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ABSTRACT

Kuo, Wei-Cheng Ph.D., Purdue University, May 2015. Local Network Coding on Packet
Erasure Channels – From Shannon Capacity to Stability Region. Major Professor: Chih-
Chun Wang.

Network Coding (NC) has emerged as a ubiquitous technique of communication net-

works and has extensive applications in both practical implementations and theoretical de-

velopments. While the Avalanche P2P file system from Microsoft, the MORE routing

protocol, and the COPE coding architecture from MIT have implemented the idea of NC

and exhibited promising performance improvements, a significant part of the success of NC

stems from the continuing theoretic development of NC capacity, e.g., the Shannon capac-

ity results for the single-flow multi-cast network and the packet erasure broadcast channel

with feedback. However, characterizing the capacity for the practical wireless multi-flow

network setting remains a challenging topic in NC. For example, the difficulties of finding

the optimal NC strategy over multiple flows under varying-channel qualities and the rate

adaption scenarios hinder any further advancement in this area. Despite the difficulty of

characterizing the full capacity for large networks, there are evidences showing that even

when using only local operations, NC can still recover substantial NC gain. We believe that

a deeper understanding of multi-flow local network coding will play a key role in designing

the next-generation high-throughput coding-based wireless network architecture.

This thesis consists of three parts. In the first part, we characterize the full Shannon ca-

pacity region of the “COPE” principle when applied to a 2-flow wireless butterfly network

with broadcast packet erasure channels. The capacity results allow for random overhear-

ing probabilities, arbitrary scheduling policies, network-wide channel state information

(CSI) feedback after each transmission, and potential use of non-linear network codes. We

propose a theoretical outer bound and a new class of linear network codes, named the
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Space-Based Linear Network Coding (SBLNC), that achieves the capacity outer bound.

Numerical experiments show that SBLNC provides close-to-optimal throughput even in

the scenario with opportunistic routing.

In the second part, we further consider the complete network dynamics of stochastic

arrivals and queueing and study the corresponding stability region. Based on dynamic

packet arrivals, the resulting solution would be one step closer to practical implementation,

when compared to the previous block-code-based capacity study. For the 2-flow down-

link scenario, we propose the first opportunistic INC + scheduling solution that is provably

optimal for time-varying channels, i.e., the corresponding stability region matches the op-

timal Shannon capacity. Specifically, we first introduce a new binary INC operation, which

is distinctly different from the traditional wisdom of XORing two overheard packets. We

then develop a queue-length-based scheduling scheme, which, with the help of the new

INC operation, can robustly and optimally adapt to time-varying channel quality. We then

show that the proposed algorithm can be easily extended for rate adaptation and it again

robustly achieves the optimal throughput.

In the third part, we propose an 802.11-based MAC layer protocol which incorporates

the rate adaption solution developed in the second part. The new MAC protocol realizes

the promised intersession network coding gain for two-flow downlink traffic with short

decoding delay. Furthermore, we delicately retain the CSMA-CA distributed contention

mechanism with only 17 bits new header field changes, and carefully ensure the backward

compatibility. In summary, the new solution demonstrates concrete throughput improve-

ment without alternating the too much packet-by-packet traffic behavior. Such a feature

is critical in practical implementation since it allows the network coding solution to be

transparent to any arbitrary upper layer applications.



1

1. INTRODUCTION

As the number of smartphone users growing to the majority of wireless carrier customers,

the demand of wireless data rate has increased rapidly and expanded beyond the the tra-

ditional wireline service requirements. How to increase the wireless data rate supporting

multiple users simultaneously with certain scarce resources of the communication network

thus eventually becomes a critical and urgent topic. There are many possible solutions, e.g.,

ultra wide band communication and the multiple-input multiple-out antenna. Nonetheless,

network coding is one of the most promising directions which could potentially provide

considerable end-to-end throughput improvement and protect the data privacy of individ-

ual users.

Inspired by the butterfly network, Ahlswede et al. proposed the concept of network

coding in 2000 [1]. Since then, network coding has emerged as a ubiquitous technique

of modern data communication networks. The extensive applications of network coding

spread from practical implementations to theoretical results. The Avalanche P2P file sys-

tem from Microsoft removes the need of receiving all individual pieces of the original file

as in the BitTorrent system. The MORE protocol from MIT alleviates the use of a scheduler

to coordinate the transmission as in previous opportunistic routing protocols. The COPE ar-

chitecture from MIT incorporate network coding across multiple sessions and demonstrates

that the existing TCP/IP network layer transmission still has great potential to further in-

crease the overall throughput by 40% to 200%. All the above implementations are based on

the concept of network coding. Furthermore, in the areas of the network security, the data

center, and the analog signal processing, network coding has exhibited great potential on

augmenting their current performance. Meanwhile, a significant part of the success of net-

work coding stems from the continuing theoretic development of network coding capacity.

The seminal work [2] in 2003 utilized network coding as the backbone and prosed “random

linear network coding” to achieve the Shannon capacity of single-flow (or single-session)
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(a) (b) (c)

Fig. 1.1.: The illustration of local network coding gain on (a) the broadcast channel; (b)
the COPE principle butterfly wireless network; and (c) the opportunistic routing, where the
dashed arcs represent the broadcasting nature and the rectangle represents a packet.

multi-cast networks. And the feedback capacity of the broadcast channel, the long-term

open question in the area of Shannon capacity, has also been resolved by network coding

for the packet erasure channel case [3, 4].

1.1 Network Coding On Local Networks

However, even though COPE [5] has exhibited the great potential for network coding

being applied to multi-user (or multi-flow) wireless data networks, its corresponding the-

oretical capacity remains largely unsolved. The difficulties of finding the optimal network

coding strategy over multiple flows hinder the further advancement in this area. Despite the

difficulty of characterizing the full capacity for large networks, there are evidences show-

ing that even when using only local operations, network coding can still recover substantial

network coding gain. In the following, we are going to present three examples that can

demonstrate substantial network coding gain even on the local operations.

1.1.1 Network Coding On The Broadcast Channel

The first example is the network coding gain on the broadcast packet erasure channel.

Figure 1.1(a) illustrates the scenario where the network coding can benefit the throughput.

As shown in Figure 1.1(a), the dashed arc represents the node s can broadcast packets to d1
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and d2 simultaneously with certain probabilities. Assume d1 would like to convey packet

X and d2 would like to convey packet Y . However, in the first two transmissions by r,

unfortunately, d1 receives Y and d2 receives X . But then in the next time slot, the node s

can transmit the combined packet X + Y and both the destinations can recover the desired

packets if it receives the packet X + Y . Without network coding, the node s needs to

keep transmit X and Y separately until d1 and d2 receive the desired packet. Recently, [3]

and [4] successfully characterized the full capacity region of the 1-hop broadcast packet

erasure channel with ≤ 3 coexisting flows.

1.1.2 Network Coding On The Butterfly Wireless Network

The second example is the network coding gain on the COPE principle butterfly wire-

less network. Figure 1.1(b) illustrates its scenario and the dashed arc represent the corre-

sponding source node can broadcast packets to the connected end nodes. Suppose source

s1 would like to send a packet X to destination d1; source s2 would like to send a packet

Y to d2; and they are allowed to share a common relay r. Also suppose that when s1 (resp.

s2) sends X (resp. Y ) to r, destination d2 (resp. d1) can overhear packet X (resp. Y ). We

further assume that after the first two transmissions, both d1 and d2 can use feedback to

inform r the overhearing status at d1 and d2, respectively. Then instead of transmitting two

packets X and Y separately, the relay node r can send the linear combination [X+Y ]. Each

destination di can then decode its desired packet by subtracting the overheard packet from

the linear combination [X + Y ]. In the above simple example, the traditional store-and-

forward transmission scheme requires at least 4 transmissions (s1 to r, s2 to r, r to d1, and

r to d2). But with the network coding in COPE scheme, it only requires 3 transmissions.

Despite its simple nature, the exact capacity region of the COPE principle remains an

open problem even for the simplest case of two coexisting flows. Several attempts have

since been made to quantify some suboptimal achievable rate regions of the COPE prin-

ciple [6–15]. One difficulty of deriving the capacity region is due to the use of feedback

in the COPE principle. It is shown in [16] that although feedback could strictly enhance
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the capacity in a multi-unicast environment, the exact amount of throughput improvement

is hard to quantify. [17] proposes one queue-based approach for the general wireline and

wireless networks considering both inter-session and intra-session network coding. How-

ever, the results in [17] mainly focus on the benefits from the side information to decide

either inter-session or intra-session network coding should be applied, which is more re-

lated to [18]. [18] circumvents the difficulty of feedback-based analysis by considering a

special class of 2-staged coding schemes. Although the results in [18] fully capture the ben-

efits of message side information [16, 17, 19–23] , they capture only partially the feedback

benefits, which leads again to a strictly suboptimal achievable rate region.

1.1.3 Network Coding On The Opportunistic Routing

The third example is the network coding gain on the opportunistic routing. Figure 1.1(c)

illustrates its scenario and the dashed arc represent the node s can broadcast packets to both

r and d with certain probabilities indicated. Here we only have one session from s to d and

d would like to receive both packets X and Y . After two transmissions from s, the relay r

receives both X and Y while d only receives X . Then the relay r can directly transmit the

combined packet X + Y and d can recover Y linear operations. Without network coding,

then the opportunistic routing scheme requires a scheduler to inform r what has been re-

ceived by d. And then r can transmit Y . Keeping track of which packets have been heard

or not is a daunting task and network coding drastically simplify it. Recent works [24–26]

take the advantage illustrated in this example to remove the need of a central scheduler and

experimentally show that with network coding in a 20-node wireless testbed, the unicast

throughput can be 22% higher than the existing opportunistic routing protocols and 95%

higher than the current state-of-art best routing protocol for wireless mesh networks.

1.1.4 A Critical Question

All the above schemes can augment the end-to-end throughput in the multi-flow wire-

less network. An interesting question thus rises: can we combine all of them together?
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Or can we optimize all of them simultaneously? Furthermore, can we do its analytically

Shannon capacity? To answer these questions, we believe that a deeper understanding of

multi-flow local network coding will play a key role, which will also benefit designing the

next-generation high-throughput coding-based wireless network architecture. The analysis

in this thesis is on the packet level as the COPE operating on the current TCP/IP network

layer. With the ARQ mechanisms in the data link layer, the packet erasure channel setting

thus is a natural choice. Hence the anlysis of Shannon capacity of 2-flow wireless butterfly

network with broadcast packet erasure channel turns to our primary objective.

1.2 From Shannon Capacity To Stability Region

The analysis of Shannon capacity is an essential part to establish the possible solutions

for the communication networks of interest. However, Shannon capacity is still quite far

away from practical implementations. In the analysis of Shannon capacity, the results are

derived based on the assumption that the input block code is fixed and the block code length

can be infinitely long. This assumption is apparently impractical because of the memory

buffer limit in real systems. Furthermore, this assumption would also induce the extremely

large decoding delay and control overhead. These flaws deviate the analysis of Shannon

capacity from the practical implementations.

Hence we further broaden our attention to the stability region of network coding schemes.

The stability region of the network is defined as the set of all end-to-end traffic load that can

be supported under the appropriate selection of the network control policy [27]. The analy-

sis of stability region considers the complete dynamics of stochastic arrivals and queueing.

The assumption of dynamic arrivals greatly alleviates the flaws in the block-based Shannon

capacity analysis, including the problems of memory buffer limit, decoding delay, and the

large control overhead, and promotes the entire analysis one step closer to the practical

implementations.

However, there are several difficulties which block the extension from Shannon capacity

to the stability region. With fixed block codes as the input in the Shannon capacity, the
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overall throughput in the end of the transmissions can be analyzed by the law of large

number. This does not hold for the case of stochastic arrivals (which means the packets

are endlessly injected into the network) and other tools are required to analyze the queue

dynamics at each time instance. Tassiulas et al. [28] introduced Lyaponov drift to resolve

this problem and leaded to the establishment of the network stability analysis research.

Other than the difference between the analysis tools, however, in the existing store-

and-forward stability analysis, the stability region is defined on considering all possible

scheduling, routing, and resource allocation, but no coding allowed inside the network [27].

The nature of combining packets inside the network provides further challenges for online

coding and scheduling implementation. Several attempts have been made to resolve this

problem [17, 29]. However, the existing proposed solutions all tends to circumvent the

problem of combining packets by converting the network coding scheduling problem back

to the existing store-and-forward scheduling problem. This kind of conversions highly

relies on case-by-case discussion and lack of the generality to be systematically applied to

other network topologies. A general network control algorithm which can incorporate the

nature of combining packets inside the network thus is an important subject for the network

coding stability analysis.

1.3 Our Contributions

Our contributions consists of two parts. In the first part, we characterize the full Shan-

non capacity of the COPE principle when applied to a 2-flow wireless butterfly network

with broadcast packet erasure channels. The capacity results allow for random overhear-

ing probabilities, arbitrary scheduling policies, network-wide channel state information

(CSI) feedback after each transmission, and potential use of non-linear network codes.

An information-theoretic outer bound is derived that takes into account the delayed CSI

feedback of the underlying broadcast packet erasure channels. We then propose a new

class of linear network codes, named the Space-Based Linear Network Coding (SBLNC).

SBLNC provides a systematic approach to keep tracking the evolution of knowledge space
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at each node. We prove that SBLNC can achieve the capacity region of the 2-flow wireless

butterfly network without considering the opportunistic routing. Furthermore, numerical

experiments show that SBLNC provides close-to-optimal throughput even in the scenario

with opportunistic routing.

In the second part of the contributions, we propose a new optimal dynamic INC de-

sign for 2-flow downlink traffic with time-varying packet erasure channels. Our detailed

contributions are summarized as follows.

Contribution 2.1: We introduce a new pair of INC operations such that (i) The under-

lying concept is distinctly different from the traditional wisdom of XORing two overheard

packets; (ii) The overall scheme uses only the ultra-low-complexity binary XOR opera-

tion; and (iii) The new set of INC operations is guaranteed to achieve the block-code-based

Shannon capacity.

Contribution 2.2: The introduction of new INC operations leads to a new vr-network

for which the existing “vr-network decoupling + BP” approach in [30] no longer holds. We

generalize the results of Stochastic Processing Networks (SPNs) [31, 32] and successfully

apply it to the new vr-network. The end result is an opportunistic, dynamic INC solution

that is completely queue-length-based and can robustly adapt to time-varying channels

while achieving the largest possible stability region.

Contribution 2.3: The proposed solution can also be readily generalized for rate-adaptation.

Through numerical experiments, we have shown that a simple extension of the proposed

scheme can opportunistically and optimally choose the order of modulation and the rate of

the error correcting codes used for each packet transmission while achieving the optimal

stability region, i.e., equal to the Shannon capacity.

Contribution 2.4: A byproduct of our results is a scheduling scheme for SPNs with ran-

dom departure. The new results relax the previous assumption of deterministic departure,

a major limitation of the existing SPN model, by considering stochastic packet departure

behavior. The new scheduling solution could thus further broaden the applications of SPN

scheduling to other real-world scenarios.
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In the third part of contributions, we propose an 802.11-based MAC layer protocol

which incorporates the rate adaption solution developed in the second part. The new MAC

protocol realizes the promised intersession network coding gain for two-flow downlink traf-

fic with short decoding delay. Furthermore, we delicately retain the CSMA-CA distributed

contention mechanism with only 17 bits new header field changes, and carefully ensure the

backward compatibility. In summary, the new solution demonstrates concrete throughput

improvement without alternating the too much packet-by-packet traffic behavior. Such a

feature is critical in practical implementation since it allows the network coding solution to

be transparent to any arbitrary upper layer applications.

1.4 Thesis Outline

In the next chapter, we formulate the local network model which incorporate the broad-

cast PEC with feedback, the COPE principle, and the opportunistic routing all together.

The stability region problem is also formulated. In Chapter 3, we describe the central idea

of this thesis – Spaced-Based Linear Network Coding. In Chapter 4, we characterize the

full Shannon capacity of 2-flow wireless butterfly network with broadcast packet erasure

channels. In Chapter 5, we start to discuss the linear network coding stability region and

introduce its analogy the stochastic processing network. In Chapter 6, we propose the

modified Deficit Maximum Weight algorithm and fully characterize the stability region of

the 2-receiver multi-input broadcast packet erasure channel. In Chapter 7, we propose a

802.11-based MAC protocol which incorporates the rate adaption solution developed in

Chapter 6. In Chapter 8, we conclude this thesis and discuss the possible extensions and

applications.
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2. MODEL FORMULATION

In this chapter, we will first formulate the 1-to-M broadcast packet erasure channel as a

mathematical model. We then propose a general wireless butterfly model which incorpo-

rates the broadcast packet erasure channels with feedback, the COPE principle, and the

opportunistic routing all together. A useful probability function which can intuitively de-

scribe the probability of interest is defined. We finally discuss the dynamic network coding

and scheduling decision in the 1-to-2 broadcast packet erasure channel. We first define a

useful notation. For any positive integer M , define [M ]
Δ
= {1, · · · ,M}.

2.1 The 1-to-M Broadcast Packet Erasure Channel

Given a finite field GF(q). A 1-to-M broadcast packet erasure channel (PEC) takes

an input packet Xs ∈ GF(q) from the source s and outputs an M-dimension vector Y =

(Ys→d1, Ys→d2, ..., Ys→M), where Ys→di ∈ {Xs, ∗} for all i ∈ [M ]. Figure 2.1(a) illustrates

a 1-to-2 broadcast packet erasure channel. Here ∗ denotes the erasure symbol. Ys→di = ∗

(a) (b)

Fig. 2.1.: (a) The 1-to-2 broadcast packet erasure channel; and (b) the 2-flow wireless
butterfly network with opportunistic routing and packet erasure channels.
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means that the i-th receiver does not receive the input Xs. We also assume that there is no

other type of noise, i.e., the received Ys→di is either Xs or ∗.

We consider only stationary and memoryless PECs, i.e., the erasure pattern is indepen-

dently and identically distributed (i.i.d.) for each channel usage. The characteristics of a

memoryless 1-to-M PEC can be fully described by 2M successful reception probabilities

p
s→T [M ]\T indexed by any subset T ⊂ [M ]. That is, p

s→T [M ]\T denotes the probability that

a packet Xs sent from source s is heard by and only by the i-th destination for all i ∈ T .

For example, suppose M = 3, then p
s→{1,3}{2} denotes the probability that a packet Xs is

heard by d1 and d3 but not by d2.

For any time t, we use an M-dimensional channel status vector Zs(t) to represent the

channel reception status of the 1-to-M broadcast packet erasure channel:

Zs(t) = (Zs→d1(t), Zs→d2(t), ..., Zs→dm(t)) ∈ {∗, 1}M

where “∗” and “1” represent erasure and successful reception, respectively. That is, when s

transmits a packet Xs(t) ∈ GF(q) in time t, the destination dm receives Ys→dm(t) = Xs(t)

if Zs→dm(t) = 1 and receives Ys→dm(t) = ∗ if Zs→dm(t) = ∗. For simplicity, we use

Ys→dm(t) = Xs(t) ◦ Zs→dm(t) as shorthand. Since here we only consider stationary and

memoryless PECs, Zs(t) is i.i.d. over time.

2.2 The COPE Principle 2-Flow Wireless Butterfly Network With Opportunistic

Routing and Broadcast Packet Erasure Channels

Here we are going to construct a local network model which incorporates the network

coding gain on (1) the COPE principle, (2) the opportunistic routing, and (3) the broadcast

packet erasure channel with feedback. The COPE principle 2-flow wireless butterfly net-

work with opportunistic routing and broadcast packet erasure channels is modeled as fol-

lows. We consider a 5-node 2-hop relay network with two source-destination pairs (s1, d1)

and (s2, d2) and a common relay r interconnected by three broadcast PECs. See Fig. 2.1(b)

for the illustration. Specifically, source si can use a 1-to-3 broadcast PEC to communicate
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with {d1, d2, r} for i = 1, 2, and relay r can use a 1-to-2 broadcast PEC to communicate

with {d1, d2}. To accommodate the discussion of opportunistic routing, we allow si to di-

rectly communicate with di, see Fig. 2.1(b). When opportunistic routing is not permitted

(as in the case when focusing exclusively on the COPE principle and the broadcast packet

erasure channels), we simply choose the PEC channel success probabilities psi→· such that

the probability that di can hear the transmission from si is zero.

We assume slotted transmission. Within an overall time budget of n time slots, source

si would like to convey nRi packets Wi
Δ
= (Wi,1, · · · ,Wi,nRi

) to destination di for all

i ∈ {1, 2} where Ri is the rate for flow i. For each i ∈ {1, 2}, j ∈ [nRi], the information

packet Wi,j is assumed to be independently and uniformly randomly distributed overGF(q).

For any time t, we use an 8-dimensional channel status vector Z(t) to represent the

channel reception status of the entire network:

Z(t) = (Zs1→d1(t), Zs1→d2(t), Zs1→r(t), Zs2→d1(t),

Zs2→d2(t), Zs2→r(t), Zr→d1(t), Zr→d2(t)) ∈ {∗, 1}8

where “∗” and “1” represent erasure and successful reception, respectively. That is, when

s1 transmits a packet Xs1(t) ∈ GF(q) in time t, relay r receives Ys1→r(t) = Xs1(t) if

Zs1→r(t) = 1 and receives Ys1→r(t) = ∗ if Zs1→r(t) = ∗. For simplicity, we use Ys1→r(t) =

Xs1(t) ◦ Zs1→r(t) as shorthand.

In this thesis, we consider the node-exclusive interference model. That is, we allow only

one node to be scheduled in each time slot. The scheduling decision at time t is denoted

by σ(t), which takes value in the set {s1, s2, r}. For example, σ(t) = s1 means that node

s1 is scheduled for time slot t. For convenience, when s1 is not scheduled at time t, we

simply set Ys1→r(t) = ∗. As a result, the scheduling decision can be incorporated into the

following expression of Ys1→r(t):

Ys1→r(t) = Xs1(t) ◦ Zs1→r(t) ◦ 1{σ(t)=s1}.
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Similar notation is used for all other received signals. For example, Yr→d2(t) = Xr(t) ◦
Zr→d2(t) ◦ 1{σ(t)=r} is what d2 receives from r in time t, where Xr(t) is the packet sent by

r in time t.

We assume that the 3 PECs are memoryless and stationary. Namely, we allow arbitrary

joint distribution for the 8 coordinates of Z(t) but assume that Z(t) is i.i.d. over the time

axis t. We also assume Z(t) is independent of the information messages W1 and W2.

For simplicity, we use brackets [·]t1 to denote the collection from time 1 to t. For exam-

ple, [σ,Z, Ys1→d2 ]
t
1

Δ
= {σ(τ),Z(τ), Ys1→d2(τ) : ∀τ ∈ [1, t]}. Also, for any S ⊆ {s1, s2, r}

and T ⊆ {r, d1, d2}, we define

YS→T (t)
Δ
= {Ys→d(t) : ∀s ∈ S, ∀d ∈ T}.

For example, Y{s1,r}→{d1,d2}(t) is the collection of Ys1→d1(t), Ys1→d2(t), Yr→d1(t), and

Yr→d2(t).

Given the rate vector (R1, R2), a joint scheduling and network coding (NC) scheme is

defined by n scheduling decision functions

∀t ∈ [n], σ(t) = fσ,t([Z]
t−1
1 ), (2.1)

3n encoding functions at s1, s2, and r, respectively: For all t ∈ [n]

Xsi(t) = fsi,t(Wi, [Z]
t−1
1 ), ∀i ∈ {1, 2}, (2.2)

Xr(t) = fr,t([Y{s1,s2}→r,Z]
t−1
1 ), (2.3)

and 2 decoding functions at d1 and d2, respectively:

Ŵi = fdi([Y{s1,s2,r}→di,Z]
n
1 ), ∀i ∈ {1, 2}. (2.4)

By (2.1), we allow σ(t), the scheduling decision at time t, to be a function of the

network-wide reception status vectors before time t. By (2.2), the encoding decision at si
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is a function depending on the information messages and past channel status. Encoding at

r depends on what r received in the past and the past channel status vector, see (2.2). In the

end, di decodes Wi based on what di has received and the past channel status of the entire

network.1 We allow the encoding and decoding functions fsi,t, fr,t, and fdi to be linear or

nonlinear.

This setting models the scenario in which there is a dedicated, error-free, low-rate con-

trol channel that can broadcast the previous network channel status Z(t− 1) causally to all

network nodes. The total amount of control information is no larger than 8 bits per time

slot, which is much smaller than the actual payload of each packet ≈ 104 bits. As a re-

sult, the perfect feedback channel can be easily implemented by piggybacking2 on the data

packets. The scheduling decision σ(t) can be computed centrally (by a central controller)

or distributively by each individual node since we allow all nodes to have the knowledge of

the reception status of the entire network.

Definition 2.2.1 Fix the distribution of Z(t). A rate vector (R1, R2) is achievable if for any

ε > 0, there exists a joint scheduling and NC scheme with sufficiently large n and GF(q)

such that

max
∀i∈{1,2}

Prob(Wi 
= Ŵi) < ε.

The capacity region is defined as the closure of all achievable rate vectors (R1, R2).

Remark: In (2.1), the scheduling decision σ(t) does not depend on the information mes-

sages Wi, which means that we prohibit the use of timing channels [33,34]. Even when we

allow the usage of timing channels, we conjecture that the overall capacity improvement

with the timing channel techniques is negligible. A heuristic argument is that each suc-

cessful packet transmission gives log2(q) bits of information while the timing information

(to transmit or not) gives roughly 1 bit of information. When focusing on sufficiently large

1Since the scheduling decision σ(t) is a function of [Z]t−1

1
, all the encoding functions in (2.2) and (2.3), and

the decoding functions in (2.4) also know implicitly the scheduling decision σ(t).
2Some pipelining may be necessary to mitigate the propagation delay of the feedback control messages.
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GF(q), additional gain of timing information is thus likely to be absorbed in our timing-

information-free capacity characterization. In our setting, r is the only node that can mix

packets from two different data flows. Further relaxation such that s1 and s2 can hear each

other and perform coding accordingly is beyond the scope of this work.

2.2.1 A Useful Notation

In our network model, there are 3 broadcast PECs associated with s1, s2, and r, respec-

tively. We sometimes term those PECs the si-PEC, i = 1, 2, and the r-PEC. Since only

one node can be scheduled in each time slot, we can assume that the reception events

of each PEC are independent from that of the other PECs. As a result, the distribu-

tion of the network-wide channel status vector Z(t) can be described by the probabilities

psi→T{r,d1,d2}\T
for all i ∈ {1, 2} and for all T ⊆ {r, d1, d2}, and pr→U{d1,d2}\U

for all

U ⊆ {d1, d2}. Totally there are 8 + 8 + 4 = 20 parameters. By allowing some of the

coordinates of Z(t) to be correlated, our setting can also model the scenario in which desti-

nations d1 and d2 are situated in the same physical node and thus have perfectly correlated

channel success events.

For notational simplicity, we also define the following three probability functions psi(·)
, i = 1, 2, and pr(·), one for each of the PECs. The input argument of each function

ps (s being one of {s1, s2, r}) is a collection of the elements in {d1, d2, r, d1, d2, r}. The

function ps(·) outputs the probability that the reception event is compatible to the specified

collection of {d1, d2, r, d1, d2, r}. For example,

ps1(d2r) = ps1→d2d1r
+ ps1→d1d2r (2.5)

is the probability that the input of the s1-PEC is successfully received by d2 but not by r.

Herein, d1 is a don’t-care receiver and ps1(d2r) thus sums two joint probabilities together

(d1 receives it or not) as described in (2.5). Another example is pr(d2) = pr→d1d2+pr→d1d2
,

which is the probability that a packet sent by r is heard by d2. To slightly abuse the notation,

we further allow ps(·) to take multiple input arguments separated by the comma sign “,”.
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With this new notation, ps(·) then represents the probability that the reception event is

compatible to at least one of the input arguments. For example,

ps1(d1d2, r) = ps1→d1d2r
+ ps1→d1d2r

+ ps1→d1d2r

+ ps1→d1d2r
+ ps1→d1d2r

.

That is, ps1(d1d2, r) represents the probability that (Zs1→d1, Zs1→d2 , Zs1→r) equals one of

the following 5 vectors (1, ∗, ∗), (1, ∗, 1), (1, 1, 1), (∗, 1, 1), and (∗, ∗, 1). Note that these 5

vectors are compatible to either d1d2 or r or both. Another example of this ps(·) notation

is ps1(d1, d2, r), which represents the probability that a packet sent by s1 is received by at

least one of the three nodes d1, d2, and r.

2.3 Chapter Summary

In this chapter, we formulate the model of the 1-to-M broadcast packet erasure chan-

nel in Section 2.1. In Section 2.2, we then construct a wireless butterfly network model

including the COPE principle, the opportunistic routing, and the broadcast packet erasure

channels with feedback. The corresponding Shannon capacity region is also defined in

Section 2.2.
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3. SPACE BASED LINEAR NETWORK CODING

In this chapter, we introduce a the central idea of this thesis. We will present a class of net-

work coding scheme named the “Space-Based Linear Network Code (SBLNC)” scheme.

An example of SBLNC scheme policies will be provided and will also be used to explain

the design motivations of the SBLNC policies. The SBLNC schemes will later be used

to achieve(1) the Shannon capacity of the 2-flow wireless butterfly network with packet

erasure channels and (2) the stability region of the 2-flow 1-to-2 broadcast packet erasure

channel with feedback.

3.1 Definitions

Here we use the 2-flow wireless butterfly network with packet erasure channels in Sec-

tion 2.2 as an example and construct the corresponding SBLNC scheme. We first provide

some basic definitions that will be used when describing an SBLNC scheme.

For i = 1, 2, a flow-i coding vector v(i) is an nRi-dimensional row vector with each

coordinate being a scalar in GF(q). Any linear combination of the message symbols Wi,1

to Wi,nRi
can thus be represented by v(i)WT

i where WT
i is the transpose of Wi. We use

the superscript “(i)” to emphasize that we are focusing on a flow-i vector.

We define the flow-i message space by Ωi
Δ
= (GF(q))nRi , an nRi-dimensional linear

space. In the following, we define the following 6 knowledge spaces Sr, Sd1 , Sd2 , Tr, Td1 ,

and Td2 for the 5-node relay network in Fig. 2.1(b).

The knowledge spaces Sr, Sd2 , Sd1 are linear subspaces of Ω1 and represent the knowl-

edge about the flow-1 packets at nodes r, d2, and d1, respectively. Symmetrically, the

knowledge spaces Tr, Td1 , and Td2 are linear subspaces of Ω2 and represent the knowledge

about the flow-2 packets at nodes r, d1, and d2, respectively. In the following, we dis-
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cuss the detailed construction of Sr, Sd2 , and Sd1 and the construction of Tr to Td2 follows

symmetrically.1

• In the end of any time t, Sr(t) ⊂ Ω1 is the linear span of a group of v(1), denoted by

V
(1)
s1→r. The group V

(1)
s1→r contains the v(1) vectors sent by s1 during time 1 to t and

have been received successfully by r. Throughout the paper, we use the convention

that the linear span of an empty set is a set containing the zero vector, i.e., span{∅} =

{0}. For example, if r has not yet received any packet from s1, then by convention

Sr(t) = {0}.

• In the end of time t, Sd2(t) ⊂ Ω1 is the linear span of two groups of v(1), denoted by

V
(1)
s1→d2

and V
(1)
r,N→d2

. The first group V
(1)
s1→d2

contains the v(1) vectors corresponding

to the packets sent by s1 during time 1 to t and have been received successfully by

d2. The second group V
(1)
r,N→d2

contains the v(1) vectors corresponding to the packets

sent by r during time 1 to t that are not mixed with any other flow-2 packets. The

letter “N” in the subscript stands for Not-inter-flow-coded transmission.

• In the end of time t, Sd1(t) ⊂ Ω1 is the linear span of three groups of v(1), denoted

by V
(1)
s1→d1

, V(1)
r,N→d1

, and V
(1)
r,C→d1

. The first group V
(1)
s1→d1

contains the v(1) vectors

corresponding to the packets sent by s1 during time 1 to t and have been received

successfully by d1. The second group V
(1)
r,N→d1

contains the v(1) vectors correspond-

ing to the packets sent by r during time 1 to t that are not mixed with any other flow-2

packets. The third group V
(1)
r,C→d1

contains the v(1) vectors that can be decoded from

the inter-flow coded packets2 sent by r during time 1 to t. The letter “C” in the

subscript stands for inter-flow-Coded transmission.

In sum, we use S and T to distinguish whether we are focusing on flow-1 or flow-2

packets, respectively, and we use the subscripts to describe the node of interest. One can

easily see that these six knowledge spaces evolve over time since each node may receive

1The construction of Td1
(resp. Td2

) follows the construction of Sd2
(resp. Sd1

).
2When the relay r sends a linear combination of both flow-1 and -2 packets.
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Fig. 3.1.: The illustration of the coding procedure in Example 3.1.1. We use a solid line to
represent that the corresponding receiver has successfully received the packet and use a dot
line to represent the case of erasure.

more and more packets that can be used to obtain/decode new information. We use the

following example to illustrate the definitions of Sr to Td2 .

Example 3.1.1 Consider GF(3) and nR1 = 3 and nR2 = 2. That is, flow-1 contains

3 message symbols W1,1 to W1,3 and flow-2 contains 2 message symbols W2,1 and W2,2.

Ω1 and Ω2 are thus 3-dimensional and 2-dimensional linear spaces in GF(3), respectively.

Consider the first four time slots t = 1 to 4 for our discussion.

When t = 1, suppose that s1 is scheduled; an uncoded flow-1 message symbol W1,1 is

transmitted; and the packet is heard by and only by d2 and r. See Fig. 3.1(a) for illustration,

for which we use the solid lines to represent that d2 and r have received the packet. We use

the dashed line to denote that d1 does not receive the packet. When t = 2, suppose that

s2 is scheduled; an uncoded flow-2 message symbol W2,1 is transmitted; and the packet is

heard by and only by d2, see Fig. 3.1(b). When t = 3, suppose that s1 is scheduled; an

uncoded flow-1 symbol W1,3 is transmitted; and the packet is heard by and only by r. When

t = 4, suppose that r is scheduled; r sends a linear combination [W1,1 + 2W1,3] of the

two flow-1 packets it has received thus far; and the packet [W1,1 + 2W1,3] is heard by both

d1 and d2. We now describe the six knowledge spaces Sr to Td2 in the end of t = 4. By

Figs. 3.1(a) and 3.1(d), d2 has received two flow-1 packets W1,1 and [W1,1 + 2W1,3], one

from s1 and one from r. Therefore, by the end of t = 4, the flow-1 knowledge space at d2

becomes Sd2(4) = span{(1, 0, 0), (1, 0, 2)}. Also, neither r nor d1 has received any flow-2
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Table 3.1: The resulting knowledge spaces at the end of Example 3.1.1.

Flow-1 Flow-2
Sd1(4) span{(1, 0, 2)} Td2(4) span{(1, 0)}
Sr(4) span{(1, 0, 0), (0, 0, 1)} Tr(4) {(0, 0)}
Sd2(4) span{(1, 0, 0), (1, 0, 2)} Td1(4) {(0, 0)}

packets by the end of t = 4. Therefore, Tr and Td1 , the flow-2 knowledge spaces at r and

d1, respectively, contain only the zero element. The other knowledge spaces Sd1 , Sr, and

Td2 in the end of t = 4 can be derived similarly and they are summarized in Table 3.1.

The above definitions also lead to the following self-explanatory lemma.

Lemma 3.1.1 The two destinations d1 and d2 can decode the desired message symbols W1

and W2, respectively, if and only if by the end of time n

Sd1(n) = Ω1 and Td2(n) = Ω2.

For simplicity, we use Si(t) and Ti(t) to denote the knowledge space Sdi(t) and Tdi(t)

for i = 1, 2. We also omit the input argument “(t)” if the time index is clear from the

context. To conclude this subsection, we introduce the notation of the sum space (A⊕B)
Δ
=

span{v : ∀v ∈ A ∪ B}. Notice that A⊕ B and A ∪ B are different. For example, in a 2-

dimensional linear space with GF(2), we assume A = span{(1, 0)} and B = span{(1, 1)}.

Then A ∪ B = {(0, 0), (1, 0), (2, 0), (1, 1), (2, 2)}, but A ⊕ B = span{(1, 0), (1, 1)} =

{(0, 0), (1, 0), (2, 0), (1, 1), (2, 2), (2, 1), (1, 2), (0, 1), (0, 2)}. By simple algebra, we have

Lemma 3.1.2 For any two linear subspaces A and B in Ω, the following equality always

holds.

Rank(A⊕ B) = Rank(A) + Rank(B)− Rank(A ∩ B).
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3.2 An Instance of SBLNC Policies

In the following, we will introduce a new class of network codes, named the Space-

Based Linear Network Code (SBLNC). An SBLNC scheme contains a finite number of

policies. Each policy Γ contains a linear subspace A(Γ), named the inclusion space/set, and

a finite collection of subspaces B(Γ)
l for l = 1 to L(Γ), named the exclusion spaces/sets. For

each time slot t, the SBLNC chooses one of the specified policies and uses it to generate

the coded packet. For example, say node s is scheduled for transmission and we decide to

use a policy Γ for encoding. Then s will first choose arbitrarily a coding vector v(i) from

the set A(Γ)\
(⋃L(Γ)

l=1 B
(Γ)
l

)
, and then transmit a linearly encoded packet X = v(i)WT

i .

