, and it is used in many applications including

microscopy, 3D displays, and THz imaging. In Chapter 4, we propose an iterative

algorithm to further improve the reconstruction of images from a digital hologram.

The standard method is based on applying a filter in the frequency domain, but this
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approach is limited by the finite filter window size. More recent literature frames

digital holography as an inverse problem, based on minimizing cost as a function

of the complex object field. We propose a novel way of minimizing cost based on

updating the amplitude and phase separately. Our technique offers an improvement

over current algorithms because prior knowledge such as object smoothness can be

applied to amplitude and phase separately, and it doesn’t require phase unwrapping.

Also, since low amplitudes multiply phase as u = Aeiφ, updating phase separately

helps to decouple the effects of poor SNR on phase. We demonstrate the effectiveness

of our algorithm on simulated and experimental data. From our results, we see that

our technique can reconstruct higher quality images with better resolution and less

artifacts than standard Fourier filtering.

Finally in Chapter 5, we summarize our work and present possible future research

directions.
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2. OPTICAL PHASE IMAGING USING A SYNTHETIC

APERTURE PHASE RETRIEVAL TECHNIQUE

Optical phase imaging enables visualization of transparent samples, numerical refo-

cusing, and other computational processing. Typically phase is measured quantita-

tively using interferometric techniques such as digital holography. Researchers have

demonstrated image enhancement by synthetic aperture imaging based on digital

holography. In this work we introduce a novel imaging technique that implements

synthetic aperture imaging using phase retrieval, a non-interferometric technique.

Unlike digital holography, phase retrieval obviates the need for a reference arm and

provides a more compact, less expensive, and more stable experimental setup. We

call this technique synthetic aperture phase retrieval.

2.1 Introduction

2.1.1 Measuring Phase

Optical phase imaging finds important applications in biomedical imaging where

samples are often transparent and weakly scattering. Phase contains valuable in-

formation such as refractive index variations or sample thickness that intensity alone

cannot provide [5–7]. Quantitative knowledge of phase, combined with intensity mea-

surements, yields the complex field. The field is a powerful computational tool be-

cause it allows the sample to be post-processed after experimental measurements are

taken. For example, label-free cell imaging, numerical refocusing, and differential

interference contrast can be performed [3,6, 8–11].

Phase is commonly measured using interferometric techniques such as digital

holography. For example, in off-axis interferometry, the reference beam is angularly
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tilted with respect to the sample beam with wavevector difference ∆k [12, 13]. The

measured intensity takes the form I(x, y) = Ir+Is+2
√
IrIscos(∆k ·x+φ(x, y)), from

which phase can be extracted. However, the camera pixel size constrains the high-

est spatial frequency of the interference pattern and therefore limits the maximum

off-axis tilt.

Another interferometric technique, called phase-shifting interferometry, helps to

solve this problem. Rather than tilting the reference beam, a phase shift δφ is added

to the reference arm [14, 15]. The resulting measured intensity becomes I(δφ) =

Ir + Is + 2
√
IrIscos(φ+ δφ). Typically, the reference beam is upshifted in frequency

by acousto-optic modulators (AOMs). In [11], a high frame rate camera records

images at 5000 fps, which is four times the frequency shift of the reference beam.

Each image differs in phase by π/2. From four consecutive images, phase can be

extracted.

Although digital holography is commonly used, it does have its disadvantages. In

general, interferometry requires two beams which have to be stabilized. The interfer-

ence pattern could be very sensitive to table vibrations or temperature fluctuations.

The reference arm adds more parts, cost, and complexity. For example, the phase

shifting interferometry in [11] requires AOMs to upshift the reference beam and a

high frame rate camera to capture the phase-shifted images.

Phase retrieval presents a viable alternative to digital holography for measuring

phase. A separate reference beam is not required, which aids stability. The measure-

ments are based on defocused intensity images, which does not require an expensive

high frame rate camera. Fewer components are required, which reduces cost.

2.1.2 Enhancing Resolution with Synthetic Aperture Imaging

Regardless of measurement technique, an important concern in any imaging sys-

tem is resolution, or the ability to resolve fine detail. The objective lens limits the

highest spatial frequency that can be captured since it has a finitely sized aperture.
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The resolution is roughly λ/NA. In the frequency domain, the spatial frequencies are

filtered by a passband which can be described as

P (u, v) = circ

(√
(u/(λf))2 + (v/(λf))2

NA/λ

)
(2.1)

where u and v are spatial coordinates in the back focal plane of the objective lens

with units in meters, and f is the focal length of the objective lens. Using this

notation, given spatial coordinates (u, v) in the back focal plane of the objective lens,

the corresponding spatial frequencies are
u

λf
and

v

λf
, which are the Fourier transform

duals of (x, y).

We can improve resolution if we could capture the spatial frequencies cut off by

the lens aperture. To this end consider a plane wave at oblique incidence to a sample,

Uk
in(x, y) = exp

[
−j2π

(
vkxx+ vkyy

)]
, (2.2)

with wavevector 2π
(
vkx, v

k
y , v

k
z

)
. For notational convenience, we let θk denote the angle

of illumination corresponding to wavevector 2π
(
vkx, v

k
y , v

k
z

)
. The field at the back focal

plane becomes [3]

Uk
f (u, v) = P (u, v)

1

jλf

∫ ∫
t(x, y)Uk

in(x, y)exp

[
−j 2π

λf
(xu+ yv)

]
dxdy

=
1

jλf
P (u, v) T

(
u

λf
+ vkx,

v

λf
+ vky

)
Uk
f

(
u− λfvkx, v − λfvky

)
=

1

jλf
P
(
u− λfvkx, v − λfvky

)
T

(
u

λf
,
v

λf

)
(2.3)

where T (u, v) is the Fourier transform of the sample transmittance t(x, y), and we

use Eqs. (2.1) and (2.2). This expression describes the Fourier transform of the

field located at the back focal plane (BFP) of the objective. Figure 2.2 depicts the

BFP inside the objective, as the plane where light comes to a focus. The obliquely

incident plane wave causes the passband to cover a different portion of frequency
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space. Summing the fields covered by these shifted passbands yields the synthesized

field with an enlargened passband:

U s
f (u, v) =

1

jλf

∑
k

W k(u, v)P
(
u− λfvkx, v − λfvky

)
T

(
u

λf
,
v

λf

)
=
∑
k

W k(u, v)Uk
f

(
u− λfvkx, v − λfvky

) (2.4)

where we sum over all wavevectors 2π
(
vkx, v

k
y , v

k
z

)
, and W k(u, v) is an angle dependent

window function that selects a portion of the spectrum to be added. Section 2.2.2

describes W k(u, v) in more detail. We note that taking a direct sum by omitting

W k(u, v) is not entirely accurate, since a direct sum would place too much emphasis on

the low frequencies and introduce phase aberrations [16]. In effect we are synthetically

increasing the numerical aperture of the lens. For this reason researchers refer to this

technique as synthetic aperture imaging. As a consequence, the imaging system rejects

out-of-focus diffraction noise. The resulting image looks cleaner, and techniques like

numerical refocusing or differential interference contrast can be digitally implemented

[11]. We note that another application, tomographic phase microscopy, also uses the

concept of illuminating the sample at oblique angles [17,18], and it is a possible future

extension of this work.

2.2 Phase Retrieval Algorithm

2.2.1 General Steps

Phase retrieval is a non-interferometric way of measuring phase. The basic idea

is to measure a sequence of defocused intensity images I1, ..., IN at N planes and

then process these images to extract the phase encoded in the defocus. There are

different algorithms that process these defocused images to produce a phase image.

Deterministic phase retrieval uses a closed form relation between intensity and phase.

Solving a Poisson-type equation yields phase [19–23]. However, this equation relies

on the paraxial approximation [19]. In our experiment, we illuminate the sample at



11

oblique angles with plane waves of the form in Eq. (2.2), which in general will not

satisfy the paraxial approximation.

Another class of algorithms is iterative in nature. We can view the intensity

measurements as constraints, and we would like to retrieve a complex field satisfying

those constraints [24,25]. We apply an iterative algorithm similar to the single beam

multiple intensity reconstruction (SBMIR) technique [26–30]. The general steps are

1. In the first plane, let the complex amplitude U1 =
√
I1 with a phase of φ1(x, y) =

0. Set n = 1.

2. Numerically propagate the complex amplitude at the previous plane Un to the

next plane. Extract the phase φn+1(x, y).

3. Take the updated complex amplitude as Un+1 =
√
In+1exp [jφn+1(x, y)]. Incre-

ment n by 1.

4. Go to step 2. Iterate until last plane is reached.

We can also add more iterations if desired. For example, the complex amplitude

at the last plane can be numerically propagated backwards using a similar update

procedure. Convergence is checked by numerically propagating the retrieved field and

comparing with measured intensities. In our experiments, we measure a total of 15

planes, as described later in Section 2.3, and we find that numerically propagating

forward once and backward once through all the planes is enough for convergence.

The above steps describe how to retrieve phase for one angle of illumination. The

idea behind synthetic aperture imaging is to measure phase at multiple angles of

illumination. Our proposal is to implement synthetic aperture imaging using phase

retrieval. For each angle of illumination, we apply the above procedure to calculate

phase. The combination of intensity and phase completely describes the complex field.

Then the synthesized field is calculated by summing the complex fields at each angle

with the background phases set equal, as described by Eq. (2.4). The synthesized

phase is the phase of the synthesized field.
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By implementing synthetic aperture imaging using phase retrieval, we hope to

obtain a more compact experimental setup that has fewer parts, smaller expenses,

and more stability. To concisely describe this idea, we refer to it as synthetic aperture

phase retrieval.

We summarize the synthetic aperture phase retrieval procedure as follows:

1. Select an angle θk.

2. Apply the iterative phase retrieval algorithm given above for a single angle.

Retrieve the spectrum Uk
f (u, v) (Eq. (2.3)).

3. Go to step 1. Repeat until all angles are measured.

4. Sum the spectra Uk
f (u, v) (Eq. (2.4)) to obtain U s

f (u, v).

