
Purdue University
Purdue e-Pubs

Open Access Dissertations Theses and Dissertations

Spring 2015

Parallel symmetric eigenvalue problem solvers
Alicia Marie Klinvex
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/open_access_dissertations

Part of the Computer Sciences Commons, and the Mathematics Commons

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Recommended Citation
Klinvex, Alicia Marie, "Parallel symmetric eigenvalue problem solvers" (2015). Open Access Dissertations. 489.
https://docs.lib.purdue.edu/open_access_dissertations/489

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/77954497?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F489&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F489&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/etd?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F489&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F489&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F489&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F489&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations/489?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F489&utm_medium=PDF&utm_campaign=PDFCoverPages

Graduate School Form 30
Updated 1/15/2015

PURDUE UNIVERSITY
GRADUATE SCHOOL

Thesis/Dissertation Acceptance

This is to certify that the thesis/dissertation prepared

By

Entitled

For the degree of

Is approved by the final examining committee:

To the best of my knowledge and as understood by the student in the Thesis/Dissertation
Agreement, Publication Delay, and Certification Disclaimer (Graduate School Form 32),
this thesis/dissertation adheres to the provisions of Purdue University’s “Policy of
Integrity in Research” and the use of copyright material.

Approved by Major Professor(s):

Approved by:

Head of the Departmental Graduate Program Date

Alicia Marie Klinvex

Parallel Symmetric Eigenvalue Problem Solvers

Doctor of Philosophy

Ahmed Sameh Rudolf Eigenmann
Chair

Ananth Grama

Alex Pothen

Robert Skeel

Ahmed Sameh

Sunil Prabhakar 4/23/2015

PARALLEL SYMMETRIC EIGENVALUE PROBLEM SOLVERS

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Alicia Marie Klinvex

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

May 2015

Purdue University

West Lafayette, Indiana

ii

To my grandparents,

Fred and Joy McClemens

iii

ACKNOWLEDGMENTS

First and foremost, I am grateful to my advisor Dr. Ahmed Sameh for his guidance

and support all throughout my graduate career. During my six years as his student, he

was never too busy to help me or any other student. Similarly, I would like to thank

the other members of my advisory committee, Professors Ananth Grama, Robert

Skeel, Alex Pothen, and Rudolf Eigenmann who took the time to review my work

and provide meaningful commentary. I would also like to thank Dr. Faisal Saied for

his tireless assistance during my first years of graduate school. Debugging somebody

else’s MPI code is an immensely frustrating experience, but he would regularly stay

late at the office to assist me anyway. I am indebted to Zhengyi Zhang and Vasilis

Kalantzis, who were always willing to help out any way they could in spite of having

their own research to work on.

I am also quite grateful to Mike Heroux and Mike Parks for allowing me to spend

a summer at Sandia National Laboratories as an intern, and to Karen Devine, Heidi

Thornquist, Rich Lehoucq, and Erik Boman for their guidance while I was there.

Mark Hoemmen deserves special thanks for helping me with the software engineering

aspects of creating a Trilinos-based implementation of TraceMin. I would also like

to thank the PETSc and SLEPc development teams for the helpful email correspon-

dance regarding how to install and use their respective packages. I am grateful to

Intel Corporation, specifically David Kuck and Mallick Arigapudi, for allowing me

to use their computing resources to conduct my tests, and to the Army Research

Office, which funded several of my trips to various conferences under grant number

7W911NF-11-1-0401.

Additionally, I would like to thank Dr. William Gorman for answering my many

questions and helping with the formatting of my dissertation, and Tammy Muthig

(as well as the other employees of the department’s Business Office) for handling my

iv

numerous financial aid issues. I am also quite grateful to Professors Ron McCarty,

Gary Walker, Meng Su, Charles Burchard, and Blair Tuttle at Penn State. Apart

from providing encouragement and advice, they all employed me so that I could get

research, tutoring, and mentoring experience as an undergraduate. Last but not least,

I thank my family for their love and support.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . viii

LIST OF FIGURES . ix

ABSTRACT . xiii

1 Introduction . 1

2 Motivating applications . 7
2.1 Automotive engineering . 7
2.2 Condensed matter physics . 9
2.3 Spectral reordering . 12

3 Parallel saddle point solvers . 13
3.1 Using a projected Krylov method 13
3.2 Forming the Schur complement . 14
3.3 Block preconditioned Krylov methods 14
3.4 Which method to choose . 16

4 TraceMin . 17
4.1 Derivation of TraceMin . 17
4.2 Convergence rate . 21
4.3 Choice of the subspace dimension 22
4.4 TraceMin as a nested iterative method 25
4.5 Deflation of converged eigenvectors 29
4.6 Ritz shifts . 29

4.6.1 Multiple Ritz shifts . 34
4.6.2 Choice of the Ritz shifts . 38

4.7 Relationship between TraceMin and simultaneous iteration 38

5 TraceMin-Davidson . 45
5.1 Minimizing redundant computations 45
5.2 Selecting the block size . 47
5.3 Computing harmonic Ritz values 48
5.4 Comparison of TraceMin and TraceMin-Davidson 52

6 Implementations . 57
6.1 Computing a few eigenpairs: TraceMin-Standard 57

6.1.1 Computing the eigenvalues of largest magnitude 57

vi

Page
6.1.2 Computing the eigenvalues closest to a given value 58
6.1.3 Computing the absolute smallest eigenvalues 59
6.1.4 Computing the Fiedler vector 59
6.1.5 Computing interior eigenpairs via spectrum folding 60
6.1.6 Our parallel TraceMin-Standard implementation 61

6.2 TraceMin-Sampling . 68
6.3 TraceMin-Multisectioning . 69

6.3.1 Obtaining the number of eigenvalues in an interval 70
6.3.2 Assigning the work . 72

7 Competing eigensolvers . 79
7.1 Arnoldi, Lanczos, and Krylov-Schur 79

7.1.1 Krylov-Schur with multisectioning 81
7.2 Locally Optimal Block Preconditioned Conjugate Gradient 81
7.3 Jacobi-Davidson . 81
7.4 Riemannian Trust Region method 83
7.5 FEAST . 84

8 Numerical experiments . 86
8.1 Target hardware . 86
8.2 Computing a small number of eigenpairs 87

8.2.1 Laplace3D . 89
8.2.2 Flan 1565 . 90
8.2.3 Hook 1498 . 95
8.2.4 cage15 . 95
8.2.5 nlpkkt240 . 100

8.3 Sampling . 105
8.3.1 Anderson model of localization 105
8.3.2 Nastran benchmark (order 1.5 million) 105
8.3.3 Nastran benchmark (order 7.2 million) 107

8.4 TraceMin-Multisectioning . 107
8.4.1 Nastran benchmark (order 1.5 million) 111
8.4.2 Nastran benchmark (order 7.2 million) 114
8.4.3 Anderson model of localization 114
8.4.4 af shell10 . 117
8.4.5 dielFilterV3real . 124
8.4.6 StocF-1465 . 124

9 Future Work . 133
9.1 Improved selection of the tolerance for Krylov solvers within TraceMin 133
9.2 Combining the strengths of TraceMin and the Riemannian Trust Re-

gion method . 134
9.3 Minimizing the idle time in TraceMin-Multisectioning 135
9.4 Removing TraceMin-Multisectioning’s dependence on a direct solver 135

vii

Page

10 Summary . 137

LIST OF REFERENCES . 139

VITA . 143

viii

LIST OF TABLES

Table Page

3.1 Comparison of saddle point solvers . 16

8.1 Robustness of various solvers on our test problems 88

8.2 Running time ratios of various solvers on our test problems (without pre-
conditioning) . 88

8.3 Running time ratios of various solvers on our test problems (with precon-
ditioning) . 88

8.4 Running time for TraceMin-Sampling on the Anderson problem 105

8.5 Running time for TraceMin-Sampling on the Nastran benchmark of order
1.5 million . 107

8.6 Running time for TraceMin-Sampling on the Nastran benchmark of order
7.2 million . 107

8.7 Running time comparison of FEAST and TraceMin-Multisectioning . . 110

ix

LIST OF FIGURES

Figure Page

2.1 The Anderson model of localization . 10

4.1 Graphical demonstration of the TraceMin algorithm 20

4.2 Demonstration of TraceMin’s convergence rate 23

4.3 Demonstration of the importance of the block size 24

4.4 Demonstration of the importance of the inner Krylov tolerance for a prob-
lem with poorly separated eigenvalues 27

4.5 Demonstration of the importance of the inner Krylov tolerance for a prob-
lem with well separated eigenvalues . 28

4.6 The effect of Ritz shifts on the eigenvalue spectrum 32

4.7 The effect of Ritz shifts on convergence 33

4.8 The effect of multiple Ritz shifts on TraceMin’s convergence rate 35

4.9 The effect of multiple Ritz shifts on the trace reduction 36

4.10 The effect of multiple Ritz shifts on convergence 37

4.11 A comparison of TraceMin and simultaneous iterations using a lenient
inner tolerance . 42

4.12 A comparison of TraceMin and simultaneous iterations using a moderate
inner tolerance . 43

4.13 A comparison of TraceMin and simultaneous iterations using a strict inner
tolerance . 44

5.1 The effect of block size on TraceMin-Davidson’s convergence 49

5.2 The effect of block size on TraceMin-Davidson’s convergence (continued) 50

5.3 A comparison of TraceMin-Davidson with standard and harmonic Ritz
values . 53

5.4 A comparison of TraceMin-Davidson with standard and harmonic Ritz
values (continued) . 54

x

Figure Page

5.5 A comparison of TraceMin-Davidson with standard and harmonic Ritz
values (continued) . 55

5.6 A comparison of TraceMin and TraceMin-Davidson 56

6.1 A demonstration of the effect of spectrum folding 62

6.2 A demonstration of the effect of spectrum folding (continued) 63

6.3 A demonstration of the effect of spectrum folding (continued) 64

6.4 A demonstration of the effect of spectrum folding (continued) 65

6.5 A demonstration of the effect of spectrum folding (continued) 66

6.6 An example of interval subdivision for multisectioning 71

6.7 An example of static work allocation for TraceMin-Multisectioning with 3
MPI processes . 73

6.8 A demonstration of TraceMin’s dynamic load balancing 75

6.8 A demonstration of TraceMin’s dynamic load balancing (continued) . . 76

6.8 A demonstration of TraceMin’s dynamic load balancing (continued) . . 77

6.8 A demonstration of TraceMin’s dynamic load balancing (continued) . . 78

8.1 Sparsity pattern of Laplace3D . 89

8.2 A comparison of several methods of computing the four smallest eigenpairs
of Laplace3D (without preconditioning) 91

8.3 Sparsity pattern of Flan 1565 . 92

8.4 A comparison of several methods of computing the four smallest eigenpairs
of Janna/Flan 1565 (without preconditioning) 93

8.5 A comparison of several methods of computing the four smallest eigenpairs
of Janna/Flan 1565 (with preconditioning) 94

8.6 Sparsity pattern of Hook 1498 . 96

8.7 A comparison of several methods of computing the four smallest eigenpairs
of Janna/Hook 1498 (without preconditioning) 97

8.8 A comparison of several methods of computing the four smallest eigenpairs
of Janna/Hook 1498 (with preconditioning) 98

8.9 Sparsity pattern of cage15 . 99

8.10 A comparison of several methods of computing the Fiedler vector for cage15 101

xi

Figure Page

8.11 Ratio of running times for computing the Fiedler vector of cage15 . . . 102

8.12 Sparsity pattern of nlpkkt240 (after RCM reordering) 103

8.13 A comparison of several methods of computing the four smallest eigenval-
ues of nlpkkt240 . 104

8.14 Sparsity pattern of the Anderson matrix 106

8.15 Sparsity patterns for the Nastran benchmark of order 1.5 million 108

8.16 Sparsity patterns for the Nastran benchmark of order 7.2 million 109

8.17 Histogram of the eigenvalues of interest for the Nastran benchmark (order
1.5 million) . 111

8.18 A comparison of several methods of computing a large number of eigen-
values of the Nastran benchmark (order 1.5 million) 112

8.19 Running time breakdown for TraceMin-Multisectioning on the Nastran
benchmark (order 1.5 million) . 113

8.20 Histogram of the eigenvalues of interest for the Nastran benchmark (order
7.2 million) . 114

8.21 A comparison of several methods of computing a large number of eigen-
values of the Nastran benchmark (order 7.2 million) 115

8.22 Running time breakdown for TraceMin-Multisectioning on the Nastran
benchmark (order 7.2 million) . 116

8.23 Histogram of the eigenvalues of interest for the Anderson model 117

8.24 A comparison of several methods of computing a large number of eigen-
values of the Anderson model . 118

8.25 Running time breakdown for TraceMin-Multisectioning on the Anderson
model . 119

8.26 Sparsity pattern of af shell10 . 120

8.27 Histogram of the eigenvalues of interest for af shell10 121

8.28 A comparison of several methods of computing a large number of eigen-
values of af shell10 . 122

8.29 Running time breakdown for TraceMin-Multisectioning on af shell10 . . 123

8.30 Sparsity pattern of dielFilterV3real . 125

8.31 Histogram of the eigenvalues of interest for dielFilterV3real 126

xii

Figure Page

8.32 A comparison of several methods of computing a large number of eigen-
values of dielFilterV3real . 127

8.33 Running time breakdown for TraceMin-Multisectioning on dielFilterV3real 128

8.34 Sparsity pattern of StocF-1465 . 129

8.35 Histogram of the eigenvalues of interest for StocF-1465 130

8.36 A comparison of several methods of computing a large number of eigen-
values of StocF-1465 . 131

8.37 Running time breakdown for TraceMin-Multisectioning on StocF-1465 . 132

xiii

ABSTRACT

Klinvex, Alicia Marie Ph.D., Purdue University, May 2015. Parallel Symmetric Eigen-
value Problem Solvers. Major Professors: Ahmed Sameh.

Sparse symmetric eigenvalue problems arise in many computational science and

engineering applications: in structural mechanics, nanoelectronics, and spectral re-

ordering, for example. Often, the large size of these problems requires the develop-

ment of eigensolvers that scale well on parallel computing platforms. In this disser-

tation, we describe two such eigensolvers, TraceMin and TraceMin-Davidson. These

methods are different from many other eigensolvers in that they do not require ac-

curate linear solves to be performed at each iteration in order to find the smallest

eigenvalues and their associated eigenvectors. After introducing these closely related

eigensolvers, we discuss alternative methods for solving the saddle point problems

arising at each iteration, which can improve the overall running time. Addition-

ally, we present TraceMin-Multisectioning, a new TraceMin implementation geared

towards finding large numbers of eigenpairs in any given interval of the spectrum.

We conclude with numerical experiments comparing our trace-minimization solvers

to other popular eigensolvers (such as Krylov-Schur, LOBPCG, Jacobi-Davidson, and

FEAST), establishing the competitiveness of our methods.

1

1 INTRODUCTION

Many applications in science and engineering give rise to symmetric eigenvalue prob-

lems of the form

Ax = λBx (1.1)

where the matrices A and B are sparse and often quite large. We seek the smallest

magnitude eigenvalues of a given matrix pencil (A,B) along with their associated

eigenvectors. Computing the smallest eigenvalues is more difficult than computing

the largest, because it often necessitates the accurate solution of linear systems at

each iteration. This can be problematic for direct solvers when the matrices are

large, because the level of fill-in may be too large for such factorizations to be pos-

sible. Alternatively, they may require the use of strong preconditioners with limited

scalability. In some applications, the matrices are not even made explicitly available,

which makes preconditioning difficult and factorization impossible. In this disserta-

tion, we present several eigensolvers that do not rely on accurate linear solves, which

we refer to as trace-minimization eigensolvers.

First, we discuss a few sample application areas that give rise to sparse symmetric

eigenvalue problems. One application area is the modeling of acoustic fields in moving

vehicles, which is governed by the lossless wave equation. By applying a finite element

discretization, we obtain a generalized eigenvalue problem where both the stiffness

and mass matrices are ill-conditioned. We are interested in computing all eigenvalues

in a given interval along with their associated eigenvectors.

Another problem of interest is the Anderson model of localization, which models

electron transport in a random lattice. To examine this behavior, we must solve the

time-independent Schrödinger equation, a standard eigenvalue problem. The eigen-

values of that matrix represent potential energy, and the eigenvectors give us the

2

probability of an electron residing at a particular site; we are interested in the low-

est potential energies, meaning the eigenvalues closest to 0. If the magnitude of each

element of the eigenvector is approximately equal, then the material conducts. Other-

wise, the material does not. This problem is difficult because the desired eigenvalues

are interior, which are notably harder to obtain than extreme eigenvalues.

The last application area we disucss is spectral reordering. Unweighted band-

width reducing reorderings are important because they can reduce the cost of parallel

matrix-vector multiplications by bringing the elements of the matrix toward the diag-

onal, resulting in less communication between MPI processes. Weighted reorderings

can be useful in constructing banded preconditioners, because they bring the large

elements of a matrix toward the diagonal. To compute the Fiedler vector for spectral

reordering, we must solve a standard eigenvalue problem where A is symmetric posi-

tive semidefinite, and the null space of A is known. This problem can be difficult for

some eigensolvers because A is singular.

After providing motivation for the development of scalable sparse symmetric eigen-

solvers, we discuss an important kernel in the trace-minimization eigensolvers: the

solution of saddle point problems of the form

⎡
⎣ A BY

Y TB 0

⎤
⎦
⎡
⎣ Δ

L

⎤
⎦ =

⎡
⎣ AY

0

⎤
⎦ (1.2)

where Yk is a tall dense matrix with a very small number of columns. We present

three types of methods for solving that linear system, then discuss under which cir-

cumstances each should be used.

One way to solve this problem is by using a projected Krylov method to solve the

equivalent linear system

PAPΔ = PAY (1.3)

where

P = I − BY
(
Y TB2Y

)−1
Y TB (1.4)

3

projects onto the space orthogonal to BY . Another method of solving the saddle

point problem is by forming the Schur complement

S = −Y TBA−1BY (1.5)

After we obtain the Schur complement (which can be inexact if we used a Krylov

method to determine A−1BY), we may construct the solution Δ = Y + A−1BY S−1.

The last method we discuss is the use of block preconditioned Krylov methods. We

may look at our original saddle point problem (equation 1.2) as a linear system

A X = F and use a Krylov subspace method on the entire problem. We can pre-

condition this linear system in a variety of ways. One such preconditioner is

M =

⎡
⎣ M 0

0 Ŝ

⎤
⎦ (1.6)

where M is a preconditioner approximating A, and Ŝ = −Y TBM−1BY .

After exploring how to solve the saddle point problems arising at each iteration

of the trace minimization eigensolvers, we describe two such solvers: TraceMin and

TraceMin-Davidson. As the name suggests, these eigensolvers transform the problem

of computing the desired eigenpairs into the equivalent constrained minimization

problem

min
Y TBY=I

trace
(
Y TAY

)
(1.7)

The solution to this problem is the set of eigenvectors corresponding to the eigenvalues

of smallest magnitude. At each iteration of our trace-minimization eigensolver, we

compute an update Δk to our current approximate eigenvectors Yk such that Δk ⊥B

Yk and

trace
(
(Yk −Δk)

T A (Yk −Δk)
)
< trace

(
Y T
k AYk

)
(1.8)

4

When we solve the corresponding constrained minimization problem

min
Δk⊥BYk

trace
(
(Yk −Δk)

T A (Yk −Δk)
)

(1.9)

using Lagrange multipliers, we end up with the saddle point problem previously

discussed. The only difference between TraceMin and TraceMin-Davidson is that

TraceMin extracts its Ritz vectors Yk from a subspace of constant dimension, whereas

TraceMin-Davidson uses expanding subspaces. These algorithms are explained in

detail in their respective chapters.