That is, the coding vector must be in the inclusion set A(Γ) but not in any of the exclu-

sion sets B
(Γ)
l . Obviously, a policy can be used/chosen only when the corresponding set

A(Γ)\
(⋃L(Γ)

l=1 B
(Γ)
l

)
is non-empty. For notational simplicity, we say a policy is feasible if

the corresponding A(Γ)\
(⋃L(Γ)

l=1 B
(Γ)
l

)
is non-empty.

For illustration, consider the following policy for node s1, named Policy Γs1,0. When

Policy Γs1,0 is used/chosen, we let source node s1 choose arbitrarily a coding vector v(1)

from Ω1\ (S1 ⊕ S2 ⊕ Sr) and send the corresponding coded packet Xs1 = v(1)WT
1 . That

is, the inclusion set is A(Γs1,0) = Ω1 and the exclusion set is B(Γs1,0) = S1 ⊕ S2 ⊕ Sr.

Continue the example in Section 3.1 for which the knowledge spaces are summarized

in Table 3.1. In the beginning of t = 5 (or equivalently in the end of t = 4), we have

A(Γs1,0) = Ω1 and B
(Γs1,0)
1 = S1 ⊕ S2 ⊕ Sr = {(a, 0, c) : ∀a, c ∈ GF(q)}. As a result, if we

choose Policy Γs1,0 for t = 5, any coding vectors of the form (a, b, c) with b 
= 0 are in the

set Ω1\(S1⊕S2⊕Sr). There are totally 18 such vectors since GF(3) is used. Source s1 can

then choose arbitrarily from any one of the 18 vectors and send X = aW1,1+bW1,2+cW1,3

in time t = 5.

In the following, we define 13 policies that will be used to achieve the Shannon capacity

of the 2-flow wireless butterfly network with packet erasure channels.

There are 5 policies governing the coding operations at source s1, which are named

Policy Γs1,j for j = 0 to 4. When Policy Γs1,j is used, s1 sends Xs1(t) = v(1)WT
1 for some
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v(1). That is, source s1 only mixes/encodes flow-1 packets together. In the following, we

describe how to choose the vector v(1) for each individual policy.

§ Policy Γs1,0: Choose v(1) arbitrarily from

Ω1\(S1 ⊕ S2 ⊕ Sr). (3.1)

§ Policy Γs1,1: Choose v(1) arbitrarily from

(S2 ⊕ Sr)\ ((S1 ⊕ Sr) ∪ (S1 ⊕ S2)) . (3.2)

§ Policy Γs1,2: Choose v(1) arbitrarily from

S2\(S1 ⊕ Sr). (3.3)

§ Policy Γs1,3: Choose v(1) arbitrarily from

Sr\ (S1 ⊕ (S2 ∩ Sr)) . (3.4)

§ Policy Γs1,4: Choose v(1) arbitrarily from

(S2 ∩ Sr)\S1. (3.5)

Policy Γs2,j , j = 0 to 4 are symmetric versions of Policy Γs1,j that concern source s2

and mix/encode flow-2 packets instead. More explicitly, source s2 sends Xs2 = v(2)WT
2

for which the coding vector v(2) is chosen according to the following specification.

§ Policy Γs2,0: Choose v(2) arbitrarily from

Ω2\(T1 ⊕ T2 ⊕ Tr). (3.6)
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§ Policy Γs2,1: Choose v(2) arbitrarily from

(T1 ⊕ Tr)\ ((T2 ⊕ Tr) ∪ (T1 ⊕ T2)) . (3.7)

§ Policy Γs2,2: Choose v(2) arbitrarily from

T1\(T2 ⊕ Tr). (3.8)

§ Policy Γs2,3: Choose v(2) arbitrarily from

Tr\ (T2 ⊕ (T1 ∩ Tr)) . (3.9)

§ Policy Γs2,4: Choose v(2) arbitrarily from

(T1 ∩ Tr)\T2. (3.10)

There are 3 policies Γr,j , j = 1, 2, 3, governing the coding operations at the relay r,

which are described as follows.

§ Policy Γr,1: The relay r chooses arbitrarily a vector v(1) from

Sr\ ((Sr ∩ S2)⊕ S1) (3.11)

and sends an intra-flow-coded flow-1 packet Xr = v(1)WT
1 .

§ Policy Γr,2: The relay r chooses arbitrarily a vector v(2) from

Tr\ ((Tr ∩ T1)⊕ T2) (3.12)

and sends an intra-flow-coded flow-2 packet Xr = v(2)WT
2 .

§ Policy Γr,3 is for the relay node r to send an interflow-coded packet Xr = v(1)WT
1 +
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v(2)WT
2 , with v(1) and v(2) chosen as follows: If (S2 ∩ Sr)\S1 is non-empty, choose v(1)

arbitrarily from

(S2 ∩ Sr)\S1, (3.13)

otherwise choose v(1) = 0, a zero vector. If (T1 ∩ Tr)\T2 is non-empty, choose v(2)

arbitrarily from

(T1 ∩ Tr)\T2, (3.14)

otherwise choose v(2) = 0.

Continue from Example 3.1.1 in Section 3.1 with the knowledge spaces in the end of

t = 4 described in Table 3.1. Consider Policy Γs1,3 as defined in (3.4). Since S2 ∩ Sr = Sr

in the end of t = 4, we have Sr\ (S1 ⊕ (S2 ∩ Sr)) ⊆ Sr\(S2 ∩ Sr) = ∅ being an empty

set. Thus, in contrast with the fact that Policy Γs1,0 is feasible in the beginning of t = 5 as

shown in our previous discussion, Policy Γs1,3 is infeasible in the beginning of t = 5.

One can repeat the above analysis and verify that out of all 13 policies, only 4 of them

are feasible in the beginning of t = 5, which are Γs1,0, Γs1,4, Γs2,0, and Γr,3. The network

code designer can thus apply one of the four policies in t = 5.

Suppose the network designer chooses policy Γs1,0 for t = 5 and sends a flow-1 coded

packet with the coding vector being v(1) = (2, 1, 0). Also suppose that the packet is re-

ceived by r but by neither d1 nor d2. Then in the end of time t = 5, the knowledge space Sr

evolves from the original span{(1, 0, 0), (0, 0, 1)} to the new space span{(1, 0, 0), (0, 0, 1), (2, 1, 0)}.

We now notice that the Policy Γs1,0 is no longer feasible since with the new Sr, the ex-

clusion space of Γs1,0 becomes S1 ⊕ S2 ⊕ Sr = span{(1, 0, 0), (0, 0, 1), (2, 1, 0)} and

Ω1\ (S1 ⊕ S2 ⊕ Sr) is now empty. On the other hand, the new Sr also lets some previously

infeasible policies become feasible. For example, consider Policy Γs1,3. With the new Sr,

we have Sr = span{(1, 0, 0), (0, 0, 1), (2, 1, 0)} and S1⊕(S2∩Sr) = span{(1, 0, 0), (1, 0, 2)}.

Therefore, Sr\ (S1 ⊕ (S2 ∩ Sr)) 
= ∅. Policy Γs1,3 is thus feasible and can be used for trans-
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mission in t = 6. With similar analysis, one can verify that in the beginning of t = 6, we

have 5 feasible policies: Γs1,3, Γs1,4, Γs2,0, Γr,1, and Γr,3.

3.3 The Design Motivations of SBLNC Policies

We conclude this chapter by discussing the design motivations behind the proposed 13

policies. We first consider the relay policies Γr,1 to Γr,3 due to its conceptual simplicity.

We then discuss the source policies Γsi,0 to Γsi,4.

The Relay Policies

We first notice that for all relay r policies Γr,1, Γr,2, and Γr,3, the corresponding inclu-

sion space is either a subspace of Sr or a subspace of Tr. The reason is that for node r to

send a coded packet, the encoded packet must already be in Sr or Tr, the knowledge spaces

of r. As a result, the transmitted vector v(1) (or v(2)) must be drawn from a subset of Sr (or

Tr).

It is clear that a good network code should try to serve two flows simultaneously in order

to maximize the throughput. We now focus on Policy Γr,3. First notice that by (3.14), v(2) is

drawn from (T1∩Tr). This means that the value of v(2)WT
2 is already known by destination

d1 since v(2) being in the flow-2 knowledge space T1 at d1. Hence whenever d1 receives

the packet Xr(t) = v(1)WT
1 + v(2)WT

2 , it can extract its desired information and recover

v(1)WT
1 by substracting v(2)WT

2 . We then note that Policy Γr,3 ensures that whenever

(3.13) is not empty the selected v(1) is not in S1, the flow-1 knowledge space at d1. Hence

upon the reception of such a coded packet, Rank(S1) will increase by one. By Lemma 3.1.1

destination d1 is one step closer to fully decode its desired message W1. Symmetrically,

by (3.13) d2 has already known the value of v(1)WT
1 and thus d2 can compute the value of

v(2)WT
2 upon the reception of the inter-flow coded packet generated by Policy Γr,3. Since

v(2) is not in T2, d2 can decode one extra linear combination of flow-2 packets. Policy Γr,3

thus serves both d1 and d2 simultaneously.
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Although Policy Γr,3 can serve both destinations simultaneously, there is a limit on how

much information can be sent by Γr,3. That is, if we use only Policy Γr,3 and nothing

else, the information that can be received by d1 through Policy Γr,3 is at most (Sr ∩ S2)

since all v(1) are drawn from (Sr ∩ S2). The largest flow-1 knowledge space that d1 can

possibly attain is thus S1 ⊕ (Sr ∩ S2), where S1 represents the flow-1 information that

d1 has accumulated by overhearing the transmission directly from its two-hop neighbor

s1, and (Sr ∩ S2) represents the information that can be conveyed by Γr,3. Note that it is

possible that Sr is not a subspace of S1⊕ (Sr∩S2), which means that relay r still possesses

some flow-1 information that cannot be conveyed to d1 by Γr,3 alone. Γr,1 is devised to

address this problem. That is, the v(1) vector chosen from (3.11) is (i) from the knowledge

space of r, and (ii) not in S1 ⊕ (Sr ∩ S2), the largest flow-1 knowledge space that d1 can

attain when using exclusively Policy Γr,3. Such v(1) vector thus represents an information

packet that is complementary to the inter-flow-coded Policy Γr,3.

The Source Policies

Here without loss of generality we focus on source 1 policies. Even though the policies

can be chosen arbitrarily whenever they are feasible, in the following discussion, we will

explain in a way that they are executed sequentially from Policy Γs1,0 to Policy Γs1,4 to

better catch up the intuitions.

Before explaining the source policies (3.1)–(3.5), we first discuss what we expect to

achieve during the source 1 transmission. There is one thing we must achieve. Meanwhile,

there are two things we desire to achieve. The one we must achieve is Ω1 = (S1⊕Sr) at the

end of the source 1 transmission since s1 → r → d1 and s1 → d1 are the only two routes

from s1 to d1. For the two things we desire to achieve, the first one is Ω1 = (S1⊕(S2∩Sr)).

The reason is that the condition, Ω1 = (S1 ⊕ (S2 ∩ Sr)), makes Policy Γr,1 always being

infeasible, and hence we can exploit the coding benefit from Policy Γr,3. The second one

is trivially Ω1 = S1.
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With those things mentioned above in mind, we then examine and explain each source

policy. Policy Γs1,j , j = 0, 1, 2, are designed for achieving Ω1 = S1⊕Sr with S1⊕Sr being

a subset of the exclusion sets for these policies. This can be observed step by step. After

finishing all possible transmissions from Policy Γs1,0, we have Ω1 = (S1 ⊕ S2 ⊕Sr). After

finishing all possible transmissions from Policy Γs1,0 and Γs1,1, it is either (S2 ⊕ Sr) ⊂
(S1⊕Sr) or (S2⊕Sr) ⊂ (S1⊕S2). In the first case, Ω1 = (S1⊕S2⊕Sr) = (S1⊕Sr). For

the second case, Ω1 = (S1 ⊕ S2 ⊕ Sr) = (S1 ⊕ S2). Then with the help from Policy Γs1,2,

S2 ⊂ (S1⊕Sr) after finishing all possible transmissions from Policy Γs1,2, the second case

in Policy Γs1,1 comes to the result, Ω1 = (S1 ⊕ S2 ⊕ Sr) = (S1 ⊕ S2) = (S1 ⊕ Sr). So

far we have examined that Policy Γs1,j , j = 0, 1, 2, help us to achieve Ω1 = (S1 ⊕ Sr).

However, one may ask why we need three policies to achieve this instead of simply one

policy Ω1\(S1⊕Sr). This question will be answered right after the discussion of achieving

Ω1 = (S1 ⊕ (S2 ∩ Sr)).

Policy Γs1,j , j = 0, 1, 2, 3, are designed for achieving Ω1 = (S1 ⊕ (S2 ∩ Sr)) with

S1 ⊕ (S2 ∩ Sr) being a subset of the exclusion sets for these policies. Similar to the above

observation for Ω1 = S1 ⊕ Sr, one can verify that after finishing all possible transmissions

from Policy Γs1,0 to Γs1,3, we have Ω1 = (S1 ⊕ (S2 ∩ Sr)). Furthermore, Policy Γs1,1 is

carefully designed for achieving Ω1 = (S1⊕(S2∩Sr)) in the most efficient way. To explain

why Policy Γs1,1 is the most efficient policy for achieving Ω1 = (S1 ⊕ (S2 ∩ Sr)), we first

observe

Rank(S1 ⊕ (S2 ∩ Sr)) = Rank(S1) + Rank(S2 ∩ Sr)− Rank(S1 ∩ S2 ∩ Sr)

=Rank(S1) + Rank(S2) + Rank(Sr)− Rank(S2 ⊕ Sr)− Rank(S1 ∩ S2 ∩ Sr)

Notice that S2 ⊕ Sr is the inclusion set for Policy Γs1,1; and S1, S2, and Sr are subsets

of the exclusion sets for Policy Γs1,1. Then with Policy Γs1,1 being chosen, Rank(S1 ⊕
(S2 ∩ Sr)) is expected to increase p1(d1) + p1(d2) + p1(r) − 0 − p1(d1d2r). In this way,

we maximize the positive terms and minimize the negative terms at the same time. This
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maximum increment of Rank(S1⊕ (S2∩Sr)) leads to the most efficient way for achieving

Ω1 = (S1 ⊕ (S2 ∩ Sr)). This also answer the question why we need three policies for

achieving Ω1 = (S1 ⊕ Sr) instead of simply one policy, Ω1\(S1 ⊕ Sr): Policy Γs1,0 sets

up the environment for executing Policy Γs1,1, and Policy Γs1,2 helps Policy Γs1,1 back to

achieving Ω1 = (S1⊕Sr). Finally, Policy Γs1,j , j = 0, 1, 2, 3, 4, are designed for achieving

Ω1 = S1 with similar observations.

To summarize, these designed source 1 policies help us to achieve Ω1 = S1 ⊕ Sr,

Ω1 = S1 ⊕ (S2 ⊕ Sr), and Ω1 = S1 simultaneously and in the most efficient way.

3.4 Chapter Summary

In this chapter, we introduce the central idea of this thesis, the space-based linear net-

work coding. We use the 2-flow wireless butterfly network with packet erasure channels as

an example and construct the corresponding SBLNC scheme. In Section 3.1, we introduce

the necessary definition for constructing SBLNC policies. In Section 3.2, we present an ex-

ample of SBLNC scheme with 13 designed policies. Later we will use these 13 policies to

achieve the Shannon capacity of the 2-flow wireless butterfly network with packet erasure

channels. In Section 3.3, we discuss the design motivations of the SBLNC policies.
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4. THE SHANNON CAPACITY OF WIRELESS BUTTERFLY

NETWORK

In Section 2.2, we formulate a local network model including the broadcast packet erasure

channel with feedback, the COPE principle, and the opportunistic routing. In this chapter,

we will first discuss some related work and compare their settings with the one in Sec-

tion 2.2. We then propose the corresponding outerbound and the inner bound which can

be achieved by the SBLNC scheme described in Section 3.2. Finally we demonstrate the

numerical results including the capacity region comparison and the sum rate throughput

comparison.

4.1 Related Works

Recently, [3] and [4] successfully characterized the full capacity region of the 1-hop

broadcast packet erasure channel with ≤ 3 coexisting flows. For comparison, our work

focuses on the 2-hop network in Fig. 1.1(b) while [3] and [4] focus on the 1-hop broad-

cast channel. For the 2-hop network in Fig. 1.1(b), the network designer faces both the

scheduling problem: which node (out of the two source nodes s1, s2, and the relay node r)

to transmit at the current time slot, and the network coding problem: how to combine the

heard/overheard packets and generate the network coded packets. For the 1-hop broadcast

channel considered in [3] and [4], there is no scheduling problem since there is only one

base station and the base station transmits all the time. As will be seen shortly, for a 2-hop

erasure network, the feedback/control messages may propagate through the entire network

and affect dynamically the scheduling and coding decisions for all three nodes s1, s2, and

r, which further complicates the analysis.

Several attempts [17, 18] also have be made to approach the wireless butterfly network

with packet erasure channels. Both of [17,18] take the side-information coding benefit into
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Table 4.1: The feature comparison between this thesis and [18]

Features in [18] Features in this thesis

The outer bound
(1) Sequential scheduling, (1) Dynamic scheduling,
(2) Batched feedback, (2) Per-packet feedback,
(3) Nonlinear coding functions. (3) Nonlinear coding functions.

The inner bound
(1) Sequential scheduling, (1) Sequential scheduling,
(2) Batched feedback, (2) Per-packet feedback,
(3) Linear coding functions. (3) Linear coding functions.

concern. But [17] only proposed a suboptimal achievable scheme while [18] characterized

the full capacity region. In the following, we will discuss the major differences between

[18] and this thesis.

There are three major differences between the setting of this this thesis and in [18].

First, a deterministic sequential scheduling policy was used in [18], which schedules nodes

s1, s2, and r in strict order. Namely, s1 transmits first. After s1 stops, s2 can begin to

transmit. Only after s2 stops transmission can r start its own transmission. For comparison,

our setting allows for dynamically choosing the schedule σ(t) for each time slot t. Since

we allow the schedule σ(t) to depend on the past reception status [Z]t−1
1 , the use of σ(t)

also includes any store-&-forward-based scheduling policies as special cases, such as the

back-pressure and the maximal weighted matching schemes (see [26] for references). Our

results thus quantify the best achievable rates with jointly designed scheduling and coding

policies.

Secondly, in [18] no feedback is allowed when s1 and s2 transmit. More specifically,

suppose jointly s1 and s2 take ts1 + ts2 time slots to finish transmission. Then only in the

beginning of time (ts1+ts2+1) are we allowed to send the channel status [Z]
ts1+ts2
1 to r. No

further feedback is allowed until time n, the end of overall transmission. For comparison,

our setting allows constantly broadcasting network-wide channel status [Z]t−1
1 to s1, s2,

and r, as discussed in Section 2.2. This setting thus includes the Automatic Repeat reQuest

(ARQ) mechanism as a special case [3,18]. Broadcasting the control information [Z]t−1
1 to

all the network nodes also eliminates the need of estimating/learning the reception status of
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the neighbors. Thirdly, [18] focuses on an arbitrary number of coexisting flows while this

work focuses exclusively on the 2-flow scenario.

Last but not least, in the way of describing the inner bound in [18] and this work,

they look similar because of the linear programming expressions and the use of the law

of large number. However, they are essentially different. It is extremely difficult for the

techniques in [18] to be extended to this work. The major obstacle is that in the setting of

this thesis, the linear spaces constructed by the received packets keep evolving over time

via per-packet feedback. Hence it is necessary to develop the SBLNC scheme to analysis

the space evolution.

The practical COPE implementation contains three major components: (i) Opportunis-

tic listening: Each destination is in a promiscuous monitoring mode and stores all the

overheard packets; (ii) Opportunistic coding: The relay node decides which packets to be

coded together opportunistically, based on the overhearing patterns of its neighbors; and

(iii) Learning the states of the neighbors: Although in the practical COPE implementation

reception reports are periodically sent to advertise the overhearing patterns of the next-hop

neighbors of the relay, the relay node still needs to extrapolate the overhearing status of its

neighbors since there is always a time lag due to the infrequent periodic feedback.

Our setting closely captures the opportunistic listening component of COPE by model-

ing the wireless packet transmission as a random broadcast PEC. In (2.1)–(2.3), the channel

status vector is used to make the coding and scheduling decisions, which captures the op-

portunistic coding component of COPE. In COPE, the reception reports are broadcast pe-

riodically, which is captured by the control information [Z]t−1
1 . In sum, our capacity region

is a superset of any achievable rates of any COPE-principle-based schemes [5] when focus-

ing on the 5-node 2-hop relay network in Fig. 1.1(b) with the node exclusive interference

model.

Remark: The setting in Section 2.2 also includes the wireless erasure 2-way relay chan-

nel model (Fig. 4.1(a) and 4.1(b)) as a special case. Specifically, if we set the overhearing

probabilities: pi(dj) = 1 for all i 
= j, then the capacity region of the setting in Section 2.2

is also the capacity region of the wireless erasure 2-way relay channel in Fig. 4.1.
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(a) (b)

Fig. 4.1.: The illustration of the two–way relay channel for which s1 sends X to s2 and
and s2 sends Y to s1. In (b), the common relay can send a linear combination [X + Y ] that
benefits both destinations simultaneously.
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4.2 Main Results

In this section, we provide our results based on two cases: The case of considering only

the COPE principle and the case of combining COPE with the opportunistic routing tech-

nique. The main difference is that for the former setting, we assume that no transmission

can be heard by its 2-hop neighbors, i.e., pi(di) = 0 for all i = 1, 2. For the latter setting,

we allow pi(di) to be non-zero.

For the case of using exclusively the COPE principle, the full capacity region has been

characterized in Section 4.2.1 while for the case of COPE plus opportunistic routing, a pair

of outer and inner bounds are provided in Sections 4.2.2 and 4.2.3, respectively.

4.2.1 COPE Principle Relay Network Capacity

Proposition 4.2.1 Consider any 2-flow wireless butterfly network with packet erasure chan-

nels with pi(di) = 0 for all i = 1, 2. The rate pair (R1, R2) is in the capacity region if and

only if there exist three non-negative time sharing parameters ts1 , ts2 and tr such that jointly

(R1, R2) and (ts1 , ts2, tr) satisfy

ts1 + ts2 + tr ≤ 1 (4.1)

∀i ∈ {1, 2}, Ri ≤ tsipi(r) (4.2)

R1

pr(d1)
+

(R2 − ts2p2(d1))
+

pr(d1, d2)
≤ tr (4.3)

(R1 − ts1p1(d2))
+

pr(d1, d2)
+

R2

pr(d2)
≤ tr (4.4)

where (·)+ Δ
= max(0, ·) is the projection to non-negative reals.

The proof of the achievability part of Proposition 4.2.1 is relegated to Section 4.3.2 and

the converse proof is relegated to Appendix A.

The intuition behind (4.1) to (4.4) is as follows. (4.1) is a time sharing bound, which

follows from the total time budget being n and the node-exclusive interference model.
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Inequality (4.2) is a simple cut-set bound. That is, the message Wi has to be sent from

si to the common relay r first. Therefore, the rate is upper bounded by the link capacity

from si to r.

Inequality (4.3) and (4.4) combine the capacity results on message-side-information

[18] and the capacity results on channel output feedback for broadcast channels [3, 4]. A

very heuristic, not rigorous explanation of (4.3) is as follows. R1

pr(d1)
represents how many

time slots it takes to send all the flow-1 packets to d1 as if there is no flow-2. ts2p2(d1) char-

acterizes how much flow-2 information can be “overheard” by d1, and (R2 − ts2p2(d1))
+

thus represents how much flow-2 information that has not been heard by d1 but still needs to

be sent to d2. Since those flow-2 packets cannot be “coded” together with any flow-1 pack-

ets, they need to be sent separately by themselves in addition to the R1

pr(d1)
time slots used

to send flow-1 packets. In general, it takes
(R2−ts2p2(d1))

+

pr(d2)
for those packets to arrive at d2.

However, [3] shows that the use of feedback can further reduce the time to
(R2−ts2p2(d1))

+

pr(d1,d2)
.

As a result, (4.3) governs the transmission since the total transmission time of relay r is ntr

time slots. (4.4) is symmetric to (4.3).

4.2.2 Capacity Outer Bound for COPE plus OpR

The capacity results in Proposition 4.2.1 can be generalized as an outer bound for the

case when the destination di may overhear directly the transmission of si, i.e., pi(di) > 0.

Proposition 4.2.2 Consider any 2-flow wireless butterfly network with packet erasure chan-

nels in Fig. 2.1(b) with arbitrary channel characteristics. If a rate vector (R1, R2) is achiev-

able, there exist three non-negative scalars ts1 , ts2 , and tr satisfying

ts1 + ts2 + tr ≤ 1 (4.5)

∀i ∈ {1, 2}, Ri ≤ tsipi(di, r) (4.6)

(R1 − ts1p1(d1))
+

pr(d1)
+

(R2 − ts2p2(d1, d2))
+

pr(d1, d2)
≤ tr (4.7)

(R1 − ts1p1(d1, d2))
+

pr(d1, d2)
+

(R2 − ts2p2(d2))
+

pr(d2)
≤ tr. (4.8)



34

This proposition can be proven by canonical techniques in the information theory outer

bound problems as in [35]. And hence we put the detailed proof in Appendix A for reader’s

reference.

Remark: One can easily see that when the channel probabilities satisfy pi(di) = 0

for all i = 1, 2, the outer bound in Proposition 4.2.2 collapses to the capacity region in

Proposition 4.2.1. Proposition 4.2.2 is thus a strict generalization of the converse part of

Proposition 4.2.1.

4.2.3 Capacity Inner Bound for COPE plus OpR

An inner bound for the general case of pi(di) ≥ 0 is described as follows.

Proposition 4.2.3 A rate vector (R1, R2) is achievable by a linear network code if there

exist 3 non-negative variables ts1 , ts2 , tr, 10 non-negative variables, ωk
si

, where i ∈ {1, 2}
and k ∈ {0, 1, 2, 3, 4}, 4 non-negative variables ωk

r,N, ωk
r,C for k = 1, 2, such that jointly the

17 variables1 and (R1, R2) satisfy the following four groups of inequalities:

Group 1 has 5 inequalities, named the time budget constraints.

∀i = 1, 2,
4∑

k=0

ωk
si
≤ tsi (4.9)

∀i = 1, 2, ω1
r,N + ω2

r,N + ωi
r,C ≤ tr (4.10)

ts1 + ts2 + tr < 1 (4.11)

1In the achieving algorithm in Section 4.3, the t variables correspond to the time slots that each of the sources
and the relay is used; and the ω variables correspond to the time slots each policy is used.
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Group 2 has 12 inequalities, named the packet conservation laws at the source nodes.

Consider any i, j ∈ {1, 2} satisfying i 
= j. For each (i, j) pair (out of the two choices

(1, 2) and (2, 1)), we have the following 6 inequalities.

ω0
si
pi(di, dj, r) ≤ Ri (4.12)

ω1
si
pi(di, r) ≤ ω0

si
pi(djdir) (4.13)

ω1
si
pi(di, dj) ≤ ω0

si
pi(rdidj) (4.14)

ω2
si
pi(di, r) ≤ ω0

si
pi(djdir)− ω1

si
pi(di, r) (4.15)

ω3
si
pi(di, dj) ≤ ω0

si
pi(rdidj)− ω1

si
pi(dj, dir) (4.16)

ω4
si
pi(di) ≤ ω0

si
pi(djrdi)

+ ω1
si
(pi(dj) + pi(r)− pi(didjr))

+ ω2
si
pi(rdi) + ω3

si
pi(djdi) (4.17)

Group 3 has 4 inequalities, named the packet conservation laws at the relay node. For

each (i, j) pair with i 
= j, we have the following 2 inequalities.

ωi
r,Npr(di, dj) ≤ ω0

si
pi(rdidj)− ω1

si
pi(dj, dir)

− ω3
si
pi(di, dj) (4.18)

ωi
r,Cpr(di) ≤ ω0

si
pi(djrdi)

+ ω1
si
(pi(dj) + pi(r)− pi(didjr))

+ ω2
si
pi(rdi) + ω3

si
pi(djdi)

− ω4
si
pi(di) + ωi

r,Npr(djdi) (4.19)

Group 4 has 2 inequalities, named the decodability conditions. Consider i = 1, 2. For

each i, we have the following inequality.
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(
4∑

k=0

ωk
si

)
pi(di) +

(
ωi
r,N + ωi

r,C

)
pr(di) ≥ Ri (4.20)

An heuristic but not rigorous explanation is as follows. The time budget constraints

(4.9)–(4.11) describe the fact that the each transmitting node can only select policies within

its own time budget and the overall time budget is one in ratio. The conservation laws

(4.12)–(4.19) describe the fact that for one policy being eligible to be selected, it must be

a non-empty set, which is equivalent to quantify the space dimensions of the policies. The

decodability conditions describe the fact that to be able to reconstruct the required packets

at two destinations, a certain amount of packets must be received by two destinations.

Proposition 4.2.3 will be proved by explicit construction of an achievability scheme

based on the SBLNC scheme described in the next section. The detailed proof of Proposi-

tion 4.2.3 is relegated to Section 4.3.1.

4.3 Capacity Approaching Coding Scheme

In this section, we will first prove the capacity inner bound Proposition 4.2.3 for the

setting of the COPE principle when allowing opportunistic routing. We will then prove

that the inner bound coincides with the capacity characterization in Proposition 4.2.1 for

the COPE principle without the opportunistic routing component.

4.3.1 Achieving The Inner Bound of Proposition 4.2.3

We prove Proposition 4.2.3 by properly scheduling the 13 policies described in Sec-

tion 3.2.

Consider any ts1 , ts2 , tr, ωk
si

, i ∈ {1, 2} and k ∈ {0, 1, 2, 3, 4}, ωk
r,N, and ωk

r,C, k = 1, 2,

satisfying the inequalities (4.9) to (4.20) in Proposition 4.2.3. For any ε > 0, we can always



37

construct another set of t′ and ω′ variables such that the new t′ and ω′ variables satisfy (4.9)

to (4.19) with strict inequality, and satisfy the following inequality

(
4∑

k=0

ωk
si

)
pi(di) +

(
ωi
r,N + ωi

r,C

)
pr(di) > Ri − ε (4.21)

instead of (4.20). Based on the above observation, we will assume that the given ts1 , ts2 , tr,

ωk
si

, ωk
r,N, and ωk

r,C satisfy (4.9) to (4.19) and (4.21) with strict inequality. In the following,

we will construct an SBLNC solution such that the scheme “properly terminates” within

the allocated n time slots with close-to-one probability and after the SBLNC scheme stops,

each di has received at least n(Ri − ε) number of its desired information packets.

We construct the SBLNC scheme as follows. We first schedule the s1-policies sequen-

tially from Γs1,0 to Γs1,4. Each policy Γs1,k lasts for n · ωk
s1

time slots. After finishing Γs1,k

we move on to Policy Γs1,k+1 until finishing all 5 s1-policies. After finishing the s1-policies,

we move on to the s2-policies. Again, we choose the s2-policies sequentially from Γs2,0 to

Γs2,4 and each policy lasts for n · ωk
s2

time slots. After the s2-policies, we schedule the r-

policies sequentially from Γr,1 to Γr,3. Policies Γr,1 and Γr,2 last for n ·ω1
r,N and n ·ω2

r,N time

slots, respectively. Policy Γr,3 lasts for n ·max{ω1
r,C, ω

2
r,C} time slots. Feedback is critical

for the SBLNC scheme as it is used to decide the evolution of the knowledge spaces S1,

S2,..., Tr, which in turn decides the sets in (3.1)–(3.14).

For the above construction, we first discuss its dependency on the finite field size q.

Among the entire designed policies (3.1)–(3.14), observe that maxL(Γ) is two, which

means there are at most two exclusion spaces for one policy. Thus for each of the de-

signed policies being non-empty, the minimum requirement of q is no less than 2. To

prove this statement, assume we have 3 linear spaces A, B, and C with the designed policy

A\(B ∪ C). For this policy being non-empty, it requires qRank(A) = |A| > |(B ∪ C) ∩ A|.
Furthermore, one can show that Rank(A) > max{Rank(A ∩ B),Rank(A ∩ C)} implies

|A| > |A ∩ B| + |A ∩ C| − 1(= qRank(A∩B) + qRank(A∩C) − 1) ≥ |(B ∪ C) ∩ A| with

q ≥ 2. Thus as shown in [3], the feedback capacity of 2-user broadcast erasure channel can

be achieved with q = 2. The scheme proposed here also works for q = 2.
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To prove the correctness of the above construction, we need to show that the following

two statements hold with close-to-one probability: (i) during each time slot, it is always

possible to construct the desired coding vectors v(1) (or v(2)). That is, we never schedule

an infeasible policy throughout the operation; (ii) destination di can decode n(Ri − ε) of

the desired information packets when the scheme terminates2. In addition to the above two

statements, we will also prove that with close-to-one probability; and (iii) during the first

n · ω1
r,C (resp. n · ω2

r,C) time slots of scheduling Γr,3, the computed flow-1 vector v(1) (resp.

flow-2 vector v(2)) is not zero.

We first prove (ii) while assuming both (i) and (iii) are true. We notice that all the

exclusion spaces of policies Γs1,0 to Γs1,4, and Γr,1 contain S1 as a subset. As a result, all

those packets carry some new flow-1 information that has not yet been received by d1. If

d1 receives any of those packets, the rank of S1 will increase by one. Similarly, during the

first nω1
r,C time slots of Policy Γr,3, the computed v(1) vector does not belong to S1, see

(3.13). As a result, if d1 receives any of those packets, the rank of S1 will again increase by

one. From the above reasoning, the expected value of Rank(S1) in the end of the SBLNC

scheme must satisfy

E{Rank(S1)} =p1(d1)

(
4∑

k=0

nωk
s1

)

+ pr(d1)(nω
1
r,N + nω1

r,C) (4.22)

>n(R1 − ε) (4.23)

where the right-hand side of (4.22) quantifies the expected number of packets received by d1

during Policies Γs1,0 to Γs1,4, Γr,1, and the first nω1
r,C time slots of Γr,3. (4.23) follows from

(4.21). By the law of large number, Rank(S1) > n(R1 − ε) with close-to-one probability

when n is sufficiently large. The above inequality ensures that d1 can decode n(R1 − ε) of

the flow-1 information packets at the end of the SBLNC scheme. By symmetry, d2 can also

2As the existence guaranteed in Proposition 3, given t and ω variables satisfying inequality (4.9)–(4.20),
inequalities (4.9)–(4.11) guarantee that we can finish transmission within the allocated n time slots.
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decode n(R2 − ε) of the flow-2 packets W2 in the end of time t = n. What remains to be

shown is to prove that (i) and (iii) hold with close-to-one probability.

Next we prove (i) and (iii) by the first order analysis that assumes sufficiently large n.

We first consider Policy Γs1,0. For any time t, Γs1,0 is a feasible policy if (3.1) is non-empty,

which is equivalent to having

Rank(Ω1)− Rank(Ω1 ∩ (S1 ⊕ S2 ⊕ Sr))

= Rank(Ω1)− Rank(S1 ⊕ S2 ⊕ Sr) > 0. (4.24)

We first note that Rank(Ω1) = nR1 is a constant and does not change over time. Also

note that Rank(S1⊕S2 ⊕Sr) increases monotonically over time since a node accumulates

more “knowledge” over time. As a result, if we can prove that (4.24) holds in the end of

the duration of (executing) Policy Γs1,0, then throughout the entire duration of Γs1,0, we can

always find some v(1) belong to (3.1).

To that end, we notice that when we choose Γs1,0 as our coding policy, the coding vector

v(1) is chosen from (3.1). Since v(1) does not belong to the exclusion space S1 ⊕ S2 ⊕ Sr,

Rank(S1 ⊕ S2 ⊕ Sr) increases by one if and only if at least one of d1, d2, and r receives

the transmitted packet Xs1 = v(1)WT
1 . Also note that in the beginning of Policy Γs1,0,

Rank(S1 ⊕ S2 ⊕ Sr) = 0. As a result, in the end of the duration of Γs1,0, we have

E{Rank(S1 ⊕ S2 ⊕ Sr)}
= 0 + n · ω0

s1
· p1(d1, d2, r) (4.25)

< nR1 = Rank(Ω1), (4.26)

where (4.25) follows from quantifying the expected number of time slots (out of totally

nω0
s1

time slots) in which at least one of d1, d2, and r receives it. (4.26) follows from

(4.12).
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By the law of large numbers, (4.26) implies that (4.24) holds in the end of the duration

of Γs1,0 with close-to-one probability. As a result, with close-to-one probability Policy Γs1,0

remains feasible during the assigned duration of n · ω0
s1

time slots.

We now consider Policy Γs1,1. For any time t, Γs1,1 is feasible if (3.2) is non-empty,

which is equivalent to having

qRank(S2⊕Sr) = |S2 ⊕ Sr| > |(S2 ⊕ Sr) ∩ ((S1 ⊕ Sr) ∪ (S1 ⊕ S2))|
= |((S2 ⊕ Sr) ∩ (S1 ⊕ Sr)) ∪ ((S2 ⊕ Sr) ∩ (S1 ⊕ S2))|

⇔ Rank(S2 ⊕ Sr)

> max{Rank((S2 ⊕ Sr) ∩ (S1 ⊕ Sr)),

Rank((S2 ⊕ Sr) ∩ (S1 ⊕ S2))} (4.27)

where “⇔” holds assuming the underlying finite field GF(q) satisfying q ≥ 2. When

we choose Policy Γs1,1 as our coding policy, the coding vector v(1) is chosen from (3.2).