5. Take the inverse Fourier transform of U s
f (u, v) to obtain the synthesized field.

2.2.2 Stitching of the Synthesized Spectrum

Here we describe the angle dependent window function W k(u, v) from Eq. (2.4).

A simple sum of the retrieved spectra from each angle of illumination would place too

much weight on the low frequencies and introduce phase aberrations [16]. To avoid

these effects, we filter the retrieved spectra with window functions W k(u, v). The

intuition is that at each angle, the passband shifts to cover a different part of the

spectrum, as Eq. (2.3) describes. We would like to capture the general part of the

spectrum being measured for each angle. To implement this idea, we partition the

synthesized spectrum into angular regions, according to the example presented in [16].

Figure 2.1 shows schematics of how the spectrum can be partitioned. Then the basic

idea is to stitch together the synthesized spectrum from the retrieved spectra at each

angle of illumination. We illustrate the procedure in the following examples.

Consider the example of measured spectra at 5 total angles. In our experiment we

scan the back focal plane of the condenser lens (i.e., the focal plane to the left of the
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(a) Partition of the synthesized spectrum

into quadrants.

(b) Partition of the synthesized spectrum

into octants.

(c) 5 total angles scanned at the back focal

plane of the condenser.

(d) 9 total angles scanned at the back focal

plane of the condenser.

Fig. 2.1. Partition of the synthesized spectrum for aperture synthesis.
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condenser lens, as depicted in Fig. 2.2) to illuminate the sample at different angles;

more details are given in Section 2.3. For convenience, we number the beam positions

at the back focal plane in Fig. 2.1(c). When the beam is at position 0, we retrieve

the DC or zero degree spectrum U0
f (u, v), using the notation of Eq. (2.3). At position

1, we retrieve the spectrum U1
f (u, v) of an obliquely illuminated sample. The main

lobe of U1
f (u, v) lies in quadrant 1 from Fig. 2.1(a). More generally, at position k, we

retrieve the spectrum Uk
f (u, v) of the sample illuminated at angle θk, and the main

lobe of Uk
f (u, v) lies in quadrant k. The synthesized spectrum is composed of selected

parts of each spectrum Uk
f (u, v). The central part of the synthesized spectrum (of

radius approximately NA/λ) consists of U0
f (u, v). Outside the central part, quadrant

k of the synthesized spectrum consists of Uk
f (u, v). The inverse Fourier transform of

the synthesized spectrum yields the synthesized field.

From the above description, we can better understand the factor W k(u, v) from

Eq. (2.4). For k = 0, W 0(u, v) is a circ function of radius approximately NA/λ, or

W 0(u, v) =

1, if
√
u2 + v2 < NA/λ,

0, otherwise.

(2.5)

For k > 0, W k(u, v) is zero everywhere except for a weight of 1 in quadrant k outside

a radius of approximately NA/λ, or

W k(u, v) =

1, if (u, v) ∈ quadrant k and
√
u2 + v2 > NA/λ,

0, otherwise.

(2.6)

In the case of measured spectra at 9 total angles, we number the beam positions at

the back focal plane of the condenser lens in Fig. 2.1(d). The octants in Fig. 2.1(b)

are numbered similarly; octant 1 contains the positive u-axis, and octant 3 contains

the positive v-axis (numbers are not shown in the figure because of space). When

the beam is at position k, we retrieve Uk
f (u, v) for the sample illuminated at angle θk,

and the main lobe of Uk
f (u, v) lies in octant k. The central part of the synthesized

spectrum (of radius approximately NA/λ) consists of U0
f (u, v). Outside the central
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part, octant k of the synthesized spectrum consists of the following weighted sum:
1

2
Uk
f (u, v) +

1

4
Uk−1
f (u, v) +

1

4
Uk+1
f (u, v), where the indices k, k − 1, and k + 1 fall in

the range 1, . . . , 8. Finally the inverse Fourier transform of the synthesized spectrum

yields the synthesized field.

We can also describe W k(u, v) for this case of 9 total angles. For k = 0, Eq. (2.5)

describes W 0(u, v). For k > 0, W k(u, v) is zero everywhere except for weights of 1/2

in octant k and 1/4 in octants k − 1 and k + 1, all outside a radius of approximately

NA/λ, or

W k(u, v) =



1
2
, if (u, v) ∈ octant k and

√
u2 + v2 > NA/λ,

1
4
, if (u, v) ∈ octant k − 1 and

√
u2 + v2 > NA/λ,

1
4
, if (u, v) ∈ octant k + 1 and

√
u2 + v2 > NA/λ,

0, otherwise,

(2.7)

where the indices k, k−1, and k+1 fall in the range 1, . . . , 8, as noted previously. To

be fully rigorous, the index k − 1 should be replaced with (k − 2) mod 8 + 1, so that

when k = 1, the previous index is 8. Similarly, the index k + 1 should be replaced

with k mod 8 + 1, so that when k = 8, the next index is 1. However, for simplicity,

we use the notation in Eq. (2.7).

2.3 Experimental Setup

Figure 2.2 illustrates the experimental setup for synthetic aperture phase retrieval.

A helium-neon (HeNe, λ = 633 nm) laser serves as the illumination source. Mirror

M1 is a motorized gimbal mount, which operates under computer control. It steers

the beam at different angles to provide oblique illumination at the sample. After

traveling through the condenser lens (Abbe condenser, 1.25 NA) and objective lens

(50X, 0.75 NA), the beam is directed through a tube lens and onto a CCD camera,

which is mounted on a computer controlled translation stage. We measure a sequence

of intensity images by translating the camera along the axial direction. As the stage
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Fig. 2.2. Experimental setup for synthetic aperture phase retrieval.
M1: gimbal mount mirror; L1: lens (f = 300 mm); C: condenser lens
(NA 1.4); OL: objective lens (NA 0.75); L2: tube lens(f = 200 mm).
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moves, the images become defocused. From these defocused images, we apply the

iterative phase retrieval algorithm to recover phase.

We note that our experiment uses a 0.75 NA objective; it can be extended to use

the 1.4 NA in [11]. We also note that there are very high 1.65 NA objectives, but they

require special high index immersion oil that evaporates within a few hours and leaves

a crystalline residue. They also require special expensive and fragile coverslips [31]. In

this work we aim to demonstrate the principle of using phase retrieval to implement

synthetic aperture imaging. Our approach enables resolution enhancement without

requiring an expensive high NA objective.

The experimental procedure is to first select an angle of illumination by tilting

mirror M1. Then a sequence of defocused intensity images are measured by translating

the camera. In our experiments, for each angle we measure 15 intensity images at

planes separated by 2.1 µm, where 2.1 µm refers to the sample space, and the planes

are symmetric about the focal plane at z = 0. We determine the focal plane to

be the plane at which the samples look most transparent. More details on how to

choose these parameters can be found in [26]. In Fig. 2.3, we show 5 images for one

of our samples, 10 µm polystyrene beads (n = 1.587) immersed in oil (n = 1.515).

For a given angle of illumination, it takes about 7 seconds to record 15 intensity

images. We note that it should be possible to process these images in real time

using a recently developed Kalman filtering algorithm [32–36]. We also note that

electronically controllable, variable focus lenses can defocus the image in place of

translating the camera, potentially speeding acquisition time [37].

To provide oblique illumination at the sample, the beam scans the back focal plane

of the condenser lens, as illustrated in Fig. 2.4. To clarify, Fig. 2.2 depicts the back

focal plane (BFP) of the condenser lens to the left of the condenser lens, as the plane

where light comes to a focus. Thus Fig. 2.4 portrays focal spots at the BFP. Note at

the sample, the beam stays centered and collimated at all angles.

For nonzero degree illumination, the camera translation is no longer parallel to

the beam direction. As a result, the images move transversely as the camera moves
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(a) z = -6.3 µm. (b) z = -2.1 µm.

(c) z = 0 µm. (d) z = 2.1 µm.

(e) z = 6.3 µm.

Fig. 2.3. Intensity images at zero degrees. Scale bar: 6 µm.

(a) 1 angle. (b) 5 total angles. (c) 9 total angles.

Fig. 2.4. Angular scanning at back focal plane of the condenser lens.
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(a) z = -6.3 µm. (b) z = -2.1 µm.

(c) z = 0 µm. (d) z = 2.1 µm.

(e) z = 6.3 µm.

Fig. 2.5. Intensity images at 12.3 degrees. Scale bar: 6 µm.
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axially. Consequently the images need to be registered. We perform this registration

by creating an interference pattern at the camera plane and measuring the beam

angle from the fringes. The procedure is described as follows. A beamsplitter taps

off a reference beam before the sample. The sample beam is the beam exiting the

tube lens. Another beamsplitter combines the reference beam and the sample beam

to create an interference pattern at the camera. From the resulting fringes, the angle

of the beam can be measured, and we use this angle to register our images. Note

that we use the interferometer only for calibration purposes. Once we measure the

illumination angle for each control signal sent to tilt mirror M1, the interferometer

can be removed from the setup. In Fig. 2.5 we show 5 images taken at 12.3 degrees

illumination for one of our samples, 10 µm polystyrene beads, and these images are

shown after being registered.

As an example of the angular scanning procedure, Fig. 2.4(b) depicts 4 angles

measured around the periphery of the back focal plane, in addition to zero degree

illumination (the center dot). In our current configuration, we can illuminate the

sample at angles up to 12.3 degrees, measured by the fringe analyis described earlier.

We scan the periphery of the back focal plane in an approximate circle so that the

largest angle of illumination is 12.3 degrees.

2.4 Phase Measurements

In this section we present two examples of phase measurements to highlight the

reduction in diffraction noise and the enhancement of resolution enabled by synthetic

aperture imaging. The first experiment uses 10 µm polystyrene beads, both to illus-

trate our experimental procedure from Section 2.3 and to demonstrate reduction in

diffraction noise. These beads have a clearly defined circular shape, and we also show

that aperture synthesis enhances this circular profile. In the second experiment, we

image small (< 1 µm) dust particles on a glass slide. Due to the smaller feature sizes,

we obtain clearer evidence of resolution enhancement.
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(a) Wrapped phase (rad). The dashed white rect-

angle and circle will be used for noise analysis.

