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ABSTRACT

Homan, Andrew J. PhD, Purdue University, May 2015. Applications of Microlocal
Analysis to Some Hyperbolic Inverse Problems. Major Professor: Plamen Stefanov.

This thesis compiles my work on three inverse problems: ultrasound recovery in

thermoacoustic tomography, cancellation of singularities in synthetic aperture radar,

and the injectivity and stability of some generalized Radon transforms. Each prob-

lem is approached using microlocal methods. In the context of thermoacoustic to-

mography under the damped wave equation, I show uniqueness and stability of the

problem with complete data, provide a reconstruction algorithm for small attenua-

tion with complete data, and obtain stability estimates for visible singularities with

partial data. The chapter on synthetic aperture radar constructs microlocally several

infinite-dimensional families of ground reflectivity functions which appear microlo-

cally regular when imaged using synthetic aperture radar. Finally, based on a joint

work with Hanming Zhou, we show the analytic microlocal regularity of a class of

analytic generalized Radon transforms, using this to show injectivity and stability

for a generic class of generalized Radon transforms defined on analytic Riemannian

manifolds.
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1. INTRODUCTION

1.1 Inverse problems

In applied mathematics, one often constructs a model of a physical system by

considering a certain class of models (e.g., linear models) and tuning the parameters of

the model to predict the system’s output given the system’s input. This is sometimes

called the “forward problem”, or the “direct problem.” The problem is, “given the

input state x, predict the output state y = Fx.” An inverse problem, on the other

hand, takes the input as unknown and attempts to recover them from observations of

the system’s response. The problem becomes, “given the output state y, predict the

input state x such that y = Fx.” The first inverse problems appeared in the context

of seismology, in which case observing the input state (i.e., the material properties

and velocity distribution of the interior of the Earth) is impossible.

As an illustration, consider Calderón’s problem [9], which is the basis of the med-

ical imaging technique called electrical impedance tomography [10]. Let Ω ⊂ Rn be

a smooth, compact region of interest. If f ∈ H1/2(∂Ω) is a voltage density induced

on the boundary of the region of interest, then the electrical potential u inside Ω is

the solution of the PDE, ∇ · γ(x)∇u(x) = 0 in Ω,

u|∂Ω(x) = f(x) on ∂Ω.
(1.1)

Here γ ∈ L∞(Ω) is the electrical conductivity of the material. What one measures in

this system is the current density at the boundary that is induced by each choice of f .

After many experiments with various applied voltage densities, one gains knowledge

of the Dirichet-to-Neumann operator

Λγf = γ
∂u

∂ν

∣∣∣∣
∂Ω

∈ H−1/2(Ω), (1.2)
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where ∂/∂ν is the normal derivative. In this example, the forward problem is to find

the current density Λγf given γ and f by solving the elliptic PDE (1.1). This is

an elliptic, second-order PDE, and is solvable by classical techniques. The inverse

problem is to determine the conductivity γ, given the operator Λγ, which depends on

γ in a non-linear manner.

In the study of an inverse problem, there are three themes that one tends to follow.

1. Uniqueness: Does the known data uniquely determine the model parameters?

2. Stability: If the known data is perturbed slightly (e.g., by noise), is the solution

stable with respect to the perturbation?

3. Reconstruction: Is there an efficient algorithm for recovering the model param-

eters from the measured data?

This dissertation is concerned with these questions in the context of the following

three applications:

1. Thermoacoustic Tomography (TAT): A hybrid medical imaging technique at-

tempting to image the electromagnetic absorption density of tissue via ultra-

sound and the thermoacoustic effect. This is also done using near-infrared light,

in which case it is known as photoacoustic tomography (PAT). Some results from

this work were published in [25].

2. Synthetic Aperture Radar (SAR): An airplane or satellite imaging technique

that involves recovering the electromagnetic reflectivity of the ground from the

scattering of a signal emitted from an antenna as it traverses a known flight

path. Some results from this work were published in [26].

3. Generalized Radon Transform (GRT): An integral operator that associates a

function defined on a smooth manifold to the function’s integral over a smooth

family of codimension one submanifolds. Some work on this problem was done

in collaboration with Mr. Hanming Zhou [27].
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The first two applications involve a model using the wave equation, and so can be

called hyperbolic inverse problems. While the third application belongs more properly

to the field of integral geometry, examples of generalized Radon transforms occur

frequently in the context of thermoacoustic tomography and other inverse problems

involving the wave equation.

1.2 Microlocal analysis

It is a fact of life that many of the inverse problems one encounters in applications

are ill-posed. It could be that the problem has no unique solution for some values of

the model parameters. Perhaps the forward problem is invertible, but the inverse is

unbounded; reconstructions based on such are unstable and can be sensitive to noise.

However, in applications it may not be necessary to recover quantitatively all of the

image. For example, it may be sufficient to recover, qualitatively, the outline of a

patient’s lungs and the chambers of their heart in order to diagnose a certain disorder

of the cardiopulminary system.

In the context of microlocal analysis, the discontinuities in material parameters at

the interface of, say, the lungs and the rest of the thoracic cavity, may be modelled by

the wavefront set of the material parameters, considered as a distribution. We define

the smooth wavefront set in Definition 1.2.4, and its analytic counterpart in Definition

1.2.10. The calculus of pseudodifferential and Fourier integral operators can then serve

as a toolkit for recovering the wavefront set. As an example, Hörmander’s theorem

on propagation of singularities, reproduced below as Theorem 1.2.1, describes the

evolution of the wavefront set of Cauchy data for a hyperbolic PDE by a certain

Hamiltonian flow determined by that PDE.

For clarity and self-containment, the basic facts of differential geometry and mi-

crolocal analysis that will be needed in the sequel are summarized here.
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1.2.1 Riemannian geometry

The principal setting in what follows will be a Riemannian manifold without

boundary. This is only a brief summary of results. For a more complete treatment, we

refer the reader to [40], for example. Here, and in the sequel, the Einstein summation

notation will be assumed.

Let (M, g) be a Riemannian manifold of dimension n without boundary. The

tangent bundle TM is identified with the space of derivations on C∞(M). Let (xi)ni=1

be local coordinates for an open set U ⊂ M . There is a local frame (∂/∂xi)ni=1 for

TM . Recall the metric g is a non-degenerate 2-form on M . In local coordinates, it is

determined by coefficients gij, where

g(∂/∂xi, ∂/∂xj) = gij (1.3)

This determines a dual frame (dxi)ni=1 of the cotangent bundle T ∗M , which is the

dual bundle of TM . Often we will consider the fiber bundle T ∗M \ 0, in which the

zero section has been deleted.

dxi(∂/∂xj) = δij. (1.4)

The cotangent bundle is endowed with a canonical symplectic structure. In local

coordinates, it is given by,

ω =
n∑
i=1

dxi ∧ dξi. (1.5)

It is common to write gij = (gij)
−1. In local coordinates, the Christoffel symbols

(of the first kind) are defined by

Γkij = gk`
1

2

(
∂

∂xi
(gj`) +

∂

∂xj
(gi`)−

∂

∂x`
(gij)

)
. (1.6)

The metric induces an inner product on each tangent space TxM , for all x ∈ M .

Write |v|g = g(v, v)1/2 for the norm of the tangent spaces. The unit sphere bundle is

the bundle of tangent vectors of unit length with respect to this norm,

SM = {(x, v) : x ∈M, v ∈ TxM, |v|g = 1}. (1.7)
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Naturally there is also a norm induced by an inner product on the various cotangent

spaces T ∗xM , which by abuse of notation will also be written |ξ|g. This is used to

define the unit cosphere bundle

S∗M = {(x, ξ) : x ∈M, ξ ∈ T ∗xM, |ξ|g = 1}. (1.8)

Let γ : [t0, t1]→M be a smooth curve. Such a curve is a geodesic when it solves

the second-order system of ODEs,

γ̈k(t) + Γkij γ̇
i(t)γ̇j(t) = 0, (1.9)

in local coordinates. Here dots indicate derivatives with respect to the parameter. It

follows from the ODE that |γ̇(t)|g is constant, determined by its initial value |γ̇(t0)|g.

After possibly rescaling the parameter, one may assume without loss of generality

that γ is parameterized in such a way that the velocity vector field γ̇ has unit length.

By the local uniqueness and existence of solutions to ODE, for every choice of

initial data (x, v) ∈ SM there exists an ε > 0 such that γx,v : [0, ε]→M is the unique

geodesic with γx,v(0) = x and γ̇x,v(0) = v. By compactness for every x ∈ M there

exists a uniform ε > 0 such that every geodesic with initial data (x, v) ∈ SxM is at

least defined up to time ε. This defines a family of exponential maps

expx(tv) = γx,v(t), (1.10)

for v ∈ SxM and t ∈ [0, ε]. On a complete manifold, the exponential maps define a

geodesic flow φt on SM given by

φt(x, v) = (γx,v(t), γ̇x,v(t)). (1.11)

This lifts to a cogeodesic flow on the unit cosphere bundle, which we also refer to as

φt.

If in addition (M, g) is orientable, there exists an n-form dVol, unique up to

constant multiple, called the volume form of g. In local coordinates, we have

dVol =
√
|det g| dx1 ∧ · · · ∧ dxn. (1.12)
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This is the natural measure on (M, g), and it defines the Lebesgue space L2(M):

L2(M) =

{
f : M → C, measurable :

∫
|f |2 dVol <∞

}
. (1.13)

This is a Hilbert space with respect to the inner product

〈f, g〉 =

∫
fg dVol, (1.14)

and one writes the norm

||f ||L2(M) = 〈f, f〉1/2 . (1.15)

For k ∈ N, the Sobolev spaces Hk(M) are defined as the completion of C∞0 (M)

under the norm

||f ||Hk(M) =
∑
|α|≤k

||∂αf ||L2(M). (1.16)

Define H−k(M) = (Hk(M))∗. The fractional Sobolev spaces Hs(M), s ∈ R \ Z are

defined by interpolation.

A Riemannian manifold (M, g) is real-analytic (which will be shortened to “an-

alytic” when no confusion results, reserving “holomorphic” for complex-analytic ob-

jects) when the underlying manifold is analytic and the coefficients of the metric gij

are analytic in every analytic coordinate chart. It follows from (1.12) that dVol is in

this case an analytic n-form.

Let U ⊂M be a sufficiently small neighborhood of an analytic Riemannian mani-

fold. Then there exists a complex Riemannian manifold UC such that U is embedded

isometrically into UC. One somewhat natural way to do this is given by the Grauert

tube construction, for which see [20]. The intimate details of this construction will

not be necessary; we will only use the fact that we can extend analytic local coordi-

nates on U to holomorphic local coordinates on UC, and continue analytic functions

defined on U to holomorphic functions on UC.
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1.2.2 Pseudodifferential operators

Recall the Fourier transform and its inverse on Rn,

f̂(ξ) =

∫
e−ix·ξf(x) dx, f(x) = (2π)−n

∫
eix·ξf̂(ξ) dξ. (1.17)

It is known that if f ∈ C∞(Rn), the Fourier transform decays faster than any poly-

nomial as |ξ| → ∞. More precisely, if f ∈ Hk(Rn), then the Fourier transform

f̂ ∈ L2(Rn, 〈ξ〉k dξ). (Recall 〈ξ〉 = (1 + |ξ|2)1/2.) Therefore, roughly speaking, higher

regularity corresponds to faster decay for the Fourier transform. The basic idea

of the wavefront set is to use this correspondence to determine the singularities of

f ∈ D′(Rn) by observing the decay rate of the Fourier transform of χf , where χ is a

cut-off function localizing f near a specific point of interest.