Therefore, v(1) must belong to the inclusion space S2 ⊕ Sr, which implies that no matter

how many nodes in {d1, d2, r} receive the packet, Rank(S2 ⊕ Sr) remains the same. Also

note that similar to the case of Γs1,0, Rank((S2 ⊕ Sr) ∩ (S1 ⊕ Sr)) and Rank((S2 ⊕ Sr) ∩
(S1 ⊕ S2)) increase monotonically over time. As a result, if we can prove that (4.27) holds

in the end of the duration of Policy Γs1,1, then throughout the entire duration of Γs1,1, we

can always find some v(1) belong to (3.2). The remaining task is thus to quantify the three

different ranks Rank(S2⊕Sr), Rank((S2⊕Sr)∩(S1⊕Sr)), and Rank((S2⊕Sr)∩(S1⊕S2))

at the end of (the duration of) Γs1,1. All the following discussions hold with close-to-one

probability when focusing on the first order analysis of n.

First consider Rank(S2 ⊕ Sr). We know that Rank(S2 ⊕ Sr) remains the same during

Policy Γs1,1. Therefore, the value of Rank(S2 ⊕ Sr) is decided by how much it increases

during Γs1,0. Since any v(1) in Policy Γs1,0 does not belong to S2 ⊕ Sr (see (3.1)), every
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time one of d2 and r receives a packet of Γs1,0, Rank(S2 ⊕ Sr) will increase by one. As a

result, in the end of Γs1,1 we have

E{Rank(S2 ⊕ Sr)} = nω0
s1
p1(d2, r) + nω1

s1
· 0. (4.28)

We now consider the first term Rank((S2⊕Sr)∩ (S1⊕Sr)) in the max operation in (4.27).

By Lemma 3.1.2, we can rewrite Rank((S1 ⊕ Sr) ∩ (S2 ⊕ Sr)) by

Rank((S1 ⊕ Sr) ∩ (S2 ⊕ Sr))

= Rank(S2 ⊕ Sr) + Rank(S1 ⊕ Sr)− Rank(S1 ⊕ S2 ⊕ Sr). (4.29)

The value of Rank(S2 ⊕ Sr) is quantified in (4.28). Since any v(1) in Policy Γs1,0 does not

belong to S1 ⊕ Sr (see (3.1)) and any v(1) in Policy Γs1,1 does not belong to S1 ⊕ Sr either

(see (3.2)), every time one of d1 and r receives a packet of Γs1,0 or Γs1,1, Rank(S1 ⊕ Sr)

will increase by one. In the end of Γs1,1 we thus have

E{Rank(S1 ⊕ Sr)} = nω0
s1
· p1(d1, r) + nω1

s1
· p1(d1, r). (4.30)

Similarly, since any v(1) in Policy Γs1,0 does not belong to S1 ⊕ S2 ⊕ Sr (see (3.1)) and

any v(1) in Policy Γs1,1 belongs to S1 ⊕ S2 ⊕ Sr (see (3.2)), every time one of d1, d2, and r

receives a packet of Γs1,0, Rank(S1 ⊕ S2 ⊕ Sr) will increase by one. In the end of Γs1,1 we

thus have

E{Rank(S1 ⊕ S2 ⊕ Sr)} = nω0
s1
p1(d1, d2, r) + nω1

s1
· 0. (4.31)

By (4.28), (4.29), (4.30), and (4.31), we can verify that (4.13) implies that Rank(S2 ⊕
Sr) > Rank((S2 ⊕ Sr) ∩ (S1 ⊕ Sr)) in the end of Policy Γs1,1. By swapping the roles

of d2 and r, symmetric arguments can be used to prove that (4.14) implies Rank(S2 ⊕
Sr) > Rank((S2 ⊕ Sr) ∩ (S1 ⊕ S2)) in the end of Policy Γs1,1. Therefore, Γs1,1 is feasible

throughout its duration of nω1
s1

time slots.
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Similar rank-comparison arguments can be used to complete the proof of (i) and (iii).

The remaining derivation repeats similar steps described above, and hence is relegated to

Appendix B. The proof of Proposition 4.2.3 is thus complete.

4.3.2 Capacity of COPE Principle 2-Flow Wireless Butterfly Network Without Op-

portunistic Routing

In this subsection we will prove that the capacity outer bound in Proposition 4.2.2 and

the capacity inner bound in Proposition 4.2.3 coincide when destination di cannot directly

hear from source si for i = 1, 2. Proposition 4.2.1 thus describes the exact COPE-principle

2-flow wireless butterfly network capacity region without opportunistic routing.

To complete the proof, we note that when pi(di) = 0, for i = 1, 2, (4.12)–(4.20) of the

inner bound in Proposition 4.2.3 is reduced to the following forms:3

ω0
si
pi(dj, r) ≤ Ri, (4.32)

ω1
si
pi(r) ≤ ω0

si
pi(djr), (4.33)

ω1
si
pi(dj) ≤ ω0

si
pi(rdj), (4.34)

ω2
si
pi(r) ≤ ω0

si
pi(djr)− ω1

si
pi(r), (4.35)

ω3
si
pi(dj) ≤ ω0

si
pi(rdj)− ω1

si
pi(dj), (4.36)

ωi
r,Npr(di, dj) ≤ ω0

si
pi(rdj)− ω1

si
pi(dj)

− ω3
si
pi(dj), (4.37)

ωi
r,Cpr(di) ≤ ω0

si
pi(djr) + ω1

si
(pi(dj) + pi(r))

+ ω2
si
pi(r) + ω3

si
pi(dj) + ωi

r,Npr(djdi). (4.38)

and (4.20) becomes

pr(di)(ω
i
r,N + ωi

r,C) ≥ Ri. (4.39)

3Inequality (4.17) becomes trivial since the left-hand side of (4.17) becomes zero and the right-hand side of
(4.17) is always non-negative.
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The following lemma proves the tightness of the bounds when there is no 2-hop overhear-

ing, i.e., pi(di) = 0 for i = 1, 2.

Lemma 4.3.1 For any 5-tuple (R1, R2, t1, t2, tr) satisfying the capacity outer bound (4.1)–

(4.4), we can always find 14 companying variables ωj
si
, ωi

r,N, ω
i
r,C for i = 1, 2 and j =

0, 1, 2, 3, 4, such that jointly the 14+5 = 19 variables satisfy (4.9), (4.10), (4.32) to (4.39).

Proof Given any (R1, R2, ts1 , ts2, tr) satisfying (4.1)–(4.4), we construct{
ωj
si
, ωi

r,N, ω
i
r,C : i ∈ {1, 2}, j ∈ {0, 1, 2, 3, 4}} in the following way. For each pair (i, j) =

(1, 2) or (2, 1), we define

ω0
si
=

Ri

pi(dj, r)
,

ω1
si
=Ri

(
min

{
1

pi(r)
,

1

pi(dj)

}
− 1

pi(dj, r)

)
,

ω2
si
=Ri

(
1

pi(r)
− 1

pi(dj)

)+

,

ω3
si
=min

{
Ri

(
1

pi(dj)
− 1

pi(r)

)+

, tsi −
Ri

pi(r)

}
,

ω4
si
=0,

ωi
r,N =

(Ri − tsipi(dj))
+

pr(di, dj)
,

ωi
r,C =

Ri

pr(di)
− (Ri − tsipi(dj))

+

pr(di, dj)
.

One can verify that the above assignment{
R1, R2, ts1, ts2 , tr, ω

j
si
, ωi

r,N, ω
i
r,C : i ∈ {1, 2}, j ∈ {0, 1, 2, 3, 4}} satisfies (4.9), (4.10), (4.32)

to (4.39). The detailed verification is relegated to Appendix C. The proof of Lemma 4.3.1

is thus complete.
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Fig. 4.2.: An instance of the 2-flow wireless butterfly network with the success probabilities
being indicated next to the corresponding arrows. We also assume that the success events
between different node pairs are independent.
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Fig. 4.3.: The capacity regions of the scenario in Fig. 4.2. The solid line indicates the
throughput region of SBLNC. The dash line indicates the throughput region in [4]. The
dot line indicates the throughput region of intra-session network coding (or random linear
network coding).

4.4 Numerical Results

In this section, we apply the capacity results to some numerically generated scenar-

ios so that we can explicitly quantify the throughput/capacity improvement of the COPE

principle. The detailed simulation setting is described as follows.

Consider one specific setting of the 2-flow wireless butterfly network as depicted in

Fig. 4.2. In Fig. 4.2, we specify the success transmission probability between each node
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pair as the number next to the corresponding arrow and we assume the success events

between different node pairs are independent. For example, the probability that a packet

sent by s1 is heard by d1 is p1(d1) = .2 and the probability that a packet sent by r is received

by d2 is pr(d2) = .6. We then compute 6 different capacity rate regions and plot them in

Figure 4.3.

The solid line “SBLNC with OpR” represents the ultimate capacity region4 of this net-

work, for which relay r is allowed to perform inter-flow network coding across both flows

and 2-hop overhearing directly from s1 to d1 (and from s2 to d2) is allowed. The curve

“with COPE, w/o OpR” describes the capacity region when the relay r can perform inter-

flow coding but there is no 2-hop overhearing. Both the curves “with COPE, with OpR” and

“with COPE, w/o OpR” allow for optimal scheduling among s1, s2, and r. The dash line

“ [18] with (or w/o) OpR” represents the throughput region which can be achieved by the

results in [18] with either opportunistic routing or not. The dot line “RLNC with (or w/o)

OpR” represent the throughput region which can be achieved by simply the intra-session

network coding (or random linear network coding [2]) with either opportunistic routing or

not.

As can be seen, when there is only one flow in the network (say R2 = 0), then OpR

is optimal as was first established in [36]. However, when there are two coexisting flows

(when both R1 and R2 > 0), the COPE principle alone sometimes outperforms OpR due to

the strong overhearing between s2 → d1 and s1 → d2, p2(d1) = 0.4 and p1(d2) = 0.5, in

this example. On the other hand, SBLNC provide the ultimate throughput when compared

to the existing schemes.

We are also interested in quantifying the throughput benefits of COPE and OpR in a

randomly placed network. To generate a typical XOR-in-the-air scenario, we first place the

relay node in the center of a unit circle. Then we randomly place four nodes (s1, s2, d1, d2)

inside the unit circle. To simulate the need of the relay for each session pair, we force the

placement of each pair to be in the opposite 90 degree area. That is, di must be located

4Our main results provide a pair of outer and inner bounds for this capacity region. Since the gap between
the inner and outer bounds is not visible in the figure (with relative gap less than 0.08%), we use the inner
bound (the achievable rate) as the proxy of the capacity region.
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(a) (b)

Fig. 4.4.: (a) The relative location of (si, di). (b) Topology of two (si, di) pairs.
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Fig. 4.5.: The cumulative distribution of the relative gap between the outer and the inner
bounds when there is no fairness constraint. The outer and the inner bounds are described
in Propositions 4.2.2 and 4.2.3, respectively.
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Table 4.2: Average sum-rates over 10000 random node replacements.

Fairness Constraints OpR SBLNC [18] RLNC

No
allowed .6599/.6594 .6472 .6180

negligible .4820 .4779 .4116

Proportional
allowed .6294/.6286 .6101 .5484

negligible .4775 .4726 .3854

Min-cut
allowed .6031/.6026 .5892 .5406

negligible .4671 .4626 .3856

in the opposite 90 degree area of si’s location for i = 1, 2. See Fig. 4.4(a) for illustration.

Fig. 4.4(b) illustrates one realization of our random node placement.

We use the Euclidean distance D between any two nodes to decide the overhearing

probability when a packet is transmitted. More explicitly, we use the Rayleigh model

Prob(success) =
∫ ∞

T ∗

2x

γ
e−

x2

γ dx where γ �
1

(4π)2Dα
,

where α is the path loss factor, and T ∗ is the decodable SNR threshold. To reflect the packet

delivery ratio measured in practical environments, we choose α = 2.5 and T ∗ = 0.006 so

that the overhearing probability for a 1-hop neighbor is around 0.7–0.8 while overhearing

probability for a 2-hop neighbor is around 0.2–0.3. If no direct overhearing is allowed, we

simply hardwire the probability that di overhears si to be zero. We again assume that the

success events between different node pairs are independent.

For practical concerns, we often enforce fairness constraint to avoid the situation that

one of the flows occupies all of the allocated resource. Here we propose two kinds of

fairness constraint: the min-cut fairness constraint, and the proportional fairness constraint.

For the min-cut fairness constraint, we impose an additional constraint

Ri = βmin (pi(di, r), pi(di) + pr(di)) for i = 1, 2 with a common β, which enforces the

individual rate Ri being proportional to the min-cut value from si to di assuming no other

sessions are transmitting and si and r are scheduled with the same frequency. For the

proportional fairness constraint, we use log(R1) + log(R2) as the objective function in the

linear programming solver. When there is no fairness constraint, we simply maximize the
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sum rate R1 + R2 as the objective function in the linear programming solver. Combining

the fairness constraint and the linear constraints in Proposition 4.2.2 or Proposition 4.2.3,

we derive the optimal rates. We repeat the above experiment for 10000 times and lists the

average sum rate R1 +R2 for each case in Table 4.2.

Table 4.2 lists the sum-rate averaged over 10000 simulations. When allowing 2-hop

overhearing (pi(di) > 0), then the inner and outer bounds do not always meet. Therefore,

for the entry with both COPE and OpR, the number on the left is the average of the sum

of the optimal rate R1 + R2 for the outer bound, denoted by Rsum.outer, while the number

on the right is the average of the sum of the optimal rate R1 + R2 for the inner bound,

denoted by Rsum.inner. When hardwiring the 2-hop overhearing probability to zero, as was

proven Section 4.3.2, the sum-rate outer and inner bounds always coincide and hence only

one number is shown in that entry. We also list the sum-rate inner bound results in [18].

The capacity of pure routing and pure OpR [36] can be explicitly computed and therefore

there is only one number in those entries as well. We first note that in terms of the aver-

aged throughput, the difference between the outer and the inner bounds is around 0.08%.

Among all 10000 instances, the largest absolute difference is with Rsum.outer = 0.6409 and

Rsum.inner = 0.6375. The proposed bounds thus effectively bracket the capacity when com-

bining the XOR-in-the-air and the opportunistic routing principle. Jointly using COPE and

OpR SBLNC scheme provides 60% throughput improvement over the classic pure routing

scheme with optimal scheduling.

Fig. 4.5 focuses on the relative gap per experiment when allowing for both COPE and

OpR. Specifically, we compute the relative gap per each experiment,

(Rsum.outer − Rsum.inner) /Rsum.outer when there is no fairness constraint, and then plot the cu-

mulative distribution function (cdf) for the relative gaps. We can see that with more than

80% of the experiments, the relative gap between the outer and inner bounds is smaller than

0.2%.
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4.5 Chapter Summary

In this chapter, we discuss the capacity region of the local network formulated in Sec-

tion 2.2. In Section 4.1, we compare the proposed model with existing results and demon-

strate that the proposed model includes all the important features of the broadcast packet

erasure channels, the COPE principle, and the opportunistic routing. In Section 4.2, we

then characterize the full capacity region of the 2-flow wireless butterfly network with-

out opportunistic routing, and propose the outer bound and the inner bound for the case

with opportunistic routing. The SBLNC scheme is used to achieve the inner bound in

Section 4.3. In Section 4.4, we use the numerical results to demonstrate how close the

SBLNC scheme can approach the outer bound (and hence the optimal throughput) and the

throughput provided by the SBLNC scheme strictly outperforms existing results.
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5. LINEAR NETWORK CODING SCHEDULING FOR 2-FLOW

DOWNLINK TIME-VARYING BROADCAST PEC

Starting from this chapter, we turn our attention to the next step further, the stability region

when considering the dynamic packet arrivals. The results in this and next chapters thus

help us to establish closer relationship between the inter-session network coding solutions

and the practical implementations. More specifically, we consider the downlink traffic from

a base station to two different clients in the next two chapters.

5.1 The Problem of Inter-Session NC Scheduling

Since 2000, NC has emerged as a promising technique in communication networks.

The seminal work by [2] shows linear intra-session NC achieves the min-cut/max-flow

capacity of single-session multi-cast networks. The natural connection of intra-session NC

and the maximum flow allows the use of back-pressure (BP) algorithms to stabilize intra-

session NC traffic, see [37] and the references therein.

However, when there are multiple coexisting sessions, the benefits of inter-session net-

work coding (INC) are not fully utilized. The COPE architecture [5] demonstrated that a

simple INC scheme can provide 40%–200% throughput improvement in a testbed environ-

ment. In the previous chapters, we also characterize the corresponding Shannon capacity.

However, unlike the case of intra-session NC, there is no direct analogy from INC to the

commodity flow. As a result, it is much more challenging to derive BP-based scheduling

for INC traffic.
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(a) INC using only 3 operations

(b) INC using only 5 operations

Fig. 5.1.: The virtual networks of two INC schemes.
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5.1.1 An Illustration of The Issues And Challenges

We use the following example to illustrate this point. Consider a single source s and

two destinations d1 and d2. Source s would like to send to d1 the Xi packets, i = 1, 2, · · · ;
and send to d2 the Yj packets, j = 1, 2, · · · . The simplest INC scheme consists of three

operations. OP1: Send uncodedly those Xi that have not been heard by any of {d1, d2}.

OP2: Send uncodedly those Yj that have not been heard by any of {d1, d2}. OP3: Send

a linear sum [Xi + Yj ] where Xi has been overheard by d2 but not by d1 and Yj has been

overheard by d1 but not by d2. For future reference, we denote OP1 to OP3 by NON-

CODING-1, NON-CODING-2, and CLASSIC-XOR, respectively.

OP1 to OP3 can also be represented by the virtual network (vr-network) in Fig. 5.1(a).

Namely, any newly arrived Xi and Yj virtual packets1 (vr-packets) that have not been heard

by any of {d1, d2} are stored in queues Q1
∅ and Q2

∅, respectively. The superscript k ∈ {1, 2}
indicates that the queue is for the session-k packets. The subscript ∅ indicates that those

packets have not been heard by any of {d1, d2}. NON-CODING-1 then takes one Xi vr-

packet from Q1
∅ and send it uncodedly. If such Xi is heard by d1, then the vr-packet leaves

the vr-network, which is described by the dotted arrow emanating from the NON-CODING-

1 block. If Xi is overheard by d2 but not d1, then we place it in queue Q1
{2}, the queue

for the overheard session-1 packets. NON-CODING-2 in Fig. 5.1(a) can be interpreted

symmetrically. CLASSIC-XOR operation takes an Xi from Q1
{2} and a Yj from Q2

{1} and

sends [Xi + Yj]. If d1 receives [Xi + Yj], then Xi is removed from Q1
{2} and leaves the vr-

network. If d2 receives [Xi + Yj ], then Yj is removed from Q2
{1} and leaves the vr-network.

It is known [30] that with dynamic packet arrivals, any INC scheme that (i) uses only

these three operations and (ii) attains bounded decoding delay with rates (R1, R2) can be

converted to a scheduling solution that stabilizes the vr-network with rates (R1, R2), and

vice versa. The INC design problem is thus converted to a vr-network scheduling problem.

To distinguish the above INC design for dynamical arrivals (the concept of stability regions)

from the INC design assuming infinite backlog and decoding delay (the concept of the

1We denote the packets (jobs) inside the vr-network by “virtual packets.”
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Fig. 5.2.: The two components of optimal dynamic INC design.

Shannon capacity), we term the former the dynamic INC design problem and the latter the

block-code INC design problem.

The above vr-network representation also allows us to divide the optimal dynamic INC

design problem into solving the following two major challenges separately. Challenge 1:

The example in Fig. 5.1(a) focuses on dynamic INC schemes using only 3 possible op-

erations. Obviously, the more INC operations one can choose from, the larger the de-

gree of design freedom, and the higher the achievable throughput. The goal is thus to

find a (small) finite set of INC operations that can provably maximize the “block-code”

achievable throughput. Challenge 2: Suppose that we have found a set of INC opera-

tions that achieves the block-code capacity. However, it does not mean that such a set of

INC operations always leads to a dynamic INC design since we still need to consider the

delay/stability requirements. Specifically, once the optimal set of INC operations is de-

cided, we can derive the corresponding vr-network. The goal is then to devise a stabilizing

scheduling policy for the vr-network, which leads to an equivalent representation of the

optimal dynamic INC solution. See Fig. 5.2 for the illustration of these two separate tasks.

Both tasks turn out to be highly non-trivial and optimal dynamic INC solution [30,

38, 39] has been designed only for the scenario of fixed channel quality. Specifically, [3]

answers Challenge 1 and shows that for fixed channel quality, the 3 INC operations in

Fig. 5.1(a) plus 2 additional DEGENERATE-XOR operations, see Fig. 5.1(b) and Sec-

tion 5.3.1, can achieve the block-code INC capacity. One difficulty of resolving Challenge 2

is that an INC operation may involve multiple queues simultaneously, e.g., CLASSIC-XOR
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can only be scheduled when both Q1
{2} and Q2

{1} are non-empty. This is in sharp contrast

with the traditional BP solutions in which each queue can act independently.2 For the vr-

network in Fig. 5.1(b), [38] circumvents this problem by designing a fixed priority rule that

gives strict precedence to the CLASSIC-XOR operation. Alternatively, [30] derives a BP

scheduling scheme by noticing that the vr-network in Fig. 5.1(b) can be decoupled into two

vr-subnetworks (one for each data session) so that the queues in each of the vr-subnetworks

can be activated independently and the traditional BP results follow.

5.1.2 Channel Quality Varies Over Time In Wireless Scenarios

However, the channel quality varies over time for practical wireless downlink scenarios.

Therefore, one should opportunistically choose the most favorable users as receivers, the

so-called opportunistic scheduling technique. Nonetheless, recently [40] shows that when

allowing opportunistic coding+scheduling for time-varying channels, the 5 operations in

Fig. 5.1(b) no longer achieve the block-code capacity. The existing dynamic INC design

in [30, 38] are thus strictly suboptimal for time-varying channels since they are based on a

suboptimal set of INC operations (recall Fig. 5.2).

5.1.3 Contribution Overview

In the next two chapters, we propose a new optimal dynamic INC design for 2-flow

downlink traffic with time-varying packet erasure channels. Our detailed contributions are

summarized as follows.

Contribution 1: We introduce a new pair of INC operations such that (i) The underlying

concept is distinctly different from the traditional wisdom of XORing two overheard pack-

ets; (ii) The overall scheme uses only the ultra-low-complexity binary XOR operation; and

2Specifically, a critical assumption in [Section II C.1 [28]] is that if two queues Q1 and Q2 can be activated
at the same time, then we can also choose to activate exactly one of the queues if desired. This is not the case
in the vr-network. E.g., CLASSIC-XOR activates both Q1

{2} and Q2

{1} but no coding operation in Fig. 5.1(a)

activates only one of Q1

{2} and Q2

{1}.
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(iii) The new set of INC operations is guaranteed to achieve the block-code-based Shannon

capacity.

Contribution 2: The introduction of new INC operations leads to a new vr-network

that is different from Fig. 5.1(b) and for which the existing “vr-network decoupling + BP”

approach in [30] no longer holds. To answer Challenge 2, we generalize the results of

Stochastic Processing Networks (SPNs) [31, 32] and apply it to the new vr-network. The

end result is an opportunistic, dynamic INC solution that is completely queue-length-based

and can robustly adapt to time-varying channels while achieving the largest possible stabil-

ity region.

Contribution 3: The proposed solution can also be readily generalized for rate-adaptation.

Through numerical experiments, we have shown that a simple extension of the proposed

scheme can opportunistically and optimally choose the order of modulation and the rate of

the error correcting codes used for each packet transmission while achieving the optimal

stability region, i.e., equal to the Shannon capacity.

Contribution 4: A byproduct of our results is a scheduling scheme for SPNs with

random departure instead of deterministic departure, which relaxes a major limitation of

the existing SPN model. The results could thus further broaden the applications of SPN

scheduling to other real-world scenarios.

5.1.4 Related Works

The most related existing works are [3,30,38,39], which provides either a policy-based

or a BP-based scheduling scheme for 2-user downlink networks and sometimes for more

than 2 users. While they all achieve the 2-flow Shannon capacity of fixed channel quality,

they are strictly suboptimal for time-varying channels and for rate-adaptation. Other works

[41, 42] study the benefits of external side information while assuming the same setting of

fixed-channel quality with no rate-adaptation.
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Fig. 5.3.: The time-varying broadcast packet erasure channel.

5.2 Problem Formulation

In this section, we formally introduce the problem setting for 2-flow downlink time-

varying channels and the corresponding scheduling problem.

5.2.1 The Broadcast Erasure Channel With Dynamic Packet Arrivals

We model the 1-base-station/2-client downlink traffic as a broadcast packet erasure

channel. See Fig. 5.3 for illustration. The detailed model description is as follows. Con-

sider the following slotted transmission system.

Dynamic Arrival: In the beginning of every time t, there are A1(t) session-1 packets

and A2(t) session-2 packets arriving at source s. We assume that A1(t) and A2(t) are

i.i.d. integer-valued random variables with mean (E{A1(t)},E{A2(t)}) = (R1, R2) and

bounded support. Recall that Xi and Yj , i, j ∈ N, denote the session-1 and session-2

packets, respectively.

Time-Varying Channel: We model the time-varying channel quality by a random pro-

cess cq(t), which decides the reception probability of the broadcast packet erasure channel.

In our proofs, we assume cq(t) is i.i.d. On the other hand, our numerical experiments show

that the proposed scheme achieves the optimal stability region for any ergodic cq(t), say

cq(t) being periodic.
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Let CQ denote the support of cq(t) and we assume |CQ| is finite. For any c ∈ CQ, we

use fc to denote the expected frequency of cq(t) = c. We assume fc > 0 for all c ∈ CQ.

Obviously
∑

c∈CQ fc = 1 since the total frequency is 1.

Broadcast Packet Erasure Channel: For each time slot t, source s can transmit one

packet, which will be received by a random subset of destinations {d1, d2}. Specifically,

there are 4 possible reception status {d1d2, d1d2, d1d2, d1d2}, e.g., the reception status

rcpt = d1d2 means that the packet is received by d1 but not d2. The reception status prob-

abilities can be described jointly by a vector �p Δ
= (pd1d2 , pd1d2 , pd1d2 , pd1d2). For example,

�p = (0, 0.5, 0.5, 0) means that every time we transmit a packet, with 0.5 probability it will

be received by d1 only and with 0.5 probability it will be received by d2 only. In contrast,

if we have �p = (0, 0, 0, 1), then it means that the packet is always received by d1 and d2

simultaneously. Since our model allows arbitrary joint probability vector �p, it captures the

scenarios in which the erasure events of d1 and d2 are dependent, e.g., when the erasures at

d1 and d2 are caused by a common (random) external interference source.

Opportunistic INC: Since the reception probability is decided by the channel quality, we

write �p(cq(t)) as a function of cq(t) at time t. In the beginning of time t, we assume that s is

aware of the channel quality cq(t) (and thus knows �p(cq(t))) so that s can opportunistically

decide how to encode the packet for the current time slot. See Fig. 5.3. This opportunistic

setting thus models the use of cognitive radio at source s.

ACKnowledgement: In the end of time t, both d1 and d2 will report back to s whether

they have received the transmitted packet or not. This models the use of ACK.

5.3 Existing Results And The Issues

In this section, we introduce the important related results, and explain why these results

could not be directly applied to our problem.
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5.3.1 Existing Results on Block INC Design

References [40, 43] focus on the above setting but consider the infinite backlog block-

code design instead of dynamic arrivals. Two findings of [40, 43] are summarized here.

The 5 INC operations in Fig. 5.1(b) are no longer optimal for time-varying channels

In Section 5.1, we have detailed 3 INC operations: NON-CODING-1, NON-CODING-2,

and CLASSIC-XOR. Two additional INC operations are introduced in [3]: DEGENERATE-

XOR-1 and DEGENERATE-XOR-2 as illustrated in Fig. 5.1(b). Specifically, DEGENERATE-

XOR-1 is designed to handle the degenerate case in which Q1
{2} is non empty but Q2

{1} = ∅.

Namely, there is at least one Xi packet overheard by d2 but there is no Yj packet over-

heard by d1. Not having such Yj implies that one cannot send [Xi + Yj] (the CLASSIC-

XOR operation). An alternative is thus to send the overheard Xi uncodedly (as if sending

[Xi + 0]). We term this operation DEGENERATE-XOR-1. One can see from Fig. 5.1(b)

that DEGENERATE-XOR-1 takes a vr-packet from Q1
{2} as input. If d1 receives it, the

vr-packet will leave the vr-network. DEGENERATE-XOR-2 is the symmetric version of

DEGENERATE-XOR-1.

We use the following example to illustrate the sub-optimality of the above 5 operations.

Suppose s has an X packet for d1 and a Y packet for d2 and consider a duration of 2 time

slots. Also suppose that s knows beforehand that the time-varying channel will have (i)

�p = (0, 0.5, 0.5, 0) for slot 1; and (ii) �p = (0, 0, 0, 1) for slot 2. The goal is to transmit as

many packets in 2 time slots as possible.

Solution 1: INC based on the 5 operations in Fig. 5.1(b). In the beginning of time 1,

both Q1
{2} and Q2

{1} are empty. Therefore, we can only choose either NON-CODING-1 or

NON-CODING-2. Without loss of generality we choose NON-CODING-1 and thus send

X uncodedly. Since �p = (0, 0.5, 0.5, 0) in slot 1, there are only two cases to consider.

Case 1: X is received only by d1. In this case, we can send Y in the second time slot,

which is guaranteed to arrive at d2 since �p = (0, 0, 0, 1) in slot 2. The total sum rate is

sending 2 packets (X and Y ) in 2 time slots. Case 2: X is received only by d2. In this
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case, Q1
{2} contains one packet X , and Q2

∅ contains one packet Y , and all the other queues

in Fig. 5.1(b) are empty. We can thus choose either NON-CODING-2 or DEGENERATE-

XOR-1 for slot 2. Regardless of which coding operation we choose, slot 2 will then deliver

1 packet to either d2 or d1, depending on the INC operation we choose. Since no packet

is delivered in slot 1, the total sum rate is 1 packet in 2 time slots. Since both cases have

probability 0.5, the expected sum rate is 2 · 0.5 + 1 · 0.5 = 1.5 packets in 2 time slots.

An optimal solution: We can achieve strictly better throughput by introducing new INC

operations. Specifically, in slot 1, we send the linear sum [X + Y ] even though neither X

nor Y has ever been transmitted, a distinct departure from the existing 5-operation-based

solutions.

Again consider two cases: Case 1: [X + Y ] is received only by d1. In this case, we let

s send Y uncodedly in slot 2. Since �p = (0, 0, 0, 1) in slot 2, the packet Y will be received

by both d1 and d2. d2 is happy since it has now received the desired Y packet. d1 can

use Y together with the [X + Y ] packet received in slot 1 to decode its desired X packet.

Therefore, we deliver 2 packets (X and Y ) in 2 time slots. Case 2: [X + Y ] is received

only by d2. In this case, we let s send X uncodedly in slot 2. By the symmetric argument

of Case 1, we deliver 2 packets (X and Y ) in 2 time slots. As a result, the sum-rate of the

new solution is 2 packets in 2 slots, a 33% improvement over the existing solution.

Remark: This example focuses on a 2-time-slot duration due to the simplicity of the

analysis. It is worth noting that the throughput improvement persists even for infinitely

many time slots. See the simulations results in Section 6.4.

[40, 43] also derive the block-code capacity region

We summarize the high-level description of [43]:

Proposition 5.3.1 [Propositions 1 and 3, [43]] For the block-code setting, a rate vector

(R1, R2) can be achieved if and only if the corresponding linear programming (LP) prob-

lem is feasible. Given any (R1, R2), the LP problem of interest involves 18 · |CQ| + 7

non-negative variables and |CQ|+ 16 (in-)equalities and can be explicitly computed.
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Our goal is to design a dynamic INC scheme, of which the stability region matches the

block-code capacity region in Proposition 5.3.1.

5.3.2 Stochastic Processing Networks (SPNs)

The main tool that we use to stabilize the vr-network is stochastic processing networks

(SPNs). In the following, we will discuss the basic definitions and existing results on SPNs.

The Main Feature of SPNs

The SPN is a generalization of the store-and-forward networks. In an SPN, a packet

can not be transmitted directly from one queue to another queue through links. Instead,

it must first be processed by a unit called “Service Activity” (SA). The SA first collects

a certain amount of packets from one or more queues (named the input queues), jointly

processes/consumes these packets, generates a new set of packets, and finally redistributes

them to another set of queues (named the output queues). The number of consumed packets

may be different than the number of generated packets. There is one critical rule for an

SPN: An SA can be activated only when all its input queues can provide enough amount of

packets for the SA to process. This rule captures directly the INC behavior and thus makes

INC a natural application of SPNs. Other applications of SPNs include the video streaming

problem [44] and the Map-&-Reduce scheduling problem [45].

SPNs with Deterministic Departure

All the existing SPN scheduling solutions [31, 32] assume a special class of SPNs,

which we call SPNs with deterministic departure. We elaborate the detailed definition in

the following.

Consider a time-slotted system with i.i.d. channel quality cq(t). An SPN consists of

three components: the input activities (IAs), the service activities (SAs), and the queues.

We suppose that there are K queues, M IAs, and N SAs.
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Input Activities: Each IA represents a session (or a flow) of packets. Specifically, when

an IA m is activated, it injects a deterministic number of αk,m packets to queue k for a group

of different k. Let A ∈ R
K∗M be the “input matrix” with the (k,m)-th entry equals to αk,m,

for all m and k. At each time t, a random subset of IAs will be activated. Equivalently, we

define a(t)
Δ
= (a1(t), a2(t), · · · , aM(t)) ∈ {0, 1}M as the random “arrival vector” at time

t. If am(t) = 1, then IA m is activated at time t. We assume that the random vector a(t) is

i.i.d. over time with the average rate vector R = E{a(t)}. In our setting, the A matrix is a

fixed (deterministic) system parameter and all the randomness of IAs lies in a(t).

Service Activities: For each service activity SA n, we define the input queues of SA

n as the queues which are required to provide specified amounts of packets when SA n is

activated. Let In denote the collection of the input queues of SA n. Similarly, we define

the output queues of SA n as the queues which will possibly receive packets when SA n

is activated, and let On be the collection of the output queues of SA n. That is, when SA

n is activated, it takes packets from queues in In, and sends packets to queues in On. We

assume that cq(t) does not change In and On.

Let β in
k,n(c) be the number of packets from queue k ∈ In that will be consumed by SA

n if SA n is activated under channel quality cq(t) = c. Specifically, β in
k,n(c) ≥ 0 if queue k

is the input queue of SA n (i.e. k ∈ In), and we set β in
k,n(c) = 0 otherwise. Similarly, let

βout
k,n(c) be the number of packets received by queue k if SA n is activated under channel

quality cq(t) = c. Specifically, βout
k,n(c) ≥ 0 if queue k ∈ On, and βout

k,n(c) = 0 otherwise.

Let Bin(c) ∈ R
K∗N be the input service matrix under channel quality c with the (k, n)-

entry equals to β in
k,n(c), and let Bout(c) ∈ R

K∗N be the output service matrix under channel

quality c with the (k, n)-entry equals to βout
k,n(c). For simplicity, we sometimes write Bin and

Bout instead of Bin(c) and Bout(c). In the deterministic SPN setting, the matrices Bin(c) and

Bout(c) are deterministic. The only random part is the arrival vector a(t) and the channel

quality cq(t).

At the beginning of each time t, the SPN scheduler is made aware of the current channel

quality cq(t) and can choose to “activate” a subset of the SAs. Let x(t) ∈ {0, 1}N be the

“service vector” at time t. If the n-th coordinate xn(t) = 1, then it implies that we choose
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to activate SA n at time t. To model the interference constraint, we require x(t) to be

chosen from a pre-defined set of binary vectors X. Define Λ to be the convex hull of X and

let Λ◦ be the interior of Λ.

Acyclicness of The Underlying SPN: The input/outuput queues In and On of the SAs

can be used to plot the corresponding SPN. We assume that the SPN is acyclic.

Existing results on the stability region of deterministic SPNs: We first introduce the

following definitions.

Definition 5.3.1 For the deterministic SPNs, an arrival rate vector R is “feasible” if there

exist sc ∈ Λ for all c ∈ CQ such that

A ·RT +
∑
c∈CQ

fc · Bout(c) · sTc =
∑
c∈CQ

fc · Bin(c) · sTc (5.1)

where (�v)T is the transpose of the row vector �v. A rate vector R is “strictly feasible” if

there exist sc ∈ Λ◦ for all c ∈ CQ such that (5.1) holds.

Eq. (5.1) can be viewed as a flow conservation law of the deterministic SPN, for which

the left-hand side describes the packets injected to queues 1 to k and the right-hand side

corresponds to the packets leaving the queues.

Proposition 5.3.2 [A combination of [31,32]] For deterministic SPNs, only feasibleR can

possibly be stabilized. Moreover, there exists an SPN scheduler that can stabilize all R that

are strictly feasible.

The achievability part for SPNs with deterministic departure (Proposition 5.3.2) is

proven by the Deficit Max-Weight (DMW) algorithm in [31] and by the Perturb Max-

Weight (PMW) algorithm in [32]. In the following, we briefly explain the existing DMW

algorithm [31].
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The Deficit Maximum Weight (DMW) Scheduling

In the DMW algorithm [31] for SPNs with deterministic departure, each queue k main-

tains a real-valued counter qk(t), called the virtual queue length. Initially, qk(1) is set to 0.

