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ABSTRACT 

Johnson, Alisha J. Ph.D., Purdue University, May 2015. Characterization of Hessian fly 
from Israel. Major Professor: Richard H. Shukle. 
 
 
 Mayetiola destructor Say, the Hessian fly, is a gall midge and a member of the 

Dipteran family Cecidomyiidae. It is a common pest of wheat found throughout all of the 

major wheat growing areas of the world and poses a serious economic threat to the 

United States (US), particularly in the Southeast winter wheat region. Damage to wheat is 

done solely by feeding first and second in-star larvae. Hessian fly (Hf) infestations result 

in a loss in grain yield by the stunting and/or killing of seedling wheat plants in the winter 

and by causing breakage at the nodes of the plant in the spring. Feeding begins as the 

larvae settles at the base of the plant and establishes a feeding site by creating a layer 

nutritive tissue. Control of Hf in the US is primarily performed through avoidance by 

planting after the bulk emergence of the fly and through planting resistant wheat cultivars 

which contain a Hf-specific R gene.  

 In Israel, Hf is found throughout the primary agricultural region but is not 

considered an economic threat. No cultural practices are used to control the insect, and Hf 

resistant wheat cultivars are not deployed in commercial agriculture. Native grasses and 

wild wheat progenitors that can serve as alternative hosts are readily available in non-

cultivated areas. The sampling Hf in Israel will provide information from a 
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Mediterranean population which is as close to Fertile Crescent, the center of origin to 

both Hf and the domestication of wheat, as can be currently sampled. This will allow the 

examination of population structure in Israel, of differential expression of effector 

proteins, of virulence to Hf R genes when resistant wheat cultivars are not deployed, and 

of the genetic inheritance of avirulence genes (Avr) in virulent Hf. This will allow 

advancement in the understanding of the Hf-wheat interaction that can be used to create 

more effective and long-lasting control of Hf in US. 

 Samples of a dipteran pest of wheat from multiple locations in the agricultural 

area of Israel were tested to confirm identity, describe local populations and suggest the 

use of deploying resistance (R) genes in wheat cultivars for control of Hf. Morphological 

evaluation of adults and a free-choice oviposition preference test documenting that 

females overwhelmingly preferred to oviposit on wheat instead of barley supported the 

identification of the Israeli samples as Hf. Using the cytochrome c oxidase subunit I 

(coxI), the Barcoding Region, nine haplotypes were revealed. These results supported the 

identification of Hf as all nine haplotypes fell within a single clade that was significantly 

separated from other gall midge species including Mayetiola hordei. A greenhouse 

culture was established for one of the sampling locations, Magen, and it was evaluated 

for virulence to 19 different R genes. .Magen was significantly virulent to 11 of the 19 R 

genes tested, and complementation analysis documented that, for four of the R genes 

tested, the Israeli Hf shared loci for virulence with Hf from the US. Levels of Hf 

infestation at seven Israeli fields were at least at the 5–8% level, which historically has 

indicated a significant yield loss. Microsatellite genotyping of the five Hf collections 
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from Israel revealed two mixed populations in Israel that are distinctly separate from the 

single population in Syria.  

 Evidence is emerging that some proteins secreted by gall forming plant-parasites 

act as effectors responsible for systemic changes in the host plant, such as galling and 

nutrient tissue formation. A large number of secreted salivary gland proteins (SSGPs), the 

putative effectors responsible for the physiological changes elicited in susceptible 

seedling wheat by Hf larvae, have been documented. However, how the genes encoding 

these candidate effectors might respond under field conditions is unknown. Microarray 

analysis was performed to investigate variation in SSGP transcript abundance among 

field collections from different geographic regions (southeastern US, central US, and the 

Mediterranean). Results revealed significant variation in SSGP transcript abundance 

among the field collections studied. The field collections separated into three distinct 

groups that corresponded to the wheat classes grown in the different geographic regions 

as well as to recently described Hessian fly populations. These data support previous 

reports correlating Hessian fly population structure with micropopulation differences due 

to agro-ecosystem parameters such as cultivation of regionally adapted wheat varieties, 

deployment of resistance genes, and variation in climatic conditions. 

 Hf larvae produce a large number of secreted salivary effector proteins involved 

in effector triggered immunity that elicit systemic changes in susceptible wheat as well as 

trigger the defense response in resistant wheat. One of the avirulence effectors 

responsible for the interaction between Hf larvae and resistance gene H13 in wheat has 

recently been cloned and characterized using Hf populations from the US. Within the US, 

virulence is a sex-linked, recessive trait and was shown to be associated with three 
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independent insertions that resulted in a loss of expression of the avirulence gene. 

Genetic crosses testing for the inheritance of virulence to H13 in Hf from Israel revealed 

that it is controlled by a sex-linked, recessive trait at a single loci. Additionally, no 

complementation occurred between crosses of virulent US and virulent Israeli Hf, 

supporting the hypothesis that virulence resides at the same locus in both populations. 

However, no insertions were identified in the coding region nor upstream or downstream 

of the coding region. Further, no single nucleotide polymorphisms or frame shifts 

corresponding to virulence were identified. These data suggest the molecular basis of 

virulence in the Israeli population to resistance gene H13 in wheat is not the same as in 

the US. 

 As the most effective form of Hf control employs the planting of resistant wheat 

cultivars containing one or more H genes, frequent Hf sampling is required to monitor the 

level of virulence present in locally adapted populations. A novel assay for detecting 

virulence in the field was created by sampling Hf males using sticky traps baited with Hf 

sex pheromone and the molecular marker for virulence to H13. The Hf gene that controls 

virulence in Hf to resistance gene H13 in wheat has recently been cloned and 

characterized, and diagnostic molecular markers for the alleles controlling avirulence and 

virulence are now available. Utilizing two separate PCR reactions, the six alleles for 

avirulence and virulence can be scored based on band size on a 2% agarose gel. The 

results support the most recent survey of virulence to H13 as scored through the testing of 

live insects infesting H13 wheat in the greenhouse. Throughout the southeast, all three 

avirulence alleles can be identified while the most frequently identified allele for 

virulence corresponded to a 5kb insertion into exon 1 of vH13. In South Carolina, the 
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PCR assay is sensitive enough to detect the spread of virulence into two counties 

previously documented as 100% susceptible to H13.
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CHAPTER 1. GENERAL INTRODUCTION 

1.1 Introduction 

 Mayetiola destructor (Say), is an invasive pest of wheat (Triticum aestivum L.) in 

North America. Colloquially known as the Hessian fly (Hf), it can be found throughout 

most wheat growing areas of the world, barring Japan and Australia (Yokoyama, 2011; 

Botha et al., 2005). The term Hf is a derogative coined during Colonial America (Pauley, 

2002). In the late 1700s, Hf established residence in Long Island, New York decimating 

fields that had once been home to Hessian mercenaries during the Revolutionary War. Hf 

rapidly spread throughout New England, and the early American farmers chose the name 

for its’ negative connotation. Today, Hf has become the most common insect pest of 

wheat in North America causing millions of dollars in damage through reduced grain 

yield, particularly in the eastern soft-winter-wheat region (Buntin, 1999; Ratcliffe et al., 

2000).  

 Hf is a gall midge and a member of the Cecidomyiidae, the sixth largest family of 

Dipterans (Ratcliffe and Hatchett, 1997). Adults emerge as small, black midges that can 

survive three to four days (Harris et al., 2003). Females mate to a single male fly soon 

after emergence and begin laying eggs on the upper surface of the wheat leaf within an 

hour of mating (Harris and Rose, 1991). Within three to five days, depending upon 

temperature, the eggs hatch. The newly emerged larvae crawl down the leaf blade to 
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enter the whorl of the plant. In fall infestations, larvae establish a feeding site near the 

crown of seedling wheat plants while in spring infestations Hf larvae lodge at the nodes 

during culm elongation (Buntin, 1999). There are two feeding in-star stages with a molt 

at day six that precedes the second in-star (Stuart et al., 2012). At day 12, the gut begins 

to shrivel and turns a dark green color as feeding ceases. The cuticle of the third in-star 

larvae hardens and turns a dark brown color at day 21. Due to its resemblance in shape 

and color to a seed from the flax plant, the larvae is referred to as a flaxseed. At this 

stage, Hf can delay their development and enter diapause. This diapause can last up to 

two years, but usually, lasts only until spring or the following fall (Wellso, 1991). If 

allowed to continue through development, adults will emerge around day 30. These small 

insects (3mm) are weak fliers and are not found higher than a few inches above the wheat 

canopy (Anderson et al., 2012; Withers et al., 1997). Thus, Hf will not spread rapidly 

without human intervention. This comes via the transportation of flaxseed which 

accomplishes dispersal at much greater distances than the Hf can move unaided (Morton 

et al., 2011). Generally, in the United States (US), 1-2 generation of Hf occur; however, 

6-8 generations can occur in the warmer, wetter Southeast (Buntin and Chapin, 1990).  

Unlike other Cecidomyids, Hf does not create a typical gall. There is no enlarged 

swelling, but a layer of nutritive tissue forms at the feeding site. This tissue layer is 

composed of cells that provide a sink for the redirection of the plant’s resources to 

directly feed the developing larva (Rohfritsch, 1987). In the compatible interaction, 

larvae are able to survive on and stunt the susceptible plant. A newly hatched larva settles 

near the base of the plant between leaf blades. Small mandibular stylets puncture the 

abaxial surface of the leaf tissue, salivary gland effectors are injected into the plant, and 
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the cell wall ruptures within hours (Harris et al., 2006; 2010). After two days of larval 

attack, cells adjacent to the puncture site show increased vacuolation, disruption to the 

nucleus, and cytoplasmic degradation (Harris et al., 2006). As feeding progresses, a layer 

of nutritive cells forms around the larva creating a depression in the leaf as additional 

epidermal cells are transformed into nutritive cells (Harris et al., 2006). The nuclear and 

cytoplasmic contents of these cells will begin to leak out of through the ruptured cell 

walls making nutrients available for the larva to ingest. The virulent larva will rapidly 

increase in size taking on a translucent color with a green-tinged gut and multiple white 

fat bodies parallel to the gut. 

In the incompatible interaction, the plant is able to defend itself from Hf attack. 

An avirulent larva creates multiple puncture sites along the abaxial surface of the leaf 

blade but cannot establish a permanent feeding site. The larva will writhe between the 

leaf surfaces and become disoriented from the epidermal groove (Subramanyam et al., 

2006). Near puncture sites, cells walls thicken and Golgi-ER production increases (Harris 

et al., 2012). Unable to induce the changes in the wheat epidermal cells required to 

produce nutritive cells, avirulent larvae will shrivel and die within five to six days leaving 

the plant to resume its normal growth and development. Due to their red-colored 

appearance, dead avirulent larvae are termed “dead reds”. 

Hf’s damage to wheat is due solely to larval feeding. This damage is irreversible 

after four days (Byers and Gallun, 1972). During fall infestations, damage to seedlings is 

exhibited by stunted, dark blue-green plants, and heavy infestations can kill young plants. 

Larval infestation in the spring prevents normal elongation of internodes and 

transportation of nutrients to developing grain as well as weakening of the stem from 
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lodging at the nodes (Buntin, 1999). Three methods of control are commonly practiced: 

avoidance, destruction of infested plants, and resistant wheat cultivars. As irreversible 

damage to wheat occurs within a short window of time, systemic pesticide treatments are 

not applicable due to the cost of continuous applications during the months of Hf 

emergence. Seed treatments of pesticides have been somewhat effective in some regions 

of the US that only experience 1-2 generations of Hf per year (Reisig et al., 2013).  

The simplest method of control, avoidance, uses the principle of planting after the 

“fly-free date”. This date uses historical information from past weather patterns to predict 

when the fly will emerge such that seedling plants will not be available for oviposition. 

Without the preferred host present in abundance, Hf populations will be greatly reduced 

in size the following season. The removal and destruction of volunteer wheat and infested 

straw helps prevent carryover from one year to the next. The use of resistant wheat 

cultivars to provide genetic protection of wheat from the fly is by far the most commonly 

practiced control strategy (Buntin and Chapin, 1990). This practice dates back to 1782 

when “Underhill” wheat, a yellow bearded cultivar stolen from a British ship, was found 

to survive Hf attack and subsequently replaced all previous susceptible cultivars in New 

England (Gallun, 1977; Pauly, 2002). 

Recently, Hf’s relationship with wheat has been reexamined using the Effector 

Triggered Immunity (ETI) model (Stuart et al., 2012; Harris et al., 2015). The model 

expands on the gene-for-gene model used to describe plant-insect interactions by 

including the insect’s response to overcoming the host plant’s resistance adaptations. 

Effectors are small molecules or proteins that are injected or secreted into the plant to 

alter the host tissue’s structure and function (Hogenhout et al., 2009). In response to these 
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effectors, the plants evolved resistance (R) genes that encode proteins that recognize the 

invader and stimulate the defense responses required for resistance (Chisholm et al., 

2006). In turn, insects react to this immune response by altering avirulence (Avr) proteins 

to avoid detection or by evolving new effector proteins to accomplish the same action 

without triggering the plant’s immune response (Dangl et al., 2013; Ashfield et al., 

2014). It is well documented that Hf has a gene-for-gene relationship with wheat, and the 

inheritance of virulence to several H genes, the Hf resistance genes in wheat, has been 

documented. (Hatchett and Gallun, 1970; Gallun, 1977; Formousoh et al., 1996; Zantoko 

and Shukle, 1997). However, the Hf effectors responsible for nutritive tissue formation 

and for the adaptations responsible for virulence are still being identified. 

Many fluid feeding insects secrete salivary substances into host plants and Hf has 

adapted special mouthpart structures for injection into wheat tissues, several studies have 

focused on identifying putative effectors from Hf salivary secretions (Miles, 1999; 

Hatchett et al., 1990). Hundreds of secreted salivary gland proteins (SSGPs) were 

detected in cDNA libraries and through whole genome sequencing. All SSGPs share 

three features: primary expression in salivary gland tissues during the first in-star stage, 

an N-terminal secretion signal, and small size (<10kDA) (Chen et al., 2004). Many 

members of the same family have also been found to reside in clusters in the same region 

on a chromosome and that these regions are near mapped Avr genes (Chen et al., 2006). 

Analysis of the salivary gland transcriptome revealed that most transcripts were for 

protein synthesis and house-keeping functions and that these proteins did not accumulate 

in salivary glands indicating secretion outside of the insect shortly after synthesis (Chen 

et al., 2008). SSGPs were also found to occur in tandem arrays where many regions 
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including promoters, secretion signals, 5’ and 3’ untranslated regions, and introns were 

more highly conserved than the protein coding regions (Chen et al., 2010). In total, this 

evidence suggests that SSGPs are the putative effectors responsible for the Hf’s ETI 

response. The unusual conservation in non-coding regions coupled with the diversity 

found within the coding region of related SSGPs indicates that strong positive selection is 

occurring, and positive selection has been described as the driving force in plant defense 

responses and pathogen effector genes (Michelmore and Meyers, 1998; Bishop et al., 

2000).  

Sequencing of the Hf genome detected that a significant portion of the genome 

(7%) is comprised of SSGPs (Zhao et al., 2015). These genes have little to no homology 

in other insect genomes. While the majority of SSGPs occur within tandem repeat arrays, 

many were also unique and dispersed outside of the short chromosomal regions where the 

arrays occur. With such a large portion of the genome devoted to SSGPs, this gives 

additional evidence that these genes serve as putative effectors.  

One family of SSGPs was also further characterized in Zhao et al. (2015). SSGP-

71 is the largest family of effectors identified in arthropods. Most of the members of this 

family encode a secretion signal, a cyclin-like F box domain, and a series of leucine-rich 

repeats as well as share homology to E3-ligases found in plants. Virulence to H6 was 

been mapped to a scaffold which only contains genes from the SSGP-71 family, and loss 

of expression in virulent larvae has identified Mdes009086-RA as the candidate Avr gene. 

Likewise, mapping of virulence to H9 identified a null allele of another member of 

SSGP-71 (Mdes015365-RA) corresponding to virulence to H9.  
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The first Hf Avr gene to be cloned and characterized is vH13 (Aggarwal et al., 

2014). Virulence to H13 is a sex-linked, recessive trait (Zantoko and Shukle, 1997). It 

resides between markers 124 and 134 on chromosome X2 (Rider et al., 2002; Lobo et al., 

2006). vH13 is an SSGP; it is a small protein (116 amino acids) with an N-terminus 

secretion signal that is interrupted by an intron. vH13 does not share homology to any 

other genes in the NCBI database nor in the Hf genome. As Hf males are hemizygous for 

the X chromosomes, a single copy of a mutant allele inherited from the mother is all that 

is required to obtain virulence (Harris et al., 2015). This has allowed for the identification 

of multiple vH13 alleles from several southeastern US Hf field populations. Three alleles 

have been described for the incompatible reaction with H13, the avirulent phenotype. 

They vary in sequence only in copy number of an imperfect repeat, 12 amino acids in the 

second exon that can be repeated one to three times. Three alleles corresponding to the 

virulent phenotype have also been identified. All are insertions that lead to a loss in 

function of vH13: 1) a 4.7kb inserted at the end of exon 1, 2) a 254bp insertion at the 

intron-exon boundary, and 3) a 461bp insertion within exon 2. While three Avr genes 

have been identified, there are still many more that remain elusive as 35 H genes have 

been described in wheat (Liu et al., 2005; Li et al., 2013).  

To convey resistance to Hf in the US, H genes have been incorporated into most 

commercial cultivars. Combined with planting after the fly-free date, the majority of the 

US can avoid significant yield loss to Hf. However, the repeated deployment of resistant 

cultivars has created a selection pressure in the field that has led to the creation of locally 

adapted populations which are virulent to one or more H genes (Lidell and Schuster, 

1990; Smiley et al., 2004; Watson, 2005; Chen et al., 2009a; Cambron et al., 2010). In 
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the southeast, multiple generations of Hf occur within a single growing season, and 

successive deployment of multiple H genes has become routine (Buntin and Chapin, 

1990; Buntin et al., 1992). H genes have a 6-8 year window of effectiveness in the field, 

and resistance to all four of the commonly deployed H genes is common (Gould, 1986; 

Buntin et al., 1992; Ratcliffe et al., 2000; Cambron et al., 2010). Therefore, it is 

necessary to continue learning the biology of Hf effectors and how wheat responds to Hf 

attack.  

Exposure to H genes can also happen naturally outside of commercial agriculture. 

Few of the H genes arose originally in common wheat (T. aestivum). When given the 

choice, Hf selects wheat to other grass species (Gagné et al., 1991; Chen et al., 2009b). 

However, Hf can survive on 17 genera of host plants within Triticeae and have been 

found to live on these alternative hosts when wheat is not readily available (Jones, 1938, 

1939; Zeiss et al., 1993; Harris et al., 2001, 2003). The use of Hf sex pheromone baited 

traps have also identified Hf living inside conservation areas far from commercial wheat 

fields with only native wild grasses available (Anderson et al., 2012). As many H genes 

were obtained in the genome from hybridizations with other grasses species like rye 

(Secale cereale L.), barley Hordeum vulgare L.), emmer (Triticum dicoccum), durum 

(Tritcum durum), and goat grass (Aegilops tauschii), screening of these grasses can 

identify new sources of Hf resistance (Liu et al., 2005). However, the use of the H gene 

commercially can be immaterial when populations have developed virulence from 

exposure when the field population survived on the alternative host from which the H 

gene was adapted. 
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In Israel, the Negev region is a semi-arid desert where vegetables, grains, and 

fruits are grown commercially. Israel can produce 100-200,000 million tons (MT) of 

wheat per year; however, more is require to meet the demand of human and animal 

consumption (Shachar 2010, 2011). New ideas to increase wheat yield have renewed 

interest in Hf in Israel, a common pest of wheat in Syria and North Africa (Naber et al., 

2003). Hf was first identified in northern Israel in the winter of 1938 where heavy 

infestations devastated wheat production (Duvdevany, 1939). Today, Hf is frequently 

found in the agricultural areas of the northern Negev and the southern Coastal Plain 

where wheat is grown commercially (Rivnay, 1962; Avidov and Harpaz, 1969).  

Population genetics studies of Hf have revealed that Hf in Israel is much different 

genetically than Hf from the US. Of the seven 12S haplotypes of Hf found throughout the 

world, only a single haplotype was identified in Israel, and this haplotype was not found 

in Syria, Kazakhstan, Morocco, Spain, New Zealand, or the US (Johnson et al., 2004). 

Analysis of a nuclear marker, intron 1 from the ortholog of a Drosophila white gene, 

found that two Hf populations from Israel were significantly divergent from all other 

regions under study including Syria and the US; however, some gene flow occurred 

between Syria and Israel as wint1 alleles were shared in common and a population 

reconstruction incorporating both mitochondrial and nuclear data pooled Syria and Israel 

into a single population in contrast to three others (Kazakhstan, Spain and Morocco, and 

North America) (Johnson et al., 2011). By utilizing 18 microsatellite loci, the Syria-

Israeli population previously reported was found to be divided by geography as Hf from 

Israel clustered independent of all sampling locations in the Old World (Syria, 

Kazakhstan, Spain, and Morocco) as well as in the US (Morton and Schemerhorn, 2013).  
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Resistant cultivars are not commercially deployed for the control of Hf in Israel. 

However, the chance that Hf has been naturally exposed to H genes in the field is great as 

Hf from Syria was found to be resistant to a wide array of H genes despite a lack of 

commercial exposure to resistant wheat cultivars (El Bouhssini et al., 2008). Located to 

the southwest of the Fertile Crescent, Israel is near the center of origin for the 

domestication of wheat (Gepts, 2002). Studies of wheat cultivars in Israel have found that 

there is considerable genetic diversity in wheat from mixed cultivar planting, inter-

regional seed exchange, and natural cross breeding between local and introduced wheat 

varieties (Poiarkova and Blum, 1983). For hundreds of years, regionally adapted cultivars 

were developed in Israel by sowing different wheat species and Middle Eastern land 

races into the same fields (Blum et al., 1989; Simms and Russell, 1997). An assessment 

of wheat fields in the early 1980s indicated that 22 T. durum cultivars from five different 

local landrace groups, six T. aestivum cultivars, and two Triticum compactum cultivars 

were present throughout Israel (Poiarkova and Blum, 1983). Current agricultural 

practices have decreased that diversity as T. aestivum cultivars from North Africa are in 

common widespread use (Atzmon and Scwarzback, 2004). However, many alternative Hf 

hosts are also widely available outside of commercial fields (Kislev et al., 1995).  