Notice that the decay rate of χ̂f may be different along different rays in phase

space; this is the intuition behind defining the wavefront set WF(f) ⊂ T ∗Rn \ 0,

which we state formally in Definition 1.2.4. To work “microlocally” is to consider a

small conic neighborhood Γ ⊂ T ∗Rn \ 0, and cut-off f in such a way as to restrict

its wavefront set to Γ. This is possible through the application of pseudodifferential

operators. These operators, which include the ring of differential operators with

smooth coefficients as a special case, also contain the pseudo-inverses for all elliptic

PDEs with smooth coefficents. This section summarizes the techniques and details of

such operators and their effect on the wavefront set, following the general approach

of [31, 32, 56, 58].

Symbol classes and mapping properties

For now, we restrict our attention to a smooth domain Ω ⊂ Rn. In this case, T ∗Ω

is globally diffeomorphic to Ω×Rn, and so we may take (x, ξ) ∈ Ω×Rn as coordinates

for the cotangent bundle.
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Definition 1.2.1. Let a ∈ C∞(T ∗Ω). Then a is a symbol of class Sm(Ω) when for

all multi-indices α, β and all K b Ω compact there exists C > 0 such that

sup
x∈K

∣∣∂βx∂αξ a(x, ξ)
∣∣ ≤ C〈ξ〉m−|α|. (1.18)

To each symbol a of class Sm(Ω) is associated a pseudodifferential operator Op(a) of

class OPSm(Ω), which acts on u ∈ C∞0 (Ω) by

Op(a)u(x) = (2π)−n
∫
ei(x−y)·ξa(x, ξ)u(y) dy dξ. (1.19)

This definition extends to an operator Op(a) : E ′(Ω) → D′(Ω), using [30, Theorem

7.8.2] to define (1.19) as an oscillating integral.

Define the class of negligible operators as

OPS−∞ =
∞⋂
m=1

OPSm. (1.20)

These operators map D′(Ω) → C∞(Ω), and are sometimes called smoothing opera-

tors. However, we refer to any integral operator with a smooth Schwartz kernel as a

smoothing operator.

The Schwartz kernel of Op(a) is the distribution Ka ∈ D′(Ω × Ω) given by the

oscillating integral

Ka(x, y) = (2π)−n
∫
ei(x−y)·ξa(x, ξ) dξ. (1.21)

It can be shown that Ka(x, y) is singular at most on the diagonal of Ω × Ω. (Op(a)

is negligible iff Ka is smooth.)

A Schwartz kernel is said to be of proper support when for all K b Ω compact,

both suppKa ∩ (K × Ω) and suppKa ∩ (Ω×K) are compact. All pseudodifferential

operators can be reduced to such kernels in the following way. Let χ ∈ C∞0 (R) be a

cut-off function equal to one in a neighborhood of zero. Then the Schwartz kernel of

any pseudodifferential operator may be decomposed as the sum

Ka(x, y)χ(|x− y|2) +Ka(x, y)(1− χ(|x− y|2)). (1.22)
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The first term is a properly supported Schwartz kernel; the second is a smooth

Schwartz kernel, and therefore the resulting integral operator is smoothing. This

shows that every pseudodifferential operator has a properly supported Schwartz ker-

nel, up to a smoothing operator.

Properly supported pseudodifferential operators are continuous C∞(Ω)→ C∞(Ω)

and have L2(Ω)–adjoints that are also pseudodifferential operators of the same class

[56, Theorem II.4.1]. They also act naturally on Sobolev spaces.

Lemma 1.2.1 ([32, Theorem 18.1.3]). If A ∈ OPSm(Ω) is properly supported, then

for all s ≥ 0, A is a continuous operator mapping Hs(Ω)→ Hs−m(Ω).

Note that each Sm class can be equipped with the structure of a Fréchet space. Let

(Km)∞m=1 be a sequence of monotonically increasing compact sets exhausting Ω. For

each pair of multi-index α, β, take |a|m,α,β to be the minimal constant C(Km, α, β)

necessary for the corresponding symbol estimate (1.18) to hold for x ∈ Km. This

describes a countable family of norms for Sm(Ω). The following lemma describes

the continuity of Op as a map Sm(Ω) → OPSm(Ω), and follows from a well-known

estimate for the Schwartz kernel of OPSm(Ω); see [54, Proposition VI.4.1].

Lemma 1.2.2. Let K b Ω be compact, and let a1, a2 ∈ Sm(Ω),m ≥ 0. Then for

some N > 0 and any ε > 0 there exists δ > 0 with∑
|α|,|β|≤N

|a1 − a2|N,α,β < δ =⇒ ||Op(a1)−Op(a2)||Hm(K)→L2
loc(Ω) < ε. (1.23)

The following notation is useful in describing the relationship between symbols

and their corresponding operators.

Definition 1.2.2. Let A ∈ OPSm(Ω). Then we write σ(A) ∈ Sm(Ω) for the full

symbol associated to A, and σm(A) for any representative of the equivalence class

[σ(A)] ∈ Sm(Ω)/Sm−1(Ω). The latter is referred to as the principal symbol of A.
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Symbol calculus and parametrix construction

One key strength of the symbol calculus is the ability to construct symbols asymp-

totically. One application of this to the calculus of pseudodifferential operators is the

construction of parametrices for elliptic operators, which are inverses up to smoothing

error. We will also use this idea to construct geometric optics solutions of the damped

wave equation in the second chapter. We begin by defining a notion of asymptotic

summation for a series of symbols. The following lemma is a special case of [56,

Theorem II.3.1].

Lemma 1.2.3. Let ak ∈ Smk(Ω) with mk a strictly decreasing sequence of integers

not bounded from below. Then there exists a ∈ Sm0(Ω) such that for all N > 0,

a−
N∑
k=0

ak ∈ SmN+1(Ω). (1.24)

The construction of such an asymptotic symbol is based on a classical lemma of

Borel showing that for every sequence bn, there exists a smooth function whose Taylor

coefficients at zero are bn. In this situation, we will write

a ∼
∞∑
k=0

ak. (1.25)

It is clear that the correspondence between symbols and pseudodifferential oper-

ators is linear. The relationship between the two as algebras is more complicated, as

the next lemma shows.

Lemma 1.2.4. Let A ∈ OPSm1(Ω), B ∈ OPSm2(Ω) and let both be properly sup-

ported. Then B ◦ A ∈ OPSm1+m2(Ω) and

σ(B ◦ A) ∼
∑
α≥0

i−|α|

α!
[∂αξ σ(B)][∂αxσ(A)]. (1.26)

In particular,

σm1+m2(B ◦ A) = σ(B)σ(A). (1.27)
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By convention the sum is over all multi-indexes α is to be interpreted as

∞∑
k=0

∑
|α|=k

i−k

α!
[∂αξ σ(B)][∂αxσ(A)]

 , (1.28)

where the interior sums are finite and belong to the symbol class Sm1+m2−k(Ω).

We now concentrate on the class of elliptic pseudodifferential operators and their

corresponding parametrices.

Definition 1.2.3. A symbol a ∈ Sm(Ω) is elliptic when for all K b Ω compact, there

exists C > 0 and R > 0 such that for all x ∈ K and |ξ| > R, we have,

|a(x, ξ)| ≥ C〈ξ〉m. (1.29)

Such operators can be inverted up to smooth error by a parametrix. The construc-

tion below produces a left pseudo-inverse Q to any elliptic pseudodifferential operator

P .

Lemma 1.2.5. Let P ∈ OPSm(Ω) be a properly supported, elliptic pseudodifferential

operator. Then there exists Q ∈ OPS−m(Ω) such that

PQ = I +R, R ∈ OPS−∞. (1.30)

Proof. Define p(x, ξ) = σ(P ). Let χ ∈ C∞(T ∗Ω) be a smooth cut-off function that

vanishes in a neighborhood of {(x, ξ) : p(x, ξ) = 0} and is equal to one for |ξ| ≥ R,

where R > 0 is the same constant as in the definition of ellipticity. We will define a

symbol q(x, ξ) asymptotically, via Lemma 1.2.3, such that P ◦ Op(q) is the identity

modulo smoothing error.

Define

q−m(x, ξ) =

χ(x, ξ)p(x, ξ)−1 p(x, ξ) 6= 0

0 otherwise

(1.31)

By ellipticity, we see that the S−m(Ω) estimates (1.18) hold with α, β = 0. The

remaining estimates follow from the chain rule and the symbol estimates of p; the

contribution of χ can be ignored, as the symbol estimates only depend on the growth
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rate of the derivatives of the symbol as ξ becomes large. It follows from Lemma 1.2.4

that

σ0(P ◦Op(q−m)) = 1. (1.32)

Therefore P ◦ Op(q−m) = I + R1, where R1 is a pseudodifferential operator of class

OPS−1(Ω). Formally, the right hand side has a pseudoinverse via Neumann series,

(I +R1)

(
∞∑
k=0

(−R1)k

)
= I. (1.33)

Each term of the series is a pseudodifferential operator of class OPS−k, and therefore

meaning can be given to the Neumann series by applying Lemma 1.2.3 to the symbols

of each term, obtaining a symbol

r†1(x, ξ) ∼
∞∑
k=0

σ((−R1)k). (1.34)

The resulting operator R†1 = Op(r†1) is such that for all k

(1 +R1)R†1 = I mod OPS−k. (1.35)

Therefore

P ◦ [Op(q−m) ◦R†1] = I mod OPS−∞, (1.36)

and the term in braces is the parametrix Q that we sought. This parametrix is

actually two-sided, as is shown in [56, Theorem III.1.3].

Our main application of elliptic pseudodifferential operators is their use in obtain-

ing stability estimates, as the following lemma demonstrates.

Lemma 1.2.6. Let P ∈ OPSm(Ω) be a properly supported, elliptic pseudodifferential

operator, and K b Ω compact. Then for all u ∈ Hm(Ω), suppu ⊂ K, we have a

constant C > 0 and for all s > 0 a constant Cs > 0 such that

||u||Hm(Ω) ≤ C||Pu||L2(Ω) + Cs||u||H−s(Ω). (1.37)

If, in addition, it is known that P is injective, then there is a constant C ′ > 0 with

||u||Hm(Ω) ≤ C ′||Pu||L2(Ω). (1.38)
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Proof. Let Q be a parametrix for P , so that QP = I +R with R smoothing. Then,

||u||Hm(Ω) = ||(QP −R)u||Hm(Ω)

≤ ||QPu||Hm(Ω) + ||Ru||Hm(Ω).

R is smoothing and is therefore continuous L2
loc(Ω)→ Hm+s(Ω) for all s > 0. By the

mapping properties of Q, we have (1.37).

For the final stability estimate (1.38), we apply an argument from functional

analysis detailed in [56, Theorem V.3.1].

Wavefront set

The last tool we will require from the calculus of pseudodifferential operators is

the wavefront set. We recall the definition from [30, Definition 8.1.2].

Definition 1.2.4. Let u ∈ D′(Rn) and fix (x0, ξ0) ∈ T ∗Rn\0. We say u is microlocally

smooth near (x0, ξ0) if there exists a smooth cut-off function χ ∈ C∞0 (Rn) with χ(x0) =

1 and an open conic neighborhood Γ of ξ0 ∈ T ∗x0R
n such that for all N ∈ N there exists

CN > 0 with

sup
ξ∈Γ
|χ̂u(ξ)| ≤ CN〈ξ〉−N . (1.39)

The wavefront set WF(u) of u is the complement of the set of covectors (x, ξ) at which

u is microlocally smooth.

One may characterize differential operators by Peetre’s theorem [44], which states

that they are the only linear operators which do not increase the support of distri-

butions. In a similar sense, pseudodifferential operators may be characterized as the

linear operators which do not increase the wavefront set.

Lemma 1.2.7. If u ∈ E ′(Ω) and P ∈ OPSm(Ω), then

WF(Pu) ⊂WF(u). (1.40)



14

This lemma will be a special case of a similar lemma for Fourier integral operators

in the sequel. Notice that if P is elliptic and Q is a parametrix for it, then

WF(u) = WF(QPu) ⊂WF(u). (1.41)

Therefore elliptic pseudodifferential operators preserve the wavefront set. From the

definition it can be shown that WF(u) is always a closed, conic set of T ∗Ω; also, given

an arbitrary closed, conic subset Γ ⊂ T ∗Ω, there exists a distribution u ∈ D′(Ω) such

that WF(u) = Γ, see for example the construction of [30, Theorem 8.1.4].