TraceMin has global linear convergence, the rate of which is based on both the

distribution of eigenvalues and the constant subspace dimension s. In the TraceMin

chapter, we present small test cases that show how the behavior of TraceMin changes

when you modify various parameters such as the subspace dimension or tolerance of

the Krylov method. We also explain how the convergence rate can be improved by

using dynamic origin shifts, which are determined by the Ritz values of the matrix

pencil. We conclude with a discussion of the relationship between TraceMin and

simultaneous iteration. If both methods solve the linear systems arising at each

iteration exactly (using a direct method), the methods are equivalent. However,

we show that TraceMin is more robust and tolerates inexact solves with very little

precision better than simultaneous iteration.

In the TraceMin-Davidson chapter, we discuss how the method differs from Trace-

Min through the use of expanding subspaces. We also present a small experiment

showing the effect of the block size on finding eigenvalues with a multiplicity greater

than 1. Additionally, we describe what harmonic Ritz extraction is and how it can

help when computing interior eigenpairs.

After describing the theory of these eigensolvers, we describe our parallel imple-

mentations of these methods in solving different types of problems. First, we discuss

our publically available Trilinos implementations, which are designed to compute a

small number of eigenpairs of smallest magnitude. We then explain how spectral

5

transformations can be used to compute the largest eigenvalues or the eigenvalues

nearest a given shift, and how spectrum folding can allow eigensolvers which are de-

signed for the computation of extreme eigenpairs to compute interior ones successfully.

In addition, we describe the parallel kernels required by our code.

The next sections describe our Fortran-based implementations of sampling and

multisectioning. In the case of sampling, we are interested in computing the eigen-

values closest to a large set of shifts; in multisectioning (or spectrum slicing), we are

interested in computing all eigenvalues in a given interval. This interval often contains

a large number of eigenvalues. We present a multisectioning algorithm loosely based

on adaptive quadrature which divides the large global interval of interest into many

subintervals which can be processed independently. Our method performs both the

interval subdivision step and the eigensolver steps in parallel and features dynamic

load balancing for improved scalability.

After we have thoroughly explored TraceMin and TraceMin-Davidson, we de-

scribe several other eigensolvers which compete against our implementations in the

numerical experiments section. Arnoldi, Lanczos, and Krylov-Schur are very similar

methods, all of which require the accurate solution of linear systems at each iteration;

they are analogous to TraceMin-Davidson, if we use the Schur-complement method

to solve the saddle point problem at each iteration. The Locally Optimal Block Pre-

conditioned Conjugate Gradient method avoids solving linear systems entirely, but it

can fail if not given a strong preconditioner. Jacobi-Davidson is theoretically similar

to TraceMin-Davidson, except that it uses a more aggressive shifting strategy which

can cause it to miss the smallest eigenpairs or converge very slowly. The Rieman-

nian Trust Region method is very closely related to TraceMin, but it uses the exact

Hessian in solving the constrained minimization problem whereas TraceMin uses a

cheap approximation. FEAST is a contour integration based eigensolver which re-

quires both an interval of interest and an estimate of the number of eigenvalues that

interval contains.

6

Finally, we present comparisons between our methods and those of the popu-

lar eigensolver packages Anasazi (of Sandia’s Trilinos library), SLEPc, and FEAST,

establishing the robustness and parallel scalability of TraceMin.

7

2 MOTIVATING APPLICATIONS

In this section, we justify the need for a robust and parallel sparse symmetric eigen-

value problem solver such as TraceMin by presenting several application areas which

give rise to large sparse symmetric eigenvalue problems.

2.1 Automotive engineering

Modeling acoustic fields in moving vehicles generally uses coupled systems of par-

tial differential equations (PDEs). The systems resulting from the discretization of

these PDEs tend to be extremely large and ill-conditioned.

The lossless wave equation in air is given by

Δp− 1

c2
δ2p

δt2
= 0 (2.1)

where p represents the pressure and c the speed of sound; for a derivation of this

equation, please see [1]. Neumann boundary conditions are given by

δp

δν
= − r

ρ20c
2

δp

δt
(2.2)

where ρ represents the density, r the damping properties of the material, and ν the

outer normal. We may apply a finite element discretization to obtain the following

equation for the fluid,

Mf p̈d +Df ṗd +Kfpd +Dsf üd = 0 (2.3)

8

where Mf is a spd mass matrix, Kf is a spd stiffness matrix, Df is a spsd damping

matrix, Dsf is a spd mass matrix representing the fluid structure coupling, and u

represents the vector of displacements.

The discrete finite element model for the vibration of the structure is

Msüd +Dsu̇d +Ksud −DT
sfpd = fe (2.4)

with Ms and Ks spd, Ds spsd, and fe the external load. If we combine equations 2.3

and 2.4, we obtain

⎡
⎣Ms 0

Dsf Mf

⎤
⎦
⎡
⎣üd

p̈d

⎤
⎦+

⎡
⎣Ds 0

0 Df

⎤
⎦
⎡
⎣u̇d

ṗd

⎤
⎦+

⎡
⎣Ks (ω) −DT

sf

0 Kf

⎤
⎦
⎡
⎣ud

pd

⎤
⎦ =

⎡
⎣fs
0

⎤
⎦ (2.5)

We then perform a Fourier ansatz

⎡
⎣ud

pd

⎤
⎦ =

⎡
⎣û
p̂

⎤
⎦ eiωt, fs = f̂ eiωt (2.6)

to obtain the following frequency dependent linear system

⎛
⎝−ω2

⎡
⎣Ms 0

Dsf Mf

⎤
⎦+ iω

⎡
⎣Ds 0

0 Df

⎤
⎦+

⎡
⎣Ks (ω) −DT

sf

0 Kf

⎤
⎦
⎞
⎠

⎡
⎣û (ω)
p̂ (ω)

⎤
⎦ =

⎡
⎣f̂ (ω)

0

⎤
⎦ (2.7)

We may also write this as a symmetric problem for nonzero frequencies.

⎛
⎝−ω2

⎡
⎣Ms 0

0 Mf

⎤
⎦+ iω

⎡
⎣ Ds iDT

sf

iDsf Df

⎤
⎦+

⎡
⎣Ks (ω) 0

0 Kf

⎤
⎦
⎞
⎠

⎡
⎣ û (ω)

ω−1p̂ (ω)

⎤
⎦ =

⎡
⎣f̂ (ω)

0

⎤
⎦

(2.8)

9

Although these systems have very large dimensions, we are typically only inter-

ested in the low frequencies associated with the eigenvalues in the neighborhood of

zero of the following symmetric matrix function

Q (ω) = −ω2M + iωD +K (2.9)

where K’s nonlinear dependency on the frequency is ignored. In the absence of

damping, equation 2.9 gives rise to the following generalized eigenvalue problem

Kx = λMx (2.10)

where, in exact arithmetic M and K are spd, but M is singular to working precision

in floating-point arithmetic due to the fact that rotational masses are omitted [1].

2.2 Condensed matter physics

In 1958, P.W. Anderson proposed a model for electron transport in a random

lattice [2]. Although it was later discovered that Anderson localization may occur for

any wave propagating through a disordered medium [3], we focus on the model as it

applies to conductivity.

In this model, we have an array of sites called a lattice. These sites are occupied

by entities such as atoms. The basic technique is to place a single electron in the

lattice and study the resulting behavior of the wave function. The wave function tells

us the probability of finding an electron at a particular site. If the probability of

finding an electron at certain sites is practically zero, Anderson localization occurs as

in figure 2.1.

To examine this phenomenon, we solve the time-independent Schroedinger equa-

tion

EΨ = ĤΨ (2.11)

11

with Hamiltonian

(
Ĥφ

)
(j) = Ejφ (j) +

∑
k �=j

V (|k − j|)φ (k) (2.12)

The goal is to find the stationary states Ψ with low energy E, i.e. to find the eigen-

values closest to 0 and their associated eigenvectors.

The first term of the Hamiltonian accounts for the probability of an electron at

a particular site staying there, and it is based on the randomly assigned energy at

that site, Ej. The second term accounts for the probability of the electron hopping

to an adjacent site and is based on the interaction term V (r). For simplicity, we may

choose

V (|r|) =
⎧⎨
⎩ 1 if |r| = 1

0 otherwise
(2.13)

This gives us a matrix with the same structure as the seven-point central difference

approximation to the three-dimensional Poisson equation on the unit cube with pe-

riodic boundary conditions.

The difficulty of this problem arises from the random entries on the diagonal and

the large cluster of eigenvalues around 0. Each Ej is taken from a uniform distribution

in [−W/2,+W/2] with some W ∈ [1, 30], meaning the Hamiltonian matrix will likely

be symmetric indefinite. This W changes the behavior of the material in the following

way:

• If W << 16.5, the eigenvectors are extended and the material will be a conduc-

tor.

• IfW >> 16.5, all eigenvectors are localized and the material will be an insulator.

• W = Wc = 16.5 is a critical value where the extended states around E = 0

vanish and no current can flow.

To numerically distinguish between these three cases, we must look at a series of

many large problems of order 106 to 108 with various random diagonals [5].

12

2.3 Spectral reordering

Parallel sparse matrix-vector multiplications y = Ax can be very expensive oper-

ations due to low data locality. The cost of such operations is based on the sparsity

pattern of the matrix A. General sparse matrices can require collective communica-

tion between all MPI processes, which is very undesirable when running on a large

number of nodes. However, if A is banded, we only require point-to-point com-

munication between nearest neighbors. As a result, we may wish to permute the

elements of A to gain a more favorable sparsity pattern, keeping in mind that the

cost of computing this permutation will be amortized over a large number of matrix-

vector multiplications. One method of obtaining this permutation is by computing

the Fiedler vector [6]. Computing the Fiedler vector of an unweighted graph pro-

duces a bandwidth-reducing reordering, whereas computing the Fiedler vector of a

weighted graph produces a reordering which brings large elements toward the diago-

nal. Bandwidth-reducing reorderings are meant to reduce the cost of a matrix-vector

product, and weighted spectral reorderings can be part of an effective preconditioning

strategy; after bringing the large elements toward the diagonal, we can extract a band

from our reordered matrix to be used as a preconditioner. This preconditoner could

be applied by a scalable banded solver such as SPIKE [7,8].

In this case, we are interested in the eigenvector corresponding to the smallest

nonzero eigenvalue of a standard eigenvalue problem Lx = λx, where L is the graph

Laplacian. Assuming D is the degree matrix of A and J is the adjacency matrix,

L = D − J . The graph Laplacian L is symmetric positive semi-definite. If the graph

consists of only one strongly connected component, the graph Laplacian A’s null

space is exactly one vector, the vector of all 1s1. If the graph consists of multiple

components, it can be split up into many smaller eigenproblems, one per strongly

connected component, and these problems can be solved independently.

1We assume for simplicity that A was not normalized.

13

3 PARALLEL SADDLE POINT SOLVERS

The goal of this chapter is the solution of the following saddle point problem, which

arises in every TraceMin iteration.

⎡
⎣ A BY

Y TB 0

⎤
⎦
⎡
⎣ Δ

L

⎤
⎦ =

⎡
⎣ AY

0

⎤
⎦ (3.1)

A is symmetric, Y has many more rows than columns and is assumed to have full

column rank. We also know that Y TBY = I.

We will examine several ways of solving linear systems with this special structure

on parallel architectures.

3.1 Using a projected Krylov method

This is the method originally used in the 1982 implementation of a basic trace

minimization eigensolver [9]. Solving the system (3.1) is equivalent to solving the

following linear system

PAPΔ = PAY (3.2)

where

P = I − BY
(
Y TB2Y

)−1
Y TB (3.3)

projects onto the space B-orthogonal to Y . Since this linear system is consistent,

we can use a Krylov subspace method to solve it (even though our operator PAP is

singular).

If we choose our initial iterate Δ0 ⊥B Y , applying the symmetric operator PAP

to a vector (or set of vectors) at each iteration is equivalent to applying PA. That

14

means we can use a symmetric Krylov method such as the conjugate gradient method

or MINRES and still only require one projection [10,11].

3.2 Forming the Schur complement

By performing block Gaussian elimination on equation 3.1, we obtain the following

result.

Δ = Y + ZS−1 (3.4)

where Z = A−1BY and S = −Y TBZ is the Schur complement. We can solve AZ =

BY approximately using a Krylov method to obtain the inexact Schur complement

Ŝ = −BY T Ẑ. Once we have Ẑ and Ŝ, we can compute Δ using a small dense solve

and a vector addition.

3.3 Block preconditioned Krylov methods

Another alternative is to use a Krylov subspace method on the entire problem,

meaning we have the operator

A =

⎡
⎣ A BY

Y TB 0

⎤
⎦ (3.5)

We can precondition this operator in a variety of ways. If we use the preconditioner

M =

⎡
⎣ A 0

0 −S

⎤
⎦ (3.6)

where S = −Y TBA−1BY is the Schur complement, then our preconditioned matrix

M−1A has at most four distinct eigenvalues [12]. Therefore, we would converge

in at most four iterations of MINRES in exact arithmetic. However, each iteration

would involve the accurate solution of linear systems involving A, which can be very

expensive.

15

Alternatively, we can replace A by a preconditioner M to obtain

M =

⎡
⎣ M 0

0 −Ŝ

⎤
⎦ (3.7)

where Ŝ = −Y TBM−1BY . Since Y is very narrow, we can compute the matrix Ŝ

explicitly and replicate it across all MPI processes. The application of this precon-

ditioner M only involves an application of the preconditioner M and a small dense

solve with Ŝ.

Note that this is not the only possible preconditioning strategy for this saddle

point problem. Instead of using that block diagonal preconditioner, we could use a

block triangular preconditioner such as

M =

⎡
⎣ M BY

0 −Ŝ

⎤
⎦ (3.8)

but that would prevent us from using a symmetric solver such as MINRES to solve

linear systems with A . We could also choose to do constraint preconditioning with

M =

⎡
⎣ M BY

Y TB 0

⎤
⎦ (3.9)

as in [13].

Equation 3.1 is equivalent to the following

⎡
⎣ A BY

−Y TB 0

⎤
⎦
⎡
⎣ Δ

L

⎤
⎦ =

⎡
⎣ AY

0

⎤
⎦ (3.10)

The operator of (3.1) is symmetric indefinite; the operator of (3.10) is nonsym-

metric, but all eigenvalues will be on one side of the imaginary axis. We could

use a Hermitian/Skew-Hermitian splitting based preconditioner on this problem as

in [14, 15].

16

Table 3.1: Comparison of saddle point solvers

Projected
Krylov

Schur
complement

Block
preconditioning

Strictly enforces the condition
Δ ⊥B Y ?

yes no no

Application of the operator re-
quires an inner product?

yes no yes

Capable of using preconditioned
MINRES?

no yes yes

Capable of using a direct solver? no yes no

3.4 Which method to choose

All of these methods have been incorporated into Sandia’s publicly available Trace-

Min code. Each of the methods has its own unique advantages and disadvantages,

summarized in table 3.1.

In short, we recommend the following strategy:

• If you want to factor your matrix A, form the Schur complement. Note that

TraceMin does not generally require accurate solutions of linear systems involv-

ing A, so this can be overkill.

• If you want to use a preconditioner M ≈ A, choose the block diagonal precon-

ditioning method. Again, since TraceMin does not require accurate solutions of

linear systems involving A, it should not need a strong preconditioner. Precon-

ditioning the projected-Krylov solver does not generally perform well because it

requires solutions of nonsymmetric linear systems, which are considerably more

expensive than the symmetric case. Forming the inexact Schur complement is

another possibility, but it tends to perform poorly without a strict tolerance be-

cause the linear system being solved at each iteration is completely disconnected

from the requirement that Δ ⊥B Y .

• Otherwise, use the projected Krylov method.

17

4 TRACEMIN

The generalized eigenvalue problem considered here is given by

Ax = λBx (4.1)

where A, B are n×n very large, sparse, and symmetric, with B being positive definite,

and one is interested in obtaining a few eigenvalues p� n of smallest magnitude and

their associated eigenvectors.

4.1 Derivation of TraceMin

TraceMin is based on the following theorem, which transforms the problem of

solving equation (4.1) into a constrained minimization problem.

Theorem 4.1.1 [9, 16] Let A and B be symmetric n × n matrices with B positive

definite, and Y ∗ the set of all n× p matrices Y for which Y TBY = Ip. Then

min
Y ∈Y ∗ tr(Y

TAY) =

p∑
i=1

λi (4.2)

where λ1 ≤ λ2 ≤ · · ·λp < λp+1 ≤ · · · ≤ λn are the eigenvalues of problem (4.1).

The block of vectors Y which solves the constrained minimization problem is the

set of eigenvectors corresponding to the eigenvalues of smallest magnitude. We now

discuss how TraceMin is derived from this observation.

Let Y be a set of vectors approximating the eigenvectors of interest. At each

TraceMin iteration, we wish to construct Yk+1 from Yk such that tr
(
Y T
k+1AYk+1

)
<

tr
(
Y T
k AYk

)
. Consequently, Yk+1 is a better approximation of the eigenvectors than

18

Yk. The iterate Yk is corrected using the n × p matrix Δk, which is the solution of

the following constrained optimization problem,

minimize tr (Yk −Δk)
T A (Yk −Δk) ,

subject to Y T
k BΔk = 0

(4.3)

If A is symmetric positive definite, this is equivalent to solving the p independent

problems

minimize (yk,i − dk,i)
T A (yk,i − dk,i) ,

subject to yTk,iBΔk = 0
(4.4)

where yk,i is the i-th column of Yk.

Figure 4.1 presents a graphical illustration of how TraceMin works for the 3x3

matrix ⎡
⎢⎢⎢⎣

1.67 −0.33 −0.33
−0.33 2.17 −0.83
−0.33 −0.83 2.17

⎤
⎥⎥⎥⎦ (4.5)

We seek the smallest eigenpair, λ1 = 1 with eigenvector

x1 =

⎡
⎢⎢⎢⎣

1√
3

1√
3

1√
3

⎤
⎥⎥⎥⎦ (4.6)

using an initial subspace of

x =

⎡
⎢⎢⎢⎣

0

0

1

⎤
⎥⎥⎥⎦ (4.7)

The colored plane represents the space orthogonal to our subspace. We would like to

find the update vector d minimizing the quantity (x+ d)T A (x+ d) in that subspace

(i.e. xTd = 0) 1. The light yellow oval denotes the area of the subspace where that

1To make the plot more intuitive, we have chosen to refer to our updated vector as v = x+ d rather
than v = x− d.

19

quantity is smallest, and the dark blue denotes the area where the quantity is large.

The increment d which minimizes that trace is

d =

⎡
⎢⎢⎢⎣

0.2857

0.4286

0

⎤
⎥⎥⎥⎦ (4.8)

Note that x+ d is much closer to our true solution than our initial guess x. We now

turn our attention to how to solve this constrained minimization problem for larger

matrices.