Galilee and the Jordan River Valley are the described center of origin for wild 

southern emmer, one of the progenitors of T. durum (Nevo and Beiles, 1989). Israeli 

durum landraces were very different from any other areas of the Fertile Crescent due to 

the high diversity in local emmer landraces and the ability of durum to hybridize with 

these readily available genetically diverse emmers (Peng et al., 2000; Ozkan et al., 2011). 

Indeed, before widespread cultivation of locally adapted durum disappeared in Israel, the 
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diversity of local cultivars in the Negev is estimated to have exceeded the entirety of 

diversity in the world (Ozbeck et al., 2011). As several H genes have been introduced 

into common wheat from durum, it is unknown what impact to virulence this has had on 

Hf in Israel.  

These differences between Hf populations in the US and in Israel as well as the 

differences in exposure to different selection pressures from wild grasses and commercial 

cultivars give a compelling case for studying Hf in Israel. Therefore, the goal of this 

dissertation is to characterize Hf from Israel by 1) confirming the identity of Hf field 

collections through the use of morphological and genetic markers, 2) assessing 

population structure in field collections through the use microsatellite markers, 3) 

evaluating virulence to different H genes, 4) studying expression data of different SSGP 

families in comparison to different field collections in the US, 5) examining the 

inheritance of vH13 through the use of genetic crosses, and 6) using molecular techniques 

to document the molecular basis of virulence and avirulence alleles to H13 in Israel. A 

separate study to testing the use of pheromone traps and molecular markers to document 

the frequency of virulence/avirulence alleles to resistance gene H13 in field populations 

of Hf from the southeastern US will also planned. These studies will have a great impact 

on how we view Hf’s interactions with wheat. 
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CHAPTER 2. BIOLOGICAL AND MOLECULAR CHARACTERIZATION OF 
HESSIAN FLY (DIPTERA: CECIDOMYIIDAE) FROM ISRAEL 

2.1 Abstract 

 Samples of a dipteran pest of wheat were tested to confirm identity, describe local 

populations and suggest the use of deploying resistance (R) genes in wheat cultivars for 

control of Mayetiola destructor, Hessian fly (HF). Morphological evaluation of adults 

and a free-choice oviposition preference test documenting that females overwhelmingly 

preferred to oviposit on wheat instead of barley supported they were HF. Using the 

cytochrome c oxidase subunit I (coxI), the Barcoding Region, nine haplotypes were 

revealed. Two were found only in the Israeli collections and averaged 3% sequence 

divergence compared to the other seven haplotypes found in the United States, Israel and 

Syria. In evaluations of virulence, the Israeli HF in culture was virulent to 11 of the 19 

(R) genes tested, and complementation analysis documented that, for four of the R genes 

tested, the Israeli HF shared loci for virulence with HF from the United States. Levels of 

HF infestation at seven Israeli fields were at least at the 5–8% level, which historically 

has indicated a significant yield loss. Microsatellite genotyping of the five HF collections 

from Israel revealed mixed populations in Israel that are distinctly separate from the 

single population in Syria.
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2.2 Introduction  

 The Negev is a semi-arid desert region located in the southern portion of Israel. 

The primary agricultural use for this area is the growing of vegetables, grains, and fruit. 

On average 100,000–120,000 million tons (MT) of wheat can be produced per year; 

however, Israel is currently in the midst of a multi-year drought, which has decreased 

wheat production to under 100,000 MT per year (Shachar, 2010). Israel is not self- 

sustaining in wheat production, and wheat imports are needed to meet the demand for 

both human and animal consumption (1.7 MT) (Shachar, 2011). 

 One way to increase wheat yield is through the control of wheat pests. The 

Hessian fly (HF), Mayetiola destructor (Say) [Diptera: Cecidomyiidae], is a common 

threat in most wheat- growing areas of the world (Ratcliffe & Hatchett, 1997). HF is 

believed to be endemic to the Fertile Crescent and to have coevolved with the wheat 

genus Triticum (Harlan & Zohary, 1966; Lev-Yadun et al., 2000; Zohary & Hopf, 2000; 

Stukenbrock et al., 2006). It is the main destructive pest of wheat in the southeastern 

United States and has caused significant economic loss in terms of reduced grain yield in 

that region (Buntin, 1999; Ratcliffe et al., 2000). HF was first reported in northern Israel 

in the winter of 1938 to 1939 when heavy infestations were found in fields of wheat 

(Duvdevany, 1939). Today, it is known to occur in the agricultural areas of the northern 

Negev and the southern Coastal Plain (Rivnay, 1962; Avidov & Harpaz, 1969). Whether 

the insect is endemic to the Coastal Plain and northern Negev or was introduced from 

some other location before it was first reported in 1939 is unknown. Though it is not 

officially classified as a pest in Israel, HF has been a significant pest of wheat across 

North Africa since the early 1900s. 
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 Adults are short lived (3–4 days) and do not feed. Females will mate and lay their 

eggs on the adaxial surface of a leaf blade within hours of emergence. After 3–5 days 

(depending on temperature), the eggs hatch, and the neonate larvae crawl down the leaf 

blade and enter the whorl of the plant. A feeding site that includes formation of a 

nutritive cell layer to provide nutrient-rich cytoplasm for the larva to feed on (Rohfritsch, 

1987; Harris et al., 2006) is established near the crown tissue in seedling plants or at 

infested nodes in jointing plants. 

 While HF is a gall midge, no true gall (i.e. outgrowth or swelling) is formed in the 

plant. The larvae feed for approximately 12 days through both the first and early second 

instars. Feeding stops by the middle of the second instar before molting to the third  nstar,  

hich is contained within a puparium formed from the cuticle of the second instar. Third 

instars will either diapause to overwinter or complete their development to adulthood, 

depending on temperature and rainfall. In North America, there are commonly two 

generations per year; however, colder northern regions may see one generation while 

warmer southern regions may see six to eight (Buntin & Chapin, 1990; Lidell & Schuster, 

1990). In Israel, there are usually two generations per year, although in the past couple of 

years, due to mild winters, three generations were observed. 

 All damage to wheat is due to feeding by the larvae. In seedling plants, larval 

feeding irreversibly stunts infested primary shoots or tillers and prevents them from 

heading, resulting in yield loss (Byers & Gallun, 1972). In older, jointing plants, the 

redirection of nutrients from the plant to the insect decreases seed yield and results in 

lodging at infested nodes that makes harvesting difficult (Buntin, 1999). 
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 Currently, the best control for HF is the use of resistant wheat cultivars (Chen et 

al., 2009). A HF is considered virulent if the larvae are capable of surviving and stunting 

the plant, while resistance in wheat is expressed as larval antibiosis within the first instar, 

leaving no lasting effects on the plant (Ratcliffe & Hatchett, 1997). Resistance has been 

found in common and durum wheat cultivars, wild wheat relatives, rye and Baroness 

barley. To date, 33 resistance (R) genes (H1–H32 and Hdic) have been identified in 

various progenitors of wheat, as well as Triticum durum and T. aestivum cultivars 

(Ratcliffe & Hatchett, 1997; Martin-Sanchez et al., 2003; Williams et al., 2003; Liu et 

al., 2005; Sardesai et al., 2005). Unfortunately, the deployment of resistant cultivars 

places a selection pressure on HF populations. This leads to the appearance of genotypes 

(biotypes) that can overcome resistance. In the field, R genes have a 6–8 year window of 

effectiveness (Hatchett et al., 1987; Ratcliffe et al., 2000). Since adult HFs are weak 

fliers (Harris et al., 2003), primary dispersal is done through human transportation of 

puparia in infested straw. 

 Previous studies on local varieties of Negev wheat cultivars indicated there is 

considerable genetic diversity in wheat within this area due to mixed cultivar planting, 

inter-regional seed exchange, and natural cross-breeding between local and introduced 

varieties (Poiarkova & Blum, 1983). Additionally, wild wheat (emmer, T. turgidum ssp. 

dicoccoides) is endemic to the Galilee and, to a lesser extent, the Jerusalem area (Nevo & 

Beiles, 1989). 

 Initial population studies with both mitochondrial and nuclear markers identified a 

population of HF from the northern Negev as possibly ancestral to what is found in the 

United States (Johnson et al., 2004, 2011). The combination of increased genetic 
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diversity in the host plant and the isolation of potentially ancient populations of HF in 

Israel could have implications for documenting the ancestry of HF in the Fertile Crescent 

region of the Middle East, as well as further defining the wheat/HF interactions in regards 

to the emergence of genotypes of the pest that can overcome genes for resistance in 

wheat. 

 The objectives of the present study were: (i) to confirm the identity of HF from 

Israel using morphological characters, DNA barcoding, and oviposition preference on 

wheat; (ii) to evaluate virulence in the Israeli HF to different R genes in wheat; (iii) to 

determine field infestation levels; and (iv) to assess population structure using 

microsatellite markers with multiple collections from different locations within Israel. 

 

2.3 Materials and Methods 

Sample sites and collection of HF 

 HF was sampled in Israel from five sites: three in the northern Negev (Kibbutz 

Magen, Kibbutz Ruhama, and Gilat) and two from the southern Coastal Plain (Kibbutz 

Yad Mordechai and Kibbutz Zikim) (Figure 2.1). Collections were made by randomly 

harvesting plants from three to five different areas within an infested field. Collected 

samples of infested wheat plants were shipped FedEx under APHIS permit number 

P526P-09-00335 to the USDA-ARS Crop Production and Pest Control Research Unit in 

West Lafayette, IN, USA. Infested plants were placed in plastic boxes (26 × 39 cm) to 

allow for adult emergence. Boxes were maintained at 18°C, and the infested plant 

material was misted occasionally to maintain humidity and enhance adult eclosion. As 

adults emerged, representative samples were preserved in 100% ethanol at 20°C for later 
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extraction of DNA and evaluation with the cytochrome c oxidase I (coxI) barcoding 

sequence and microsatellite markers. 

 Initially, collections of HF from Magen, Ruhama, and Gilat were successfully 

brought into culture. However, the Gilat and Ruhama collections were not sustainable, 

and only the Magen collection was successfully cultured under the environmental 

chamber and greenhouse conditions by the protocols described by Foster et al. (1988) and 

Black et al. (1990) for further laboratory testing. HF samples preserved in 100% ethanol 

from Lattakia, Syria, as well as a sample of Barley stem gall midge (BM) (Mayetiola 

hordei (Keiffer) [Diptera: Cecidomyiidae]) were kindly provided by Dr Mustapha El- 

Bouhssini, Senior Entomologist, International Center for Agricultural Research in the 

Dry Areas, Aleppo, Syria. 

 

Morphological evaluation and oviposition preference 

 Adults were initially identified as HF by comparing morphological characters 

described by Gagné et al. (1991) to differentiate it from the BM, a congener found in the 

Mediterranean basin that closely resembles HF. HF puparia were examined under an 

Olympus SZX16 stereo microscope for distribution of spicules and attachment of the 

plant’s cell wall to the puparia. Adult females were inspected at the 6th–8th abdominal 

tergites using measurements and descriptions as described in Gagné et al. (1991). In HF, 

the 6th tergite is wider (0.458 mm), the 7th tergite flares out anteriorly and the 8th tergite 

is wedge-shaped. In BM, the 6th tergite is narrower (0.417 mm) and the 8th tergite is 

rectangular. Adult males were inspected for the long gonostyli and deeply separated and 

parallel hypoproctal lobes associated to HF. 
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 When given a choice between oviposition on wheat or barley, HF females 

significantly prefer to oviposit on wheat while BM prefers barley (Gagné et al., 1991). To 

further support the identity of HF from Israel, a barley-wheat free choice oviposition test 

was performed using the Magen culture. The barley cultivars, ‘Baroness’, ‘Harrison’ and 

‘Radiant’, and the wheat cultivars, ‘Iris’, ‘Seneca’, Monon’, ‘Magnum’, and ‘Caldwell’, 

were seeded in flats with two replicates separated spatially. Wheat was seeded in 

randomized rows at the ends and in the middle of each flat, and the barley cultivars were 

seeded in randomized rows between the rows of wheat in each flat. Flats were placed in 

environmental chambers at 18°C with a 16 h photoperiod for germination. When the 

seedlings had reached the 1.5 leaf stage, each flat was caged with netting and 150 gravid 

females from the Magen culture were allowed to oviposit in a free-choice manner on the 

plants in each flat. Before hatch, eggs were counted on 20 randomly selected wheat plants 

from each row and from 20 randomly selected barley plants from each row to evaluate 

oviposition preference of the females. 

 Though very similar in appearance to HF, the BM creates a gall at its feeding site 

at the base of the whorl that adheres to the cell wall of the plant and makes removal 

difficult. Conversely, HF does not create a visible gall at its feeding site, stunts 

susceptible wheat and is easily removed from the plant. Further, HF infestation of barley 

is either asymptomatic or results in mild stunting. 

 Eggs hatched in approximately 4–5 days and the netting was removed. Plants 

were sampled at 14 days post-hatch to evaluate for stunting and/or lack of galling at the 

feeding site and to confirm the presence of larvae within the leaf sheath. Galling at the 

base of the infested whorl of barley plants would indicate the BM, while stunting of 
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wheat plants would indicate HF. Infested barley plants were scored for lack of a gall at 

the feeding site and being either asymptomatic or displaying mild stunting, as well as 

ease of removal of puparia from the plant. Statistical testing for significance between the 

mean numbers of eggs laid on wheat compared to barley was performed by a Mann-

Whitney test within the program R (R Development Core Team; http://www.R-

project.org) (Hornik, 2011). 

 

DNA barcoding using coxI 

 DNA from individual flies was isolated using the DNeasy Blood and Tissue kit 

(Qiagen, Valencia, CA, USA). Ten individuals from each of the Magen, Ruhama, Gilat, 

Zikim and Yad Mordechai, Israel collections, as well as the Lattakia, Syria and Dallas 

County, Alabama collections were selected for barcoding analysis. Hebert’s coxI 

barcoding primers LCO1490 and HCO2198 were used to amplify an approximately 700 

base pair (bp) sequence (Hebert et al., 2003, 2004; Smith et al., 2005; Ratnasingham & 

Hebert, 2007). Each 25 μl reaction contained 5 μl of 5 × GoTaq polymerase reaction 

buffer (Promega, Madison, WI, USA), 3 mmoles MgCl2, 10 pmoles each primer, 0.2 

mmoles each dNTP (Promega dNTP mix), 2.5 units of GoTaq polymerase (Promega). 

Polymerase Chain Reactions (PCR) cycling was with a DNA Engine Dyad PTC-220 and 

PTC-221 (BioRad, Hercules, CA, USA) under the following conditions: denaturing at 

95°C for 2 min; 35 cycles of denaturing at 95°C for 1 min, annealing at 50°C for 30 s, 

extension at 72°C for 1 min; final extension at 72°C for 10 min. In order to obtain the 

longest sequence, cox1 fragments were cloned using the pCR®4-TOPO® vector into 

electrocompetent TOP10 cells (Invitrogen, Grand Island, NY, USA). Three clones per 
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individual were sequenced through the Purdue Genomics High Throughput Center. A 

consensus sequence was made for the coxI sequence for each individual, and all coxI 

sequences were aligned using ClustalW2 (Chenna et al., 2003). Arlequin 3.11 (Excoffier 

et al., 2005) was used to calculate FST. PAUP* (Swofford, 2003) and Treeview (Page, 

1996) were used to create the phylogenetic reconstruction using the distance neighbor-

joining model F84 and parsimony algorithms. Two gall midge species were used as 

outgroups in the reconstruction, M. hordei (JN638248.1-full length coxI) and 

Rabdophaga rigidae (AB244544.1-partial length coxI). R. rigidae (Osten Sacken), the 

willow beaked gall midge, is from the same tribe as HF, Oligotrophini. TCS was used to 

calculate the networking relationships of coxI barcodes (Clement et al., 2000). 

 

Evaluation of virulence 

 The response of the Magen collection to different R genes in wheat was 

conducted with wheat lines carrying a different R gene seeded in flats (two replicates) in 

the manner described for the virulence flat test methodology developed by Chen et al. 

(2009). Nineteen lines carrying the following single R genes or gene combination were 

seeded in each flat: H3, H5, H6, H7H8, H9, H10, H11, H12, H13, H14, H16, H17, H18, 

H21, H22, H23, H24, H25, H31 and H32. These were lines in which sufficient seed was 

available for virulence testing and represented 19 of the 33 named HF R genes in wheat. 

The susceptible wheat cultivar ‘Newton’ (carrying no R gene) was also seeded in ‘check’ 

rows at the ends and in the middle of each flat to check for uniformity of infestation 

throughout the flat. Fifteen to 20 seeds of each line were seeded in randomized half-rows 
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in each flat. Flats were then placed in controlled environmental chambers at 18°C with a 

16 h photoperiod for seed germination. 

 After seedling plants had reached the 1.5 leaf stage, each flat was caged 

separately with netting, and 150 gravid females from the Magen culture were aspirated 

from plastic emergence boxes and released under the netting. Females were allowed to 

oviposit in a free-choice manner. Egg hatch was observed 4–5 days after oviposition at 

which time the netting was removed. Flats were maintained in growth chambers, and 

plants were evaluated at 14 days post-hatch for resistance or susceptibility. Resistant 

plants were not stunted, exhibited normal growth habit and, when dissected, contained 

dead 1st- instar larvae. Plants with no dead larvae (escapes from infestation) were 

discarded. Susceptible plants contained living larvae and exhibited stunting and a darker 

green color that is associated with infestation. The total number of resistant and 

susceptible plants from both flat replicates was recorded. 

 Since there was no documentation that HF R genes have ever been deployed in 

Israel (P.G. Weintraub, unpublished data), it was hypothesized that the Israeli HF should 

be equivalent to the Great Plains (GP) Biotype in the United States (avirulent to all R 

genes). Therefore, a ratio of resistant to susceptible plants of 1:0 is expected. Goodness of 

fit for the number of observed resistant plants to the number of expected resistant plants 

was tested by χ2 analysis where degrees of freedom (df) = 1. 

 

Complementation analysis 

 Complementation assays to document if the Magen collection shared loci for 

virulence to H3, H5, H6 and H7H8 with HF from the United States were performed in 
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four-way differential pots with three to five plants of the wheat cultivars ‘Monon’ 

(carrying H3), ‘Magnum’ (carrying H5), ‘Caldwell’ (carrying H6) and ‘Seneca’ (carrying 

H7H8) seeded in separate quadrants. Biotype L HF (known to be virulent to H3, H5, H6 

and H7H8) and Magen adults were allowed to emerge in separate boxes. Reciprocal 

crosses were made between Magen females × Biotype L males and Biotype L females × 

Magen males. A single virgin female and one male were introduced into caged pots 

where mating and oviposition occurred. The caged pots were placed in a controlled 

environmental chamber at 18°C with a 16 h photoperiod and scored  for virulence at 12 

days post-hatch by dissecting each plant to locate developing larvae. 

 

HF infestation levels in Israeli wheat fields 

 In 2008–2009, wheat plants (150–200 plants per field) were sampled from 

random locations near the edges and in the center of the five fields in the northern Negev 

and the southern Coastal Plain previously identified above (see fig. 1) to assess for 

potential yield loss. In 2010, infestation levels in fields at Kibbutz Alumim and at 

Kibbutz Be’eri in the northern Negev (fig. 1) were also documented to assess potential 

yield loss. 

 

Microsatellite amplification and genotyping 

 Twenty-five microsatellite markers (Schemerhorn et al., 2008, 2009) were 

selected from the available pool used with HF collections in the United States. These 

markers were selected for their location on autosomes and for the previously identified 

variability within United States populations at these loci (Morton et al., 2011). PCR was 
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performed according to the protocol in Schemerhorn et al. (2009), and polymorphisms 

were scored using a CEQ 8000 (Beckman-Coulter, Brea, CA, USA). Microsatellite 

analyses (FST, AMOVA, HWE, pairwise linkage disequilibrium and molecular diversity 

indices) were performed using Arlequin 3.11 (Excoffier et al., 2005). Microchecker 2.2.3 

(Van Oosterhout et al., 2004) was used to check for genotyping errors that cause 

deviation from HWE, such as stuttering, large allele dropout, null alleles and 

typographical errors. In order to detect recent changes in effective population size, 

BOTTLENECK 1.2.02 was also performed (Cornuet & Luikart, 1997). Structure 2.3.3 

(Pritchard et al., 2000; Falush et al., 2003, 2007; Hubisz et al., 2009) was used to analyze 

the population structure comprised by the five Israeli collections using the microsatellite 

loci, and k was calculated using the method of Evanno et al. (2005). 

 

2.4 Results 

Morphological evaluation and ovipostion preference 

 Male and female adults from Israel were examined and confirmed to be HF by use 

of the morphological characters (Gagné et al., 1991). These results documented that the 

putative HFs from Israel were morphologically in agreement with HF and not BM. In the 

barley-wheat free-choice test, female flies from the Magen culture oviposited on average 

56 eggs per leaf on wheat plants, while in comparison only 11 eggs per leaf were laid on 

barley plants (Figure 2.2). The contrast between the mean number of eggs laid on wheat 

compared to barley was statistically significant (P ≤ 0.05). 
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DNA barcoding 

 Nine haplotypes of the coxI barcode (haplotypes 1–9) for HF were identified 

(GeneBank: JN638239.1–JN638247.1). Gilat and Yad Mordechai contained only 

haplotypes 1 and 2 while Zikim contained 1, 2 and 4. Ruhama was composed of 

haplotypes 2 and 3. Magen contained only haplotype 4. Morocco included 5 and 8, two 

haplotypes that did not appear elsewhere. Alabama consisted of 6 and 7. Syria was the 

most diverse with haplotypes 2, 3, 6, 7 and 9. The genetic distances were calculated using 

F84 (Felsenstein, 1984). The distance between the outgroups and the nine haplotypes 

ranged from 9.37–11.19% (10.1% average) for M. hordei and 13.86–15.75% (15.1% 

average) for R. rigidae. The distances for the nine HF haplotypes fell into two groups: 

group 1 contained haplotypes 1 and 2, and group 2 contained haplotypes 3 through 9. 

Within group 1, the distance was 0.14%, while within group two the haplotypes ranged 

0.14–1.34% (0.75% average). However, the distance between group 1 and group 2 was 

much greater, 2.90–4.11% (3.32% average). 