For applications to the damped wave equation in our study of thermoacoustic

tomography, we state without proof Hörmander’s theorem on propagation of singu-

larities, which describes how the solution operator of a strictly hyperbolic Cauchy

problem interacts with the wavefront set of the Cauchy data.

Theorem 1.2.1 ([32, Theorem 23.2.9]). Let P be a strictly hyperbolic differential

operator of order m with smooth coefficients on Ω and principal symbol p(x, ξ). If

Pu = f , then WF(u) \WF(f) is a subset of {p = 0} and is invariant under the

Hamiltonian flow, which is generated by the vector field Hp defined on T ∗Ω \ 0 by

Hp =
n∑
i=1

∂p

∂ξi

∂

∂xi
− ∂p

∂xi

∂

∂ξi
. (1.42)

Pseudodifferential operators on manifolds

It will sometimes be necessary to discuss the results of this section in the context

of manifolds; usually, compact Riemannian manfiolds with boundary. While there is

a calculus of pseudodifferential operators on manifolds with boundary (and even more

exotic singularities), for simplicity we tend to use only the usual calculus with the

caveat that we are always only concerned with distributions whose support is located

a positive distance away from all boundary components.

For example, in the chapter on thermoacoustic tomography, we will work with

distributions on ∂Ω× [0,∞) where ∂Ω is the boundary of a bounded, smooth, convex

domain. In this case, these distributions will be the restriction of the solution of a
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Cauchy problem with data at {t = 0} to this cylinder of the boundary. In this case

we will assume a priori, perhaps by increasing the size of Ω slightly, that the region

of interest on which the Cauchy data is supported lies a positive distance away from

the boundary. By finite speed of propagation, there is a small time tmin > 0 such that

the solution is zero on the boundary before tmin.

With this in mind, we consider a pseudodifferential operator on an open manifold

without boundary M to be any linear operator whose Schwartz kernel in local coordi-

nates can be written as the kernel of a pseudodifferential operator, as in (1.21). Note

however that this definition does not agree with our definition of OPSm(Rn), because

the symbol estimates associated to the latter operators are stronger than requiring

only that these estimates hold locally. In any case, we will always be concerned in

applications with a compact region of interest, and so the disagreement between these

definitions is not problematic.

If P ∈ OPSm(M), then σm(P ) ∈ C∞(T ∗M) is invariantly defined. Typically,

the lower order terms of any asymptotic expansion for σ(P ) depend on the choice of

coordinates. It is well-known that the wavefront set is also invariantly defined, and

transforms under change of coordinates as a subset of the cotangent bundle.

1.2.3 Fourier integral operators

Beyond the calculus of pseudodifferential operators, one may also consider linear

operators defined by Schwartz kernels with more general singular support than the

diagonal. For the purpose of the applications to come, we require only the local theory

of such operators, and so we restrict ourselves to a bounded open domain Ω ⊂ Rn

and an open, conic subset Γ ⊂ Ω × (RN \ 0), for some N > 0. In this context we

define a local symbol a(x, θ) ∈ C∞(Γ) to be a smooth function with support in a

closed, conic subset of Γ satisfying some order m− N
2

+ n
4

of symbol estimates (1.18).

The odd-looking symbol class is necessary for the following definition to agree with

the order of a pseudodifferential operator.
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An oscillating integral of order m is a distribution defined by a local symbol

a ∈ Sm−N2 +n
4 (Γ) and a phase function ϕ(x, θ) ∈ C∞(Γ). We assume phase functions

are non-degenerate in the following sense:

1. ϕ is positive homogeneous of degree one in the fiber variable on Γ.

2. The imaginary part of ϕ is non-negative on Γ.

3. dx,θϕ 6= 0 on Γ.

4. If dθϕ = 0, then the forms

dx,θ

(
∂ϕ

∂θj

)
, j = 1, . . . , N,

are linearly independent.

We define the distribution Ia,ϕ for u ∈ C∞0 (Rn) via

〈Ia,ϕ, u〉 =

∫∫
Γ

eiϕ(x,θ)a(x, θ) dx dθ. (1.43)

If a ∈ S−N(Γ) then this integral is absolutely convergent. There is an extension of

Ia,ϕ as a continuous linear operator on each Sm(Γ), for which see [30, Theorem 7.8.2].

Local FIO as oscillating integrals

A special class of oscillating integrals are the Fourier integral operators (FIO),

studied extensively by Duistermaat and Hörmander in [28, 15]. In the rest of this

section, we follow the development of [14]. We take Ω = X × Y , with X ⊂ Rn1 and

Y ⊂ Rn2 bounded open domains.

Definition 1.2.5. A (local) FIO is a linear operator A : C∞0 (Y ) → C∞(X) defined

by the oscillatory integral

Au(x) =

∫∫
eiϕ(x,y,θ)a(x, y, θ)u(y) dy dθ. (1.44)

Here a(x, y, θ) ∈ Sm−N2 +
n1+n2

4 (Γ) is a local symbol and ϕ(x, y, θ) ∈ C∞(Γ) is a non-

degenerate phase function.
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Pseudodifferential operators are examples of (global) FIO with the standard phase

function ϕ(x, y, θ) = (x− y) · θ, in which m− n
2

+ 2n
4

= m, but there are many other

examples. While defining local FIO via phase functions is convenient, the phase

function is not fundamental to the definition and only serves to parameterize a certain

conic, Lagrangian submanifold of T ∗(X × Y ) \ 0, which is the wavefront set of the

FIO’s Schwartz kernel. Here, we will consider T ∗(X × Y ) \ 0 to have the canonical

symplectic form (1.5) given by

ω =

n1∑
k=1

dxk ∧ dξk +

n2∑
`=1

dy` ∧ dη`. (1.45)

Definition 1.2.6. Let A be an FIO defined by amplitude a and phase function ϕ.

Then the characteristic manifold is the submanifold of X × Y × (RN \ 0) defined by

Cϕ = {(x, y, θ) : dθϕ(x, y, θ) = 0}. (1.46)

The nondegeneracy assumptions on ϕ imply that the map

T (x, y, θ) = (x, dxϕ(x, y, θ), y, dyϕ(x, y, θ)) ∈ T ∗(X × Y ) \ 0. (1.47)

is an immersion from Cϕ to T ∗(X × Y ) \ 0; its image is the conic Lagrangian sub-

manifold Λϕ associated to the phase function ϕ. There is another submanifold of

T ∗(X × Y ) \ 0,

Λ′ϕ = {(x, ξ, y, η) : (x, ξ, y,−η) ∈ Λϕ}, (1.48)

which is called the canonical relation of A.

If A is a pseudodifferential operator, then X = Y = Rn and the characteristic

submanifold is {(x, y, ξ) : x = y}. The corresponding Lagrangian submanifold is

given by

ΛΨDO = {(x, ξ, y, η) : (x, ξ, x,−ξ)}, (1.49)

which is sometimes referred to as the “twisted diagonal” of T ∗R2n \ 0. It is clear that

this is a Lagrangian submanifold with respect to ω. The canonical relation is the

(untwisted) diagonal of T ∗R2n \ 0.
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The following important lemma shows how the canonical relation encodes all the

relevant microlocal information carried by the corresponding Fourier integral opera-

tor. This generalizes the observation made earlier that pseudodifferential operators

do not decrease the wavefront set of the distributions they act upon. We see that

this is a consequence of the fact that all pseudodifferential operators have canonical

relation equal to the diagonal of T ∗R2n \ 0.

Lemma 1.2.8. Let u ∈ E ′(Y ) and A a Fourier integral operator with canonical

relation Λ′ϕ, whose phase function and amplitude are defined on Γ. Then

WF(Au) ⊂ Λ′ϕ ◦WF(u) (1.50)

where the action of the canonical relation on the wavefront set is the usual image of

a set under a relation, that is,

Λ′ϕ ◦WF(u) =
{

(x, ξ) : ∃(y, η) ∈ T ∗Y \ 0, (x, ξ, y, η) ∈ Λ′ϕ
}
. (1.51)

Note that A is smoothing on the subspace of distributions

{u ∈ E ′(Y ) : WF(u) ∩ supp(a) = ∅}, (1.52)

where a is the amplitude of A.

FIO of graph type

It is often the case that the forward operators of applied linear inverse problems

may be expressed in terms of FIOs, and this is the case with the three particular

applications we will consider. If the forward operator A is an FIO, then it is common

to attempt a reconstruction of f ∈ E ′(Y ) from knowledge of Af by applying the

adjoint to the latter, A∗Af . In this situation, we refer to N = A∗A as the normal

operator of A, and in some cases the normal operator is invertible, which yields an

inverse (A∗A)−1A∗ for A.

A particularly well-behaved class of FIOs, which we will encounter in application

to synthetic aperture radar, are FIOs of graph type.
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Definition 1.2.7. A local FIO A : E ′(Y ) → D′(X) is said to be of graph type when

the associated Lagrangian submanifold is the graph of a bijective symplectomorphism

from T ∗(Y ) \ 0 to T ∗(X) \ 0.

We will show that if the amplitude of A is nonvanishing, the normal operator of A

is an elliptic pseudodifferential operator, which may be inverted up to smoothing error

by a parametrix as constructed in Lemma 1.2.5. First we will present a condition

under which a given FIO may be microlocalized into an FIO of graph type. Recall

Λ ⊂ T ∗(X × Y ) \ 0. There exist two canonical vector bundle projections

πX : T ∗(X × Y ) \ 0→ T ∗X \ 0, πY : T ∗(X × Y ) \ 0→ T ∗Y \ 0. (1.53)

In general the image of Λ under these projections may be quite singular. However,

when one can microlocalize away from these singularities, one can obtain a restricted

FIO that agrees with A in a small conic neighborhood but that is also of graph type.

Lemma 1.2.9. Let A be an FIO with respect to the Lagrangian submanifold Λ, and

fix two closed, conic subsets F1 ⊂ T ∗Y \ 0 and F2 ⊂ T ∗X \ 0. Define the restriction

Λ̃′ = {(x, ξ, y, η) ∈ Λ′ : (x, ξ) ∈ intF1, (y, η) ∈ intF2}. (1.54)

Then there exists an FIO Ã such that for all u ∈ E ′(Y ) with WF(u) ⊂ F1, (A− Ã)u

is microlocally smooth on F2.

If it is also the case that the restrictions of the canonical projections to Λ̃′ are both

bijective diffeomorphisms, then Ã is of graph type.

Proof. Assume (Λ′ ◦ F1) ∩ F2 6= ∅; otherwise, the constructed Ã is smoothing and

satisfies the lemma trivially. We define two cut-off functions χ1 ∈ C∞0 (T ∗Y \ 0) and

χ2 ∈ C∞0 (T ∗X \ 0), both homogeneous of degree zero. We require that χj(Fj) = 1,

and that suppχj ⊂ Γj, where Γj is a small conic neighborhood of Fj. We see that,

Op(χj) ∈ OPS0(Γj), j = 1, 2. (1.55)

Define

Ã = Op(χ2) ◦ A ◦Op(χ1). (1.56)
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Then by linearity we have

A− Ã = Op(1− χ2) ◦ A ◦Op(1− χ1)

+ Op(χ2) ◦ A ◦Op(1− χ1)

+ Op(1− χ2) ◦ A ◦Op(χ1).

If u ∈ E ′(Y ) has WF(u) ⊂ F1, then Op(1 − χ1)u is smooth. Therefore the first and

two terms above are smoothing on this subspace of distributions. By Lemma 1.2.8,

WF(A ◦Op(χ1)u) ⊂ Λ̃′ ◦ F1. (1.57)

On the other hand, Op(1−χ2) is smoothing on the subspace of compactly supported

distributions with wavefront set contained in F2. Therefore,

WF((A− Ã)u) ∩ F2 = ∅, (1.58)

for all u ∈ E ′(Y ) with WF(u) ⊂ F1.