For comparison, the actual queue length is denoted by Qk(t).

The key feature of a DMW algorithm is that it makes its decision based on qk(t) instead

of Qk(t). Specifically, for each time t, we compute the “preferred3 service vector” by

x∗(t) = argmax
x∈X

dT(t) · x, (5.2)

where d(t) is the back pressure vector defined as d(t) =
(Bin(cq(t))− Bout(cq(t)

)T
q(t),

and q(t) is the vector of the virtual queue lengths. After computing x∗(t), we update q(t)

according to the following flow conservation law:

q(t + 1) =q(t) +A · a(t)
+
(Bout(cq(t))− Bin(cq(t))

) · x∗(t). (5.3)

Unlike the actual queue lengths Qk(t), which is always ≥ 0, the virtual queue length

q(t) can be smaller than 0 when updated via (5.3). That is, we do not need to take the

projection to positive numbers when computing q(t).

It is worth emphasizing that the actual queue length still has to follow the SPN rule.

That is, suppose SA n is the preferred service activity according to (5.2) but for at least one

of its input queues, say queue k, the actual queue length Qk(t) is smaller than β in
k,n(cq(t)),

the number of packets that are supposed to leave queue k. According to the model of SPN,

we cannot schedule the preferred SA n due to the lack of enough packets in queue k. When

this scenario happens, DMW simply skips activating SA n for this particular time slot, the

system remains idle, and the actual queue length Qk(t + 1) = Qk(t). On the other hand,

3As we can see later, sometimes we may not be able to execute/schedule the preferred service activities
chosen by (5.2). This is the reason why we only call the x∗(t) vector in (5.2) a preferred choice, instead of a
scheduling choice.
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Fig. 5.4.: An SPN with random departure.

even though the system stays idle, the virtual queue length q(t) is still updated by (5.3).

The above DMW algorithm is used to prove Propisition 5.3.2 in [31].

Open Problems for SPNs with Random Departure

Although the SPN with deterministic departure is relatively well understood, those SPN

scheduling results cannot be applied to the INC vr-network. The reason is as follows.

When a packet is broadcast by the base station, it can arrive at a random subset of receivers

with certain probability distributions. Therefore, the vr-packets move among the vr-queues

according to some probability distribution. This is not compatible with the deterministic

departure SPN model, in which when an SA is activated we know deterministically β in
k,n(c)

and βout
k,n(c), the service rates when the channel quality is cq(t) = c. We call the SPN model

that allows random β in
k,n(c) and βout

k,n(c) the SPN with random departure.

SPNs with random departure provide a unique challenge for the scheduling design. [31]

provides the following example illustrating this issue. Fig. 5.4 describes an SPN with 6

transition edges. We assume IA1 is activated at every time slot and α1,1 = β in
1,1 = β in

2,2 =

β in
3,2 = 1. Namely, for every time t, α1,1 = 1 packet will enter Q1; in every time slot if we

activate SA1, β in
1,1 = 1 packet will leave Q1; if we activate SA2, β in

2,2 = 1 packet will leave

Q2 and β in
3,2 = 1 packet will leave Q3. We assume these 4 transitions are deterministic

but the two transitions SA1 → Q2 and SA1 → Q3 are random. Specifically, whenever

SA1 is activated, it always takes a packet from Q1. However, we flip a fair coin to decide

whether the packet (generated from SA1) will go to Q2 or Q3. The random departure of

SA1 implies that the queue length difference |Q2| − |Q3| forms a binary random walk.
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Note that SA2 has no impact on |Q2| − |Q3| since it always takes 1 packet from each of

the queues. The analysis of the random walk shows that |Q2| − |Q3| goes unbounded with

rate
√
t. And hence there is no scheduling algorithm which can stabilize both |Q2| and |Q3|

simultaneously even though this example satisfies the flow-conservation law in (5.1) in the

sense of expectation.

5.4 Chapter Summary

In this chapter, we discuss the INC scheduling problem for 2-flow downlink time-

verying broadcast PEC. We first use an example to illustrate the issues and challenges. We

then formally formulate the scheduling problem of 2-flow downlink time-varying broad-

cast PEC. We close this chapter by introducing the existing results and discuss why these

results could not be applied to our problem.
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6. ROBUST AND OPTIMAL OPPORTUNISTIC SCHEDULING

FOR DOWNLINK 2-FLOW NETWORK CODING WITH VARYING

CHANNEL QUALITY AND RATE ADAPTION

In this chapter, we propose the first opportunistic INC + scheduling solution that is prov-

ably optimal for time-varying channels, i.e., the corresponding stability region matches the

optimal Shannon capacity. Specifically, we first introduce a new binary INC operation,

which is distinctly different from the traditional wisdom of XORing two overheard pack-

ets. We then develop a queue-length-based scheduling scheme, which, with the help of

the new INC operation, can robustly and optimally adapt to time-varying channel quality.

We then show that the proposed algorithm can be easily extended for rate adaptation and it

again robustly achieves the optimal throughput.

A byproduct of our results is a scheduling scheme for stochastic processing networks

(SPNs) with random departure, which relaxes the assumption of deterministic departure

in the existing results. The new SPN scheduler could thus further broaden the applications

of SPN scheduling to other real-world scenarios.

6.1 The Proposed New INC Solution

In Section 5.2, we discuss the limitations of the existing works on the INC block code

design and on the schedulers for SPNs, separately. In this section, we describe our new

low-complexity binary INC scheme that achieves the block code capacity. In Section 6.2,

we present our new scheduler design for the SPN with random departure. In Section 6.3, we

will combine the proposed solutions to form the optimal dynamic INC design, see Fig. 5.2.

For the new block code design in this section, we first describe the encoding steps and then

discuss the decoding steps and buffer management.
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Fig. 6.1.: The virtual network of the proposed new INC solution.
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6.1.1 Encoding

The proposed new INC solution is described as follows. We build upon the existing 5

operations, NON-CODING-1, NON-CODING-2, CLASSIC-XOR, DEGENERATE-XOR-1,

and DEGENERATE-XOR-2. See Fig. 5.1(b) and the discussion in Sections 5.1 and 5.3.1. In

addition, we add 2 more operations, termed PREMIXING and REACTIVE-CODING, respec-

tively, and 1 new virtual queue, termed Qmix. We plot the vr-network of the new scheme in

Fig. 6.1. From Fig. 6.1, we can clearly see that PREMIXING involves both Q1
∅ and Q2

∅ as

input and outputs to Qmix. REACTIVE-CODING involves Qmix as input and outputs to Q1
{2}

or Q2
{1} or simply lets the vr-packet leave the vr-network (described by the dotted arrow).

For every time instant, we can choose one of the 7 operations and the goal is to stabilize the

vr-network. In the following, we describe in details how these two INC operations work

and how to integrate them with the other 5 operations. Our description contains 4 parts.

Part I: The two operations, NON-CODING-1 and NON-CODING-2, remain the same.

Part II: We now describe the new operation PREMIXING. We can choose PREMIXING

only if both Q1
∅ and Q2

∅ are non-empty. Namely, there are Xi packets and Yj packets that

have not been heard by any of d1 and d2. Whenever we schedule PREMIXING, we choose

one Xi from Q1
∅ and one Yj from Q2

∅ and send [Xi + Yj]. If neither d1 nor d2 receives it,

both Xi and Yj remain in their original queues.

If at least one of {d1, d2} receives it, we do the following. We remove both Xi and Yj

from their individual queues. We insert a tuple (rcpt;Xi, Yj) into Qmix. That is, unlike the

other queues for which each entry is a single vr-packet, each entry of Qmix is a tuple.

The first coordinate of (rcpt;Xi, Yj) is rcpt, the reception status of [Xi + Yj]. For

example, if [Xi + Yj] was received by d2 but not by d1, then we set/record rcpt = d1d2;

If [Xi + Yj] was received by both d1 and d2, then rcpt = d1d2. The second and third

coordinates store the participating packets Xi and Yj separately. The reason why we do not

store the linear sum directly is due to the new REACTIVE-CODING operation.

Part III: We now describe the new operation REACTIVE-CODING. For any time t, we

can choose REACTIVE-CODING only if there is at least one tuple (rcpt;Xi, Yj) in Qmix.
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Table 6.1: A summary of the REACTIVE-CODING operation

Choose one tuple from Qmix and denote it by (rcpt∗;X∗
i , Y

∗
j ). We now describe the encod-

ing part of REACTIVE-CODING.

Whenever we schedule REACTIVE-CODING, if rcpt∗ = d1d2, send Y ∗
j . If rcpt∗ = d1d2,

send X∗
i . If rcpt∗ = d1d2, send X∗

i . One can see that the coding operation depends on

the reception status rcpt∗ when [X∗
i + Y ∗

j ] was first transmitted. This is why it is named

REACTIVE-CODING.

The movement of the vr-packets depends on the current reception status of time t,

denoted by rcpt(t), and also on the old reception status rcpt∗ when the sum [X∗
i + Y ∗

j ] was

originally transmitted. The detailed movement rules are described in Table 6.1. The way

to interpret the table is as follows. For example, when rcpt(t) = d1d2, i.e., neither d1 nor

d2 receives the current transmission, then we do nothing, i.e., keep the tuple inside Qmix.

On the other hand, we remove the tuple from Qmix whenever rcpt(t) ∈ {d1d2, d1d2, d1d2}.

If rcpt(t) = d1d2, then we remove the tuple but do not insert any vr-packet back to the vr-

network, see the second last row of Table 6.1. The tuple essentially leaves the vr-network

in this case. If rcpt(t) = d1d2 and rcpt∗ = d1d2, then we remove the tuple from Qmix and

insert Y ∗
j to Q2

{1}. The rest of the combinations can be read from Table 6.1 in the same

way. One can verify that the optimal INC example introduced in Section 5.3.1 is a direct

application of the PREMIXING and REACTIVE-CODING operations.

Before we continue describing the slight modification to CLASSIC-XOR, DEGENERATE-

XOR-1, and DEGENERATE-XOR-2, we briefly explain why the combination of PRE-

MIXING and REACTIVE-CODING works. To facilitate discussion, we call the time slot
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in which we use PREMIXING to transmit [X∗
i + Y ∗

j ] “slot 1” and the time slot in which

we use REACTIVE-CODING “slot 2,” even though the coding operations PREMIXING and

REACTIVE-CODING may not be scheduled in two adjacent time slots. Using this notation,

if rcpt∗ = d1d2 and rcpt(t) = d1d2, then it means that d1 receives [X∗
i + Y ∗

j ] and Y ∗
j in

slots 1 and 2, respectively and d2 receives Y ∗
j in slot 2. In this case, d1 can decode the

desired X∗
i and d2 directly receives the desired Y ∗

j . We now consider the perspective of

the vr-network. Table 6.1 shows that the tuple will be removed from Qmix and leave the

vr-network. Therefore, no queue in the vr-network stores any of X∗
i and Y ∗

j . This correctly

reflects the fact that both X∗
i and Y ∗

j have been received by their intended destinations.

Another example is when rcpt∗ = d1d2 and rcpt(t) = d1d2. In this case, d2 receives

[X∗
i + Y ∗

j ] in slot 1 and d1 receives X∗
i in slot 2. From the vr-network’s perspective, the

movement rule (see Table 6.1) removes the tuple from Qmix and insert an X∗
i packet to

Q2
{1}. Since a vr-packet is removed from a session-1 queue1 Qmix and inserted to a session-

2 queue Q2
{1}, the total number of vr-packets in the session-1 queue decreases by 1. This

correctly reflects the fact that d1 has received 1 desired packet X∗
i in slot 2.

An astute reader may wonder why in this example we can put X∗
i , a session-1 packet,

into a session-2 queue Q2
{1}. The reason is that whenever d2 receives X∗

i in the future, it

can recover its desired Y ∗
j by subtracting X∗

i from the linear sum [X∗
i + Y ∗

j ] it received

in slot 1 (recall that rcpt∗ = d1d2.) Therefore, X∗
i is now information-equivalent to Y ∗

j , a

session-2 packet. Moreover, d1 has received X∗
i . Therefore, in terms of the information

it carries, X∗
i is no different than a session-2 packet that has been overheard by d1. As a

result, it is fit to put X∗
i in Q2

{1}.

Part IV: We now describe the slight modification to CLASSIC-XOR, DEGENERATE-

XOR-1, and DEGENERATE-XOR-2. A unique feature of the new scheme is that some

packets in Q2
{1} may be an X∗

i packet that is inserted by REACTIVE-CODING when rcpt∗ =

d1d2 and rcpt(t) = d1d2. (Also some Q1
{2} packets may be Y ∗

j .) However, in our previous

discussion, we have shown that those X∗
i in Q2

{1} is information-equivalent to a Y ∗
j packet

overheard by d1. Therefore, in the CLASSIC-XOR operation, we should not insist on

1Qmix is regarded as both a session-1 and a session-2 queue simultaneously.
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Table 6.2: A summary of the transition probability of the virtual network in Fig. 6.1, where

pd1∨d2
Δ
= pd1d2 + pd1d2 + pd1d2 ; pd1

Δ
= pd1d2 + pd1d2 ; NC1 stands for NON-CODING-1;

CX stands for CLASSIC-XOR; DX1 stands for DEGENERATE-XOR-1; PM stands for
PREMIXING; RC stands for REACTIVE-CODING.

Edge Trans. Prob. Edge Trans. Prob.
Q1

∅ →NC1 pd1∨d2 Q1
∅ →PM pd1∨d2

NC1→ Q1
{2} pd1d2 PM→ Qmix pd1∨d2

Q1
{2} →DX1 pd1 Qmix →RC pd1∨d2
Q1

{2} →CX pd1 RC→ Q1
{2} pd1d2

sending [Xi + Yj] but can also send [P1 + P2] as long as P1 is from Q1
{2} and P2 is from

Q2
{1}. The same relaxation must be applied to DEGENERATE-XOR-1 and DEGENERATE-

XOR-2 operations. Other than this slight relaxation, the three operations work in the same

way as previously described in Sections 5.1 and 5.3.1.

As will be seen in Proposition 6.3.1 of Section 6.3, the two new operations PREMIX-

ING and REACTIVE-CODING allow us to achieve the linear block-code capacity for any

time-varying channels. We conclude this section by listing in Table 6.2 the transition prob-

abilities of half of the edges of the vr-network of Fig. 6.1. For example, when we schedule

PREMIXING, we remove a packet from Q1
∅ if at least one of {d1, d2} receives it. As a result,

the transition probability along the Q1
∅ →PREMIXING edge is pd1∨d2

Δ
= pd1d2+pd1d2+pd1d2 .

All the other transition probabilities in Table 6.2 can be derived similarly. The transition

probability of the other half of the edges can be derived by symmetry.

6.1.2 Decoding and Buffer Management at Receivers

It is worth emphasizing that the vr-network is a conceptual tool used by the source

s to decide what to transmit in each time slot. As a result, for the encoding purposes s

only needs to store in its memory/buffer all the packets that currently participate in the

vr-network. This automatically implies that as long as the queues in the vr-network are

stabilized, the actual memory usage at the source is also stabilized. However, for the 1-to-2

access point network to be stable, one needs to ensure that the memory usage for the two
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receivers is stabilized as well. In this subsection we discuss the decoding operations and

the memory usage at the receivers.

It is clear that each receiver needs to store some packets for the decoding purposes. A

very commonly used assumption in the Shannon-capacity literature is to assume that the

receivers store all the overheard packets in order to decode the possible XORed packets

sent from the source. No packets will ever be removed from the buffer under such a policy.

Obviously, such an infinite-buffer scheme is highly impractical.

In the existing INC scheduling works [5, 30, 38, 39], another commonly used buffer

management scheme is the following. For any time t, define i∗ (resp. j∗) as the smallest i

(resp. j) such that d1 (resp. d2) has not decoded Xi (resp. Yj) in the end of time t. Then

each receiver can simply remove any Xi and Yj in the buffer for those i < i∗ and j < j∗.

The reason is that those Xi and Yj has already been known by their intended receivers, will

not participate in any future transmission, and thus can be removed from the receive buffer

without any impact to future decoding.

On the other hand, under such a buffer management scheme, the receivers may use

significantly more memory than that of the source, which was observed in our numerical

experiments. The reason is as follows. Suppose d1 has decoded X1, X3, X4,..., X8, and

X10 and suppose d2 has decoded Y1 to Y4 and Y6 to Y10. In this case i∗ = 2 and j∗ = 5. The

aforementioned scheme will keep all X2 to X10 in the buffer of d2 and all Y5 to Y10 in the

buffer of d1. But it turns out that the source is interested in only sending 3 more packets X2,

X9, and Y5. This apparent waste of memory is due to the fact that having 3 more packets to

send does not mean that we only need to store X2, X9 and Y5 in the buffer of the receivers.

For the decoding purposes, we need to store extra “overheard” packets that can facilitate

decoding in the future. But on the other hand, the above buffer management scheme is

too conservative and very inefficient since it does not trace the actual overhearing status of

each packet and only use the simplest i∗ and j∗ pair to decide whether to prune the packets

in the buffers of the receivers.

In contrast with the above buffer management scheme used in [5, 30, 38, 39], our vr-

network scheme admits the following efficient decoding operations and buffer management
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solution. In the following, we describe the decoding and buffer management at d1. The

operations at d2 can be done symmetrically. Our description consists of two parts. We first

describe how to perform decoding at d1 and which packets need to be stored in d1’s buffer,

while assuming that any packets that have been stored in the buffer will never be expunged.

In the second part, we describe how to prune the memory usage without affecting the

decoding operations.

Upon d1 receiving a packet: Case 1: If the received packet is generated by NON-

CODING-1, then such a packet must be Xi for some i. We thus pass such an Xi to the

upper layer; Case 2: If the received packet is generated by NON-CODING-2, then such a

packet must be Yj for some j. We store Yj in the buffer of d1; Case 3: If the received

packet is generated by PREMIXING, then such a packet must be [Xi + Yj]. We store the

linear sum [Xi+Yj] in the buffer. Case 4: If the received packet is generated by REACTIVE

CODING , then such a packet can be either X∗
i or Y ∗

j , see Table 6.1 for detailed descriptions

of REACTIVE-CODING.

We have two sub-cases in this scenario. Case 4.1: If the packet is X∗
i , we pass such an

X∗
i to the upper layer. Then d1 examines whether it has stored [X∗

i +Y ∗
j ] in its buffer. If so,

use X∗
i to decode Y ∗

j and insert Y ∗
j to the buffer. If not, store a separate copy of X∗

i in the

buffer even though one copy of X∗
i has already been passed to the upper layer. Case 4.2:

If the packet is Y ∗
j , then by Table 6.1, it is clear that d1 must have received the linear sum

[X∗
i + Y ∗

j ] in the corresponding PREMIXING operation in the past. Therefore, [X∗
i + Y ∗

j ]

must be in the buffer of d1 already. We can thus use Y ∗
j and [X∗

i +Y ∗
j ] to decode the desired

X∗
i . Receiver d1 then passes the decoded X∗

i to the upper layer and stores Y ∗
j in its buffer.

Case 5: If the received packet is generated by DEGENERATE XOR-1, then such a

packet can be either Xi or Yj , where Yj are those packets in Q1
{2} but coming from REAC-

TIVE CODING, see Fig. 6.1. Case 5.1: If the packet is Xi, we pass such an Xi to the upper

layer. Case 5.2: If the packet is Yj , then from Table 6.1, it must be corresponding to the

intersection of the row of rcpt = d1d2 and the column of rcpt∗ = d1d2. As a result, d1 must

have received the corresponding [Xi + Yj] in the PREMIXING operation. By Case 3, the
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linear sum has been stored in the buffer, and d1 can thus use the received Yj to decode the

desired Xi. After decoding, Xi is passed to the upper layer.

Case 6: the received packet is generated by DEGENERATE XOR-2. Consider two

subcases. Case 6.1: the received packet is Xi. It is clear from Fig. 6.1 that such Xi must

come from REACTIVE-CODING since any packet from Q2
∅ to Q2

{1} must be a Yj packet.

By Table 6.1 and the row corresponding to rcpt = d1d2, any Xi ∈ Q2
{1} that came from

REACTIVE-CODING must correspond to the column of rcpt∗ = d1d2. By the second half

of Case 4.1, such Xi ∈ Q2
{1} must be in the buffer of d1. As a result, d1 can simply ignore

any Xi packet it receives from DEGENERATE XOR-2. Case 6.2: the received packet is Yj .

By the discussion of Case 2, if the Yj ∈ Q2
{1} came from NON-CODING-2, then it must

be in the buffer of d1 already. As a result, d1 can simply ignore those Yj packets. If the

Yj ∈ Q2
{1} came from REACTIVE-CODING, then by Table 6.1 and the row corresponding

to rcpt = d1d2, those Yj ∈ Q2
{1} must correspond to the column of either rcpt∗ = d1d2 or

rcpt∗ = d1d2. By the first half of Case 4.1 and by Case 4.2, such Yj ∈ Q2
{1} must be in the

buffer of d1 already. Again, d1 can simply ignore those Yj packets. From the discussion of

Cases 6.1 and 6.2, any packet generated by DEGENERATE XOR-2 is already known to d1,

and nothing needs to be done in this case.2

Case 7: the received packet is generated by CLASSIC-XOR. Since we have shown in

Case 6 that any packet in Q2
{1} is already known to d1, receiver d1 can simply subtract the

Q2
{1} packet from the linear sum received in Case 7. As a result, from d1’s perspective, it

is no different than directly receiving a Q1
{2} packet, i.e., Case 5. As a result, d1 will repeat

the decoding operation and buffer management in the same way as in Case 5.

Periodically pruning the memory: In the above discussion, we elaborate which pack-

ets d1 should store in its buffer and how to use them for decoding, while assuming no packet

will ever be removed from the buffer. In the following, we discuss how to remove packets

from the buffer of d1.

2The discussion of Cases 5 and 6 echoes our arguments in the end of [Section 6.1.1: Encoding] that any
packet in Q2

{1} (which can be either Xi or Yj) is information-equivalent to a session-2 packet that has been
overheard by d1.
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We first notice that by the discussion of Cases 1 to 7, the uncoded packets in the buffer

of d1, i.e., those of the form of either Xi or Yj , are used for decoding only in the scenario

of Case 7. Namely, they are used to remove the Q2
{1} packet participating in the linear

sum of CLASSIC-XOR. As a result, periodically we let the source s send to d1 the list3 of

all packets in Q2
{1} of the vr-network. After receiving the list, d1 simply removes from its

buffer any uncoded packets Xi and/or Yj that are no longer in Q2
{1}.

We then notice that by the discussion of Cases 1 to 7, the linear sum [Xi + Yj] in the

buffer of d1 is only used in one of the following two scenarios: (i) To decode Yj in Case 4.1

or to decode Xi in Case 4.2; and (ii) To decode Xi in Case 5.2. As a result, the [Xi + Yj]

in the buffer is “useful” only if one of the following two conditions are satisfied: (a) The

corresponding tuple (rcpt, Xi, Yj) is still in the Qmix of the vr-network, which corresponds

to the scenarios of Cases 4.1 and 4.2; and (b) If the participating Yj is still in the Q1
{2} of

the vr-network. By the above observation, periodically we let the source s send to d1 the

list of all packets in Q1
{2} and Qmix of the vr-network.4 After receiving the list, d1 simply

removes from its buffer any linear sum [Xi + Yj] that satisfies neither (a) nor (b).

The above pruning mechanism ensures that only the packets useful for future decoding

are kept in the buffer of d1 and d2. Furthermore, it also leads to the following lemma.

Lemma 6.1.1 Assume the lists of packets in Q1
{2}, Q

2
{1}, and Qmix are sent to d1 after every

time slot. The number of packets in the buffer of d1 is upper bounded by |Q1
{2}|+ |Q2

{1}|+
|Qmix|.

Proof: From our discussion, the total number of uncoded packets Xi or Yj in the buffer

of d1 is upper bounded by |Q2
{1}|. Also, the total number of linear sum [Xi + Yj ] in the

buffer of d1 is upper bounded by |Qmix| plus the number of Yj packets in Q1
{2}, which is

further bounded by |Qmix|+ |Q1
{2}|. As a result, the total number of packets in the buffer of

d1 is upper bounded by |Q1
{2}|+ |Q2

{1}|+ |Qmix|. �
3Only the packet IDs are sent, not the payload. Therefore the overhead of sending the list is small. Moreover,
we only need to send the “incremental changes” of the list and d1 can update the list by itself. In this way,
the overhead of sending the list can be made negligible.
4One can see that both d1 and d2 need to receive the lists of packets in Q1

{2}, Q2

{1}, and Qmix. Therefore, s
can simply broadcast (the changes) of the three lists to both d1 and d2.
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Lemma 6.1.1 implies that as long as the queues in the vr-network are stabilized, the

actual memory usage at both the source and the destinations can be stabilized simultane-

ously. Moreover, the combined memory usage of the source and 2 receivers will be upper

bounded by Q1
∅ +Q2

∅ + 3|Q1
{2}|+ 3|Q2

{1}|+ 3|Qmix| in the vr-network.

Remark: In addition to efficient decoding and buffer management, we notice that in

the proposed INC scheme, only the binary XOR is used and each transmitted packet is

either an uncoded packet or a linear sum of two packets. Therefore, during transmission

we only need to store 1 or 2 packet sequence numbers in the header of the uncoded/coded

packet, depending on whether we send an uncoded packet or a linear sum. As a result, the

communication overhead of the proposed scheme is very small.

6.2 The Proposed Scheduling Solution

In this section, we first formalize the model of SPNs with random departure and then we

propose a new scheme that achieves the optimal throughput region for SPNs with random

departure. We conclude this section by providing the corresponding stability/throughput

analysis.

6.2.1 A Simple SPN model with Random Departure

Although our solution applies to general SPNs with random departure, for illustration

purposes we describe our scheme by focusing on a simple SPN model with random de-

parture, which we termed the (0,1) random SPN. The (0,1) random SPN includes the INC

vr-network in Section 6.1 as a special example and is thus sufficient for our discussion.

Recall the definitions in Section 5.3.2 for SPNs with deterministic departure (we use

deterministic SPNs as shorthand). The differences between the (0,1) random SPN and the

deterministic SPN are:

Difference 1: In a deterministic SPN, SA n can be activated only if for all k in the input

queues In, queue k has at least β in
k,n number of packets in the queue. For comparison, in

a (0,1) random SPN, SA n can be activated only if for all k ∈ In, queue k has at least 1
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packet in the queue. For easier future reference, we say SA n is feasible at time t if at time

t queue k has at least 1 packet for all k ∈ In. Otherwise, we say SA n is infeasible at time

t.

Difference 2: In a deterministic SPN, when SA n is activated with the channel quality c,

exactly β in
k,n(c) number of packets will leave queue k for all k ∈ In. In a (0,1) random SPN,

when SA n is activated with the channel quality c (assuming SA n is feasible), the number

of packets leaving queue k is a binary random variable, β in
k,n(c), with mean β in

k,n(c) for all

k ∈ In. Namely, with probability β in
k,n(c), 1 packet will leave queue k and with probability

1 − β in
k,n(c) no packet will leave queue k. Since the packet consumption is Bernoulli, in a

(0,1) random SPN, it is possible that an SA consumes zero packet even after being activated.

However, since we do not know how many packets will be consumed beforehand, the (0,1)

random SPN imposes that all the input queues have at least 1 packet before we can activate

an SA, even though when we actually activate the SA, it sometimes consumes zero packet.

For comparison, in a deterministic SPN, an SA n is feasible if all its input queues have at

least β in
k,n(cq(t)) packets and it will always consume exactly β in

k,n(cq(t)) packets from its

input queues once activated (see Difference 1).

Difference 3: In a (0,1) random SPN, when SA n is activated with the channel quality

c (assuming SA n is feasible), the number of packets entering queue k is a binary random

variable with mean βout
k,n(c) for all k ∈ On.

We also use the following 3 technical assumptions for the (0,1) random SPN: Assump-

tion 1: Given any channel quality c ∈ CQ, both the input and output service matrix Bin and

Bout are independently distributed over time. Assumption 2: Each vector in the set of pos-

sible service vectors X can have at most 1 non-zero coordinate. Namely, we can activate at

most one service activity (out of totally N SAs) at any given time. Assumption 3: For any

cq(t), the expectation of β in
k,n(cq(t)) (resp. βout

k,n(cq(t))) with k ∈ In (resp. k ∈ On) is al-

ways strictly in (0, 1]. Namely, we do not consider the limiting case in which the Bernoulli

random variables are always 0. Assumption 1 is related to the practical scenarios. Assump-

tions 2 and 3 are for rigorously proving the stability region.
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One can easily verify that the three INC vr-networks in Figs. 5.1(a), 5.1(b), and 6.1 are

special examples of the (0,1) random SPN and they satisfy the 3 technical assumptions as

well.

6.2.2 The Proposed Scheduler For (0,1) Random SPNs

Similar to the DMW algorithm, each queue k maintains a real-valued counter qk(t),

the virtual queue length. Initially, qk(1) is set to 0. For any time t, the realization of each

entry in the input and output service matrices Bin and Bout takes values in either 0 or 1

since we are focusing on a (0,1) random SPN. We compute Bin(cq(t))
Δ
= E(Bin|cq(t)) and

Bout(cq(t))
Δ
= E(Bout|cq(t)), the expected input and output service matrices, respectively,

when the channel quality is cq(t). The entries of Bin(cq(t)) and Bout(cq(t)) are denoted by

β in
k,n(cq(t)) and βout

k,n(cq(t)), respectively. Obviously, by definition, the expected input and

output service rates are non-negative numbers. For each time t, we choose the preferred

service vector by the back-pressure decision rule (5.2) except for that the back-pressure

vector d(t) is now computed by

d(t) =
(
Bin(cq(t))− Bout(cq(t))

)T

q(t). (6.1)

We use the new back-pressure vector d(t) plus (5.2) to find the preferred SA n∗, i.e., all

the coordinates of x∗ are zero except for the n∗-th coordinate being one. We then check

whether the preferred SA n∗ is feasible. If so, we officially schedule SA n∗. If not, we let

the system to be idle,5 i.e., the actually scheduled service vector x(t) = 0 is now all-zero.

Regardless of whether the preferred SA n∗ is feasible or not, we update q(t) by

q(t+ 1) =q(t) +A · a(t)
+
(
Bout(cq(t))− Bin(cq(t))

)
· x∗(t). (6.2)

5The reason of letting the system idle is to facilitate rigorous stability analysis. In practice, we can choose
arbitrarily any other feasible SA at that moment.
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Note that q(t) can sometimes take negative values since we do not project q(t) to positive

reals.

In short, we borrow the wisdom of DMW so that we can make scheduling decisions

based on the virtual queue lengths qk(t) that can take negative values. But then we update

qk(t) only by the expected service rates rather than the actual service rates since we are

dealing with a random SPN instead of a deterministic SPN. For notation simplicity, we

denote the proposed scheduler for (0,1) random SPNs by SCHavg.

6.2.3 Performance Analysis

The example in Section 5.3.2 shows that one challenge of the SPN with random de-

parture is that Qk(t) may grow unboundedly (sublinearly) even when the expected flow-

conservation law in (5.1) is satisfied. In this work, we prove that the sublinearly growing

queues in the example of Section 5.3.2 are actually the worst possible case that could hap-

pen. Namely, for SPNs with random departure, we can always find an algorithm such that

all queue lengths grow sublinearly when the input rates are within the optimal stability

region.

Note that from a throughput perspective, sublinear growth means that the throughput

penalty incurred by the growing queues is negligible since the throughput is the average

number of the packet arrivals per second and only the linear terms matter in the long run.

Moreover, for any scheme A that achieves sublinearly growing queues, it is likely (without

any rigorous proof) that we can convert it to a bounded queue scheme by (i) Run scheme

A until any of the sublinearly growing queue length hits some pre-defined threshold; (ii)

Stop scheme A and run a naive scheme B that focuses on “draining” the queues of the

network; (iii) When running scheme B, put any new arrival packets into a separate buffer

Q; (iv) After scheme B successfully drains out all the queues, we start to run scheme A

again and we inject the packets collected in Q gradually back to the system. The above 4

steps guarantee that the queue lengths are bounded. Heuristically, they also approach the

optimal throughput since the queues grow sublinearly, the penalty of running the “draining-
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stage scheme B” should also be negligible when choosing a sufficiently large threshold in

Step (i).

From the above reasonings, we believe that sublinearly growing queues are as good as

the bounded queues from a practical perspective. The following analysis is based on the

concept of sublinearly growing queue lengths.

Definition 6.2.1 A queue length q(t) grows sublinearly if for any ε > 0 and δ > 0, there

exists t0 such that

Prob(|q(t)| > εt) < δ, ∀t > t0. (6.3)

Since we assume that the input activities a(t) have bounded support, an equivalent defi-

nition of sublinear growth is: q(t) grows sublinearly if for any ρ > 0 there exists t0 such

that

E{|q(t)|} < ρt, ∀t > t0. (6.4)

An SPN is sublinearly stable if all the queues grow sublinearly.

Remark: As a result of the above definition, one can observe that the summation of

finitely many sublinearly-growing queues is still sublinearly-growing.

The following two propositions characterize the sublinear stability region of any (0,1)

random SPN. Proposition 6.2.1 specifies the outer bound of the stability region, and Propo-

sition 6.2.2 specifies an inner bound.

Proposition 6.2.1 Consider any (0,1) random SPN. A rate vector R can be sublinearly

stabilized only if there exist sc ∈ Λ for all c ∈ CQ such that

A ·R+
∑
c∈CQ

fc · Bout(c) · sc =
∑
c∈CQ

fc · Bin(c) · sc. (6.5)

Proposition 6.2.1 can be derived by conventional flow conservation arguments as in [31]

and the proof is thus omitted.
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Proposition 6.2.2 For any SPN that satisfies the three assumptions in Section 6.2.1 and

any rate vector R, if there exist sc ∈ Λ◦ for all c ∈ CQ such that (6.5) holds, then the

proposed scheme SCHavg in Section 6.2.2 can sublinearly stabilize the SPN with arrival

rate R.

Outline of the proof of Proposition 6.2.2: Let each queue k keep another two real-

valued counters qinter
k (t) and Qinter

k (t), termed the intermediate virtual queue length and

intermediate actual queue length. Recall that qk(t) is the virtual queue length and Qk(t) is

the actual queue length. There are thus 4 different queue length values6 for each queue k.

To prove Q(t) can be sublinearly stabilized by SCHavg, we will show that both Qinter
k (t) and

the absolute difference |Qk(t)−Qinter
k (t)| can be sublinearly stabilized by SCHavg for all k.

Since the summation of sublinearly-growing random processes is still sublinearly-growing,

Q(t) can be sublinearly stabilized by SCHavg, and we have thus proven Proposition 6.2.2.

To that end, we first specify the update rules for qinter
k (t) and Qinter

k (t). Initially, qinter
k (1)

and Qinter
k (1) are set to 0 for all k. In the end of each time t, we compute qinter(t+ 1) using

the preferred schedule x∗(t) chosen by SCHavg:

qinter(t + 1) =qinter(t) +A · a(t)
+
(Bout(cq(t))− Bin(cq(t))

) · x∗(t). (6.6)

If we compare (6.6) with the computation of q(t) in (6.2), qinter(t) is updated based on

the realization of the input and output service matrices while q(t) is updated based on the

expected input and output service matrices. Equivalently, we can rewrite (6.6) as

qinter
k (t+ 1) = qinter

k (t)− μout,k(t) + μin,k(t), ∀k, (6.7)

6qinter
k (t) and Qinter

k (t) are used only for the proof and are not needed when running the scheduling algorithm.
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where

μout,k(t) =
N∑

n=1

(
β in
k,n(cq(t)) · x∗

n(t)
)
, (6.8)

μin,k(t) =

M∑
m=1

(αk,m · am(t)) +
N∑

n=1

(
βout
k,n(cq(t)) · x∗

n(t)
)
. (6.9)

Here, μout,k is the amount of packets coming “out of queue k”, which is decided by the

“input rates of SA n”. Similarly, μin,k is the amount of packets “entering queue k”, which

is decided by the “output rates of SA n”. We also update Qinter(t+ 1) by

Qinter
k (t+ 1) =

(
Qinter

k (t)− μout,k(t)
)+

+ μin,k(t), ∀k, (6.10)

where (v)+ = max{0, v}.

The difference between qinter
k (t) and Qinter

k (t) is that the former can be still be strictly

negative when updated via (6.7) while we enforce the latter to be non-negative.

To compare Qinter
k (t) and Qk(t), we observe that by (6.10), Qinter

k (t) is purely updated

by the preferred service vector x∗(t) without considering whether the preferred SA n∗

is feasible or not (see Difference 1 in Section 6.2.1). That is, in the case that SA n∗ is

infeasible, then SA n∗ cannot be carried out successfully. Therefore, the system remains

idle and the actual queue length Qk(t + 1) = Qk(t) for all k = 1 to K or Qk(t) increases

if there is external arrival at queue k. In contrast, even though SA n∗ cannot be carried out

successfully, we still update Qinter
k (t + 1) by (6.8) to (6.10) for all queue k. As a result, the

Qinter
k (t) values will still change7 for those k ∈ In ∪ On.