 In population pairwise FST (Table 2.1), all sample sites separated with less than 

1% distance except for Zikim, Gilat, Ruhama and Yad Mordechai, which did not separate 

significantly from one another. A network containing all nine haplotypes could not be 

built with greater than 95% confidence. Dividing the haplotypes into clades corrected this 

problem. The networks for clades 1 and 2 were identical to the parsimony tree. The 

number of mutational steps for each haplotype is located on the branches of Figure 3.3A. 

Both a 50% majority rule distance neighbor-joining tree and a parsimony tree (Figure 

3.3B) were constructed and found to be congruent. The tree reveals isolation of the coxI-1 

and coxI-2 sequences from the other seven barcodes identified. There is a lineage 
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expansion of coxI-9 into two groups: one containing Syria, Morocco and Alabama 

samples and another containing Israeli and Syrian samples. These results are congruent 

with previous analyses (Naber et al., 2000; Johnson et al., 2004, 2011) using RFLP, 

mitochondrial and nuclear markers in regards to both isolation in Israel and the 

relationships between Syria, Morocco and the United States. AMOVA analysis revealed 

that there is more variance among populations (80.05%) than within populations 

(19.95%), which is consistent with previous data for mitochondrial loci (Johnson et al., 

2004, 2011). 

 

Evaluation of virulence 

 The results for the two virulence test replicates were combined and tested for 

significance (Table 2.2). The Magen HF was hypothesized to be avirulent to all of the R 

genes tested since it was not believed to have undergone selection pressure from any of 

the R genes. Thus, a ratio of 1:0 was expected for avirulent to virulent phenotypes. 

However, the HF from the Magen culture was virulent (significantly divergent from the 

expected 1:0 ratio) to H3, H5, H6, H7H8, H9, H10, H11, H13, H14, H16 and H23. 

Though a few virulent individuals were scored on lines carrying other R genes, virulence 

to H12, H17, H18, H22, H24, H25, H31 and H32, the result was not significantly 

different from the expected 1:0 ratio of avirulence to virulence. 

 

Complementation analysis 

 The wheat plants infested with the F1 progeny from the complementation crosses 

showed the typical susceptible reaction to HF infestation. The F1 individuals from both 
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the Magen female × L male and  L female × Magen  male were virulent to H3, H5, H6 

and H7H8, indicating no complementation occurred that would have resulted in an 

avirulent genotype to the R genes tested. 

 

HF infestation levels in Israeli wheat fields 

 In the field at the Gilat Research Center, infestation was approximately 3–5% of 

the sampled plants and was patchy within the field. At the Magen location, 20% of plants 

were infested at the corner of the field and 5% in the middle of the field. A 75% 

infestation was found at Zikim, with the entire field being evenly infested.  Sampling in 

fields at Alumim documented that infestation ranged from 17.6–32.7%, and at Be’eri 

infestation ranged from 5.2–20.3%. 

 

Microsatellite genotyping 

 Twenty-five microsatellite markers were initially selected for use with the Israeli 

HF collections based on their autosomal location and variability in collections from the 

United States. Only eight (Hf14, Hf101, Hf102, Hf104, Hf109, Hf113, Hf114 and Hf164) 

were polymorphic with HF individuals from the Israeli collections (Table 2.3). AMOVA 

analysis of the micro- satellite markers revealed that there is more variance within 

populations (85.89%) than among populations (14.11%), which is consistent with 

previous data for nuclear loci (Johnson et al., 2011). Wright’s FST (Table 2.4) 

significantly reveals the separation of each of the following collections from all other 

collections: Syria, Gilat, and Ruhama. The collections of Magen, Yad Mordechai, and 

Zikim were not found to be significantly different. 
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 No recent expansion or allele frequency change was detected, an indication that a 

bottleneck had not recently taken place. Pairwise linkage disequilibrium was not 

detected. Average gene diversity over all loci in all Israeli locations ranged between 

0.332–0.376, while in Syria it was 0.604 (Table 2.3). Hardy-Weinberg equilibrium 

(HWE) was calculated with a Bonferroni correction for multiple tests using Arlequin with 

a significance of P ≤ 0.05 (Table 2.3). Seven loci indicated a departure from HWE in 

some but not all populations. H14 was the only locus that was in HWE in all samples. 

 The Structure results indicate three populations (Figure 2.4). Syria (green) is 

clearly a separate population from every collection in Israel. Each Israeli sample location 

contains a mixture of two populations. Gilat and Ruhama contain individuals that are 

primarily from population 1 (red), Magen and Yad Mordechai contain a more 

proportionate distribution of both populations, while Zikim primarily contains population 

2 (blue). Since each collection contains both populations, mixing has occurred among 

them. 

 

2.5 Discussion 

Confirmed identification of Hessian fly in Israel 

 Morphological evaluation of adults and puparia from field collections at the five 

sites in Israel supported their identity as HF. However, the intraspecific divergence within 

the coxI barcodes among individuals from all collections revealed two distinct lineages of 

HF. All nine coxI HF haplotypes clearly separated from the BM and R. rigidae coxI with 

a barcoding gap (intraspecific/interspecific variation) of 33% between M. destructor and 

M. hordei. The use of null nuclear markers distributed throughout the two HF autosomes 
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supported the population division between Syria and Israel, while dividing Israel into two 

intermixed populations. There is no direct correlation between the mitochondrial 

barcoding lineage and nuclear microsatellite populations; and, therefore, there is no 

support to effectively divide the two mitochondrial lineages of HF. 

 There is not enough evidence presented within this study to report the 

identification of a cryptic species of HF in Israel. If the lineage divergence revealed by 

barcoding is recent, the lower mutational rate within the nuclear genome is masking the 

beginning of speciation (McKeon et al., 2010).However, the results do support the two 

previous studies (Johnson et al., 2004, 2011) that revealed mitochondrial isolation in 

Israel and limited nuclear gene flow between Syria and Israel. 

 

Influence of Israel on HF 

 Geographic barriers surround the entirety of Israel. The Mediterranean Ocean 

provides the western barrier, while the Jordan River and Dead Sea run the length of the 

eastern barrier. Rocky mountains in the north separate Israel from Syria and Lebanon. 

The vast, dry Negev Desert fills the southern borders. The majority of commercial 

agriculture is performed in reclaimed areas of the northern Negev. 

 Cultivation of food crops is directly influenced by war, migration of tribes and 

colonization (Aaronsohn, 1910). Since HF is primarily dispersed through human 

transportation of puparia, these political barriers can greatly influence gene flow. Israel 

lies within a much-disputed area of the Fertile Crescent. Many ancient civilizations have 

lived in this region, bringing with them different cultivars of wheat and cultivation 

practices. As political and religious hostilities arose in the region, agricultural trade was 
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frequently interrupted, which prompted the creation of locally adapted cultivars or 

landraces (Aaronsohn, 1910). Some of these landraces were so geographically specific 

that a difference of 10 km was substantial enough to prohibit widespread distribution 

(Aaronsohn, 1910). Until the last century, these landraces were the primary sources of 

wheat in Israel, as widespread commercial farming was not practiced. Given both 

geographic and political barriers to gene flow, the location and history of Israel may have 

contributed to the isolation of the Israeli-only coxI barcodes. 

 Using microsatellites, three populations are revealed among the six sampled 

locations. The Syrian population is completely separated from the Israeli populations and 

contains higher average gene diversity over all loci. Though some alleles are shared, 

there is a gene flow barrier between the two countries, as indicated by the high FST 

values. Further support from the barcoding analysis reveals that while some gene flow 

may have occurred (recently or in the distant past) with the sharing of mitochondrial 

haplotypes, the four coxI lineages outside of Israel are derived from a Syrian haplotype. 

As Syria was basal to the six alleles in clade two, this indicates that Syria is an important 

location in the initial distribution of HF from the Fertile Crescent, as supported by Naber 

et al. (2000). 

 Very few microsatellite loci are in HWE that could indicate that one or more of 

the five assumptions (nonrandom mating, mutation, gene flow, selection and genetic 

drift) are being violated. Migration may be the most direct reason for the differences in 

allele frequencies. HF adults are weak fliers, and dispersal over greater distances is 

generally due to human movement of wheat straw infested with HF puparia (Harris et al., 

2003). In addition, there are geopolitical barriers in agricultural regions of Israel that 
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restrict human movement and, therefore, the dispersal of HF resulting in isolation or 

preferred migration between particular locations. 

 The moderate levels of inbreeding and lower levels of average gene diversity over 

loci seen within each Israeli collection indicate isolation from Syria. While R genes in 

wheat are not used to control HF in Israel, seed treatments are sporadically used. The 

varied distribution of fields with HF control would create empty pockets of land where 

HF no longer exists, introducing isolation between locations within a single generation. 

Isolation in combination with low gene flow due to HF’s lack of migration will contribute 

to inbreeding rates. 

 

Influence of wheat cultivation on virulence of HF in Israel 

 The domestication of wheat occurred in the area north of the Fertile Crescent 

known today as Turkey and Transcaucasia (Gepts, 2002). In general, domestication 

influenced the genetic diversity inherent within populations through differing dispersal 

and cultivation practices. In modern times, commercial breeding practices focus on 

crossing two elite lines for desirable traits at the direct cost of genetic diversity. In situ 

conservation by subsistence farmers at or near the origin of domestication naturally 

retains the genetic diversity of wheat through the growing of local landraces and wild and 

heirloom cultivars (Gepts, 2002). These serve as reservoirs of diversity, which can be 

introgressed into elite lines to combat the loss by commercial breeding. For hundreds of 

years, local farmers in Israel have favoured regularly sowing different wheat species and 

regional Middle Eastern landraces in the same fields (Blum et al., 1989; Simms & 

Russell, 1997). An assessment of wheat fields indicated that 22 T. durum (durum) 
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cultivars from five different local landrace groups, six T. aestivum (common wheat) 

cultivars, and two T. compactum cultivars were present across Israel (Poiarkova & Blum, 

1983). 

 Over the years, the diversity of wheat cultivars in Israel has rapidly decreased as 

commercial farming replaced local, subsistence farming. Modernization began in the 

1880s and focused on locally adapted varieties of durum; but, in the 1950s, common 

wheat cultivars from North Africa replaced them until the near disappearance of durum 

by the 1970s (Atzmon & Scwarzbach, 2004; Poiarkova & Blum, 1983). 

 The ancestor of modern durum, T. dicoccoides (wild southern emmer), is the 

result of a natural hybridization of T. uratu (wild einkorn wheat) and an extinct relative of 

Aegilops speltoides (a wild goat grass species), while common wheat, known to have 

arisen independently in many locations, is a hybrid of T. dicoccon (domesticated northern 

emmer) and Ae. tauschii (Taush’s goat grass) (Salamini et al., 2002; Dubcovsky & 

Dvorak, 2007). Before the disappearance of locally adapted durum landraces, it was 

estimated that the diversity of cultivars within the Negev region exceeded not only the 

diversity found in the entirety of the Middle East but also the world, suggesting that Israel 

served as the center of origin for wild southern emmer (Ozbeck et al., 2007). The Israeli 

durum landraces are very different from those in other areas of the Fertile Crescent due to 

the high diversity found in the Jordan Valley and their ability to hybridize with wild 

emmer (Peng et al., 2000; Ozkan et al., 2011). These novel hybrids within Israel contain 

phenotypes with important ecological benefits as well as a high degree of plasticity to 

adapt successfully in their environment (Ahern et al., 2009; Agrawal, 2001). 
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 Despite the absence of commercially deployed resistant wheat cultivars in Israel, 

virulence in the Magen HF closely resembled that documented by Cambron et al. (2010) 

for HF from the southeastern United States, which consistently deploys R genes. Of the R 

genes that Israel is virulent to, three are from common wheat (H3, H5, H7H8), two from 

Taush’s goat grass (H13 and H23) and six from durum (H9, H10, H11, H14 and H16) 

(Liu et al., 2005). The Magen HF was avirulent to H12 from common wheat, to H22, 

H24 and H32 from Taush’s goat grass, to H17, H18 and H31 from durum, and to H25 

from rye (Secale cereale) (Liu et al., 2005; Sardesai et al., 2005). The combination of 

high genetic diversity in both wild emmer and durum landraces, as well as the proximity 

to the center of wheat domestication, may have exposed HF in Israel to these R genes 

long before HF’s introduction into North America and direct selection pressure through 

deployment of R genes. 

 This comparison between virulence in HF from the southeastern United States 

and the Magen HF suggests two important hypotheses: (i) that HF genes controlling 

virulence to R genes in wheat have long resided in the genome within populations near 

the center of origin and (ii) that virulence to R genes in wheat is maintained within HF 

populations without direct selection pressure. 

 HF collections from locations in the Fertile Crescent (i.e. Israel and Syria) both 

display virulence to a wide array of R genes. Surprisingly, HF from Syria has been 

identified as the most virulent population with only H25 and H26 showing efficacy in 

protecting wheat (El Bouhssinni et al., 2009). Understanding the mechanism of selection 

for virulent HF genotypes in the collections from Israel and Syria will require additional 
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study and could have significant implications for understanding how virulence emerges 

in HF populations. 

 

Influence of rainfall and wheat availability on HF in Israel 

 In Israel, wheat is primarily planted in two climatic regions: the Coastal Plain 

(Zikim and Mordechai) and northern Negev (Gilat, Ruhama, and Magen). The 

microsatellite analysis weakly supports a population division between these two climatic 

regions; however, human dispersal and/or migration has mixed the two populations. The 

Coastal Plains receive more rainfall on average; however, the northern Negev receives a 

higher frequency of high intense rains in autumn (September to November). Commercial 

wheat is sown in November while local farmers plant in December when the rains have 

diminished (Sharon & Kutiel, 1986). The Negev remains dry for most of winter until the 

‘greening up’ process begins in February when the rains return (Svoray & Karnieli, 

2010). 

 In the southeast United States, Hessian fly cannot be controlled through the use of 

fly-free date planting techniques. Warm temperatures coupled with significant rainfall 

signals the end of HF aestivation, and this leads to multiple fall broods if wheat is planted 

too early or volunteer wheat is readily available. Coastal areas in Georgia usually have 

four broods per year: two fall, one winter, and one spring (Buntin & Chapin, 1990). As 

the northern Negev and southern Georgia share latitudinal coordinates, it is highly likely 

that multiple broods occur in both winter and spring every growing year. 

 In order to increase the chances of multiple broods per season, there must be 

readily available sources of wheat for HF. The different planting times between 
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commercial and local farming is equivalent to one life cycle of HF. A warm, wet 

December could trigger aestivation from HF in commercial fields and lead to a second 

winter brood in subsistence fields. Prolonged droughts have increased the number of 

abandoned and untilled silage fields, which in the United States serve as safe havens for 

diapausing HF (Atzmon & Schwarzbach, 2004). In addition, volunteer wheat is often 

found as weedy roadside borders since transportation through the ages has readily scatters 

seeds (Cook, 1913). Wild emmer found in rocky, uncultivated areas can also serve as a 

host for HF. 

 A mixture of two populations was also detected in the southeastern United States 

(Morton et al., 2011). No bottleneck was detected, but the availability of the host plant in 

silage fields before the fly free dates played an important role in increasing the number of 

broods per year. Evolutionary differences from mutations can accumulate faster within 

isolated areas where more broods per year occur, leading to increased genetic drift 

(Masel, 2011). Local and spatial factors provided limited influence over the large area of 

the southeastern United States; however, genetic drift within the small geographic region 

under study could  provide a potential explanation for the separation of the Israeli 

populations from Syria where there are fewer broods per year. 

 

Influence of HF on Israel 

 Yield loss from HF infestations of wheat is considered to become significant 

when fall infestations exceed 5–8% of the plants in a field and when spring infestations 

exceed 13–20% (Buntin, 1999). These estimates were initially made for the southeastern 

United States, but they should also be applicable to Israel. Infestation levels for fall 
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infestations in six of the seven fields surveyed substantially exceeded the infestation 

levels for significant yield losses, and the 3–5% spotty infestation levels in the field at the 

Gilat location was equal to a significant yield loss at some locations within the field. 

Estimation of virulence and yield loss within fields in Israel suggests that the use of 

resistant cultivars would greatly reduce losses due to HF infestations. Historically, there 

has been no program to introgress HF R genes into wheat lines adapted to Israel. The 

seed treatment insecticides Cruiser (Syngenta) and Gaucho (Bayer) are used with wheat 

for control of HF and other insect pests in Israel; however, application of these seed 

treatments introduces a significant additional cost into wheat production. Additionally, 

these seed treatment will not protect the crop from spring infestations. Thus, introgression 

of HF R genes into wheat lines adapted to agronomic conditions in Israel is a control 

strategy worthy of consideration. The current study has documented the R genes H12, 

H17, H18, H25 and H32 provided effective resistance toward the Magen HF and should 

be effective in protection of wheat in Israel. 

 

2.6 Conclusions 

 Hessian fly has been positively identified as a wheat pest in Israel. It occurs at a 

level of infestation that significantly impacts yield loss. The use of wheat cultivars that 

contain at least one of the R genes for H12, H17, H18, H22, H24, H25, H31 and H32 are 

suggested for immediate use to control HF and increase crop yield. While levels of 

differentiation in the coxI barcoding region are well within species tolerances, isolation of 

HF in Israel has occurred. Additional research is required to positively identify if the 
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mitochondrial and nuclear evidence reported here can support Israeli HF as a cryptic 

species. 
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2.9 Tables 

Table 2.1. Wright’s FST for coxI from Hessian fly. Significant values are in bold, and 

p≤0.05. 

 

 Alabama Morocco Gilat Ruhama Mordechai Magen Zikim Syria 

Alabama *        

Morocco 0.802 *       

Gilat 0.984 0.974 *      

Ruhama 0.858 0.833 0.01 *     

Mordechai 0.981 0.972 0.065 0.086 *    

Magen 0.967 0.933 0.992 0.863 0.99 *   

Zikim 0.869 0.847 -0.031 -0.084 -0.02 0.873 *  

Syria 0.37 0.271 0.759 0.591 0.77 0.323 0.638 * 
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Table 2.2. Virulence analysis of Hessian fly from Israel using 20 different lines of wheat. 

2 values were calculated using the program R with p≤0.05. 

 

Gene Line ID #R #S 2 p value 
H3 MONON 1 32 31.030 <0.0001 
H5 MAGNUM 0 36 36.000 <0.0001 
H6 CALDWELL 0 32 32.000 <0.0001 
H7H8 SENECA 1 31 30.031 <0.0001 
H9 IRIS 21 18 8.307 0.0039 
H10 JOY 19 16 7.314 0.0068 
H11 KAREN 2 31 29.121 <0.0001 
H12 LOLA 22 3 0.360 0.548 
H13 MOLLY 18 21 11.307 0.0008 
H14 921676A3-5 11 27 19.184 <0.0001 
H16 921682A4-6 8 30 23.684 <0.0001 
H17 921680D1-7 37 5 0.595 0.4405 
H18 MARQUILLO 25 2 0.148 0.7005 
H22 KSWGRC01 32 12 3.273 0.0704 
H23 KSWGRC03 0 34 34.000 <0.0001 
H24 KSWGRC6 27 11 3.184 0.0744 
H25 KSWGRC20 42 0 0.000 1.0000 
H31 P921696A1-15-2-1 23 10 3.030 0.0817 
H32 SYNTHETIC 29 1 0.033 0.8559 
no gene NEWTON 0 40 0.000 1.0000 
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Table 2.4. Wright’s FST scores are located below the diagonal. Bolded numbers are 

significant differences (p≤0.05). Distance (km) between locations is listed above the 

diagonal. It is roughly 475 km from the Negev region of Israel to Lattakia, Syria.  

 

 Gilat Ruhama Mordechai Magen Zikim 
Gilat  7.2 31.5 21.5 18.2 
Ruhama 0.085  28.1 27.6 12..5 
Mordechai 0.014 0.111  34.6 32.5 
Magen 0.019 0.072 0.005  17.7 
Zikim 0.029 0.136 0.013 0.019  
Syria 0.237 0.299 0.253 0.228 0.165 
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2.10 Figures

 

 

Figure 2.1. Sample Locations. This map displays the Israeli collection sites. Stars indicate 

the Hessian fly sample locations of Kibbutz Yad Mordechai, Kibbutz Ruhama, Kibbutz 

Zikim, Gilat, and Kibbutz Magen. The locations where infestation levels were sampled, 

Kibbutz Be’eri and Kibbutz Alumim, are also shown. Country borders are in yellow 

while the Palestinian territories of the West Bank and Gaza Strip are in red.  
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Figure 2.2. Wheat-barley oviposition preference. Using a Mann-Whitney test, the mean 

number of eggs per leaf laid by Hessian fly on wheat (56) was found to be significant to 

the number of eggs found on barley (11). The bars on the columns indicate standard 

error. 
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Figure 2.3. Network and Parsimony phylogenetic reconstruction of coxI isolates. A) The 

unconnected networks for clades 1 and 2. Each line represents a mutational step. B) The 

parsimony tree displays bootstrap values (n reps=10,000) at the nodes. The coxI sequence 

from Mayetiola hordei and Rabdophaga rigidae were used as outgroups. Sites where the 

isolates occurred are located beside the branch, and the number of individuals found per 

location is in parenthesis. 
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Figure 2.4. Structure diagram. Using microsatellite markers, three populations of Hessian 

fly were defined. Syria is composed of a single population (green) while the five Israeli 

locations are split into two mixed populations (red and blue). 
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CHAPTER 3. DIFFERENTICAL EXPRESSION OF CANDIDATE SALIVARY 
EFFECTOR PROTEINS IN FIELD COLLECTION OF HESSIAN FLY, 

MAYETIOLA DESTRUCTOR 

3.1 Abstract 

 Evidence is emerging that some proteins secreted by gall forming plant-parasites 

act as effectors responsible for systemic changes in the host plant, such as galling and 

nutrient tissue formation.  A large number of secreted salivary gland proteins (SSGPs) 

that are the putative effectors responsible for the physiological changes elicited in 

susceptible seedling wheat by Hessian fly, Mayetiola destructor (Say), larvae have been 

documented.  However, how the genes encoding these candidate effectors might respond 

under field conditions is unknown.  The goal of this study was to use microarray analysis 

to investigate variation in SSGP transcript abundance among field collections from 

different geographic regions (southeastern United States, central United States, and the 

Middle East).  Results revealed significant variation in SSGP transcript abundance among 

the field collections studied. The field collections separated into three distinct groups that 

corresponded to the wheat classes grown in the different geographic regions as well as to 

recently described Hessian fly populations. These data support previous reports 

correlating Hessian fly population structure with micropopulation differences due to 

agro-ecosystem parameters such as cultivation of regionally adapted wheat varieties, 

deployment of resistance genes, and variation in climatic conditions.
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3.2 Introduction 

 Proteins and other molecules secreted by the salivary glands of phytophagous 

insects have been proposed to act as ‘effectors’ that, when injected into their hosts, 

facilitate and enhance penetration by mouthpart stylets, initiate digestion of host-cell 

contents for ingestion, and suppress host defense responses resulting in the modification 

and manipulation of host processes in a manner advantageous to the pest (Hori, 1992; 

Alfano, 2009; Hogenhout et al., 2009; Hogenhout & Bos, 2011; DeLay et al., 2012). It 

has recently been hypothesized that, during gall formation, the Hessian fly, Mayetiola 

destructor (Say) (Diptera: Cecidomyiidae), uses an effector-based strategy that is similar 

to biotrophic plant pathogens (Stuart et al., 2012).  This gall midge is a recurrent pest of 

wheat, Triticum aestivum L., in many of the wheat production areas worldwide and is the 

most important insect pest of wheat in the southeastern United States (Ratcliffe & 

Hatchett, 1997; Cambron et al., 2010). 