If the restriction of both canonical projections are bijective diffeomorphisms, then

the map ρ = πX |Λ̃ ◦ πY |
−1

Λ̃
is a diffeomorphism that has Λ̃ as its graph. Since Λ̃ is

both a Lagrangian submanifold and the graph of a bijective diffeomorphism, ρ is a

symplectomorphism.

We will refer to Ã as constructed in the previous lemma as the microlocalization

of A to (F1 × F2) ∩ Λ′.

There is also a notion of ellipticity for such operators of graph type [33, Definition

25.3.4], but for simplicity we avoid the symbol calculus of Fourier integral operators

and instead require the following stronger definition.

Definition 1.2.8. Let A be an FIO of graph type. We say A is (strongly) elliptic if

the amplitude a(x, y, θ) ∈ Sm(Γ) does not vanish on the interior of its support.

In this case it follows from [32, Theorem 18.1.24] that the L2-adjoint A∗ has

canonical relation Λ′−1, and A∗A is an elliptic pseudodifferential operator. In the

sequel this result will be used in conjunction with the previous lemma to construct

microlocal parametrices of the forward operator A.
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1.2.4 Analytic microlocal analysis

Following the general themes of microlocal analysis, one can also develop a calculus

of pseudodifferential operators in the (real) analytic category. The tools of this field

tend to be more restrictive and delicate than the smooth microlocal analysis that we

have considered so far. This is due in part to the non-existence of analytic cut-off

functions, and the difficulties involved with microlocalization while preserving some

semblance of analyticity. There is also not, as of yet, a calculus of analytic Fourier

integral operators, which further complicates matters. Here we present an abbreviated

account of the basic theory, following for the most part Sjöstrand [50].

In exchange for its complexities, the analytic calculus can sometimes be more

powerful than its smooth counterpart. We will only refer to it in our work on the

generalized Radon transform, and so we make some anticipatory remarks here. We

consider a Fourier integral operator R which, under some assumptions, is elliptic and

of graph type. Therefore R∗R is an elliptic pseudodifferential operator, which was

shown in this case by Guillemin and Sternberg [21]. However, this analysis yields

only a parametrix for R; one cannot show that R is injective from this alone.

Instead of studying the normal operator, we consider directly the oscillatory in-

tegral defining R. A complex stationary phase lemma due to Sjöstrand can be used

to show a relationship between the microlocal analyticity of Rf and that of f , su-

perficially similar in form to Lemma 1.2.8. One weak application of this microlocal

regularity result is that if f ∈ E ′(Ω) and Rf = 0, then f is analytic. But f has com-

pact support, so in fact f = 0, and R is therefore injective (and not merely invertible

up to smoothing error).

The first obstacle to be overcome in developing an analytic microlocal calculus is

the problem, alluded to above, that there are no nontrivial, compactly supported, an-

alytic cut-off functions. As a partial workaround, we use the following quasi-analytic

cut-off functions, which are serviceable for the task at hand.
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Lemma 1.2.10 ([58, Lemma V.1.1]). Let U ⊂ Rn be an open set, and fix a small

parameter d > 0. Then there exists a constant C > 0 and a sequence of smooth

functions χN(Rn) such that

1. 0 ≤ χN ≤ 1, χN |U = 1, and vanishing on {x : dist(x, U) > d}.

2. The following estimate holds for every multi-index α with |α| ≤ N :

|∂αχN | ≤ (CN/d)|α|. (1.59)

We now define the analytic symbol classes that we will use in the sequel. These

are somewhat similar to the classical symbols defined previously, except that we will

also allow these symbols to depend on a large parameter λ� 1. In the literature of

semiclassical analysis and mathematical physics, it is common to take ~ = λ−1 to be a

small parameter instead, but we follow Sjöstrand’s convention here. Let Ω ⊂ Cn to be

an open domain. Let U ⊂ Cn be a small neighborhood of zero, and take Γ = Ω× U .

Definition 1.2.9 (Sjöstrand). A (local) analytic symbol is a smooth function a(x, ξ, λ)

such that for all λ� 1 the function a(·, ·, λ) is holomorphic on Γ and for all K b Γ

compact and all ε > 0 there exists C > 0 with

sup
(x,ξ)∈K

|a(x, ξ, λ)| ≤ Ceελ. (1.60)

We define the symbol class Smλ (Γ) to be the space of analytic symbols a(x, ξ, λ)

defined on Γ such that for K b Γ compact there exists C > 0 with

sup
(x,ξ)∈K

|a(x, ξ, λ)| ≤ Cλm. (1.61)

By analogy with classical symbols, we may define the principal symbol of an

analytic symbol a ∈ Smλ (Γ) to be any representative of the equivalence class of a

in Smλ (Γ)/Sm−1
λ (Γ). However, contrary to the case of classical symbols, an analytic

symbol is elliptic when a does not vanish anywhere on Γ; not merely outside a compact

set.
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Analytic wavefront set

Historically, there were many definitions of the analytic wavefront set of a distri-

bution, including some due to Sato [49], Hörmander [29], and Bros-Iagolnitzer [7].

All of these definitions were shown to be equivalent on distributions by Bony [6]. We

will use a characterization in terms of oscillating integrals with complex phase, due

to Bros-Iagolnitzer.

Let Ω ⊂ Rn be a real domain. We will work microlocally, on a small neighborhood

Γ of a fixed covector (x0, ξ0) ∈ T ∗Ω \ 0. Define

Γ̃ = {(x, y, ξ) : (x, ξ) ∈ Γ, (y, ξ) ∈ Γ}. (1.62)

Definition 1.2.10 ([50, Definition 6.1]). Let ϕ(x, y, ξ) be an analytic function defined

on Γ̃ satisfying the following:

1. For all (x, ξ) ∈ Γ, ϕ(x, x, ξ) = 0 and dxϕ(x, x, ξ) = ξ.

2. There exists C > 0 such that =ϕ(x, y, ξ) ≥ C|x− y|2 on Γ̃.

Let a(x, y, ξ, λ) be an elliptic, analytic symbol defined on Γ̃.

Define for u ∈ D′(Ω)

Au(x, ξ) =

∫
eiλϕ(x,y,ξ)a(x, y, ξ, λ)χ(y)u(y) dy, (1.63)

in the sense of oscillating integrals. Here χ ∈ C∞0 (Ω) is a cut-off function, χ(x0) = 1.

Then we say u is microlocally analytic near (x0, ξ0) ∈ Γ when

Au(x, ξ) = O(e−λ/C) as λ→∞ (1.64)

for some constant C > 0, uniformly for (x, ξ) in a neighborhood (x0, ξ0).

As before, define WFA(u) to be the closed conic subset of the cotangent bundle

on which u is not microlocally analytic. This definition does not depend on the

particular choice of (ϕ, a) (by [50, Proposition 6.2]), which we will exploit in our

study of the generalized Radon transform. As with the smooth wavefront set, the

analytic wavefront set is invariant under change of coordinates, but the proof of this

is quite involved.
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Complex stationary phase lemma

It must be admitted that Definition 1.2.10 is not the most concise characterization

of the analytic wavefront set of a distribution. However, it forms the basis of a

technique for showing the microlocal regularity of some oscillating integrals.

The idea is to augment the phase function with an additional 2n complex vari-

ables in such a way that the resulting augmented phase function is stationary along

a submanifold of complex codimension n. One then applies a complex stationary

phase lemma to show that contributions away from the stationary submanifold are of

exponential decay in λ. Near the stationary submanifold, the phase function satisfies

the conditions in the definition of the analytic wavefront set. This technique is used

more explicitly in Theorem 4.3.1.

The following lemma is a variant of [50, Theorem 2.8] with a parameter, as men-

tioned but not proved in [50, Remark 2.10].

Lemma 1.2.11. Let W ⊂ Ck, U ⊂ Cn be two neighborhoods of zero, and let ϕ(w, z)

be a holomorphic function on W × U , with z = 0 an isolated, nondegenerate critical

point of the function z 7→ ϕ(0, z). Let V ⊂ U be a proper neighborhood of zero,

with VR its real part, and suppose <ϕ(0, ·) ≥ 0 on VR, with strict inequality on the

boundary. After perhaps shrinking W , we have

eλϕ(w,z(w))

∫
VR

e−λϕ(w,x)u(x) dx =
∑

0≤k≤λ/C

Ak(z(w)) +R(w, λ), (1.65)

where each term is of the form

Ak(z) =
(2π)n/2

k!
λ−

n
2
−k(∆̃W )k

(
u

IW

)
(z(w)), (1.66)

and ∆̃W , IW and z(w) all depend holomorphically on w. The remainder term R(w, λ)

is uniformly exponentially decaying as λ→∞.

Proof. As a first step, notice that z(w) may be defined as the solution z(w) of

dzϕ(w, z) = 0 (1.67)
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for w in a neighborhood of zero via the implicit mapping theorem. It follows that

ϕ(w, z(w)) is a non-degenerate critical point with respect to the second variable for

all w ∈ W , perhaps after shrinking W .

Our goal is to reduce (1.65) to the simpler theorem [50, Theorem 2.8], which yields

the desired estimate, but is not uniform for w ∈ W . It remains to show that ∆̃W

and IW depend holomorphically on w and that the error is uniformly, exponentially

decaying. In the context of this lemma, ∆̃ is the Laplacian in Morse coordinates z̃

which reduce the phase function to a quadratic form, and

IW = ± det
∂z̃

∂z
(1.68)

is the Jacobian of the Morse coordinates. The sign is chosen so that

IW (0, 0) = (detϕ(0, 0))1/2 (1.69)

is the principal branch of the square root.

To show ∆̃W is holomorphic in w, we use a parameterized, holomorphic variant of

the Morse lemma; see [50, Lemma 2.7]. We have, uniformly for w ∈ W , the expansion

ϕ(w, z) =
∂2ϕ(w, z(w))

∂zj∂zk
(z − z(w))j(z − z(w))k +O(|z − z(w)|3). (1.70)

After perhaps shrinking W again, we can fix the signature of the Hessian to be

constant. There is a preliminary change of coordinates, which we refer to again as z,

such that

ϕ(w, z) =
1

2
|z − z(w)|2 +O(|z − z(w)|3). (1.71)

We now prove the parameterized version of the Morse lemma needed to reduce

each ϕ(w, ·) to a quadratic form in new coordinates z̃. By Taylor’s theorem,

ϕ(w, z) =

∫ 1

0

(1− t) ∂
2

∂t2
[ϕ(w, tz + (1− t)(z − z(w)))] dt

=
1

2
(z − z(w))tQ(w, z)(z − z(w))

where

Q(w, z) = 2

∫ 1

0

(1− t) ∂2ϕ

∂zj∂zk
(w, tz + (1− t)(z − z(w))) dt. (1.72)
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and

Q(0, 0) = I. (1.73)

After shrinking W , we have that Q(w, z) is the identity plus a small perturbation

on W × U . We may then define A(w, z) = Q(w, z)1/2, and z̃ = A(w, z)z. The new

coordinates z̃(w, z) depend holomorphically on (w, z), and so ∆̃W depends holomor-

phically on w. The Jacobian IW is well-defined, as we can choose the same branch of

the square root for each w to define

IW (w, z(w)) = (det ∂zj∂zkϕ(w, z(w)))1/2. (1.74)

The error depends on <u|∂VR > 0, and is therefore also uniform in w. This

concludes the modification of [50, Theorem 2.8] to accept a complex parameter.
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2. THERMOACOUSTIC TOMOGRAPHY

2.1 Historical notes

In this chapter we study an inverse problem related to the multi-wave medical

imaging technique thermoacoustic tomography (TAT). In thermoacoustic tomogra-

phy, the patient is illuminated by weak microwaves, which slightly penetrate the

body and heat it. The heating of the interior is not uniform, as various tissues absorb

microwaves at varying rates. Once heated, the tissue vibrates via the thermoacous-

tic effect, which generates ultrasound waves. While the body is mostly opaque to

microwaves, it is mostly transparent to ultrasound. These waves then propagate

throughout the body, and those that exit are recorded at the boundary of the body,

using ultrasound transducers.