To evaluate the absolute difference |Qk(t) − Qinter
k (t)|, for any time t and any queue k,

we first define an event, which is called the null activity of queue k at time t. Since we

assume at any time t, only one SA can be scheduled, we use n(t) to denote the preferred

SA suggested by the back-pressure scheduler in (5.2) and (6.1). As a result, at time t, we

7In the original DMW algorithm for deterministic SPNs [31], the quantity “actual queue length” is updated
by (6.10). The “actual queue lengths in [31]” thus refer to a conceptual register value Qinter

k (t) rather than the
number of physical packets in the buffer/queue. In this work, we rectify this inconsistency by renaming “the
actual queue lengths in [31]” the “intermediate actual queue lengths Qinter

k (t).”
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say the null activity occurs at queue k if (i) k ∈ In(t) and (ii) Qinter
k (t) < β in

k,n(cq(t)). That

is, the null activity describes the event that the preferred SA shall consume the packets in

queue k (since k ∈ In(t)) but the intermediate actual queue length Qinter
k (t) is less than

the realization β in
k,n(cq(t)). Note that the null activity is defined based on the intermediate

actual queue length Qinter
k (t) and does not distinguish whether the actual queue length Qk(t)

is larger or less than 1. Therefore the null activities are not directly related to the event that

SA n is infeasible.

Let NNA,k(t) be the aggregate number of null activities occurred at queue k up to time

t. Then we can write NNA,k(t) as

NNA,k(t)

=

t∑
τ=1

I(k ∈ In(τ)) · I(Qinter
k (τ) < β in

k,n(τ)(cq(τ))),

where I(·) is the indicator function.

The following lemma upper bounds the difference of Qk(t) and Qinter
k (t) by the aggre-

gate numbers of null activities.

Lemma 6.2.1 For all k = 1, 2, ..., K, there exist K non-negative coefficients γ1, ..., γK

such that

E(|Qk(t)−Qinter
k (t)|) ≤

K∑
k̃=1

γk̃NNA,k̃(t). (6.11)

for all t = 1 to ∞.

The proof of Lemma 6.2.1 is relegated to Appendix D. In Appendix G, we prove that

both Qinter
k (t) and NNA,k(t) of (0,1) random SPN can be sublinearly stabilized by SCHavg
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for all k.8 Therefore, by Lemma 6.2.1, Qinter
k (t) and |Qk(t) − Qinter

k (t)| can be sublinearly

stabilized and so can Qk(t). Proposition 6.2.2 is thus proven.

6.3 The Combined Solution

We are now ready to combine the discussions in Sections 6.1 and 6.2. As discussed in

Section 6.1, the 7 operations form a vr-network as described in Fig. 6.1 and both the source

and the two receivers perform encoding and decoding according to the packet movements

in the vr-network, respectively. Specifically, there are K = 5 queues, M = 2 IAs, and

N = 7 SAs. The 5-by-2 input matrix A contains 2 ones, since the packets arrive at either

Q1
∅ or Q2

∅. Given the channel quality cq(t) = c, the expected input and output service

matrices Bin(c) and Bout(c) can be derived from Table 6.2.

We use the following concrete example to illustrate our procedure. Suppose that the

channel quality cq(t) is Bernoulli with parameter 1/2 (i.e., flipping a perfect coin). Also

suppose that when cq(t) = 0, with probability 0.5 (resp. 0.7) destination d1 (resp. desti-

nation d2) can successfully receive a packet transmitted by source s; and when cq(t) = 1,

with probability 2/3 (resp. 1/3) destination d1 (resp. destination d2) can successfully re-

ceive a packet transmitted by source s. Further assume that all the success events of d1

and d2 are independent. Please also see Appendix H for further details on the matrix con-

8The DMW algorithm for SPNs were first introduced in [31]. However, in that paper, the authors rename
the intermediate actual queue lengths defined in (6.10) of this paper as the actual queue length and prove
that Qinter

k (t) can be stabilized for deterministic SPNs. However, proving Qinter
k (t) can be stabilized does not

necessarily mean that Qk(t) can be stabilized, as discussed in the paragraphs after (6.10). The critical part of
proving |Qk(t) −Qinter

k (t)| is stabilized is unfortunately missing in [31]. One contribution of this work is to
provide in Lemma 6.2.1 the first rigorous proof showing that |Qk(t)−Qinter

k (t)| can be stabilized as well.
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struction. If we order the 5 queues as
[
Q1

∅,Q
2
∅,Q

1
{2},Q

2
{1},Qmix

]
, the 7 service activities

as [NC1,NC2,DX1,DX2, PM,RC,CX], then the matrices of the SPN become

A =

⎡
⎣ 1 0 0 0 0

0 1 0 0 0

⎤
⎦

T

,

Bin(0) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.85 0 0 0 0.85 0 0

0 0.85 0 0 0.85 0 0

0 0 0.5 0 0 0 0.5

0 0 0 0.7 0 0 0.7

0 0 0 0 0 0.85 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Bin(1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

7/9 0 0 0 7/9 0 0

0 7/9 0 0 7/9 0 0

0 0 2/3 0 0 0 2/3

0 0 0 1/3 0 0 1/3

0 0 0 0 0 7/9 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Bout(0) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0.35 0 0 0 0 0.35 0

0 0.15 0 0 0 0.15 0

0 0 0 0 0.85 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Bout(1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0

0 0 0 0 0 0 0

1/9 0 0 0 0 1/9 0

0 4/9 0 0 0 4/9 0

0 0 0 0 7/9 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

sc =
[
x
[c]
NC1 x

[c]
NC2 x

[c]
DX1 x

[c]
DX2 x

[c]
PM x

[c]
RC x

[c]
CX

]T
.
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For example, the seventh column of Bin(0) indicates that when cq(t) = 0 and the CLASSIC-

XOR is activated, with probability 0.5 (resp. 0.7) 1 packet will be consumed from queue

Q1
{2} (resp. Q2

{1}). The third row of Bout(1) indicates that when cq(t) = 1, queue Q1
{2}

will increase by 1 with probability 1/9 (resp. 1/9) if coding choice NON-CODING-1 (resp.

REACTIVE-CODING) is activated since it corresponds to the event that d1 receives the

transmitted packet but d2 does not.

Since there are 7 coding operations (SAs), each vector in X is a 7-dimensional binary

vector. Since we are allowed to choose any one of the 7 operations or choose to transmit

nothing, 7 of the 8 vectors are the Dirac delta vectors and the rest is an all-zero vector.

We can now use the proposed DMW scheduler in (5.2), (6.1), and (6.2) to compute the

preferred scheduling decision. We activate the preferred decision if it is feasible. If not,

then the system remains idle.

For general channel parameters (including but not limited to this simple example), after

computing the Bin(c) and Bout(c) of the vr-network in Fig. 6.1 with the help of Table 6.2,

we can explicitly compare the sublinear stability region in Propositions 6.2.1 and 6.2.2 with

the Shannon capacity region in [43]. In the end, we have the following proposition.

Proposition 6.3.1 The sublinear stability region of the proposed INC-plus-SPN-scheduling

scheme matches the block-code capacity of time-varying channels.

The detailed proof of Proposition 6.3.1 is provided in Appendix H.

Remark: During numerical simulations, we notice that we can further revise the pro-

posed scheme to reduce the actual queue lengths Qk(t) by ≈ 50% even though we do not

have any rigorous proofs/performance guarantees for the revised scheme. That is, when

making the scheduling decision by (5.2), we can compute d(t) by

d(t) =
(
Bin(cq(t))− Bout(cq(t))

)T

qinter(t). (6.12)

where qinter(t) is the intermediate virtual queue length defined in (6.7) of Section 6.2.3.

The intuition behind is that the new back-pressure in (6.12) allows the scheme to directly
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control qinter
k (t), which, when compared to the virtual queue q(t) in (6.2), is more closely

related to the actual queue length9 Qk(t).

6.3.1 Extensions For Rate Adaption

We close this section by noting that the proposed solution can be naturally extended to

the case of rate adaptation, which is also known as adaptive coding and modulation. For

illustration purposes, we consider the following simple example of adaptive coding and

modulation scheme.

Consider 2 possible error correcting rates (1/2 and 3/4); 2 possible modulation schemes

QPSK and 16QAM; and jointly there are 4 possible combinations. The lowest throughput

combination is rate-1/2 plus QPSK and the highest throughput combination is rate-3/4 plus

16QAM. Assuming the packet size is fixed. If the highest throughput combination takes

1-unit time to finish sending 1 packet, then the lowest throughput combination will take

3-unit time. For these 4 possible (rate,modulation) combinations, we denote the unit-time

to finish transmitting 1 packet as T1 to T4, respectively.

For the i-th (rate,modulation) combination, i = 1 to 4, source s can measure the prob-

ability that d1 and/or d2 successfully hears the transmission, and denote the correspond-

ing probability vector by �p(i). Source s then uses �p(i) to compute the Bin,(i)(cq(t)) and

Bout,(i)(cq(t)) for the vr network. Then it computes the backpressure by

d(i)(t) =
(
Bin,(i)(cq(t))− Bout,(i)(cq(t))

)T

q(t).

We can now compute the preferred scheduling choice by

argmax
i∈{1,2,3,4},x∈X

d(i)(t)T · x
Ti

(6.13)

9There are four types of queue lengths in this work: q(t), qinter(t), Qinter(t), and Q(t) and they range from
the most artificially-derived q(t) to the most realistic metric, the actual queue length Q(t).
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and update the virtual queue length q(t) by (6.2). Namely, the backpressure d(i)(t)T · x is

scaled inverse proportionally with respect to Ti, the time it takes to finish the transmission

of 1 packet. If the preferred SA n∗ is feasible, then we use the i-th (rate,modulation)

combination plus the coding choice n∗ for the current transmission. If the preferred SA

n∗ is infeasible, then we either choose another (rate,modulation) combination plus coding

choice arbitrarily or simply let the system idle.

One can see that the new scheduler (6.13) automatically balances the packet reception

status (the q(t) terms), the success overhearing probability of different (rate,modulation)

(the Bin,(i)(cq(t)) and Bout,(i)(cq(t)) terms), and different amount of time it takes to finish

transmission of a coded/uncoded packet (the Ti term). In all the numerical experiments

of Section 6.4, the new scheduler (6.13) robustly achieves the optimal throughput with

adaptive coding and modulation.

6.4 Simulation Results

In this section, we simulate the proposed optimal 7-operation INC + scheduling so-

lution and compare the results with the existing INC solutions and the (back-pressure)

pure-routing solutions.

In Fig. 6.2, we simulate a simple time-varying channel situation first described in

Section 5.3.1. Specifically, the channel quality cq(t) is i.i.d. distributed and for any t,

cq(t) is uniformly distributed on {1, 2}. When cq(t) = 1, the success probabilities are

�p(1) = (0, 0.5, 0.5, 0) and when cq(t) = 2, the success probabilities are �p(2) = (0, 0, 0, 1),

respectively. We consider four different schemes: (i) Back-pressure (BP) + pure routing;

(ii) BP + INC with 5 operations [27,39]; (iii) The proposed DMW+INC with 7 operations,

and (iv) The modified DMW+INC with 7 operations that use qinter
k (t) to compute the back

pressure, see (6.12), instead of qk(t) in (6.1).

We choose perfectly fair (R1, R2) = (θ, θ) and gradually increase the θ value and

plot the stability region. For each experiment, i.e., each θ, we run the schemes for 105

time slots. The horizontal axis is the sum rate R1 + R2 = 2θ and the vertical axis is the
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Fig. 6.2.: The backlog of four different schemes for a time-varying channel with cq(t) uni-
formly distributed on {1, 2}, and the packet delivery probability being �p = (0, 0.5, 0.5, 0)
if cq(t) = 1 and �p = (0, 0, 0, 1) if cq(t) = 2.
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(b) (f1, f2, f3, f4) = (0.25, 0.25, 0.25, 0.25).

Fig. 6.3.: The backlog comparison with cq(t) chosen from {1, 2, 3, 4} and the proba-
bility vectors are �p(1) = (0.14, 0.06, 0.56, 0.24), �p(2) = (0.14, 0.56, 0.06, 0.24), �p(3) =
(0.04, 0.16, 0.16, 0.64), and �p(4) = (0.49, 0.21, 0.21, 0.09).
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aggregate backlog (averaged over 10 trials) in the end of 105 slots. By the results in [43],

the sum rate Shannon capacity is 1 packet/slot, the best possible rate for 5-OP INC is 0.875

packet/slot, and the best pure routing rate is 0.75 packet/slot, which are plotted as vertical

lines in Fig. 6.2. The simulation results confirm our analysis. The proposed 7-operation

dynamic INC has a stability region matching the Shannon block code capacity and provides

14.7% throughput improvement over the 5-operation INC, and 33.3% over the pure-routing

solution.

Also, both our original proposed solution (using qk(t)) and the modified solution (using

qinter
k (t)) can approach the stability region while the modified solution has smaller backlog.

This phenomenon is observed throughout all our experiments. As a result, in the following

experiments, we only report the results of the modified solution using qinter
k (t) to compute

the backpressure.

Next we simulate the scenario of 4 different channel qualities: CQ = {1, 2, 3, 4}. The

varying channel qualities could model the situations like the different packet transmission

rates and loss rates due to time-varying interference caused by the primary traffic in a cogni-

tive radio environment. We assume four possible channel qualities with the corresponding

probability distributions being �p(1) = (p
(1)

d1d2
, p

(1)

d1d2
, p

(1)

d1d2
, p

(1)
d1d2

) = (0.14, 0.06, 0.56, 0.24),

�p(2) = (0.14, 0.56, 0.06, 0.24), �p(3) = (0.04, 0.16, 0.16, 0.64), and

�p(4) = (0.49, 0.21, 0.21, 0.09) in both Figs. 6.3(a) and 6.3(b). The difference is that in

Fig. 6.3(a), the channel quality cq(t) is i.i.d. distributed with probability (frequency)

(f1, f2, f3, f4) being (0.15, 0.15, 0.35, 0.35). In Fig. 6.3(b) the cq(t) is again i.i.d. but with

different frequency (f1, f2, f3, f4) = (0.25, 0.25, 0.25, 0.25). Again, we assume perfect

fairness (R1, R2) = (θ, θ) and gradually increase the θ value. The sum-rate Shannon

block-code capacity is R1 + R2 = 0.716 when (f1, f2, f3, f4) = (0.15, 0.15, 0.35, 0.35)

and R1+R2 = 0.7478 when (f1, f2, f3, f4) = (0.25, 0.25, 0.25, 0.25), and the pure routing

sum-rate capacity is R1 + R2 = 0.625 when (f1, f2, f3, f4) = (0.15, 0.15, 0.35, 0.35) and

R1 + R2 = 0.675 when (f1, f2, f3, f4) = (0.25, 0.25, 0.25, 0.25). We simulate our mod-

ified 7-OP INC, the priority-based solution in [38], and a standard back-pressure routing
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Fig. 6.4.: The backlog of four different schemes for rate adaptation with two possible (error-
correcting-code rate,modulation) combinations. The back-pressure-based INC scheme
in [39] is used in both aggressive and conservative 5-OP INC, where the former always
chooses the high-throughput (rate,modulation) combination while the latter always chooses
the low-throughput (rate,modulation) combination.

scheme [28]. Each point of the curves is the average of 10 trials and each trial lasts for 105

slots.

Although the priority-based scheduling solution is provably optimal for fixed channel

quality, it is less robust and can sometimes be substantially suboptimal (see Fig. 6.3(b)) due

to the ad-hoc nature of the priority-based policy. For example, as depicted by Figs. 6.3(a)

and 6.3(b), the pure-routing solution outperforms the 5-operation scheme for one set of fre-

quency (f1, f2, f3, f4) while the order is reversed for another set of frequency. On the other

hand, the proposed 7-operation scheme consistently outperforms all the existing solutions

and has a stabiliby region matching the Shannon block-code capacity. We have tried many

other combinations of time-varying channels. In all our simulations, the proposed DMW

scheme always achieves the block-code capacity in [43] and outperforms routing and any

existing solutions [38, 39].
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Our solution in Section 6.3.1 is the first dynamic INC design that is guaranteed to

achieve the optimal linear INC capacity with rate-adaptation (adaptive coding and modu-

lation) [43]. Fig. 6.4 compares its performance with existing routing-based rate-adaptation

scheme and the existing INC schemes, the latter of which are designed without rate adap-

tation. We assume there are two available (error-correcting-code rate,modulation) com-

binations to be selected. We assume that the first combination takes 1 second to finish

transmitting a single packet and the second combination takes 1/3 second to finish a single

packet. That is, the transmission rate of the second combination is 3 times faster than the

first combination.

We further assume the packet delivery probability is �p = (0.1 · 0.05, 0.95 · 0.1, 0.05 ·
0.9, 0.95·0.9) if the first combination is selected and �p = (0.6·0.8, 0.8·0.4, 0.2·0.6, 0.2·0.4)
if the second combination is selected. That is, the low-throughput combination is likely to

be overheard by both destinations and the high-throughput combination has a much lower

success transmission probability. We can compute the corresponding Shannon block-code

capacity region by modifying the equations in [43]. We then use the proportional fairness

objective function ξ(R1, R2) = log(R1)+log(R2) and find the maximizing R∗
1 and R∗

2 over

the Shannon capacity region, which are R∗
1 = 0.6508 packets per second and R∗

2 = 0.5245

packets per second in this example.

After computing the optimal block code capacity, we assume the following dynamic

packet arrivals. We define (R1, R2) = θ · (R∗
1, R

∗
2) for any given θ ∈ (0, 1). For any exper-

iment (i.e., for any given θ), the arrivals of session-i packets is a Poisson random process

with rate Ri packets per second for i = 1, 2. That is, if the low-throughput combination 1

is selected to transmit 1 packet, then during the 1 second it takes to finish, the number of

arrivals of session-i packets is a Possion random variable with mean Ri · 1 packets. Sim-

ilarly, if the high-throughput combination is selected to transmit 1 packet, then during the

1/3 second it takes to finish transmission, the number of arrivals of session-i packets is a

Possion random variable with mean Ri · 1/3 packets.

Each point of the curves of Fig. 6.4 consists of 10 trials and each trial lasts for 105

seconds. We compare the performance of our scheme in Section 6.3.1 with (i) Pure-routing
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with rate-adaptation; (ii) aggressive 5-OP INC, i.e., use the scheme in [39] and always

choose combination 2; and (iii) conservative 5-OP INC, i.e., use the scheme in [39] and

always choose combination 1. We also plot the optimal routing-based rate-adaptation rate

and the optimal Shannon-block-code capacity rate as vertical lines.

We can observe that since our proposed scheme jointly decides which (rate,modulation)

combination to use and which INC operation to encode the packet in an optimal way, see

(6.13), the stability region of our scheme matches the block-code Shannon capacity with

rate-adaptation. It provides 12.51% throughput improvement over the pure routing-based

rate-adaptation solution (which is represented by the red dash line in Fig. 6.4).

Furthermore, we observe that if we perform INC but always choose the low-throughput

(rate,modulation), as suggested in some existing works [46], then the largest sum-rate

R1 + R2 = θ∗cnsv. 5-OP(R
∗
1 + R∗

2) = 0.9503, which is worse than pure routing with rate-

adaptation θ∗routing,RA(R
∗
1 + R∗

2) = 1.0446. Even if we always choose the high-throughput

(rate,modulation) with 5-OP INC, then the largest sum-rateR1+R2 = θ∗aggr. 5-OP(R
∗
1+R∗

2) =

0.9102 is even worse than the conservative 5-OP INC capacity. We have tried many

other rate-adaptation scenarios. In all our simulations, the proposed DMW scheme al-

ways achieves the block-code capacity and outperforms pure-routing, conservative 5-OP

INC, and aggressive 5-OP INC.

It is worth emphasizing that in our simulation, for any fixed (rate,modulation) combina-

tion, the channel quality is also fixed. Therefore since 5-OP scheme is throughput optimal

for fixed channel quality [3], it is guaranteed that the 5-OP scheme is throughput optimal

when using a fixed (rate,modulation) combination. Our results thus show that using a fixed

(rate,modulation) combination is the main reason of the suboptimal performance and the

proposed scheme in (5.2), (6.2), and (6.13) can dynamically decide which (rate,modulation)

combination to use for each transmission and achieve the largest possible stability region.
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6.5 Chapter Summary

In this chapter, we have proposed a new 7-operation INC scheme together with the

corresponding scheduling algorithm to achieve the optimal downlink throughput of the 2-

flow access point network with time varying channels. Based on binary XOR operations,

the proposed solution admits ultra-low encoding/decoding complexity with efficient buffer

management and minimal communication and control overhead. The proposed algorithm

has also been generalized for rate adaptation and it again robustly achieves the optimal

throughput in all the numerical experiments. The proposed algorithm has also been gen-

eralized for rate adaptation and it again robustly achieves the optimal throughput in all the

numerical experiments. A byproduct of this paper is a throughput-optimal scheduling so-

lution for SPNs with random departure, which could further broaden the applications of

SPNs to other real-world applications.
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7. 802.11-BASED INTER-SESSION NETWORK CODING MAC

PROTOCOL WITH RATE ADAPTION

In this chapter, we propose an 802.11-based inter-session network coding MAC protocol

with rate adaption, which can be considered as an extension of the rate adaption solution

proposed in the previous chapter.

7.1 A Brief On 802.11 MAC

We build the proposed practical protocol on top of CSMA-CA, which is widely adapted

in the industry standards, e.g. IEEE 802.11, IEEE 802.15.4, and ITU-T G.hm. Further-

more, we are targeting building our protocol base on 802.11n MAC with minimum possible

rule changes and the backward compatibility, and hence it provides a great implementation

potential and a fair comparison with a wide range of existing wireless devices. We begin

the discussion with an overview of 802.11 MAC protocol.

7.1.1 Network Topology

In 802.11, the access point (AP) is the basic unit of the wireless service provider. It

allows the surrounding wireless devices, which are called as stations (STAs) conventionally,

to access the Internet through it. Each AP then forms a basic service set (BSS) with an

associated basic service set ID (BSSID) which is broadcasted periodically in the beacon

frame. When one STA attempts to access to Internet through 802.11, it first tries to receive

the surrounding beacon frames and retrieving the BSSID to the user. The user then selects

the desired BSSID, and connect to the wireless service.
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7.1.2 The Basic Mechanisms

The main functionality of 802.11 MAC is Distributed Coordination Function (DCF),

which is later extended to Hybrid Coordination Function (HCF) after 802.11e. Under DCF

rules, each wireless device, which attempts to send packets, first needs to detect the medium

being idle for DCF InterFrame Space (DIFS) duration, and then wait for another random

backoff duration, which is randomly drawn from a predefined contention window (CW).

Only after the medium remains idle for the random backoff duration, should the device

start transmitting the packets.

Once the device wins the medium access control and start to send packets, it reserves

the right of accessing the medium for the duration of Transmit Opportunity (TXOP). The

device then can send as many packets as possible during the available TXOP.

After 802.11e, DCF was modified to accommodate the concept of Quality of Service

(QoS), and was called HCF afterward. HCF categorizes the incoming packets from up-

layers into 4 different access categories (AC), called “Voice (AC VO),” “Video (AC VI),”

“Best Effort (AC BE)”, and “Background (AC BK).” Each category has the different du-

rations of Arbitration InterFrame Space (AIFS), which replaces the role of DIFS, different

contention window sizes, and different durations of transmit opportunity (TXOP), to ad-

dress the priorities of each AC. Generally speaking, HCF assigns shorter duration of AIFS,

smaller contention window, and longer TXOP to the higher priority AC.

The RTS-CTS hand-shaking mechanism is an optional feature in 802.11MAC. When

RTS-CTS is on, any transmission-attempting device first need to broadcast an request-to-

send (RTS) packet to the desired destination device. The destination device then replies

a clear-to-send (CTS) packet back if it is idle and the medium is clear. Once CTS is re-

ceived by the transmission-attempting device, it then starts to send the packets. However,

in general, this feature is usually turned off in most of deployed 802.11 devices.
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Fig. 7.1.: The MAC header in 802.11 [47].

Table 7.1: The address field in 802.11 MAC header.

To DS From DS Address 1 Address 2 Address 3 Address 4
0 0 Destination Source BSSID N/A
0 1 Destination BSSID Source N/A
1 0 BSSID Source Destination N/A
1 1 Receiver Transmitter Destination Source
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7.1.3 Frame Structure

In 802.11 MAC, the basic frame transmitted in MAC is called MAC Protocol Data Unit

(MPDU). The frame structure of one MPDU is illustrated in Fig. 7.1.

The 802.11 MAC header consists of 30 bytes of header fields. The first two bytes are

for Frame Control. It is worth mentioning the “To DS” and “From DS” fields. These two

fields are designed for the scenarios the packet is sent to or from distributed systems (DS).

And the contents of Address 1 to Address 4 will also change according to “To DS” and

“From DS.” For example, in the case that both the source and the destination are not from

distributed systems, Address 1 denotes the destination ID and Address 2 denotes the Source

ID while Address 3 contains the BSSID. The detailed relationship between (To DS, From

DS) pairs and the contents in Address 1 to Address 4 is illustrated in Table 7.1.

The other thing in the 802.11 MAC header that is worth mentioning is Sequence Control

field. In Sequence Control field, the first 12 bits describe Sequence Number for that packet,

and the last 4 bits describe Fraction Number for the case that the packet is partitioned into

several pieces.

After 802.11e and 802.11n, the idea of aggregate-MPDU (A-MPDU) is introduced in

the standard to reduce the medium contention overhead and ACK/SIFS overhead, and now

has become a required feature. Specifically speaking, once the device wins the medium

access, it reserves the right to transmit for a duration of TXOP. Within this duration of

TXOP, it consecutively sending MPDUs without requiring any ACK/NACK. And at the end

of the TXOP with properly reserved time slots for feedbacks, the transmitting device sends

the request for Block-ACK to the receiver. The receiver then replies Block-ACK, which

contains ACKs for each individual MPDU received during this TXOP, to the transmitter.

This procedure is called A-MPDU and Block-ACK mechanism.

7.2 Practical MAC Protocol Based On 802.11n CSMA-CA

Before we explicitly describe the protocol, we first state the assumptions.

Assumption 1: In this protocol, we only focus on one category of packets, e.g. Best Effort.
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That is, all the incoming packets from upper layers have the same priority and the similar

packet lengths.

Assumption 2: We assume RTS-CTS feature is off.

Assumption 3: We consider only two fixed receiving devices (STAs) with one Access Point

(AP). That is, the channel condition changes only according to the chosen rate by AP, and

all the transmissions happen within one basic service set (BSS).

Assumption 4: We assume AP has the capability to store two separate queues of packets,

one for each STA.

Assumption 5: We assume the features of aggregate-MPDU (A-MPDU) and Block-ACK

are on. That is, each transmission consists of multiple consecutive MPDUs (packets) with-

out either ACKs or IFS in between. And after the entire transmission is finished, we use

Block-ACK to provide the feedback for each MPDU.

7.2.1 Additional Fields in 802.11 MAC Headers

Our MAC protocol is mainly based on CSMA-CA specified in 802.11n. Other than the

MAC header specified in 802.11n, we also introduce one new field, called ”Cross-Session

Indicator (CSI),” which is required to be included in the frame control of the MAC header.

We also need to modify the contents of two existing fields (Address 4 and Sequence Con-

trol).

New Field: In the Frame Control of 802.11 MAC header, we need to introduce a one-bit

field, Cross-Session Indicator. When CSI is set to be 1, it implies that the content in the

following A-MPDU comes from both sessions. Otherwise, CSI is set to be 0.

Modified Field 1: As stated in Assumption 3, we only focus on the scenarios with trans-

missions happen within one BSS. As a result, the two bits ”To DS” and ”From DS,” which

indicate whether the packet is sent to or from distributed systems, will always be set to be

both zeros. Given such fact, we let Address 4 stores the second Destination if CSI is set to

be 1. Otherwise, Address 4 remains N/A.
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Modified Field 2: We need to increase the length of Sequence Control to 4 Bytes, which

contains Sequence Number 1 (12 bits), Fragment Number 1 (4 bits), Sequence Number 2

(12 bits), and Fragment Number 2 (4 bits). The Sequence Number 1 and Fragment Number

1 correspond to the packets sent to Destination 1 specified in Address 1. Sequence Num-

ber 2 and Fragment Number 2 correspond to the packets sent to Destination 2 specified in

Address 4 if CSI is set to be 1, and both of them are set to be N/A if CSI is 0.

In summary, we need to increase the original MAC header length by 17 bits, which in-

cludes one bit for CSI and 2 bytes for Sequence Control. We further notice that even though

our protocol is based on 802.11n, but the changes can be readily extended to 802.11ac as

well. The reason is because the MAC level changes from 802.11n to 802.11ac are mainly

to deal with the bandwidth expansion without changing the fundamental CSMA/CA rules.

7.2.2 When AP Wins The Medium Access Control

We let each device contends the medium access control through the regular CSMA-CA

mechanism described in 802.11. We then state the operations needed to be perform at AP

when AP wins the medium access control.

AP maintains 5 values, which are initially zeros with names q1∅ , q2∅ , q1{2}, q2{1}, and qmix.

AP will make transmission decision base on these values before each transmission, and

update them during the transmission and after receiving Block-ACK.

Mode Selection

In our protocol, there are three possible modes that are available to be chosen for each

TXOP transmission. We first discuss how to choose the mode at the beginning of the TXOP

transmission, and then we describe the transmission details with the chosen mode.

Let T1BA = TTXOP − TSIFS − TBA and T2BA = TTXOP − 2(TSIFS − TBA), where TTXOP

is the time duration for the remaining available TXOP in the current transmission, TSIFS

is the time duration for SIFS, and TBA is the time duration for Block-ACK. Equivalently

speaking, T1BA is the time duration that is available for transmitting MPDUs if we require
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only one Block-ACK, and T2BA is the time duration that is available for transmitting MP-

DUs if we require two Block-ACKs. Let L be the length of one MPDU. Without loss of

generality, we assume T1BA can support at least one MPDU transmission, otherwise AP

simply skips this transmission. We also assume there are 7 modulation and coding scheme

(MCS) combinations are available for AP to send packets, and denote Di as the data rate

under the i-th MCS combination. After AP wins the medium access control, AP first cal-

culates NMPDU,i(m), the number of MPDUs can be transmitted under Mode m if i-th MCS

is chosen. To be more specific,

NMPDU,i(m) =

⎧⎨
⎩ �(T1BA ·Di)/L� if m = 1, 2

�(T2BA ·Di)/L� if m = 3
(7.1)

For mode m = 1, each MCS i = 1, 2, ..., 7, and each MPDU transmission j = 1 to

NMPDU,i(m), AP computes

BP1,i,NC1(j) = q1∅(j) ·Di · (pd1d2,i + pd1d2,i + pd1d2,i)− q1{2}(j) ·Di · pd1d2,i, (7.2)

BP1,i,DX1(j) = q1{2}(j) ·Di · (pd1d2,i + pd1d2,i). (7.3)

We then “virtually” choose the preferred SA under i-th MCS and j-th MPDU transmission

based on the maximum of BP1,i,NC1(j) and BP1,i,DX1(j), denoted by BP1,i(j), and update

the virtual queues q(j + 1) by the average service matrix and the preferred SA.

Finally, AP computes

BP1,i =

NMPDU,i(m)∑
j=1

BP1,i(j) (7.4)

for each MCS combination i = 1, 2, ..., 7, and

BP1 = max
i=1,2,...,7

BP1,i (7.5)
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Symmetric operations can be carried out for Mode m = 2 by replacing q1∅(j) by q2∅(j)

and replacing q1{2}(j) by q2{1}(j). And thus derive BP2 and its preliminary quantities.

For Mode m = 3, each MCS i = 1, 2, ..., 7, and each MPDU transmission j = 1 to

NMPDU,i(m), AP computes

BP3,i,NC1 =(q1∅(j) ·Di · (pd1d2,i + pd1d2,i + pd1d2,i)− q1{2}(j) ·Di · pd1d2,i),
BP3,i,NC2 =(q2∅(j) ·Di · (pd1d2,i + pd1d2,i + pd1d2,i)− q2{1}(j) ·Di · pd1d2,i),
BP3,i,DX1 =q1{2}(j) ·Di · (pd1d2,i + pd1d2,i),

BP3,i,DX2 =q2{1}(j) ·Di · (pd1d2,i + pd1d2,i),

BP3,i,PM =(q1∅(j) + q2∅(j)− 2qmix(j)) ·Di · (pd1d2,i + pd1d2,i + pd1d2,i),

BP3,i,RC =(2qmix(j) ·Di · (pd1d2,i + pd1d2,i + pd1d2,i)− q1{2}(j) ·Di · pd1d2,i
− q2{1}(j) ·Di · pd1d2,i),

BP3,i,CX =(q1{2}(j) · (pd1d2,i + pd1d2,i) + q2{1}(j) · (pd1d2,i + pd1d2,i)) ·Di.

We then “virtually” choose the preferred SA under i-th MCS and j-th MPDU transmission

based on the maximum of the above 7 quantities, denoted by BP3,i(j), and update the

virtual queues q(j + 1) by the average service matrix and the preferred SA.

Finally, AP computes

BP3,i =

NMPDU,i(m)∑
j=1

BP3,i(j) (7.6)

for each MCS combination i = 1, 2, ..., 7, and

BP3 = max
i=1,2,...,7

BP3,i (7.7)
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Mode Transmission

Let m∗ = argmaxm BPm. If m∗ = 1, 2, then AP simply send the uncoded Session-m∗

packets using the i-th coding and modulation combination which gives the largest BPm∗

during the computation in this TXOP transmission.

If m∗ = 3, AP then sends the packet according to the computed schedule during the

computation of BP3 using the i-th coding and modulation combination which gives the

largest BPm∗ .

At the end of this transmission, i.e. 1 TBA left for m∗ = 1, 2 and 2 TBA left for m∗ = 3,

AP then sends the Block-ACK request along with the assigned Block-ACK schedule to

the destination(s). Upon the reception of Block-ACKs, AP then update the virtual queues

according to the rules specified in the previous chapter.

7.2.3 When STA Receives Packets

STA stores and drops the overhearing packets according to the rules specified in the

previous chapter regardless whether CSI is 0 or 1.

If CSI is set to be 1 in the received transmission and either Address 1 or Address 4

matches the address of this STA, then this STA need to send Block-ACK according to the

designate schedule sent by AP at the end of the transmission.

If CSI is set to be 0 and Address 1 does not match the address of this STA, then when-

ever STA has the opportunity to send packets to AP, STA first sends an overhearing report,

which contains the Block-ACK with respect to the overhearing packets so far, to AP.

7.2.4 The Construction of The Event Probabilities Under Each Coding And Modu-

lation Combination At AP

To calculate the quantities introduced in Section 7.2.2, one key ingredient is that AP

must have the information of the event probabilities under each coding and modulation

combination. Such information can be collected by AP distributively in two approaches,
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which should be applied jointly, without alternating any existing 802.11 transmission be-

haviors.

The first approach is through the channel estimation. Since 802.11n, MIMO has been

standardized into the specification to increase the data throughput. To establish the MIMO

transmission, the first step is to let the receiver and the transmitter exchange the channel

estimation information to calculate the rank of the channel matrix. With such a channel

estimation information, AP can also estimate the event probabilities by assuming the in-

dependence between multiple receivers and applying the modified Shannon equation with

proper adjusted coefficients.

Of course it is only an estimation through the first approach, but we can further im-

prove its accuracy through the second approach. In the second approach, AP iteratively

adjusts the numbers derived in the first approach according to the feedbacks through trans-

missions. For example, if AP receives an ACK from the receiver, then AP can increment

the corresponding event probability.

To reduce the computation complexity, we could also quantized the floating-point num-

bers representing probabilities into several levels of integers depending on how accurate the

calculation needs to be.

7.3 Chapter Summary

In this chapter, we introduce a new 802.11-based inter-session network coding MAC

protocol with rate adaption scheme. We begin this chapter by a brief review on the 802.11

MAC protocol, which includes the basic medium contention mechanism and the frame

structure, in Section 7.1. We then formally describe the proposed inter-session network

coding MAC protocol in Section 7.2. To be more specific, we introduce the required new

headers in Section 7.2.1, and show that the new headers only cost only 17 bits. Then in

Section 7.2.2 and Section 7.2.3, we detail the behaviors that need to be performed at AP

and STAs. Finally, we discuss how to construct the event probability at AP in Section 7.2.4.
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8. CONCLUSION AND FUTURE WORK

In this thesis, we first propose a space-based LNC scheme to characterize the Shannon

capacity of the COPE principle 2-user wireless butterfly network with broadcast packet

erasure channels, which incorporates the broadcast packet erasure channels with feedback,

the COPE principle, and the opportunistic routing all together. In the second part, we

further extend our attention to the inter-session network coding scheduling problems with

dynamic packet arrivals, which gives a closer connection between our solutions to the prac-

tical implementations. And we propose a new 7-operation INC scheme together with the

corresponding scheduling algorithm to achieve the optimal downlink throughput of the 2-

flow access point network with time varying channels, and has been generalized for rate

adaption scenarios. Last but not least, in the third part, we go one step more toward the

practical implementation by proposing an 802.11-based inter-session network coding MAC

protocol with rate adaption mechanism. The proposed solution delicately retain the CSMA-

CA distributed contention mechanism with only 17 bits new header field changes. The

new solution demonstrates concrete throughput improvement without alternating too much

packet-by-packet traffic behavior. Such a feature is critical in practical implementation

since it allows the network coding solution to be transparent to any arbitrary upper layer

applications.