All damage to seedling wheat by Hessian fly is due to feeding by 1st-instar larvae.  

Hatchling larvae enter the whorl, and upon settling near the base of the plant, rapidly 

induce changes that include the formation of a nutritive tissue that nourishes the 

developing larvae, a rapid increase in host-cell permeability, and stunting of the plant 

(Harris et al., 2006; Saltzman et al., 2008; Williams et al., 2011).  Further, even if 

infesting larvae are removed from the seedling plant, normal growth cannot be restored 

(Byers & Gallun, 1972). 

There are three methods to control Hessian fly damage to wheat in the field: 

avoidance, seed treatment with a systemic insecticide, and deploying genetically resistant 

wheat.  Planting after the historically titled ‘fly-free’ date is the basis of avoidance; 
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however, in most of the warmer southeastern United States, an effective fly-free date 

cannot be relied upon to prevent damage to wheat, as temperatures do not remain 

consistently cold enough to prevent Hessian fly adult emergence.  Seed treatment is 

generally effective for only 2 – 3 weeks post germination.  Therefore, the most successful 

method of control is the deployment of genetically resistant wheat.  Thirty-five different 

Hessian fly resistance (R) genes in wheat have been identified and characterized (Liu et 

al., 2005; Sardesai et al., 2005; Li et al., 2013; McDonald et al., 2014).  This resistance is 

expressed as antibiosis of 1st-instar larvae and is controlled by single genes that are 

dominant or semi-dominant (Gallun, 1977; Harris et al., 2003; Williams et al., 2003).  In 

the insect, virulence to R genes is controlled by non-allelic recessive genes at single loci 

and operates on a gene-for-gene basis with resistance (Hatchett & Gallun, 1970; 

Formusoh et al., 1996; Zantoko & Shukle, 1997). 

The salivary glands of Hessian fly larvae express hundreds of transcripts that are 

specific to the Hessian fly and do not show homology to any known genes (Chen et al., 

2010). Identified through an expressed sequence tag (EST) study, SSGPs are 

hypothesized to be effectors that reprogram the biochemical and physiological pathways 

of susceptible wheat to benefit the infesting larvae (Chen et al., 2004; Liu et al., 2007; 

Zhu et al., 2008). SSGPs are identified by three attributes: small size (50-200 amino 

acids), a secretion signal at the amino terminus, and localized expression in the salivary 

glands (Chen et al., 2007). SSGPs are categorized into families that are defined as related 

proteins that share secretion signal peptides (Chen et al., 2006).  The genes encoding 

these small SSGPs are commonly identified in multi-genic clusters created by gene 

duplication and diversification with conserved intergenic regions and highly diversified 
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coding regions (Chen et al., 2010).  This unusual conservation is a unique feature of 

SSGPs, suggesting rapid evolution in response to selection pressures (Chen et al., 2010). 

If SSGPs are the effectors in the wheat-Hessian fly interaction, then investigating 

their expression in the context of field populations is important to understanding the 

underlying biology of the Hessian fly.  To date, no data are available on the expression of 

SSGP transcripts in field collections from different geographic regions.  There is 

population data using microsatellite markers that document the structure of Hessian fly 

populations (Morton et al., 2011; Morton & Schemerhorn, 2013).  Therefore, the focus of 

the present study was to compare transcript abundance from four previously studied 

SSGP families in Hessian fly from different geographic regions (Liu et al., 2004; Chen et 

al., 2008; Chen et al., 2010). We hypothesized that the SSGPs, acting as effectors, should 

vary in transcript abundance among field collections of Hessian fly from different 

geographic regions (southeastern United States, Central United States, and the Middle 

East) due to biological and ecological parameters associated with the collection sites.  

Significant variation in SSGP transcript abundance among the field collections was 

observed.  SSGP transcript abundance separated field collections into groups that 

corresponded with the major wheat classes grown in the geographic regions as well as 

previously described Hessian fly populations. 

 

3.3 Results 

Relative abundance among field collections of transcripts encoding SSGPs 

 To document the abundance of SSGP transcripts across different geographic 

regions, we carried out a microarray experiment.  The Affymetrix microarray was 
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composed of 444 probe sets dedicated to SSGP sequences identified from an EST project 

(Chen et al., 2004; 2008).  Redundancies in alleles and gene copy number can make 

analyses of SSGP transcript abundance difficult; therefore, duplicates were removed from 

the analysis, and four previously described families (vide supra) were selected for 

evaluation. 

Within each SSGP family under study, heat maps for transcript fold-change 

(Figure 3.1) were used to visualize the expression of the transcripts for the six field 

collections relative to the laboratory Biotype GP that has the lowest frequency of virulent 

genotypes of any Hessian fly biotype and is thought to represent a nascent state with 

respect to selection pressure from exposure to R genes in wheat (Harris and Rose, 1998).  

Significant log2 fold-changes in transcript abundance ≥2-fold with significance at p<0.05 

in the field collections relative to Biotype GP are documented on the heat maps with an 

asterisk (*).  Families 1 and 11 had the fewest transcripts showing significant variation in 

abundance relative to Biotype GP, while Families 2 and 4 had the greatest (19 significant 

fold-changes in Family 2 and 14 significant fold-changes in Family 4).  Greater decreases 

in transcript abundance relative to Biotype GP occurred than increases across the four 

families.  Twenty-five genes showed decreased relative transcript abundance, and 13 

showed increased abundance.  Within the United States, Alabama and Georgia had the 

greatest number of SSGP transcripts showing significant variation in abundance relative 

to Biotype GP.  In Texas, Colorado, and Kansas, most SSGPs were expressed in levels 

relative to Biotype GP with few significant fold-changes.  Israel also had significant 

variation in the relative abundance of SSGP transcripts in Families 2, 4, and 11.  The 

complete data sets with GenBank accession numbers and p values for significance in 
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variation of transcript abundance for the SSGP genes are given in Appendix Tables 3.1-

3.4. 

Within the three geographic regions field collections were made from, the fold-

change patterns within each of the SSGP families showed similar trends.  In particular, 

the fold-change patterns for collections from Kansas and Colorado were extremely 

similar for transcripts across the four SSGP families (Figure 3.1).  The southeastern 

collections also showed similar trends although fold-changes in Georgia were not often as 

statistically significant as in Alabama (Figure 3.1).  Fold-change patterns for transcript 

abundance in Texas, while not as close as between Kansas and Colorado, were similar to 

Kansas and Colorado across many transcripts within the four SSGP families.  Fold-

change patterns for transcripts across the four families in Israel showed three significant 

variations in transcript abundance (MDEST789, L4H12, and MDEST685) that were 

distinct from geographic locations within the United States.  Fold-change patterns of 

transcripts within a family were also fairly consistent across geographic regions; 

however, small differences were present that could correspond to transcripts that might 

be suitable for further exploration relative to differences in agro-ecosystem parameters. 

Hessian fly field collections from all three geographic locations were found to be 

significantly different (p<0.05) in gene expression rates measured as log2 fold-changes 

when grouped according to the three different wheat classes cultivated at the geographic 

locations.  The non-metric multidimensional scaling (NMDS) ordination plot (Figure 3.2) 

shows the grouping of these field collections.  The first axis (NMDS1) separated field 

collections from the southeastern soft-red-winter wheat geographic locations (Georgia 

and Alabama) from field collections from the Central hard-red-winter wheat locations 
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(Kansas, Colorado and Texas).  The second axis (NMDS2) separated the Middle Eastern 

(Israel) field collection from hard-red-spring wheat from the collections made in the 

United States from soft-red and hard-red winter wheat. 

Relative transcript abundance from the microarray analysis was further supported 

by quantitative Real-Time PCR (qRT-PCR) for three SSGP sequences within each 

family.  Significant log2 fold-changes ≥2-fold in comparison to Biotype GP are listed 

beside the microarray values (Table 3.1).  Significance was scored at p<0.05 and is 

indicated by grey highlighted boxes.  The abundance trends identified on the microarray 

(equivalent, decreased, and increased) are similar to those found with qRT-PCR. 

 

Phylogenetic analyses 

 Phylogenetic trees were constructed to show the evolutionary relationships within 

each SSGP family.  As members of each family share identical or highly similar secretion 

signals as well as 5’ and 3’ noncoding regions, diversity is often found within the coding 

sequence.  SSGPs that share high sequence identity are commonly found in arrays of 

tandem repeats; thus, phylogenies may reveal SSGPs with increased copy number. 

For Family 1, the phylogenetic tree shows two clades (Appendix Figure 3.1).  

While the general trend for Family 1 showed an increase in transcript abundance, only 

two SSGP sequences showed a significant increase in transcript abundance (S12A11 and 

G8F2).  Additionally, SSGP sequence MDEST798 showed a significant decrease in 

transcript abundance in the collections from Alabama and Georgia.  The three SSGP 

sequences S12A11, G8F2 and MDEST798 were located within the first clade. 
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In Family 2, there was a single large clade containing most of the genes in this 

family and three smaller clades (Figure 3.3).  While, in general, the trend for Family 2 

showed lower abundance in comparison to Biotype GP, the fourth clade contained a 

unique branch.  Transcript abundance for SSGP sequences S20B4, S3E10, and S8D5 

were significantly increased in the collections from Israel, Alabama, and Georgia while 

transcript abundance for SSGP sequences S18E7 and S12G8 were significantly increased 

only in the collections from Alabama and Georgia.  Although not statistically significant, 

the collection from Texas also showed a trend toward an increase in transcript abundance 

for S20B4, S3E10, and S8D5, while Colorado and Kansas were equivalent to the Biotype 

GP reference.  BLAST revealed all of the five sequences were located on scaffold 

X1Random.8 at the same location in the Hessian fly genome.  Two additional SSGP 

sequences showed an increase in transcript abundance outside of clade four (S14F7 in 

Alabama and Georgia and MDEST789 in Israel). 

Family 4 (Appendix Figure 3.2) also showed two clades; however, the SSGP 

sequences showing significant changes in transcript abundance were dispersed 

throughout the tree.  Two SSGP sequences where transcript abundance varied 

significantly relative to that in Biotype GP (MDEST685 and MDEST1048) grouped 

together in Family 11 (Appendix Figure 3.3).  However, no other correlations between 

phylogenetic groups and transcript abundance within families were documented in the 

current study. 
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3.4 Discussion 

 The microarray analysis revealed significant differential expression of SSGP 

transcripts, the candidate effectors in the Hessian fly-wheat interaction, among field 

collections from different geographic regions relative to SSGP transcript abundance of 

the Biotype GP reference.  The field collections under study and the Biotype GP 

reference were reared on the same variety of susceptible wheat (cv. Newton, carrying no 

genes for resistance).  Thus, the variations in expression documented are not due to 

different wheat genotypes.  Therefore, the documented variation in expression of SSGP 

genes is associated with genetic adaptations that accumulated over time from 

environmental and agro-ecosystem selection pressures (Morton et al., 2011, Morton & 

Schemerhorn, 2013).  These selection pressures could influence population structure and 

evolution in the field and influence the expression of effectors. 

In the current study, SSGP transcript abundance in the six field collections fell 

into three geographic groups based on similarity of SSGP expression and wheat class 

grown in the geographic region:  (1) southeastern United States; (2) Central United 

States; and (3) the Middle East.  These groupings were also in agreement with a 

previously published population survey that revealed the worldwide structure of Hessian 

fly populations using microsatellite markers (Morton & Schemerhorn, 2013).  Alabama 

and Georgia are located in the southeastern United States where soft-red-winter wheat 

varieties are grown, and multiple R genes (H3, H5, H6, H7H8, H9, and H13) have been 

deployed in adapted wheat varieties (Cambron et al., 2010).  Kansas, Colorado, and 

Texas are in the Central United States, where hard-red-winter wheat cultivars are 

primarily grown, and R genes have not been deployed to the same extent as in the 
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southeastern United States (Garcés-Carrera et al., 2014).  In Israel R genes are not 

commercially deployed and hard-red-spring wheat is predominantly grown (Johnson et 

al., 2012).  Our microarray analysis of SSGP sequences further support the findings that 

Hessian fly populations across multiple locations within the United States have low levels 

of local adaptation that are due to the sharing of agro-ecosystem pressures over large 

geographic areas (Black et al., 1990; Morton et al. 2008). These local adaptations result 

in micropopulations that vary within the larger overall population. 

The equivalency in abundance of transcripts encoding SSGPs between Kansas 

and Biotype GP is not surprising.  The laboratory Biotype GP reference used in the 

present study was derived from a field collection made in Ellis County, Kansas and 

maintained under greenhouse conditions since 1986 (Harris & Rose, 1989).  The 

microarray analysis indicates that the diversity in SSGP transcript abundance in the 

laboratory Biotype GP reference and in the current field collection from Ellis County, 

Kansas are essentially identical. While deployment of R genes H3 and H6 has occurred in 

recent years, their usage is neither consistent nor widespread in Kansas.  This indicates 

that field conditions over the last 25 years have resulted in little significant variation 

between the current Ellis County collection and the reference Biotype GP from agro-

ecosystem pressures. The similarity in abundance of SSGP transcripts between Kit 

Carson County, Colorado and Ellis County, Kansas, located 200 linear miles apart, could 

also be associated with similarity in environmental and agro-ecosystem selection 

pressures between the field collection sites in eastern Colorado and central Kansas. 

In the Central United States additional agro-ecosystem parameters that can affect 

Hessian fly populations are: a low number of generations per year and the lack of 
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successive deployment of multiple R genes over time. Generally, there are two 

generations per year of Hessian fly (fall and spring) that can be controlled by planting 

after the ‘fly-free’ date.  Therefore, the deployment of R genes for control of Hessian fly 

has not been as extensive as in the southeastern United States.  With a limited number of 

generations per year and dispersed local deployment of resistant cultivars, the number of 

virulent Hessian fly in the field is slow to accumulate and perpetuates the repeated use of 

a resistant cultivar (Gould, 1986).  Recently, low levels of virulence have been identified 

in Kansas (Chen et al., 2009). A new survey from Texas shows that virulence in the field 

is increasing as the repeated, annual deployment of multiple R genes increases (Garcés-

Carrera et al., 2014). However, neither shows the widespread high proportion of 

virulence seen in the southeastern United States (Cambron et al., 2010). 

In the southeastern United States, climate, availability of alternative hosts, and the 

successive deployment of R genes can affect the biology of Hessian fly.  The growing of 

wheat for forage and the presence of alternative host plants increases the availability of 

host plants during the warm, wet growing season before the “fly-free date’ leading to 

multiple generations (6-8) (Buntin & Raymer, 1989a; Buntin & Chapin, 1990; Buntin et 

al., 1992; Flanders et al., 2014). Together, these factors negate the avoidance practice, as 

host plants are always readily available for each generation and aids in populations 

rapidly overcoming resistant wheat cultivars. 

The greatest variation in expression among all four of the SSGP families under 

study occurred in collections from Alabama and Georgia. Successive deployment of 

wheat cultivars carrying R genes has resulted in a decline in R gene efficacy, an increase 

in field populations of Hessian fly that can overcome formerly resistant wheat, and the 
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highest proportion of local adaptation to R genes in the United States (Cambron et al., 

2010; Ratcliffe, 2013).  Between 1986 and 2000, deployment of the R genes H3, H5, H6, 

and the gene combination H7H8 led to the evolution of Hessian fly from being 

moderately virulent to H3 to 100% virulent to all four of the deployed genes (Buntin & 

Raymer, 1989b; Alabama Cooperative Extension System, 2013).  This successive 

deployment of R genes could also be a factor influencing SSGP expression in field 

populations from the Southeast. 

Populations near the center of origin for a species can but do not always show the 

most significant genetic diversity (Harlan, 1974).  The Israeli field collection did not 

show the greatest variation in relative abundance of SSGP transcripts nor the greatest 

virulence to known R genes (Johnson et al., 2012).  Hessian fly is thought to have 

coevolved with the genus Triticum in the Fertile Crescent, and high frequencies of 

Hessian fly virulence to the identified R genes have been documented in field collections 

of the fly from Syria (Ratcliffe & Hatchett, 1997; El Bouhssini et al., 2009).  Climatic 

differences in temperature and moisture that drive the generational cycle have impacted 

Hessian fly population structure in Israel (Johnson et al., 2010).  In Israel >95% of the 

wheat currently grown is hard-red-spring and has replaced cultivation of local land races 

and Durum wheat [T. turgidum L. ssp. durum (Desf.)].  Since R genes for Hessian fly 

resistance have not been deployed in Israel, indigenous wild wheat as well as alternative 

grass hosts could be the sources of R gene exposure for Israeli Hessian fly populations.  

Additionally, lack of migration resulting in low gene flow and isolation separates the 

Israeli populations from neighboring populations such as those in Syria.  Thus, the class 

of wheat cultivated coupled with very different environmental conditions, isolation and 
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low gene flow, and sporadic exposure to R genes could be factors resulting in the 

differentiation of SSGP expression between the Israeli collection and those made in the 

southeastern and Central United States. 

Fitness costs associated with virulence and adaptive responses should play an 

important role in plant-parasite coevolution (Montarry et al., 2010).  Reproductive fitness 

costs have been associated with Hessian fly virulence to resistance genes H9 and H13 in 

wheat (Zhang et al., 2011).  Most of the decreases in relative abundance of transcripts 

encoding SSGPs were found in the Southeast and this could be associated with fitness 

costs associated with these SSGPs.  However, a clearer understanding of the significance 

of the differential expression of SSGPs reported here requires knowledge of the role of 

the SSGPs during interactions with both susceptible and resistant wheat, respectively.  

Currently, this knowledge is lacking, and this is a hindrance to fully understanding the 

diversity in expression of SSGPs among Hessian fly populations documented here. 

Differential expression of SSGPs could also be attributed to variation in copy 

number of tandem repeats.  Within Family 2, one branch in a clade of related SSGP 

sequences showed similarity in relative abundance significantly greater than in Biotype 

GP for flies from Alabama and Georgia (S3E10, S20B4, S8D5, S18E7, and S12G8) as 

well as Israel (S3E10, S20B4, and S8D5).  In Colorado and Kansas, the relative 

abundance of these transcripts was equivalent to that in Biotype GP.  However, while the 

collections from Texas were not significantly different from Biotype GP, they did show a 

trend toward an increase.  While BLAST results to the Hessian fly genome sequence 

positioned all five sequences (S18E7, S20B4, S3E10, S8D5, and S12G8) on the same 

scaffold (X1Random.8), problems with the assembly of the Hessian fly genome sequence 
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often position SSGP sequences at a single locus due to sequence similarity.  Further, no 

sequenced BAC clones were available to resolve whether these five sequences occupy the 

same location.  However, an analysis of the alignments for these five transcripts suggests 

that variation among the transcripts is greater than would be expected for alleles and 

could represent tandem repeats that have diverged over time (i.e. paralogs).  Future 

sequencing of BAC clones in this region of the genome should resolve this question. 

 

3.5 Conclusion 

 A microarray-based study documented significant variation in transcript 

abundance within a set of four SSGP families among Hessian fly field collections from 

three distinct geographic regions by the wheat class predominantly grown in the regions.  

These data support findings from previous studies indicating that ecological and agro-

ecosystem dynamics within the three geographic regions exert different selection 

pressures associated with the different geographic regions and influence Hessian fly 

population structure. 
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3.7 Experimental Procedures 

Field collection of insect material 

 Hessian fly field collections of fall infestations were made from five localities in 

the United States (Pike County, Georgia; Limestone County, Alabama; Brazos County, 

Texas; Ellis County, Kansas; and Kit Carson County, Colorado) and one locality in the 

Middle East (Northern Negev, Magen, Israel).  Within the United States, the collection 

localities represented the southeastern and central geographic regions.  The Magen, Israel 

collection is from the Middle East where Hessian fly and the genus Triticum are proposed 

to have coevolved (Ratcliffe & Hatchett, 1997).  The laboratory Great Plains Biotype 

(GP) that is defined as having a low frequency of virulence to the known R genes (Harris 

& Rose, 1989) was used as a reference biotype for comparison of transcript abundance. 

Field collections were made by randomly harvesting approximately 500 infested 

plants from three to five different areas within infested field (Johnson et al., 2012).  

Collections of fly from the different areas within a field were pooled and treated as one 

sample.  Field collections underwent one cycle of increase in the greenhouse under 

conditions documented to retain genetic diversity (Foster et al. 1977; Black et al. 1990).  

Adults were allowed to emerge, mate, and oviposit under mesh tents on flats of Cultivar 

‘Newton’, that carries no Hessian fly resistance genes.  When infesting larvae reached the 

3rd-instar within puparia, the flats were sifted to remove soil, and the infested plant 

material was placed into cold storage at 4oC.  Under these conditions larvae retain their 

viability for up to a year.  Infested plant material was removed from cold storage to allow 

adult emergence to infest Newton wheat in pots for SSGP expression studies. 
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RNA extraction 

 Twenty seedlings of Newton wheat were grown in a 10 cm pot containing a sterile 

mixture of soil and potting mix.  When plants reached the 1.5 leaf stage, they were 

infested with five gravid females by confining them under a plastic cup covering the pot.  