Properly speaking, there are two inverse problems that must be solved to recover

the microwave absorption coefficient in the interior of the body. First, one must

recover the ultrasound source from the transducer data. Next, one must recover

the absorption coefficient from the ultrasound data. The second inverse problem is

referred to as quantitative thermoacoustic tomography (QTAT) and is not considered

here, as it is an elliptic inverse problem [2]. The first problem is also shared with

another multi-wave imaging method, called photoacoustic tomography (PAT), which

uses near-infrared light instead of microwaves, and the photoacoustic effect instead of

the thermoacoustic effect. However, the problem of recovering the ultrasound source

is mathematically the same.

Classically, this inverse problem belongs to the field of integral geometry. If one

assumes that the sound speed of the human body is nearly constant and neglects

attenuation effects, the waves generated by delta-like ultrasound sources are spherical.

The heating process occurs on a much shorter time scale than ultrasound propagation,
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and so approximating the source as a very short pulse is acceptable. In this case the

transducer data may be interpreted as the circular Radon transform of the source,

with the center of each circle located at the boundary [22]. There were also solutions

to this problem via eigenfunction expansions [34, 38].

However, the human body does not have constant sound speed; it varies from the

speed of sound in water by up to 20%. In this case, ultrasound waves are no longer

spherical and may exhibit complicated behavior, including caustics. The method of

time reversal is capable of solving the problem in this case. The original motivation for

time reversal was the symmetry of the wave equation under the change of coordinates

t 7→ −t. The method assumes formally that measurements are made for all time,

obtaining Dirichlet data on the boundary. Assuming some amount of energy decay as

t→∞, one can solve a mixed boundary problem for the wave equation, backward in

time, and use the resulting solution at t = 0 as an approximation to the ultrasound

source. To avoid having to take measurements for large time, and to avoid cutting

off the data, a modified method of time reversal was invented that replaced imposing

zero Cauchy data at t = ∞ with imposing fictious Cauchy data at t = T < ∞,

compatible with the measurement data [51, 52]. This method has also been studied

in the context of the elastic wave equation [57].

My contribution to this area is an extension of the modified time reversal method

to a model with some attenuation, which is known to cause artifacts in photoacoustic

tomography [11, 13]. The problem of attenuation in heterogenous media is compli-

cated, and there are many competing models of wave attenuation – we refer the reader

to [36] for an overview. A kind of regularized time reversal with complete data for

large times has been studied for some of these as homogeneous models [1, 35].

The damped wave equation has the advantage of being the simplest linear model,

taking attenuation into account as a lower order perturbation of the wave equation.

By contrast, many of the proposed models are parabolic, with the effect of attenuation

appearing in the higher order terms. It is an oddity that what a physicist might
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consider a “lower order term” in a model manifests as a PDE with “higher order

terms” from the perspective of microlocal analysis.

On the other hand, the damped wave equation does not remain invariant under

time reversal, which complicates matters considerably. The global energy of the

damped wave equation is non-increasing, and at worst is exponentially decaying.

Therefore, when we attempt to solve the wave equation backward, the energy of the

solution grows at most exponentially. If we were to attempt an unmodified time

reversal in this regime, any data cut-off for large time would induce an exponentially

large error in the reconstruction. However, as we attempt only a modified time

reversal and measure data up to a fixed time T < ∞, the energy growth is at worst

O(eT ||a||∞), which is bounded.

Within the inverse problem at hand we consider two separate problems. First,

there is the problem of recovering the ultrasound source given complete data for a

sufficiently long time (and we will make this assumption clearer in the sequel). Second,

there is the same problem, but with partial data given on a subset of the boundary.

For the first problem, we show uniqueness, stability, and – for small attenuation – a

Neumann-series reconstruction algorithm. For the second problem, we prove a slightly

weaker estimate that ensures the stable recovery of singularities.

2.1.1 Model assumptions

We assume the region of interest is contained in the interior of a bounded, strictly

convex, smooth region Ω ⊂ Rn. The function f ∈ H1
0 (Ω) will model the ultrasound

source distribution within the region of interest. We assume that the support of f

is at least some small distance away from the boundary of Ω, so that the solution of

(2.1) is zero on the boundary up to some time tmin > 0.

The damped wave equation we introduce in the next section depends on two pa-

rameters, c(x) and a(x). The speed of sound c(x) is assumed to be a smooth function,

0 < cmin ≤ c(x) ≤ cmax < ∞. We also assume that c(x) = 1 in a neighborhood of
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Rn \ Ω. The attenuation coefficient a(x) is assumed to be a smooth, non-negative

function, supported inside Ω. We assume both are known a priori, perhaps via an

alternative imaging technique. We note that these model assumptions are consistent

with the practice of immersing the patient in either water or another acoustically

similar homogeneous medium, which serves as a transition between the boundary of

the patient’s body and the transducer array.

2.2 Damped wave equation

In this section, we will use the damped wave equation as a model for ultrasound

propagation. In accordance with the modelling assumptions specific to thermoacous-

tic and photoacoustic tomography, we are interested in solutions of the system (∂2
t + a∂t − c2∆)u = f(x)δ′(t) in Rn+1,

u|t<0 = 0,
(2.1)

in the sense of distributions. For brevity in the sequel we write �a for the operator

on the left-hand side of (2.1), so that �0 is the usual wave equation with respect to

the metric c−2(x) dx2.

For concreteness we will work instead with a Cauchy problem equivalent to (2.1)

when the ultrasound source f(x) is a priori in HD(Ω). Recall HD(Ω) is the completion

of C∞0 (Ω) with respect to the norm

||f ||HD =

(∫
Ω

|∇f |2 dx
)
, (2.2)

and is (by Poincaré’s lemma) equivalent to H1
0 (Ω).

Lemma 2.2.1. Assume f ∈ HD(Ω). Then the solution of (2.1) agrees with that of

the Cauchy problem 
�au = 0 in (0,∞)× Rn,

u|t=0 = f,

∂tu|t=0 = −af,

(2.3)

when the latter is extended by zero to a distribution on Rn+1.
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Proof. To show this, we begin by taking a smooth solution u ∈ C∞(Rn+1) that

satisfies (2.3) everywhere in Rn+1. Take H(t) to be the Heaviside function. Then

H(t)u(t, x) is a distribution that is supported on {t ≥ 0}. By the calculus of distri-

butions, we see that

�a(Hu) = uδ′ + 2(∂tu)δ + auδ, (2.4)

where δ(t) is the Dirac delta distribution and δ′(t) is its weak derivative.

Let v ∈ C∞0 (Rn+1) be a test function. Then we may calculate

〈�a(Hu), v〉 =

∫
Rn

[−(∂tu)v − u(∂tv) + 2(∂tu)v + auv]|t=0 dx

= −
∫
Rn
f∂tv|t=0 dx

= 〈fδ′, v〉 .

By density this extends to f ∈ HD(Ω), as the Cauchy problem (2.3) is well-posed for

Cauchy data in HD(Ω)× L2(Ω).

Measurements are modelled by the trace of the solution u to the lateral boundary

(0, T )× ∂Ω. This defines the foward operator

Λf = u|(0,T )×∂Ω. (2.5)

The inverse problem of thermoacoustic tomography that we are concerned with in this

section is the unique and stable recovery of the ultrasound source f from knowledge

of Λf . We first study the uniqueness of the problem for complete data, finding

some geometric conditions sufficient for uniqueness. In the case of partial data (e.g.,

Λf = u|(0,T )×Γ, with Γ ⊂ ∂Ω open), uniqueness remains an open problem. Next we

introduce the method of modified time reversal, developed for the undamped inverse

problem in [51, 52]. We show that this recovery method is stable with either complete

data or some kinds of partial data, using a geometric optics construction.

One of the advantages of modified time reversal in the undamped case is that it

also serves as the basis of a reconstruction method, via Neumann series, that may be
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implemented numerically [45]. We show by perturbation that this Neumann series

converges in this model, provided the attenuation is small.

We state an a priori estimate for solutions of the damped wave equation with

mixed boundary data, based on similar estimates for non-homogeneous second-order

hyperbolic problems due to [39].

Proposition 2.2.1 ([25, Proposition 1]). Let Ω be a smooth domain, and u a solution

of 

�au = F in (0, T )× Ω,

u|t=0 = f,

∂tu|t=0 = g,

u|(0,T )×∂Ω = h,

(2.6)

subject to the compatibility condition h|t=0 = f |∂Ω. Then there exists a constant C > 0

such that

sup
t∈[0,T ]

||(u, ∂tu)||H ≤ CeT ||a||∞
{
||F ||L1(0,T ;L2) + ||f ||H1 + ||g||L2 + ||h||H1

}
. (2.7)

The proof is contained in Section 5 of [25].

2.3 Uniqueness

As mentioned earlier, we will show in this section that the inverse problem of

recovering f ∈ H1
0 (Ω) from Λf , subject to the model assumptions, has a unique solu-

tion, provided the measurement duration T is sufficiently large. Recall in particular

that we have assumed that the distance from the support of f to the boundary is

positive, and that the region of interest is strictly convex. The main tool is a special

case of a unique continuation theorem due to Tataru [55], which we state below.

Lemma 2.3.1 ([51, Theorem 4]). Let u be the solution of the Cauchy problem (2.3),

and assume that there exists a neighborhood U of some x0 ∈ Rn such that u = 0 on

(0, T )× U , with T > 0.
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Then u = 0 on the following set, which is the intersection of a forward light cone

with vertex at (0, x0) and a backward light cone with vertex at (T, x0):{
(t, x) ∈ Rn+1 : d(x, x0) <

T

2
−
∣∣∣∣T2 − t

∣∣∣∣} .
This allows us to prove uniqueness for all measurement durations T > 2T0(Ω),

where T0 is the characteristic uniqueness time for the corresponding undamped inverse

problem on the same domain, namely

T0(Ω) = sup
x∈Ω

d(x, ∂Ω), (2.8)

where d(x, ∂Ω) is the infimum of the lengths (with respect to the metric) of all curves

connecting x to the boundary.

Theorem 2.3.1 ([25, Theorem 2]). In addition to the model assumptions, let Λf = 0

and 2T0(Ω) < T <∞. Then f = 0.

Proof. Let u be the solution of the Cauchy problem (2.3) with data (f,−af). Then

u is also a solution of the damped wave operator on (0, T ) × (Rn \ Ω), with Cauchy

data (0, 0) at t = 0 and zero Dirichlet data on (0, T )× ∂Ω. There exists a sufficiently

large ball B ⊂ Rn such that u = 0 on (0, T )× ∂B by finite speed of propagation. We

may apply Proposition 2.2.1 to (0, T )× (B \ Ω) to conclude that u = 0 there.

For each x ∈ (B \ Ω), we may apply Lemma 2.3.1 to conclude that u = 0 in

the intersection of the forward light cone with vertex (0, x) and the backward light

cone with vertex (T, x). The union of all such regions, if T > 2T0(Ω), contains a

neighborhood of {T/2} × Ω. Using the a priori estimate again, we conclude that

u = 0 in [0, T/2]× Ω, and in particular f = 0.

It is also of interest to study the inverse problem with partial data on some Γ ⊂ ∂Ω,

as we do for stability below. However, in this case the question of uniqueness remains

open for any time T > 0. It is known for the undamped problem [51], but there

they use the fact that even extensions of solutions to the undamped wave equation

to t < 0 are also solutions of the undamped wave equation. This is not true of the
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damped wave equation; such extensions solve a PDE with discontinuous coefficients,

and Tataru’s theorem no longer applies.