We can transform our constrained minimization problem to an unconstrained

minimization problem using Lagrange’s theorem, which leads to the following saddle

point problem for Δk

⎡
⎣ A BYk

Y T
k B 0

⎤
⎦
⎡
⎣ Δk

Lk

⎤
⎦ =

⎡
⎣ AYk

0

⎤
⎦ (4.9)

where Lk represents the Lagrange multipliers. Alternatively, we may write the above

saddle-point problem as

⎡
⎣ A BYk

Y T
k B 0

⎤
⎦
⎡
⎣ Vk+1

L̄k

⎤
⎦ =

⎡
⎣ 0

Ip

⎤
⎦ (4.10)

where Vk+1 = Yk −Δk and L̄k = −Lk. Assuming our matrix A is symmetric positive

definite, we have satisfied the second order sufficient conditions for optimality; Δk is

guaranteed to be the solution of our original constrained minimization problem. If A

is indefinite, we have no such guarantee, but as our results demonstrate, TraceMin

is still capable of computing the smallest eigenpairs. After Vk+1 is obtained, we B-

orthonormalize it and use the Rayleigh-Ritz procedure to generate Yk+1. This process

is summarized in Algorithm 1.

20

−1
−0.5

0
0.5

1 −1
−0.5

0
0.5

1

0

0.2

0.4

0.6

0.8

1

Space orthogonal to x
x
d
x+d
True solution

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5

Figure 4.1.: Graphical demonstration of the TraceMin algorithm

21

Now that the TraceMin algorithm has been presented, we now turn our attention

to its convergence properties and some implementation details.

Algorithm 1 TraceMin algorithm

Require: Subspace dimension s > p,
V1 ∈ R

n×s with rank s,
A and B symmetric, with B also positive definite

1: for k = 1→ maxit do
2: B-orthonormalize Vk

3: Perform the Rayleigh-Ritz procedure to obtain the approximate eigenpairs
(AYk ≈ BYkΘk):
• Form Hk = V T

k AVk

• Compute all eigenpairs of Hk, HkXk = XkΘk

• Compute the Ritz vectors Yk = VkXk

4: Compute the residual vectors Rk = AYk − BYkΘk

5: Test for convergence
6: Solve the saddle point problem (4.10) approximately to obtain Vk+1

7: end for

4.2 Convergence rate

TraceMin is globally convergent, and if yk,i is the ith column of Yk, the column

yk,i, converges to the eigenvector xi corresponding to λi for i = 1, 2, · · · , p with an

asymptotic rate of convergence bounded by λi/λs+1, where s is the subspace dimension

(or number of vectors in Y). As a result, eigenvalues located closer to the origin will

converge considerably faster than ones near λs+1.

We now turn our attention to a synthetic test matrix which demonstrates this

convergence rate in practice. Our synthetic test matrix is order 100, with eigenval-

ues (0.01, 0.1, 0.5, 0.904, 0.905,...,0.999,1). We will run TraceMin with a subspace

dimension of four vectors and examine how long it takes each vector to converge to

an absolute residual ‖r = Ay − θy‖2 < 10−6. Note that the first vector will have a

convergence rate of 0.01
0.905

≈ 0.011, and the last vector will have a convergence rate of

0.904
0.905
≈ 0.999. That means TraceMin should take less than ten iterations to compute

the first (smallest) eigenpair, but it will take thousands to compute the fourth. Fig-

22

ures 4.2a and 4.2b show the absolute residual ‖ri = Ayi − θiyi‖2 and absolute error

ei = |θi − λi| measured across 50 TraceMin iterations.

In practice, we generally can not measure the error, as we do not know the eigen-

values of interest; we can only measure the residual. It is important to note that while

the error decreases monotonically, the residual may not. In this case, the initial Ritz

values (the approximate eigenvalues) are in the range (0.9,0.96). These Ritz values

are very close to true eigenvalues, but those are not the eigenvalues we seek. The

residual only tells us whether a given Ritz pair approximates some eigenpair, not

whether it approximates the one we want. This is why the residual appears to spike

in Figure 4.2a, while the error decreases monotonically in Figure 4.2b.

Since we have so far only discussed the subspace dimension as some constant, we

now turn our attention to its impact on convergence and how it should be chosen.

Later, we will also examine how to improve the convergence rate of TraceMin via

shifting.

4.3 Choice of the subspace dimension

TraceMin uses a constant subspace dimension s, where s is the number of vectors

in V . The choice of this subspace dimension s is very important. Larger subspace

dimensions may cut down on the number of TraceMin iterations required (because

the convergence rate λi/λs+1 improves), but each iteration then involves more work.

Small subspace dimensions reduce the amount of work done per TraceMin iteration

but result in a worse convergence rate. To demonstrate the effect of the subspace

dimension on overall work, we now present an example of what happens when we

vary the subspace dimension.

This synthetic test matrix is order 100, with eigenvalues

(0.1, 0.11, . . . , 0.16, 0.17, 0.909, 0.91, . . . , 0.999, 1)

23

0 10 20 30 40 50
10

−8

10
−6

10
−4

10
−2

10
0

TraceMin iteration number

A
bs

ol
ut

e
re

si
du

al

Residual for eigenvalue 0.01
Residual for eigenvalue 0.1
Residual for eigenvalue 0.5
Residual for eigenvalue 0.904

(a) Absolute residual for each eigenvalue

0 10 20 30 40 50
10

−15

10
−10

10
−5

10
0

TraceMin iteration number

A
pp

ro
xi

m
at

io
n

er
ro

rs

Error for eigenvalue 0.01
Error for eigenvalue 0.1
Error for eigenvalue 0.5
Error for eigenvalue 0.904

(b) Absolute error for each eigenvalue

Figure 4.2.: Demonstration of TraceMin’s convergence rate

24

0 5 10 15 20 25 30 35
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

TraceMin iteration number

A
bs

ol
ut

e
re

si
du

al

Block size 4
Block size 8
Block size 12

Figure 4.3.: Demonstration of the importance of the block size. This figure presents
the residual of the fourth eigenvalue vs number of TraceMin iterations

We will run TraceMin with a subspace dimension of four vectors, then eight vectors,

and finally with twelve vectors and examine how many iterations it takes TraceMin to

converge. Figure 4.3 shows that increasing the block size for this matrix decreased the

number of required TraceMin iterations. Increasing from s = 4 to s = 8 had a greater

impact than increasing from s = 8 to s = 12 since this problem featured a large gap

between the eighth and ninth eigenvalues. For this problem, it’s clear that a subspace

dimension of s = 8 is optimal, given the eigenvalue distribution. We generally can not

determine the optimal subspace dimension, since we do not have enough information

about the spectrum. In practice, s = 2p tends to work well (where p is the desired

number of eigenvalues).

25

For the tiny examples we have presented so far, the saddle point problems were

solved directly. When the matrices become larger, this may be unreasonable. We

now explore the effect of using an iterative method to solve the saddle point problem.

4.4 TraceMin as a nested iterative method

In TraceMin, the saddle point problem does not need to be solved to a high degree

of accuracy to preserve its global convergence, e.g. see [9], and [17]. Hence, one can

use an iterative method with a modest relative residual as a stopping criterion. We

will later compare the various saddle point solvers presented in the previous chapter,

but for now we concentrate on the selection of the inner (Krylov) tolerance. To

demonstrate the impact of the inner tolerance on the convergence of TraceMin, we will

study two synthetic examples in which we seek the smallest eigenpair with a subspace

dimension of one vector 2. We converge when the relative residual ‖ri‖2 /λi < 10−3.

One of these examples involves a matrix with poorly separated eigenvalues, and the

other involves a matrix with well separated eigenvalues.

The first synthetic example is a 100x100 matrix with a condition number of ap-

proximately 200. Its two smallest eigenvalues are 4.29e-2 and 4.34e-2. Note that

these eigenvalues are clustered, so TraceMin will take many iterations to converge,

regardless of how accurately we solve the saddle point problem. First, we will use

a direct solver to provide a lower bound on the number of TraceMin iterations re-

quired, then we will try projected-CG with various tolerances. In Figure 4.4a, we

see that it took TraceMin roughly 180 iterations to converge, regardless of whether

we used a direct solve or an iterative method with a moderate tolerance. If we re-

quire a modest residual in the linear solve (a tolerance of 0.5), it only takes 20 more

TraceMin iterations than if we had used a direct solve. Figure 4.4b shows that the

overall work required by TraceMin with an inaccurate Krylov solver is far less than

with the stricter tolerances. This example demonstrates that it does not matter how

2In general, it is a poor decision to use such a small subspace dimension.

26

accurately we solve the saddle point problem if TraceMin’s convergence rate is poor

due to clustered eigenvalues and too small a block size s.

The second synthetic example is a 100x100 matrix with a condition number of

approximately 2e7. Its two smallest eigenvalues are 3.58e-7 and 3.58e-3. Note that

these are well separated eigenvalues, so TraceMin, with a block size s = 1, will

converge in a small number of iterations if a direct solver is used. Unlike the previous

example, Figure 4.5a shows there is a dramatic difference in the number of TraceMin

iterations based on the inner projected-CG tolerance. If we use a relatively strict

tolerance of 1e-4, TraceMin converges in only four iterations; with a tolerance of 0.5,

TraceMin takes 25 iterations to converge. When we examine the number of projected-

CG iterations in Figure 4.5b, we see that in this case, it was more efficient to use a

stricter tolerance because of the separation of eigenvalues.

The moral is, the more clustered the eigenvalues are, the less important it is to

solve the linear systems accurately. However, we generally know very little about the

clustering of the eigenvalues prior to running TraceMin. We can attempt to estimate

the convergence rate of each eigenpair by using the Ritz values, but the Ritz values

tend to be very poor estimates of the eigenvalues for at least the first few TraceMin

iterations. In our TraceMin implementation, We compensate for this by choosing the

tolerance based on both the Ritz values and the current TraceMin iteration. The

exact equation we use is as follows

toli = min

(
θi
θs
, 2−j

)
(4.11)

where i is the index of the targetted right hand side, j is the current TraceMin

iteration number, and θ are the current Ritz values. Since this expression does not

make sense for i = s, we choose tols = tols−1. We also specify a maximum number of

Krylov iterations to be performed, since TraceMin does not rely on accurate linear

solves to converge.

27

0 50 100 150 200
10

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

TraceMin iteration number

R
el

at
iv

e
re

si
du

al

Inner tolerance 0.5
Inner tolerance 1e−2
Inner tolerance 1e−4
Direct solver

(a) Residual of the smallest eigenvalue vs number of TraceMin
iterations

0 500 1000 1500 2000 2500 3000 3500
10

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Number of conjugate gradient iterations

R
el

at
iv

e
re

si
du

al

Inner tolerance 0.5
Inner tolerance 1e−2
Inner tolerance 1e−4

(b) Residual of the smallest eigenvalue vs number of projected-
CG iterations

Figure 4.4.: Demonstration of the importance of the inner Krylov tolerance for a
problem with poorly separated eigenvalues

28

0 5 10 15 20 25
10

−10

10
−5

10
0

10
5

10
10

TraceMin iteration number

R
el

at
iv

e
re

si
du

al

Inner tolerance 0.5
Inner tolerance 1e−2
Inner tolerance 1e−4
Direct solver

(a) Residual of the smallest eigenvalue vs number of TraceMin
iterations

0 50 100 150 200 250 300 350
10

−10

10
−5

10
0

10
5

10
10

Number of conjugate gradient iterations

R
el

at
iv

e
re

si
du

al

Inner tolerance 0.5
Inner tolerance 1e−2
Inner tolerance 1e−4

(b) Residual of the smallest eigenvalue vs number of projected-
CG iterations

Figure 4.5.: Demonstration of the importance of the inner Krylov tolerance for a
problem with well separated eigenvalues

29

4.5 Deflation of converged eigenvectors

So far, we have not discussed what to do when an eigenpair converges. We would

like to remove it from our subspace V so that we do not continue to do unnecessary

work improving a vector which has already converged. However, we need to ensure

that after we remove a converged vector from the subspace, the subspace stays B-

orthogonal to it, or else we will converge to the same vector over and over again. If

C is our set of converged eigenvectors, the projector

P = I − BC
(
CTB2C

)−1
CTB (4.12)

applied to our subspace V will preserve that condition by forcing PV ⊥B C. This

process of projecting the converged vectors from the subspace is called deflation3. If

we add this feature to Algorithm 1, we end up with Algorithm 2. The few steps this

adds to the TraceMin iterations have been highlighted in red.

After a Ritz vector converges, we may either remove it from the subspace and

continue to work with a smaller subspace of dimension s − 1, or we may replace it

with a random vector. If we do not replace the converged vector, our linear systems

have one fewer right hand side, and TraceMin will require less work per iteration.

However, if we replace the converged vector with a random one, the convergence rate

for the nonconverged Ritz vectors will improve and we will require fewer TraceMin

iterations overall. In our implementation, we replace the converged vectors with

random ones and hold the subspace dimension constant.

4.6 Ritz shifts

The convergence rate of TraceMin is based on the location of the eigenvalues of

interest within the spectrum. As we have seen, if they are far from the origin, the rate

of convergence is very poor. Therefore, it can be worthwhile to perform a shift which

3The Trilinos documentation refers to this as locking, but it is the same concept.

30

Algorithm 2 TraceMin algorithm (with deflation)

Require: Subspace dimension s > p,
V1 ∈ R

n×s with rank s,
A and B symmetric, with B also positive definite

1: for k = 1→ maxit do
2: if C is not empty then

3: Perform the projection Vk = PVk, where P = I − BC
(
CTB2C

)−1
CTB

4: end if
5: B-orthonormalize Vk

6: Perform the Rayleigh-Ritz procedure to obtain the approximate eigenpairs
(AYk ≈ BYkΘk)

7: Form Hk = V T
k AVk

8: Compute all eigenpairs of Hk, HkXk = XkΘk

9: Compute the Ritz vectors Yk = VkXk

10: Compute the residual vectors Rk = AYk − BYkΘk

11: Test for convergence
12: Move converged vectors from Y to C
13: Solve the following saddle point problem approximately to obtain Vk+1⎡

⎣ A BYk BC
Y T
k B 0 0

CTB 0 0

⎤
⎦
⎡
⎣ Δk

L
(1)
k

L
(2)
k

⎤
⎦ =

⎡
⎣ AYk

0
0

⎤
⎦ (4.13)

14: end for

31

moves the desired eigenvalues closer to the origin. Instead of solving our original

problem Ax = λBx, we solve the problem (A− ωB) x = (λ− ω)Bx, where ω is our

shift. The convergence rate for eigenpair i is now

λi − ω

λs+1 − ω
(4.14)

rather than λi/λs+1. If ω ≈ λi, eigenpair i will converge very quickly. The only

change these shifts necessitate in the TraceMin algorithm is that the saddle point

problem of Equation 4.9 becomes

⎡
⎣ (A− ωB) BYk

BY T
k 0

⎤
⎦
⎡
⎣ Δk+1

Lk

⎤
⎦ =

⎡
⎣ (A− ωB)Yk

0

⎤
⎦ (4.15)

The matrix A− ωB may be formed explicitly, or it may be applied implicitly 4

We now present a small synthetic test problem demonstrating the effect of these

shifts. Suppose we wish to find the four smallest eigenpairs of a test matrix with

an absolute residual of 10−5. This test matrix has 1000 rows, and its eigenvalues lie

evenly spaced in the interval [0.91, 10.9]. We will run TraceMin twice using a subspace

dimension of nine vectors. The first time, we will use the original matrix without a

shift, and then we will try TraceMin with a shift of 0.9. Note that 0.9 is a close

approximatiion of the smallest eigenvalue.

The original matrix has an unfavorable eigenvalue distribution (Figure 4.6); the

eigenvalues we seek are very far from the origin and close to λ10 = 1, i.e. the con-

vergence rate is practically 1. The shifted matrix exhibits a much better eigenvalue

distribution. Some of the eigenvalues are still very far from the origin, but the four

targetted eigenpairs are much closer. We see from figure 4.7 that it takes roughly

180 iterations of TraceMin to solve the problem without shifting, but it takes only

12 iterations to solve the problem with the shift because we improved the eigenvalue

distribution.

4In our Trilinos implementation, A − ωB is applied implicitly. We do this to accomodate for the
case where A and B are not available explicitly.

32

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Real part

Im
ag

in
ar

y
pa

rt

(a) Original eigenvalue distribution

0 0.02 0.04 0.06 0.08 0.1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Real part

Im
ag

in
ar

y
pa

rt

(b) Shifted eigenvalue distribution

Figure 4.6.: The effect of Ritz shifts on the eigenvalue spectrum

33

0 20 40 60 80 100 120 140 160 180
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

TraceMin iteration number

A
bs

ol
ut

e
re

si
du

al

Residual for eigenvalue 0.91
Residual for eigenvalue 0.92
Residual for eigenvalue 0.93
Residual for eigenvalue 0.94

(a) Original convergence rate

0 2 4 6 8 10 12
10

−15

10
−10

10
−5

10
0

10
5

TraceMin iteration number

A
bs

ol
ut

e
re

si
du

al

Residual for eigenvalue 0.91
Residual for eigenvalue 0.92
Residual for eigenvalue 0.93
Residual for eigenvalue 0.94

(b) Improved convergence rate

Figure 4.7.: The effect of Ritz shifts on convergence

34

4.6.1 Multiple Ritz shifts

In the previous example, we used a single shift for all of the Ritz pairs. This

improved the convergence rate of all eigenpairs, but it had the greatest effect on the

smallest one (since the shift so closely approximated the smallest eigenvalue). Instead

of using a single shift, we could use separate shifts for each of the Ritz pairs. That

would result in solving s saddle point problems per TraceMin iteration of the form5

⎡
⎣ (A− ωiB) BY

BY T 0

⎤
⎦
⎡
⎣ di

li

⎤
⎦ =

⎡
⎣ (A− ωiB) yi

0

⎤
⎦ (4.16)

Note that these saddle point problems do not need to be solved separately. We may

use a pseudo-block Krylov method to solve these linear systems, but not a block

Krylov method6.

If each shift closely approximates the corresponding eigenvalue, the convergence

rate of every eigenpair would be greatly improved, rather than just the convergence

rate of the smallest. In the following example, we see how the use of multiple shifts

impacts the convergence rate of TraceMin.

A is a synthetic test matrix of order n = 100 whose eigenvalues lie evenly spaced

in the interval [0.91, 10.9]. We are looking for the four smallest eigenpairs using a

subspace of dimension 9, and we want an absolute residual of 1e-5. We will try

TraceMin with no shifts, with a single shift of 0.9, and with multiple shifts (0.9, 1.0,

1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7). Note that for each Ritz shift ωi, ωi ≈ λi. Figure 4.8

shows that without shifts, TraceMin will not converge very quickly for this problem.

If we use a single shift of 0.9, the smallest eigenvalue will converge quickly, but the

others will take much longer. If we use multiple shifts, each of the desired eigenvalues

should converge in only a few iterations.