In Chapter 1, we discuss the network coding gain for three local wireless network

topologies, including the broadcast packet erasure channel with feedback, the COPE princi-

ple wireless butterfly network, and the opportunistic routing. All of them exhibit significant

end-to-end throughput improvement when network coding can be utilized. In Chapter 2,

we propose a local network topology which incorporates all the three local wireless net-

work together, name the “COPE principle 2-user wireless butterfly network with broadcast

packet erasure channels.” The space-based LNC scheme established in Chapter 3 provides

a intuitive and systematical approach to exploit the possible joint inter-session and inter-
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session network coding gain in the network. With the help of space-based LNC scheme,

in Chapter 4, we characterize the Shannon capacity of the COPE principle 2-user wire-

less butterfly network with broadcast packet erasure channel and demonstrate significant

throughput improvement compared with existing solutions. We further extend the block-

code-based model to the dynamic packet arrival model, so called the stability analysis.

This extension promotes the proposed solution one step closer to practical implementa-

tions. However, there exist crucial issues and challenging the inter-session network coding

stability analysis, as discussed in Chapter 5. In Chapter 6, we robustly and optimally solve

this problem for 2-flow downlink time-varying broadcast PEC, and extend the result to ac-

commodate the rate adaption scenarios. Finally, in Chapter 7, we propose an 802.11-based

inter-session network coding MAC protocol with rate adaption, and demonstrate concrete

throughput improvement with significant implementation potential.

Even though we build up the analysis tool based on the local wireless network, those

tools reveal great insight about the possible joint intra-session and inter-session linear net-

work coding gain. Our next step is to verify our solution in software-defined-networks.
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A. THE CONVERSE OF THE SHANNON CAPACITY

In this appendix, we prove Proposition 4.2.2. For any joint scheduling and NC scheme, we

choose tsi (resp. tr) as the normalized expected number of time slots for which si (resp. r)

is scheduled. Namely,

tsi
Δ
=

1

n
E

{
n∑

τ=1

1{σ(τ)=si}

}
and tr

Δ
=

1

n
E

{
n∑

τ=1

1{σ(τ)=r}

}
.

By definition, ts1 , ts2 , and tr must satisfy (4.5).

In the subsequent proofs, the logarithm is taken with base q. We prove (4.6) first. To

that end, we notice that

I(W1;Ŵ1) ≤ I(W1; [Y{s1,s2,r}→d1,Z]
n
1 ) (A.1)

=I(W1; [Z]
n
1 ) + I(W1; [Y{s1,s2,r}→d1 ]

n
1 |[Z]n1 ) (A.2)

≤I(W1; [Y{s1,s2}→{d1,r}]
n
1 |[Z]n1 ) (A.3)

=I(W1; [Ys1→{d1,r}]
n
1 |[Z]n1 ) (A.4)

≤H([Ys1→{d1,r}]
n
1 |[Z]n1 )

=
n∑

t=1

H(Ys1→{d1,r}(t)|[Z]n1 , [Ys1→{d1,r}]
t−1
1 ) (A.5)

≤
n∑

t=1

E
{
1{Zs1→d1

(t)=1 or Zs1→r(t)=1} ◦ 1{σ(t)=s1}

}
(A.6)

=nts1p1(d1, r) (A.7)

where (A.1) follow from (2.4); (A.2) follows from the chain rule; (A.3) follows from

(2.3), the data processing inequality, and the fact that Z is independent of W1; (A.4)

follows from that conditioning on Z (and σ since σ is a function of Z) Ys2→{d1,r} is

a function of W2 and is thus independent of W1; (A.5) follows from the chain rule;
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(A.6) follows from that only when 1{Zs1→d1
(t)=1 or Zs1→r(t)=1} = 1 and 1{σ(t)=s1} = 1

will we have a non-zero entropy value H(Ys1→{d1,r}(t)|[Z]n1 , [Ys1→{d1,r}]
t−1
1 ), and when

H(Ys1→{d1,r}(t)|[Z]n1 , [Ys1→{d1,r}]
t−1
1 ) > 0, it is upper bounded by 1 since the base of the

logarithm is q; (A.7) follows from Wald’s lemma.

On the other hand, Fano’s inequality gives us

I(W1;Ŵ1) ≥ nR1(1− ε)−H(ε). (A.8)

Combining (A.7) and (A.8), we have

R1(1− ε)− H(ε)

n
≤ ts1p1(d1, r). (A.9)

Letting ε → 0, (A.9) implies (4.6) for the case of i = 1. With symmetric arguments, we

can derive (4.6) for i = 2.

We prove (4.8) by similar techniques as used in [16, 48]. Specifically, we create a new

network from the original network by adding an auxiliary pipe that sends all information

available at d2 directly to d1. Later we will show that even with the additional information,

the achievable rates R1 and R2 are still upper bounded by (4.8). As a result, the achievable

R1 and R2 for the original network must satisfy (4.8) as well. (4.7) is a symmetric version

of (4.8).

With the additional information at d1, the decoding function (see (2.4)) at d1 for the

new network becomes

Ŵ1 = fd1([Y{s1,s2,r}→{d1,d2},Z]
n
1 ). (A.10)

For any t ∈ [n], define

U(t) � (W2, [Y{s1,s2,r}→{d1,d2},Z]
t−1
1 ). (A.11)
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We then have

nR1 = H(W1|W2)

≤ I(W1;Ŵ1|W2) + nε1 (A.12)

≤ I(W1; [Y{s1,s2,r}→{d1,d2},Z]
n
1 |W2) + nε1 (A.13)

= I(W1; [Z]
n
1 |W2)

+ I(W1; [Y{s1,s2,r}→{d1,d2}]
n
1 |W2, [Z]

n
1 ) + nε1 (A.14)

=

n∑
t=1

I(W1;Y{s1,s2,r}→{d1,d2}(t)

|W2, [Z]
n
1 , [Y{s1,s2,r}→{d1,d2}]

t−1
1 ) + nε1 (A.15)

= nε1 +
n∑

t=1

(
I(W1;Yr→{d1,d2}(t)|U(t), [Z]n1 )

+ I(W1;Ys1→{d1,d2}(t)|U(t),Yr→{d1,d2}(t), [Z]
n
1 )

+ I(W1;Ys2→{d1,d2}(t)

|U(t),Y{r,s1}→{d1,d2}(t), [Z]
n
1 )
)

(A.16)

≤ nε1 +

(
n∑

t=1

I(W1;Yr→{d1,d2}(t)|U(t), [Z]n1 )

)

+ nts1p1(d1, d2) + 0 (A.17)

≤ nε1 + nts1p1(d1, d2)

+
n∑

t=1

I(Xr(t);Yr→{d1,d2}(t)|U(t), [Z]n1 ), (A.18)

where (A.12) follows from Fano’s inequality where ε1 goes to 0 when ε → 0; (A.13)

follows from the data processing inequality and (A.10); (A.14), (A.15), and (A.16) follow

from the chain rule and the fact that the distribution of Z is independent of W1 and W2;

(A.17) follows from the observation that the second term of the summation can be upper

bounded by Wald’s lemma (similar to (A.7)) and Ys2→{d1,d2}(t) is independent of W1 given

Z (similar to (A.4)); and (A.18) follows from the data processing inequality.
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To continue, we define the time sharing random variableQt ∈ {1, 2, ..., n}withProb(Qt =

i) = 1
n

for all i ∈ {1, 2, ..., n} and Qt being independent of [Z]n1 , W1, and W2 . Since the

mutual information is always non-negative, we can rewrite (A.18) as

(R1 − ts1p1(d1, d2)− ε1)
+

≤
n∑

t=1

1

n
I(Xr(t);Yr→{d1,d2}(t)|U(t), [Z]n1 )

≤
n∑

t=1

1

n
H(Yr→{d1,d2}(t)|U(t), [Z]n1 ) (A.19)

=

n∑
qt=1

Prob(Qt = qt) ·H(Yr→{d1,d2}(qt)|U(qt), [Z]
qt
1 , Qt = qt) (A.20)

where (A.19) follows from the definition of the mutual information; (A.20) follows from

replacing the time index t by the time sharing random variable Qt and the distribution of

U(qt) and Yr→{d1,d2}(qt) does not depend on the future channel realization [Z]nqt+1.
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We define three binary random variables Θσ � 1{σ(Qt)=r}, ΘZ1 � 1{Zr→d1
(Qt)=1}, and

ΘZ2 � 1{Zr→d2
(Qt)=1}, which are functions of Qt and [Z]Qt

1 . Then we can rewrite (A.20) as

the following.

(R1 − ts1p1(d1, d2)− ε1)
+

≤
n∑

qt=1

1

n
H(Yr→{d1,d2}(qt)|U(qt), [Z]

qt
1 , Qt = qt,Θσ,ΘZ1,ΘZ2) (A.21)

=

n∑
qt=1

1

n

∑
∀u,[z]

qt
1 ,

θσ ,θZ1
,θZ2

pU(qt),[Z]
qt
1 ,Θσ ,ΘZ1

,ΘZ2
(u, [z]qt1 , θσ, θZ1 , θZ2)

·H(Yr→{d1,d2}(qt)|U(qt) = u, [Z]qt1 = [z]qt1 ,

Θσ = θσ,ΘZ1 = θZ1 ,ΘZ2 = θZ2) (A.22)

=

n∑
qt=1

1

n

∑
∀u,[z]

qt
1 ,θZ1

,θZ2
s.t. max{θZ1

,θZ2
}=1

p(u, [z]qt1 , 1, θZ1, θZ2)

·H(Xr(qt)|U(qt) = u, [Z]qt1 = [z]qt1 ,

Θσ = 1,ΘZ1 = θZ1 ,ΘZ2 = θZ2) (A.23)

where (A.21) follows from the fact that Θ’s are functions of Q and [Z]Qt

1 ; (A.22) fol-

lows from the definition of the conditional entropy; and (A.23) follows from the fact that

Yr→{d1,d2}(qt) is not erasure only if σ(qt) = r and at least one of Zr→d1 and Zr→d2 equals

to one and furthermore Yr→{d1,d2}(qt) = Xr(qt) under such a condition, where we use

p(u, [z]qt1 , 1, θZ1, θZ2) as the shorthand of pU(qt),[Z]
qt
1 ,Θσ,ΘZ1

,ΘZ2
(u, [z]qt1 , 1, θZ1, θZ2).

We can further simplify (A.23) by the following steps. We first note that conditioning

on U(qt) = u, [Z]qt−1
1 = [z]qt−1

1 , and Θσ = 1, the random variable Xr(qt) is independent

of Z(qt), ΘZ1 , and ΘZ2 . Notice that [Z]qt−1
1 is a subset of U(qt). Therefore, we have

H(Xr(qt)|U(qt) = u, [Z]qt1 = [z]qt1 ,Θσ = 1,ΘZ1 = θZ1 ,

ΘZ2 = θZ2)

= H(Xr(qt)|U(qt) = u,Θσ = 1). (A.24)
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Also the joint probability can be rewritten as

∑
∀u,[z]

qt
1 ,θZ1

,θZ2
s.t. max{θZ1

,θZ2
}=1

pU(qt),[Z]
qt
1 ,Θσ,ΘZ1

,ΘZ2
(u, [z]qt1 , 1, θZ1, θZ2)

=
∑
∀u

pU(qt),Θσ
(u, 1) ·

∑
∀z,θZ1

,θZ2
s.t. max{θZ1

,θZ2
}=1

pZ(qt),ΘZ1
,ΘZ2

|U(qt),Θσ
(z, θZ1 , θZ2 |u, 1) (A.25)

=

(∑
∀u

pU(qt),Θσ
(u, 1)

)
· pr(d1, d2). (A.26)

where (A.25) follows from the basic probability definition, and (A.26) follows from that

the assumption that the channel is memoryless.

(A.24) and (A.26) helps us rewrite (A.23) as

(A.23) = tr · pr(d1, d2)

·
∑n

qt=1
1
n

∑
∀u p(u, 1) ·H(Xr(qt)|u, 1)

tr
(A.27)

where p(u, 1) and H(Xr(qt)|u, 1) are the shorthand for pU(qt),Θσ
(u, 1) and H(Xr(qt)|U(qt) =

u,Θσ = 1), respectively.
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We now focus on flow 2. By Fano’s inequality, for some ε2 > 0 that goes to 0 as ε → 0,

with similar steps as in (A.12)–(A.18), we can also show that

nR2 = H(W2)

≤I(W2; [Y{s1,s2,r}→d2,Z]
n
1 ) + nε2

=I(W2; [Z]
n
1 ) + I(W2; [Y{s1,s2,r}→d2]

n
1 |[Z]n1 ) + nε2 (A.28)

=
n∑

t=1

I(W2;Y{s1,s2,r}→d2(t)|[Y{s1,s2,r}→d2]
t−1
1 , [Z]n1 )

+ nε2 (A.29)

=nε2 +

n∑
t=1

(
I(W2; Yr→d2(t)|[Y{s1,s2,r}→d2]

t−1
1 , [Z]n1 )

+ I(W2; Ys2→d2(t)|[Y{s1,s2}→d2 ]
t−1
1 , [Yr→d2]

t
1, [Z]

n
1 )

+I(W2; Ys1→d2(t)|[Ys1→d2 ]
t−1
1 , [Y{s2,r}→d2]

t
1, [Z]

n
1 )
)

(A.30)

≤nε2 +
n∑

t=1

I(W2; Yr→d2(t)|[Y{s1,s2,r}→d2 ]
t−1
1 , [Z]n1 )

+ nts2p2(d2) + 0 (A.31)
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where (A.28), (A.29), and (A.30) follows from the chain rule and the independence be-

tween W2 and [Z]n1 ; and (A.31) follows from similar derivation as in (A.17). We then

have

(A.31) =nε2 + nts2p2(d2)

+

n∑
t=1

(
H(Yr→d2(t)|[Y{s1,s2,r}→d2]

t−1
1 , [Z]n1 )

− H(Yr→d2(t)|W2, [Y{s1,s2,r}→d2]
t−1
1 , [Z]n1 )

)
(A.32)

≤ nε2 + nts2p2(d2)

+
n∑

t=1

(H(Yr→d2(t)|[Z]n1 )−H(Yr→d2(t)|U(t), [Z]n1 )) (A.33)

= nε2 + nts2p2(d2) +

n∑
t=1

I(U(t); Yr→d2(t)|[Z]n1 ), (A.34)

where (A.32) and (A.34) follows from the definition of the mutual information; and (A.33)

follows from the fact that conditioning does not increase the entropy and [Y{s1,s2,r}→d2]
t−1
1

a subset of U(t). Since the mutual information is always non-negative, we now have

(R2 − ts2ps2(d2)− ε2)
+

≤ 1

n

n∑
t=1

I(U(t); Yr→d2(t)|[σ,Z]n1 )

=

n∑
qt=1

Prob(Qt = qt) · I(U(qt); Yr→d2(qt)|[Z]qt1 , Qt = qt) (A.35)

=
n∑

qt=1

1

n
·H(Yr→d2(qt)|[Z]qt1 , Qt = qt)

−
n∑

qt=1

1

n
·H(Yr→d2(qt)|U(qt), [Z]

qt
1 , Qt = qt), (A.36)

where (A.35) follows from the definition of the conditional mutual information and the

fact that the distribution of U(qt) and Yr→d2(qt) does not depend on the future channel
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realization [Z]nqt+1; and (A.36) follows from the definition of the mutual information. We

first discuss the first summation in (A.36)

n∑
qt=1

1

n
·H(Yr→d2(qt)|[Z]qt1 , Qt = qt)

=
n∑

qt=1

1

n
·H(Yr→d2(qt)|[Z]qt1 , Qt = qt,Θσ,ΘZ2) (A.37)

=

n∑
qt=1

1

n

∑
∀[z]

qt
1 ,

θσ ,θZ2

p[Z]
qt
1 ,Θσ,ΘZ2

([z]qt1 , θσ, θZ2)

·H(Yr→d2(qt)|[Z]qt1 = [z]qt1 ,

Θσ = θσ,ΘZ2 = θZ2) (A.38)

=
n∑

qt=1

1

n

∑
∀[z]

qt
1

p[Z]
qt
1 ,Θσ,ΘZ2

([z]qt1 , 1, 1)

·H(Xr(qt)|[Z]qt1 = [z]qt1 ,

Θσ = 1,ΘZ2 = 1) (A.39)

where (A.37) follows from the fact that Θ’s are functions of Q and [Z]Qt

1 ; (A.38) fol-

lows from the definition of the conditional entropy; and (A.39) follows from the fact

that Yr→d2(qt) is not erasure only if σ(qt) = r and Zr→d2 equals to one and furthermore

Yr→d2(qt) = Xr(qt) under such a condition.

We can further simplify (A.39) by the following steps. We first note that conditioning

on [Z]qt−1
1 = [z]qt−1

1 and Θσ = 1, the random variable Xr(qt) is independent of Z(qt) and

ΘZ2 . Therefore, we have

H(Xr(qt)|[Z]qt1 = [z]qt1 ,Θσ = 1,ΘZ2 = 1)

= H(Xr(qt)|[Z]qt−1
1 = [z]qt−1

1 ,Θσ = 1). (A.40)
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Also the joint probability can be rewritten as

∑
∀[z]

qt
1

p[Z]
qt
1 ,Θσ,ΘZ2

([z]qt1 , 1, 1)

=
∑

∀[z]
qt−1
1

p
[Z]

qt−1
1 ,Θσ

([z]qt−1
1 , 1) ·

∑
∀z

p
Z(qt),ΘZ2

|[Z]
qt−1
1 ,Θσ

(z, 1|[z]qt−1
1 , 1) (A.41)

=

⎛
⎝ ∑

∀[z]
qt−1
1

p
[Z]

qt−1
1 ,Θσ

([z]qt−1
1 , 1)

⎞
⎠ · pr(d2). (A.42)

where (A.41) follows from the basic probability definition, and (A.42) follows from that

the assumption that the channel is memoryless.

(A.40) and (A.42) helps us rewrite (A.39) as

(A.39) = tr · pr(d2)

·
∑n

qt=1
1
n

∑
∀[z]

qt−1
1

p([z]qt−1
1 , 1) ·H(Xr(qt)|[z]qt−1

1 , 1)

tr
(A.43)

where p([z]qt−1
1 , 1) and H(Xr(qt)|[z]qt−1

1 , 1) are the shorthand for p
[Z]

qt−1
1 ,Θσ

([z]qt−1
1 , 1) and

H(Xr(qt)|[Z]qt−1
1 = [z]qt−1

1 ,Θσ = 1), respectively.
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Similarly, for the second summation in (A.36),

n∑
qt=1

1

n
·H(Yr→d2(qt)|U(qt), [Z]

qt
1 , Qt = qt)

=

n∑
qt=1

1

n
·H(Yr→d2(qt)|U(qt), [Z]

qt
1 , Qt = qt,Θσ,ΘZ2) (A.44)

=
n∑

qt=1

1

n

∑
∀u,[z]

qt
1 ,

θσ ,θZ2

pU(qt),[Z]
qt
1 ,Θσ,ΘZ2

(u, [z]qt1 , θσ, θZ2)

·H(Yr→d2(qt)|U(qt) = u, [Z]qt1 = [z]qt1 ,

Θσ = θσ,ΘZ2 = θZ2) (A.45)

=
n∑

qt=1

1

n

∑
∀u,[z]

qt
1

pU(qt),[Z]
qt
1 ,Θσ,ΘZ2

(u, [z]qt1 , 1, 1)

·H(Xr(qt)|U(qt) = u, [Z]qt1 = [z]qt1 ,

Θσ = 1,ΘZ2 = 1) (A.46)

where (A.44) follows from the fact that Θ’s are functions of Q and [Z]Qt

1 ; (A.45) fol-

lows from the definition of the conditional entropy; and (A.46) follows from the fact

that Yr→d2(qt) is not erasure only if σ(qt) = r and Zr→d2 equals to one and furthermore

Yr→d2(qt) = Xr(qt) under such a condition.

We can further simplify (A.46) by the following steps. We first note that conditioning

on U(qt) = u, [Z]qt−1
1 = [z]qt−1

1 , and Θσ = 1, the random variable Xr(qt) is independent

of Z(qt) and ΘZ2 . Notice that [Z]qt−1
1 is a subset of U(qt). Therefore, we have

H(Xr(qt)|U(qt) = u, [Z]qt1 = [z]qt1 ,Θσ = 1,ΘZ2 = 1)

= H(Xr(qt)|U(qt) = u,Θσ = 1). (A.47)
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Also the joint probability can be rewritten as

∑
∀u,[z]

qt
1

pU(qt),[Z]
qt
1 ,Θσ,ΘZ2

(u, [z]qt1 , 1, 1)

=
∑
∀u

pU(qt),Θσ
(u, 1) ·

∑
∀z

pZ(qt),ΘZ2
|U(qt),Θσ

(z, 1|u, 1) (A.48)

=

(∑
∀u

pU(qt),Θσ
(u, 1)

)
· pr(d2). (A.49)

where (A.48) follows from the basic probability definition, and (A.49) follows from that

the assumption that the channel is memoryless.

(A.47) and (A.49) helps us rewrite (A.46) as

(A.39) = tr · pr(d2)

·
∑n

qt=1
1
n

∑
∀u p(u, 1) ·H(Xr(qt)|u, 1)

tr
(A.50)

where p(u, 1) and H(Xr(qt)|u, 1) are the shorthand for pU(qt),Θσ
(u, 1) and H(Xr(qt)|U(qt) =

u,Θσ = 1), respectively.

Combining (A.43) and (A.50), we can rewrite (A.36) in the following form.

(R2 − ts2ps2(d2)− ε2)
+

≤ tr · pr(d2)

·
(∑n

qt=1
1
n

∑
∀[z]

qt−1
1

p([z]qt−1
1 , 1) ·H(Xr(qt)|[z]qt−1

1 , 1)

tr
−

∑n

qt=1
1
n

∑
∀u p(u, 1) ·H(Xr(q)|u, 1)

tr

)
. (A.51)
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Summing up (A.27)
pr(d1,d2)

and (A.51)
pr(d2)

, we thus have

(R1 − ts1p1(d1, d2)− ε1)
+

pr(d1, d2)
+

(R2 − ts2p2(d2)− ε2)
+

pr(d2)

≤ tr ·
∑n

qt=1
1
n

∑
∀[z]

qt−1
1

p([z]qt−1
1 , 1) ·H(Xr(qt)|[z]qt−1

1 , 1)

tr
(A.52)

≤ tr, (A.53)

where (A.53) is based on the following observations. We first note that by definition

tr =

n∑
qt=1

1

n
Prob(σ(qt) = r)

=
n∑

qt=1

1

n

∑
∀[z]

qt−1
1

p([z]qt−1
1 , 1).

Therefore, the fraction term in (A.52) can be viewed as the normalization of the conditional

entropy H(Xr(qt)|[z]qt−1
1 , 1). Since each conditional entropy is no larger than 1 (with the

base of the logarithm being q), we thus have (A.53).

(A.53) holds for arbitrary ε > 0. Letting ε → 01, we thus have the following final

inequality.

(R1 − ts1p1(d1, d2))
+

pr(d1, d2)
+

(R2 − ts2p2(d2))
+

pr(d2)
≤ tr,

which gives us (4.8). (4.7) can be proven by symmetry. The proof of the outer bound is

thus complete.

1As a result, ε1 → 0 and ε2 → 0.
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B. DETAILED ACHIEVABILITY ANALYSIS OF SBLNC

The feasibility for Policy Γs1,0 and Policy Γs1,1 has been proven in Section 4.3.1. In the

following discussion about the rank of spaces, we again rely on the first order, expectation-

based analysis and assume the application of the law of large numbers implicitly.

Policy Γs1,2: Similar to the analysis for Policy Γs1,1, assuming q ≥ 2, the condition

that (3.3) being non-empty is equivalent to whether the following rank-based inequality is

satisfied.

Rank(S2)− Rank(S2 ∩ (S1 ⊕ Sr))

=Rank(S1 ⊕ S2 ⊕ Sr)− Rank(S1 ⊕ Sr) > 0. (B.1)

where (B.1) follows from Lemma 3.1.2.

Similar to the discussion in Γs1,0 and Γs1,1, we will quantify individual ranks at the end

of Γs1,2, the policy of interest, and prove that even in the end of Γs1,2, the rank difference

in (B.1) is strictly larger than 0. Therefore, throughout the entire duration of Γs1,2, (B.1) is

larger than 0 and Γs1,2 is always feasible.

We first focus on Rank(S1⊕S2⊕Sr). Since S1⊕S2⊕Sr is a subset of the exclusion set

in Γs1,0, every time a Γs1,0 packet is received by one of d1, d2, and r, Rank(S1 ⊕ S2 ⊕ Sr)

will increase by one. On the other hand, notice that S1 ⊕ S2 ⊕ Sr is a superset of the

inclusion set in Γs1,1 and Γs1,2. Hence Rank(S1 ⊕ S2 ⊕ Sr) remains the same throughout

Γs1,1 and Γs1,2. As a result, in the end of policy Γs1,2, we have

E{Rank(S1 ⊕ S2 ⊕ Sr)} = nω0
s1
p1(d1, d2, r). (B.2)
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We now focus on Rank(S1 ⊕ Sr). Since S1 ⊕ Sr is a subset of the exclusion sets of

Γs1,0, Γs1,1 and Γs1,2, every time a packet of Γs1,0, Γs1,1, or Γs1,2 is received by one of d1

and r, Rank(S1 ⊕ Sr) will increase by one. As a result, in the end of policy Γs1,2, we have

E{Rank(S1 ⊕ Sr)} = n(ω0
s1
+ ω1

s1
+ ω2

s1
)p1(d1, r). (B.3)

Jointly, (B.2), (B.3), and (4.15) imply (B.1) in the end of Γs1,2.

Policy Γs1,3: Similar to the analysis of the previous policies, assuming q ≥ 2, the

condition that (3.4) being non-empty is equivalent to whether the following rank-based

inequality is satisfied.

Rank(Sr)− Rank(((S2 ∩ Sr)⊕ S1) ∩ Sr)

=Rank((S2 ∩ Sr)⊕ S1 ⊕ Sr)− Rank((S2 ∩ Sr)⊕ S1) (B.4)

=Rank(S1 ⊕ Sr)− (Rank(S1) + Rank(S2 ∩ Sr)

− Rank(S1 ∩ S2 ∩ Sr)) (B.5)

=Rank(S1 ⊕ Sr)− Rank(S1)− (Rank(S2) + Rank(Sr)

− Rank(S2 ⊕ Sr)) + Rank(S1 ∩ S2 ∩ Sr) > 0, (B.6)

where (B.4) follows from Lemma 3.1.2; (B.5) follows from simple set operations and from

Lemma 3.1.2; and (B.6) follows from Lemma 3.1.2.

Similar to the previous discussion, we will quantify individual ranks at the end of Γs1,3,

the policy of interest and prove that even in the end of Γs1,3, the rank difference in (B.6) is

strictly larger than 0. Therefore, throughout the entire duration of Γs1,3, (B.6) is larger than

0 and Γs1,3 is always feasible.
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By similar analysis,1 in the end of Γs1,3 we have

E{Rank(S1)} = n(ω0
s1
+ ω1

s1
+ ω2

s1
+ ω3

s1
)p1(d1), (B.7)

E{Rank(S2)} = n(ω0
s1
+ ω1

s1
+ ω3

s1
)p1(d2), (B.8)

E{Rank(Sr)} = n(ω0
s1
+ ω1

s1
+ ω2

s1
)p1(r), (B.9)

E{Rank(S1 ⊕ Sr)} = n(ω0
s1
+ ω1

s1
+ ω2

s1
)p1(d1, r), (B.10)

E{Rank(S2 ⊕ Sr)} = nω0
s1
p1(d2, r) (B.11)

What remains to be decided is the value of Rank(S1 ∩ S2 ∩ Sr) at the end of Policy

Γs1,3. To proceed, we introduce an auxiliary node a in the following way. Whenever a

vector v sent by s1 is received by both d1 and r, we let the auxiliary node a observe such

v as well. The knowledge space of a, denoted by Sa is thus the linear span of all vectors

received by both d1 and r.

We first argue that Sa = S1 ∩ Sr in the end of policy Γs1,2. Since a only observes those

vectors commonly available at both d1 and r, the knowledge space of Sa is a subset of

S1 ∩ Sr. Knowing Sa ⊆ S1 ∩ Sr, we can quickly check that Sa is a subset of the exclusion

sets in Policies Γs1,0, Γs1,1, and Γs1,2. Therefore, every time node a receives a packet during

policies Γs1,0, Γs1,1, and Γs1,2, the rank of Sa will increase by one. Therefore, we have

E{Rank(Sa)} = n(ω0
s1
+ ω1

s1
+ ω2

s1
)p1(d1r) (B.12)

in the end of Γs1,2. On the other hand, by similar analysis as before, we have

E{Rank(S1)} = n(ω0
s1
+ ω1

s1
+ ω2

s1
)p1(d1),

E{Rank(Sr)} = n(ω0
s1
+ ω1

s1
+ ω2

s1
)p1(r),

E{Rank(S1 ⊕ Sr)} = n(ω0
s1
+ ω1

s1
+ ω2

s1
)p1(d1, r)

1The derivation of (B.8) for the case of Policy Γs1,3 uses the following inequality as well.

(3.4) ⊆ (Sr\(S2 ∩ Sr)) = (Sr\S2).
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in the end of policy Γs1,2. By Lemma 3.1.2, we thus have Rank(Sa) = Rank(S1 ∩ Sr). As

a result, we have proven Sa = (S1 ∩ Sr) in the end of Γs1,2.

By the above analysis, we thus have (S1∩S2 ∩Sr) = Sa∩S2. By similarly rank-based

analysis, in the end of Γs1,2 we have

E{Rank(S2)} = n(ω0
s1
+ ω1

s1
)p1(d2) (B.13)

E{Rank(S2 ⊕ Sa)} = n(ω0
s1
+ ω1

s1
)p1(d2, d1r) (B.14)

where p1(d2, d1r) in (B.14) is the probability that at least one of node d2 and node a receives

the packet and (B.14) follows from the observation that S2⊕Sa is a subset of the exclusion

sets of Γs1,0, Γs1,1 and is a superset of the inclusion set of Γs1,2. By (B.12), (B.13), and

(B.14), we have thus proven that

E{Rank(S1 ∩ S2 ∩ Sr)} = E{Rank(Sa ∩ S2)}
=E{Rank(S2)}+ E{Rank(Sa)} − E{Rank(S2 ⊕ Sa)}
=n

(
ω0
s1
+ ω1

s1

)
p1(d1d2r) + nω2

s1
p1(d1r) (B.15)

in the end of Γs1,2.

In the following, we will quantify the increment of Rank(S1 ∩ S2 ∩ Sr) during Γs1,3.

To that end, we introduce two more auxiliary nodes b and c. In the beginning of Γs1,3, we

let node b (resp. c) be aware of the knowledge space S1 ∩ Sr (resp. S2 ∩ Sr). During Γs1,3,

whenever a packet is received by d1 (resp. d2), we let the auxiliary node b (resp. c) observe

such a packet as well. From the construction, it is clear that the following equalities hold

in the beginning of Γs1,3.

Sb = S1 ∩ Sr (B.16)

Sc = S2 ∩ Sr. (B.17)

We will prove that (B.16) and (B.17) hold even in the end of Γs1,3 as well.
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In the following, we will prove that (B.16) holds in the end of Γs1,3. We first note that

by our construction, we always have S1 ⊃ Sb ⊃ (S1 ∩ Sr). Knowing that Sb is always a

subset of S1 and S1 is a subset of the exclusion sets in Γs1,3, we can see that everytime d1

receives a packet during policy Γs1,3, Rank(Sb) will increase by one. Moreover, only when

d1 receives a packet during policy Γs1,3 will Rank(Sb) increase. As a result, the increment

of Rank(Sb) during Γs1,3 equals the number of times d1 receives a packet during Γs1,3. On

the other hand, Rank(S1 ∩ Sr) = Rank(S1) +Rank(Sr)−Rank(S1 ⊕ Sr). Since both Sr

and S1 ⊕ Sr are supersets of the inclusion set of Γs1,3, both Rank(Sr) and Rank(S1 ⊕ Sr)

remain identical during Γs1,3. Therefore, the increment of Rank(S1∩Sr) is identical to the

increment of Rank(S1) during Γs1,3. As a result, the increment of Rank(S1 ∩ Sr) during

Γs1,3 equals the number of times d1 receives a packet during Γs1,3. We have thus proven

Rank(Sb) = Rank(S1∩Sr) in the end of Γs1,3, which implies (B.16). (B.17) can be proven

by symmetry.

To quantify the increment of Rank(S1∩S2∩Sr) during Γs1,3, we notice that Rank(S1∩
S2 ∩ Sr) = Rank(Sb ∩ Sc) = Rank(Sb) + Rank(Sc) − Rank(Sb ⊕ Sc). As a result, the

increment of Rank(S1 ∩ S2 ∩ Sr) during policy Γs1,3 is the summation of the increments

of Rank(Sb) and Rank(Sc) minus the increment of Rank(Sb ⊕ Sc) during Γs1,3. By our

construction, the increments of Sb, Sc, and Sb ⊕ Sc during Γs1,3 is simply nω3
s1
p1(d1),

nω3
s1
p1(d2), and nω3

s1
p1(d1, d2), respectively. As a result, the increment of Rank(S1∩S2 ∩

Sr) during Γs1,3 is simply nω3
s1
p1(d1d2).

Combining (B.15), we have thus proven that

E{Rank(S1 ∩ S2 ∩ Sr)}
=n

(
ω0
s1
+ ω1

s1

)
p1(d1d2r) + nω2

s1
p1(d1r) + nω3

s1
p1(d1d2) (B.18)

in the end of Policy Γs1,3.

Jointly, (B.7) to (B.11), (B.18), and (4.16) imply (B.6) in the end of Γs1,3.



130

Policy Γs1,4: Similar to the analysis of the previous policies, the condition that (3.5)

being non-empty is equivalent to whether the following rank-based inequality is satisfied

in the end of Γs1,4.

Rank(S2 ∩ Sr)− Rank(S1 ∩ S2 ∩ S2)

=(Rank(S2) + Rank(Sr)− Rank(S2 ⊕ Sr))

− Rank(S1 ∩ S2 ∩ Sr) > 0. (B.19)

Similar to the previous discussion, we will quantify individual ranks at the end of Γs1,4 and

prove that (B.19) holds in the end of Γs1,4.

By similar analysis, we have

E{Rank(S2)} = n(ω0
s1
+ ω1

s1
+ ω3

s1
)p1(d2), (B.20)

E{Rank(Sr)} = n(ω0
s1
+ ω1

s1
+ ω2

s1
)p1(r), (B.21)

E{Rank(S2 ⊕ Sr)} = nω0
s1
p1(d2, r) (B.22)

in the end of Γs1,4. What remains to be decided is the value of Rank(S1 ∩ S2 ∩ Sr) at the

end of Policy Γs1,4. In (B.18), we have already quantified Rank(S1∩S2 ∩Sr) in the end of

Γs1,3. In the following, we will quantify the increment of Rank(S1 ∩S2 ∩Sr) during Γs1,4.

By (3.5), we can see that every time d1 receives a packet during Γs1,4, Rank(S1 ∩ S2 ∩ Sr)

will increase by one. As a result, the increment of Rank(S1 ∩ S2 ∩ Sr) during Γs1,4 is

nω4
s1
p1(d1). Together with (B.18), we have proven that

E{Rank(S1 ∩ S2 ∩ Sr)}
=n

(
ω0
s1
+ ω1

s1

)
p1(d1d2r) + nω2

s1
p1(d1r)

+ nω3
s1
p1(d1d2) + nω4

s1
p1(d1) (B.23)

in the end of Γs1,4. Jointly, (B.20) to (B.23) and (4.17) imply that (B.19) holds in the end

of Γs1,4.
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The feasibility of policy Γs2,k, k = 0, 1, 2, 3, 4, can be proven by symmetry.

Policy Γr,1: We first notice that the inclusion space and exclusion space of Policy Γr,1

are the same as of Policy Γs1,3. Hence to prove the feasibility of Policy Γr,1, we need to

prove that (B.6) holds in the end of Γr,1. By similar analysis, we have

E{Rank(S1)} = n(ω0
s1
+ ω1

s1
+ ω2

s1
+ ω3

s1
+ ω4

s1
)p1(d1)

+ nω1
r,Npr(d1), (B.24)

E{Rank(S2)} = n(ω0
s1
+ ω1

s1
+ ω3

s1
)p1(d2)

+ nω1
r,Npr(d2), (B.25)

E{Rank(Sr)} = n(ω0
s1
+ ω1

s1
+ ω2

s1
)p1(r), (B.26)

E{Rank(S1 ⊕ Sr)} = n(ω0
s1
+ ω1

s1
+ ω2

s1
)p1(d1, r), (B.27)

E{Rank(S2 ⊕ Sr)} = nω0
s1
p1(d2, r). (B.28)

in the end of Γr,1.

What remains to be decided is the value of Rank(S1 ∩ S2 ∩ Sr) at the end of Policy

Γr,1. In (B.23) we have computed the value of Rank(S1∩S2∩Sr) in the end of Γs1,4. As a

result, we only need to quantify the increment of Rank(S1 ∩ S2 ∩ Sr) during Γr,1 . By the

same analysis as when we quantify the increment of Rank(S1 ∩ S2 ∩ Sr) during Γs1,3, the

increment of Rank(S1 ∩ S2 ∩ Sr) during Γr,1 is nω1
r,Npr(d1d2). By (B.23), we have shown

that

E{Rank(S1 ∩ S2 ∩ Sr)}
=n

(
ω0
s1
+ ω1

s1

)
p1(d1d2r) + nω2

s1
p1(d1r)

+ nω3
s1
p1(d1d2) + nω4

s1
p1(d1) + nω1

r,Npr(d1d2) (B.29)

in the end of Γr,1. Jointly, (B.24) to (B.29) and (4.18) imply that (B.6) holds in the end of

Γr,1.