2.4 Modified time reversal

For a candidate pseudo-inverse to the forward operator Λ, we consider the modified

time reversal method, which was successful in solving the undamped inverse problem

[51, 52, 45]. This technique consists of constructing a pseudo-inverse A to the forward

operator Λ by solving the wave equation “backward”, using fictious Cauchy data at

some time t = T that is compatible with the boundary data h = Λf . For the damped

wave equation, we consider the following auxillary PDE:

�av = 0 in (0, T )× Ω,

v|t=T = φ,

∂tv|t=T = 0,

v|(0,T )×∂Ω = h.

(2.9)

Here φ is the solution of the Laplace equation, ∆φ = 0 in Ω,

φ|∂Ω = h|t=T .
(2.10)

The main problem one expects with this choice of pseudo-inverse is that solutions of

the backward damped wave equation may grow in energy exponentially with respect

to time. This would pose a problem in usual time reversal techniques, where one

formally takes T = ∞. However, a modified time reversal technique requires only

finite time to obtain unique and stable reconstructions, and so, as we see below, the

increase in energy is bounded.

If h = Λf , we define the pseudo-inverse in terms of the corresponding solution to

(2.9):

Ah = v|t=0. (2.11)
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It is this pseudo-inverse that we will study in the sequel. The error between the

modified backward problem and the forward problem is controlled by the solution

w = u− v of the following mixed boundary problem:

�aw = 0 in (0, T )× Ω,

w|t=T = u|t=T − φ,

∂w|t=T = ∂tu|t=T ,

w|(0,T )×∂Ω = 0.

(2.12)

2.5 Stability

The stability of the inverse problem depends on a different characteristic mea-

surement time, T1(Ω). Intuitively, the problem should be stable when every covector

of WF(f) can be recovered from Λf in a stable manner. By Theorem 1.2.1, the

wavefront set of f propagates along the geodesic flow in both forward and backward

directions, so that WF(u(t, ·)) = φt(WF(f))∪φ−t(WF(f)), where φt is the cogeodesic

flow.

Let (x, ξ) ∈ S∗Ω parameterize the space of geodesics starting from Ω with unit

speed. Recall γx,ξ(t) is the unique geodesic with γx,ξ(0) = x and γ̇x,ξ(0) = c(x)ξ,

which is a vector in the tangent space of x ∈ Ω of unit length. If γx,ξ is non-trapping,

then define the exit time

τx,ξ = sup
{
t ∈ (0,∞) : γx,ξ((0, t)) ⊂ Ω

}
. (2.13)

Otherwise, we take τx,ξ = ∞. In our model assumptions we assumed that the speed

of propagation c is equal to one in a neighborhood of ∂Ω and also in the exterior of

Ω. Further, Ω is strictly convex. Therefore every geodesic starting inside Ω with a

finite exit time approaches the boundary non-tangentially and does not re-enter Ω.

We will first prove a simpler stability theorem for complete data, for measurement

times in the regime

sup
(x,ξ)∈S∗Ω

τx,ξ < T <∞. (2.14)
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However, this is strictly larger than the characteristic stability time,

T1(Ω) = sup
(x,ξ)∈S∗Ω

min{τx,ξ, τx,−ξ}. (2.15)

We will show that T1(Ω) is sufficient for stability in the proof of stability with partial

data.

2.5.1 Complete data

If we have both complete data and a non-trapping metric, stability of the pseudo-

inverse A (defined by (2.11)) almost follows directly from propagation of singularities

(Theorem 1.2.1).

Theorem 2.5.1 ([25, Theorem 3]). In addition to the model assumptions, assume

T ′ = sup
(x,ξ)∈S∗Ω

τx,ξ < T <∞, (2.16)

i.e., the metric is non-trapping. Let χ ∈ C∞((0,∞)× ∂Ω) be a cut-off function equal

to one on [0, T ′]× ∂Ω and zero in a neighborhood of {T} × ∂Ω. Then,

1. AΛ : HD(Ω)→ HD(Ω) is Fredholm.

2. AχΛ = I +R, where R is smoothing.

3. There exists C > 0 such that

||f ||HD ≤ C||Λf ||H1 . (2.17)

Proof. Define K = I−AΛ as an operator HD(Ω)→ HD(Ω). To show AΛ is Fredholm,

we show K is compact. Let u be the solution of the forward problem (2.3). By Theo-

rem 1.2.1, WF(u(t, ·)) = φtWF(f), where φt is the cogeodesic flow on (Rn, c−2(x) dx2).

Therefore WF(u(T, ·)) does not lie over Ω.

Consider the operator

f 7→ (u|t=T − φ, ∂tu|t=T ) (2.18)
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which maps f to the Cauchy data of the PDE (2.12), describing the error w = u− v.

It is a continuous operator from HD(Ω) to H. By propagation of singularities, this

map is smoothing and therefore compact. The a priori estimate implies that the

operator

(u|t=T − φ, ∂tu|t=T ) 7→ w|t=0 (2.19)

is bounded as a map from H to HD(Ω). The composition of the two, i.e., K, is

therefore compact.

Now consider applying the pseudo-inverse A to cut-off measurement data h =

χΛf . In this case, define Rf = w|t=0. By the construction of the cut-off function,

the boundary data defining w via (2.12) is smooth and compatible to infinite order;

therefore R is smoothing, and AχΛ = I +R.

This implies an estimate of the form

||f ||HD ≤ ||AχΛf ||HD + ||Rf ||L2 . (2.20)

The pseudo-inverse is a bounded operator H1((0, T )× ∂Ω)→ HD(Ω), therefore there

exists C ′ > 0 such that

||f ||HD ≤ C ′ (||Λf ||H1) + ||Rf ||L2 . (2.21)

Recall the inverse problem with complete data is unique by Theorem 2.3.1, and the

fact that T ′ > T0(Ω). We apply [56, Proposition V.3.1] to conclude that for some

C > 0,

||f ||HD ≤ C||Λf ||H1 . (2.22)

Therefore the inverse problem with complete data is stable for T > T ′.

2.5.2 Partial data

In one respect the requirements of Theorem 2.5.1 are strictly stronger than what

one would expect from microlocal considerations. A covector (x0, ξ0) ∈WF(f) prop-

agates in both the forward and backward directions, but in order to stably recover
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(x0, ξ0), we need only recover only one of these propagating singularities as it exits

the lateral boundary. Therefore the characteristic stability time that one expects is

half the measurement time used in the proof of Theorem 2.5.1,

T1(Ω) = sup
(x,ξ)∈S∗Ω

min{τx,ξ, τx,−ξ}. (2.23)

In this section we consider measurements made only on an open subset Γ of the

boundary. Accordingly, we take a non-negative cut-off function χ ∈ ((0,∞) × ∂Ω),

supported on (0, T )× Γ and define

Λf = χ · u|(0,T )×∂Ω. (2.24)

To establish a criterion for the stable recovery of singularities, we must first de-

scribe those subregions of Ω that are visible from the measurement surface Γ.

Definition 2.5.1. Let K be an open subset of Ω. A covector (x, ξ) ∈ S∗K is visible

from Γ if either γx,ξ or γx,−ξ exits Ω nontangentially through Γ. Define τ ′x,ξ to be the

exit time of the geodesic exiting through Γ, or the minimum of the two in the case

that both exit through Γ, or ∞ if neither exits. Then the characteristic stability time

for the partial data inverse problem is

T1(K,Γ) = sup
(x,ξ)∈S∗K

τ ′x,ξ. (2.25)

If we have complete data, we write T1(Ω) = T1(Ω, ∂Ω). If every covector of S∗K

is visible from Γ, we say K is visible from Γ, and in this case T1(K,Γ) <∞.

Our goal in this section is to prove the following theorem:

Theorem 2.5.2 ([25, Theorem 4]). In addition to the model assumptions, assume

T1(K,Γ) < T < ∞ and supp f ⊂ K. Let χ ∈ C∞((0,∞) × ∂Ω) be a nonnegative

cut-off function with support [0, T1(K,Γ)]× Γ. Then,

1. AχΛ : HD(K)→ HD(Ω) is Fredholm.

2. AχΛ : HD(Ω) → HD(Ω) is a pseudodifferential operator of order zero whose

symbol is elliptic on T ∗K \ 0.
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3. There exists a constant C > 0 such that

||f ||HD ≤ C (||Λf ||H1 + ||f ||L2) . (2.26)

Proof. The first part is the same as Theorem 2.5.1.

For the second part, we use a geometric optics construction, detailed in Lemma

2.5.1 below. This yields a microlocal parametrix of (2.9) with boundary data given

by h = χΛ.

Finally, by elliptic regularity we have

||f ||HD ≤ C (||AχΛf ||HD + ||f ||L2) . (2.27)

Then we apply the boundedness of A as a continuous operator H1(Γ) → HD(Ω) to

obtain the estimate.

The geometric optics construction we use in the previous theorem is based on the

fact that the principal symbol of �a is hyperbolic, and factors as

σ2(�a) = (τ + c(x)|η|)(−τ + c(x)|η|). (2.28)

Indeed, this is the full symbol of the undamped wave equation.

We will use (y, η) as coordinates for T ∗Ω \ 0, and (t, x, τ, ξ) for coordinates on

T ∗((0,∞)× ∂Ω).

Lemma 2.5.1 ([25, Lemma 3 & 4]). The forward operator Λ is the sum of two Fourier

integral operators, Λ+ and Λ−, with canonical relations

{(t, x, τ, ξ; y, η) : t = τy,±η, x = γy,±η(t), τ = ∓|γ̇y,±η(t)|, ξ = π(γ̇y,±η(t))}. (2.29)

where π : T ∗xRn → T ∗x∂Ω is the tangential projection.

Further, AχΛ is a pseudodifferential operator of order zero with principal symbol

σ0(AχΛ)(y, η) =
1

2
[χ(τy,η, γy,η(τy,η)) + χ(τy,−η, γy,−η(τy,−η))] . (2.30)

If K is visible from Γ, then this symbol is elliptic on T ∗K \ 0.
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Proof. We will construct the two operators Λ± with local representations given by

two amplitudes A±(t, y, η) and two phase functions φ±(t, y, η). For each t > 0, the

representation will be a local Fourier integral operator, as in Definition 1.2.5. Each

amplitude will be given by an asymptotic series

A±(t, y, η) ∼
∑
j≥0

A±j (t, y, η) (2.31)

where each A±j is homogeneous of degree −j in η. After iteratively constructing each

A±j , we choose A± in accordance with Lemma 1.2.3, up to an amplitude of order −∞.

A lengthy calculation shows that

�au = (2π)−n
∑
σ=±

∫
eiφ

σ

[I2 + I1 + I0]f̂ dη. (2.32)

where

I2 = −Aσ((∂tφ
σ)2 − c2|∇yφ

σ|2),

I1 = i
[
2(∂tφ

σ)(∂tA
σ)− 2c2(∇yφ

σ) · (∇yA
σ) + Aσ�aφ

σ
]
,

I0 = �aA
σ,

is an expansion of the amplitude of �a(eiφ
+
A+ + eiφ

−
A−) by order of homogeneity in

the phase variable. Recall that the phase functions φ± will be homogeneous of degree

one in η.

We may impose the eikonal equations ∓∂tφ± = c|∇yφ
±|

φ±|t=0 = y · η
(2.33)

on each φ±, noting that they are homogeneous of degree one in η. We assume these

equations are solvable for t ∈ [0, T ], and remove this assumption later. By imposing

these conditions on the phase function, we may ensure that I2 vanishes.