(b) Unwrapped phase (rad). Two dashed black

circles highlight spaces between the beads. The

lower dashed circle will be used for calculating av-

erage phase.

Fig. 2.6. Test case 1: Phase image at 0 degrees. Scale bar: 6 µm.

2.4.1 Experiment 1: Polystyrene Beads

In our first experiment, we image 10 µm polystyrene beads (n = 1.587) immersed

in oil (n = 1.515). The simplest case occurs when we only measure a phase image

at zero degree illumination; in other words, we do not perform synthetic aperture

imaging. We perform phase retrieval at zero degrees according to the procedure

described in Section 2.3. Figure 2.6 shows the resulting phase image. We can roughly

calculate the expected peak phase shift as ∆φ = (2π/λ)∆z(nbead − nbkg) = 6.97

rad, where ∆z = 9.75 µm according to the manufacturer’s nominal specifications,

nbead = 1.587, and nbkg = 1.515. We estimate the measured peak phase shift by

averaging the phase within the black circle in Fig. 2.6(b); the estimated shift is

∆φ = 6.42 rad, which is reasonably close to the refractive index calculations. The

phase retrieval algorithm outputs wrapped phase, and to aid visualization, we also

unwrap the results. For phase unwrapping we implement the algorithm presented

in [38].
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(a) Wrapped phase (rad). (b) Unwrapped phase (rad). Two dashed black

circles highlight spaces between the beads. The

lower dashed circle will be used for calculating av-

erage phase.

Fig. 2.7. Phase image from off-axis interferometry. Scale bar: 6 µm.
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Table 2.1
Phase Retrieval Test Cases

Test Case Total No. of Angles Setup Figure Phase Image Figure

1 1 Fig. 2.4(a) Fig. 2.6

2 5 Fig. 2.4(b) Fig. 2.9

3 9 Fig. 2.4(c) Fig. 2.10

For reference, we also use off-axis interferometry to measure a phase image at

zero degree illumination. We tap off a portion of the input beam before the sample

as a reference beam, as described in Section 2.3. Figure 2.7 illustrates the off-axis

results. We estimate the peak shift by averaging the phase within the black circle in

Fig. 2.7(b); the estimated peak shift is ∆φ = 7.57 rad. However, the image is very

noisy, so the phase values are not entirely accurate. More importantly, this figure

provides a comparison with the phase retrieval result in Fig. 2.6. In both figures,

the circular profiles of the beads look jagged. In addition, the spaces between the

beads, highlighed by dashed black circles in Figs. 2.6(b) and 2.7(b), appear partially

blended with the beads. We hope to enhance the circular profile of the beads and the

resolution between the beads by using synthetic aperture imaging.

We choose this sample of clumps of beads because it exhibits clear diffraction noise.

For example, from the defocused intensity images in Fig. 2.3, we can see that the

diffraction patterns from each individual bead interferes with those of other beads.

Diffraction noise appears in Fig. 2.6 as diffraction rings and speckle-like patterns

inside the beads, which is most clearly seen in the wrapped phase image. Similarly,

we can discern some speckle-like patterns inside the beads in Fig. 2.7. We hope to

reduce this diffraction noise with synthetic aperture imaging.

Next we perform synthetic aperture imaging by illuminating the sample at mul-

tiple angles. We examine the synthesized phase images for the different numbers of

angles listed in Table 2.1. Figure 2.8 shows a phase image captured at 11.0 degrees

illumination. To aid visualization, we also unwrap the phase. Although there are
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(a) Wrapped phase (rad). (b) Unwrapped phase (rad).

Fig. 2.8. Phase image at 11.0 degrees. Scale bar: 6 µm.
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(a) Wrapped phase (rad). The dashed white rect-

angle and circle will be used for noise analysis.

(b) Unwrapped phase (rad). Two dashed black

circles highlight spaces between the beads.

Fig. 2.9. Test case 2: Synthesized phase image with 5 total angles. Scale bar: 6 µm.

some unwrapping errors, the figure illustrates the basic idea. We note that synthetic

aperture imaging does not require phase unwrapping; the spectra are stitched to-

gether as described in Section 2.2.2. Since the beam is oblique to the camera, the

beads appear slightly elongated [11, 17]. As in the case of zero degree illumination,

speckle-like patterns inside the beads and diffraction rings appear. To the best of our

knowledge, this work is the first experimental demonstration of phase retrieval on an

obliquely illuminated sample.

For test case 2, we measure a total of 5 angles, as noted in Table 2.1. We perform

synthetic aperture imaging by adding the angular spectra according to Eq. (2.4),

together with the window functions from Eqs. (2.5) and (2.6). The resulting synthe-

sized phase is illustrated in Fig. 2.9. We see that diffraction noise features, such as

the diffraction rings and the speckle-like patterns inside the beads, have been reduced

compared to test case 1, which can be seen most clearly from the wrapped phase

images.

For test case 3, we measure a total of 9 angles as noted in Table 2.1. The angular

spectra are added according to Eq. (2.4), together with the window functions from
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(a) Wrapped phase (rad). The dashed white rect-

angle and circle will be used for noise analysis.

(b) Unwrapped phase (rad). Two dashed black

circles highlight spaces between the beads.

Fig. 2.10. Test case 3: Synthesized phase image with 9 total angles.
Scale bar: 6 µm.
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Table 2.2
Phase Speckle and Background Noise Comparisons

Test Phase Speckle % Reduction in σ2
s Background % Reduction in σ2

b

Case Noise σ2
s

(
rad2

)
Compared to Case 1 Noise σ2

b

(
rad2

)
Compared to Case 1

1 σ2
s = 8.30× 10−2 0% σ2

b = 1.75× 10−2 0%

2 σ2
s = 3.36× 10−2 59% σ2

b = 1.51× 10−2 14%

3 σ2
s = 1.49× 10−2 82% σ2

b = 7.68× 10−3 56%

Eqs. (2.5) and (2.7). Figure 2.10 shows the synthesized phase. The diffraction noise

features (diffraction rings and speckle-like patterns inside the beads) appear more

reduced than test case 2. As more angles are measured, the passband in Eq. (2.1)

shifts to cover different portions of frequency space, which yields the different angular

fields in Eq. (2.3). As a result, when these angular fields are summed in Eq. (2.4),

the synthesized field contains an enlargened passband. Hence, we would expect this

improvement in diffraction noise with more angles. In addition, the circular shape

of the beads becomes progressively less jagged as more angles are measured, as Figs.

2.6(a), 2.9(a), and 2.10(a) show. We also notice the spaces between the beads become

increasingly distinguishable as more angles are added; these spaces are highlighted

by dashed black circles in Figs. 2.6(b), 2.9(b), and 2.10(b).

Next we examine a quantitative comparison of the DC case (test case 1) and

the synthetic aperture cases (test cases 2 and 3). We measure the phase speckle

noise σ2
s inside the bead (dashed circle) for Fig. 2.6(a)

(
σ2
s = 8.30× 10−2 rad2

)
and

for Figs. 2.9(a) and 2.10(a)
(
σ2
s = 3.36× 10−2 and 1.49× 10−2 rad2 respectively

)
;

the phase speckle noise reduces by 59% and 82% respectively, compared to the DC

case. We also measure the background noise σ2
b inside the dashed rectangle for Fig.

2.6(a)
(
σ2
b = 1.75× 10−2 rad2

)
and for Figs. 2.9(a) and 2.10(a) (σ2

b = 1.51 × 10−2

and 7.68 × 10−3 rad2 respectively); the background noise reduces by 14% and 56%
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(a) DC phase (rad). Scale bar: 6 µm. Inset scale

bar: 1 µm.

(b) Synthesized phase (rad). Scale bar: 6 µm.

Inset scale bar: 1 µm.

(c) Line profile from inset A. (d) Line profile from inset B.

Fig. 2.11. Resolution enhancement of particles on a glass slide.

respectively, compared to the DC case. Table 2.2 summarizes these results. We see

that adding more angles reduces the diffraction noise.

2.4.2 Experiment 2: Particles on a Glass Slide

In the second experiment, we image small (< 1 µm) dust particles on a glass slide.

Similar to the demonstration of resolution enhancement in [16], we examine particles
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that are close to the resolution limit of the imaging system, with the goal of showing

better differentiation between particles with aperture synthesis. A total of 9 angles

are measured, and the retrieved spectra from each angle are added according to Eq.

(2.4), together with the window functions from Eqs. (2.5) and (2.7).

To demonstrate resolution enhancement, we compare the DC or zero degree phase

in Fig. 2.11(a) with the synthesized phase in Fig. 2.11(b). In general, the synthesized

phase looks sharper. We highlight two pairs of particles that are hard to distinguish

with dashed white circles. To facilitate comparison, we plot line profiles along the

lines shown in insets A and B. As the profiles in Figs. 2.11(c) and 2.11(d) indicate,

the synthesized phase shows increased contrast between the two particles, allowing

them to be better differentiated.

We can estimate the resolution of the setup from the line profiles in Fig. 2.11. In

general, the spatial resolution is determined by the NA and wavelength as

δ =
κλ

NA
(2.8)

where the factor κ depends on experimental parameters such as the signal to noise

ratio of the detector [16]. For our experiment, λ = 633 nm and NA = 0.75. We

estimate the resolution as δ = 1.59 µm from Fig. 2.11(c), where two particles look

close to the resolution limit for the DC phase. Using aperture synthesis, we expect

this resolution to improve to

δ =
κλ

NA+ sin θillum

(2.9)

where θillum is the angle of illumination used for the synthetic aperture. We take

θillum = 12.3 degrees, which is the largest angle of illumination for our experiment.

From Eq. (2.9), we expect the resolution to improve to δ = 1.24 µm. Indeed, Fig.

2.11(d) shows two particles separated by 1.36 µm which become distinguishable after

aperture synthesis.