Four-day old 1st-instar larvae were released from the plants by dissecting the crown with 

forceps in deionized water.  Preliminary analyses have documented that abundance of 

transcripts encoding SSGPs generally peaks in 1st-instar larvae four days after egg hatch 

(Shukle, unpublished results).  Infestations were carried out with each of the six field 

collections in triplicate to produce three biological replicates (collections of larvae) for 

transcript abundance studies.  Total RNA was extracted from the collected larvae using 

the RNAqueous-4PCR kit (Life Technologies, Grand Island, NY) according to the 

manufacturer’s protocol.  Extracted RNA was frozen at -80°C until further analysis. The 

RNA samples were used to carry out the microarray hybridization as well as the qRT-

PCR analysis. 

 

Microarray hybridizations 

 A custom microarray (Affymetrix, Santa Clara, CA) containing probes for 444 

previously identified Hessian fly SSGP sequences was used in the current study.  

Microarray processing and hybridization were carried out in the Integrated Gene 

Expression Facility at Kansas State University following the procedures described in Liu 

et al. (2007).  The Ovation RNA Amplification System V2 kit (NuGEN Technologies, 

San Carlos, CA) was used to convert 50 ng of RNA to anti-sense cDNA that was used for 

hybridization.  The Minelute PCR purification kit (Qiagen, Valencia, CA) was used to 
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isolate single-stranded cDNA, which were quantified using a Nanodrop-ND-1000 

spectrophotometer (Thermoscientific, Waltham, MA).  The purified cDNA (3.75 μg) was 

fragmented and labeled using a FL-Ovation cDNA Biotin module V2 kit (NuGEN 

Technologies).  Labeled fragments were checked for integrity by running the fragmented 

cDNA through a RNA nano-chip in Agilent Bioanalyzer (Santa Clara, CA).  The 

hybridization mixture was prepared following the protocol included in the FL-Ovation 

cDNA Biotin module V2 kit and was then injected into the microarrays.  After 18 hours 

of incubation in a GeneChip oven, standard protocol was followed to wash the 

microarrays, and they were stained with streptavidin phycoerythrin in a GeneChip fluidic 

station 450 (Affymetrix, Santa Clara, CA).  The GeneChip scanner 3000-7G (Affymetrix) 

was used to scan the microarrays, and GeneChip operating software version 1.4 generated 

the initial image (.dat) and scaled image (.cel) files. 

 

Microarray analyses 

 The microarray data from .cel files were analyzed using R (R Development Core 

Team, 2013) and Bioconductor (Gentleman et al., 2004).  The .cel files were imported 

into R using Affy-software, and microarray data were corrected for technical variation 

using the RMA procedure (Irrizary et al., 2003; Gautier et al., 2004).  A total of 444 

probes sets were assayed on 20 microarrays that were hybridized with DNA from the six 

Hessian fly field collections plus Biotype GP as the reference. 

Differentially expressed genes were identified in the six field collections using 

hypothesis testing based on a probe-wise modified two-sample t test; therefore, 444 

hypotheses tests were simultaneously performed for each of the six field collections with 
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Biotype GP as the reference (Efron, 2010).  As a two-sample t test is an unreliable 

estimation of noise variance resulting from the limited number of biological replicates in 

the microarray data, a modified two-sample t test that has better statistical properties for 

testing differential expression of probes in microarrays was used (Smyth, 2004).  Using 

the modified two-sample t test, p values were necessary for the differential correction for 

multiple comparisons to control the number of false positives (the probes that are falsely 

declared as showing differential signals).  False discovery rate (FDR) has greater 

statistical power than family-wise error rate (FWER) procedures and has optimal 

properties for simultaneous hypotheses tests in analysis of microarrays where only a 

small fraction of transcripts are differentially expressed (Efron, 2010).  The p values from 

the modified two-sample t test were adjusted using Benjamini-Hochberg’s (1995) 

procedure for controlling FDR and obtaining adjusted p values.  These p values can be 

directly compared with the standard cut-off of 0.05.  For each field collection, the 

transcripts with abundance level changes having calculated adjusted p values less than 

0.05 were considered to be differentially expressed. 

 

Validation of microarray results by quantitative real-time PCR (qRT-PCR) 

 To validate the fold-change data observed in the microarray analysis for SSGP 

transcript abundance in the field collections relative to Biotype GP, three genes from each 

of the four SSGP families were selected for qRT-PCR analyses.  These genes were 

selected on the basis of equivalent expression across all populations, decreased 

expression, and increased expression. One μg of DNase-treated RNA was used as 

template for synthesis of first strand cDNA with random hexamers using the Tetro cDNA 
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synthesis kit (Bioline, Taunton, MA) according to the manufacturer’s instructions. As the 

Relative Standard Curve method was used, cDNA concentrations were quantified using a 

Nanodrop ND-1000 spectrophotometer and diluted to 10 ng/μl. 

The software Primer Express version 3.0 (Applied Biosystems, Foster City, CA) 

was used to design gene-specific qRT-PCR primers that would amplify a 50-75 bp 

fragment between 58-62°C (Appendix Table 3.5).  The qRT-PCR was performed on a 

LightCycler 480 (Roche Diagnostics, Indianapolis, IN) with SensiFAST SYBR no-ROX 

chemistry (Bioline). The total qRT-PCR volume of 20 μl contained 10 μl 2x SensiFAST 

SYBR No-ROX mix, 10 μM of a forward and a reverse gene-specific primer, and 40 ng 

of cDNA template per reaction.  No-template samples were included in each PCR plate 

as negative controls.  PCR parameters were as follows: 95°C for 2 min; 40 cycles of 95°C 

for 5 sec, 55°C for 10 sec, and 72°C for 20 sec.  To determine the specificity of the 

reaction, a melt curve analysis was carried out following qRT-PCR, confirming 

amplification of a single product.  The reactions were set up in triplicate for each of the 

three biological replicates in a 384-well plate. 18S ribosomal RNA (NCBI Accession No. 

KC177284.1) was used as an internal reference for transcript normalization. Transcript 

abundance data were calculated according to the Relative Standard Curve method (ABI 

User Bulletin #2, 

http://www3.appliedbiosystems.com/cms/groups/mcb_support/documents/generaldocum

ents/cms_040980.pdf).  Relative expression values (REVs) were presented as log2 fold-

change relative to transcript abundance in Biotype GP. 

Significant differences in mean REVs associated with transcript abundance in the 

field collections relative to the Biotype GP reference were identified using a Dunnett 
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multiple comparisons test (Dunnett, 1955; 1964).  Differences were considered 

significant at p<0.05. 

 

Phylogenetic analyses 

 Clustal X, version 2.1 was used to create an alignment file for the nucleotide 

sequences (Larkin et al., 2007).  The best-fit model of nucleotide substitution was 

calculated using jModelTest2 (Guindon & Gascuel, 2003; Darriba et al., 2012). Bayesian 

maximum likelihood trees were constructed under the GTR+I+G model using MrBayes 

3.2.1, and the analyses were computed in excess of 1 million generations until the split 

frequency deviation was less than or equal to 0.01. TreeView 1.6.6 was used to display 

the phylogenetic trees (Page, 1996Ronquist et al., 2012).  All trees were rooted with a 

lipase-like SSGP outgroup from the Asian rice gall midge Orseolia oryzae (Wood-

Mason) (GeneBank Accession No: FJ196713) that is a homolog of a lipase-like SSGP for 

Hessian fly and encodes a protein with a secretion signal (Shukle et al., 2009). 

 

Ordination and analysis of Hessian fly field collections by wheat classes 

 A non-metric multidimensional scaling (NMDS) approach was used to group the 

Hessian fly field collections based on variation in wheat classes (i.e. soft-red-winter, 

hard-red-winter, and hard-red-spring) as a function of the 104 gene expression results 

within each collection from the microarray analysis.  Gene expression data was 

standardized and a Euclidian distance matrix was calculated as a proximity matrix.  To 

test the statistical significance of the field collection groupings, a permutational 

multivariate analysis of variance using the same proximity matrix (vide supra) was 
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conducted using the function ‘adonis’ from the R Package ‘vegan’ 2.0.1 (Oksanen et al., 

2013). The statistical significance was calculated after 99999 permutations. 
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3.10 Figures 

 

 

 

Figure 3.1. Heat map visualizing probe signal intensities for Hessian fly, Mayetiola 

destructor (Say), secreted salivary gland protein (SSGP) transcripts in Families 1, 2, 4, 

and 11.  Fold-changes are normalized log2 signal intensities for probes in Hessian fly 

field collections relative to Biotype GP, respectively.  Log2 changes ≥2-fold with 

significance at p≤0.05 are indicated by *.  Scale shows color code for log2 fold-changes.  

Positive fold-changes are indicated by red with darker tones indicating larger fold-

change.  Negative fold-changes are indicated by blue with darker tones indicating larger 
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fold-change.  Heat maps were drawn using R/Bioconductor.  GenBank accession 

numbers for SSGP transcripts are given in Table S2-S5. 
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Figure 3.2. Ordination plot using non-metric multidimensional scaling (NMDS).  The 

plot depicts the relationships between Hessian fly, Mayetiola destructor (Say), field 

collections from the three different geographic locations (southeastern United States – 

Georgia and Alabama; Central United States – Kansas, Colorado, and Texas; Middle East 

– Israel) as grouped by the three different wheat classes (i.e. soft-red-winter, hard-red-

winter, hard-red-spring) predominantly grown at these locations. The 104 secreted 

salivary gland protein (SSGP) gene expression data from the microarray results for the 

Hessian fly collections correlated to the three different wheat classes in the analysis. 
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Figure 3.3. Bayesian phylogenetic tree of secreted salivary gland protein (SSGP) 

transcripts in Family 2.  The phylogenetic reconstruction is rooted using the secreted 

salivary lipase-like gene from the Asian rice gall midge, Orseolia oryzae (Wood-Mason) 

as an outgroup, posterior probability values are located at the nodes, and clades are 

indicated by Roman Numerals.  While the most significant variations in transcript 

abundance are located within Family 2, there is only a single branch that shows five 

related genes (S20B4, S3E10, S18E7, S12G8, and S8D5) with similar transcript 

abundance patterns as shown in the heat map insert for SSGP transcript probe intensities.  

These genes have a high degree of nucleotide similarity and as such may represent alleles 

or paralogs. 
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CHAPTER FOUR: GENETIC INHERITANCE AND MOLECULAR 

CHARACTERIZATION OF VIRULENCE IN AN ISRAELI POPULATION OF 

HESSIAN FLY (MAYETIOLA DESTRUCTOR) TO RESISTANCE GENE H13 IN 

WHEAT  
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CHAPTER 4. GENETIC INHERITANCE AND MOLECULAR 
CHARACTERIZATION OF VIRULENCE IN AN ISRAELI POPULATION OF 

HESSIAN FLY (MAYETIOLA DESTRUCTOR) TO RESISTANCE GENE H13 IN 
WHEAT 

4.1 Abstract 

 It has been well documented that Hessian fly (Hf), Mayetiola destructor (Say), 

larvae produce a large number of secreted salivary effector proteins involved in effector 

triggered immunity that elicit systemic changes in susceptible wheat as well as trigger the 

defense response in resistant wheat. One of the avirulence effectors responsible for the 

interaction between Hf larvae and resistance gene H13 in wheat has recently been cloned 

and characterized using Hf populations from the United States (US). Within the US, 

virulence was shown to be associated with three independent insertions that resulted in a 

loss of expression of the avirulence gene. The goal of the present study was to test the 

hypothesis that the inheritance and molecular basis of virulence in a genetically isolated 

Old World population is the same as in the United States (US). Genetic crosses testing for 

the inheritance of virulence to H13 in Hf from Israel revealed that it is controlled by a 

sex-linked, recessive trait at a single loci. Additionally, no complementation occurred 

between crosses of virulent US and virulent Israeli Hf, supporting the hypothesis that 

virulence resides at the same locus in both populations. However, no insertions were 

identified in the coding region nor upstream or downstream of the coding region. Further, 

no single nucleotide polymorphisms or frame shifts corresponding to virulence were 
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identified. These data suggest the molecular basis of virulence in the Israeli population to 

resistance gene H13 in wheat is not the same as in the US.  

 

4.2 Introduction 

 Mayetiola destructor (Say) [Diptera: Cecidomyiidae], commonly known as the 

Hessian fly (Hf), is an invasive pest of wheat (Triticum aestivum L.) in North America. 

Hf has a significant impact on wheat production in the southeastern United States (US) 

where 6-8 generations of Hf can occur each year (Buntin and Chapin, 1990). The 

Midwest and the Pacific Northwest also experience periodic outbreaks; however, in these 

regions, Hf can still be controlled by planting after the “fly-free” date. This avoidance 

strategy uses previous knowledge of local weather patterns to calculate when to sow 

wheat such that seedling plants are not available during the bulk of the Hf fall emergence. 

 The majority of the Hf life cycle is spent living within the wheat plant (Stuart et 

al., 2012). Adults are short-lived, poor fliers which do not regularly migrate long 

distances; human transport is the primary mode of dispersal (Morton et al., 2011). In fall 

infestations, females oviposit onto seedling plants. Upon hatching, larvae crawl down the 

leaf blade and establish a feeding site at the base of the whorl of the plant. In 

incompatible interactions, larvae cannot successfully establish a feeding site and die 

within four to six days (Subramanyam et al., 2008). In compatible interactions, a layer of 

nutritive cell tissue forms at the feeding site where the larva will continue its growth and 

development through two feeding instars (Harris et al., 2006). The cuticle sclerotizes and 

turns dark brown after 21 days. Due to the resemblance, these larvae are commonly 

referred to as a flaxseed. Third-instar larvae and pupae develop within the flaxseed, and 
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adults emerge around day 30 unless weather conditions indicate that an overwintering 

diapause is necessary.  

 For all wheat production regions world-wide, the best control strategy to prevent 

Hf damage is the deployment of resistant wheat cultivars. Thirty-five genes for Hf 

resistance in wheat (H genes) have been identified from T. aestivum, Triticum durum 

Desf, Aegilops tauschii Cross, and Secale cereale L., and all express resistance as larval 

antibiosis (Li et al., 2013). Most are controlled by single-genes that are partially-to-

completely dominant (Gallun, 1977; Harris et al., 2003). Likewise, Hf has adapted its 

own genes, controlled by recessive alleles at different loci, to overcome plant resistance 

(Hatchett and Gallun, 1970; Formusoh et al., 1996, Zantoko and Shukle, 1997). 

Therefore, it is necessary to geographically vary deployment of resistant wheat cultivars 

based on Hf population levels of virulence.  

 The repeated deployment of wheat resistance gene H13 in some isolated areas of 

the southeastern US has created a selection pressure that has allowed levels of virulence 

to increase creating pockets of virulent Hf field populations (Ratcliffe et al., 1994; 

Cambron et al., 2010). Recently, the avirulence gene (vH13) has been identified and 

characterized in Hf from the US (Aggarwal et al., 2014). Virulence to H13 is a sex-

linked, recessive trait (Zantoko and Shukle, 1997). It resides on the short arm of 

chromosome X2 between markers 124 and 134 (Rider et al., 2002; Lobo et al., 2006). 

vH13, like other putative effectors of Hf, is a small protein (116 amino acids) that 

contains a signal peptide on the amino terminus and does not correspond to any other 

known genes in the NCBI database (Aggarwal et al., 2014). Three avirulence alleles 

corresponding to the incompatible interaction with H13 have been identified; they vary in 



100 
 

 

sequence only by the copy number of the imperfect repeat (IR) that is located within the 

second exon. In the compatible interaction with H13, mutations leading to virulence were 

obtained through one of three possible insertions that disrupt the coding region and cause 

a loss of function (Aggarwal et al., 2014). As Hf males are hemizygous for the X 

chromosomes, a single copy of a virulent allele conveys virulence while two copies are 

required in Hf females (Benatti et al., 2010). 

 The Negev region of Israel (IS), a semi-arid desert that has been reclaimed for 

vegetable, grain, and fruit production, has been experiencing a multi-year drought. Novel 

ways to increase yield production have led to an interest in control of Hf through resistant 

wheat cultivars. Commercial wheat cultivars in Israel are not bred specifically for Hf 

resistance yet significant virulence to H3, H5, H7H8, H9, H10, H11, H13, H14, H16, and 

H23 has been detected (Johnson et al., 2012). Unlike the US, Israel’s locally adapted 

wheat varieties retain high genetic diversity from their wild wheat progenitors which may 

have naturally exposed Hf in Israel to some H genes (Poikara and Blum, 1983; Ahern et 

al., 2009; Johnson et al., 2012). Previous population genetic studies using both 

mitochondrial and nuclear markers including microsatellites have discovered that Hf in 

Israel is a possible ancestral lineage of Hf but not the most recent progenitor of Hf in the 

US, that there are two mixed populations of Hf within the field in Israel, and that gene 

flow is greatly restricted between Israel and Syria (Johnson et al., 2004; 2011; 2012). 

 The goals of the present study were to test the following hypotheses: 1) The 

inheritance of virulence to resistance gene H13 in Israel the same as in the US; 2) 

Virulence to H13 resides at the same locus as previously described in the US; and 3) The 



101 
 

 

mechanism of virulence to H13 in field populations isolated by great distance, time, local 

adaptions, and selection pressures are the same.  

 

4.3 Results 

Inheritance of virulence to H13 in Israel 

 A segregation analysis was performed to test the genetic control of virulence to 

H13 in Israel (Figure 4.1). In the F1 generation, all males displayed the virulent 

phenotype, and all females displayed the avirulent phenotype. This is consistent with the 

inheritance of a sex-linked trait in Hf where hemizygous males display the maternal 

phenotype and inherit a single copy of the gene. As Hf females are diploid for the sex 

chromosomes, their genotype will be heterozygous. Therefore, the phenotype of the F1 

females indicates that virulence is a recessive trait (♀vv, ♂v).  

 Knowing that virulence is a sex-linked, recessive trait, F2 progeny are expected to 

sort 1:1 for virulence in both males and females. A chi-square test (X2 test) of fitness was 

performed with 1 degree of freedom (Table 4.1). Neonate larvae were collected from 11 

F2 progeny pots resulting in 70 avirulent and 84 virulent larvae. With 1 degree of 

freedom, the observed results did not deviate from the theoretically expected 1:1 

distribution. Virulence to H13 resides at a single locus in Israel. 

 

Complementation analysis between virulence in Israel and the United States to H13 

 To determine if the recessive mutations in the Israeli and US populations that 

controlled virulence to H13 were at the same locus or at two different loci, a 

complementation analysis was performed. Reciprocal crosses between virulent female 
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and male Hf from the US and Israel were made (Figure 4.2). If complementation did not 

occur, the expected ratio of avirulent to virulent female progenies would be 0:1. No 

avirulent F1 female progeny were identified in two-way differential pots. A total of 11 

female progeny resulted from crosses between USvir13 females by ISvir13 males. A total 

of 9 female progeny resulted from crosses between ISvir13 females by USvir13 males. 

With 1 degree of freedom, the observed results do not deviate from the theoretically 

expected ratio (Table 4.1). These results support the hypothesis that the mutation that 

controls the phenotype of virulence to H13 resides at the same locus in Israel and in the 

United States. 

 

DNA sequence analysis of the Israeli alleles controlling virulence and avirulence to H13 

 The genotype with respect to virulence or avirulence in Israeli males was inferred 

based on the phenotype of female progeny resulting from crosses between the Israeli 

males and USvir13 females. Using the same primers for which vH13 was cloned and 

characterized in the US, no insertions in the coding region could be detected in avirulent 

nor virulent Israeli males. The 5’ secretion signal (MKFVVAFMVLAICNQAFA) was 

intact as was the intron-exon boundary located between the glutamine and alanine 

residues within the secretion signal. Sequencing 452 bases upstream of the ATG and 197 

bases downstream of the TAA did not reveal any insertions or deletions in Israeli males of 

either inferred genotype.  

 Analysis of the Israeli males revealed at least 30 SNPs within the coding region of 

the candidate vH13 gene. Fifteen of the SNPs were transitions, and fifteen were 

transversions. However, none of these SNPs, in single or in combination, appeared to 
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correspond with the inferred virulent or avirulent Israeli male genotypes. Two alleles 

were found to be shared in common between avirulent and virulent Israeli males. Alleles 

from avirulent Israeli males displayed a greater gene diversity (0.9923 ± 0.0072) than 

those from virulent Israeli males (0.5771 ± 0.0783).  

 vH13 contains an imperfect repeat, a series of 12 amino acids near the end of the 

second exon, that can vary in number from a single copy to three copies (Aggarwal et al., 

2014). The IR was present in both avirulent and virulent P1 males. Of the males under 

study, sequence analysis revealed that 1-2 copies of the IR were prevalent in Israel. While 

a few individuals had three copies of the IR, it was very rare allele. 

 A comparison of the avirulent US vH13 alleles with the alleles from avirulent and 

virulent Israeli males was also conducted. An analysis of molecular variance (AMOVA) 

showed that more variation occurred within groups (76.47%) than among groups 

(23.53%). FST values revealed that the alleles from virulent Israeli males did not appear to 

significantly differ from the alleles in the US avirulent line (Table 4.2). 

Transcriptomic analysis between Israeli and US alleles for virulence/avirulence to H13  

 To further study virulence to vH13 in the Israeli population, lines avirulent 

(ISavrH13) and virulent (ISvirH13) to H13 were selected from the bulk Israeli 

population. Using gene-specific primers, reverse transcription PCR (RT-PCR) of single 

larvae resulted in amplicons from both lines. No insertions, deletions, or SNPs 

corresponding to virulence or avirulence were detected. Genetic diversity in alleles from 

the IsavirH13 line (0.5181 ± 0.0974) and from the ISvirH13 line (0.6044 ± 0.0759) was 

more similar than in the DNA sequence analysis as fewer alleles were recovered. 
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 AMOVA analysis of transcripts from avirulent Israeli larvae, virulent Israeli 

larvae, and avirulent US larvae indicates that there is more difference within the group 

(82.54%) than between groups (17.46%). FST supports the division between all three 

groups (Table 2). Of specific interest is the large value assigned to the difference between 

the US and Israeli alleles. 