5We have dropped the TraceMin iteration subscript k for clarity.
6Pseudo-block Krylov methods are mathematically equivalent to solving each linear system indepen-
dently. The only difference is that in an MPI program, several messages may be grouped together,
resulting in a lower communication cost. Block Krylov methods build one subspace which is used

35

1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Eigenvalue number

C
on

ve
rg

en
ce

 r
at

e

No Ritz shifts
One Ritz shift
Multiple Ritz shifts

Figure 4.8.: The effect of multiple Ritz shifts on TraceMin’s convergence rate

36

0 5 10 15 20 25 30
10

−15

10
−10

10
−5

10
0

10
5

TraceMin iteration number

A
bs

ol
ut

e
er

ro
r

of
 th

e
tr

ac
e

No Ritz shifts
One Ritz shift
Multiple Ritz shifts

Figure 4.9.: The effect of multiple Ritz shifts on the trace reduction

Figure 4.9 shows us that the use of multiple shifts reduces the trace of Y TAY

much faster than using only one shift, or no shifts at all. Figure 4.10 shows that the

use of multiple shifts also lowers the residual of each of the four smallest Ritz pairs

much faster than the other shifting strategies. With the multiple shifts, it took only

five iterations for TraceMin to find the four smallest eigenpairs. Using a single shift

resulted in convergence after eleven TraceMin iterations. Without shifts, TraceMin

required 30 iterations to converge.

We now consider how to choose the optimal shift based on nothing but the Ritz

values (approximate eigenvalues) and their corresponding residuals.

for all right hand sides, rather than handling each independently. It would not make sense to use a
block Krylov method with these saddle point problems.

37

0 5 10 15 20 25 30

10
−4

10
−2

10
0

TraceMin iteration number

A
bs

ol
ut

e
re

si
du

al

TraceMin without shifts

0 2 4 6 8 10 12

10
−4

10
−2

10
0

TraceMin iteration number

A
bs

ol
ut

e
re

si
du

al

TraceMin with a single shift

0 1 2 3 4 5

10
−4

10
−2

10
0

TraceMin iteration number

A
bs

ol
ut

e
re

si
du

al

TraceMin with multiple shifts

Residual for eigenvalue 0.91
Residual for eigenvalue 1.01
Residual for eigenvalue 1.11
Residual for eigenvalue 1.21

Residual for eigenvalue 0.91
Residual for eigenvalue 1.01
Residual for eigenvalue 1.11
Residual for eigenvalue 1.21

Residual for eigenvalue 0.91
Residual for eigenvalue 1.01
Residual for eigenvalue 1.11
Residual for eigenvalue 1.21

Figure 4.10.: The effect of multiple Ritz shifts on convergence

38

4.6.2 Choice of the Ritz shifts

Choosing how and when to shift is a difficult issue. If we shift too aggressively,

we run the risk of converging to a completely different set of eigenpairs than the ones

we seek, and global convergence is destroyed. Shifting very conservatively avoids that

problem, but it is detrimental to the overall running time of the program because we

performed many unnecessary TraceMin iterations. In our TraceMin implementation,

We allow the user to choose just how aggressive he wishes to be with the shifts,

although the default options tend to work well. The user can choose to shift at every

iteration, after the trace has leveled (i.e. when the relative change in trace between

successive iterations has become smaller than a user defined tolerance), or he can

choose to disable shifting entirely. The user may choose the shifts as being equal

to the largest converged eigenvalue, the adjusted Ritz values (which are essentially

computed as θi−‖ri‖2 and are described in Algorithm 3), or the current Ritz values.

He may also choose whether to use a single Ritz shift or separate ones for each Ritz

pair. Our default method of shifting is presented in Algorithm 3, which is largely

based on the work of [17].

4.7 Relationship between TraceMin and simultaneous iteration

The method of simultaneous iteration (Algorithm 4) was developed by Friedrich

Bauer in 1957 under the name Treppeniteration [18]. Note that this method is math-

ematically equivalent to TraceMin, if we solve the saddle point problem by computing

the Schur complement 7. The difference between the original 1982 TraceMin algo-

rithm and simultaneous iteration is that TraceMin (using a projected Krylov method

to solve the saddle point problem) enforces a condition that Δk, the update to Yk,

must be B-orthogonal to the current Ritz vectors Yk, whereas simultaneous iteration

only enforces that condition if the linear systems AV = BY are solved to a high

7If Zk ≈ A−1BYk, TraceMin computes V
(t)
k+1 = Zk

(
Y T
k BZk

)−1
, whereas the method of simultaneous

iteration computes V
(s)
k+1 = Zk. V

(t)
k+1 and V

(s)
k+1 span the same subspace.

39

Algorithm 3 Default shift-selection algorithm

Require: Subspace dimension s
Computed residual R = AY − BYΘ

1: Determine whether the Ritz values are clustered.
Ritz values θi and θi+1 are in a cluster if θi + ‖ri‖2 ≥ θi+1 − ‖ri+1‖2

2: For each cluster, compute the residual norm of that cluster.
If θi, θj, and θk are in a cluster, the residual norm of that cluster is βi,j,k =
‖ri‖2 + ‖rj‖2 + ‖rk‖2

3: if at least one eigenvalue has converged then
4: ω1 = the largest converged eigenvalue
5: else
6: ω1 = 0
7: end if
8: if θ1 is not in a cluster with θ2 then
9: ω1 = max (ω1, θ1)
10: else
11: ω1 = max (ω1, θ1 − β1)
12: end if
13: for k = 2→ s− 1 do
14: if ωk−1 = θk−1 and θk is not in a cluster with θk+1 then
15: ωk = θk
16: else if there exists a θi such that θi < θk − ‖rk‖2 then
17: ωk = the largest θi satisfying that condition
18: else
19: ωk = ωk−1

20: end if
21: end for
22: ωs = ωs−1

40

degree of precision. As a result, TraceMin tends to perform better than simultaneous

iteration when the linear systems are solved inexactly. We now look at an example

comparing the two methods.

Algorithm 4 Simultaneous iteration algorithm

Require: Subspace dimension s > p,
V1 ∈ R

n×s with rank s,
A and B symmetric, with B also positive definite

1: for k = 1→ maxit do
2: B-orthonormalize Vk

3: Perform the Rayleigh-Ritz procedure to obtain the approximate eigenpairs
(AYk ≈ BYkΘk)

4: Form Hk = V T
k AVk

5: Compute all eigenpairs of Hk, HkXk = XkΘk

6: Compute the Ritz vectors Yk = VkXk

7: Compute the residual vectors Rk = AYk − BYkΘk

8: Test for convergence
9: Solve the set of linear systems AVk+1 = BYk

10: end for

Our test matrix A is a synthetic test matrix of order 100, with a condition number

of 1000. We seek the four smallest eigenpairs with an absolute residual of 1e-6, using

a subspace dimension of eight. We will try TraceMin, using projected-CG to solve the

saddle point problem, and simultaneous iteration, with CG to solve AVk+1 = BYk.

Figure 4.11 shows what happens if we use a very modest tolerance of 0.5 when solving

the linear systems arising in each iteration. TraceMin converges in roughly 30 itera-

tions, whereas simultanous iteration fails to converge within 300 iterations. Clearly

it was a bad idea to use such a large inner tolerance with simultaneous iteration, so

we will try it again with a stricter inner tolerance of 1e-3. Figure 4.12 shows that

even with that stricter inner tolerance, simultaneous iteration still failed to converge

within 300 iterations. Figure 4.13 presents a comparison of TraceMin and simulta-

neous iteration with an inner tolerance of 1e-6. Since we solved the linear systems

resulting at each iteration with considerably more accuracy, TraceMin and simultane-

ous iteration converge in the same number of iterations. We also see that they both

41

required roughly the same number of conjugate gradient iterations, which means si-

multaneous iteration is the faster algorithm in this case8. However, if we examine

the total number of CG iterations required, the overall best approach to solving this

problem was to use TraceMin with an inner tolerance of 0.5, since that required the

fewest conjugate gradient iterations overall.

8Each conjugate gradient iteration for simultaneous iteration involved applying the operator A to a
vector. For TraceMin, each conjugate gradient iteration involved applying the operator PAP , which
requires at least one projection

42

0 50 100 150 200 250 300
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

Eigensolver iteration number

E
rr

or
 in

 tr
ac

e

TraceMin
Simultaneous Iteration

(a) Error in trace vs. number of TraceMin/simultaneous iteration
iterations

0 500 1000 1500 2000 2500 3000
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

Number of CG iterations

E
rr

or
 in

 tr
ac

e

TraceMin
Simultaneous Iteration

(b) Error in trace vs. number of conjugate gradient iterations

Figure 4.11.: A comparison of TraceMin and simultaneous iterations using a lenient
inner tolerance

43

0 50 100 150 200 250 300
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

Eigensolver iteration number

E
rr

or
 in

 tr
ac

e

TraceMin
Simultaneous Iteration

(a) Error in trace vs. number of TraceMin/simultaneous iteration
iterations

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

Number of CG iterations

E
rr

or
 in

 tr
ac

e

TraceMin
Simultaneous Iteration

(b) Error in trace vs. number of conjugate gradient iterations

Figure 4.12.: A comparison of TraceMin and simultaneous iterations using a moderate
inner tolerance

44

0 2 4 6 8 10 12 14
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

Eigensolver iteration number

E
rr

or
 in

 tr
ac

e

TraceMin
Simultaneous Iteration

(a) Error in trace vs. number of TraceMin/simultaneous iteration
iterations

0 2000 4000 6000 8000 10000 12000
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

Number of CG iterations

E
rr

or
 in

 tr
ac

e

TraceMin
Simultaneous Iteration

(b) Error in trace vs. number of conjugate gradient iterations

Figure 4.13.: A comparison of TraceMin and simultaneous iterations using a strict
inner tolerance

45

5 TRACEMIN-DAVIDSON

TraceMin-Davidson is an eigensolver very similar to TraceMin. The only real differ-

ence is that while TraceMin uses a constant subspace dimension, TraceMin-Davidson

uses expanding subspaces. In every iteration, we add a set number of vectors to

our subspace V . When V gets to be too large, we shrink it, keeping only the most

important part of the subspace, i.e. the Ritz vectors corresponding to the smallest

Ritz values. Essentially, TraceMin-Davidson is to TraceMin as block-Lanczos is to

simultaneous iteration. This difference is outlined in Algorithm 5.

Most of the items explored in the previous chapter still apply here. TraceMin-

Davidson converges faster if the eigenvalues are well separated, and we can still use

Ritz shifts to improve the convergence rate.

We now explore some of TraceMin-Davidson’s implementation issues.

5.1 Minimizing redundant computations

At each TraceMin-Davidson iteration, we add s new vectors to our subspace V ,

but the rest of the subspace remains constant. In this section, we explore how to take

advantage of that fact in order to minimize the amount of required computations.

The B-orthonormalization of Vk can be simplified as follows1:

• Project the vectors of BVk−1 out of Δk−1:

Δk−1 ←
(
I − BVk−1

(
V T
k−1B

2Vk−1

)−1
V T
k−1B

)
Δk−1

• B-orthonormalize Δk−1

1This simplification comes from the fact that Vk−1 was already B-orthonormalized in the previous
iteration.

46

Algorithm 5 TraceMin-Davidson algorithm

Require: Block size s
Maximum subspace dimension d > 2s,
V1 ∈ R

n×s with rank s,
A and B symmetric, with B also positive definite

1: Initialize current subspace dimension c = s
2: for k = 1→ maxit do
3: B-orthonormalize Vk

4: Perform the Rayleigh-Ritz procedure to obtain the approximate eigenpairs
(AYk ≈ BYkΘk)

5: Form Hk = V T
k AVk

6: Compute all eigenpairs of Hk, HkXk = XkΘk

Assume the eigenvalues are sorted in ascending order θ1 ≤ θ2 ≤ · · · ≤ θc
7: Compute the Ritz vectors Yk = VkXk

Let Yk,s denote the s Ritz vectors corresponding to the smallest Ritz values
8: Compute the residual vectors Rk = AYk − BYkΘk

9: Test for convergence
10: if c+ s > d then
11: Restart with Vk = Yk,s and c = s
12: end if
13: Solve the saddle point problem[

A BYk,s

Y T
k,sB 0

] [
Δk

Lk

]
=

[
AYk,s

0

]
(5.1)

approximately to obtain Δk

14: Add Δk to the subspace, Vk+1 = [Vk Δk]
15: end for

47

• Add Δk−1 to the subspace:

Vk = [Vk−1 Δk−1]

Additionally, we only need to compute the s new vectors of AVk and the corresponding

columns of Hk = V T
k AVk.

5.2 Selecting the block size

Unlike TraceMin, we can run TraceMin-Davidson with a block size smaller than

the number of desired eigenpairs. Using a larger block size involves more work per

TraceMin-Davidson iteration but has the potential to reduce the number of required

TraceMin-Davidson iterations. Additionally, using a block size s > 1 allows us to

use block operations in the linear solve step, which can be more effective on parallel

architectures. One further consideration in choosing the block size is its effect on

global convergence. If the block size is smaller than the multiplicity of the eigenvalues

sought, we may miss the correct multiplicity. We now demonstrate this with an

example.

We seek the four smallest eigenpairs of the 3D discretization of the Laplace opera-

tor on a unit cube of order n = 1000. The four smallest eigenvalues are approximately

(0.243, 0.480, 0.480, 0.480). Note that the second eigenvalue has a multiplicity of three.

We will run TraceMin-Davidson twice, once with a block size of s = 1, and once with

a block size of s = 4. Our initial subspace contains four vectors, and we do not use

restarts. In both cases, we consider an eigenpair as having converged if the absolute

residual ‖r = Ay − θBy‖2 < 10−5. Figure 5.1 shows that with a block size of s = 4,

TraceMin-Davidson converges to the true eigenvalues (plotted as black circles) after

10 iterations. With a block size of s = 1, TraceMin-Davidson reports convergence

after 22 iterations. With the larger block size, TraceMin-Davidson would likely scale

better due to its capacity to use block operations during the linear solve step. The

most important reason to use a larger block size here though is this: when we used a

block size of s = 1, we did not converge to the correct eigenpairs. TraceMin-Davidson

48

returned four eigenpairs with a residual ‖r‖2 < 10−5, but the fourth one it returned

was 0.716, which is the fifth eigenvalue of this particular problem. If this were not

a small synthetic problem, we would have no idea that the eigenpairs returned by

TraceMin-Davidson were incorrect. For this reason, we set the default block size to

be the same as the desired number of eigenpairs in our TraceMin-Davidson imple-

mentation. If the user has some knowledge about the spectrum, he may choose to

use a smaller block size.

5.3 Computing harmonic Ritz values

Each TraceMin-Davidson iteration essentially consists of two parts: compute a

B-orthonormal basis V of a subspace K, then compute an approximate eigenvector2

y based on that subspace such that

y ∈ K (5.2)

and the Galerkin condition

r ⊥ K (5.3)

is satisfied, where r = Ay− θBy. From conditions 5.2 and 5.3, we know that y = V u

where u is the eigenvector corresponding to the desired eigenvalue of the following

small dense problem

V TAV u = θu (5.4)

This is commonly known as the Rayleigh-Ritz procedure. These Ritz pairs (θ, y)

tend to approximate extreme eigenpairs better than interior ones [19]. If we wish to

compute interior eigenpairs, we may instead compute the harmonic Ritz pairs.

Instead of using an orthogonal projection method as we did before, we can use an

oblique projection method. Let K be the space spanned by the vectors of V as before

2Here, we focus on the single vector case, but this also applies to blocks of vectors.

49

0 5 10 15 20 25
0

1

2

3

4

5

6

7
TraceMin−Davidson with block size 4

Number of TraceMin−Davidson iterations

R
itz

 v
al

ue
s

0 5 10 15 20 25
0

1

2

3

4

5

6

7
TraceMin−Davidson with block size 1

Number of TraceMin−Davidson iterations

R
itz

 v
al

ue
s

Figure 5.1.: The effect of block size on TraceMin-Davidson’s convergence

50

0 5 10 15 20 25
10

−15

10
−10

10
−5

10
0

TraceMin−Davidson with block size 1

Number of TraceMin−Davidson iterations

E
rr

or
 in

 R
itz

 v
al

ue
s

0 5 10 15 20 25
10

−15

10
−10

10
−5

10
0

TraceMin−Davidson with block size 4

Number of TraceMin−Davidson iterations

E
rr

or
 in

 R
itz

 v
al

ue
s

Figure 5.2.: The effect of block size on TraceMin-Davidson’s convergence (continued)

51

and L = L−1AL−T
K, where B = LLT is the Choleski factorization of B. We seek an

approximate eigenvector y such that

y ∈ K (5.5)

and the Petrov-Galerkin condition

r ⊥ L (5.6)

As before, we have y = V u where u is the eigenvector corresponding to the desired

eigenvalue of a slightly different eigenvalue problem

V̂ TAB−1AV̂ u = θV̂ TAV̂ u (5.7)

where V̂ = L−TV ; if this is a standard eigenvalue problem (B = I), we have

V TA2V u = θV TAV u (5.8)

instead. Assuming W = L−1AV is an orthonormal basis of L, our problem can be

rewritten as

Ŵ TA−1Ŵu =
1

θ
u (5.9)

(where Ŵ = LW) making this method mathematically equivalent to using an or-

thogonal projection process for computing the eigenpairs of A−1. The harmonic Ritz

vectors maximize Rayleigh quotients for A−1, so they can be interpreted as the best

information one has for the smallest magnitude eigenvalues [19]. We now present

a small problem demonstrating how the use of harmonic Ritz values can benefit

TraceMin-Davidson.

We wish to compute the four smallest eigenpairs of an Anderson matrix of order

n = 64 with an absolute residual ‖r‖2 < 10−5; the eigenvalues of interest are (0.1391,

-0.3688, 0.5609, -0.9419). We will use a block size of s = 1, an initial subspace of five

vectors, and no restarts. Figure 5.3 shows that over time, we start converging to the

52

correct eigenvalues (plotted as black circles) whether or not we compute the harmonic

Ritz values. However, we see far more oscillation in the standard Ritz values than the

harmonic ones. For instance, we appear to have “lost” the Ritz value approximating

-0.9419 at iteration 21. That Ritz vector is still in the subspace; the corresponding

Ritz value just isn’t the smallest. That may seem like a minor detail at first, but

remember that when using an eigensolver with expanding subspaces, the order of the

Ritz pairs matters. We are going to use the first Ritz vector to compute the next

addition to the subspace. If the vectors were sorted poorly, we will not get a good

addition to the subspace. When the Ritz values are sorted in such a way, we may face

trouble computing Ritz shifts. We may even accidentally discard the Ritz vectors

of interest upon restarting, which would be disastrous. By computing the harmonic

Ritz values, we have changed how the Ritz pairs are sorted and see far less of this

concerning oscillatory behavior.

5.4 Comparison of TraceMin and TraceMin-Davidson

Figure 5.6 presents a comparison of TraceMin and TraceMin-Davidson on the 3D

discretization of the Laplace operator on the unit cube of order n = 1000. We would

like to find the four smallest eigenpairs with an absolute residual of ‖r‖2 < 10−5.

TraceMin was run with a subspace dimension of s = 8, and TraceMin-Davidson added

8 vectors to the basis at each iteration. Both TraceMin and TraceMin-Davidson will

solve a saddle point problem with 8 right hand sides at each iteration; the only

difference in the amount of work required per iteration is in the Rayleigh-Ritz pro-

cedure, but this is very cheap in comparison to solving the saddle point problem. As

figure 5.6 shows, TraceMin converged in 20 iterations, but TraceMin-Davidson only

required 8. This is because TraceMin-Davidson was extracting its Ritz pairs from a

larger subspace. In general, TraceMin-Davidson will converge in fewer iterations than

TraceMin, but it does require far more storage than TraceMin.