We also measure the reduction in diffraction noise, as we did for the polystyrene

beads in Table 2.2. Inside the dashed white rectangles in Figs. 2.11(a) and 2.11(b),
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we calculate the background noise for the DC phase
(
σ2
b = 2.05× 10−2 rad2

)
and the

synthesized phase
(
σ2
b = 9.12× 10−3 rad2

)
; the background noise reduces by 55%.

As a consequence, the diffraction rings near the bottom of Fig. 2.11(a) disappear,

enabling other particles to be better distinguished.

2.5 Conclusion

We have demonstrated the principle of using phase retrieval to implement syn-

thetic aperture imaging. Synthetic aperture imaging reduces diffraction noise and

enhances resolution by effectively increasing the numerical aperture. Previously this

technique has relied on digital holography for phase measurements. By obviating the

need for a reference arm, this approach provides a more compact, less expensive, and

more stable setup. Our demonstration paves the way for other applications such as

tomographic phase microscopy to be enabled by phase retrieval.
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3. SYNTHETIC APERTURE MICROSCOPY BASED ON

REFERENCELESS PHASE RETRIEVAL WITH AN

ELECTRICALLY TUNABLE LENS

Phase imaging microscopy, based either on holography or non-holographic methods

such as phase retrieval, has seen considerable recent attention. Phase retrieval offers

the advantage of being free of a reference arm and enables a more stable and compact

setup. We present an optical setup which provides enhanced resolution by implement-

ing synthetic aperture imaging based on phase retrieval using an electrically tunable

lens (ETL). The ETL is a more compact and less expensive alternative to computer-

ized translation stages and spatial light modulators. Before applying phase retrieval,

we discuss a general calibration algorithm which performs image registration, cor-

rects for magnifications, and determines the axial locations of image planes. Finally

we obtain resolution-enhanced images of a phase grating and of cells to demonstrate

the practical application of our technique.

3.1 Introduction

Imaging phase objects, such as transparent biological specimens, is an important

application in microscopy. A common way to view transparent samples is to use

fluorescence; well-known methods include confocal, 4π, structured illumination, and

stimulated emission depletion microscopy [1,39,40]. A drawback is that some samples

may not be fluorescent or are not easily fluorescently tagged. Phase objects have an

important property that they induce phase shifts as light diffracts through them. By

converting these phase shifts to intensity variations, techniques like phase contrast

or differential interference contrast (DIC) can qualitatively image phase, which acts

as a label-free contrast agent [41–43]. More recent efforts to quantify phase offer the
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advantage of measuring cell thickness [9], quantifying path lengths [13, 44], numeri-

cally focusing samples [12,14,45], and viewing 3D cellular structure [17]. Holography

is a commonly used technique to measure phase, but it requires a reference arm

which makes it sensitive to vibrations and temperature changes. Referenceless single

beam techniques compute phase from a sequence of diffraction patterns. Some exam-

ples of diffraction patterns include defocused images [21, 25, 26], spatially modulated

illumination [2, 46], angular illumination [47], and structured illumination [16, 48].

Defocusing images is attractive because it can be simply implemented by moving a

camera on a translation stage [27], applying a lens function on a 2D spatial light

modulator (SLM) [49,50], or changing the focal length of an electrically tunable lens

(ETL) [51–54]. Of these different ways to defocus, the ETL is a compact, relatively

inexpensive option that is free of mechanical motion, in contrast to computerized

translation stages or 2D SLMs.

The resolution of phase objects can be improved using different techniques. Some

holographic techniques include off-axis illumination [11, 55], structured illumination

[16, 56], or shorter wavelength sources [57]. Synthetic aperture imaging uses off-axis

illumination to capture higher spatial frequencies that would be cut-off by the finite

aperture of the objective lens. For example, electric field images can be captured

at different angles based on phase-shifting interferometry [11]. Alternatively, non-

holographic techniques can be based on referenceless phase retrieval, which has the

advantage of being a more stable and compact setup without requiring expensive

components such as a high frame rate camera. Some examples of non-holographic

methods are based on synthetic aperture imaging [58,59], structured illumination [60],

and angular illumination [47].

In this work, we propose a variant on synthetic aperture microscopy based on

referenceless phase retrieval. The proposed technique uses an electrically tunable lens

(ETL) to defocus images, which eliminates the mechanical motion of the translation

stage and avoids the cost and bulkiness of a spatial light modulator. As part of this

technique, we develop a calibration algorithm to register images, correct for image
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magnifications, and compute the axial locations of image planes. This algorithm

more generally applies to other experiments which require precise alignment of images

or image magnification to be controlled. For example, transport-of-intensity phase

microscopy with an ETL [54] and 3D light-sheet microscopy with a tunable lens

[52] are sensitive to image alignment and magnification and could benefit from this

algorithm.

3.2 Experiment Description

3.2.1 Setup

Figure 3.1(a) illustrates the experimental setup. Mirror M1 tilts to scan the sample

at different angles. After traveling through the objective lens, light passes through

the ETL (Optotune, EL-10-30-C-VIS-LD-MV) with variable focal length controlled

by a user-supplied input current. The focal length can be tuned from -600 mm to

infinity to 170 mm over a current range from 0 mA to 300 mA [61]. In this non-

telecentric configuration, image magnification varies with ETL focal length fETL. In

theory, for thin lenses, the magnification factor γ, which results in a scaled image

I(γx, γy), depends on fETL as

γ =
fETLfTL

fOL(fETL + fTL − dETL/TL)
(3.1)

where fTL and fOL are focal lengths of the tube and objective lenses, and dETL/TL

is the distance between the ETL and TL [62]. Similarly, we can make a theoretical

calculation of the axial location z of an image plane for a given fETL. Note z refers

to the distance between the sample plane and the plane which would be imaged onto

the CCD for a given fETL. In Fig. 3.1(c), the sample is located at z = 0. An image

taken at z = 0 refers to the sample imaged onto the CCD; the sample is in focus. In

theory, z depends on fETL as [62]

z =
fTL(dETL/TL − fETL)

γ(dETL/TL − (fETL + fTL))
=
fOL(fETL − dETL/TL)

fETL

. (3.2)
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Fig. 3.1. (a) Setup. The red and green rays trace 2 angles of illu-
mination. He-Ne: 633 nm; M1: gimbal mount mirror; L1: lens (f =
300 mm); BFP: back focal plane of the condenser lens; C: condenser
lens; OL: objective lens (50X, NA 0.75); ETL: electrically tunable
lens; TL: tube lens (f = 200 mm). (c) θ is the angle of illumina-
tion. (d) We divide Us(u, v) into partitions. In partition k, we set
Us(u, v) = Uk(u, v), where k is the beam position at the BFP in (b),
and Uk(u, v) is the corresponding spectrum.
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However, the calculations in Eqs. (3.1) and (3.2) require precise knowledge of physical

parameters such as dETL/TL and fETL. Rather than trying to make precise measure-

ments, we describe a practical algorithm to determine γ and z.

3.2.2 Overview of the Calibration Algorithm

Next we describe a calibration algorithm which will correct for image magnifica-

tions arising from non-telecentricity, as well as register images and determine the axial

locations of image planes. The algorithm sequentially optimizes over these unknown

parameters. We note that this sequential strategy is inspired by the algorithm in [50].

As an input to the calibration routine, we measure the complex electric field at the

focal plane of the OL (z = 0 in Fig. 3.1(c)) over all angles to be scanned. We can

make this measurement using off-axis interferometry with Fourier filtering [13, 44].

After calibration, extra components required for the interferometer can be removed.

In this work we measure five total angles: one at DC (θ = 0◦ in Fig. 3.1(c))

plus four angles around the periphery of the back focal plane of the condenser lens

(Fig. 3.1(b)), spaced by 90◦ and scanned in an approximate circle so that the largest

illumination angle is θ = 12.7◦. Of course this technique can include more angles.

Let us denote the fields measured in the calibration step as uc0(x, y), . . . , uc4(x, y). For

example, uc0(x, y) is the field at DC illumination, while uc1(x, y) corresponds to the

field measured when the beam is at position 1 (Fig. 3.1(b)) at the BFP (Fig. 3.1(a)).

For a given angle of illumination or beam position k at the BFP, the algorithm

begins by numerically propagating the complex electric field uck(x, y) to different z

planes, where the user supplies an initial guess of the axial locations in sample space.

Let ẑ1, . . . , ẑNim
denote the current guess of the axial locations, where Nim is the total

number of images for a given angle; z refers to the distance between the sample plane

and the plane which would be imaged onto the CCD for a given ETL setting. Let us

represent the true axial locations as z1, . . . , zNim
. In our experiment we measure 11

images for each angle (Nim = 11), with each image corresponding to a different focal
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length of the ETL. Note that changing the ETL focal length equivalently defocuses

the sample to a different z (Fig. 3.1(c)). After numerical propagation, we obtain a

set of simulated images {Is(x, y; ẑi) : i = 1, . . . , Nim}. Our goal is to match the set

of simulated images {Is(x, y; ẑi) : i = 1, . . . , Nim} with the set of measured images

{Im(x, y; zi) : i = 1, . . . , Nim}. During calibration we will refine our guess of ẑi.

3.2.3 Strategy for Algorithm Convergence

When trying to match 2 images, the algorithm may get stuck in a local minimum.

The best way to avoid a local minimum is to start with an initial guess that matches

the 2 images as closely as possible. Then the job of the algorithm is to refine the

initial guess to optimize the cross-correlation ρ

ρ =
1

N

∑
x,y

(Im(x, y; zi)− Īm)(Is(x, y; ẑi)− Īs)
σmσs

(3.3)

where Īm and Īs denote average intensities, σm and σs are intensity standard devia-

tions for the measured and simulated images, respectively, and N is the total number

of pixels. Cross-correlation works best on objects with information-rich features such

as clear patterns. We find that we can make a good initial guess by assuming that

the image shifts, magnifications, and defocus are linearly proportional to the applied

current on the ETL, iETL.

The physical intuition is that as the ETL focal length changes, the lens deforms

to different shapes, causing the beam to deflect. For example, suppose a deflection

of δx results in a shifted image I(x + δx, y). As a rough geometrical approximation,

we can estimate the shift amount δx to be proportional to iETL, fTL, and the angle

of illumination θ:

δx ∝ iETLfTLtanθ (3.4)

where θ can be measured in a calibration step using off-axis interferometery.