 

4.4 Discussion 

 Effector triggered immunity (ETI) is used to describe the coevolution of 

adaptations between host and pest to overcome the other’s resistance mechanisms 

involved in the plant-pest interaction (Thompson and Burden, 1992; Brown and Tellier, 

2011). ETI is an expanded model of the gene-for-gene interaction that focuses on the 

proteins (effectors) involved in the interaction (Chisholm et al., 2006, Dangl et al., 2013). 

Avr genes are effectors that arose within the insect to colonize the host plant, and these 

effectors redirect resources from the host to the insect (Hogenhout et al., 2009). Hf serves 

as a model for ETI (Harris et al., 2015). In Hf, 5% of the genome is composed of putative 

effector genes, many with no known homology to other organisms (Zhao et al., 2015). 

These effectors are known as SSGPs (secreted salivary gland proteins), and each SSGP 

can be identified by the amino terminal secretion signal, expression in salivary gland 

tissues, and small size (Chen et al., 2004). Families of SSGPs can be identified by the 

similarity of their secretion signal as well as the conservation of the non-coding 

intergenic regions found in tandem arrays of SSGPs (Chen et al., 2010). 

 One family, SSGP-71, has been studied to great detail (Zhao et al., 2015). It 

comprises the largest group of effectors in Hf and shares homology to E3 ubiquitin 
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ligases in plants. The candidate Avr genes for H6 and H9 fall within this family. This 

large reservoir of effectors contains many gene duplicates including alleles lacking 

function which could lead to virulence to wheat’s H genes, the genes responsible for Hf 

resistance. When selection pressures are applied from cultivar-specific H genes, Hf can 

easily overcome resistance due to the null alleles of Avr genes at minor frequencies 

within the populations (Zhao et al., 2015). Field populations have been shown to 

overcome resistance within 6-8 years of successive H gene deployment (Gould, 1986; 

Cambron et al., 2010). Therefore, it is necessary for ongoing research to continue to 

characterize Avr genes in order to understand the molecular basis of the Hf’s ETI 

response. 

 vH13 is a unique SSGP. It is a singleton with no known homology to other 

organisms, no identifiable domains, and no classification within the currently described 

SSGP families. Due to this exceptionality, there are no pools of related SSGPs from 

which null alleles can arise to provide virulence to H13. Each mutation leading to 

virulence must arise within the vH13 gene. Through genetic crosses, virulence to H13 in 

Israel was found to be a sex-linked, recessive trait at a single locus. This is congruent 

with the description of the trait in the US (Zantoko and Shukle, 1997). No 

complementation occurred between virulent US and virulent IS crosses signifying that 

the same locus, vH13, is associated to virulence to H13. Therefore, it is of great interest 

that the mutations which cause the loss of function in vH13 in the US are absent in Israel.  

 At least three unrelated insertions leading to a loss of function of vH13 have been 

detected within the southeastern US: 1) 4.7kb inserted at the end of exon 1, 2) a 254bp 

insertion at the intron-exon boundary, and 3) a 461bp insertion within exon 2 (Aggarwal 
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et al., 2014). Each insertion arose independently, and these insertions disrupt the reading 

frame creating an inactive protein that is not found to be expressed in virulent US larvae. 

However, in Israel, the vH13 transcript is expressed in both the avirulent and virulent 

lines. As no simple mutations were identified, the mechanism for virulence in Israel must 

employ a different strategy to overcome H13.  

 Hf in Israel has been shown to be quite genetically divergent from populations in 

the US despite displaying a comparable phenotypic response to many H genes (Cambron 

et al., 2010; Johnson et al., 2012). Furthermore, population studies have discerned that 

Israel is also genetically distinct from Spain, Morocco, Kazakhstan, and Syria and that 

US populations have diverged significantly from their Old World predecessors (Johnson 

et al., 2004; 2011; Morton and Schemerhorn, 2013).The large FST values observed 

between the vH13 US and IS alleles lend further support to the divergence between the 

two sites. Isolation by time and distance will lead to the accumulation of divergent 

mutations within a species. The lack of gene flow may be why the three virulence alleles 

identified in the US were not identified in Israel.  

 In the US, a single population can span large geographic distances. Population 

structure can be correlated to differential SSGP expression corresponding to the wheat 

class planted within the geographic area (Johnson et al., 2015). Currently, agricultural 

practices in Israel use cultivars of T. aestivum from North Africa, but, historically, locally 

adapted T. durum cultivars grew alongside the native wild wheats (Atzmon and 

Schwarzbach, 2004; Ozbeck et al., 2007). Novel hybrids generated naturally in the field 

are important to generating new phenotypes with ecological benefits, like resistance to 

pests (Ahern et al., 2009; Agrawal, 2001). As explained in the ETI model, as novel 
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adaptations occur in the host, novel mutations must also occur in the pest such that the 

plant cannot detect the insect (Chisholm, 2006; Dangl et al., 2013). Thus, the mutations 

to vH13 seen in the US may not be identified in Israel due to the differences in the Hf 

response to the cultivars of wheat planted both currently and historically.  

 Hf virulence naturally occurs in the field at significant levels in Israel. Unlike the 

US where selection pressures from select H genes are constant, resistant cultivars are not 

purposely deployed in Israeli agriculture. Yet, phenotypically, Israel displays a similar 

virulence profile to that found in the US. Located near the Fertile Crescent, Israel is 

known for great genetic diversity in wild and cultivated grasses, of which many can serve 

as hosts for Hf (Poiarkova and Blum, 1983; Harris et al., 2015). Of the 35 described H 

genes, few originated in common wheat; many originated from other grass species 

including rye, barley, emmer, and goat grass before they were naturally hybridized into 

common wheat (Liu et al., 2005). Therefore, Hf in Israel has encountered a diverse 

selection of H genes as novel hybrids and locally adapted agricultural cultivars 

perpetuated in the region. This leads to novel mutations within the local Hf population. 

As the Hf populations in the US and Israel have been shown to be divergent, it is logical 

to assume that novel mutations in Avr genes may not be shared between such distantly 

related populations. In the case of vH13, these novel mutations were not easily detected. 

Further research must be done to identify the mechanism of virulence to H13 in Israel. 

 

4.5 Conclusions 

 Genetic characterization of virulence to H13 in Israel has been revealed to be a 

sex-linked, recessive trait at a single locus. Complementation analysis has documented 
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that the recessive mutations controlling virulence to H13 in the US and in the Israeli 

population are at the same locus. However, unlike in the US, no insertions within the 

coding region or upstream or downstream of the coding region that could cause a loss of 

function mutation leading to virulence were identified. Additionally, a transcript was 

identified from individual larvae from both the avirulent and virulent Israeli lines, and no 

point mutations or frame shifts corresponding to virulence were identified. Therefore, the 

mechanism for virulence to H13 in Israel is divergent from that in the US and further 

research is required to elucidate the molecular basis of virulence to H13 in the Israeli 

population. 
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4.7 Experimental Procedures 

Hessian fly cultivation and collection 

 Infested straw from Magen, Israel was collected in the fall of 2009 by Phyllis 

Weintraub of the Agricultural Research Organization, Volcani Center, Gilat, Israel 

(Johnson et al., 2012). Flats of cultivar Newton, a highly susceptible wheat line that 

carries no genes for Hf resistance, were placed under a large mesh tent in the greenhouse, 
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and adults were allowed to emerge, mate, and oviposit (Black et al., 1990). This large-

scale greenhouse increase allows for random mating while increasing the population size 

and retaining the genetic diversity found within the sampled collection (Foster et al., 

1977). This field collection (Magen) has been maintained under these conditions with 

annual increases using a minimum of six flats of Newton. The USvir13 Hf line, isolated 

originally from a field collection in Georgia, has been maintained in culture under the 

same greenhouse conditions for several years (Behura et al., 2004). 

 A significant level of virulence to the wheat resistance gene H13 was previously 

identified in Magen (Johnson et al., 2012). Cultivar Molly carries this H gene and was 

used in this experiment to isolate lines of Magen Hf that were susceptible to H13 

(ISavrH13) and were resistant to H13 (ISvirH13). Two-way differentials were created by 

planting both Newton and Molly seeds in the same four-inch pot; seeds were separated by 

distance and labeled. Plants were seeded and grown in the greenhouse until the 1-2 leaf 

stage. Females were allowed to mate and oviposit under a cup cage onto the two-way 

differentials. After infestation, pots were transferred into growth chambers (18ºC under a 

16h photoperiod) until the formation of the flaxseed stage (day 21 post-hatch). For adult 

emergence, pots were removed from the chambers, covered with cup cages, and placed at 

room temperature.  

 For all generations, only pots where eggs were laid and hatched onto both 

varieties were used, and pots were scored for survival between days 6-8 post-hatch. This 

time point was chosen because dead, avirulent larvae (dead reds) can be easily identified 

on resistant plants due to their small size and shriveled, red appearance. The pot was 

labeled avirulent if the progeny survived only on Newton with dead reds found on Molly 
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or virulent if the progeny survived on both Newton and Molly. To create the F2 – F7 

generations, avirulent males and a single avirulent female were mated onto differential 

pots as were virulent males and a single virulent female. Given the biology of vH13 as 

previously described, heterozygous avirulent mothers can yield hemizygous virulent male 

offspring. Therefore, when virulence was detected in the avirulent line, all pots were 

discarded. The isolated lines are currently maintained on bulk increases of Newton 

(ISavrH13) and Molly (ISvirH13). Before use for subsequent experimentation, single 

females are allowed to mate and oviposit on two-way differentials to score for virulence 

as well as to create progeny pots of monogenic, virgin adults.  

 A segregation analysis was performed to test the genetic control of virulence to 

H13 in Israel. Hf females contain a full complement of both autosomes and sex 

chromosomes (A1A2X1X2/A1A2X1X2) while males retain both autosomes and a single 

copy of the X chromosomes inherited from the mother (A1A2X1X2/A1A2OO). Putative 

crosses are displayed in Figure 4.1 with each outcome displayed in an avirulent to 

virulent ratio. The ISvirH13 female mated to ISavrH13 male was selected as the most 

informative cross. If the trait is autosomal, the F1 generation would segregate 1:0, and the 

F2 would segregate 3:1; the reciprocal cross would also yield the same ratios. If the trait 

is sex linked, the F1 generation would segregate 1:0 for females and 0:1 for males while 

the F2 would segregate 1:1 in both sexes. In the reciprocal cross, the ratios would be 1:0 

in both sexes in the F1, and in the F2, females would be 1:0, and males would be 1:1. If 

the trait for virulence was in two, independent autosomal loci, the F1 generation would 

segregate 1:0, and the F2 would segregate 63:1. The reciprocal cross would yield the 

same ratios. If the trait for virulence was in two, independent sex-linked loci, the F1 
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would segregate 1:0 in females and 0:1 in males while the F2 both sexes would segregate 

3:1. The reciprocal cross would yield 1:0 in the F1, and females would be 1:0 and males 

would be 3:1 in the F2. 

 Virgin ISvirH13 females were mated to virgin ISavrH13 males on two-way 

differentials. The subsequent female F1 progeny were then crossed onto pots of Newton. 

For each progeny pot, leaves were removed from the plants and placed in a beaker of 

water the night before eggs were to hatch. A single neonate larva was placed onto the 

plant via a 2μl droplet of 0.001% NP40. At day six post-hatch, each plant was 

destructively sampled to score for virulence in the F2. A X2 test of fitness was performed 

to test the hypothesis that the observed values of the F2 cross are the same as the expected 

theoretical distribution (1 avirulent: 1 virulent segregation in both sexes) with 1 degree of 

freedom. 

 To test the hypothesis that virulence to H13 resides at the same locus in both 

Israel and the US, single virgin females (USvirH13) were mated to virgin ISvirH13 males 

on two-way Newton and Molly differential pots. The reciprocal cross was made as well. 

Pots where eggs were not laid nor hatched onto both seed types were discarded from the 

experiment. Virulence was assessed at day six post-hatch by destructively sampling 

Newton and Molly plants. Plants were also checked for flaxseed at day 21 to ensure that 

larval development had continued. The remaining larvae were allowed to proceed 

through their development in order to score the sex of each individual cross. As males 

would only inherit their mother’s genotype, only the results from female progeny were 

scored. A X2 fitness test was performed to test the hypothesis that the observed values of 

the reciprocal crosses are the same as the expected theoretical distribution (0 avirulent: 1 
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virulent) if virulence resides at the same locus in Israel and the US with 1 degree of 

freedom. 

 In the US, insertions into the coding sequence of vH13 are the cause of the lack of 

function mutations that lead to virulence thus the gene was isolated through PCR for 

cloning and sequencing. All collections were made through crosses prepared on two-way 

differentials, and all samples were flash frozen in liquid nitrogen and stored at -80°C until 

DNA or RNA isolation. Two collections were used to study vH13 in Israel and are listed 

as follows. 

 1) USvirH13 virgin females were mated to Israeli males of unknown virulence 

from the bulk population increase. The fathers were collected after mating for later 

extraction of DNA. The female progeny were scored for virulence to indicate the paternal 

genotype where avirulent progeny indicate an avirulent father and virulent progeny 

indicate a virulent father.  

 2) To collect individuals of known virulence, ISavrH13 virgin females and males 

were crossed together as were ISvirH13 virgin females and males. Five individual early 

second instar larvae were collected from more than ten individual crosses for both lines. 

Samples were stored for later RNA isolation. Adults were allowed to emerge from each 

progeny pot in order to score the sex; only males were selected for further analysis. 

Molecular analyses 

 DNA was isolated using the DNeasy Blood and Tissue Kit (Qiagen, Valencia, 

CA) with a slight modification to the protocol for use with small tissue amounts. 

Individual flies were ground using small plastic pestles inside 1.5ml microcentrifuge 

tubes containing 25μl of lysis buffer. After grinding, additional buffer containing 20μl of 
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proteinase K was added to a final volume of 180μl. Tubes were placed overnight in a 

waterbath set to 56°C before resuming the Qiagen protocol. Elutions were performed 

with 100μl of the provided elution buffer. PCR was performed using 2μl of DNA 

template; -Mg 10X PCR Buffer, 50mM MgCl2, 1U Platinum High Fidelity Taq (Life 

Technologies, Grand Island, NY); 10 mM PCR nucleotide mix (Promega, Madison, WI); 

and 10μM of both forward and reverse primers (Eurofins MWG Operon, Huntsville, AL) 

in a 25μl reaction volume. All PCRs were performed in a DNA Engine Dyad PTC-220 

thermocycler (BioRad, Hercules, CA), and primers are listed in Table 4.3. The 

amplification cycle was as follows: 94°C/1min; 35 cycles of 94°C/30s, 55°C/30s, 

68°C/30s; 68°C/10min. PCR reactions were purified by using the QIAquick gel 

extraction kit (Qiagen) prior to cloning. 

 RNA was isolated using the RNaqueous-4PCR kit (Life Technologies) with the 

previously described protocol modification for small tissue volumes. Elution was 

performed using 100μl of the provided buffer. All samples were DNase treated using the 

Turbo DNA-free kit (Life Technologies) for 30 min at 37°C before being concentrated to 

20μl using the linear acrylamide and 5M ammonium acetate provided in the RNaqueous-

4PCR kit. RNA samples were translated into gene specific cDNA using the SuperScript 

III one-step RT-PCR system with Platinum Taq high fidelity DNA polymerase (Life 

Technologies). A minimum of 20ng of template was used to perform each reaction with 

the vH13F and R gene specific primers. The cycle was performed as follows: 1 cycle of 

55°C/30min, 94°C/2min; 40 cycles of 94°C/15s, 55°C/30s, 68°C/1min; and 1 cycle of 

68°C/5min. 
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 Cloning of all vH13 bands were performed using the TOPO TA Cloning kit for 

sequencing with One Shot TOP10 cells (Life Technologies). Three clones per reaction 

containing the fragment of interest were selected for sequencing through the Purdue 

University Genomics Facility. All plasmid isolations were prepared using the Wizard 

Plus SV miniprep DNA purification system (Promega). Sequencing results were aligned 

using Bio Edit 7.2.5, and a consensus of the three individual clones was generated for 

each sample (Hall, 1999). Arlequin 3.11 was used to calculate AMOVA and FST 

(Excoffier et al., 2005).  
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4.9 Tables 

 

Table 4.1. X2 goodness of fit test results for both the genetic crosses studying the genetic 

control of virulence to H13 in Israel and complementation of virulence in Israel and the 

United States. 

 

Segregation Analysis 
Mating  Phenotype Exp.   
Female Male N Avirulent Virulent Ratio X2 P 
ISvir13 ISavr13       
F1  F1 154 70 84 1:1 1.273 3.841 
        
        
Complementation Analysis 
Mating N Phenotype Exp. X2 P 
Female Male   Avirulent Virulent Ratio   
USvir13 ISvir13 11 8 0 19 0:1 0 1 
ISvir13 USvir13 9 10 0 19 0:1 0 1 
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Table 4.2. FST values for the vH13 alleles as calculated by Arlequin. Significant values 

(p<0.05) are highlighted in gray. 

 

Alleles retrieved from DNA sequencing 
 ISavr13 ISvir13 USvir13 
ISavr13 0.000 - - 
ISvir13 0.21971 0.000 - 
USvir13 0.06228 0.42677 0.000 
    
Alleles retrieved from cDNA sequencing 
 ISavr13 ISvir13 USvir13 
ISavr13 0.000 - - 
ISvir13 0.06814 0.000 - 
USvir13 0.25215 0.54899 0.000 
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Table 4.3. Primers used in the amplification of the vH13 gene. 

 

Name Location Sequence (5’-3’) 
vH13 F 4 AA 3’ of the ATG GGT TGC TTT TAT GGT TTT GG 
vH13 R 9 AA 5’ of the TAA CTT CTC CTT CTT GGC TGT C 
vH13 5’F 151 AA 5’ of the ATG GCA TCG CAA ACA AAA GCA AAA T 
vH13 5’R 8 AA 3’ of ATG ATA AAA GCC ACA AAT TTC AT 
vH13 3’F 9 AA 3’ of the TAA CAG CCA AGA AGG AGA AGA AAT 
vH13 3’R 66 AA 3’ of TAA GCA ATT TTT AAG GAA CGA CGT GCA 
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4.10 Figures 

 

 

 

Figure 4.1. To test the genetic control of virulence to H13 in Israel, virulent females were 

mated to avirulent males. The results of the putative crosses are as follows. If the trait is 

X-linked, the F1 generation would segregate 1:0 for females and 0:1 for males while the 

F2 would segregate 1:1 in both sexes. In the reciprocal cross, the ratios would be 1:0 in 

both sexes in the F1, and in the F2, females would be 1:0, and males would be 1:1. If the 

trait is autosomal, the F1 generation would segregate 1:0, and the F2 would segregate 3:1; 

the reciprocal cross would also yield the same ratios. If the trait for virulence was in two, 

independent autosomal loci (not shown), the F1 generation would segregate 1:0, and the 

F2 would segregate 63:1. The reciprocal cross would yield the same ratios. If the trait for 

virulence was in two, independent sex-linked loci, the F1 would segregate 1:0 in females 

and 0:1 in males while the F2 both sexes would segregate 3:1. The reciprocal cross would 

yield 1:0 in the F1, and females would be 1:0 and males would be 3:1 in the F2. 
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Figure 4.2. If complementation occurred between the US and IS populations, then F1 

females would display the avirulent phenotype. If no complementation occurred between 

the US and IS because virulence is controlled at the same locus in both populations, F1 

females would display the virulent phenotype. 
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CHAPTER FOUR: USE OF FEMALE PHEROMONE BAITED TRAPS AND 

MOLECULAR MARKERS TO ASSESS VIRULENCE IN FIELD POPULATIONS OF 

HESSIAN FLY (DIPTERA: CECIDOMYIIDAE) TO RESISTANCE GENE H13 IN 

WHEAT  
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CHAPTER 5. USE OF FEMALE PHEROMONE BAITED TRAPS AND 
MOLECULAR MARKERS TO ASSESS VIRULENCE IN FIELD POPULATIONS 

OF HESSIAN FLY (DIPTERA: CECIDOMYIIDAE) TO RESISTANCE GENE 
H13 IN WHEAT 

5.1 Abstract 

 Mayetiola destructor (Say) is a serious pest of wheat in the southeastern United 

States. The Hessian fly (Hf) uses effector triggered immunity to overcome wheat’s H 

genes, the resistance genes responsible for providing protection from the Hf. As the most 

effective form of Hf control employs the planting of resistant wheat cultivars containing 

one or more H genes, frequent Hf sampling is required to monitor the level of virulence 

present in locally adapted populations. Here, we present a novel assay for detecting 

virulence in the field. Hf males were collected in Alabama, North Carolina, and South 

Carolina using sticky traps baited with Hf sex pheromone. The Hf gene that controls 

virulence in Hf to resistance gene H13 in wheat has recently been cloned and 

characterized, and diagnostic molecular markers for the alleles controlling avirulence and 

virulence are now available. Utilizing two separate PCR reactions, the six alleles for 

avirulence and virulence can be scored based on band size. Our results support the most 

recent survey of virulence to H13 as scored through the testing of live insects infesting 

H13 wheat in the greenhouse. Throughout the southeast, all three avirulence alleles can 

be identified while the most frequently identified allele for virulence corresponded to a 

5kb insertion into exon 1 of vH13. In South Carolina, the PCR assay is sensitive enough 
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to detect the spread of virulence into two counties previously documented as 100% 

susceptible to H13. 

5.2 Introduction 

 The Hessian fly, Mayetiola destructor (Say), is a gall midge found throughout the 

wheat (Triticum aestivum L.) producing areas of the United States (US). Females lay 

their eggs onto the adaxial surface of the leaf blade, and neonate larvae crawl down to the 

base of the whorl of the plant. In compatible interactions, a feeding site is established 

where a layer of nutritive cells forms to redirect the plant’s nutrients to the virulent insect 

(Harris et al., 2006; 2010). In the incompatible reaction, larvae die within 4-6 days as the 

avirulent insect cannot establish a feeding site (Subramanyam et al., 2008). Damage to 

wheat plants occurs solely in the compatible interaction; the lack of nutritional resources 

for the plant leads to loss in grain yield and potential death of seedling plants (Byers and 

Gallun, 1972; Buntin, 1999). 