53

0 5 10 15 20 25 30
−2

−1

0

1

2
TraceMin−Davidson with standard Ritz values

Number of TraceMin−Davidson iterations

R
itz

 v
al

ue
s

0 5 10 15 20 25 30
−2

−1

0

1

2
TraceMin−Davidson with harmonic Ritz values

Number of TraceMin−Davidson iterations

R
itz

 v
al

ue
s

Figure 5.3.: A comparison of TraceMin-Davidson with standard and harmonic Ritz
values

54

0 5 10 15 20 25 30
10

−15

10
−10

10
−5

10
0

TraceMin−Davidson with standard Ritz values

Number of TraceMin−Davidson iterations

E
rr

or
 in

 R
itz

 v
al

ue
s

0 5 10 15 20 25 30
10

−15

10
−10

10
−5

10
0

TraceMin−Davidson with harmonic Ritz values

Number of TraceMin−Davidson iterations

E
rr

or
 in

 R
itz

 v
al

ue
s

Figure 5.4.: A comparison of TraceMin-Davidson with standard and harmonic Ritz
values (continued)

55

0 5 10 15 20 25 30
−4

−2

0

2

4

6

8

Number of TraceMin−Davidson iterations

T
ra

ce

0 5 10 15 20 25 30
10

−15

10
−10

10
−5

10
0

10
5

Number of TraceMin−Davidson iterations

E
rr

or
 in

 tr
ac

e

Standard Ritz values
Harmonic Ritz values

Standard Ritz values
Harmonic Ritz values

Figure 5.5.: A comparison of TraceMin-Davidson with standard and harmonic Ritz
values (continued)

56

Number of eigensolver iterations
0 5 10 15 20

T
ra

ce

0

5

10

15

20

TraceMin
TraceMin-Davidson

Number of eigensolver iterations
0 5 10 15 20

E
rr

or
 in

 tr
ac

e

10-15

10-10

10-5

100

105

TraceMin
TraceMin-Davidson

Figure 5.6.: A comparison of TraceMin and TraceMin-Davidson

57

6 IMPLEMENTATIONS

So far, we have discussed how to find a few of the smallest eigenpairs of the generalized

eigenvalue problem Ax = λBx, but what if we have a different goal? For instance, we

may want to compute a few of the largest eigenpairs, or we may wish to compute all of

the eigenpairs within some interval. This chapte addresses how we modify TraceMin

to solve various types of problems, divided into the following categories.

• Finding a very small number of interior or extreme eigenpairs (using TraceMin-

Standard 1)

• Finding out whether there are any eigenvalues in a given interval, and finding

a small subset of eigenpairs if they exist (using TraceMin-Sampling)

• Finding all eigenpairs in an interval, preferably one containing many eigenpairs

(using TraceMin-Multisectioning)

6.1 Computing a few eigenpairs: TraceMin-Standard

In this section, we discuss how to use spectral transformations to compute a

different target than the eigenpairs of smallest magnitude. We also discuss a special

case known as the computation of the Fiedler vector.

6.1.1 Computing the eigenvalues of largest magnitude

If we wish to find the eigenvalues of largest magnitude (with their associated

eigenvectors) of the problem

Ax = λBx (6.1)

1Although we refer to this implementation as TraceMin-Standard, nothing would change if we used
TraceMin-Davidson instead. This also applies to TraceMin-Sampling and TraceMin-Multisectioning.

58

where A and B are symmetric positive definite, this is equivalent to computing the

smallest eigenvalues of

Bx = σAx (6.2)

where σ = 1
λ
. We can run TraceMin on the problem of Equation 6.2 to obtain the

solution of our target problem.

Note that if we wish to compute the largest eigenvalues of a standard eigenvalue

problem (B = I), TraceMin’s saddle point problem is greatly simplified. The solution

to the saddle point problem is

V = AY
(
Y TA2Y

)−1
(6.3)

All that is required to solve this problem is an inner product and the solution of a

small dense linear system with many right hand sides2. We do not need to solve a

single linear system of the form Ax = b.

If we wish to compute the largest eigenvalues of a standard eigenvalue problem,

Ritz shifts should be disabled, since they would require solving linear systems of the

form (I − ωA) x = b, where ω is our desired shift. Even if the eigenvalue distribution

is poor, performing many iterations without the shift will probably be cheaper than

solving the linear systems required by the use of a shift.

6.1.2 Computing the eigenvalues closest to a given value

If we would like to compute the eigenpairs nearest a given value α, we need only

solve the eigenproblem

(A− αB) x = (λ− α)Bx (6.4)

If (λ− α, x) is an eigenpair of (6.4), then (λ, x) is an eigenpair of the original problem

Ax = λBx.

2Technically, we do not need to solve those small dense linear systems because AY and AY
(
Y TA2Y

)
lie in the same subspace.

59

6.1.3 Computing the absolute smallest eigenvalues

If we wish to compute the absolute smallest eigenvalues of a matrix, we may

simply shift to the left edge of the spectrum and run TraceMin as we normally would.

However, this requires us to be able to bound the eigenvalues. We can use the

Gerschgorin circle theorem to determine some β such that A − βB is symmetric

positive semi-definite and compute the smallest magnitude eigenpairs of 6.4. The

β produced by the Gerschgorin circle theorem tends to be far from the smallest

eigenvalue, which means TraceMin will have a lackluster convergence rate, but we

have already studied how dynamic Ritz shifts can help solve this problem.

6.1.4 Computing the Fiedler vector

In this case, we are interested in the eigenvector corresponding to the smallest

nonzero eigenvalue of a standard eigenvalue problem Ax = λx, where A is symmetric

positive semi-definite. This eigenvector, known as the Fiedler vector, tells us how to

reorder a matrix to either reduce the bandwidth or bring large elements toward the

diagonal. If the graph consists of only one strongly connected component3, the graph

Laplacian A’s null space is exactly one vector, the vector of all 1s4.

The fact that A is singular can cause problems for some eigensolvers. However,

we have already demonstrated that TraceMin does not rely on accurate linear solves.

Furthermore, if we project this null vector out of the set of basis vectors Vk at each

TraceMin iteration, all of the linear systems we solve will be consistent.

3If the graph consists of multiple strongly connected components, it can be split up into many
smaller eigenproblems, one per strongly connected component.
4We assume for simplicity that A was not normalized.

60

6.1.5 Computing interior eigenpairs via spectrum folding

If we wish to compute the interior eigenpairs of a standard eigenvalue problem

Ax = λx, we may instead solve the equivalent eigenvalue problem

A2x = λ2x (6.5)

This is known as spectrum folding5. Instead of seeking the smallest magnitude eigen-

pairs of the symmetric indefinite matrix A, i.e. the eigenvalues closest to zero (which

can be positive or negative), we seek the smallest magnitude eigenpairs of the sym-

metric positive definite operator A2. Note that it is a bad idea to form the matrix

A2 explicitly, so we apply that operator implicitly. Working with this operator has

several side effects. The most obvious side effect is that we have squared the condition

number of the matrix, so it is now more difficult to solve the linear systems arising at

each TraceMin iteration. Again, TraceMin does not rely on accurate linear solves, so

this should not impede TraceMin’s convergence as much as other eigensolvers. The

other effect of this transformation is that instead of each eigenpair converging at the

rate
λi

λs+1

(6.6)

they now converge at the faster rate6

(
λi

λs+1

)2

(6.7)

Also note that instead of solving a linear system of the form A2x = b at each TraceMin

iteration, we can instead solve two linear systems each of the form Ax = b.

5TraceMin and TraceMin-Davidson are both capable of computing interior eigenpairs without using
spectrum folding, but the trace-minimization property no longer holds. If we use spectrum folding,
TraceMin’s global convergence proof still holds.
6This convergence rate helps us to estimate how many iterations TraceMin would require if the linear
systems were solved directly. When we use an iterative solver, we will likely need more TraceMin
iterations to converge.

61

To demonstrate the effect of spectrum folding, let us again solve the Anderson

problem of section 5.3. We will compute the four smallest eigenpairs of that same

Anderson matrix of order n = 64 with an absolute residual ‖r‖2 < 10−5 using a block

size of s = 1, an initial subspace of five vectors, and no restarts. As a reminder,

the eigenvalues of interest are (0.1391, -0.3688, 0.5609, -.9419). This time, we will

try spectrum folding to compute the eigenpairs of smallest magnitude. Figure 6.1

shows that whether we used the standard Ritz extraction, harmonic Ritz extraction,

or spectrum folding, we converged to the correct eigenvalues. Using a harmonic

Ritz extraction, TraceMin-Davidson took 23 iterations to converge; with spectrum

folding, we only required 17 TraceMin-Davidson iterations (since the spectrum of

eigenvalues was improved). Because the matrix was so small, we formed A2 explicitly

for spectrum folding and used a direct solver to solve the saddle point problem arising

at each TraceMin-Davidson iteration. As a result, spectrum folding would have been

the fastest method in this case. For larger problems where that is infeasible, spectrum

folding will require roughly twice as much work per TraceMin-Davidson iteration (as

compared to not using spectrum folding on that same problem). If spectrum folding

reduces the number of required TraceMin-Davidson iterations by a factor of two or

greater, it will be effective; otherwise, it may result in a longer running time.

Although it may appear in figures 6.1, 6.2, and 6.3 that the trace is not decreasing

monotonically in the case of spectrum folding, that is only because the trace presented

is the trace of XTAX. In spectrum folding, the trace of XTA2X is being decreased

monotonically (as figures 6.4 and 6.5) demonstrate. When the Rayleigh quotients

xT
i A

2xi become very close to λ2
i (the square of the true eigenvalues), the Rayleigh

quotients xT
i Axi approach λi as well.

6.1.6 Our parallel TraceMin-Standard implementation

We chose to write our TraceMin and TraceMin-Davidson implementations using

the Trilinos framework; our code is publicly available and can be downloaded from

62

Number of TraceMin-Davidson iterations
0 5 10 15 20 25 30

R
itz

 v
al

ue
s

-2

-1

0

1

2
TraceMin-Davidson with spectrum folding

Number of TraceMin-Davidson iterations
0 5 10 15 20 25 30

R
itz

 v
al

ue
s

-2

-1

0

1

2
TraceMin-Davidson with standard Ritz values

Number of TraceMin-Davidson iterations
0 5 10 15 20 25 30

R
itz

 v
al

ue
s

-2

-1

0

1

2
TraceMin-Davidson with harmonic Ritz values

Figure 6.1.: A demonstration of the effect of spectrum folding

63

Number of TraceMin-Davidson iterations
0 5 10 15 20 25 30

E
rr

or
 in

 R
itz

 v
al

ue
s

10-15

10-10

10-5

100
TraceMin-Davidson with spectrum folding

Number of TraceMin-Davidson iterations
0 5 10 15 20 25 30

E
rr

or
 in

 R
itz

 v
al

ue
s

10-15

10-10

10-5

100
TraceMin-Davidson with standard Ritz values

Number of TraceMin-Davidson iterations
0 5 10 15 20 25 30

E
rr

or
 in

 R
itz

 v
al

ue
s

10-15

10-10

10-5

100
TraceMin-Davidson with harmonic Ritz values

Figure 6.2.: A demonstration of the effect of spectrum folding (continued)

64

Number of TraceMin-Davidson iterations
0 5 10 15 20 25 30

T
ra

ce

-1

0

1

2

3

4

5

6

7

8

9

Spectrum folding
Standard Ritz values
Harmonic Ritz values

Number of TraceMin-Davidson iterations
0 5 10 15 20 25 30

E
rr

or
 in

 tr
ac

e

10-15

10-10

10-5

100

105

Spectrum folding
Standard Ritz values
Harmonic Ritz values

Figure 6.3.: A demonstration of the effect of spectrum folding (continued)

65

Number of TraceMin-Davidson iterations
0 2 4 6 8 10 12 14 16 18

R
ay

le
ig

h
qu

ot
ie

nt
 o

f A
2

0

5

10

15

20

25

30

35

Number of TraceMin-Davidson iterations
0 2 4 6 8 10 12 14 16 18

R
ay

le
ig

h
qu

ot
ie

nt
 o

f A

-1

-0.5

0

0.5

1

1.5

Figure 6.4.: A demonstration of the effect of spectrum folding (continued)

66

Number of TraceMin-Davidson iterations
0 2 4 6 8 10 12 14 16

E
rr

or
 in

 R
ay

le
ig

h
qu

ot
ie

nt
 o

f A
2

10-10

10-8

10-6

10-4

10-2

100

102

Number of TraceMin-Davidson iterations
0 2 4 6 8 10 12 14 16

E
rr

or
 in

 R
ay

le
ig

h
qu

ot
ie

nt
 o

f A

10-10

10-8

10-6

10-4

10-2

100

102

Figure 6.5.: A demonstration of the effect of spectrum folding (continued)

67

the Trilinos website [20]. Trilinos contains a variety of linear system and eigenvalue

problem solvers (among other things) similar to PETSc/SLEPc [21–26], but unlike

PETSc, Trilinos supports block linear solves. Trilinos has impressive parallel scala-

bility, supports very large problems, and is effective on many different architectures

including GPUs. To make the spectral transformations of this section easier for the

user, we provided several example drivers demonstrating their use, all of which are

available in the Trilinos Doxygen documentation [27].

The sparse matrices A and B are stored in compressed sparse row format, using

a block row distribution 7. Tall dense matrices such as V and Y (referred to in

Trilinos as multivectors) are stored using a block row distribution as well. Small

dense matrices such as H = V TAV are replicated rather than distributed; each MPI

process owns a copy. Using this data distribution, the following distributed kernels

are required

• sparse matrix times multivector multiplication (referred to as a matvec)

• inner product of two multivectors

• B-orthonormalization of a multivector

• solution of a sparse symmetric linear system with multiple right hand sides

Within a node, we can choose to use OpenMP for shared memory parallelism, CUDA

for GPUs, or we can simply spawn more MPI processes8.

Our Trilinos implementation of TraceMin uses the matvec, inner product, and

B-orthnormalization routines defined in Trilinos, although it also allows users to

provide their own implementations of any of these operations 9. The Tpetra matvec

7This is how we chose to store the matrices for the test cases we will present later, but it is not a
requirement.
8Trilinos allows its users to specify a node type and switches its strategy for handling shared memory
computations based on that node type.
9Our TraceMin implementation only needs to know how a matrix multiplication works, as well as
how certain vector operations are performed; it does not need the matrices or vectors to be stored in
any specific way. This allows users to take advantage of any special structure their matrices might
have, or write code that performs well on unique architectures. It also means that TraceMin can be
used to solve problems where the matrix is never made explicitly available.

68

has been optimized to take advantage of the sparsity pattern of the matrix, and it

performs the minimum amount of communication required. Trilinos also contains

three different orthonormalization routines which can be used in parallel: modified

Gram-Schmidt [28], tall skinny QR [29, 30], or by using algorithm 6 which uses the

eigendecomposition of a small dense matrix to B-orthonormalize a set of vectors.

The Belos package of Trilinos contains many Krylov solvers capable of solving lin-

ear systems with multiple right hand sides. Some of these are block methods which

build one shared Krylov subspace for all right hand sides, and others are pseudo-

block, meaning they are mathematically equivalent to solving each linear system in-

dependently, but the communication and memory accesses are more effiecient. Block

methods can solve sets of linear systems of the form Axi = bi, where all right hand

sides bi are available simultaneously. In the case of TraceMin, we end up having

to solve linear systems of the form (A− ωiB) xi = bi if we choose to use multiple

dynamic Ritz shifts. Belos’ pseudoblock Krylov solvers are currently incapable of

solving linear systems with indexed operators such as we have here, so we wrote our

own pseudo-block MINRES which accepts indexed operators. This MINRES uses the

efficient parallel kernels we mentioned previously.

Algorithm 6 Orthnormalization via eigendecomposition

Require: B ∈ R
n×n symmetric positive definite

Vold ∈ R
n×s with rank s is the set of vectors to be B-orthonormalized

1: Form H2 = V T
oldBVold

2: Compute the eigendecomposition of H2, H2X2 = X2Θ2

3: Form Vnew = VoldX2Θ
−1
2

2 , which is B-orthonormal

6.2 TraceMin-Sampling

We are now interested in finding out whether any eigenvalues exist within a certain

interval. If so, we must obtain a few eigenpairs near a set of shifts within that interval.

These shifts can be handled completely independently.

69

We spawn a number of MPI processes equal to the number of desired shifts. As-

suming sufficient space is available, matrices A and B are replicated on each node.

Then we run a separate instance of TraceMin on each node, using a spectral transfor-

mation to find the eigenpairs nearest a given shift. This process requires no commu-

nication across nodes. The only thing hindering parallel scalability is the potential

for load imbalance.

Note that while this choice of MPI processes is optimal from a scalability stand-

point, it is by no means required. If it is infeasible to replicate A and B on each

node, we may also divide our MPI processes into small groups, perhaps 4 processes

per group. Then, each group of processes would store the matrices in a distributed

fashion. Instead of running one instance of TraceMin per MPI process, we could then

run one instance of TraceMin per group. There would then be a small amount of

MPI communication, but it would be limited to the processes within the individual

groups. There would be no global communication required.

If the number of desired shifts is greater than the number of groups of MPI

processes, each group would be assigned a small subset of shifts and run TraceMin

once for each shift. A potential load balancing strategy for such a case is explored in

the next section.

6.3 TraceMin-Multisectioning

In this case, we want to find all the eigenpairs within a given interval (which

we refer to as the global interval). Assuming this interval contains many eigenpairs,

it would be impractical to run a single instance of TraceMin to compute all the

eigenpairs together; we might not even have enough space to store all of the required

eigenvectors. We need to break the interval up into smaller pieces, each of which can

be solved independently.

We propose a method similar in nature to adaptive quadrature. In adaptive

quadrature, you want to calculate the integral of some function on a given interval.

70

If the interval is “bad,” namely the error estimate is too large, then you break it in

two and repeat the process with each half. You continue recursing in this way until

you have a set of satisfactory intervals; whether an interval is satisfactory is defined

by a tolerance parameter.

In the case of TraceMin-Multisectioning, we start with some global interval of

interest just like in adaptive quadrature. Then, we evaluate whether the interval is

“bad,” meaning it contains too many eigenvalues. If so, it is divided in half and

the procedure is repeated. This process continues recursively until we have a set of

satisfactory intervals; each interval must contain at most ne eigenvalues, where ne is

a parameter defined by the user. Figure 6.6 illustrates the multisectioning procedure.

Let us assume an interval containing 20 eigenvalues is sufficiently small (i.e. ne =

20). In the first image, we start with the interval containing all eigenvalues in the

range [0, 1000]. We know there are 50 eigenvalues in that interval. Since that is too

many, we divide the interval in half and obtain two smaller intervals: [0, 500], which

contains 30 eigenvalues, and [500, 1000], which contains 20. The second subinterval is

sufficiently small and does not need to be subdivided further. The first one, however,

gets divided into the intervals [0, 250] and [250, 500], each of which contain fewer than

20 eigenvalues. In the end, rather than running TraceMin on the interval [0, 1000],

we run 3 independent instances of TraceMin on the intervals [0, 250], [250, 500], and

[500, 1000].