Similarly, given a magnified image I(γx, γy), we can roughly predict image mag-

nification γ as a linear function of iETL. In theory, Eq. (3.1) describes γ as a function
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of physical parameters. For an initial guess, we start with the simplest relation that

γ is linearly proportional to iETL:

γ ∝ iETL. (3.5)

To make an initial guess for the axial location of an image plane, suppose an image

is located at z, which we represent as I(x, y; z). In theory, Eq. (3.2) computes z in

terms of physical parameters. Since measuring these parameters is difficult, instead

we start with the simplest possible model that z is proportional to iETL:

z ∝ iETL. (3.6)

One way to make the guesses in Eqs. (3.4)-(3.6) more precise is to initially deter-

mine δx, γ, and z by rough inspection as iETL varies. Experimentally, we find that

this strategy brings these parameters close enough to the actual values so that the

calibration algorithm, described below, can compute the correct values.

3.2.4 Registering Images

According to the pixel size δp of the sensor array, the intensities I(x, y) are sam-

pled as I[m,n] = I(mδp, nδp). The sampled simulated and measured images can be

represented as

Is[m,n; ẑi] = Is(mδp, nδp; ẑi) (3.7)

and

Im[m,n; zi] = Im(mδp, nδp; zi). (3.8)

The next step in the calibration algorithm is to shift the measured images in the

horizontal and vertical directions to optimally match the simulated intensity images

by maximizing ρ1:

ρ1 (∆m,∆n) =
1

N

∑
m,n

(Im[m+ ∆m, n+ ∆n; zi]− Īm)(Is[m,n; ẑi]− Īs)
σmσs

(3.9)
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where ∆m and ∆n are the pixel shift amounts to be tested. We find that trying values

−11 ≤ ∆m,∆n ≤ 11 gives good, convergent results. Once we find the optimal shifts

∆∗m and ∆∗n as

(∆∗m,∆
∗
n) = argmax

∆m,∆n

ρ1 (∆m,∆n) , (3.10)

we update the measured image as

Im[m,n; zi]← Im[m+ ∆∗m, n+ ∆∗n; zi]. (3.11)

3.2.5 Rescaling Images

Next we would like to find the magnification γ that maximizes the cross-correlation

ρ2:

ρ2(γ) =
1

N

∑
m,n

(Im[γm, γn; zi]− Īm)(Is[m,n; ẑi]− Īs)
σmσs

(3.12)

The general strategy is to try different values for γ and find the optimal γ∗ that

maximizes ρ2. Since γm or γn may not be integer-valued, the magnified image

Im[γm, γn; zi] can be computed using bicubic interpolation. We find that trying val-

ues in the range 0.99 ≤ γ ≤ 1.01, sampled in increments of 0.002, yields convergent

results. We compute the optimal γ∗ as

γ∗ = argmax
γ

ρ2 (γ) (3.13)

and update the measured image with the optimal γ∗:

Im[m,n; zi]← Im[γ∗m, γ∗n; zi]. (3.14)

3.2.6 Calculating Axial Locations of Image Planes

Next we would like to find the amount of defocus ∆z that maximizes the cross-

correlation ρ3

ρ3 (∆z) =
1

N

∑
m,n

(Im[m,n; zi]− Īm)(Is[m,n; ẑi + ∆z]− Īs)
σmσs

. (3.15)
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Fig. 3.2. Flowchart of the calibration algorithm. The program per-
forms image registration, corrects for magnifications, and determines
the axial locations of image planes.
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Using a similar strategy as before, we test different values of ∆z in the range −1 µm ≤

∆z ≤ 1 µm, sampled in increments of 0.1 µm. We find that trying these values yields a

convergent algorithm. For each value of ∆z, we simulate propagation of the complex

electric field uck(x, y) to ẑi + ∆z, measured in the calibration step as described in

Section 3.2.2. We compute the optimal ∆∗z as

∆∗z = argmax
∆z

ρ3 (∆z) . (3.16)

Then we update the axial location ẑi of image plane i with the optimal value ∆∗z:

ẑi ← ẑi + ∆∗z, (3.17)

and the simulated image is updated with the optimal value ∆∗z:

Is[m,n; ẑi]← Is[m,n; ẑi + ∆∗z]. (3.18)

After this update, the algorithm loops to repeat the steps of registering and rescaling

images and optimizing image axial locations until there is no change in the parameters.

In other words, for each image, the calibration loop terminates when ∆∗m,∆
∗
n = 0,

γ∗ = 1, and ∆∗z = 0. Figure 3.2 summarizes this procedure in a top-level flowchart.

3.2.7 Calibration Example

To illustrate the action of the calibration program, we examine a phase grating

sample. The sample consists of gratings with different periods patterned in PMMA

film (n = 1.49) on a glass substrate. For calibration, we examine a portion of the

sample with a 12 µm grating and display measured images before and after calibra-

tion, as well as simulated (numerically propagated) images after calibration, in Figs.

3.3(a)-(c). We see that the shifts and magnifications have been corrected so that the

measured and simulated images agree in Figs. 3.3(b) and (c).

To retrieve phase, we need to know how much each image is defocused along the

z axis. Figures 3.3(d) and (e) plot the axial locations and magnifications for DC

illumination, values typical over all angles. We designate the middle plane (plane 6)
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Fig. 3.3. Images of a 12 µm period grating with θ = 12.7◦, before
and after calibration. Note the measured and simulated images agree
after calibration in (b) and (c). The yellow arrows highlight shifts
which have been corrected.
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to be the focal plane (z = 0). By design we choose the the plane spacing to increase

non-linearly (approximately exponentially) in relation to the focal plane. We use the

approximation that the amount of defocus is linearly related to the change in current

applied to the ETL. The more closely spaced images capture high frequency variations

in intensity, while images with more defocus contain low frequency information [63].

These images are constraints for an iterative phase retrieval algorithm [25, 26]. At

each axial location, we compute an electric field with magnitude based on camera

measurements and phase based on numerical propagation from the previous plane.

This computation is iteratively repeated over each axial location to produce a phase

which is consistent with our measurements.

After retrieving the phase for each angle of illumination, we combine the resulting

complex electric fields (synthetic aperture imaging). Each field at oblique illumina-

tion highlights a portion of the spatial frequency domain not accessible by the DC

field alone. We construct a synthesized spectrum Us(u, v) by first assigning the low

frequencies (of radius approximately NA/λ) to be equal to the DC spectrum, denoted

as U0(u, v). In other words, in partition 0 (Fig. 3.1(d)), Us(u, v) = U0(u, v). When

the beam is positioned at the periphery of the BFP (numbered as 1, . . . , 4 in Fig.

3.1(b)) let us denote the Fourier transform of the fields measured at these angles as

U1(u, v), . . . , U4(u, v). Next we assign other partitions of Us(u, v) to corresponding

spectra. For example, in partition 1 (Fig. 3.1(d)), Us(u, v) = U1(u, v). Taking the

inverse Fourier transform of Us(u, v), we can extract the synthesized phase [58].

3.3 Results

3.3.1 Phase Reconstruction of a 1 µm Grating

To demonstrate resolution enhancement, we first image a phase grating sample

with a 1 µm period. In an earlier step (Fig. 3.3), we have determined the calibration

parameters (lateral shifts, magnifications, and axial locations) by examining a differ-

ent portion of the sample. The grating is patterned in PMMA film by electron beam
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Fig. 3.4. Phase reconstruction of a grating sample with a 1 µm period
(center grating). (c),(e) Yellow arrows highlight focusing dots which
become more sharpened in (e). Scale bars: 8 µm.
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lithography. Since the grating grooves lie below the planar surface of the PMMA

film, we expect the grooves to have a shorter path length and hence appear darker

than the background. The film thickness of 1.5 µm corresponds to a phase shift of

(2π/λ)∆n∆z − 2π ≈ 1 rad, where ∆n = 1.49− 1 = 0.49, ∆z = 1.5 µm, λ = 633 nm,

and we account for phase wrapping by subtracting 2π.

Figures 3.4(a) and (c) show some measured intensity images and the DC phase,

respectively, in which the 1 µm grating pattern is indiscernible. Under oblique il-

lumination the higher frequency pattern pops into view in Figs. 3.4(b) and (d) as

a vivid demonstration of previously inaccessible frequency content. These angular

fields enhance the resulting synthesized phase so that the pattern becomes clearly

distinguishable in Fig. 3.4(e) and in the line-outs (Fig. 3.4(f)). The modulation

depth of the grating in Fig. 3.4(f), measured by averaging the peak-to-valley heights

in the synthesized phase line-out, is about 1 rad, which matches the expected phase

shift given the PMMA film thickness of 1.5 µm.

3.3.2 Phase Reconstruction of a Biological Cell

Next we apply our technique to imaging cells, an important practical application.

Fixed unstained cells from the Human Embryonic Kidney 293 (HEK-293) line serve as

our sample of interest. For calibration, we examine a portion of the sample to correct

for the lateral shifts. The magnifications and axial locations should be the same as

determined from the phase grating. The lateral shifts differ because the beam travels

through different material: PMMA film on glass substrate in one case, and a glass

slide and phosphate buffered saline (PBS) medium in the other case. Once obtained,

the calibration parameters apply to other samples made of the same materials.

A neuron-like cell from this sample, shown in Fig. 3.5(a), exhibits interesting

phase features such as dendrites (labeled with arrows) and cellular structure, which

we hope to better resolve. Using retrieved phases from multiple illumination angles,

we construct the synthesized spectrum according to Fig. 3.1(d). The resulting syn-
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Fig. 3.5. Phase reconstruction of a HEK-293 cell. (c)-(e) Green line:
synthesized phase, blue line: DC phase. Scale bars: 8 µm.
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thesized phase displays features enhanced in resolution. To aid visualization, boxes A

and B in Figs. 3.5(a) and (b) highlight phase enhancements with the corresponding

line-outs plotted in Figs. 3.5(c) and (d). In particular, an axon terminal becomes

more visible in box A. Additionally, the dendrites, labeled with arrows, show more

clearly defined profiles in the synthesized phase.