 The most effective method of Hf control is through the use of resistant wheat 

cultivars which provide protection from Hf though H genes that lead to the incompatible 

interaction (antibiosis) in avirulent larvae. To date, 35 H genes have been described (Liu 

et al., 2005; Li et al., 2013). The repeated deployment of resistant cultivars has created a 

selection pressure in the field that has led to the creation of locally adapted populations 

which are virulent to one or more H genes (Lidell and Schuster, 1990; Smiley et al., 

2004; Watson, 2005; Chen et al., 2009; Cambron et al., 2010). In the southeastern US 

where 6-8 generations of Hf can occur per year, planting wheat to avoid the bulk 

emergence of Hf is impossible (Buntin and Chapin, 1990). Thus, successive deployment 
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of multiple H genes has become routine and resistance to four or more H genes is 

common (Buntin et al., 1992; Ratcliffe et al., 2000; Cambron et al., 2010).  

 Recently, the HF gene (vH13) controlling virulence to the wheat resistance gene 

H13, has been cloned and characterized (Aggarwal et al., 2014). Virulence is expressed 

as a recessive, sex-linked trait (Zantoko and Shukle, 1997).Three alleles with large 

insertions were identified in virulent individuals: 1) a 461bp insertion within exon 2, 2) a 

254bp insertion at the intron-exon boundary, and 3) a 4.7kb inserted at the end of exon 1. 

Three alleles were also identified in avirulent individuals; these alleles vary only in the 

copy number of an imperfect repeat (IR) which is 12 amino acids within exon 2 that can 

be repeated up to three times.  

 Seven components have been identified from Hf female ovipositor extracts of 

which a mixture of five of these components are necessary to attract males (McKay and 

Hatchett, 1984; Anderson et al., 2009). A synthetic pheromone blend of these five 

chemicals is commercially available and has been shown to reliably draw Hf males in the 

field to sticky traps (Anderson et al., 2012). DNA, sufficient for PCR analysis, has also 

been shown to be recoverable from Hf males captured on sticky straps (Chen et al., 

2014). 

 The object of the present study was to assess virulence to H13 in the field by 

collecting Hf males on sticky traps, isolating their DNA, and using molecular markers for 

vH13 to score virulence based on the known size variant alleles for avirulence and 

virulence in the southeastern US.  
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5.3 Materials and Methods 

Insect collection  

 Hf pheromone lures preloaded into polyethylene dispensers were obtained from 

Pheronet (Alnarp, Sweden) and kept at -20˚C until used. Lures were attached to sticky 

inserts that were then loaded into a Delta trap (Trécé Inc.). Traps placed more than 30cm 

above the canopy will not collect Hf as the insect does not fly at such height; therefore, 

each trap was suspended from a wooden stake so that it was within or just above the 

wheat canopy (Anderson et al., 2009). Both sticky inserts and lures were replaced after 7 

days in the field. 

 Multiple location sites were selected across the southeastern United States. In 

Alabama, collections were made in Colbert, Hale, and Marengo counties. Collections 

were made in Florence and Lee counties of South Carolina. In North Carolina, collections 

were made in Alamance, Onslow, Tyrell, and Union counties. Sticky inserts were 

removed from the traps, covered with wax paper, and stored in a plastic freezer bag at -

20˚C. Flies were removed from the sticky inserts in a toluene bath with gentle shaking for 

10 minutes. Hf were morphologically identified with a light microscope and stored in 

individual tubes for later analysis.  

 

Molecular Analyses 

 DNA was isolated from individual flies using the DNeasy 96 Blood and Tissue kit 

(Qiagen, Valencia, CA) in order to have stable DNA that would allow samples to be 

archived. Samples were eluted with the provided buffer in a 100μl volume. PCR was 

performed in a DNA Engine Dyad PTC-220 thermocycler (BioRad, Hercules, CA). Two 
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separate PCR reactions were performed per sample: vH13F/vH13R and 

vH13F/vH135kbR (Table 5.1). PCR was performed using 5μl of DNA template; 5X 

GoTaq Flexi Green Buffer, 50mM MgCl2, 2.5U GoTaq Flexi (Promega, Madison, WI); 

10 mM PCR nucleotide mix (Promega); and 10μM of both forward and reverse primers 

(Eurofins MWG Operon, Huntsville, AL) in a 25μl reaction volume. The amplification 

cycle was as follows: 94°C/1min; 35 cycles of 94°C/30s, 55°C/30s, 72°C/30s; 

72°C/10min. PCR products were visualized on 2% agarose gels. Alleles were scored with 

the aid of VisionWorksLS visualization and analysis software (UVP, Upland, CA). 

Alleles and their sizes are described as follows: Avr1 with 3 IR = 411bp, Avr2 with 2 IR 

= 383bp, and Avr3 with 1 IR= 329bp, vir1 with the 461bp insert = 872bp, vir2 with the 

256bp insert = 663bp, and vir3 with the 5kb insert = 551bp. 

 

5.4 Results and Discussion 

 The Hessian fly, like other cecidomyiids, has a complicated system of 

chromosomal inheritance. Females are diploid for the sex chromosomes (X1X2/X1X2) 

whereas males are hemizygous and inherit the maternal copy of the sex chromosomes 

(X1X2/OO) (Harris et al., 2015). As vH13 is located on the short arm of X2, male Hf will 

produce a single amplicon during PCR (Rider et al., 2002; Lobo et al., 2006). This makes 

pheromone traps ideal for sampling new locations and improves upon previous collection 

methods that require large volumes of infested straw to be shipped to test the reaction of 

adults to an array of H genes in flat tests (Cambron et al., 2010). 

 Alleles of vH13 were scored for size after PCR band separation on 2% agarose 

gels (Table 5.2). A total of 1,383 Hf males were surveyed from 9 counties across three 
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states. Of the sampled Hf, 90% were found to contain one of the three avirulence alleles 

while 10% contained a virulent allele. The most frequent avirulence allele detected was 

Avr2 (45%) while Avr1 and Avr3 were found at 28% each. The most common virulence 

allele (vir3) contained the 5kb insertion into exon 1 (88%). Vir1 (1%) and vir2 (10%) 

were rare. 

 Alternative control practices including seed treatments, foliar insecticides, and 

planting cover crops that are not alternative hosts of Hf are extensively used in North 

Carolina (Reisig et al., 2013). However, recent years have seen a large increase in yield 

loss due to Hf forcing more growers to utilize varieties that contain one or more 

resistance genes. Samples from four counties identified 105 avirulent and 4 virulent Hf. 

Avr2 was the most frequently occurring allele; all virulent individuals contained vir2. 

According to the most recent survey of field collections, H13 is a viable form of 

resistance (Cambron et al., 2010). Virulence was detected in two counties, Cleveland in 

the west and Robeson to the south, but the frequency was at such a low level that H13 

would still be efficacious in the field. Our results support this analysis as Onslow and 

Tyrell counties are adjacent to a known 100% resistant region while Union County is 

equidistant from the two counties where virulent Hf were identified.  

 Pockets of virulent Hf were discovered in South Carolina, and H13 is no longer a 

viable source of resistance in Orangeburg and Sumter counties (Cambron et al., 2010). 

These locations are adjacent to the pheromone trapping sites in Lee and Florence. By 

using the PCR assay, we were able to detect virulent individuals in low levels at both 

sites. Florence, a previously 100% resistant county, indicates that virulence to H13 is 

slowing spreading throughout the central region of South Carolina.  
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 Alabama commonly deploys cultivars that contain multiple H genes as successive 

generations of Hf occur in the warmer, wetter climate. The previous survey of the state 

indicated that H13 would still be effective north of the coastal plains (32˚N latitude) 

(Cambron et al., 2010). The PCR testing of virulence to H13 supported this assessment. 

Colbert County, near the northern border with Tennessee, had 78 avirulent and 5 virulent 

Hf. In Hale and Marengo counties, 88% of Hf males were avirulent. This is congruent 

with the greenhouse testing of Hf from these counties that reported 80% resistance 

conferred by H13 at this location (Cambron et al., 2010). All three avirulence alleles 

were identified with Avr2 the most common (42%). Likewise, all three virulent alleles 

were identified; however, vir3 was overwhelmingly frequent in the samples. 

 The use of pheromone traps to collect Hf males and the identification of a reliable 

marker for vH13 has allowed the creation of a novel assay to survey Hf virulence in the 

field. We show here that the results of a simple PCR analysis are in agreement with the 

most recent survey conducted in the green house from field samples of live insects. As 

additional avirulence genes in Hf are cloned and characterized, primers for each Hf 

specific gene can be created to conduct similar PCR assays to assess virulence to the 

associated H gene in wheat. This will reduce the resources and Hf expertise required to 

conduct field surveys. Utilizing an inexpensive and fast DNA extraction protocol, 

virulence assessments on hundreds of samples from multiple locations can be 

accomplished in a fraction of the time with only basic molecular biology techniques and 

equipment (Chen et al., 2014). This novel assay will allow growers up-to-date analyses of 

virulence in local populations reducing the guesswork of picking a wheat cultivar with 

the proper combination of Hf resistance. 
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5.7 Tables 

 

Table 5.1. Primer sequences used for amplification of the vH13 gene are listed.  

 

Name Primer Sequence (5’-3’) 
vH13 F GGT TGC TTT TAT GGT TTT GG 
vH13 R CTT CTC CTT CTT GGC TGT C 
vH13 5kb R TTG AAT GTG CCG CGA GAG C 
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APPENDIX 

Supplemental Tables and Figures for Chapter 3 

Table A3.1. Microarray data expressed in log2 fold change in comparison to Biotype GP 

for family 1.  Adjusted p values are listed.  Expressed sequence tag (EST). 

EST 
Accession 
Number 

Field 
Collection Log2 Fold Change Adjusted p Value 

MDEST720 EV466597 Israel 0.113381642 0.704470809 
  Alabama 0.124862028 0.407835402 
  Georgia -0.183565168 0.364861185 
  Texas -0.165085316 0.407963829 
  Colorado -0.030790174 0.993074635 
  Kansas -0.146666158 0.738514327 

MDEST700 EV466472 Israel 0.077733468 0.658054201 
  Alabama 0.022047536 0.805244614 
  Georgia 0.042207697 0.731511199 
  Texas -0.017914909 0.912146533 
  Colorado 0.060313076 0.993074635 
  Kansas -0.032557243 0.999944651 

MDEST754 EV466582 Israel 0.045086281 0.830895436 
  Alabama 0.042094482 0.709689373 
  Georgia 0.127541027 0.400166087 
  Texas -0.032889369 0.872039964 
  Colorado -0.143739513 0.746285688 
  Kansas -0.318618783 0.040176125 

G10E4 JZ482473 Israel 0.114898676 0.809958521 
  Alabama 0.519374983 0.049643835 
  Georgia -0.270565139 0.423765403 
  Texas -0.273433023 0.409319641 
  Colorado -0.097874799 0.993074635 
  Kansas -0.060642384 0.999944651 

SSGP-1A1 ACZ26299 Israel 0.010905207 0.969274453 
  Alabama 0.239742788 0.045601823 
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  Georgia 0.034014271 0.851368086 
  Texas -0.007454685 0.984760893 
  Colorado 0.068453357 0.993074635 
  Kansas 0.018733883 0.999944651 

S6E5 JZ482474 Israel 0.188346758 0.332991327 
  Alabama 0.235048904 0.076683319 
  Georgia 0.108338632 0.547617588 
  Texas -0.005496108 0.984760893 
  Colorado 0.053061555 0.993074635 
  Kansas -0.027841183 0.999944651 

G22D5 JZ482475 Israel 0.104547549 0.704470809 
  Alabama 0.439864584 0.013200428 
  Georgia 0.104675261 0.586337644 
  Texas -0.016450901 0.967650973 
  Colorado 0.042252872 0.993074635 
  Kansas 0.020608474 0.999944651 

G16H10 JZ482476 Israel 0.145323735 0.705282956 
  Alabama 0.368236989 0.073174334 
  Georgia 0.128920951 0.636345869 
  Texas -0.027433187 0.959181449 
  Colorado 0.009372873 0.993074635 
  Kansas -0.014024273 0.999944651 

SSGP-1B1 ACZ26297 Israel 0.173053756 0.146866547 
  Alabama 0.197837558 0.034878039 
  Georgia 0.339959999 0.006661992 
  Texas 0.254625775 0.056697794 
  Colorado 0.207980939 0.160170752 
  Kansas 0.041827542 0.999944651 

S17A12 JZ482477 Israel 0.506935659 0.016579292 
  Alabama 0.146980046 0.370665968 
  Georgia 0.126627289 0.569658715 
  Texas 0.045654005 0.872039964 
  Colorado 0.018890744 0.993074635 
  Kansas 0.103610976 0.919637715 

S12G7 JZ482478 Israel 0.210091224 0.455995427 
  Alabama 0.523521737 0.014482079 
  Georgia 0.264458162 0.241234555 
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  Texas 0.042395909 0.899974741 
  Colorado 0.027265769 0.993074635 
  Kansas -0.074606983 0.999944651 

G21E12 JZ482479 Israel 0.273443896 0.184440827 
  Alabama 0.430852182 0.015507444 
  Georgia 0.328853295 0.082350331 
  Texas 0.230054338 0.232674966 
  Colorado 0.113981061 0.993074635 
  Kansas -0.065080971 0.999944651 

G8E12 JZ482480 Israel 0.526295831 0.336617888 
  Alabama 0.748946178 0.051928977 
  Georgia 0.388069192 0.432388003 
  Texas 0.114704514 0.860561105 
  Colorado 0.045100851 0.993074635 
  Kansas -0.172846132 0.999944651 

G21G4 JZ482481 Israel 0.707387921 0.257637423 
  Alabama 0.257693218 0.537248804 
  Georgia 0.395393348 0.490544962 
  Texas 0.212576094 0.754060085 
  Colorado -0.068777824 0.993074635 
  Kansas -0.562234806 0.536209618 

S12A11 JZ482482 Israel 0.300984349 0.590975698 
  Alabama 1.116377423 0.005149744 
  Georgia 0.461807421 0.241234555 
  Texas 0.158982178 0.735607373 
  Colorado 0.302569438 0.846274702 
  Kansas 0.136941757 0.999944651 

MDEST934 EV466384 Israel 0.517299583 0.302501382 
  Alabama 0.842516856 0.026138518 
  Georgia 0.399576819 0.383018396 
  Texas 0.076470024 0.904686748 
  Colorado 0.362974778 0.809180569 
  Kansas 0.231514344 0.919637715 

SSGP-1A2 ACZ26298 Israel 0.204135009 0.509674328 
  Alabama 0.752455084 0.002591331 
  Georgia 0.483161314 0.043437515 
  Texas 0.288879103 0.231729984 
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  Colorado 0.442939067 0.160170752 
  Kansas 0.353457617 0.174629103 

SSGP-1C1 ACZ26296 Israel 0.699769292 0.116737277 
  Alabama 0.711314299 0.042841024 
  Georgia 0.723359372 0.089510446 
  Texas 0.328726904 0.451130148 
  Colorado 0.248969548 0.993074635 
  Kansas -0.042940291 0.999944651 

G8F2 JZ482483 Israel 0.036373589 0.973104677 
  Alabama 1.328591004 0.012754677 
  Georgia 0.147813982 0.827113237 
  Texas -0.020539627 0.984760893 
  Colorado 0.198159697 0.993074635 
  Kansas -0.024036948 0.999944651 

G22E11 JZ482484 Israel -0.738807442 0.014642269 
  Alabama 0.331274368 0.156483036 
  Georgia 0.447794894 0.141309028 
  Texas -0.101575931 0.794063097 
  Colorado -0.088834365 0.993074635 
  Kansas -0.155999414 0.919637715 

SSGP-1D1 ACZ26295 Israel 0.748085489 0.291175132 
  Alabama 0.680863942 0.156154509 
  Georgia 0.949718235 0.127759927 
  Texas 1.162062793 0.077038297 
  Colorado 0.200606181 0.993074635 
  Kansas -0.315945839 0.919637715 

SSGP-1C2 ACZ26293 Israel 0.101908143 0.753082716 
  Alabama -0.347357058 0.051928977 
  Georgia -0.571835906 0.017155361 
  Texas -0.431144531 0.068529154 
  Colorado -0.246629024 0.653210469 
  Kansas 0.144030072 0.804651923 

G8A9 JZ482485 Israel 0.258002968 0.536280703 
  Alabama -0.848884506 0.007229346 
  Georgia -0.783185432 0.019307881 
  Texas -0.387791132 0.227952805 
  Colorado -0.495491584 0.304505463 
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  Kansas -0.196790804 0.819944582 
MDEST868 EV466449 Israel -0.196821642 0.345875694 

  Alabama -0.516053625 0.005149744 
  Georgia -0.759884306 0.000310509 
  Texas -0.304063538 0.105537791 
  Colorado -0.298836092 0.277045775 
  Kansas -0.444097431 0.025957879 

MDEST866 EV466451 Israel -0.115581253 0.601555286 
  Alabama -0.239162127 0.051928977 
  Georgia -0.465317144 0.006200999 
  Texas -0.131430407 0.398968711 
  Colorado -0.053806372 0.993074635 
  Kansas -0.242863063 0.152780493 

MDEST954 EV466364 Israel 0.503532615 0.704470809 
  Alabama -0.148882865 0.824490039 
  Georgia -0.509438032 0.574823931 
  Texas -0.127083422 0.918794644 
  Colorado -0.810594054 0.789757887 
  Kansas -1.397145952 0.148528819 

SSGP-1E1 ACZ26294 Israel 0.263557495 0.634488529 
  Alabama 0.037639633 0.894837259 
  Georgia -0.830862215 0.031270228 
  Texas 0.347109277 0.367963639 
  Colorado 0.383869956 0.714791235 
  Kansas 0.884200956 0.027415456 

MDEST798 EV466519 Israel 0.382834123 0.679597922 
  Alabama -1.120323992 0.027835518 
  Georgia -2.117407727 0.001450557 
  Texas -0.224268014 0.759704215 
  Colorado 0.147308884 0.993074635 
  Kansas 0.721278658 0.347249099 
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Table A3.2. Microarray data expressed in log2 fold change in comparison to Biotype GP 

for family 2. Adjusted p values are listed.  Expressed sequence tag (EST). 

 

EST 
Accession 
Number 

Field 
Collection Log2 Fold Change Adjusted p Value 

MDEST884 EV466433 Israel -0.539370446 0.720983043 
  Alabama -2.164726031 0.020637307 
  Georgia -1.392972956 0.178135609 
  Texas -0.683886315 0.537627146 
  Colorado -0.369708207 0.993074635 
  Kansas -0.062105313 0.999944651 

MDEST776 EV466541 Israel -0.828657848 0.629923621 
  Alabama -2.762054267 0.013287252 
  Georgia -1.475441094 0.203194614 
  Texas -0.895639707 0.449321232 
  Colorado -0.823875813 0.895616214 
  Kansas -0.335793449 0.999944651 

MDEST823 EV466494 Israel -0.718010639 0.522934536 
  Alabama -1.471584782 0.037823867 
  Georgia -1.342215725 0.117392633 
  Texas -0.969836604 0.257325827 
  Colorado -0.836405938 0.746285688 
  Kansas -0.314011367 0.999944651 

MDEST1040 EV466278 Israel 0.167698844 0.905257728 
  Alabama -1.568223667 0.060997258 
  Georgia -2.259842351 0.036543499 
  Texas -1.412888727 0.183896584 
  Colorado -0.205678378 0.993074635 
  Kansas 0.771290221 0.750908045 

W2E12 JZ482487 Israel -1.560602325 0.455995425 
  Alabama -2.366892203 0.072474453 
  Georgia -3.561105761 0.036543499 
  Texas -0.780813338 0.689635199 
  Colorado -0.446964338 0.993074635 
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  Kansas 0.857722629 0.919637715 
G15F11 JZ482488 Israel -0.839577269 0.713735317 

  Alabama -2.851534138 0.028352823 
  Georgia -2.460148549 0.106678859 
  Texas -1.330501566 0.393570614 
  Colorado -0.489800064 0.993074635 
  Kansas -0.032687662 0.999944651 

MDEST689 EV466628 Israel 0.358062704 0.830895436 
  Alabama -2.606239269 0.015338583 
  Georgia -5.383489305 7.16913E-05 
  Texas -0.260119533 0.872039964 
  Colorado 0.327699189 0.993074635 
  Kansas 0.734141467 0.804651923 

MDEST982 EV466336 Israel -2.958281413 0.061703253 
  Alabama -3.375665449 0.017743786 
  Georgia -3.644384987 0.024560445 
  Texas -3.760037106 0.044530695 
  Colorado -2.764449526 0.184391032 
  Kansas -0.557000262 0.999944651 

G21G10 JZ482489 Israel -0.041262856 0.976475672 
  Alabama -0.987858411 0.096177346 
  Georgia -0.457942709 0.566345091 
  Texas 0.359830441 0.688688903 
  Colorado 0.981468854 0.513303427 
  Kansas 0.799825901 0.516496686 

MDEST789 EV466528 Israel 1.462647746 0.010728413 
  Alabama -0.267677929 0.537248804 
  Georgia -0.050016236 0.942520605 
  Texas 0.543929649 0.352512393 
  Colorado 1.216869944 0.084707368 
  Kansas 1.047370283 0.096166388 

MDEST734 EV466583 Israel -0.315008912 0.748283163 
  Alabama -1.214657569 0.031759572 
  Georgia -0.904504812 0.178118839 
  Texas -0.253727353 0.759704215 
  Colorado 0.159662301 0.993074635 
  Kansas 0.100690019 0.999944651 
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G14E6 JZ482490 Israel -0.316780456 0.739319654 
  Alabama -0.938637586 0.064705277 
  Georgia -0.630794809 0.340011605 
  Texas -0.203412014 0.801353606 
  Colorado 0.053035196 0.993074635 
  Kansas 0.005229072 0.999944651 

G12A2 JZ482491 Israel -0.389905159 0.704470809 
  Alabama -0.926569569 0.082386507 
  Georgia -0.538570729 0.445902343 
  Texas -0.265955292 0.745598489 
  Colorado -0.099711196 0.993074635 
  Kansas 0.378036134 0.880437122 

L7D5 JZ482492 Israel -0.426608955 0.809958521 
  Alabama -1.833044979 0.054068197 
  Georgia -0.532575579 0.674128477 
  Texas -0.555516459 0.689635199 
  Colorado 0.052065782 0.993074635 
  Kansas 0.055497373 0.999944651 

G17A11 JZ482493 Israel -0.180102918 0.897851969 
  Alabama -1.610412013 0.046152507 
  Georgia -0.944235825 0.352308138 
  Texas -0.357042939 0.770945926 
  Colorado 0.184787367 0.993074635 
  Kansas 0.113854961 0.999944651 