The discussion of Policy Γr,2 follows symmetrically.
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Policy Γr,3 for v(1): We will prove that for the first nω1
r,C time slots of Policy Γr,3, we

can always choose v(1) according to (3.13). To that end, we first notice that the inclusion

space and exclusion space in (3.13) are the same as those of Policy Γs1,4. Hence to prove

that (3.13) remains non-empty during the first nω1
r,C time slots of Policy Γr,3, we need to

prove that (B.19) holds in the end of the first nω1
r,C time slots of Policy Γr,3. By similar

analysis as used in the previous policies, we have

E{Rank(S2)} = n(ω0
s1
+ ω1

s1
+ ω3

s1
)p1(d2)

+ nω1
r,Npr(d2), (B.30)

E{Rank(Sr)} = n(ω0
s1
+ ω1

s1
+ ω2

s1
)p1(r), (B.31)

E{Rank(S2 ⊕ Sr)} = nω0
s1
p1(d2, r). (B.32)

in the end of the first nω1
r,C time slots of Policy Γr,3. What remains to be decided is the

value of Rank(S1 ∩S2 ∩Sr) at the end of the first nω1
r,C time slots of Policy Γr,3. In (B.29)

we have computed the value of Rank(S1 ∩S2 ∩Sr) in the end of Γr,1. As a result, we only

need to quantify the increment of Rank(S1 ∩ S2 ∩ Sr) during the first nω1
r,C time slots of

Policy Γr,3. By the same analysis as when we quantify the increment of Rank(S1∩S2∩Sr)

during Γs1,4, the increment of Rank(S1∩S2∩Sr) during the first nω1
r,C time slots of Policy

Γr,3 is nω1
r,Cpr(d1). By (B.29), we have shown that

E{Rank(S1 ∩ S2 ∩ Sr)}
=n

(
ω0
s1
+ ω1

s1

)
p1(d1d2r) + nω2

s1
p1(d1r)

+ nω3
s1
p1(d1d2) + nω4

s1
p1(d1) + nω1

r,Npr(d1d2)

+ nω1
r,Cpr(d1) (B.33)

in the end of the first nω1
r,C time slots of Policy Γr,3. Jointly, (B.30) to (B.33) and (4.19)

imply that (B.19) holds in the end of the first nω1
r,C time slots of Γr,3.

The discussion of the first nω2
r,C time slots of Γr,3 follows symmetrically.

The above analysis completes the achievability proof started in Section 4.3.1.
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C. BOUND-MATCHING OF WIRELESS BUTTERFLY

NETWORKS

Here we are going to verify the proposed parameter assignment in the proof of Lemma

4.3.1 satisfies (4.9), (4.10), (4.32) to (4.39). For (4.9),

3∑
k=0

ωk
si
=

Ri

pi(dj, r)

+Ri

(
min

{
1

pi(r)
,

1

pi(dj)

}
− 1

pi(dj, r)

)

+Ri

(
1

pi(r)
− 1

pi(dj)

)+

+min

{
Ri

(
1

pi(dj)
− 1

pi(r)

)+

, tsi −
Ri

pi(r)

}

≤ Ri

pi(r)

+ min

{
Ri

(
1

pi(dj)
− 1

pi(r)

)+

, tsi −
Ri

pi(r)

}

≤tr.

Hence it satisfies (4.9). For (4.10),

ωi
r,N + ωj

r,N + ωi
r,C

=
(Ri − tsipi(dj))

+

pr(di, dj)
+

(Rj − tsjpsj (di))
+

pr(di, dj)

+
Ri

pr(di)
− (Ri − tsipi(dj))

+

pr(di, dj)

=
Ri

pr(di)
+

(Rj − tsjpsj (di))
+

pr(di, dj)
≤ tr.
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Hence it satisfies (4.10). For (4.32),

ω0
si
pi(dj, r) =

Ri

pi(dj, r)
pi(dj, r) = Ri.

Hence it satisfies (4.32). For (4.33),

LHS =Ri

(
min

{
1

pi(r)
,

1

pi(dj)

}
− 1

pi(dj, r)

)
pi(r)

=Ri

(
min

{
1,

pi(r)

pi(dj)

}
− pi(r)

pi(dj, r)

)

≤Ri − Ri

pi(r)

pi(dj, r)
,

RHS =Ri

pi(djr)

pi(dj, r)
= Ri − Ri

pi(r)

pi(dj , r)
.

Hence it satisfies (4.33). For (4.34),

LHS =Ri

(
min

{
1

pi(r)
,

1

pi(dj)

}
− 1

pi(dj, r)

)
pi(dj)

=Ri

(
min

{
pi(dj)

pi(r)
, 1

}
− pi(dj)

pi(dj, r)

)

≤Ri −Ri

pi(dj)

pi(dj, r)
,

RHS =Ri

pi(rdj)

pi(dj, r)
= Ri − Ri

pi(dj)

pi(dj, r)
.
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Hence it satisfies (4.34). For (4.35),

LHS =Ri

(
1

pi(r)
− 1

pi(dj)

)+

pi(r) = Ri

(
1− pi(r)

pi(dj)

)+

,

RHS =Ri

pi(djr)

pi(dj, r)

− Ri

(
min

{
1

pi(r)
,

1

pi(dj)

}
− 1

pi(dj, r)

)
pi(r)

=Ri

(
1− pi(r)

pi(dj, r)

)

− Ri

(
min

{
1,

pi(r)

pi(dj)

}
− pi(r)

pi(dj , r)

)

≥Ri

(
1− pi(r)

pi(dj)

)+

.

Hence it satisfies (4.35). For (4.36),

LHS =min

{
Ri

(
1− pi(dj)

pi(r)

)+

, tsipi(dj)−Ri

pi(dj)

pi(r)

}
,

RHS =Ri

pi(rdj)

pi(dj, r)

− Ri

(
min

{
1

pi(r)
,

1

pi(dj)

}
− 1

pi(dj , r)

)
pi(dj)

=Ri

(
1− pi(dj)

pi(dj, r)

)

− Ri

(
min

{
pi(dj)

pi(r)
, 1

}
− pi(dj)

pi(dj, r)

)

≥Ri

(
1− pi(dj)

pi(r)

)+

.
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Hence it satisfies (4.36). For (4.37),

LHS =(Ri − tsipi(dj))
+ ,

RHS =Ri

pi(rdj)

pi(dj, r)

−Ri

(
min

{
1

pi(r)
,

1

pi(dj)

}
− 1

pi(dj, r)

)
pi(dj)

−min

{
Ri

(
1− pi(dj)

pi(r)

)+

, tsipi(dj)− Ri

pi(dj)

pi(r)

}

≥Ri

(
1− pi(dj)

pi(r)

)+

−min

{
Ri

(
1− pi(dj)

pi(r)

)+

, tsipi(dj)− Ri

pi(dj)

pi(r)

}

≥ (Ri − tsipi(dj))
+ .
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Hence it satisfies (4.37). For (4.38),

LHS =Ri − (Ri − tsipi(dj))
+ pr(di)

pr(di, dj)
,

RHS =Ri

pi(djr)

pi(dj, r)

+ (pi(dj) + pi(r))

·Ri

(
min

{
1

pi(r)
,

1

pi(dj)

}
− 1

pi(dj, r)

)

+Ri

(
1− pi(r)

pi(dj)

)+

+min

{
Ri

(
1− pi(dj)

pi(r)

)+

, tsipi(dj)− Ri

pi(dj)

pi(r)

}

+
(Ri − tsipi(dj))

+

pr(di, dj)
(pr(di, dj)− pr(di))

=Ri min

{
pi(dj)

pi(r)
,
pi(r)

pi(dj)

}
+Ri

(
1− pi(r)

pi(dj)

)+

+min

{
Ri

(
1− pi(dj)

pi(r)

)+

, tsipi(dj)− Ri

pi(dj)

pi(r)

}

+ (Ri − tsipi(dj))
+(1− pr(di)

pr(di, dj)
)

≥Ri − (Ri − tsipi(dj))
+ pr(di)

pr(di, dj)
.

Hence it satisfies (4.38). For (4.39),

pr(di)(ω
i
r,N + ωi

r,C) = Ri

With the above verification, we conclude that this proposed assignment satisfies (4.9),

(4.10), (4.32) to (4.39).
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D. THE UPPER BOUND OF THE DIFFERENCE BETWEEN THE

ACTUAL QUEUE AND INTERMEDIATE ACTUAL QUEUE

Recall that we assume the SPN under consideration is acyclic, and hence we could arrange

the queues from the upstream to the downstream and index them from 1 (the most upstream)

to K (the most dowsntream). Recall that we use n(t) to denote the preferred SA chosen by

the back-pressure scheduler. The proof of Lemma 6.2.1 consists of proving the following

lemmas.

We first prove the following lemma.

Lemma D.0.1 For any k = 1, 2, ..., K and any time t,

|Qk(t)−Qinter
k (t)|

≤
t−1∑
τ=1

I(∃k′ ∈ In(τ) : Qk′(τ) = 0). (D.1)

Lemma D.0.2 For any k = 1, 2, ..., K and any time τ ,

I(k ∈ In(τ))

≤I(k ∈ In(τ))I(Q
inter
k (τ) < β in

k,n(τ)(cq(τ)))

+ I(k ∈ In(τ))I(Qk(τ) = 0)

· I(β in
k,n(τ)(cq(τ)) = 0)I(1 ≤ Qinter

k (τ))

+ I(k ∈ In(τ))I(Qk(τ) = 0)

· I(β in
k,n(τ)(cq(τ)) = 0)I(0 ≤ Qinter

k (τ) < 1)

+ I(k ∈ In(τ))I(Qk(τ) = 0)

· I(β in
k,n(τ)(cq(τ)) = 1)I(1 ≤ Qinter

k (τ)). (D.2)
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By combining Lemma D.0.1 and Lemma D.0.2 and by the union bound, we can upper

bound the value of |Qk(t)−Qinter
k (t)| as follows.

|Qk(t)−Qinter
k (t)|

≤
K∑

k′=1

t−1∑
τ=1

I(k′ ∈ In(τ))I(Q
inter
k′ (τ) < β in

k′,n(τ)(cq(τ)))

+
K∑

k′=1

t−1∑
τ=1

I(k′ ∈ In(τ))I(Qk′(τ) = 0)

· I(β in
k′,n(τ)(cq(τ)) = 0)I(1 ≤ Qinter

k′ (τ))

+
K∑

k′=1

t−1∑
τ=1

I(k′ ∈ In(τ))I(Qk′(τ) = 0)

· I(β in
k′,n(τ)(cq(τ)) = 0)I(0 ≤ Qinter

k′ (τ) < 1)

+

K∑
k′=1

t−1∑
τ=1

I(k′ ∈ In(τ))I(Qk′(τ) = 0)

· I(β in
k′,n(τ)(cq(τ)) = 1)I(1 ≤ Qinter

k′ (τ)). (D.3)

Recall that the goal of Lemma 6.2.1 is to upper bound the expectation of |Qk(t) −
Qinter

k (t)| as a weighted sum of E{NNA,k′(t)}. We then observe that the expectation of the

first term of the RHS of (D.3) is indeed the sum of E{NNA,k′(t)}. Therefore, to complete

the proof of Lemma 6.2.1, we only need to upper bound the expectation of the second to the

fourth terms of the RHS of (D.3) by some weighted sum of E{NNA,k′(t)}. The following

Lemmas D.0.3 to D.0.5 upper bound the expectation of the second to the fourth terms,

respectively.
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Lemma D.0.3 For any k = 1, ..., K, there exists a constant γk such that

E(
t∑

τ=1

I(k ∈ In(τ))I(Qk(τ) = 0)

· I(β in
k,n(τ)(cq(τ)) = 0)I(1 ≤ Qinter

k (τ)))

≤ γkE(

t∑
τ=1

I(k ∈ In(τ))I(Qk(τ) = 0)

· I(β in
k,n(τ)(cq(τ)) = 1)I(1 ≤ Qinter

k (τ)) (D.4)

for all t = 1 to ∞.

Namely, the expectation of the second term of the RHS of (D.3) is upper bounded by

γk times the expectation of the fourth term of the RHS of (D.3).

Lemma D.0.4 For any k = 1, ..., K, there exists a constant γk such that

E(
t∑

τ=1

I(k ∈ In(τ))I(Qk(τ) = 0)

· I(β in
k,n(τ)(cq(τ)) = 0)I(0 ≤ Qinter

k (τ) < 1))

≤ γkE(
t∑

τ=1

I(k ∈ In(τ))I(Q
inter
k (τ) < β in

k,n(τ)(cq(τ)))

for all t = 1 to ∞.

Lemma D.0.5 upper bounds the expectation of the fourth term of (D.3), which is also

used to upper bound the second term of (D.3) through Lemma D.0.3.

Lemma D.0.5 For any k value, there exists γ1 to γk−1 such that

E(

t∑
τ=1

I(k ∈ In(τ))I(Q
inter
k (τ) ≥ 1)

· I(β in
k,n(τ)(cq(τ)) = 1)I(Qk(τ) = 0))

≤
k−1∑
k′=1

γk′E(

t∑
τ=1

I(k′ ∈ In(τ))I(Q
inter
k′ (τ) < β in

k′,n(τ)(cq(τ)))) (D.5)
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for all t = 1 to ∞.

Finally by applying Lemma D.0.3 and Lemma D.0.5 to the second term of the RHS

of (D.3), applying Lemma D.0.4 to the third term of the RHS of (D.3), and applying

Lemma D.0.5 to the fourth term of the RHS of (D.3), we have proven the following state-

ment: for any k, there exist γ1 to γK such that

E(|Qk(t)−Qinter
k (t)|)

≤
K∑

k′=1

γk′E(

t−1∑
τ=1

I(k′ ∈ In(τ))I(Q
inter
k′ (τ) < β in

k′,n(τ)(cq(τ))))

for all t = 1 to ∞. The proof of Lemma D.0.1 to Lemma D.0.5 are relegated to Appedix E.

Lemma 6.2.1 is thus proven. �
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E. PROOFS OF FOUR LEMMAS

Proof of Lemma D.0.1: Before proving Lemma D.0.1, we first rewrite the LHS of (D.1) as

|Qk(t)−Qinter
k (t)|

=

t−1∑
τ=1

(|Qk(τ + 1)−Qinter
k (τ + 1)| − |Qk(τ)−Qinter

k (τ)|) .
So to prove (D.1), it suffices to show that the following inequality holds for all k and τ < t.

(|Qk(τ + 1)−Qinter
k (τ + 1)| − |Qk(τ)−Qinter

k (τ)|)
≤ I(∃k′ ∈ In(τ) : Qk′(τ) = 0). (E.1)

We now prove (E.1). By set relationship, one can easily verify that one and only one of

the following 3 possible cases is true at each time τ .

1. k 
∈ In(τ) ∪On(τ).

2. k ∈ In(τ) ∪On(τ) and SA n(τ) is feasible.

3. k ∈ In(τ) ∪On(τ) and SA n(τ) is not feasible.

In the case of 1), the LHS of (E.1) at time τ is zero since Qk(τ + 1) − Qk(τ) =

Qinter
k (τ + 1)−Qinter

k (τ) =
∑M

m=1 αk,mam(τ). Inequality (E.1) thus holds obviously.

In the case of 2), the scheduled SA n(τ) is feasible. Suppose k ∈ On(τ). Then the

LHS of (E.1) at time τ is always 0 since Qk(τ + 1)−Qk(τ) = Qinter
k (τ + 1)−Qinter

k (τ) =

βout
k,n(τ)(cq(τ)) +

∑M

m=1 αk,mam(τ). Suppose k ∈ In(τ). Then Qk(τ + 1) = Qk(τ) −
β in
k,n(τ)(cq(τ)) +

∑M

m=1 αk,mam(τ). There are now two sub-cases: Qinter
k (τ) ≥ Qk(τ) ≥ 1

or Qinter
k (τ) < Qk(τ). (The case that Qk(τ) = 0 is not possible since we now consider

the scenario SA n(τ) is feasible.) In the first sub-case, since Qinter
k (τ) ≥ Qk(τ) ≥ 1 and

since SA n(τ) is feasible, we must have Qinter
k (τ + 1)−Qinter

k (τ) = Qk(τ + 1)−Qk(τ) =
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−β in
k,n(τ)(cq(τ)) +

∑M

m=1 αk,mam(τ). As a result, the LHS of (E.1) at time τ is again 0.

In the second sub-case, Qinter
k (τ + 1) = (Qinter

k (τ) − β in
k,n(τ)(cq(τ)))

+ +
∑M

m=1 αk,mam(τ),

and Qk(τ + 1) = Qinter
k (τ) − β in

k,n(τ)(cq(τ)) +
∑M

m=1 αk,mam(τ) since in this case we

assume SA n(τ) is feasible and thus Qk(τ) ≥ 1. Recall that Qinter
k (τ) < Qk(τ) in this sub-

case. Therefore, (Qinter
k (τ) − β in

k,n(τ)(cq(τ)))
+ ≤ (Qk(τ) − β in

k,n(τ)(cq(τ)))
+ = (Qk(τ) −

β in
k,n(τ)(cq(τ))). We thus have Qinter

k (τ + 1) ≤ Qk(τ + 1). As a result, the LHS of (E.1) at

time τ becomes

(|Qk(τ + 1)−Qinter
k (τ + 1)| − |Qk(τ)−Qinter

k (τ)|)
=(Qk(τ + 1)−Qk(τ) +Qinter

k (τ)−Qinter
k (τ + 1))

=− β in
k,n(τ)(cq(τ))

+ (Qinter
k (τ)−max{Qinter

k (τ)− β in
k,n(τ)(cq(τ)), 0})

=− β in
k,n(τ)(cq(τ)) + min{β in

k,n(τ)(cq(τ)), Q
inter
k (τ)}

≤0.

Since the RHS of (E.1) is always non-negative, (E.1) holds in the case of 2).

In the case of 3), the preferred SA n(τ) is not feasible. Without loss of generality, we

assume that there is no external arrival at queue k in time τ since any external arrival will

change Qk(τ) and Qinter
k (τ) by the same amount. Since SA n(τ) is not feasible, we have

Qk(τ +1) = Qk(τ). On the other hand, Qinter
k (τ) might still increase or decrease at most by

1 since the update rule of Qinter
k (τ) (6.10) does not depend on whether SA n(τ) is feasible

or not. Since Qinter
k (τ) changes by at most 1, the LHS of (E.1) at time τ is upper bounded

by 1 in this case while the RHS of (E.1) is always 1 since SA n(τ) is no feasible. Thus

(E.1) holds in the case of 3).

In summary, for all k and τ < t, (E.1) holds in all 3 possible cases. Lemma D.0.1 is

proven. �

Proof of Lemma D.0.2: Suppose k ∈ In(τ). We claim that one and only one of the

following 4 possible cases is true:
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1. Qinter
k (τ) < β in

k,n(τ)(cq(τ)).

2. Qk(τ) = 0, β in
k,n(τ)(cq(τ)) = 0, and 1 ≤ Qinter

k (τ).

3. Qk(τ) = 0, β in
k,n(τ)(cq(τ)) = 0, and 0 ≤ Qinter

k (τ) < 1.

4. Qk(τ) = 0, β in
k,n(τ)(cq(τ)) = 1, and 1 ≤ Qinter

k (τ).

The reason is as follows. For any fixed k, we either have Qinter
k (τ) < β in

k,n(τ)(cq(τ));

or Qk(τ) = 0 and Qinter
k (τ) ≥ β in

k,n(τ)(cq(τ)). In the former scenario, we have 1). In the

latter scenario, we can further partition the event based on the values of β in
k,n(τ)(cq(τ)) and

Qinter
k (τ) and we thus have 2) to 4). The four cases correspond to the four terms in the RHS

of (D.2). The proof of Lemma D.0.2 is complete. �

Proof of Lemma D.0.3: Obviously we have

E(
t∑

τ=1

I(k ∈ In(τ))I(Qk(τ) = 0)

· I(β in
k,n(τ)(cq(τ)) = 0)I(1 ≤ Qinter

k (τ)))

≤ E(
t∑

τ=1

I(k ∈ In(τ))I(Qk(τ) = 0)

· I(1 ≤ Qinter
k (τ)).

We then observe that β in
k,n(τ)(cq(τ)), the channel realization from queue k to SA n(τ)

during time τ , is independent of n(τ), Qk(τ), and Qinter
k (τ), which depend only on the

history from time 1 to (τ − 1), not on the realization of β in
k,n(τ)(cq(τ)) in time τ .

Furthermore, recall that β in
k,n(τ)(cq(τ)) is a Bernoulli random variable with E(I(β in

k,n(τ)(cq(τ)) =

1)) = β in
k,n(τ)(cq(τ)). Define

γk =
1

minc∈CQ,n∈[1,N ],k∈In β
in
k,n(c)

,
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which always exists since we assume minc∈CQ,n∈[1,N ],k∈In β
in
k,n(c) > 0 in the SPN of inter-

est (Assumption 3). Since whether β in
k,n(cq(τ)) = 1 is independent of n(τ), Qk(τ), and

Qinter
k (τ), we have

E(
t∑

τ=1

I(k ∈ In(τ))I(Qk(τ) = 0)

· I(1 ≤ Qinter
k (τ)))

≤ γkE(
t∑

τ=1

I(k ∈ In(τ))I(Qk(τ) = 0)

· I(β in
k,n(τ)(cq(τ)) = 1)I(1 ≤ Qinter

k (τ)),

which completes the proof of Lemma D.0.3. �

Proof of Lemma D.0.4: We have

E(

t∑
τ=1

I(k ∈ In(τ))I(Qk(τ) = 0)

· I(β in
k,n(τ)(cq(τ)) = 0)I(0 ≤ Qinter

k (τ) < 1))

≤γkE(
t∑

τ=1

I(k ∈ In(τ))I(Qk(τ) = 0)

· I(β in
k,n(τ)(cq(τ)) = 1)I(0 ≤ Qinter

k (τ) < 1)) (E.2)

≤γkE(
t∑

τ=1

I(k ∈ In(τ))I(Q
inter
k (τ) < β in

k,n(τ)(cq(τ))), (E.3)

where (E.2) follows from the same argument as used in the proof of Lemma D.0.3; (E.3)

follows from the fact that if β in
k,n(τ)(cq(τ)) = 1 and 0 ≤ Qinter

k (τ) < 1, then Qinter
k (τ) <

β in
k,n(τ)(cq(τ)). Thus Lemma D.0.4 is proven. �

Proof of Lemma D.0.5: Define ΔQk(τ)

=Qinter

k (τ)−Qk(τ). We first state the following

four claims and use these claims to prove Lemma D.0.5. The proof of these four claims are

relegated to Appendix F.

Claim E.0.1 For the most upstream queue (k = 1) we have Q1(τ) ≥ Qinter
1 (τ) for all τ .
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Claim E.0.2 For any k = 1, 2, ..., K and any time t, we have

t∑
τ=1

I(k ∈ In(τ))I(Q
inter
k (τ) ≥ 1)

· I(β in
k,n(τ)(cq(τ)) = 1)I(Qk(τ) = 0)

≤
t∑

τ=1

I(k ∈ On(τ))I(ΔQk(τ + 1) > ΔQk(τ)). (E.4)

Claim E.0.3 For any τ = 1 to ∞, we have

I (ΔQk(τ + 1) > ΔQk(τ)) I(k ∈ On(τ))

≤
k−1∑
k′=1

I(k′ ∈ In(τ))I(Q
inter
k′ (τ) < β in

k′,n(τ)(cq(τ)))

+

k−1∑
k′=1

I(k′ ∈ In(τ))I(Qk′(τ) = 0)

· I(β in
k′,n(τ)(cq(τ))) = 0)I(1 ≤ Qinter

k′ (τ))

+
k−1∑
k′=1

I(k′ ∈ In(τ))I(Qk′(τ) = 0)

· I(β in
k′,n(τ)(cq(τ))) = 0)I(0 ≤ Qinter

k′ (τ) < 1)

+

k−1∑
k′=1

I(k′ ∈ In(τ))I(Qk′(τ) = 0)

· I(β in
k′,n(τ)(cq(τ))) = 1)I(1 ≤ Qinter

k′ (τ)). (E.5)
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Claim E.0.4 For any k = 1, 2, ..., K and any time t, we have

t∑
τ=1

I(k ∈ In(τ))I(Q
inter
k (τ) ≥ 1)

· I(β in
k,n(τ)(cq(τ)) = 1)I(Qk(τ) = 0)

≤
k−1∑
k′=1

t∑
τ=1

I(k′ ∈ In(τ))I(Q
inter
k (τ) < β in

k′,n(τ)(cq(τ)))

+

k−1∑
k′=1

t∑
τ=1

I(k′ ∈ In(τ))I(Q
inter
k′ (τ) ≥ 1)

· I(β in
k′,n(τ)(cq(τ)) = 1)I(Qk′(τ) = 0)

+

k−1∑
k′=1

t∑
τ=1

I(k′ ∈ In(τ))I(Q
inter
k′ (τ) ≥ 1)

· I(β in
k′,n(τ)(cq(τ)) = 0)I(Qk′(τ) = 0)

+
k−1∑
k′=1

t∑
τ=1

I(k′ ∈ In(τ))I(1 > Qinter
k′ (τ) ≥ 0)

· I(β in
k′,n(τ)(cq(τ)) = 0)I(Qk′(τ) = 0). (E.6)

With the above four claims, we are now ready to prove Lemma D.0.5. We prove

Lemma D.0.5 by induction on the value of k. Consider the case of k = 1 first. By

Claim E.0.1, we have Q1(τ) ≥ Qinter
1 (τ) for all τ . Therefore, whenever Q1(τ) = 0, we

must have Qinter
1 (τ) = 0. As a result, the LHS of (D.5) is always 0 for k = 1. Lemma D.0.5

thus holds for k = 1.
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Now consider general k. By Lemma E.0.4 and taking the expectation on both sides, we

have

E(

t∑
τ=1

I(k ∈ In(τ))I(Q
inter
k (τ) ≥ 1)

· I(β in
k,n(τ)(cq(τ)) = 1)I(Qk(τ) = 0))

≤
k−1∑
k′=1

E(
t∑

τ=1

I(k′ ∈ In(τ))I(Q
inter
k (τ) < β in

k′,n(τ)(cq(τ))))

+

k−1∑
k′=1

E(

t∑
τ=1

I(k′ ∈ In(τ))I(Q
inter
k′ (τ) ≥ 1)

· I(β in
k′,n(τ)(cq(τ)) = 1)I(Qk′(τ) = 0))

+
k−1∑
k′=1

E(
t∑

τ=1

I(k′ ∈ In(τ))I(Q
inter
k′ (τ) ≥ 1)

· I(β in
k′,n(τ)(cq(τ)) = 0)I(Qk′(τ) = 0))

+

k−1∑
k′=1

E(

t∑
τ=1

I(k′ ∈ In(τ))I(1 > Qinter
k′ (τ) ≥ 0)

· I(β in
k′,n(τ)(cq(τ)) = 0)I(Qk′(τ) = 0)). (E.7)

We look at the second term of the RHS of (E.7) first. Notice that by induction hypoth-

esis, for k′ = 1, ..., k − 1, there exists γk′,1 to γk′,k′−1 such that

E(
t∑

τ=1

I(k′ ∈ In(τ))I(Q
inter
k′ (τ) ≥ 1)

· I(β in
k,n(τ)(cq(τ)) = 1)I(Qk′ = 0))

≤
k′−1∑
k′′=1

γk′,k′′

· E(
t∑

τ=1

I(k′′ ∈ In(τ))I(Q
inter
k′′ (τ) < β in

k′′,n(τ)(cq(τ)))).

The above inequality shows that the second term of the RHS of (E.7) can be bounded by a

weighted sum of E(
∑t

τ=1 I(k
′ ∈ In(τ))I(Q

inter
k′ (τ) < β in

k′,n(τ)(cq(τ)))) for k′ = 1, ..., k − 1.
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We now look at the third term of the RHS of (E.7). By Lemma D.0.3, for k′ = 1, ..., k−
1, there exists a constant γ′

k′ such that

E(
t∑

τ=1

I(k′ ∈ In(τ))I(Q
inter
k′ (τ) ≥ 1)

· I(β in
k′,n(τ)(cq(τ)) = 0)I(Qk′(τ) = 0))

≤ γ′
k′E(

t∑
τ=1

I(k′ ∈ In(τ))I(Q
inter
k′ (τ) ≥ 1)

· I(β in
k′,n(τ)(cq(τ)) = 1)I(Qk′(τ) = 0)).

Again by the same argument for the second term of the RHS of (E.7), the third term of the

RHS of (E.7) can also be bounded by a weighted sum of E(
∑t

τ=1 I(k
′ ∈ In(τ))I(Q

inter
k′ (τ) <

β in
k′,n(τ)(cq(τ)))) for k′ = 1, ..., k − 1.

By Lemma D.0.4, the fourth term of the RHS of (E.7) can also be bounded by a

weighted sum of E(
∑t

τ=1 I(k
′ ∈ In(τ))I(Q

inter
k′ (τ) < β in

k′,n(τ)(cq(τ)))) for k′ = 1, ..., k − 1.

Since all the 4 terms in the RHS of (E.7) can be upper bounded by a weighted sum of

E(
∑t

τ=1 I(k
′ ∈ In(τ))I(Q

inter
k′ (τ) < β in

k′,n(τ)(cq(τ)))) for k′ = 1, ..., k − 1, we have thus

proven Lemma D.0.5. �
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F. PROOFS OF FOUR CLAIMS

Proof of Claim E.0.1: By the definition of Qk(t) and Qinter
k (t), we have Qk(1) = 0 =

Qinter
k (1). The desired inequality holds when τ = 1. Suppose the inequality holds for some

τ . We now prove that the inequality also holds for τ + 1. To that end, we first notice that

any external arrival at time τ will increase the Qinter
1 (τ) and Q1(τ) by the same amount.

Therefore, the external arrivals will not affect the order between Qinter
1 (τ) and Q1(τ) and

we can thus assume there is no external arrival in time t without loss of generality. Consider

the first scenario in which 1 /∈ In(τ). Since 1 /∈ In(τ), no packets will leave queue 1. Since

we have Qinter
1 (τ) ≤ Q1(τ) to begin with, we will still have Qinter

1 (τ + 1) ≤ Q1(τ + 1).

Now consider the scenario of 1 ∈ In(τ) and the following two cases: Case 1: Qinter
1 (τ) <

β in
1,n(τ)(cq(τ)). In this case, at the beginning of time τ + 1, Qinter

1 (τ + 1) = 0 due to the

update rule (6.10). Since the actual queue length Qk(τ) is non-negative, we must have

Qinter
1 (τ + 1) ≤ Q1(τ + 1). Case 2: Qinter

1 (τ) ≥ β in
1,n(τ)(cq(τ)). In this case, we have

Qinter
1 (τ + 1) = Qinter

1 (τ) − β in
1,n(τ)(cq(τ)) (recall that we assume no external). We observe

that the actual queue length Q1 either decreases by β in
1,n(τ)(cq(τ)) or remain the same,

depending on whether SA n(τ) can be carried out successfully or not (see Difference 1 in

the Section 6.2.1). Therefore, the decrease amount of Qinter
1 (τ) is no less than the decrease

amount of Q1(τ), which together with the fact that Qinter
1 (τ) ≤ Q1(τ) imply Qinter

1 (τ +1) ≤
Q1(τ + 1). By induction, we have proven that Q1(τ) ≥ Qinter

1 (τ) for all τ . �

Proof of Claim E.0.2: Since both Qk(τ) and Qinter
k (τ) are integer-valued random pro-

cesses, ΔQk(τ) is also an integer-valued random process. Furthermore, we observe that

the changes of Qk(τ) and Qinter
k (τ) is always in the same direction. Namely, if Qinter

k (τ)

increases,1 then it means that k is one of the output queues of SA n(τ), which means that

Qk(τ) can either increase or remain the same (the latter is due to the fact that the preferred

1For ease of exposition, we do not count the external arrivals since any external arrival will increase Qk and
Qinter

k by the same amount.
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SA n(τ) may be infeasible). Similarly, if Qinter
k (τ) decreases then Qk(τ) can decrease or

remain the same. Since the largest change of Qk (resp. Qinter
k ) is at most 1 and they move

in the same direction, it can be easily shown that the change of ΔQk(τ) is also at most 1.

To simplify the expression, for the time being, we sometimes ignore the queue index k in

ΔQk(τ). That is, we will write ΔQk(τ) as ΔQ(τ) in the remaining of this proof.

In the following, we iteratively define two sequences of time instants, {si : ∀i} and

{ti : ∀i}. The first time instant is s1 = 1. Then for any i, define ti ∈ (si, t + 1] as the

largest time instant such that for all time instant τ̃ ∈ (si, ti), we have ΔQ(τ̃ ) > 0. Note

that for all τ̃ ∈ (si, si + 1) we have ΔQ(τ̃ ) > 0 since (si, si + 1) is an empty interval. As

a result, ti always exists and is uniquely defined as long as we have si ≤ t to begin with.

Furthermore, since ΔQ(τ) is an integer-valued random process with change at most 1 at

each time slot, we can observe that ΔQ(ti) = 0 if ti ≤ t and ΔQ(ti) > 0 if ti = t + 1. In

summary, ΔQ(ti) ≥ 0.

After defining ti, we define si+1 ∈ [ti, t] as the time instant such that for all time instant

τ̃ ∈ (ti, si+1], we have ΔQ(τ̃ ) ≤ 0 and ΔQ(si+1 + 1) > 0. This time, such si+1 may

or may not exist. For example, if ΔQ(τ̃ ) ≤ 0 for all τ̃ ∈ [ti, t + 1], then si+1 does not

exist since even the largest possible choice of si+1 = t still does not satisfy the requirement

ΔQ(si+1+1) > 0. However, one may observe that we must have ΔQ(si+1) = 0 whenever

si+1 exists. The reason is that ΔQ(τ) changes by at most one in any two consecutive

time slots. Therefore, the facts that ΔQ(τ̃ ) ≤ 0 and ΔQ(si+1 + 1) > 0 jointly imply

ΔQ(si+1) = 0. In summary, [si, ti) is the i-th “continuous interval” such that all τ ∈ (si, ti)

satisfy ΔQ(τ) > 0.

Define Ms as the number of (si, ti) pairs that do exist. Since s1 = 1 is clearly defined,

we have Ms ≥ 1. We will now argue that for any i = 1 to Ms, we have

ti−1∑
τ=si

I(ΔQ(τ + 1) < ΔQ(τ))

≤
ti−1∑
τ=si

I(ΔQ(τ + 1) > ΔQ(τ)). (F.1)
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To see the correctness of (F.1), we first observe that

ΔQ(ti) = ΔQ(si) +

ti−1∑
τ=si

(ΔQ(τ + 1)−ΔQ(τ)).

Since ΔQ(si) = 0 and ΔQ(ti) ≥ 0, we have

ti−1∑
τ=si

(ΔQ(τ + 1)−ΔQ(τ))+

≥
ti−1∑
τ=si

(ΔQ(τ + 1)−ΔQ(τ))−,

where (v)+ = max{0, v} and (v)− = max{0,−v}. Since ΔQ(τ) moves by at most 1, we

thus have (F.1).

Now we turn our focus back to proving Claim E.0.2. We notice that when

I(k ∈ In(τ))I(Q
inter
k (τ) ≥ 1)

· I(β in
k,n(τ)(cq(τ)) = 1)I(Qk(τ) = 0) = 1, (F.2)

we have ΔQ(τ) = Qinter
k (τ)−Qk(τ) ≥ 1. Moreover, we argue that ΔQ(τ+1) = ΔQ(τ)−

1. The reason is as follows. Since queue k is one of the input queues of the preferred SA

at τ and the queue lengths satisfy Qinter
k (τ) ≥ 1 and Qk(τ) = 0, Qinter

k will decrease by one

according to the update rule (6.10) while Qk remains zero since the preferred SA n(τ) is

infeasible. As a result, ΔQ(τ + 1) = ΔQ(τ)− 1.

We thus have the following,

t∑
τ=1

I(k ∈ In(τ))I(Q
inter
k (τ) ≥ 1)

· I(β in
k,n(τ)(cq(τ)) = 1)I(Qk(τ) = 0)

≤
Ms∑
i=1

ti−1∑
τ=si

I(ΔQ(τ + 1) < ΔQ(τ)) (F.3)
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The reason is that any τ that satisfies (F.2) will have ΔQ(τ) ≥ 1, and by our construction

of si and ti, for all i = 1 to Ms, such τ must fall into one of the intervals [si, ti). Also, any

τ that satisfies (F.2) will have ΔQ(τ + 1) < ΔQ(τ). As a result, we have (F.3). We can

continue upper bounding (F.3) by

(F.3) ≤
Ms∑
i=1

ti−1∑
τ=si

I(ΔQ(τ + 1) > ΔQ(τ)) (F.4)

=
Ms∑
i=1

ti−1∑
τ=si

I(ΔQ(τ + 1) > ΔQ(τ))I(k ∈ On(τ)) (F.5)

≤
t∑

τ=1

I(ΔQ(τ + 1) > ΔQ(τ))I(k ∈ On(τ)), (F.6)

where (F.4) follows from (F.1); and (F.6) follows from including additionally those τ not in

any of the interval [si, ti). Except for proving (F.5), the proof of Claim E.0.2 is complete.