To quantify the resolution improvement, we can first estimate the resolution before

synthetic aperture imaging. In window B we see an example of two features which

are barely resolvable in the DC phase but become distinguishable in the synthesized

phase, as indicated by the line-out in Fig. 3.5(d). We estimate that these two features

are separated by 1.2 µm, based on the green line (synthesized phase) in the line-out.

Hence,

δ =
κλ

NA
= 1.2 µm, (3.19)

where κ is an experimental parameter that depends on factors like the signal to noise

ratio of the detector, λ = 633 nm, and NA = 0.75. After synthetic aperture imaging,

NA improves to NA + sin θillum = 0.97, and the resolution improves to

δ =
κλ

NA + sin θillum

= 0.9 µm, (3.20)

where θillum = 12.7◦ is the largest angle of illumination used in our experiment. This

value makes sense since we are able to resolve the 1 µm grating in the synthesized

phase, as shown by the line-out in Fig. 3.4(f).

3.4 Conclusion

We have demonstrated synthetic aperture microscopy based on referenceless phase

retrieval with an electrically tunable lens. The ETL is a compact, relatively low cost

device, in contrast to other defocusing mechanisms such as a moving translation stage

or 2D SLM. We have devised a calibration algorithm to register and rescale images

and compute the axial locations of image planes. The developed algorithm is more

generaly useful for applications that are sensitive to image alignment, scaling, or

defocus, and it may enable other applications to benefit from the use of an ETL.
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4. SINGLE SHOT DIGITAL HOLOGRAPHY BASED ON

ITERATIVE RECONSTRUCTION WITH ALTERNATING

UPDATES OF AMPLITUDE AND PHASE

In this work, we propose a new technique to recover high quality images in single

shot digital holography. We develop an iterative reconstruction algorithm based on

alternating updates of amplitude and phase. Unlike the standard Fourier filtering

computation, our method is not constrained by finite filter window size. In addition,

this alternating update strategy allows prior knowledge such as object smoothness to

be applied to amplitude and phase separately. Regularizing phase separately helps

to mitigate effects of poor signal-to-noise ratio caused by low signal amplitude. We

demonstrate the effectiveness of our technique on simulated and experimentally mea-

sured data.

4.1 Introduction

Digital holography has many versatile applications, including microscopy [9, 15],

phase contrast [13, 64], 3D displays [65], tomography [17], and terahertz imaging

[66]. This technique enables the measurement of both amplitude and phase, which is

especially useful for quantifying path lengths, measuring index contrast, or viewing

biological samples [9, 58]. The complex object field, which is comprised of amplitude

and phase, can be extracted from a hologram in different ways. In phase-shifting

interferometry, the phase of the reference wave is stepped in increments; common

increments are 0, π/2, π, and 3π/2 [14]. The phase image is then extracted from the

images measured at each step. However, this method requires multiple images to be

recorded on a vibration-free optical table, typically with expensive devices such as

high frame rate cameras.



48

Off-axis interferometry enables the complex object field to be computed in a sin-

gle shot. A common way to compute the object field from a hologram is to use

spatial filtering in the frequency domain [44, 67]. However, spatial filtering has some

drawbacks. The zero order and cross terms have to be well-separated, and there is

some subjectivity in choosing the filter window size. A variety of approaches have

been proposed to help overcome this separation constraint between the zero order

and cross terms. By suppressing the zero order term, these approaches aim to extend

the spectral support of the image. Some examples of techniques include subracting

the zero order term from the hologram [68], iteratively solving for the field in the spa-

tial domain [69] and the frequency domain [70], and applying a nonlinear filter [71].

Other optimization-based approaches include formulating holography as a nonlinear

least squares problem [72], as constrained optimization [73], as penalized likelihood

with simulated data [74], or as a nonlinear inverse problem with total variation reg-

ularization [75].

In this work, we propose a new image reconstruction approach that recovers the

complex object field from a single hologram frame. To overcome the limitations of

choosing a finite window for Fourier filtering, we develop an iterative reconstruction

algorithm based on alternating updates of amplitude and phase. In contrast, the

state-of-the-art algorithms optimize with respect to the complex field [73–75]. The

medical imaging literature discusses alternating updates for applications like magnetic

resonance imaging [76]. To the best of our knowledge, this work is the first application

of the alternating update strategy to single shot digital holography. Alternatively

updating amplitude and phase has many advantages, enumerated below:

1. It allows prior knowledge on object constraints such as smoothness to be applied

separately to amplitude and phase. For example, phase objects like transparent

biological cells are smooth in amplitude, but it is desirable to preserve edges in

phase.
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2. It handles low amplitude areas in the image with poor signal. Since phase is

weighted by amplitude in the complex field as u = Aeiφ, low amplitude areas

will lead to a poor signal to noise ratio (SNR) in the phase image. Decoupling

phase and amplitude allows the phase to be regularized separately.

3. Our implementation is able to regularize phase without requiring phase unwrap-

ping. Other approaches assume that the phase is unwrapped before regulariza-

tion [75].

4. Experimentally we find that this alternating update strategy results in better

convergence than only updating the complex object field.

This work is organized as follows. In Section 4.2, we formulate the problem as a

minimization of a cost function to solve for amplitude and phase. We present our

algorithm in Section 4.2.4. We will compare our technique with standard Fourier

filtering and another algorithm from Section 4.2.5. In Section 4.3, we test our method

on simulated and experimental data. Finally in Section 4.4, we provide concluding

remarks.

4.2 Theory

4.2.1 Continuous Formulation

In digital holography, an object field o(x) = A(x)eiφ(x) and a reference field r(x) =

Ã(x)eiφ̃(x) combine to form an interference pattern measured on a camera:

Iideal(x) = |o(x) + r(x)|2

=
∣∣∣A(x)eiφ(x) + Ã(x)eiφ̃(x)

∣∣∣2
= A2(x) + Ã2(x) + 2A(x)Ã(x)cos

(
φ(x)− φ̃(x)

) (4.1)

where x = (x1, x2) is the spatial coordinate in the camera plane. The measured

hologram is generally noisy, which we can model as Gaussian noise that corrupts

the interference pattern Iideal(x). Let I(x) denote the measured hologram. It is also
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possible to model the measured hologram using a Poisson distribution [77, 78]. We

formulate the problem as the minimization of a cost function with general form

c(A, φ) = L(A, φ) + βAR(A) + βφR(φ)

where L(A, φ) is the negative log-likelihood function corresponding to our model of

the noisy hologram as a Gaussian distribution, βA and βφ are scalar regularization

parameters, and R(A) and R(φ) are roughness penalty functions for amplitude and

phase, respectively. In the continuous formulation, the likelihood function has the

form

L(A, φ) =

∫
R2

[
A2(x) + Ã2(x) + 2A(x)Ã(x)cos

(
φ(x)− φ̃(x)

)
− I(x)

]2

dx. (4.2)

To reduce noise and impose prior knowledge such as edge-preserving smoothness on

the object, we also minimize the total variation of the amplitude and phase with the

regularizer terms

R(A) =

∫
R2

√
|∇A(x)|2 + ε dx, (4.3)

R(φ) =

∫
R2

√
|∇eiφ(x)|2 + ε dx (4.4)

where ε is a small constant to ensure differentiability. Other prior models can also be

used [79]. Now the cost function becomes

c(A, φ) = L(A, φ) + βAR(A) + βφR(φ)

=

∫
R2

[
A2(x) + Ã2(x) + 2A(x)Ã(x)cos

(
φ(x)− φ̃(x)

)
− I(x)

]2

dx

+ βA

∫
R2

√
|∇A(x)|2 + ε dx + βφ

∫
R2

√
|∇eiφ(x)|2 + ε dx.

(4.5)

Our goal is to solve for amplitude and phase by minimizing this cost function:(
Â, φ̂

)
= argmin

A,φ
c(A, φ). (4.6)
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4.2.2 Discrete Formulation

According to the pixel pitch ∆x of the camera, we can write the sampled likelihood

function as

L(A, φ) =
∑
m∈Z2

[
A2(x) + Ã2(x) + 2A(x)Ã(x)cos

(
φ(x)− φ̃(x)

)
− I(x)

]2

∣∣∣∣∣
x=m∆x

=
∑
i

[
A2
i + Ã2

i + 2AiÃicos
(
φi − φ̃i

)
− Ii

]2

(4.7)

where A and Ã are vectors of the sampled object and reference amplitudes respec-

tively, where pixels are arranged in raster scan order. Similarly, I, φ, and φ̃ are vectors

of the sampled interference pattern and the object and reference phases respectively.

A subscript such as Ai refers to the ith element of the vector. The regularizer func-

tions are written as

R(A) =
∑
i

√
(CA)2

i + ε, (4.8)

R(φ) =
∑
i

√
|Ceiφ|2i + ε (4.9)

where C is a convolution matrix implementing the discretized first derivatives of the

nearest neighbors. For example, in

C =
[

Ch Cv

]T
, (4.10)

C is a concatenation of Ch and Cv which implements first derivatives in the horizonal

and vertical directions respectively. Since we are examining derivatives of eiφ, no

phase unwrapping is required for regularization. The cost function becomes

c(A,φ) = L(A,φ) + βAR(A) + βφR(φ)

=
∑
i

[
A2
i + Ã2

i + 2AiÃicos
(
φi − φ̃i

)
− Ii

]2

+ βA
∑
i

√
(CA)2

i + ε+ βφ
∑
i

√
|Ceiφ|2i + ε.

(4.11)
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Our goal is to solve for A and φ by minimizing this cost function:(
Â, φ̂

)
= argmin

A,φ∈RN

c(A,φ). (4.12)

We estimate A and φ by alternatively updating them in each iteration:

A(n+1) = argmin
A∈RN

c(A,φ(n)), (4.13)

φ(n+1) = argmin
φ∈RN

c(A(n+1),φ). (4.14)

4.2.3 Alternative Formulation: Solve for the Complex Object Field

The interference pattern can be written in terms of amplitude and phase as in Eq.