6.3.1 Obtaining the number of eigenvalues in an interval

To obtain the number of eigenvalues in a particular interval, we use a sparse fac-

torization method such as PARDISO [31,32], MUMPS [33,34], or WSMP to compute

the inertia of a shifted matrix [35]. If A−aB has p1 positive eigenvalues, and A− bB

has p2 positive eigenvalues, then Ax = λBx has p1 − p2 eigenvalues in the interval

(a, b).

71

(a) Initial interval

(b) After one subdivision

(c) Final result

Figure 6.6.: An example of interval subdivision for multisectioning

72

We now turn our attention to how these small intervals should be assigned to

various MPI processes.

6.3.2 Assigning the work

This section describes our two implementations of TraceMin-Multisectioning and

how they divide the work.

Static work allocation

One way to implement this is to use a static work allocation. Each MPI process

is assigned a segment of the large global interval to subdivide (as in Figure 6.7a).

Figure 6.7b shows the result of our subdivision: each MPI process now owns a set

of small intervals. Some intervals may turn out to be empty and get discarded; the

black line under process 0 denotes an empty interval that got discarded. Each of these

MPI processes now has a different amount of work, so we perform one communication

where the work gets redistributed so that each MPI process is given a roughly equal

number of subintervals on which to run TraceMin. The redistributed work is shown

in Figure 6.7c.

This implementation has the advantage of requiring absolutely no communication

after the work has been divided amongst the processes. However, there exists the

potential for a high load imbalance for two reasons. First of all, the number of

subintervals may not be evenly divisible by the number of processes. For instance,

if we obtain five subintervals from the recursive division of the large global interval

with four MPI processes, one process will be assigned twice as many intervals as the

others. More importantly though, the number of assigned intervals is not a good

estimate of the amount of work, since different intervals may require vastly different

amounts of work. One would expect intervals containing more eigenvalues to be more

computationally intensive, but the factor that most greatly influences the running

time is the distribution of eigenvalues in each interval, which is unknown until we’ve

73

(a) Each MPI process has one part of the interval to subdivide

(b) Each MPI process has subdivided their initial interval and now owns several smaller
intervals

(c) The final work distribution

Figure 6.7.: An example of static work allocation for TraceMin-Multisectioning with
3 MPI processes

run several iterations of TraceMin. Even if every MPI process were assigned the

same number of subintervals, and each subinterval contained the same number of

eigenvalues, there would still be potential for a massive load imbalance simply because

some intervals have a considerably more favorable eigenvalue distribution than others.

Dynamic work allocation

To remedy the load imbalance issues of the previous implementation, we can

dynamically assign the work as needed. This process is best described via an analogy.

At McDonalds (or any other large company), there is a hierarchical structure to

the employees. There is one CEO who is responsible for assigning work to the other

employees. That is his entire responsibility; he doesn’t go down to the kitchen and

flip burgers. McDonalds also employs thousands of workers who are only responsible

for doing the work, i.e. flipping burgers. These workers never communicate with the

CEO directly because that would be overwhelming for the CEO. Instead, they are

divided up into groups based on their location, and each group has a store manager.

74

The store manager is responsible for relaying important messages between the workers

and the CEO. Unlike the CEO, the store manager is also required to flip burgers.

In this TraceMin implementation, we divide the MPI processes into three general

categories similar to the categories of McDonalds employees:

• master : similar to the CEO, responsible for assigning work

• worker : similar to the burger-flippers, responsible for doing work on an indi-

vidual interval

• group leader : similar to the store manager, responsible for work and communi-

cation

The MPI processes are broken up into groups consisting of a leader and many

workers. Each group handles one interval at a time (which has been assigned by

the master). There are two types of communication for two levels of parallelism.

The master sends messages to the individual group leaders, informing them of which

subinterval their group is expected to process. The group leader and workers collabo-

rate to run TraceMin on their assigned subinterval. Figure 6.8 illustrates this process

with an example.

Which method to choose

With very few MPI processes, it does not make sense to use a dynamic work allo-

cation, since it prevents one MPI process from doing any useful work; it is preferable

to use the static work allocation in that case. If there are enough MPI processes for

the load imbalance to become apparent, the dynamic work allocation works better.

75

(a) The master maintains a list of work that still needs to be
done. Group 1 has a large interval that must be subdivided.

(b) Group 1 performs a factorization to divide its interval in two.
It keeps one of the subintervals, and the group leader sends the
other to the master.

Figure 6.8.: A demonstration of TraceMin’s dynamic load balancing

76

(a) The master has added the subinterval (500,1000) to the
list of incomplete work. Meanwhile, group 1 runs TraceMin
on the small interval (0,500).

(b) Group 1 has found the 10 eigenvalues in the interval
(0,500) and needs more work. The group leader requests
more work from the master.

Figure 6.8.: A demonstration of TraceMin’s dynamic load balancing (continued)

77

(a) The master sends an interval from its list of incomplete work
to group leader 1.

(b) Group leader 1 relays this message to the workers in its
group, since the master never directly communicated with them.

Figure 6.8.: A demonstration of TraceMin’s dynamic load balancing (continued)

78

(a) Group 1 runs TraceMin on the interval (1000,1250).

Figure 6.8.: A demonstration of TraceMin’s dynamic load balancing (continued)

79

7 COMPETING EIGENSOLVERS

We compare TraceMIN with several state of the art packages for computing eigenpairs

of sparse symmetric eigenvalue problems such as

• SLEPc: an eigensolver package built on top of Argonne National Laboratory’s

PETSc, which implements a variety of different eigensolvers [22–26]

• Anasazi: the eigensolver package of Sandia National Laboratory’s Trilinos li-

brary [20,36]

• FEAST: Eric Polizzi’s contour integration eigensolver package [37, 38]

The methods included in these packages are described in this section.

7.1 Arnoldi, Lanczos, and Krylov-Schur

These three methods are very similar to the power iteration for computing the

largest eigenpair of a matrix, except that the power iteration uses a constant sub-

space dimension (like TraceMin) and these methods use expanding subspaces (like

TraceMin-Davidson). The basic Arnoldi iteration generates a Krylov subspace of A

one vector at a time as in algorithm 7, then computes the eigenpairs of V TAVX =

XΘ, where V is the basis of that Krylov subspace1. The vectors Y = V X are approxi-

mate eigenvectors of A, and the diagonal entries of Θ are the approximate eigenvalues.

When the subspace becomes too large, we restart, keeping the most important vectors

of the subspace and discarding the rest (just like TraceMin-Davidson). We can add

one vector to the subspace at each iteration, or many if we’re using block-Arnoldi.

1In the Arnoldi iteration, V TAV is upper Hessenberg. If A is symmetric, V TAV is tridiagonal and
we have the Lanczos iteration.

80

Note that this method cannot compute the eigenpairs of a generalized eigenvalue

problem without a spectral transformation (i.e. B−1Ax = λx).

If we seek the smallest eigenpairs of a matrix, we generally work with A−1 rather

than A, which is referred to as shift-and-invert mode. Note that we would never form

the matrix A−1 explicitly; at each iteration, we must solve a linear system Avk = vk−1.

We may use either a direct or preconditioned iterative method, but the solution must

be accurate. In general, if we want the relative residual of our eigenvalues to be less

than 10−q, these linear systems should be solved with a relative residual no more than

10−q−1.

Algorithm 7 Arnoldi iteration

Require: A ∈ R
n×n

v0 ∈ R
n×1

1: v1 =
v0

‖v0‖2
2: for k = 2→ maxit do
3: vk = Avk−1

4: for j = 1→ k − 1 do
5: vk = vk − vjv

T
j vk

6: end for
7: vk =

vk
‖vk‖2

8: end for

Krylov-Schur is very similar to Arnoldi apart from how restarting is handled [39,

40]. When Arnoldi is restarted with a set of vectors V0, it expects V
T
0 AV0 to still be

upper-Hessenberg. Krylov-Schur relaxes the definition of an Arnoldi decomposition

to avoid the difficulties Arnoldi has with deflation and restarting. Krylov Schur is

implemented in the eigensolver package SLEPc, and a block form exists in Anasazi.

Both forms are capable of using shift-and-invert mode, so we chose to run SLEPc’s

Krylov-Schur with shift-and-invert and Anasazi’s block Krylov-Schur without shift-

and-invert2.

2In the absence of any spectral transformations, the only difference between using Krylov-Schur to
compute the smallest eigenpairs or the largest is which vectors are kept upon restart.

81

7.1.1 Krylov-Schur with multisectioning

SLEPc’s Krylov-Schur implementation is capable of multisectioning, but it must

process each subinterval sequentially. All processes call the sparse factorization pack-

age MUMPS to factor the matrix in parallel [33, 34]. Because the MPI processes

can not work independently, there is the potential for an overwhelming amount of

communication, and Krylov-Schur will scale as MUMPS scales. Note that in our

TraceMin-multisectioning implemention, MUMPS is never called by all processes si-

multaneously.

7.2 Locally Optimal Block Preconditioned Conjugate Gradient

The Locally Optimal Preconditioned Conjugate Gradient method minimizes (or

maximizes) the generalized Rayleigh quotient at each iteration using a three term

recurrence e.g.

yi+1 = arg min
y∈span{yi,zi,yi−1}

ρ (y) =
yTAy

yTBy

where z = M−1r is the preconditioned residual [41]. The solution to this minimiza-

tion problem is obtained via the Rayleigh-Ritz procedure, as outlined in algorithm

8. Although this algorithm demonstrates the single vector case, one can choose to

use blocks instead, obtaining the Locally Optimal Block Preconditioned Conjugate

Gradient method (LOBPCG).

This method may experience trouble in the B-orthonormalization step if the it-

erations stagnate, because in that case yi ≈ yi−1. It is also only capable of finding

extreme eigenpairs. We will compare against both the Trilinos implementation and

SLEPC’s interface to BLOPEX, which is Andrew Knyazev’s own implementation [42].

7.3 Jacobi-Davidson

Jacobi-Davidson is an eigensolver which deals with the same constrained minimiza-

tion problem as TraceMin, using the same projected-Krylov method. It was published

82

Algorithm 8 Locally Optimal Preconditioned Conjugate Gradient

Require: A,B ∈ R
n×n, both symmetric positive definite

v1 ∈ R
n×1

1: for k = 1→ maxit do
2: yk =

vk
‖vk‖B

3: θk = yTk Ayk
4: rk = Ayk − θkByk
5: zk = M−1rk
6: if k > 1 then
7: Vk = [yk−1 yk zk]
8: else
9: Vk = [yk zk]
10: end if
11: B-orthonormalize Vk

12: H = V T
k AVk

13: Solve the small dense eigenvalue problem HX = XΘ
14: vk+1 = Vkx1, where x1 is the eigenvector corresponding to the smallest eigen-

value of H
15: end for

83

in 1996, 14 years after the TraceMin concept was first published by Ahmed Sameh

and John Wisniewski [9, 43]. In their 1996 publication, Sleijpen and van der Vorst,

applied it to the nonsymmetric case without a proof of global convergence. Later,

they popularized their scheme for the symmetric case for which TraceMIN proved

convergence much earlier. Unlike TraceMin, Jacobi-Davidson extracts its Ritz vec-

tors from a subspace that expands at each iteration; this expanding subspace concept

was later incorporated into the trace-minimization algorithm and given the name

TraceMin-Davidson in 2000 [17]. TraceMin and TraceMin-Davidson use a very con-

servative method to compute their shifts, whereas Jacobi-Davidson chooses the shifts

to be equal to the Ritz values. These Ritz values are frequently gross overestimates

for the true eigenvalues of a matrix and can result in very slow convergence, or con-

vergence to the wrong set of eigenpairs entirely. We will compare our eigensolver with

the SLEPc implementation of Jacobi-Davidson. In order to avoid convergence issues

caused by the original Jacobi-Davidson shifting strategy, the SLEPc developers chose

to avoid shifting until the residual becomes very small.

7.4 Riemannian Trust Region method

The Riemannian Trust Region (RTR) method is very similar to TraceMin in that

it also seeks to minimize the function

f̂Y (Δ) = trace

((
(Y −Δ)T B (Y −Δ)

)−1 (
(Y −Δ)T A (Y −Δ)

))
(7.1)

for all Δ ⊥B Y [44, 45]. Assuming Y has been B-orthonormalized, the Taylor series

expansion of f̂Y about Δ = 0 yields the following model, which is used by RTR

mRTR
Y (Δ) = trace

(
Y TAY

)− trace
(
2Y TAΔ

)
+

1

2
trace

(
2ΔT

(
AΔ− BΔY TAY

))
(7.2)

84

TraceMin approximates the Hessian of the matrix as 2A, giving us

mTM
Y (Δ) = trace

(
Y TAY

)− trace
(
2Y TAΔ

)
+

1

2
trace

(
2ΔTAΔ

)
(7.3)

RTR’s model is more accurate and provides a better (superlinear) convergence rate,

but the individual TraceMin iterations are cheaper.

In the absence of shifts, TraceMin tends to reduce the trace very quickly in its

first few iterations before the trace levels off; RTR does the opposite, reducing the

trace very slowly over the first few iterations due to the trust region constraint. Our

tests will show comparisons with Chris Baker’s RTR implementation in Trilinos [44].

7.5 FEAST

FEAST is Eric Polizzi’s eigensolver package, which was recently adopted into the

Intel Math Kernel Library. This eigensolver works by performing a contour integra-

tion at each iteration [37, 38]. As a result, FEAST treats all matrices as complex

and requires considerably more storage than TraceMin. It must solve many linear

systems (ZjB − A)Qj = V at each iteration, one for each contour point. Since all

input matrices are treated as complex, it is difficult to use iterative methods to solve

the systems. In our comparisons, we use FEAST v 2.1 with its default linear solver,

PARDISO [31,32].

Another result of the contour integration is that FEAST requires a lot of infor-

mation from the user. It needs to know both the interval containing all eigenvalues

of interest, as well as an accurate estimate of the number of eigenvalues within that

interval. Although FEAST is one of the few eigensolver packages currently capable

of multisectioning, it does require the user to explicitly provide the subintervals; it

does not determine them on its own like TraceMIN does.

85

Algorithm 9 FEAST

Require: A,B ∈ R
n×n, A symmetric and B symmetric positive definite

subspace dimension s
number of Gaussian quadrature points Ne

Gauss nodes ne, 1 ≤ j ≤ Ne weights ωj, 1 ≤ j ≤ Ne

desired interval [λmin, λmax]
V ∈ R

n×s

1: for k = 1→ maxit do
2: Set Q = 0, Q ∈ R

n×s

3: Set σ = (λmax − λmin) /2
4: for j = 1→ Ne do
5: Compute θj = − (π/2) (nj − 1)
6: Compute Zj = (λmax + λmin) /2 + σeiθj

7: Solve (ZjB − A)Qj = V
8: Compute Q = Q− (ωj/2)�

{
σeiθjQj

}
9: end for
10: Form AQ = QTAQ and BQ = QTBQ
11: Solve the eigenvalue problem AQX = BQXΣ
12: Compute the Ritz vectors Y = QX
13: Check convergence
14: V = BY
15: end for

86

8 NUMERICAL EXPERIMENTS

8.1 Target hardware

The TraceMIN algorithm can be implemented on any parallel computing plat-

form. This software implementation is aimed at the following broad class of parallel

architectures. We assume a distributed memory system consisting of a large number

of compute nodes that are interconnected via a high performance network, where

each node consists of several cores. Our results were obtained on the following archi-

tectures:

• a Linux cluster with multicore nodes. Each node has two 12-core Intel Xeon E5-

2697 v2 processors running at 2.7 GHz, with 64 GB of memory per node. These

nodes are also interconnected via a fast Infiniband switch. We will refer to this

architecture as endeavor -1. All programs were run with either 12 threads or

12 MPI processes per node on this architecture.

• a Linux cluster with multicore nodes. Each node has two 14-core Intel processors

running at 2.6 GHz, with 64 GB of memory per node. These nodes are also

interconnected via a fast Infiniband switch. We will refer to this architecture as

endeavor -2. All programs were run with either 14 threads or 14 MPI processes

per node on this architecture.

Since the Trilinos team is still working on improving the performance of their code

with OpenMP, we ran all Trilinos code (including our Trilinos-based implementations

of TraceMin and TraceMin-Davidson) with multiple processes per node. Similarly, we

ran the SLEPc tests with pure MPI. Both FEAST and our Fortran implementations

of TraceMin-Sampling and TraceMin-Multisectioning were run with multiple threads

per node.

87

8.2 Computing a small number of eigenpairs

In each case, we consider the desired eigenpairs to be converged if the relative

residual satisfies the following criteria

‖ri‖2
σi

< 10−5

where σi is the i-th Ritz value.

The experiments are conducted both with and without preconditioning on en-

deavor -2. The preconditioner M is chosen such that

M−1 =
((

I − A−1
0 A

)2
+
(
I − A−1

0 A
)
+ I

)
A−1

0

where A0 is the diagonal matrix obtained via SPAI(0) [46]; we have essentially per-

formed a small number of Richardson iterations.

Unless otherwise stated, each eigensolver used its default parameter values. Trace-

Min used a block size of s = 2p, where p is the number of desired eigenpairs.

TraceMin-Davidson used a block size of s = p and stores a maximum of 10 blocks

in the subspace V . Upon restart, TraceMin-Davidson retains the 2p Ritz vectors

corresponding to the smallest Ritz values and discards the rest. Both TraceMin and

TraceMin-Davidson use projected-MINRES to solve the saddle point problem at each

iteration if we do not use preconditioning. If we choose to take advantage of a pre-

conditioner, we use block-diagonal preconditioned MINRES to solve the saddle point

problems. Trilinos’ block Krylov-Schur used a block size of s = p and a maximum

subspace dimension of 10p. For SLEPc’s Krylov-Schur with shift-and-invert, we chose

to use MINRES as the inner linear solver with a tolerance of 10−6.

The results are summarized in tables 8.1, 8.2, and 8.3.

88

Table 8.1: Robustness of various solvers on our test problems.
yes denotes that a solver succeeded on this problem on all numbers of MPI processes,
and no means the solver failed for some reason

Anasazi SLEPc
Matrix TD BKS LOBPCG RTR KS LOBPCG JD
Poisson yes yes no yes no no no
Flan 1565 yes no no yes no no yes
Hook 1498 yes no no yes no no yes
cage15 yes yes yes yes yes yes yes
nlpkkt240 yes no no no no no yes

Table 8.2: Running time ratios of various solvers on our test problems (without
preconditioning)

Anasazi SLEPc
Matrix TD BKS LOBPCG RTR KS LOBPCG JD
Poisson 1.0 19.7 3.0 1.6 - - -
Flan 1565 1.0 - - 1.3 - - 2.1
Hook 1498 1.0 - - 3.3 - - 1.5
cage15 1.5 2.5 1.0 1.7 2.2 5.4 2.9
nlpkkt240 1.0 - - - - - 5.6

Table 8.3: Running time ratios of various solvers on our test problems (with precon-
ditioning)

Matrix TD LOBPCG RTR
Poisson 1.0 11.7 1.2
Flan 1565 1.0 1.2 1.8
Hook 1498 1.0 4.9 2.3
cage15 2.3 1.0 -

89

Figure 8.1.: Sparsity pattern of Laplace3D

8.2.1 Laplace3D

For this problem, A is the 3D discretization of the Laplace operator on a unit cube

of order 64 million with roughly 450m nonzeros (Figure 8.1). This matrix is symmetric

positive definite and diagonally dominant. We seek the four smallest eigenvalues

(
1.84× 10−4, 3.68× 10−4, 3.68× 10−4, 3.68× 10−4

)

along with their associate eigenvectors. Note that one of these eigenvalues has a

multiplicity of three.