The first two terms of I1 may be recognized as the transport operators

X± = 2(∂tφ
±)∂t − 2c2(∇yφ

±) · ∇y, (2.34)
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applied to A± respectively. To control I1 + I0, we recursively solve the system of

transport equations X±A±0 + A±0 �aφ
± = 0

X±A±j + A±j �aφ
± = −�aA±j−1, j ≥ 1,

(2.35)

together with suitable boundary conditions induced by the Cauchy data (f,−af)

given by the forward problem. These equations reduce to ordinary differential equa-

tions along the geodesics of (Rn, c−2 dx2), whenever the eikonal equations are solvable.

The forward problem requires that u|t=0 = f . When applied to the local repre-

sentation, we obtain

f(y) = (2π)−n
∫
eiy·ηf̂(η)[A+ + A−]|t=0 dη. (2.36)

Similarly, since ∂tu|t=0 = −af , we have∫
eiy·ηf̂(η)(−a(y)) dη =

∫
eiy·ηf̂(η)

[
ic|η|(−A+ + A−) + ∂t(A

+ + A−)
]
dη. (2.37)

These two relations yield the following system of boundary conditions for the coeffi-

cients of the amplitudes. 
A+

0 + A−0 = 1,

A+
1 + A−1 = 0,

A+
j + A−j = 0, j ≥ 2

(2.38)


A+

0 − A−0 = 0,

A+
1 − A−1 = −a− ∂t(A+

0 + A−0 ),

A+
j − A−j = −∂t(A+

j−1 + A−j−1), j ≥ 2

(2.39)

This system may be solved recursively with the transport equations above to obtain

each coefficient of each amplitude. In particular, A±0 (0, y, η) = 1
2
. This completes the

construction of u.

Restricted to the boundary, we obtain a global representation

Λ±f(t, x) = (2π)−n
∫
eiφ
±(t,x,η)A±(t, x, η)f̂(η) dη, (2.40)
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up to smoothing error. By Definition 1.2.6, we have that the characteristic submani-

fold of Λ± is

Cφ± = {(t, x, y, η) : y = ∂ηφ
±(t, x, η)}. (2.41)

It is a property of the eikonal equations that y = ∂ηφ
±(t, x, η) iff γy,±η(t) = x. This

yields the form of the canonical relations given in the lemma. This concludes the

construction of a parametrix for the forward operator.

We now proceed to construct a microlocal parametrix for the pseudo-inverse A, by

performing a similar geometric optics construction for the solution of the backward

problem, v. Fix a covector (t0, x0, τ0, ξ0) ∈ T ∗(t0,x0)((0, T ) × Γ). We will take ρ ∈

C∞0 (Rn+1) to be a cut-off function supported in a small neighborhood U of (t0, x0)

such that ρ(t0, x0) = 1. We will assume τ0 < 0, so that h = ρχΛ+f ; otherwise, take

h = ρχΛ−f in what follows, the construction is very similar. (Note that τ0 6= 0 by

the assumption that h is in the image of some Λ±.) With this boundary data, the

backward problem we are concerned with is,

�av = 0 in (0, T )× Ω,

v|t=T = 0,

∂tv|t=T = 0,

v|(0,T )×∂Ω = ρχΛ+f.

(2.42)

We take as an Ansatz for v the local representation

v(t, y) = (2π)−n
∫
eiψ(t,y,η)B(t, y, η)f̂(η) dη, (2.43)

which is similar to the forward problem. Recall Ah = v|t=0.

There is an ambiguity in determining which null bicharacterstic the projected

covector (t0, x0, τ0, ξ0) came from, as there are two (by strict convexity of ∂Ω) whose

projection onto T ∗(t0,x0)((0, T ) × Γ) is (τ0, ξ0); one pointing inward, and one pointing

outward, relative to ∂Ω. Let (y0, η0) be related to (t0, x0, τ0, ξ0) under the canonical

relation of Λ+. Then the null bicharacteristic connecting the two is pointing outward

at the boundary, and it is a small conic neighborhood of this null bicharactertistic

that we will work near in the sequel.
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As for the inward pointing bicharacteristic, those singularities near it propagate

along it, possibly reflecting off the boundary at most finitely many times until the

bicharacteristic passes over {t = T}. Here WF(v) is empty, and so v is smooth along

the entire broken geodesic that this broken bicharacteristic lies over.

We now begin constructing a microlocal parametrix for the backward problem

supported in a small neighborhood of the outward pointing null bicharacteristic. Our

boundary data is zero outside of U , where it is

v|U = (2π)−n
∫
eiφ

+

ρχA+f̂ dη. (2.44)

For v to be a parametrix, ψ must satisfy the eikonal equation and agree with φ+ when

restricted to U . This holds in particular if we set

−∂tψ = c(x)|∇xψ|, ψ|U = φ+|U . (2.45)

Under the assumption that the eikonal equation for φ+ is solvable for t ∈ [0, T ], this

equation is also solvable for the same duration. By the method of characteristics, it

agrees with φ+ on its domain of definition. In particular, ψ(0, y, η) = y · η.

Similarly, B can be expanded into an asymptotic series, whose coefficients satisfy

the same system of transport equations as A+. However, the boundary data is differ-

ent; on U , B = ρχA+. By the homogeneity of the first transport equation, we have

in particular that

B0(0, y0, η0) = ρ(t0, x0)χ(t0, x0)A+
0 (0, y0, η0) =

1

2
χ(τy0,η0 , γy0,η0(τy0,η0)). (2.46)

Restricting (2.43) to t = 0 yields a representation of AχΛ as a pseudodifferential

operator, with principal symbol B0(0, y, η).

So far we have assumed that the eikonal equation is solvable globally for t ∈ [0, T ].

In general, it is only solvable on some small interval t ∈ [0, t1]. To continue past

t = t1, we use the previous parametrix to obtain Cauchy data on this hyperplane,

and repeat the construction with a new pair of phase function φ±1 equal to y · η on

t = t1. These eikonal equations will be solvable on another interval, [t1, t2]. By
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compactness, the eikonal equations on Ω are always solvable for some small time

interval t ∈ [0, ε]. Therefore, after repeating this construction finitely many times (for

T <∞), one obtains a global parametrix on (0, T )×Ω. The backward parametrix is

then constructed similarly, on the same intervals.

Finally, note that both terms in σ0(AχΛ) are nonnegative. If K is visible from Γ,

then at least one term is positive. Therefore AχΛ is elliptic on T ∗K \ 0. Even if K is

not visible from Γ, AχΛ is still a pseudodifferential operator, and is also Fredholm.

2.6 Neumann series reconstruction

The microlocal analysis of the previous two sections has shown that modified

time reversal can be used to stably recover the visible singularities of the ultrasound

source with either complete or partial data. However, there is no requirement that

the smoothing errors that have accumulated in the analysis are small in either L2

norm or energy. The practicality of modified time reversal in this model remains

open. In this section we hope to bridge this gap by showing that for sufficiently small

attenuation coefficients, a Neumann series approximating f still converges.

Let K = AΛ − I be the error operator associated to the reconstruction given by

modified time reversal for the damped wave equation. If the norm of K as an operator

HD(Ω)→ HD(Ω) is strictly less than one, it follows that the Neumann series

f =
∞∑
m=0

KmAh (2.47)

converges in HD(Ω) sense, where h = Λf . Let K0 = A0Λ0 − I be the error operator

associated to the undamped case, as constructed in [51]. In this case it is known

that ||K0|| < 1 and the associated Neumann series is effective in recovering f from

Λf as was explored in [45]. To show that (2.47) converges for small attenuation,

we will treat K as a perturbation of K0 and use classical PDE estimates to control

||K−K0||. We will work under the assumption that we have complete data, and that

the measurement time T is large enough for all singularities to escape, as in Theorem

2.5.1.
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Recall Kf = w|t=0 where w is the solution of the damped wave equation with the

following mixed boundary conditions:

�aw = 0 in (0, T )× Ω,

w|t=T = u|t=T − φ,

w|t=T = ∂tu|t=T ,

w|[0,T ]×∂Ω = 0,

(2.48)

Here, u is the solution of the forward problem (2.3) and φ is the harmonic extension

of Λf(T, ·) to the interior of Ω. Similarly, K0f = w0|t=0, where w0 is the solution of

the following wave equation:

�0w0 = 0 in (0, T )× Ω,

w0|t=T = u0|t=T − φ0,

∂tw0|t=T = ∂tu0|t=T ,

w0|[0,T ]×∂Ω = 0,

(2.49)

where accordingly u0 is the solution of the forward problem with a = 0 and φ0 is the

harmonic extension of the corresponding measurement data at t = T .

To treat w as a small perturbation of w0, we require some estimates on the energy

decay of the damped wave equation. Intuitively speaking, the Dirichlet boundary

conditions in both mixed boundary problems preserves energy whether the equation

is solved backward or forward in time. However, as a solution of the damped wave

equation evolves forward in time, energy decays at most on the order of e||a||∞T .

Therefore, if one reverses the direction of time and solves the same equation backward

in time, energy grows at most exponentially at the same rate. This intuition is verified

by the subsequent lemma.

Define the energy of a solution on Ω as

EΩ(u, t) =
1

2

∫
Ω

|∇u(t, x)|2 + c−2|∂tu(t, x)|2 dx. (2.50)

The following is a quantitative bound on energy growth for solving the damped wave

equation backward.
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Lemma 2.6.1 ([25, Lemma 1]). Let w solve (2.48). Then, for 0 ≤ t ≤ T , we have

EΩ(w, t) ≤ e2(T−t)||a||∞EΩ(w, T ). (2.51)

Proof. Let W (t, x) = (w(t, x), ∂tw(t, x)). Then (2.48) reduces to the first-order sys-

tem

(∂t +Qa)W = 0, (2.52)

where

Qa =

 0 −I

−c2∆ a

 . (2.53)

By [48, Theorem X.48], Qa + ||a||∞ generates a continuous semigroup of contractions

on the energy space H. Therefore one can define

e−tQa = e−t(Qa+||a||∞I)et||a||∞I , (2.54)

and verify directly that this is the solution operator for the first-order system. There-

fore, for 0 ≤ t ≤ T ,

EΩ(w, t) ≤ ||e−(T−t)QaW (T )||2H ≤ e2T ||a||∞EΩ(w, T ). (2.55)

We will use this fact significantly in the future.

We now estimate ||K −K0|| using the previous energy estimate.

Lemma 2.6.2 ([25, Proposition 2]). Fix a0 > 0. Then there exists C > 0 such that

for all a with ||a||∞ < a0,

||K0f −Kf ||HD ≤ Ca0(1 + a2
0)1/2eTa0 ||f ||HD . (2.56)

Proof. We return to the system of PDEs definingK0 andK. Let w0, w be the solutions

of (2.49) and (2.48), with u0, u the corresponding solutions of the forward problem

and φ0, φ the corresponding harmonic extensions. Define w′ = w0 − w, u′ = u0 − u,

and φ′ = φ0 − φ.
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Then w′ satisfies the following PDE:

�0w
′ = a∂tw in (0, T )× Ω,

w′|t=T = u′|t=T − φ′,

∂tw
′|t=T = ∂tu

′|t=T ,

w′|[0,T ]×∂Ω = 0.

(2.57)

By the a priori estimate, we have

EΩ(w′, 0) ≤ C
[
||a∂tw||2L1(0,T ;L2(Ω)) + EΩ(u′, T )

]
. (2.58)

We begin by estimating the first term.

||a∂tw||2L1(0,T ;L2(Ω)) =

(∫ T

0

∣∣∣∣∫
Ω

|a∂tw|2 dx
∣∣∣∣1/2 dt

)2

By Jensen’s inequality, we have

≤
∫ T

0

∫
Ω

|a∂tw|2 dx dt,

≤ ||a||2∞
∫ T

0

||∂tw(t, ·)||2L2 dt.

The integrand is uniformly bounded, for by Lemma 2.6.2,

||∂tw(t, ·)||2L2 ≤ C||W (0)||2H

≤ Ce2T ||a||∞||W (T )||2H.