(4.1), or it can be written in terms of the reference and object fields:

Iideal(x) = |r(x)|2 + |o(x)|2 + o(x)r∗(x) + o∗(x)r(x). (4.15)

As before, let I(x) denote the measured hologram. An alternative formulation of the

problem is to minimize a cost function in terms of the complex object field:

c(o) = L(o) + βR(o)

where β is a scalar regularization parameter. The likelihood function is

L(o) =
∑
i

[
|ri|2 + |oi|2 + oir

∗
i + o∗i ri − Ii

]2
(4.16)

where o and r are vectors of the sampled complex object and reference fields. We

also minimize the total variation of the object field with the regularizer term

R(o) =
∑
i

√
|Co|2i + ε. (4.17)

The cost function becomes

c(o) = L(o) + βR(o)

=
∑
i

[
|ri|2 + |oi|2 + oir

∗
i + o∗i ri − Ii

]2
+ β

∑
i

√
|Co|2i + ε.

(4.18)

For comparison with optimization based on alternating updates of amplitude and

phase, our goal is to solve for the complex object field by minimizing this cost function:

o = argmin
o∈CN

c(o). (4.19)
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4.2.4 Optimization Algorithm Based on Alternating Updates

We solve the problem of Eqs. (4.12)-(4.14) by alternatively updating A and φ in

each iteration of an outer loop. We use two inner loops: one to update A and another

to update φ. Each inner loop uses gradient descent to minimize the cost function in

Eq. (4.11). We use the following iterative algorithm:

1. Initialize A, φ, for example, by Fourier filtering.

2. Solve for A(n+1) = argminA∈RN c
(
A,φ(n)

)
.

(a) We compute A(n+1) in an inner loop. Let A(n,i) denote the nth and ith

iterations of the outer and inner loops respectively. Initialize A(n,0) ←

A(n). Compute the cost gradient:

d = ∇Ac
(
A,φ(n)

)∣∣
A=A(n,i) = ∇AL

(
A,φ(n)

)∣∣
A=A(n,i) + βA∇AR(A)

∣∣∣
A=A(n,i)

.

(4.20)

(b) Perform a line search to find the optimal step size α∗:

α∗ = argmin
α

c
(
A(n,i) + αd,φ(n)

)
. (4.21)

(c) Set

A(n,i+1) ← A(n,i) + α∗d, (4.22)

i← i+ 1. (4.23)

Return to step (a) and repeat for desired number of iterations or until cost

c (A,φ) is below a specified threshold. After the inner loop is finished, set

A(n+1) ← A(n,i). (4.24)

3. Solve for φ(n+1) = argminφ∈RN c
(
A(n+1),φ

)
.
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(a) We compute φ(n+1) in an inner loop. Let φ(n,i) denote the nth and ith

iterations of the outer and inner loops respectively. Initialize φ(n,0) ← φ(n).

Compute the cost gradient:

d = ∇φc
(
A(n+1),φ

)∣∣
φ=φ(n,i) = ∇φL

(
A(n+1),φ

)∣∣∣
φ=φ(n,i)

+ βφ∇φR(φ)

∣∣∣∣
φ=φ(n,i)

.

(4.25)

(b) Perform a line search to find the optimal step size α∗:

α∗ = argmin
α

c
(
A(n+1),φ(n,i) + αd

)
. (4.26)

(c) Set

φ(n,i+1) ← φ(n,i) + α∗d, (4.27)

i← i+ 1. (4.28)

Return to step (a) and repeat for desired number of iterations or until cost

c (A,φ) is below a specified threshold. After the inner loop is finished, set

φ(n+1) ← φ(n,i). (4.29)

4. Set

n← n+ 1. (4.30)

Return to step 2 and repeat for desired number of iterations or until cost c (A,φ)

is below a specified threshold.

Note that the cost gradients in Eqs. (4.20) and (4.25) involves calculating the gradi-

ents ∇AL(A,φ) and ∇φL(A,φ). For reference, the expressions for these gradients

are listed in Appendix A.

Since the cost function in Eq. (4.11) is non-convex [80], the algorithm may con-

verge to a local minimum depending on the initial guess for A and φ. For example,

we can compute the initial guess by using Fourier filtering. Alternatively, as an ini-

tial guess, we can use the output of another algorithm based on minimizing cost with

respect to the complex object field; this algorithm is discussed later. Empirically, we

find that these two ways of initialization yield good convergence.
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4.2.5 Optimization Algorithm to Solve for the Complex Object Field

Instead of minimizing over amplitude and phase, we can try to minimize over

the complex object field by solving the problem in Eq. (4.19). In this case, we use

only one loop for iteratively minimizing the cost by gradient descent. The algorithm

proceeds as follows:

1. Initialize o, for example, by Fourier filtering.

2. Compute the cost gradient

d = ∇oc (o)|o=o(n) = ∇oL (o)|o=o(n) + β∇oR(o)
∣∣
o=o(n) . (4.31)

3. Perform a line search to find the optimal step size α∗:

α∗ = argmin
α

c
(
o(n) + αd

)
. (4.32)

4. Set

o(n+1) ← o(n) + α∗d, (4.33)

n← n+ 1. (4.34)

Return to step 2 and repeat for desired number of iterations or until cost c(o)

is below a specified threshold.

Note that computing the cost gradient in Eq. (4.31) depends on the quantity ∇oL(o).

For reference, we list this quantity in Appendix A. Empirically, we find that making an

initial guess by Fourier filtering or by guessing a zero image yields good convergence.

Note that the current literature discusses variants of this strategy of minimizing over

the complex object field. As outlined in Section 4.1, our algorithm based on alternat-

ing updates of amplitude and phase offers advantages over the current techniques.

4.3 Experiment

We test our iterative reconstruction algorithm on both simulated and experimen-

tally measured data. We will compare our technique with standard Fourier filtering
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Fig. 4.1. Illustration of limited filter window size on a simulated
phantom. (a) Simulated phase image (rad). (b) Simulated hologram
corresponding to (a). (c) Power spectrum of (b).

and with an algorithm based on solving for the complex object field. Our goal is to

demonstrate the advantages outlined in Section 4.1.

4.3.1 Simulated Data

For simulation, we create a test object consisting of uniform amplitude A(x)

equal to 1 everywhere. We set the phase φ(x) to have the form of the Shepp-Logan

phantom, as shown in Fig. 4.1(a). The resulting object o(x) = eiφ(x). To simulate an

off-axis configuration, the reference beam is r(x) = ei2πf ·x. We choose |f | = (0.16, 0),

where frequency has units of (pixel)−1. For demonstration, |f | is set to be small

enough so that the zero order and cross terms overlap in the frequency domain. The

corresponding interference pattern is shown in Fig. 4.1(b), with its Fourier transform

in Fig. 4.1(c). A common way of extracting φ(x) is to apply a filter in the frequency

domain to select one of the sidebands. In Fig. 4.1(c), we indicate this filter with the

black circle. This filter cannot be enlarged any further, otherwise it would encompass

the DC frequency. Thus, a limitation of this technique is the finite window size, which

may clip higher frequencies.
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Fig. 4.2. Phase reconstruction of the simulated phantom. (a) True
phase. (b) Phase from Fourier filtering (see Figs. 4.1(a)-(c)). (c)
Phase from the proposed method (Section 4.2.4). (d) Line-out across
the white dashed line in (a) with comparison to (b) and (c).
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Table 4.1
Regularization Parameters Used for Simulated Data

Proposed Method (Section 4.2.4) Alternative Method (Section 4.2.5)

βA 10 -

βφ 0.5 -

β - 100

Our algorithm helps to overcome this limitation of finite window size. As an

illustration, we first retrieve phase by filtering in the frequency domain as shown in

Fig. 4.1(c), and the computed phase is shown in Fig. 4.2(b). The test object has a

high phase value of 2 rad at the outer edge, which contributes to the high frequency

content in Fig. 4.1(c). Since the filter cuts off high frequencies, ringing occurs in the

retrieved phase in Fig. 4.2(b). For comparison, we plot line-outs across the dashed

white line in Fig. 4.2(a) and across the same points in Figs. 4.2(b) and (c). The

line-out in Fig. 4.2(d) displays the ringing in the phase computed by Fourier filtering.

To compare with Fourier filtering, we compute phase by using our proposed algo-

rithm from Section 4.2.4. Table 4.1 lists the regularization parameters. Figure 4.2(c)

shows the resulting phase with the line-out plotted in Fig. 4.2(d) as the blue line la-

beled “Optimization.” In contrast to the Fourier filtering result with ripple artifacts,

the phase more closely matches the true value. In addition, the three dots in the

phantom are now distinguishable.

Rather than alternating updates of amplitude and phase, we can directly solve for

the complex object field. We apply the procedure in Section 4.2.5 on our simulated

data and display the amplitude and phase in Figs. 4.3(a) and (b). Table 4.1 lists

the regularization parameters. For comparison, the amplitude and phase from our

proposed algorithm is shown in Figs. 4.3(c) and (d). Figure 4.3(b) shows residual

modulation from the fringes and blurring of the 3 dots in the phantom. In Fig. 4.3(d),

these fringe artifacts are reduced, and the 3 dots are distinguishable. In our technique,
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Fig. 4.3. Image reconstruction with two algorithms on simulated
data. (a),(b) Reconstructed amplitude and phase using the alter-
native method (Section 4.2.5). (c),(d) Reconstructed amplitude and
phase using the proposed method (Section 4.2.4). Note the change in
grayscale between (a) and (c).
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Fig. 4.4. Illustration of limited filter window size on experimental
data. (a) Measured hologram with low carrier frequency. (b) Power
spectrum of (a). (c) Phase from Fourier filtering with low carrier
frequency. (d) Measured hologram with high carrier frequency. (e)
Power spectrum of (d). (f) Phase from Fourier filtering with high
carrier frequency. This serves as a reference or true phase. Scale bars
= 10 µm.

we update amplitude and phase separately; it is more physically intuitive that each

should be smooth, as opposed to enforcing that the modulus of the complex object

field be smooth. The amplitude in Fig. 4.3(c) shows much less variation (about 0.09)

than in Fig. 4.3(a) (about 1.6), since we are directly penalizing roughness on the

amplitude in our algorithm from Section 4.2.4.
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Table 4.2
Regularization Parameters Used for Experimental Data

Proposed Method (Section 4.2.4) Alternative Method (Section 4.2.5)

βA 30 -

βφ 50 -

β - 20

4.3.2 Experimental Data

Next we test our proposed algorithm on experimentally measured data. Our

sample consists of gratings patterned on PMMA film (n = 1.49) with a height contrast

of about 1.5 µm. Using an off-axis configuration, we measure the hologram in Fig.