In figure 8.2, it appears as though SLEPc’s Jacobi-Davidson is the fastest method;

it is roughly twice as fast as TraceMin-Davidson. However, since it uses a block size

90

of 1, SLEPc’s Jacobi-Davidson failed to capture the correct multiplicity of eigenvalue

3.68× 10−4. When we tried to increase the block size to 4, Jacobi-Davidson crashed.

Again, Jacobi-Davidson and TraceMin-Davidson are very similar, so if we had been

able to increase the block size, Jacobi-Davidson probably would have had comparable

performance to our code. LOBPCG converged on 8, 16, and 32 nodes, but it crashed

the rest of the time. Because we were not using a preconditioner, LOBPCG took

a large number of iterations and stagnated, causing an orthogonalization error that

resulted in termination of the program. SLEPc’s Krylov-Schur implementation failed

to converge in a reasonable amount of time because it took so long to solve the linear

systems accurately (over 13 hours on 4 nodes and 2 hours on 128 nodes). TraceMin-

Davidson was the fastest of the methods which found the correct eigenpairs, and it

had a nearly optimal speed improvement up to 128 nodes.

8.2.2 Flan 1565

Janna/Flan 1565 is a symmetric positive definite banded matrix in the Tim Davis

collection [47], representing a 3D model of a steel flange (Figure 8.3). It is order 1.5

million, with approximately 100 million nonzero entries. We seek the four smallest

eigenvalues and their associated eigenvectors.

Figure 8.4 shows that all methods scaled quite well up to 32 nodes, then began to

level off a bit. This is not surprising, given the relatively small size of the matrix and

the fact that we have not assured any kind of load balancing. TraceMin-Davidson was

the fastest method, though the other two related methods (Jacobi-Davidson and the

Riemannian Trust Region method) were also able to solve the problem in a reasonable

amount of time. Both the Trilinos and SLEPc implementations of LOBPCG failed

to solve this problem, presumably because the iterations stagnated and resulted in

a loss of orthogonality. Trilinos block Krylov-Schur failed to solve the problem in a

reasonable amount of time (over 25 hours on 2 nodes and 2 hours on 128 nodes), and

91

(a) Scalability comparison

(b) Ratio of running times

Figure 8.2.: A comparison of several methods of computing the four smallest eigen-
pairs of Laplace3D (without preconditioning)

92

Figure 8.3.: Sparsity pattern of Flan 1565

SLEPc’s Krylov-Schur with shift-and-invert failed to solve the linear system to the

required degree of accuracy and terminated.

If we try the same test with preconditioning, we obtain the results illustrated in

figure 8.5. Preconditioning took the running time of TraceMin-Davidson from 46s

down to 27s on 128 nodes, if we use the block diagonal preconditioned MINRES

previously described to solve the saddle point problem at each iteration. In fact, we

note that using the block diagonal preconditioning in this case is over twice as fast

as using projected MINRES. With preconditioning, the Trilinos implementation of

LOBPCG was able to converge on 2, 4, and 16 nodes because the preconditioner

caused the iterations to stagnate less frequently, but it still crashed most of the time.

93

(a) Scalability comparison

(b) Ratio of running times

Figure 8.4.: A comparison of several methods of computing the four smallest eigen-
pairs of Janna/Flan 1565 (without preconditioning)

94

(a) Scalability comparison

(b) Ratio of running times

Figure 8.5.: A comparison of several methods of computing the four smallest eigen-
pairs of Janna/Flan 1565 (with preconditioning)

95

8.2.3 Hook 1498

Janna/Hook 1498 is a symmetric positive definite banded matrix in the Tim Davis

collection, representing a 3D model of a steel hook (Figure 8.6). It is order 1.5 million,

with approximately 60 million nonzero entries. We seek the four smallest eigenvalues

and their associated eigenvectors.

Figure 8.7 shows that Jacobi-Davidson was the fastest method up to 16 nodes

(although TraceMin-Davidson was still competitive), but on larger numbers of nodes,

Jacobi-Davidson fails to scale well1. This is likely due to the fact that SLEPc is inca-

pable of using block or pseudo-block linear solvers. Because our TraceMin-Davidson

implementation uses pseudo-block solvers, it continued to scale up to 64 nodes. Once

again, both implementations of LOBPCG crashed due to orthogonalization errors,

and Krylov-Schur could not solve the linear systems to a sufficient degree of precision

in the shift-and-invert mode.

If we try the same test with preconditioning, we obtain the results of figure 8.8.

Preconditioning did not greatly impact the running time of TraceMin-Davidson, but

it did cause the Riemannian Trust Region method to converge a bit faster. It also

prevented LOBPCG from stagnating.

8.2.4 cage15

For this example, we will be computing the Fiedler vector of a directed weighted

graph with one strongly connected component 2, vanHeukelum/cage15 from the Tim

Davis collection; we will refer to this graph as G. G has approximately five million

rows and one hundred million nonzeros. Recall that the weighted graph Laplacian A

will be symmetric positive semi-definite with a null space of dimension 1. The null

vector is the scaled vector of all 1s, which we provided to all eigensolvers. We wish

1BKS was over 30 times slower than TraceMin-Davidson. It is not competitive for Hook 1498 and
has been excluded from figure 8.7b.
2In general, we would determine the strongly connected components using a Dulmage-Mendelsohn
permutation and treat each one as a separate problem.

96

Figure 8.6.: Sparsity pattern of Hook 1498

97

(a) Scalability comparison

(b) Ratio of running times

Figure 8.7.: A comparison of several methods of computing the four smallest eigen-
pairs of Janna/Hook 1498 (without preconditioning)

98

(a) Scalability comparison

(b) Ratio of running times

Figure 8.8.: A comparison of several methods of computing the four smallest eigen-
pairs of Janna/Hook 1498 (with preconditioning)

99

Figure 8.9.: Sparsity pattern of cage15

to find the smallest nonzero eigenvalue (the graph connectivity) and the associated

eigenvector, which is referred to as the Fiedler vector. For this problem, we increased

TraceMin’s block size to s = 6 and set the maximum number of vectors to be stored

in V to 20 for both TraceMin-Davidson and block Krylov-Schur.

Figure 8.10 shows a comparison between many different eigensolvers on this prob-

lem. We see that all methods performed very well because it was easy to solve linear

systems involving A. The Trilinos implementation of LOBPCG was the fastest, but

TraceMin-Davidson still performed quite well. The issue here was that the eigen-

values are clustered, and TraceMin-Davidson should have used a much weaker inner

tolerance than it did, since the outer convergence rate was going to be poor regardless.

100

Figure 8.11 shows that we still did very well on this problem, in comparison with the

other eigensolvers.

8.2.5 nlpkkt240

Schenk/nlpkkt240 is a symmetric indefinite KKT matrix in the Tim Davis col-

lection of order 27 million with approximately 800 million nonzeroes. We reordered

it to a banded matrix (figure 8.12), using symmetric reverse Cuthill-McKee, so that

the matrix vector multiplications would be more efficient3. We seek the four smalest

magnitude eigenvalues with their associated eigenvectors; note that these will be in-

terior eigenpairs rather than extreme ones. The Riemannian Trust Region method

and LOBPCG cannot compute interior eigenpairs without a spectral transformation

such as spectrum folding.

Figure 8.13 shows the running time of both TraceMin-Davidson and SLEPc’s

Jacobi-Davidson implementation, both of which performed a harmonic Ritz extrac-

tion. Trilinos BKS took a prohibitively long time to converge (over 3 hours on 128

nodes), and SLEPc’s Krylov-Schur with shift-and-invert failed to converge because

the Krylov solver was unable to solve the linear systems to a sufficient degree of pre-

cision. LOBPCG (with specturm folding) also took too much time to be competitve.

TraceMin-Davidson was over six times faster than Jacobi-Davidson, presumably be-

cause Jacobi-Davidson used more aggressive shifts which approximated eigenvalues

that were much larger than the ones we desired. We also see that TraceMin-Davidson

scaled almost perfectly, whereas Jacobi-Davidson did not scale as well on a large

number of nodes. This is presumably due to the fact that TraceMin-Davidson used

a pseudo-block solver, and SLEPc’s Jacobi-Davidson did not.

3Technically, since both Trilinos and SLEPc allow the user to provide an operator rather than
a matrix, we could have provided matvecs and linear solvers that took advantage of the special
structure of this matrix.

101

(a) Comparison between TraceMin-Davidson and other Trilinos eigensolvers

(b) Comparison between TraceMin-Davidson and several SLEPc eigensolvers

Figure 8.10.: A comparison of several methods of computing the Fiedler vector for
cage15

102

Figure 8.11.: Ratio of running times for computing the Fiedler vector of cage15

103

Figure 8.12.: Sparsity pattern of nlpkkt240 (after RCM reordering)

104

(a) Scalability comparison

(b) Ratio of running times

Figure 8.13.: A comparison of several methods of computing the four smallest eigen-
values of nlpkkt240

105

Table 8.4: Running time for TraceMin-Sampling on the Anderson problem

tolerance running time (s)
10−5 283
10−6 306
10−9 392

8.3 Sampling

The results in this section were obtained using a Fortran 90 implementation of

TraceMin, using PARDISO to solve the linear systems arising at each iteration. We

have converged when the relative residual

‖ri‖2
max (‖A‖1 , ‖B‖1)

< tol

These tests were run on endeavor -1.

8.3.1 Anderson model of localization

For this example, we will compute a few eigenpairs of an Anderson matrix of order

one million closest to a set of shifts (pictured in figure 8.14). We will compute the

four eigenvalues closest to 100 evenly spaced shifts in the interval [−1, 1] using 100

MPI processes. Table 8.4 shows that it only took us five minutes to compute the 400

desired interior eigenpairs.

8.3.2 Nastran benchmark (order 1.5 million)

We will compute a few eigenpairs of the Nastran benchmark of order 1.5 million

in this example. This is a generalized eigenvalue problem; the sparsity patterns of

A and B are plotted in figure 8.15. We will compute the 4 eigenvalues closest to

100 evenly spaced shifts in the interval [−0.01; 1, 461, 000] using 100 MPI processes.

106

Figure 8.14.: Sparsity pattern of the Anderson matrix

107

Table 8.5: Running time for TraceMin-Sampling on the Nastran benchmark of order
1.5 million

tolerance running time (s)
10−5 21
10−6 25
10−9 40

Table 8.6: Running time for TraceMin-Sampling on the Nastran benchmark of order
7.2 million

tolerance running time (s)
10−5 181
10−6 200
10−9 302

Table 8.5 shows that it only took about 30 seconds to compute the 400 desired interior

eigenpairs.

8.3.3 Nastran benchmark (order 7.2 million)

We will compute a few eigenpairs of the Nastran benchmark of order 7.2 million

in this example. This is a generalized eigenvalue problem; the sparsity patterns of

A and B are plotted in figure 8.16. We will compute the 4 eigenvalues closest to

100 evenly spaced shifts in the interval [−0.01; 2, 785, 937.5] using 100 MPI processes.

Table 8.6 shows that it only took a few minutes to compute the 400 desired interior

eigenpairs.

8.4 TraceMin-Multisectioning

In these examples, we seek all eigenpairs located in a large interval, with a relative

residual
‖ri‖2

max (‖A‖1 , ‖B‖1)
< 10−6

108

(a) Sparsity pattern of stiffness matrix A

0 5 10 15

x 10
5

0

5

10

15

x 10
5

nz = 804124

(b) Sparsity pattern of mass matrix B

Figure 8.15.: Sparsity patterns for the Nastran benchmark of order 1.5 million

109

(a) Sparsity pattern of stiffness matrix A

(b) Sparsity pattern of mass matrix B

Figure 8.16.: Sparsity patterns for the Nastran benchmark of order 7.2 million

110

Table 8.7: Running time comparison of FEAST and TraceMin-Multisectioning

Matrix Interval nev TraceMin FEAST Speedup

Nastran 1.5m [-0.01,1.461e6] 1000 59 s 121 s 2.2
Nastran 7.2m [-0.01,2785937.5] 1000 418 s - -
Anderson [-0.01,0.01] 1143 792 s 7910 s 10.0
af shell10 [2000,2250] 1045 37 s 274 s 7.3
dielFilterV3real [25,50] 2969 301 s 912 s 3.0
StocF-1465 [580,600] 4150 195 s 738 s 3.8

on the platform endeavor -2. This interval can contain thousands of eigenpairs, so

we will be running the multisectioning code previously described. TraceMin-Multi-

sectioning will subdivide the global interval until it has many smaller subintervals,

each containing at most 20 eigenvalues. We will use 1 MPI process per node, with

14 threads per process, using PARDISO to compute the inertia and solve the linear

systems.

We compared our code against both FEAST and SLEPc’s Krylov-Schur with

spectrum slicing. Since FEAST requires users to explicitly subdivide the interval

themselves, we divided it into p equally sized pieces, where p is the number of MPI

processes, and provided each MPI process with a single one of those pieces. We ran

FEAST with 14 threads per MPI process, with 1 MPI process per node. SLEPc’s

Krylov-Schur spectrum slicing implementation does dynamically subdivide the inter-

val, but the subintervals are dependent. As a result, they must be processed one at a

time, using all MPI processes on a single group, which can result in poor scalability.

No timing results are presented for SLEPc, since all tests failed with the error mes-

sage: “PETSC ERROR: Unexpected error in Spectrum Slicing! Mismatch between

number of values found and information from inertia.” The results are summarized

in table 8.7.

111

Figure 8.17.: Histogram of the eigenvalues of interest for the Nastran benchmark
(order 1.5 million)

8.4.1 Nastran benchmark (order 1.5 million)

We seek all the eigenpairs in the region [-0.01,1.461e6], which contains 1000 eigen-

pairs (figure 8.17). TraceMin and FEAST both performed reasonably well on this

problem up to 33 nodes (as shown in figure 8.18), then failed to continue scaling.

However, TraceMin-Multisectioning still managed to compute all 1000 eigenpairs in

roughly one minute on as few as 33 nodes, and it was over twice as fast as FEAST.

We also see that the subdivision of intervals, which could be considered to be a pre-

processing step, took less than 10% of the total running time. FEAST crashed on

both 2 and 3 nodes because it could not store so many eigenvectors on a single node

(along with the matrices A and B, and also the complex factorization).

112

(a) Scalability comparison

(b) Ratio of running times

Figure 8.18.: A comparison of several methods of computing a large number of eigen-
values of the Nastran benchmark (order 1.5 million)

113

(a) Amount of time spent in each stage (s)

(b) Percent of time spent in each stage

Figure 8.19.: Running time breakdown for TraceMin-Multisectioning on the Nastran
benchmark (order 1.5 million)

114

Figure 8.20.: Histogram of the eigenvalues of interest for the Nastran benchmark
(order 7.2 million)

8.4.2 Nastran benchmark (order 7.2 million)

We seek all the eigenpairs in the region [-0.01,2785937.5], which contains 1000

eigenpairs (figure 8.20). FEAST failed to run on any number of nodes in this case,

presumably because the complex factorization of such a large matrix took up too

much memory. TraceMin performed reasonably well on this problem up to 33 nodes

again (as shown in figure 8.18), then failed to continue scaling.

8.4.3 Anderson model of localization

We seek all the eigenpairs in the region [-0.01,0.01], which contains 1143 eigen-

pairs (figure 8.23). FEAST failed to run on a small number of nodes, again due to

memory issues. It failed to scale at all from 5 to 129 nodes since the vast majority

of the running time is spent on the factorization stage rather than solving linear sys-

tems; no matter how many subintervals we use, we still require the same number of

115

Figure 8.21.: A comparison of several methods of computing a large number of eigen-
values of the Nastran benchmark (order 7.2 million)

116

(a) Amount of time spent in each stage (s)

(b) Percent of time spent in each stage

Figure 8.22.: Running time breakdown for TraceMin-Multisectioning on the Nastran
benchmark (order 7.2 million)

117

Figure 8.23.: Histogram of the eigenvalues of interest for the Anderson model

factorizations. TraceMin-Multisectioning spent most of its time in the preprocessing

stage, since this matrix is so difficult to factor4. TraceMin-Multisectioning was still

10 times faster than FEAST on this problem.

8.4.4 af shell10

The matrix Schenk AFE/af shell10 (figure 8.26) arises from an AutoForm En-

gineering sheet metal forming simulation. We will compute all the eigenpairs in

the interval [2000,2250], which contains 1045 eigenvalues (figure 8.27). In this case,

TraceMin multisectioning scaled reasonably well up to 129 nodes (figure 8.28), while

FEAST did not. Figure 8.29 shows that we scaled well because factorizations were

cheap, and our processes did not spend a large amount of time idle.

4Recall that our matrix A has the same sparsity pattern as the 3D discretization of the Laplace
operator with periodic boundary conditions.

118

(a) Scalability comparison

(b) Ratio of running times

Figure 8.24.: A comparison of several methods of computing a large number of eigen-
values of the Anderson model

119

(a) Amount of time spent in each stage (s)

(b) Percent of time spent in each stage

Figure 8.25.: Running time breakdown for TraceMin-Multisectioning on the Anderson
model

120

Figure 8.26.: Sparsity pattern of af shell10

121

Figure 8.27.: Histogram of the eigenvalues of interest for af shell10

122

(a) Scalability comparison

(b) Ratio of running times

Figure 8.28.: A comparison of several methods of computing a large number of eigen-
values of af shell10

123

(a) Amount of time spent in each stage (s)

(b) Percent of time spent in each stage

Figure 8.29.: Running time breakdown for TraceMin-Multisectioning on af shell10

124

8.4.5 dielFilterV3real

Dziekonski/dielFilterV3real is an electromagnetics matrix of order 1.1 million pic-

tured in figure 8.30. We will compute all eigenpairs in the interval [25,50], which

contains 2969 eigenpairs (figure 8.31). Note that these eigenvalues are not evenly

distributed throughout the interval. FEAST fails on 2, 3, 5, 9, and 17 nodes because

it ran out of space (figure 8.32); the intervals closest to 26 are very dense and require

a great deal of storage. TraceMin did not run into storage issues because of its dy-

namic multisectioning strategy. Figure 8.33 shows that both the time spent factoring

the matrix and the time spent running the eigensolver scaled as we would expect,

but it did spent a large amount of time idle on large numbers of nodes, resulting

in suboptimal scalabiltiy on 129 nodes. TraceMin-Multisectioning was still 3 times

faster than FEAST.

8.4.6 StocF-1465

Janna/StocF-1465 is a fluid dynamics matrix of order 1.4 million pictured in figure

8.34. We will compute all eigenpairs in the interval [580,600], which contains 4150

eigenvalues (figure 8.35). Unlike the previous example, these eigenvalues are pretty

evenly distributed in the interval. FEAST still failed on 2, 3, 5, and 9 nodes, since the

number of vectors it needed to store was so large (figure 8.36). On 17 nodes, it has a

comparable running time to TraceMin, but it failed to scale beyond that point. Once

again, the factorization is the most expensive part, so the cost of running FEAST

will be roughly the same regardless of how many eigenvalues an interval contains.

TraceMin scaled well up to 129 nodes because in this case, there was plenty of work

to go around, so the MPI processes did not spend a great deal of time idle (figure

8.37).