In the remaining part of this proof, we will rigorously prove (F.5). To that end, we first

notice that

I(ΔQ(τ + 1)−ΔQ(τ) > 0)

=I(ΔQ(τ + 1)−ΔQ(τ) > 0) · I(k ∈ On(τ))

+ I(ΔQ(τ + 1)−ΔQ(τ) > 0) · I(k 
∈ On(τ)) (F.7)

In the next paragraph, we will prove that when k 
∈ On(τ), we always have either

“ΔQ(τ + 1) − ΔQ(τ) ≤ 0” or “ΔQ(τ) < 0.” It means that the term I(ΔQ(τ + 1) −
ΔQ(τ) > 0) · I(k 
∈ On(τ)) is either 0 or the τ value is not counted in any of the [si, ti)

intervals since by our construction we always have ΔQ(si) = 0 and any τ̃ ∈ (si, ti)

satisfying ΔQ(τ̃ ) > 0. As a result, (F.5) is true.

Consider the situation when k 
∈ On(τ) and consider two sub-cases: If SA n(τ) turns

out to be infeasible, then Qk(τ + 1) = Qk(τ) +
∑M

m=1 αk,mam(τ). Also, we always have

Qinter
k (τ + 1) ≤ Qinter

k (τ) +
∑M

m=1 αk,mam(τ) since k 
∈ On(τ) implies that the intermediate
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queue length Qinter
k can only decrease or remain the same (except when there is external

arrival
∑M

m=1 αk,mam(t)). As a result, in this sub-case, we have ΔQ(τ +1)−ΔQ(τ) ≤ 0.

In the second sub-case: SA n(τ) is feasible, we haveQk(τ+1) = Qk(τ)+
∑M

m=1 αk,mam(τ)−
I(k ∈ In(τ))β

in
k,n(τ)(cq(τ)). Namely, when not counting the external arrival, Qk can now

possibly decrease if k ∈ In(τ) or it will remain the same if k 
∈ In(τ). Our goal is to show

that either “ΔQ(τ +1)−ΔQ(τ) ≤ 0” or “ΔQ(τ) < 0.” To that end, we prove the equiva-

lent statement that ΔQ(τ) ≥ 0 implies ΔQ(τ+1) = ΔQ(τ). Since SA n(τ) is feasible, we

have Qk(τ) ≥ 1. Since ΔQ(τ) = Qinter
k (τ)−Qk(τ) ≥ 0, we have Qinter

k (τ) ≥ Qk(τ) ≥ 1.

Therefore, if k ∈ In(τ), then both Qinter
k (τ) and Qk(τ) will decrease by the same amount

β in
k,n(τ)(cq(τ)); and if k 
∈ In(τ), both Qinter

k (τ) and Qk(τ) will remain the same except for

the external arrival. We thus have Qinter
k (τ + 1) = Qinter

k (τ) +
∑M

m=1 αk,mam(t) − I(k ∈
In(τ))β

in
k,n(τ)(cq(τ)). Namely, Qinter

k (τ) will experience the same change as Qk(τ). As a

result ΔQ(τ + 1) = ΔQ(τ). The proof of (F.5) is complete and the proof of Claim E.0.2

is thus also complete. �

Proof of Claim E.0.3: If k 
∈ On(τ), the LHS of (E.5) is zero and the inequality always

holds. If k ∈ On(τ), we claim that at least of the following 5 possible cases is true:

1. For all queues k′ ∈ In(τ), Qk′(τ) ≥ 1 and Qinter
k′ (τ) ≥ β in

k′,n(τ)(cq(τ)).

2. There exists a queue k′ ∈ In(τ) with Qinter
k′ (τ) < β in

k′,n(τ)(cq(τ)).

3. There exists a queue k′ ∈ In(τ) with Qk′(τ) = 0; β in
k′,n(τ)(cq(τ)) = 0; and 1 ≤

Qinter
k′ (τ).

4. There exists a queue k′ ∈ In(τ) with Qk′(τ) = 0; β in
k′,n(τ)(cq(τ)) = 0; and 0 ≤

Qinter
k′ (τ) < 1.

5. There exists a queue k′ ∈ In(τ) with Qk′(τ) = 0 and β in
k′,n(τ)(cq(τ)) = 1, and 1 ≤

Qinter
k′ (τ).

The reason is as follows. If 1) does not hold, either there exists a k′ such that Qinter
k′ (τ) <

β in
k′,n(τ)(cq(τ)); or there exists a k′ such that Qk′(τ) = 0 and Qinter

k′ (τ) ≥ β in
k′,n(τ)(cq(τ)). In

the former scenario, we have 2). In the latter scenario, we can further partition the event

based on the values of β in
k′,n(τ)(cq(τ)) and Qinter

k′ (τ), which leads to 3) to 5).
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In the case of 1), SA n(τ) is feasible in the beginning of time τ . Hence SA n(τ)

will be activated. Since we now consider the scenario of k ∈ On(τ), both Qk(τ) and

Qinter
k (τ) increase by the same amount, βout

k,n(τ)(cq(τ)) +
∑M

m=1 αk,mam(τ). As a result,

ΔQ(τ + 1) = ΔQ(τ). The LHS of (E.5) equals to zero and the inequality (E.5) holds.

In the case of 2), the first term of the RHS of (E.5) is at least 1 because there exists

a queue k′ ∈ In(τ) such that I(k′ ∈ In(τ))I(Q
inter
k′ (τ) < β in

k′,n(τ)(cq(τ))) = 1. Since the

LHS of (E.5) is at most 1, the inequality (E.5) holds. We can observe the same relationship

between 3) and the second term, 4) and the third term, and 5) and the fourth term of the

RHS of (E.5). Since (E.5) holds for all 5 cases, the proof of Claim E.0.3 is complete. �

Proof of Claim E.0.4: Notice that joinly Claims E.0.2 and E.0.3 immediately give us

Claim 4. �
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G. SUBLINEARLY GROWTH OF THE INTERMEDIATE ACTUAL

QUEUE AND THE AGGREGATED NULL ACTIVITIES

In the next lemma, we will shows that SCHavg can sublinearly stabilizeQinter
k (t) and NNA,k(t)

for all k.

Lemma G.0.6 Consider any rate vector R such that there exist sc ∈ Λ◦ for all c ∈ CQ

satisfying (6.5). The proposed SCHavg can sublinearly stabilize qinter
k (t), NNA,k(t), and

Qinter
k (t) for all k.

We will prove the sublinear growth of the four quantities separately.

Proof of sublinearly growing qk(t) and qinter
k (t): First, we provide the conventional

stability definition.

Definition G.0.1 A queue length q(t) is stable if

lim sup
t→∞

1

t

t∑
τ=1

E{|q(t)|} < ∞. (G.1)

And the network is stable if all the queues are stable.

As discussed in Section 6.2.2, the back-pressure vector computation (6.1) and the up-

date rule (6.2) are only based on the expected input and output service rate matrixBin(cq(t))

and Bout(cq(t)), which are deterministic matrices. As a result, they can be viewed as the

virtual queue lengths of a deterministic SPN. In the existing proof in [31], it has been shown

that the virtual queue length q(t) of a deterministic SPN can be stabilized by SCHavg. As

a result, SCHavg can also stabilize the virtual queue length qk(t) for all k in the given (0,1)

random SPN.

Notice that given the past arrival vectors and the past and current channel quality, i.e.,

given cq(t) and {a, cq}t−1
1 , the quantity q(t) and x∗(t) is no longer random and is of deter-
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ministic value, see the update rules of (6.1) and (6.2). The following lemma establishes the

connection between q(t) and qinter(t).

Lemma G.0.7 q(t) is the expectation of qinter(t) conditioned on {a, cq}t−1
1 . That is, q(t) =

E{qinter(t)|{a, cq}t−1
1 }.

Proof of Lemma G.0.7: This lemma can be proven iteratively. When t = 1, since q(t) =

qinter(t) = 0, the zero vector, Lemma G.0.7 holds automatically. Suppose Lemma G.0.7

holds for some t. By comparing (6.2) and (6.6), we can see that Lemma G.0.7 holds for

t+ 1 as well. �

For any k ∈ {1, 2, ..., K}, we square both sides of (6.7) and we thus have

qinter
k (t + 1)2 − qinter

k (t)2

=(μout,k(t)− μin,k(t))
2 − 2qinter

k (t) (μout,k(t)− μin,k(t)) .

Similar to (6.8) and (6.9) we can define the average arrival rate and departure rate of

queue k as follows.

μout,k(t) =
N∑

n=1

(
β in
k,n(cq(t))x

∗
n(t)

)
,

μin,k(t) =

M∑
m=1

(αk,mam(t)) +

N∑
n=1

(
βout
k,n(cq(t))x

∗
n(t)

)
. (G.2)
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By taking the expectation conditioned on the past and current arrival vectors and past chan-

nel quality on both sides until time t, we have

E{qinter
k (t+ 1)2|{a, cq}t1} − E{qinter

k (t)2|{a, cq}t1}
=E{(μout,k(t)− μin,k(t))

2|{a, cq}t1}
− 2E{qinter

k (t) (μout,k(t)− μin,k(t)) |{a, cq}t1}
=E{(μout,k(t)− μin,k(t))

2|{a, cq}t1}
− 2qk(t) (μout,k(t)− μin,k(t)) (G.3)

≤C2 + 2|qk(t)|U, (G.4)

where (G.3) follows from the observation that qinter
k (t) is a constant given {a, cq}t−1

1 and

μout,k(t) and μin,k(t) are the conditional expectation of μout,k(t) and μin,k(t) (G.2) given

{a, cq}t1; and (G.4) follows from defining C to be the upper bound of |μout,k(t) − μin,k(t)|
and U to be the upper bound1 of |μout,k(t)− μin,k(t)|. Now we take the expectation over all

possible past arrival vectors and past channel quality.

E{qinter
k (t + 1)2} − E{qinter

k (t)2} ≤ C2 + 2UE{|qk(t)|}. (G.5)

Eq. (G.5) also holds if we replace the time index t by τ . By summing up (G.5) (with

time index τ) for τ = 1 to τ = t− 1 and by noticing qinter
k (1) = 0, we have

E{qinter
k (t)2} − E{qinter

k (1)2}

=E{qinter
k (t)2} ≤ (t− 1)C2 + 2U

t−1∑
τ=1

E{|qk(τ)|}.

1C and U exist because μout,k(t) and μin,k(t) have bounded support by our definition.
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Since qk(t) is stable and thus satisfies lim supt→∞
1
t

∑t

τ=1 E{|qk(τ)|} < ∞, there exists

an L value such that 1
t

∑t

τ=1 E{|qk(τ)|} ≤ L for all possible t values. We then have

1

t− 1
E{qinter

k (t)2}

≤C2 + 2U
1

t− 1

t−1∑
τ=1

E{|qk(τ)|}

≤C2 + 2UL.

for arbitrary t values.

For any arbitrarily given ε′ > 0, we now apply Markov inequality with the second

moment expression to derive

Prob(|qinter
k (t)| ≥ ε′t) ≤ 1

ε′2t2
E{qinter

k (t)2} ≤ C + 2UL

ε′2t
.

For any arbitrarily given δ > 0, let t0 be the first t such that C+2UL
ε′2t

< δ. Then we have

Prob(|qinter
k (t)| ≥ ε′t) < δ, ∀t > t0.

Thus we have proven the sublinear growth of qinter(t). �

Before we continue our proofs of sublinearly growing NNA,k(t) and Qinter
k (t), we state

the following claim first. Define the deficit, Dk, for all k as the difference between Qinter
k

and qinter
k . That is, at any time t,

Dk(t) = Qinter
k (t)− qinter

k (t), ∀k. (G.6)

Claim G.0.5 For all k, the function Dk(t) is non-decreasing and it grows sublinearly.

The proof of Claim G.0.5 is relegated to Appendix J. We now continue our proofs.

Proof of sublinearly growing NNA,k(t): Recall the definition of the null activity at

queue k (k ∈ In(t), and Qinter
k (t) < μout,k(t)). In the proof of Claim G.0.5, in particular (J.1),
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we can see that the null activity occurs at queue k at time t if and only if Dk(t+1) > Dk(t).

As a result,

NNA,k(t) =
t∑

τ=1

I(Dk(τ + 1) > Dk(τ)).

Recall that Qinter
k (t) is an integer-valued random process and so is

μout,k(t) =
∑N

n=1

(
β in
k,n(cq(t)) · x∗

n(t)
)
. As a result, whenever μout,k(t) − Qinter

k (t) > 0,

we must have μout,k(t) − Qinter
k (t) ≥ 1. Using this observation and the fact that Dk(t) is

non-decreasing, we have

t∑
τ=1

I(Dk(τ + 1) > Dk(τ)) ≤ Dk(t + 1).

The above argument implies NNA,k(t) ≤ Dk(t + 1). Since Dk(t) grows sublinearly as

proven in Claim G.0.5, we have proven that NNA,k(t) also grows sublinearly. �

Proof of sublinearly growing Qinter
k (t): By (G.6),

Qinter
k (t) = qinter

k (t) +Dk(t).

We have shown that both qinter
k and Dk(t) grow sublinearly, and hence Qinter

k also grows

sublinearly. �

The above discussion on qk(t), qinter
k (t), NNA,k(t), and Qinter

k (t) completes the proof of

Lemma G.0.6.
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H. THE MATCH OF THE SHANNON CAPACITY AND THE

STABILITY REGION FOR 2-FLOW DOWNLINK BROADCAST

PEC

To compare polytopes in Proposition 5.3.1 and Proposition 6.2.2, we first list all the linear

constraints describing each region separately. For Proposition 6.2.2, the region can be de-

scribed by (6.5). Following from Table 6.2, we can explicitly write A and B as follows. To

facilitate matrix labeling, we order the 7 operations as [NC1,NC2,DX1,DX2, PM,RC,CX],

and order the 5 queues as
[
Q1

∅,Q
2
∅,Q

1
{2},Q

2
{1},Qmix

]
. Let �p[c]


=�p(c) for all c ∈ CQ be

the probability vector which represents the reception status probabilities when the channel
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quality is c. Given the above definitions, we can write A, Bin, Bout, and the average service

vector, sc, under channel quality c for any c ∈ CQ as

A =

⎡
⎣ 1 0 0 0 0

0 1 0 0 0

⎤
⎦
T

,

Bin(c)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p
[c]
d1∨d2

0 0 0 p
[c]
d1∨d2

0 0

0 p
[c]
d1∨d2

0 0 p
[c]
d1∨d2

0 0

0 0 p
[c]
d1

0 0 0 p
[c]
d1

0 0 0 p
[c]
d2

0 0 p
[c]
d2

0 0 0 0 0 p
[c]
d1∨d2

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Bout(c) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0

0 0 0 0 0 0 0

p
[c]

d1d2
0 0 0 0 p

[c]

d1d2
0

0 p
[c]

d1d2
0 0 0 p

[c]

d1d2
0

0 0 0 0 p
[c]
d1∨d2

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

sc =
[
x
[c]
NC1 x

[c]
NC2 x

[c]
DX1 x

[c]
DX2 x

[c]
PM x

[c]
RC x

[c]
CX

]T
.

As a result, the throughput region in Proposition 6.2.2 can be expressed by a collection

of 5+1 linear (in)equalities, where the first 5 equalities correspond to the flow-conservation
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law of queues 1 to 5 and the 6-th inequalities follows from sc being drawn from the convex

hull Λ: That is,

∑
∀c∈CQ

fc

(
x
[c]
NC1 + x

[c]
PM

)
p
[c]
d1∨d2

= R1, (H.1)

∑
∀c∈CQ

fc

(
x
[c]
NC2 + x

[c]
PM

)
p
[c]
d1∨d2

= R2, (H.2)

∑
∀c∈CQ

fc

(
x
[c]
CX + x

[c]
DX1

)
p
[c]
d1

=
∑

∀c∈CQ

fc

(
x
[c]
NC1 + x

[c]
RC

)
p
[c]

d1d2
, (H.3)

∑
∀c∈CQ

fc

(
x
[c]
CX + x

[c]
DX2

)
p
[c]
d2

=
∑

∀c∈CQ

fc

(
x
[c]
NC2 + x

[c]
RC

)
p
[c]

d1d2
, (H.4)

∑
∀c∈CQ

fcx
[c]
RCp

[c]
d1∨d2

=
∑

∀c∈CQ

fcx
[c]
PMp

[c]
d1∨d2

, (H.5)

x
[c]
NC1 + x

[c]
NC2 + x

[c]
DX1 + x

[c]
DX2 + x

[c]
PM + x

[c]
RC + x

[c]
CX ≤ 1,

∀c ∈ CQ. (H.6)

On the other hand, by Lemma 8 of [43], the polytype in Proposition 5.3.1 can also be

expressed by another collection of linear (in)equalities:

x
[c]
0 + x

[c]
9 + x

[c]
18 + x

[c]
27 + x

[c]
31 + x

[c]
63 + x

[c]
95 ≤ 1, ∀c ∈ CQ, (H.7)

y1 =
∑

∀c∈CQ

fc

(
x
[c]
0 + x

[c]
9 + x

[c]
18 + x

[c]
27 + x

[c]
31 + x

[c]
63

)
p
[c]
d1
, (H.8)

y2 =
∑

∀c∈CQ

fc

(
x
[c]
0 + x

[c]
9 + x

[c]
18 + x

[c]
27 + x

[c]
31 + x

[c]
95

)
p
[c]
d2
, (H.9)

y3 = R1 +
∑

∀c∈CQ

fc

(
x
[c]
0 + x

[c]
9

)
p
[c]
d1
, (H.10)

y4 = R1 +
∑

∀c∈CQ

fc

(
x
[c]
0 + x

[c]
18 + x

[c]
27

)
p
[c]
d2
, (H.11)

y5 =
∑

∀c∈CQ

fc

(
x
[c]
0 + x

[c]
9 + x

[c]
18

)
p
[c]
d1∨d2

, (H.12)

y6 = R1 +
∑

∀c∈CQ

fc

(
x
[c]
0 + x

[c]
9

)
p
[c]
d1∨d2

, (H.13)

y7 = R2 +
∑

∀c∈CQ

fc

(
x
[c]
0 + x

[c]
18

)
p
[c]
d1∨d2

, (H.14)



164

and

y1 = y3; y2 = y4; (H.15)

y5 = y6 = y7 = R1 +R2. (H.16)

To prove that the dynamic-arrival stability region in (H.1)-(H.6) matches the block-

coding capacity in (H.7)–(H.16), we need to prove that for any (R1, R2) and the accompa-

nying x
[c]
(·) and y(·) variables satisfying (H.7) to (H.16), we can always find out another set

of sc = [x
[c]
NC1, x

[c]
NC2, x

[c]
DX1, x

[c]
DX2, x

[c]
PM, x

[c]
RC, x

[c]
CX] variables such that (R1, R2) and sc jointly

satisfying (H.1) to (H.6). To do so, we will verify that the following one-to-one mapping

x
[c]
(·) satisfies (H.1) to (H.6).

x
[c]
NC1 = x

[c]
18, x

[c]
NC2 = x

[c]
9 , x

[c]
DX1 = x

[c]
63, x

[c]
DX2 = x

[c]
95,

x
[c]
PM = x

[c]
0 , x

[c]
RC = x

[c]
27, x

[c]
CX = x

[c]
31. (H.17)

Ineq. (H.6) is true as a direct result of (H.7). We now prove that (H.1) holds. By (H.16),

we have y7 = R1 +R2. By (H.14), we then have

y7 = R2 +
∑

∀c∈CQ

fc

(
x
[c]
PM + x

[c]
NC1

)
p
[c]
d1∨d2

= R1 +R2

⇒
∑

∀c∈CQ

fc

(
x
[c]
PM + x

[c]
NC1

)
p
[c]
d1∨d2

= R1,

which implies (H.1). (H.2) can be proven by symmetric arguments. Next we check (H.5).

Again by the fact that y5 = R1 +R2, we have

y5 =
∑

∀c∈CQ

fc

(
x
[c]
PM + x

[c]
NC1 + x

[c]
NC2 + x

[c]
RC

)
p
[c]
d1∨d2

= R1 +R2

⇒
∑

∀c∈CQ

fc

(
x
[c]
NC1 + x

[c]
RC

)
p
[c]
d1∨d2

= R1, (H.18)
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where (H.18) follows from substituting (H.2) into y5 = R1 + R2. Combining (H.18) with

(H.1), we have

R1 =
∑

∀c∈CQ

fc

(
x
[c]
NC1 + x

[c]
RC

)
p
[c]
d1∨d2

=
∑

∀c∈CQ

fc

(
x
[c]
NC1 + x

[c]
PM

)
p
[c]
d1∨d2

⇒
∑

∀c∈CQ

fcx
[c]
RCp

[c]
d1∨d2

=
∑

∀c∈CQ

fcx
[c]
PMp

[c]
d1∨d2

,

which implies (H.5). Finally we check (H.3) and (H.4). By (H.15), we have

y3 = y1

⇒
∑

∀c∈CQ

fc

(
x
[c]
PM + x

[c]
NC1 + x

[c]
NC2 + x

[c]
RC + x

[c]
CX + x

[c]
DX1

)
p
[c]
d1

= R1 +
∑

∀c∈CQ

fc

(
x
[c]
PM + x

[c]
NC2

)
p
[c]
d1

⇒
∑

∀c∈CQ

fc

(
x
[c]
NC1 + x

[c]
RC + x

[c]
CX + x

[c]
DX1

)
p
[c]
d1

= R1. (H.19)

Combining (H.19) and (H.18), we have

R1 =
∑

∀c∈CQ

fc

(
x
[c]
NC1 + x

[c]
RC + x

[c]
CX + x

[c]
DX1

)
p
[c]
d1

=
∑

∀c∈CQ

fc

(
x
[c]
NC1 + x

[c]
RC

)
p
[c]
d1∨d2

. (H.20)

Following from the fact that p[c]d1∨d2
= p

[c]
d1
+ p

[c]

d1d2
, we can rewrite (H.20) as

∑
∀c∈CQ

fc

(
x
[c]
CX + x

[c]
DX1

)
p
[c]
d1

=
∑

∀c∈CQ

fc

(
x
[c]
NC1 + x

[c]
RC

)
p
[c]

d1d2
,

which implies(H.3). (H.4) can be derived by symmetric arguments. Thus we complete the

proof of Proposition 6.3.1.
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I. THE LOWER BOUND OF THE SUMMATION OF RANDOM

VARIABLES

We use P to denote a finite collection of probability distributions and each distribution

is of zero mean and finite support. For simplicity, we say P = {P1, P2, · · · , PK} where

K = |P|.

Lemma I.0.8 There exists a fixed constant C > 0 such that for any arbitrary K non-

negative integers L1, L2, ..., LK , the following inequality always holds.

Prob(

K∑
k=1

Lk∑
i=1

X
(k)
i ≥ 0) > C (I.1)

where for any k, the random variables X(k)
i ∼ Pk are i.i.d. for different i values and the

random processes {X(k)
i : i} are independently distributed for different k values.

Proof: We prove this lemma by induction on the size of P . When K = |P| = 1,

the probability of interest becomes Prob(
∑L

i Xi ≥ 0) where we drop the index k for

simplicity. By the central limit theorem, there exists an l0 such that when L > l0, the

probability of interest is > 1/4 (which can be made arbitrarily close to 1/2 but we choose

1/4 for simplicity). Choose C = min(min{Prob(∑L

l=1Xi ≥ 0) : l ≤ l0}, 1/4). We

claim that such a C value is strictly positive. The reason is that min{Prob(∑L

l=1Xi ≥ 0) :

l ≤ l0} 
= 0 because of the assumptions that Xi is zero mean and i.i.d. From the above

construction we have

Prob(

L∑
i=1

Xi ≥ 0) > C, ∀L. (I.2)
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We now consider the case of K = |P| ≥ 2. For any arbitrarily given L1 to LK , the

probability of interest satisfies

Prob(

K∑
k=1

L1∑
i=1

X
(k)
i ≥ 0)

≥Prob(

Lk∑
i=1

X
(k)
i ≥ 0, ∀k)

=
K∏
k=1

Prob(

Lk∑
i=1

X
(k)
i ≥ 0). (I.3)

We have shown that for each k, there exists a constant Ck > 0 such that Prob(
∑Lk

i=1X
(k)
i ≥

0) > Ck for any arbitrary Lk. Hence the product in (I.3) is larger than C

=
∏K

k=1Ck for

any arbitrary L1 to LK . Lemma I.0.8 is thus proven.
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J. THE NON-DECREASING PROPERTY AND THE SUBLINEAR

GROWTH OF THE DEFICITS

For all k, the reason why Dk(t) is non-decreasing is because

Dk(t+ 1) = Qinter
k (t+ 1)− qinter

k (t+ 1)

=
(
Qinter

k (t)− μout,k(t)
)+ − (

qinter
k (t)− μout,k(t)

)
= Qinter

k (t)− μout,k(t) +
(
μout,k(t)−Qinter

k (t)
)+

− (
qinter
k (t)− μout,k(t)

)
= Dk(t) +

(
μout,k(t)−Qinter

k (t)
)+

. (J.1)

We now prove that Dk(t) grows sublinearly for all k. Define pk(t)

= −qinter

k (t − 1) +

μout,k(t − 1) for all t ≥ 2 and pk(1) = −qinter
k (1) = 0. Notice that pk(t) grows sublinearly

because qinter
k (t) grows sublinearly and μout,k(t− 1) is bounded. We notice that Dk(t) is the

running maximum of pk(t) since by (J.1),

Dk(t) = Dk(t− 1) +
(
μout,k(t− 1)−Qinter

k (t− 1)
)+

= Dk(t− 1) + max{0, μout,k(t− 1)−Qinter
k (t− 1)}

= max{Dk(t− 1),−qinter
k (t− 1) + μout,k(t− 1)} (J.2)

= max{Dk(t− 1), pk(t)}
= max

1≤τ≤t
pk(τ),

where (J.2) follows from (G.6).
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Recall μout,k(t) and μin,k(t) are the expectation of μout,k(t) and μin,k(t), respectively,

conditioned on the arrival vectors and the channel quality until time t. And by (6.2), we

can update qk(t) as

qk(t+ 1) = qk(t)− μout,k(t) + μin,k(t), ∀k. (J.3)

Define pk(t)

= −qk(t − 1) + μout,k(t − 1) = −qk(t) + μin,k(t − 1). That is, pk(t) is

the conditional expectation of pk(t) given {a, cq}t−1
1 . Define p′k(t)


= pk(t) − pk(t). That

is, p′k(t) is the difference between the random variable pk(t) and its conditional expectation

pk(t). Thus far, we have decompose

pk(t) = pk(t) + p′k(t)

as the summation of the average term pk(t) and the random variation term p′k(t), where the

latter has zero mean. We now define D′
k(t) to be the running maximum of the p′k(t) and

Dk(t) to be the running maximum of pk(t). That is,

D′
k(t) = max

1≤τ≤t
p′k(τ),

Dk(t) = max
1≤τ≤t

pk(τ).

In the following, we will prove: Step 1: pk(t) is stable and p′k(t) grows sublinearly; Step

2: D′
k(t) grows sublinearly; and Step 3: Dk(t) grows sublinearly. Note that by definition,

we always have 0 ≤ Dk(t) ≤ D′
k(t) +Dk(t). As a result, Steps 2 and 3 imply Dk(t) also

grows sublinearly. The proof is complete.

Step 1: pk(t) is stable because qk(t) is stable and μin,k(t− 1) is bounded. Furthermore,

p′k(t) grows sublinearly from the fact that the summation/difference of one stable queue

and one sublinearly stable queue is sublinearly stable1. The proof of Step 1 is complete. �

Step 2: We now show that Dk(t) grows sublinearly. Recall that pk(t) is the random

variation term with mean zero and Dk(t) is the running maximum of the random variation.

1One can easily verify that with bounded initial value, stability implies sublinear stability.
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As a result, in essence, the Dk(t) is similar to the running maximum of a random walk

with zero drift. The following proof is adapted from the standard proof that the running

maximum of a zero-drift random walk is sublinearly growing [Chapter 4, [49]].

Let T ′
k(b)


= min{t ≥ 1 : p′k(t) ≥ b} be the hitting time of p′k(t) exceeding the threshold

b.

Claim J.0.6 There exists C > 0 such that for all t ≥ 1, all b > 0, and all possible past

arrival vector realizations and channel quality realizations {a, cq}t−1
1 , we have

Prob(p′k(t) ≥ b|T ′
k(b) ≤ t, {a, cq}t−1

1 ) > C. (J.4)

Proof of Claim J.0.6: Let Δμin,k(t)

= μin,k(t) − μin,k(t), Δμout,k(t)


= μout,k(t) −

μout,k(t), and Δμk(t)

= Δμin,k(t)−Δμout,k(t). By (J.3) and (6.7),

qinter
k (t) =

t−1∑
τ=1

(μin,k(τ)− μout,k(τ)),

qk(t) =
t−1∑
τ=1

(μin,k(τ)− μout,k(τ)),

and qinter
k (t)− qk(t) =

t−1∑
τ=1

Δμk(τ).

Then by the definitions of pk(t), pk(t), and p′k(t), we have

pk(t) = −
t−2∑
τ=1

(μin,k(τ)− μout,k(τ)) + μout,k(t− 1),

pk(t) = −
t−2∑
τ=1

(μin,k(τ)− μout,k(τ)) + μout,k(t− 1),

p′k(t) = −
t−2∑
τ=1

Δμk(τ) + Δμout,k(t− 1). (J.5)



171

By (J.5) we have

p′k(t)− p′k(T
′
k(b))

=

(
t−2∑
τ=1

Δμk(τ) + Δμout,k(t− 1)

)

−
⎛
⎝T ′

k
(b)−2∑
τ=1

Δμk(τ) + Δμout,k(T
′
k(b)− 1)

⎞
⎠

=

t−2∑
τ=T ′

k
(b)−1

Δμk(τ) + Δμout,k(t− 1)−Δμout,k(T
′
k(b)− 1)

=
t−2∑

τ=T ′

k
(b)

Δμk(τ) + Δμout,k(t− 1)

+ (Δμin,k(T
′
k(b)− 1)− 2Δμout,k(T

′
k(b)− 1))

Define Δμ̂k(T
′
k(b)− 1)


=Δμin,k(T

′
k(b)− 1)− 2Δμout,k(T

′
k(b)− 1). Thus, we have

Prob(p′k(t) ≥ b|T ′
k(b) ≤ t, {a, cq}t1)

≥Prob

(
Δμ̂k(T

′
k(b)− 1) +

t−2∑
τ=T ′

k
(b)

Δμk(τ)

+ Δμout,k(t− 1) ≥ 0|T ′
k(b) ≤ t, {a, cq}t1

)
(J.6)

We now notice that in the RHS of (J.6), there are (t−T ′
k(b)+1) summands in the probability

expression, one for each τ ∈ [T ′
k(b)− 1, t− 1]. One can easily verify that conditioning on

the past arrival vectors and past channel quality {a, cq}t1, each summand is independently

distributed. The reason is that when conditioning on {a, cq}t1, both the virtual queue length

vector q(τ) and back-pressure scheduler become deterministic for all τ = 1 to t, see (5.2),

(6.1), and (6.2). As a result, the randomness of each summand depends only on the real-

ization of β in
k,n(τ) and βout

k,n(τ) and they are independently distributed in our SPN model.

Moreover, each summand is also of zero mean and bounded support. The reason is that

the definitions of Δμin,k(τ), Δμout,k(τ), and Δμk(τ) ensure that these random variables
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are of zero mean. Also, since Bin(τ) and Bout(τ) are of bounded support, so are Δμin,(τ),

Δμout,k(τ), and Δμk(τ).

Obviously the conditional distribution of each of the t − T ′
k(b) + 1 summands given

{a, cq}t1 depends on the values of T ′
k(b) and t and the realization {a, cq}t1. However, we

further argue that there is a bounded number of distributions, denoted by P , and each of the

conditional distribution must be of a distribution P ∈ P regardless what are the values of

t, T ′
k(b), and the realization {a, cq}t1. Namely, even though there are infinitely many ways

of having the t, T ′
k(b), and the realization {a, cq}t1 values, the number of possible distri-

butions for all the summands is bounded. The reason is that the distributions of Δμin,(τ),

Δμout,k(τ), and Δμk(τ) depend only on what is the actual schedule at time τ . Since there

is only a bounded number of possible scheduling decisions, the number of possible distri-

butions for all the summands is bounded.

By Lemma I.0.8 in Appendix I, there exists a C > 0 such that

(J.6) > C (J.7)

for all t and all possible past arrival vector realizations and channel quality realizations

{a, cq}t−1
1 . The proof of Claim J.0.6 is complete. �

Notice that by Claim J.0.6, there exists C such that for all possible past arrival vector

and channel quality realizations

Prob(p′k(t) ≥ b|T ′
k(b) ≤ t, {a, cq}t−1

1 )

=
Prob(p′k(t) ≥ b, T ′

k(b) ≤ t|{a, cq}t1)
Prob(T ′

k(b) ≤ t|{a, cq}t−1
1 )

=
Prob(p′k(t) ≥ b|{a, cq}t−1

1 )

Prob(T ′
k(b) ≤ t|{a, cq}t−1

1 )
> C. (J.8)
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Meanwhile, since D′
k(t) is the running maximum of p′k(t), we have

Prob(D′
k(t) ≥ b|{a, cq}t−1

1 ) = Prob(T ′
k(b) ≤ t|{a, cq}t−1

1 )

<
1

C
Prob(p′k(t) ≥ b|{a, cq}t−1

1 ). (J.9)

Taking the expectation on both sides over all possible past arrival vectors and past channel

quality, we have

Prob(D′
k(t) ≥ b) <

1

C
Prob(p′k(t) ≥ b). (J.10)

Substituting b by εt in the above equation and using the fact that p′k(t) grows sublinearly,

we have proven that D′
k(t) grows sublinearly. The proof of Step 2 is complete. �

Step 3: We now prove the following claim.

Claim J.0.7 The following two inequalities are true for all possible realizations.

1. Dk(t+ 1)2 −Dk(t)
2 ≤ max{pk(t+ 1)2 − pk(t)

2, 0}+U2, where U is the supremum

over all possible |μout,k(t)−μin,k(t−1)|. Note thatU always exists since in the random

external arrivals and the random movements of the packets all have bounded support

and μin,k(t) and μout,k(t) are computed from the expected values of the random packets

arrival and departures.

2. max{pk(t+ 1)2 − pk(t)
2, 0}+ U2 ≤ 2|pk(t)|U + 2U2.

Proof of Claim J.0.7: We first prove 1). There are three possible cases.

Case 1: Dk(t) ≥ pk(t + 1). Since Dk(t) is the running maximum of pk(t), Dk(t + 1) =

Dk(t) in this case. Thus the left hand side of (i) is zero and the inequality holds.

Case 2: Dk(t) < pk(t+1) and pk(t) ≥ 0. By the definition of Dk(t), we have Dk(t+1) =

pk(t+1). Also, since Dk(t) is the running maximum of pk(t), we have 0 ≤ pk(t) ≤ Dk(t),

which implies (pk(t))2 ≤ (Dk(t))
2. Jointly, we thus have Dk(t + 1)2 − Dk(t)

2 ≤ pk(t +

1)2 − pk(t)
2 ≤ max{pk(t+ 1)2 − pk(t)

2, 0}+ U2.

Case 3: Dk(t) < pk(t + 1) and pk(t) < 0. By the definition of U and by (J.5), we have
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pk(t + 1) ≤ pk(t) + U , which, together with the inequality Dk(t) < pk(t + 1) and the

definition that Dk(t) being the running maximum of pk(t), implies

Dk(t)− U ≤ pk(t) ≤ Dk(t).

Since Dk(t) is always no less than zero, we thus have −U ≤ pk(t) < 0, which in turn

implies U2−pk(t)
2 ≥ 0. Since Dk(t+1) = pk(t+1), we now have, Dk(t+1)2−Dk(t)

2 ≤
pk(t+ 1)2 ≤ max{pk(t+ 1)2 − pk(t)

2, 0}+ U2. The proof of 1) is complete.

We now prove 2). Define Δpk(t + 1)

= pk(t + 1)− pk(t). Then

max{pk(t+ 1)2 − pk(t)
2, 0}+ U2

=max{(pk(t) + Δpk(t+ 1))2 − pk(t)
2, 0}+ U2

=max{2pk(t)Δpk(t + 1) + Δpk(t + 1)2, 0}+ U2

≤2|pk(t)Δpk(t+ 1)|+ |Δpk(t+ 1)2|+ U2

≤2|pk(t)|U + 2U2,

where the last inequality follows from rewriting μin,k(τ) and μout,k(τ) based on (J.5) and by

the definition of U . �

Following from Claim J.0.7 and taking the expectation on both sides over all possible

arrival vectors,

E{Dk(t + 1)2} − E{Dk(t)
2} ≤ 2E{|pk(t)|}U + 2U2.

Replacing the time index t by τ and then summing up the above inequality with time index

τ) from τ = 1 to τ = t− 1, we then have

E{Dk(t)
2} ≤ 2U

t−1∑
τ=1

E{|pk(τ)|}+ 2U2(t− 1)

⇒1

t
E{Dk(t)

2} ≤ 2U
1

t− 1

t−1∑
τ=1

E{|pk(τ)|}+ 2U2.
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The fact that pk(t) is stable implies that there exists an L value such that 1
t−1

∑t−1
τ=1 E{|pk(τ)|} ≤

L for all t. For any ε′ > 0, δ > 0, we then apply the Markov inequality,

Prob(Dk(t) > ε′t) ≤ 1

ε′2t2
E{Dk(t)

2} ≤ 1

ε′2t

(
2UL+ 2U2

)
.

Let t0 be the smallest t such that 1
ε′2t

(2UL+ 2U2) < δ. Then Prob(Dk(t) > ε′t) < δ for

all t > t0, which completes the proof of Step 3. �
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