4.4(a) and take its Fourier transform in Fig. 4.4(b). First we try the Fourier filtering

approach by applying a filter in the frequency domain, indicated by the black circle in

Fig. 4.4(b). The resulting phase is shown in Fig. 4.4(c), which shows lower resolution

due to the limited filter window size.

To obtain a reference or true phase, we measure phase with enhanced resolution

by increasing the angle between object and reference beams. The carrier frequency

increases, thus allowing the filter window size to increase. Figures 4.4(d)-(f) show the

measured hologram, corresponding power spectrum with the applied filter circled in

black, and retrieved phase at higher resolution. Although a high carrier frequency is

ideal, sometimes the experimental configuration may not allow a large angle between

object and reference beams, the geometry may be limited by other factors such as

sampling requirements of the camera pixels, or the sample may contain high spatial

frequencies. We will use the data at high carrier frequencies as a reference for our

results. Our goal is to apply the proposed method (Section 4.2.4) to the low carrier

frequency data (Fig. 4.4(a)).

We apply the proposed algorithm in Section 4.2.4 to our experimentally measured

data (Fig. 4.4(a)), and the computed phase is shown in Fig. 4.5(c). Table 4.2 lists the
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Fig. 4.5. Phase reconstruction of gratings. (a) Phase from Fourier
filtering with high carrier frequency (see Figs. 4.4(d)-(f)). This serves
as a reference or true phase. (b) Phase from Fourier filtering with low
carrier frequency (see Figs. 4.4(a)-(c)). (c) Phase from the proposed
method using low carrier frequency data. (d),(e) Line-outs across
middle and rightmost gratings. Scale bars = 10 µm.
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regularization parameters. In general Fig. 4.5(c) looks less noisy than Fig. 4.5(b). For

display, the phase calculated by the algorithm is unwrapped; note a few unwrapping

errors may be visible. Figure 4.5(d) shows a quantitative comparison of line-outs

across the grating in the center of Figs. 4.5(a)-(c). This grating is designed to have

a 2 µm period; due to diffraction effects, details that are finer than a 2 µm period

appear. Using our proposed method, plotted as a blue line labeled “Optimization,”

we can see details from the diffraction features in the computed phase. Indeed the

reference phase (black line) and our recovered phase (blue line) exhibit the same

periodicity. Figure 4.5(e) plots line-outs across the grating on the rightmost side of

Figs. 4.5(a)-(c). This grating is designed to have a 1 µm period. Fourier filtering

results in loss of high frequency detail (orange line), but our algorithm recovers this

detail as shown by the 1 µm period pattern in the line-out (blue line).

As with the simulated data, we can solve for the complex object field by applying

the algorithm in Section 4.2.5. Table 4.2 lists the regularization parameters. Figures

4.6(a) and (b) show the amplitude and phase based on minimizing over the complex

field, while Figs. 4.6(c) and (d) show the corresponding quantities using our proposed

algorithm. The main difference is the loss of detail in Fig. 4.6(b) compared to the

phase in Fig. 4.6(d). Part of the reason may be that the measured hologram in Fig.

4.4(a) has uneven illumination; areas of low SNR in the dark regions lead to poor

phase reconstruction since phase is weighted by amplitude as u = Aeiφ. By separately

updating A and φ, phase can be regularized independently from amplitude.

4.4 Conclusion

In this work we present an iterative reconstruction algorithm based on alternating

updates of amplitude and phase for single shot digital holography. Through this

approach, we are not subject to the limitations of the finite window size in Fourier

filtering, and we can directly impose prior knowledge such as smoothness on amplitude

and phase individually. Also, decoupling these two quantities allows phase to be
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Fig. 4.6. Image reconstruction with two algorithms on experimental
data. (a),(b) Reconstructed amplitude and phase using the alter-
native method (Section 4.2.5). (c),(d) Reconstructed amplitude and
phase using the proposed method (Section 4.2.4). Scale bars = 10
µm.
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regularized independently from amplitude, which helps to mitigate artifacts from low

SNR. Note no phase unwrapping is required. This technique improves amplitude and

phase reconstruction from measured single shot holograms, and it will benefit the

many applications of digital holography.
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5. SUMMARY AND FUTURE RESEARCH DIRECTIONS

5.1 Summary

In this work we experimentally and algorithmically investigate three main aspects

of phase imaging microscopy including synthetic aperture imaging, phase retrieval,

and digital holography. Chapter 1 summarizes the uses of phase imaging microscopy

and some important problems in this field. In Chapter 2, we develop a microscope

to enhance the resolution of phase images. Our non-holographic design offers the

advantage of of being more stable than standard interferometric techniques, which

are more sensitive to environmental vibrations and temperature fluctuations. By

removing the reference arm, we achieve a more compact and less costly setup. We

investigate phase measurements with a sample of 10 µm polystyrene beads and find

our measurements to be in good agreement with holographic computations. We

estimate our resolution to improve to 1.24 µm from 1.59 µm. To the best of our

knowledge, this work is the first experimental demonstration of referenceless phase

retrieval at off-axis illumination.

In Chapter 3, we implement a synthetic aperture microscope using an electrically

tunable lens (ETL) for defocusing images. This design removes the need for mechan-

ically moving the camera on a translation stage, and the ETL has the advantage of

being a compact, low cost device. We develop a calibration algorithm for correcting

for image shifts and magnifications and for quantifying defocus. The algorithm is

more generally useful for applications that are sensitive to alignment and scaling of

defocused images. We investigate the resolution enhancement of our technique by

imaging a 1 µm grating patterned on PMMA film. The off-axis illumination enables

us to see sub-µm resolution, with an increase in NA to 0.97 from 0.75. We also image

a biological cell sample to illustrate the practical application of our technique. With
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synthetic aperture imaging, we are able to resolve finer features in the cell. This work

can potentially help other applications benefit from the use of an ETL.

In Chapter 4, we propose a new technique for reconstructing images from a dig-

ital hologram. Our iterative reconstruction algorithm is based on minimizing a cost

function and alternatively updating amplitude and phase. The alternating update

strategy applies prior knowledge such as object smoothness to amplitude and phase

separately. The other alternative is to regularize the complex object field, but it is

more physically intuitive to impose smoothness on the amplitude and phase sepa-

rately. In addition, since low amplitudes multiply phase as u = Aeiφ, updating phase

separately helps to decouple the effects of poor SNR on phase. For demonstration,

we reconstruct phase from simulated data. The standard Fourier filtering compu-

tation suffers from ringing artifacts and loss of detail, while our technique shows

improvement in these aspects. We also measure experimental data from a 1 µm

grating patterned on PMMA film. The reconstructed phase shows an improvement

in resolution and reduction in noise compared to Fourier filtering. To the best of

our knowledge, this work is the first application and experimental demonstration of

iterative reconstruction based on alternating updates of amplitude and phase to dig-

ital holography. Our technique can help improve image reconstruction for the many

applications of digital holography.

5.2 Future Research Directions

In our research, we have measured 2D images of a sample at multiple angles for

resolution enhancement. This idea is central to how tomography works [81]. Cur-

rent techniques use some form of interferometry to implement tomographic phase

microscopy. One interesting research direction is to apply our referenceless phase

retrieval measurements to create a 3D tomogram of a sample. There are some chal-

lenges to implementing this experiment. One challenge is that phase retrieval may

converge to a local minimum. There has been research in adding speckle modulation
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to the diffracted light. The main idea is to make the low frequency parts of the

image vary more rapidly through defocus. To leverage this idea, we can add speckle

modulation to the images that we measure over all the angles. We can also use our

calibration algorithm from Chapter 3 to register defocused images. We believe that

studying tomographic imaging based on non-holographic implementations would be

a useful contribution to phase microscopy.

Another interesting research direction is to stretch the alternating update ap-

proach of Chapter 4 to applications with partial data. For example, we can inves-

tigate image recovery as the hologram is downsampled [75] to see how our results

compare with other algorithms. Our approach should be robust to sparse data since

we can incorporate prior knowledge such as piecewise smoothness in our cost function.

Downsampling the hologram is a useful application since it would speed data acqui-

sition times. Another practical application is dealing with low light or high noise.

We could extend our experiment to vary illumination levels; ideally we should still be

able to reconstruct amplitude and phase with our technique. It would be interesting

to compare the noise performance of our algorithm with other methods.
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A. MATHEMATICAL EXPRESSIONS FOR

IMPLEMENTING OPTIMIZATION IN DIGITAL

HOLOGRAPHY

The optimization algorithms from Sections 4.2.4 and 4.2.5 require computation of gra-

dients of the likelihood functions L(A,φ) and L(o). For reference, these expressions

are listed below:

[∇AL(A,φ)]i = 2
[
A2
i + Ã2

i + 2AiÃi cos
(
φi − φ̃i

)
− Ii

]
·
[
2Ai + 2Ãi cos

(
φi − φ̃i

)]
,

(A.1)

[∇φL(A,φ)]i =− 2
[
A2
i + Ã2

i + 2AiÃi cos
(
φi − φ̃i

)
− Ii

]
·
[
2AiÃi sin

(
φi − φ̃i

)]
,

(A.2)

[∇oL(o)]i = 2
[
|ri|2 + |oi|2 + oir

∗
i + o∗i ri − Ii

]
· [o∗i + r∗i ] . (A.3)
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