125

Figure 8.30.: Sparsity pattern of dielFilterV3real

126

Figure 8.31.: Histogram of the eigenvalues of interest for dielFilterV3real

127

(a) Scalability comparison

(b) Ratio of running times

Figure 8.32.: A comparison of several methods of computing a large number of eigen-
values of dielFilterV3real

128

(a) Amount of time spent in each stage (s)

(b) Percent of time spent in each stage

Figure 8.33.: Running time breakdown for TraceMin-Multisectioning on dielFil-
terV3real

129

Figure 8.34.: Sparsity pattern of StocF-1465

130

Figure 8.35.: Histogram of the eigenvalues of interest for StocF-1465

131

(a) Scalability comparison

(b) Ratio of running times

Figure 8.36.: A comparison of several methods of computing a large number of eigen-
values of StocF-1465

132

(a) Amount of time spent in each stage (s)

(b) Percent of time spent in each stage

Figure 8.37.: Running time breakdown for TraceMin-Multisectioning on StocF-1465

133

9 FUTURE WORK

In this chapter, we will examine further improvements to the methods previously

discussed.

9.1 Improved selection of the tolerance for Krylov solvers within TraceMin

We have seen that TraceMin is capable of converging even when we use a modest

tolerance for the Krylov solver called at each iteration of TraceMin. The stricter

the inner tolerance, the fewer TraceMin iterations are required; however, strict inner

tolerances also increase the number of Krylov iterations required. The optimal inner

tolerance is based on the ratio of the desired eigenvalue to the smallest eigenvalue

outside of our desired subspace
λi

λs+1

If this ratio is large (meaning the eigenvalues are clustered), we should use a lenient

inner tolerance; if the ratio is closer to 0 (meaning the eigenvalues are well separated),

we should use a stricter inner tolerance. In practice, we do not know this ratio, so it is

difficult to choose an effective inner tolerance. We presented a method of selecting the

inner tolerance based on both the Ritz values and the current iteration number which

tends to work well. However, in one of the test cases presented in the Results section,

LOBPCG was faster than TraceMin-Davidson, since we solved the linear systems

much more accurately than what would have been optimal. We must devote more

attention to the selection of this inner tolerance to avoid such situations. Perhaps

we could select the inner tolerance based on the trace reduction at each iteration of

TraceMin.

134

9.2 Combining the strengths of TraceMin and the Riemannian Trust Region method

TraceMin uses an inexact Hessian of the generalized Rayleigh quotient (equation

9.1), which causes its linear convergence.

HTraceMin = 2A (9.1)

The Riemannian Trust Region method (RTR) uses an exact Hessian (equation 9.2)

in order to obtain superlinear convergence.

HRTR : S �→ 2
(
AS − BS

(
Y TBY

)−1
Y TAY

)
(9.2)

These two methods have complementary qualities. TraceMIN starts off with a sharp

decrese to the trace, but the trace stagnates after a certain number of iterations

(unless we use an acceleration method such as dynamic Ritz shifts). The first few

steps of RTR have a difficult time exploiting a good preconditioner, since efficient

preconditioned steps are likely to be rejected for falling outside the trust region [45].

Naturally, it would be beneficial to combine the strengths of these two methods.

In 2004, Absil, Baker, and Gallivan found that using a few iterations of TraceMin

to generate an initial subspace for RTR resulted in better convergence than either

method on its own [45]. However, they only looked at one very small eigenvalue

problem (that of the Calgary Olympic Saddledome arena), so this must be examined

further. They also neglected to specify a heuristic method of determining when to

switch from TraceMin to RTR iterations. Now that both TraceMin and RTR are

implemented in Trilinos sharing a common interface, we should be able to test the

combined TraceMin-RTR eigensolver and determine whether RTR is a more effective

acceleration method than the dynamic Ritz shifting.

135

9.3 Minimizing the idle time in TraceMin-Multisectioning

Our current Fortran90-based TraceMin-Multisectioning implementation has a tiny

flaw that results in extra idle time for some MPI processes, limiting its parallel scal-

ability. MPI process 0 holds a list of work that is not currently being processed by

any other node; this work (a set of subintervals) is held in a stack. When another

MPI process requests a subinterval to either subdivide or run TraceMin on, process 0

will give it the top item of the stack. It will disregard any cost associated with that

subinterval. As we mentioned, it is difficult to estimate the amount of work running

TraceMin on an interval will require. However, it is reasonable to assume subdividing

an interval containing 900 eigenvalues will be more expensive than subdividing an

interval containing 50 eigenvalues. It is also important to process the interval con-

taining 900 eigenvalues first, since it will create many new subintervals which can be

treated as separate jobs. Rather than storing the additional jobs in a stack, we should

be using a priority queue to ensure that large subintervals get processed first.

9.4 Removing TraceMin-Multisectioning’s dependence on a direct solver

In some cases, we cannot factor the matrix A−σB to compute the inertia. Either

there is too much fill-in, or perhaps A and B were not made explicitly available.

Instead of computing the exact inertia via an expensive factorization, we can use

an estimate of the eigenvalue count in an interval [48] obtained via relatively cheap

matrix vector multiplications and inner products 1. The only thing this would change

about TraceMin is that it would require resilience to incorrect estimates of eigenvalue

counts in the intervals. We will now discuss how we could handle these incorrect

estimates.

If the estimate was too large, i.e. we expected 20 eigenvalues in the interval (a, b)

and there were really only 10 in that interval, TraceMin can recover easily. Since

1In general, inner products are relatively expensive operations on large parallel architectures. Recall
that in this multisectioning scheme, these inner products would only take place inside a single group
of MPI processes; we would not be performing global reductions with all MPI processes.

136

TraceMin converges to the eigenvalues closest to our shift first, we can terminate the

iterations as soon as we converge to an eigenvalue outside of the interval (a, b).

If the estimate was too small, i.e. we expected 20 eigenvalues in the interval

(a, b) when there were really 100, TraceMin is still capable of recovering. If TraceMin

converged to 20 eigenvalues and none of them exist outside the interval (a, b), we

could assume that there were more in that interval and continue working as follows

2. Let (c, d) be the smallest interval containing the 20 eigenvalues we found. We may

now treat (a, c) and (d, b) as new intervals of interest and run a separate instance

of TraceMin on each of them. To prevent TraceMin from getting confused near the

edge of those intervals, we could project out the eigenvectors corresponding to the

eigenvalues we found closest to the boundary of (a, b).

2If we got lucky and the interval legitimately contained exactly 20 eigenpairs, we could still perform
this procedure. We would simply run TraceMin on the two intervals (a, c) and (d, b) until they
converged to one eigenvalue outside of those intervals, then recognize that they were empty. This
would create unnecessary work, but it would ensure that we did not miss any eigenvalues.

137

10 SUMMARY

The solution of sparse symmetric eigenvalue problems plays a significant role in many

fields of computational science and engineering. Many eigensolvers require accurate

solutions of linear systems in order to compute the smallest eigenpairs, which can

be infeasible when the matrices are large and ill-conditioned. We presented a family

of trace-minimization eigensolvers which converge even when the linear systems are

solved iteratively with a modest tolerance.

First, we reviewed some applications that give rise to sparse symmetric eigenvalue

problems, such as automotive engineering, condensed matter physics, and spectral

reordering. Then we presented several methods of solving saddle point problems, the

most important and time-consuming kernel of these trace-minimization methods. We

may either use a projected-Krylov method, compute the Schur complement, or use a

Krylov method with a block diagonal preconditioner.

After exploring how to solve the saddle point problems arising at each iteration

of the trace-minimization eigensolvers, we described two such solvers: TraceMin and

TraceMin-Davidson. TraceMin constructs its approximate eigenvectors from a sub-

space of constant dimension, whereas TraceMin-Davidson uses expanding subspaces.

We discussed the impact of the block size and distribution of eigenvalues on the overall

convergence rate, as well as how dynamic Ritz shifts can improve the rate of conver-

gence. We also explored the impact of the tolerance used for the inner Krylov method

and saw that these eigensolvers can converge even when very inexact solves are used,

unlike methods such as simultaneous iteration. In addition, we studied how harmonic

Ritz extraction can benefit TraceMin-Davidson in finding interior eigenvalues.

Next, we explained how to solve several types of problems with TraceMin and

TraceMin-Davidson. These eigensolvers are designed to compute the smallest magni-

tude eigenvalues of a symmetric eigenvalue problem, but we can cause them to target

138

alternate eigenpairs through the use of spectral transformations. We also presented

two additional implementations referred to as TraceMin-Sampling and TraceMin-

Multisectioning. TraceMin-Sampling is designed to compute a few eigenpairs near

a large set of shifts, and TraceMin-Multisectioning was created to compute all the

eigenpairs in an interval. Our multisectioning implementation uses a method simi-

lar to adaptive quadrature to subdivide the large global interval into many smaller

subintervals which can be processed independently.

We then described several other popular eigensolvers such as Krylov-Schur, the

Locally Optimal Block Preconditioned Conjugate Gradient method, Jacobi-Davidson,

the Riemannian Trust Region method, and FEAST. After establishing how the com-

peting eigensolvers work, we presented comparisons between those eigensolvers and

our trace-minimization solvers. The results showed that TraceMin and TraceMin-

Davidson are very robust, and our implementations are quite competitive with the

leading software packages in terms of speed and scalabiltiy.

LIST OF REFERENCES

139

LIST OF REFERENCES

[1] V. Mehrmann and C. Schröder. Nonlinear eigenvalue and frequency response
problems in industrial practice. Journal of Mathematics in Industry, 1:7, 2011.

[2] P. Anderson. Absence of diffusion in certain random lattices. Physical Review,
109:1492–1505, 1958.

[3] A., B. van Tiggelen, and D. Wiersma. Fifty years of Anderson localization.
Physics Today, 62:24–29, August 2009.

[4] O. Schenk, M. Bollhoefer, and R. Roemer. On large-scale diagonalization tech-
niques for the Anderson model of localization. SIAM Review, 50:91–112, 2008.

[5] U. Elsner, V. Mehrmann, F. Milde, R. Roemer, and M. Schreiber. The Anderson
model of localization: a challenge for modern eigenvalue methods. SIAM Journal
on Scientific Computing, 20:2089–2102, 1999.

[6] M. Fiedler. Algebraic connectivity of graphs. Czechoslovak Mathematical Jour-
nal, 23(98), 1973.

[7] E. Polizzi and A. Sameh. A parallel hybrid banded system solver: the SPIKE
algorithm. Parallel Computing, 32(2):177–194.

[8] M. Manguoglu, A. Sameh, and O. Schenk. PSPIKE: A parallel hybrid sparse
linear system solver. Lecture Notes in Computer Science, 5704:797–808, 2009.

[9] A. Sameh and J. Wisniewski. A trace minimization algorithm for the generalized
eigenvalue problem. SIAM Journal on Numerical Analysis, 19(6):1243–1259,
1982.

[10] M. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear
systems. Journal of research of the National Bureau of Standards, 49:409–436,
1952.

[11] C. Paige and M. Saunders. Solution of sparse indefinite systems of linear equa-
tions. SIAM Journal on Numerical Analysis, 12:617–629, 1975.

[12] M. Murphy, G. Golub, and A. Wathen. A note on preconditioning for indefinite
linear systems. SIAM Journal on Scientific Computing, 21:1969–1972, 1999.

[13] C. Keller, N. Gould, and A. Wathen. Constraint preconditioning for indefinite
linear systems. SIAM Journal on Matrix Analysis and Applications, 21:1300–
1317, 2000.

[14] G. Golub Z. Bai and M. Ng. Hermitian and skew-Hermitian splitting methods
for non-Hermitian positive definite linear systems. SIAM Journal on Matrix
Analysis and Applications, 24:603–626, 2003.

140

[15] V. Simoncini and M. Benzi. Spectral properties of the Hermitian and skew-
Hermitian splitting preconditioner for saddle point problems. SIAM Journal on
Matrix Analysis and Applications, 26:377–389, 2004.

[16] E. Beckenbach and R. Bellman. Inequalities. Springer, New York, 1965.

[17] A. Sameh and Z. Tong. The trace minimization method for the symmetric gener-
alized eigenvalue problem. Journal of Computational and Applied Mathematics,
123(1-2):155–175, 2000.

[18] F. Bauer. Das Verfahren der Treppeniteration und verwandte Verfahren zur
Lösung algebraisher Eigenwertprobleme. Zeitschrift für angewandte Mathematik
und Physik, 8:214–235, 1957.

[19] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst, editors. Tem-
plates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide.
SIAM, Philadelphia, 2000.

[20] M. Heroux, R. Bartlett, V. Howle, R. Hoekstra, J. Hu, T. Kolda, R. Lehoucq,
K. Long, R. Pawlowski, E. Phipps, A. Salinger, H. Thornquist, R. Tuminaro,
J. Willenbring, A. Williams, and K. Stanley. An overview of the Trilinos project.
ACM Transactions on Mathematical Software, 31:397–423, 2005.

[21] S. Balay, S. Abhyankar, M. Adams, J. Brown, P. Brune, K. Buschelman, V. Ei-
jkhout, W. Gropp, D. Kaushik, M. Knepley, L. McInnes, K. Rupp, B. Smith,
and H. Zhang. PETSc web page, 2014. http://www.mcs.anl.gov/petsc.

[22] S. Balay, S. Abhyankar, M. Adams, J. Brown, P. Brune, K. Buschelman, V. Ei-
jkhout, W. Gropp, D. Kaushik, M. Knepley, L. McInnes, K. Rupp, B. Smith,
and H. Zhang. PETSc users manual. Technical Report ANL-95/11 - Revision
3.5, Argonne National Laboratory, 2014.

[23] S. Balay, W. Gropp, L. McInnes, and B. Smith. Efficienct management of paral-
lelism in object oriented numerical software libraries. In E. Arge, A. Bruaset, and
H. Langtangen, editors, Modern Software Tools in Scientific Computing, pages
163–202. Birkhauser Press, 1997.

[24] V. Hernandez, J. Roman, and V. Vidal. SLEPc: A scalable and flexible toolkit
for the solution of eigenvalue problems. ACM Transactions on Mathematical
Software, 31(3):351–362, 2005.

[25] V. Hernandez, J. Roman, and V. Vidal. SLEPc: Scalable Library for Eigenvalue
Problem Computations. Lecture Notes in Computer Science, 2565:377–391, 2003.

[26] J. E. Roman, C. Campos, E. Romero, and A. Tomas. SLEPc users manual.
Technical Report DSIC-II/24/02 - Revision 3.5, D. Sistemes Informàtics i Com-
putació, Universitat Politècnica de València, 2014.

[27] Anasazi examples. trilinos.org/docs/dev/packages/anasazi/doc/html/
examples.html, March 2015.

[28] G. Golub and C. Van Loan. Matrix Computations. Johns Hopkins University
Press, Baltimore, Maryland, 1996.

141

[29] R. Plemmons G. Golub and A. Sameh. High-Speed Computing: Scientific Appli-
cations and Algorithm Design. University of Illinois Press, Champaign, Illinois,
1988.

[30] J. Demmel, L. Grigori, M. Hoemmen, and J. Langou. Communication-optimal
parallel and sequential QR and LU factorizations. Technical Report UCB/EECS-
2008-89, EECS Department, University of California, Berkeley, Aug 2008.

[31] O. Schenk and K. Gärtner. Solving unsymmetric sparse systems of linear equa-
tions with PARDISO. Future Generation Computer Systems, 20(3):475 – 487,
2004.

[32] O. Schenk and K. Gärtner. On fast factorization pivoting methods for sparse
symmetric indefinite systems. Electronic Transactions on Numerical Analysis,
23:158 – 179, 2006.

[33] P. Amestoy, I. Duff, J. Koster, and J.-Y. LÈxcellent. A fully asynchronous mul-
tifrontal solver using distributed dynamic scheduling. SIAM Journal of Matrix
Analysis and Applications, 23(1):15–41, 2001.

[34] P. Amestoy, A. Guermouche, J.-Y. LÈxcellent, and S. Pralet. Hybrid scheduling
for the parallel solution of linear systems. Parallel Computing, 32(2):136–156,
2006.

[35] A. Gupta and H. Avron. WSMP: Watson Sparse Matrix Package part I - direct
solution of symmetric systems. Technical report, IBM T.J. Watson Research
Center, 2015.

[36] C. Baker, U. Hetmaniuk, R. Lehoucq, and H. Thornquist. Anasazi software for
the numerical solution of large-scale eigenvalue problems. ACM Transactions on
Mathematical Software, 36(3):13:1–13:23, July 2009.

[37] E. Polizzi. Density-matrix-based algorithms for solving eigenvalue problems.
Physical Review B., 79, 2009.

[38] E. Polizzi. A high-performance numerical library for solving eigenvalue problems:
FEAST solver v2.0 user’s guide. Computing Research Repository, abs/1203.4031,
2012.

[39] G. Stewart. A Krylov-Schur algorithm for large eigenproblems. SIAM Journal
on Matrix Analysis and Applications, 23:601–614, 2000.

[40] Y. Zhou and Y. Saad. Block Krylov-Schur method for large symmetric eigenvalue
problems. Numerical Algorithms, 47:341–359, 2008.

[41] A. Knyazev. Toward the optimal preconditioned eigensolver: Locally optimal
block preconditioned conjugate gradient method. SIAM Journal on Scientific
Computing, 23(2):517–541, 2001.

[42] I. Lashuk A. Knyazev, M. Argentati and E. Ovtchinnikov. Block Locally Optimal
Preconditioned Eigenvalue Xolvers (BLOPEX) in Hypre and PETSc. SIAM
Journal on Scientific Computing, 29(5):2224–2239, 2007.

142

[43] G. Sleijpen and H. van der Vorst. A Jacobi–Davidson iteration method for
linear eigenvalue problems. SIAM Journal on Matrix Analysis and Applications,
17:401–425, 1996.

[44] P. Absil, C. Baker, and K. Gallivan. Trust-region methods on Riemannian man-
ifolds. 2004.

[45] P. Absil, C. Baker, K. Gallivan, and A. Sameh. Adaptive model trust region
methods for generalized eigenvalue problems. Technical report, Florida State
University, 2004.

[46] A. Baggag and A. Sameh. A nested iterative scheme for indefinite linear systems
in particulate flows. Computer Methods in Applied Mechanics and Engineering,
193:1923–1957, 2004.

[47] T. Davis and Y. Hu. The university of florida sparse matrix collection. ACM
Transactions on Mathematical Software, 38:1–25, 2011.

[48] E. Di Napoli, E. Polizzi, and Y. Saad. Efficient estimation of eigenvalue counts
in an interval. preprint, http://arxiv.org/abs/1308.427.

VITA

143

VITA

Alicia Marie Klinvex was born in Pittsburgh, Pennsylvania in 1986. In May 2008,

she received her bachelor’s degree in computer science from The Pennsylvania State

University’s Erie campus. She then went on to earn a PhD from Purdue University’s

Department of Computer Science in May 2015. After graduation, she worked as a

postdoctoral researcher at Sandia National Laboratories as a developer for the Trilinos

project.

	Purdue University
	Purdue e-Pubs
	Spring 2015

	Parallel symmetric eigenvalue problem solvers
	Alicia Marie Klinvex
	Recommended Citation

	tmp.1474385470.pdf.Qf_R1