MDEST849 EV466468 Israel -0.792771028 0.108664631 
  Alabama -1.287629037 0.006550405 
  Georgia -0.421703442 0.384993964 
  Texas -0.161028807 0.787606036 
  Colorado -0.142301902 0.993074635 
  Kansas -0.311285242 0.804479112 

MDEST790 EV466527 Israel -0.864529171 0.087498681 
  Alabama -1.231535249 0.01036237 
  Georgia -0.499003333 0.316992533 
  Texas -0.152881028 0.801353606 
  Colorado -0.140397715 0.993074635 
  Kansas -0.298177136 0.826461329 

MDEST761 EV466556 Israel -1.087796675 0.174313098 
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  Alabama -1.129047809 0.056601901 
  Georgia -1.026740601 0.165049527 
  Texas -0.437274395 0.595854848 
  Colorado -0.348524734 0.993074635 
  Kansas -0.216989417 0.999944651 

L7F4 JZ482494 Israel -0.192176276 0.473428446 
  Alabama -0.505338953 0.013287252 
  Georgia -0.157790929 0.473176898 
  Texas -0.178925272 0.403594002 
  Colorado -0.209481007 0.746285688 
  Kansas -0.330795328 0.157474042 

MDEST588 EV466728 Israel -0.354383754 0.232376907 
  Alabama -0.534420288 0.021536043 
  Georgia -0.087163295 0.766201064 
  Texas -0.082224757 0.802944479 
  Colorado -0.133855697 0.993074635 
  Kansas -0.130062635 0.919637715 

G3C11 JZ482495 Israel 0.062950143 0.899327283 
  Alabama -0.372417891 0.189227381 
  Georgia -0.261583122 0.491616187 
  Texas 0.008213721 0.984760893 
  Colorado 0.163041396 0.993074635 
  Kansas -0.354574322 0.567224308 

G12G12 JZ482496 Israel 0.095650408 0.900718291 
  Alabama -1.082475202 0.027448882 
  Georgia -0.370552192 0.547488776 
  Texas 0.018576882 0.984760893 
  Colorado 0.030817168 0.993074635 
  Kansas -0.587677393 0.535994683 

MDEST933 EV466385 Israel 0.229922963 0.726068064 
  Alabama 0.810961234 0.031759572 
  Georgia 0.703619431 0.117899191 
  Texas 0.217840941 0.688214003 
  Colorado 0.139156539 0.993074635 
  Kansas 0.066429027 0.999944651 

MDEST772 EV466545 Israel 0.411400209 0.262137567 
  Alabama 0.645313659 0.023522963 
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  Georgia 0.691374632 0.038017454 
  Texas 0.989132408 0.008933928 
  Colorado 0.747350082 0.054915123 
  Kansas -0.217478612 0.804479112 

S14F7 JZ482497 Israel 0.585403703 0.302501382 
  Alabama 1.226021775 0.012754677 
  Georgia 1.254911445 0.018782609 
  Texas 0.728279308 0.153110617 
  Colorado 0.566183675 0.637667476 
  Kansas 0.499300947 0.544061062 

L7E9 JZ482498 Israel -0.586623157 0.704470809 
  Alabama 1.623034727 0.050789861 
  Georgia 0.837078231 0.431927545 
  Texas 0.912531799 0.388367874 
  Colorado 0.050099965 0.993074635 
  Kansas -0.482026708 0.937378509 

MDEST910 EV466407 Israel -0.927368217 0.519241361 
  Alabama 1.362598884 0.110449694 
  Georgia 1.358627617 0.212421315 
  Texas 1.124370752 0.315706616 
  Colorado -0.071284496 0.993074635 
  Kansas -0.654558754 0.841301422 

S3E10 JZ482499 Israel 4.294479383 0.014642269 
  Alabama 3.626898077 0.021081909 
  Georgia 5.424690906 0.005814065 
  Texas 2.467253751 0.164727924 
  Colorado 0.761856259 0.993074635 
  Kansas 0.115681795 0.999944651 

S20B4 JZ482500 Israel 4.812618901 0.007578226 
  Alabama 3.764416323 0.020637307 
  Georgia 5.957124208 0.003088202 
  Texas 2.485906705 0.175134024 
  Colorado 0.865846488 0.993074635 
  Kansas 0.014474771 0.999944651 

S8D5 JZ482501 Israel 4.615139294 0.018426697 
  Alabama 4.392467892 0.016741918 
  Georgia 5.625659497 0.009226963 
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  Texas 3.189372137 0.110130943 
  Colorado 0.993630095 0.993074635 
  Kansas 0.100881222 0.999944651 

S18E7 JZ482502 Israel 2.736770708 0.234683433 
  Alabama 3.707338609 0.031759572 
  Georgia 4.674392739 0.028398352 
  Texas 3.073121713 0.144517393 
  Colorado 0.637172871 0.993074635 
  Kansas -0.156075729 0.999944651 

S12G8 JZ482503 Israel 2.378306423 0.098626815 
  Alabama 2.330064138 0.040320642 
  Georgia 3.893259954 0.009556944 
  Texas 1.110232265 0.432188359 
  Colorado 0.044173039 0.993074635 
  Kansas 0.071707087 0.999944651 
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Table A3.3. Microarray data expressed in log2 fold change in comparison to Biotype GP 

for family 4.  Adjusted p values are listed.  Expressed sequence tag (EST). 

 

EST 
Accession 
Number 

Field 
Collection Log2 Fold Change 

Adjusted p 
value 

MDEST729 EV466588 Israel 0.326173792 0.089614013 
  Alabama 0.241554197 0.094751942 
  Georgia 0.455017263 0.020056854 
  Texas 0.054338834 0.819681876 
  Colorado 0.104260595 0.993074635 
  Kansas 0.061675304 0.999944651 

G20G4 JZ482504 Israel 0.354300293 0.023329478 
  Alabama 0.176351243 0.147752852 
  Georgia 0.377465513 0.022533919 
  Texas 0.332665747 0.059466914 
  Colorado 0.177521995 0.642143206 
  Kansas 0.101702325 0.804651923 

S6B12 JZ482505 Israel 0.267678306 0.128902447 
  Alabama 0.379822483 0.015507444 
  Georgia 0.203286502 0.225768653 
  Texas 0.365330526 0.057940003 
  Colorado 0.307985348 0.160170752 
  Kansas 0.223551427 0.251412247 

L3A9 JZ482506 Israel 0.642942007 0.001826927 
  Alabama 0.207947076 0.194219963 
  Georgia 0.347360437 0.094308689 
  Texas 0.480978011 0.055725163 
  Colorado 0.116901067 0.993074635 
  Kansas -0.112680642 0.904653152 

S4B3 JZ482507 Israel 0.233967202 0.743135497 
  Alabama 0.449657084 0.226426496 
  Georgia 0.303020613 0.553104232 
  Texas 0.437791973 0.380005028 
  Colorado -0.169442663 0.993074635 



150 

 

  Kansas -0.725367093 0.172617333 
S16F7 JZ482508 Israel 0.072264128 0.824406935 

  Alabama 0.341751049 0.051808219 
  Georgia 0.410617204 0.060704706 
  Texas 0.453571627 0.059466913 
  Colorado 0.048157145 0.993074635 
  Kansas -0.258991582 0.363576836 

L7C7 JZ482509 Israel -0.329664404 0.014642269 
  Alabama -0.004664789 0.964195229 
  Georgia 0.069318549 0.624561258 
  Texas -0.141059781 0.310243009 
  Colorado -0.048129582 0.993074635 
  Kansas -0.096210776 0.765222320 

MDEST817 EV466500 Israel -0.309475207 0.028606413 
  Alabama -0.076787128 0.481008771 
  Georgia -0.006210489 0.966748524 
  Texas -0.085317029 0.591915171 
  Colorado -0.127456972 0.790979835 
  Kansas -0.193863967 0.246924389 

G8G4 JZ482510 Israel -0.358842772 0.190559985 
  Alabama 0.205640853 0.286783546 
  Georgia -0.111780929 0.674128477 
  Texas 0.076898424 0.809935074 
  Colorado -0.112921919 0.993074635 
  Kansas -0.372378018 0.180726031 

S18E2 JZ482511 Israel 0.125316698 0.704470809 
  Alabama 0.257619591 0.120511563 
  Georgia 0.218045198 0.322242082 
  Texas -0.085850601 0.737708407 
  Colorado -0.170038864 0.842546369 
  Kansas -0.172512085 0.678602891 

S10D6 JZ482512 Israel 0.120289769 0.775924979 
  Alabama 0.291363747 0.193155827 
  Georgia 0.159507179 0.604559271 
  Texas -0.125728696 0.717089181 
  Colorado -0.217189437 0.872247928 
  Kansas -0.251655781 0.647037735 
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S6B3 JZ482513 Israel 0.079630628 0.830895436 
  Alabama 0.356553082 0.073866693 
  Georgia 0.388024019 0.122936487 
  Texas -0.000591227 0.998143729 
  Colorado -0.228655986 0.790979834 
  Kansas -0.38935622 0.158583672 

LG1E5 GR557757 Israel -0.260604714 0.332991327 
  Alabama 0.134608765 0.451476138 
  Georgia 0.559810364 0.022533919 
  Texas 0.136583334 0.602457617 
  Colorado 0.286355391 0.573123166 
  Kansas -0.025736094 0.999944651 

S3B8 JZ482514 Israel -0.309051715 0.117650438 
  Alabama 0.178688774 0.220678247 
  Georgia 0.362603741 0.059288434 
  Texas 0.147605488 0.446655768 
  Colorado 0.053938192 0.993074635 
  Kansas -0.443967163 0.027440918 

G16C11 JZ482515 Israel -0.557049332 0.020966459 
  Alabama 0.088248327 0.632425779 
  Georgia 0.285273863 0.243601897 
  Texas 0.078635993 0.801353606 
  Colorado 0.028243113 0.993074635 
  Kansas -0.527782676 0.040176125 

S3H1 JZ482516 Israel -0.254587498 0.713735317 
  Alabama 0.282046814 0.425117724 
  Georgia 0.427449899 0.373906099 
  Texas 0.125708202 0.840600811 
  Colorado -0.164037868 0.993074635 
  Kansas -0.784568033 0.127419471 

L6G11 JZ482517 Israel -0.522557308 0.067847681 
  Alabama 0.189548394 0.378084257 
  Georgia 0.348337829 0.212421315 
  Texas -0.459864305 0.109409849 
  Colorado -0.772243018 0.014349935 
  Kansas -1.011487064 0.000907156 

MDEST1000 EV466318 Israel 0.299031618 0.439069832 
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  Alabama 0.558330824 0.032326692 
  Georgia 0.707296698 0.028398352 
  Texas -0.319896314 0.315706616 
  Colorado -0.571902248 0.160170752 
  Kansas -0.612487014 0.069123062 

S8A3 JZ482518 Israel 1.486031054 0.000452935 
  Alabama 0.634000592 0.055320462 
  Georgia 2.513540395 4.04E-06 
  Texas 0.943275829 0.055764583 
  Colorado 0.210749525 0.993074635 
  Kansas -0.773248978 0.087733601 

G28D4 JZ482519 Israel 0.716751676 0.067048544 
  Alabama 0.106326844 0.717142871 
  Georgia 2.027590472 2.29E-05 
  Texas 0.471085772 0.228033434 
  Colorado -0.120648724 0.993074635 
  Kansas -0.401439987 0.516496686 

MDEST773 EV466544 Israel 1.454072923 1.93E-05 
  Alabama 1.831334094 4.36E-06 
  Georgia 0.538506986 0.082350331 
  Texas 2.078672192 4.97E-07 
  Colorado 1.842023516 3.96E-06 
  Kansas 1.837984623 2.05E-06 

MDEST744 EV466573 Israel -0.349781276 0.116737277 
  Alabama -0.482226209 0.015507444 
  Georgia -0.251245112 0.241234555 
  Texas -0.362681921 0.101628075 
  Colorado -0.225698957 0.678977911 
  Kansas -0.774136461 0.000907156 

G8A3 JZ482520 Israel -0.295878216 0.257637423 
  Alabama -0.496270875 0.019736909 
  Georgia -0.486043447 0.040424096 
  Texas -0.440930198 0.073813697 
  Colorado -0.264904926 0.637667476 
  Kansas -0.657187227 0.007519409 

MDEST922 EV467317 Israel -0.489958495 0.036586092 
  Alabama -0.622910098 0.008512212 
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  Georgia -0.445662768 0.060704706 
  Texas -0.505560978 0.059466913 
  Colorado -0.294833137 0.552522817 
  Kansas -0.997915872 0.000185029 

MDEST795 EV466522 Israel -0.432654667 0.146866547 
  Alabama -0.552294628 0.023566866 
  Georgia -0.321126068 0.262003118 
  Texas -0.439362587 0.124652216 
  Colorado -0.130940119 0.993074635 
  Kansas -0.375845228 0.251412247 

L4H12 JZ482521 Israel -1.031303523 1.25E-07 
  Alabama -0.407981382 0.005149744 
  Georgia -0.417343881 0.008369144 
  Texas -0.636291694 0.000190814 
  Colorado -0.124015576 0.790979831 
  Kansas -0.338761757 0.027415454 

MDEST838 EV466479 Israel -0.850736592 0.062887459 
  Alabama -0.939499033 0.020637307 
  Georgia -0.638954659 0.152167434 
  Texas -0.662933592 0.145054301 
  Colorado -0.278388829 0.959059078 
  Kansas -0.327436495 0.750908045 

S19C4 JZ482522 Israel -0.205319551 0.854394202 
  Alabama -1.108765545 0.059501515 
  Georgia -0.900531962 0.225768653 
  Texas -0.585181628 0.441616807 
  Colorado -0.127995436 0.993074635 
  Kansas 0.182924381 0.999944651 

MDEST960 EV466358 Israel -0.405153233 0.597629701 
  Alabama -1.113318894 0.020637307 
  Georgia -0.424196356 0.441858983 
  Texas -0.670605735 0.219466495 
  Colorado -0.295126731 0.993074635 
  Kansas 0.214566857 0.999944651 

MDEST842 EV466475 Israel -0.400704294 0.704470809 
  Alabama -0.956650651 0.076683319 
  Georgia -0.602470809 0.398190747 
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  Texas -1.166368377 0.101628075 
  Colorado -0.325299929 0.993074635 
  Kansas 0.204229002 0.999944651 

Lg3C11 GR305978 Israel -0.433356497 0.473428446 
  Alabama -1.355866892 0.005149744 
  Georgia -1.068219398 0.029956896 
  Texas -0.579106952 0.232674966 
  Colorado -0.343144844 0.895616245 
  Kansas -0.170354971 0.999944651 

MDEST1207 EV466111 Israel -0.006188252 0.988694316 
  Alabama -0.214646087 0.410653181 
  Georgia -1.296787022 0.000748673 
  Texas -0.548750583 0.110130943 
  Colorado -0.104689749 0.993074635 
  Kansas 0.131625937 0.999944651 

S15G10 JZ482524 Israel -0.363189474 0.601555286 
  Alabama -0.046675404 0.896554608 
  Georgia -0.791685368 0.097024523 
  Texas -0.776009843 0.110130943 
  Colorado -0.635301924 0.480189166 
  Kansas 0.300774583 0.819944582 

L1C12 JZ482525 Israel -0.077335836 0.911434576 
  Alabama -0.987776482 0.029283271 
  Georgia -1.450593696 0.011676509 
  Texas -0.905975666 0.101628075 
  Colorado -0.377085827 0.901510803 
  Kansas 0.450796893 0.647566789 

G9B3 JZ482526 Israel -0.124056978 0.897851969 
  Alabama -1.135888685 0.033024889 
  Georgia -1.125670307 0.076089575 
  Texas -0.797254683 0.223549314 
  Colorado -0.284011499 0.993074635 
  Kansas 0.421562967 0.804479112 

S19E7 JZ482527 Israel 0.275401364 0.769455659 
  Alabama -1.162793512 0.031759572 
  Georgia -0.893708518 0.164561583 
  Texas -0.981169422 0.133522841 
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  Colorado -0.551729372 0.790979834 
  Kansas 0.660500042 0.535994157 

S16C4 JZ482528 Israel -0.237542037 0.782442499 
  Alabama -1.437519759 0.013521393 
  Georgia -1.734392761 0.009226963 
  Texas -1.167733493 0.070942924 
  Colorado -0.573659055 0.774939847 
  Kansas 0.367592556 0.839726474 

MDEST16 EV467299 Israel -2.247583134 0.109568994 
  Alabama -2.736836666 0.021536043 
  Georgia -2.791181851 0.040424096 
  Texas -1.553398563 0.253241628 
  Colorado -0.429015338 0.993074635 
  Kansas 0.226422966 0.999944651 

MDEST747 EV466570 Israel -0.287153977 0.881519011 
  Alabama -2.724266649 0.017191357 
  Georgia -2.955720298 0.022533919 
  Texas -1.393828877 0.257325827 
  Colorado -0.118984453 0.993074635 
  Kansas 0.733232293 0.841301422 
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Table A3.4. Microarray data expressed in log2 fold change in comparison to Biotype GP 

for family 11.  Adjusted p values are listed.  Expressed sequence tag (EST). 

 

EST 
Accession 
Number 

Field 
Collection 

Log2 Fold 
Change Adjusted p Value 

SSGP11C2 AY828563 Israel 0.741484661 9.77E-06 
  Alabama 0.607544651 0.824490039 
  Georgia 0.560839539 0.674128477 
  Texas 0.307977366 0.688688903 
  Colorado 0.381123751 0.993074635 
  Kansas 0.228847607 0.597258574 
MDEST1025 EV466293 Israel 0.785904356 0.302501381 
  Alabama 0.396444322 0.439402032 
  Georgia 0.429006621 0.547617588 
  Texas 0.084605068 0.940980477 
  Colorado 0.237829021 0.993074635 
  Kansas 0.47506787 0.765222325 
SSGP11C1 AY828563 Israel 0.319793191 0.000873273 
  Alabama 0.211247182 0.000140052 
  Georgia 0.172950997 4.04E-06 
  Texas 0.175970821 0.070942924 
  Colorado 0.416042074 0.993074635 
  Kansas 0.444192339 0.999944651 
MDEST685 EV466632 Israel 1.227504498 0.302501384 
  Alabama 0.042517634 0.307817809 
  Georgia -0.111158045 0.547617588 
  Texas 0.118463963 0.547222133 
  Colorado 0.139080735 0.323432281 
  Kansas 0.234566853 0.137105501 
MDEST1048 EV466270 Israel -1.337873533 0.340982451 
  Alabama -1.743631184 0.244163716 
  Georgia -2.406430858 0.426562643 
  Texas -0.764068986 0.696237562 
  Colorado 0.009765357 0.993074635 
  Kansas -0.000425817 0.999944651 
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Table A3.5. Primers for quantitative real-time PCR (qRT-PCR) including the melting 

temperature (Tm).  Forward primers are labeled F, and reverse primers are labeled R. 

 
Name Primer Sequence (5’-3’) Tm (°C) 
18S_F 
18S_R 

ATCTATGGGTGGTGGTGCAT 
CCAGACAAATCACTCCACGA 

60.4 
60.4 

MDEST700_F 
MDEST700_R 

CGCCAACAGCCCAATCA 
CCAATCTAGCATGGAAAGATCGT 

59.6 
61.0 

G8F2_F 
G8F2_R 

AATGCGGGAGATGCTAATGG 
TTTTGCGGCTGTCGGTTT 

60.4 
57.6 

MDEST798_F 
MDEST798_R 

GGCAGGAAAACCAACAAAACC 
TTTGGTGGCCTTTTCCATGT 

60.6 
58.4 

MDEST689_F 
MDEST689_R 

ACATTCATTGCTACGCCAAAGA 
CCAATGCGGTTGAAGGTTCT 

58.9 
60.4 

L7D5_F 
L7D5_R 

CGGACTCACTGAACGGATAAACC 
CGATGTCCTCATCCACGACTCT 

64.6 
64.5 

S20B4_F 
S20B4_R 

TTTGCCCACCAGCCATGA 
TGGATTTTCGACGACGTTCCT 

59.9 
60.6 

MDEST747_F 
MDEST747_R 

TGGACAAAATAGTATGCAGAAACGA 
AAGGCGGCATAACTGCTTTTAA 

59.7 
58.9 

S8A3_F 
S8A3_R 

GGCTGCAAGTTTCGCTGAAG 
ATCTGATACCGCACGCCTTT 

62.4 
60.4 

MDEST817_F 
MDEST817_R 

TGCTTCATCGTCAACCTCATGAT 
ACCGAAGATACCAAAAAAAAATCGA 

61.0 
58.0 

G7E6_F 
G7E6_R 

TGGCAGTGATAGCTGTAGCATCA 
TGGGTCGGTTTCTAGCTTCTCA 

62.8 
62.7 

L7A12_F 
L7A12_R 

AAATCGACCCAGCAGGAGATG 
CTTGAAGCCCGAGACTGGAAA 

62.6 
62.6 

11C1_F 
11C1_R 

GAAAGAAACGACCCAGCAGAA 
CTTGAAGCCCGAGACTGGAAA 

62.7 
62.6 
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Figure A3.0.1. Bayesian phylogenetic tree of secreted salivary gland protein (SSGP) 

transcripts in Family 1.  The phylogenetic reconstruction is rooted using the secreted 

salivary lipase-like gene from the Asian rice gall midge, Orseolia oryzae (Wood-Mason) 

as an outgroup, posterior probability values are located at the nodes, and clades are 

indicated by Roman Numerals.  SSGPs in this family separated into two clades. 

However, there is no correlation between transcript abundance and phylogeny. 
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Figure A3.0.2. Bayesian phylogenetic tree of secreted salivary gland protein (SSGP) 

transcripts in Family 4.  The phylogenetic reconstruction is rooted as in Fig. S1; posterior 

probability values and clades are indicated.  Significant variability in transcript 

abundance is dispersed throughout the tree, and no pattern between transcript abundance 

and phylogeny is shown. 
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Figure A3.3.  Bayesian phylogenetic tree of secreted salivary gland protein (SSGP) 

transcripts in Family 11.  The phylogenetic reconstruction is rooted as in Fig. S1; 

posterior probability values and clades are indicated.  No correlation of transcript 

abundance variation and phylogeny could be seen within this small family of SSGPs. 
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