As φ is harmonic, we can estimate the energy norm of W (T ) by that of u(0).

||W (T )||2H = ||(u|t=T − φ, ∂tu|t=T )||2H ≤ EΩ(u, T ) ≤ EΩ(u, 0). (2.59)

Altogether, we have so far that

||a∂tw||2L1(0,T ;L2(Ω)) ≤ Ce2T ||a||∞EΩ(u, 0). (2.60)

By Poincaré’s inequality, we may replace the energy norm of the Cauchy data by

C(1+||a||2∞)||f ||2HD . This yields an estimate for the first term of (2.58) of the following

type.

||a∂tw||L1(0,T ;L2(Ω)) ≤ Ca0(1 + a2
0)1/2eTa0||f ||HD . (2.61)
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Now we consider the second term, EΩ(u′, T ). We represent u′ as an integral via

Duhamel’s principle.

u′(t, x) =

∫ t

0

u(s, t, x) ds, (2.62)

where, for 0 ≤ s ≤ t 
�0u(s, t, x) = 0 in [s, t]× Rn,

u(s, s, x) = af,

∂tu(s, s, x) = a∂tu(s, x).

(2.63)

The wave equation preserves energy, so

EΩ(u(s, ·), t) ≤ EΩ(u(s, ·), s) ≤ ||a||2∞
[
||f ||2HD + EΩ(u, s)

]
. (2.64)

We can bound the second term by EΩ(u, 0), which yields an estimate of the form

EΩ(u′, T ) ≤
∫ T

0

EΩ(u(s, ·), T ) ds ≤ Ca2
0(1 + a2

0)e2Ta0 ||f ||2HD . (2.65)

Finally, recall w′(0, ·) = (K −K0)f . So we have shown,

||(K −K0)f ||HD ≤ Ca0(1 + a2
0)1/2eTa0||f ||HD , (2.66)

which was what we wanted.

This yields a condition under which the Neumann series given by the pseudo-

inverse A – defined via the damped wave equation – converges.

Theorem 2.6.1 ([25, Theorem 1]). Let T <∞ be large enough that all singularities

escape, as in Theorem 2.5.1. Then there exists an a0 > 0 such that for all a ∈ C∞0 (Ω)

with ||a||∞ < a0, the Neumann series

f =
∞∑
m=0

KmAh (2.67)

converges, with h = Λf .

Proof. By [51, Theorem 1], under these assumptions ||K0|| < 1. Then

||K|| = ||K −K0||+ ||K0|| < ||K0||+ Ca0(1 + a2
0)1/2eTa0 . (2.68)

We may choose a0 so that the right-hand side is strictly less than one, so that K is a

strict contraction.
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3. SYNTHETIC APERTURE RADAR

3.1 Historical notes

This chapter is devoted to an inverse problem occurring in synthetic aperture

radar (SAR). This is a radar imaging technique in which an airplane or satellite

travels along a known path, illuminating a region of the Earth or another planet with

an RF signal generated by an onboard antenna. There are many different kinds of

SAR adapted to different environmental conditions and different imaging needs, but

in general the goal is to recover the reflectivity coefficient of the ground from the

scattering of the incident electromagnetic wave. In the specific case we consider here,

we assume the scattered electromagnetic wave is received at the same antenna that

is generating the incident wave.

If one assumes the Earth is flat and the airplane flies at a constant altitude, this

problem reduces to the inversion of a circular Radon transform, much like the problem

we studied in connection with thermoacoustic tomography. However, we cannot in

general assume that the ground reflectivity function has compact support, so the

question of injectivity becomes problematic. Even if the flight path is a straight line,

there is a natural “left-right ambiguity” that obstructs uniqueness. In practice, this

problem is solved by illuminating only one side of the flight path.

The mathematical model of SAR that we consider is due to Nolan and Cheney

[42, 43]. For simplicity they study only one component of the electromagnetic field,

which satisfies the usual wave equation. Then the imaging operator can be described

under some assumptions as a Fourier integral operator. They consider curved flight

paths in [42], and describe a reconstruction algorithm for non-flat topography, noting

some kinds of artifacts that may occur in this case.
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It was shown in [53] that the circular Radon transform model of SAR with a curved

flight path still exhibits left-right ambiguity in a microlocal sense, using the notion

of “mirror points”, for which see Definition 3.3.1. In the circular Radon transform,

mirror points occur in isolated pairs, though they may be related in complicated

ways. In both the circular Radon transform and FIO models of SAR, there is always

a difficulty involved in imaging directly under the flight path, due to a folding type

singularity in the projections of the canonical relation.

Encouraged by the examples of artifacts caused by non-flat terrain in [42], I study

the FIO model of SAR with the Earth considered as a smooth surface in R3. After an

analysis of the canonical relation, I find that “mirror point sets” in this setting may

occur in families with both discrete and continuous components. Near each finite

set of isolated mirror point sets, one can construct an infinite dimensional family of

example ground reflectivity distributions that exhibit cancellation of singularities. I

also present an example, inspired by [42], of a continuous family of mirror points that

also can be made to cancel.

3.1.1 Model assmuptions

We assume the airplane’s flight path is modelled by a smooth, embedded curve

γ : [s1, s2] → R3. Over each part of the flight path, the waveform on the receiving

antenna is recorded for a certain time duration (t1, t2) ⊂ R. In the usual model one

takes the surface of the Earth to be flat, but in this case we consider it to be a smooth,

embedded surface Ψ given by a function ψ(u, v). We assume the two are separated

by some distance.

In dry air, the speed of electromagnetic propagation is reasonably approximated

by a constant, which we denote c0. When electromagnetic radiation hits the earth,

the speed of propagation changes. This model of SAR approximates this by taking

the speed of sound to be a singular perturbation of c0, supported on Ψ.

c−2
0 − c−2 = V (u, v)δ(ψ(u, v)− (x, y, z)). (3.1)
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Under some assumptions on the antenna geometry and a single-scattering approxi-

mation, [43] finds the forward operator is a Fourier integral operator given by

FV (s, t) =

∫
R×X

A(u, v, s, t, ω)e
−iω

(
t− 2

c0
|ψ(u,v)−γ(s)|

)
V (u, v) du dv dω. (3.2)

A is an amplitude of order two; it is zero outside of a certain “visible set”

X =

{
(u, v) : ∃s ∈ (s1, s2),

2

c0

|ψ(u, v)− γ(s)| ∈ (t1, t2)

}
. (3.3)

The measured data is a function over the parameter space

Y = {(s, t) : s ∈ (s1, s2), t ∈ (t1, t2)} (3.4)

We will write

R(u, v, s) = ψ(u, v)− γ(s) (3.5)

for the vector from a point γ(s) on the flight path to a given point on the ground.

Each tangent plane T(u,v)Ψ can be identified with the affine plane passing through

ψ(u, v). There is a natural projection from R3 onto this plane. Let

πTΨR(u, v, s) = πT(u,v)ΨR(u, v, s) (3.6)

be the projection of R(u, v, s) to this tangent plane. We will also write

R̂(u, v, s) =
R(u, v, s)

|R(u, v, s)|
. (3.7)

3.2 Canonical relation of the forward operator

Let the phase function of the forward operator be

φ(s, t, u, v, ω) = ω

(
t− 2

c0

|R(u, v, s)|
)
. (3.8)

Take local coordinates (s, t, σ, τ) ∈ T ∗Y \0 and (u, v, ξ, η) ∈ T ∗X \0. Using Definition

1.2.6, we can calculate the canonical relation of the forward operator.
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Lemma 3.2.1 ([26, Proposition 1]). The forward operator F is associated to the

canonical relation

Λ′ =

{
(s, t, σ, τ ;u, v, ξ, η) : t =

2

c0

|R(u, v, s)|,

σ =
2τ

c0

R̂(u, v, s) · γ̇(s),

(ξ, η) =
2τ

c0

πTΨR̂(u, v, s)

}
.

Proof. The characteristic submanifold associated to the phase function is

Cφ =

{
(s, t, u, v, ω) : t =

2

c0

|R(u, v, s)|
}
. (3.9)

Note that the phase function is smooth only if |R(u, v, s)| > ε > 0, but this is assumed

in the context of the model.

We may also calculate

ds,tφ =

(
2ω

c0

R̂(u, v, s) · γ̇(s), ω

)
,

du,vφ =

(
−2ω

c0

R̂(u, v, s)∂uψ(u, v),−2ω

c0

R̂(u, v, s)∂vψ(u, v)

)
.

This implies that τ = ω, and we recognize du,vφ as the projection of −2τR̂(u, v, s)/c0

to the tangent plane of Ψ at (u, v).

The image of Cφ under the map T of Definition 1.2.6 is the Lagrangian manifold

(relative to the canonical symplectic structure on T ∗(X × Y ) \ 0) associated to the

forward operator F . To obtain the canonical relation, we multiply the fiber variables

over Y by −1.

Ultimately, our goal is to use Lemma 1.2.9 to construct some microlocal para-

metrices of the forward operator. However, this is only possible away from a certain

degenerate subset Σ of the canonical relation, where the canonical projections to

T ∗Y \ 0 and T ∗X \ 0 are not of full rank. There are two contributions; Σ = Σ1 ∪Σ2,

where Σ1 is the contribution of the left projection πY : Λ′ → T ∗Y \ 0 and Σ2 is the

contribution of the right projection πX : Λ′ → T ∗X \ 0. From the previous lemma,

we can take (s, τ, u, v) to be local coordinates on the canonical relation.
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Lemma 3.2.2 ([26, Proposition 2]). Λ′ is a homogeneous canonical relation that is

locally of graph type away from the degenerate set Σ = Σ1 ∪ Σ2, where

Σ1 =
{
πTΨR̂(u, v, s) ‖ du,v

(
R̂(u, v, s) · γ̇(s)

)}
∩ Λ′

Σ2 =
{
πTΨR̂(u, v, s) ‖ ∂sπTΨR̂(u, v, s)

}
∩ Λ′

Proof. From the coordinate representations of πX and πY , we may calculate directly

the Jacobian of each projection.

For πY , we have

πY (s, τ, u, v) =

(
s,

2

c0

|R(u, v, s)|, 2τ

c0

R̂(u, v, s) · γ̇(s), τ

)
(3.10)

and so a coordinate representation of its Jacobian is

DπY =


1 0 0 0

∗ 0 2c−1
0 π1(πTΨR̂(u, v, s)) 2c−1

0 π2(πTΨR̂(u, v, s))

∗ ∗ 2τc−1
0 ∂u(R̂(u, v, s) · γ̇(s)) 2τc−1

0 ∂v(R̂(u, v, s) · γ̇(s))

0 1 0 0

 (3.11)

where π1, π2 are the projections on the two components of πTΨR̂, respectively. Evi-

dently this is of full rank, provided πTΨR̂ is not parallel to ∇u,v(R̂ · γ̇). This occurs,

for example, when the velocity of the flight path is in the same direction as R̂. In

SAR with a flat Earth and constant-altitude flight path, one avoids imaging directly

under the flight path [43, Assumption 4]. This is an instance of the degeneracy of

this Jacobian. Near these degenerate points, the projected canonical relation can

have singularities of folding type, or worse, the Jacobian of either projection could

be of rank two. The latter can only happen directly under the flight path, i.e., where

πTΨR̂ = 0.

Similarly, for πX , we have

πX(s, τ, u, v) =

(
u, v,

2τ

c0

π1(πTΨR̂(u, v, s)),
2τ

c0

π2(πTΨR̂(u, v, s))

)
, (3.12)
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and therefore,

DπX =


0 0 2τc−1

0 π1∂s(πTΨR̂(u, v, s)) 2τc−1
0 π2∂s(πTΨR̂(u, v, s))

0 0 2c−1
0 π1πTΨR̂(u, v, s) 2c−1

0 π2πTΨR̂(u, v, s)

1 0 ∗ ∗

0 1 ∗ ∗

 . (3.13)

Note that while Σ1 and Σ2 are defined by different expressions, the two are equal

as sets by [28, Theorem 4.1.9]. However, the rank of DπX and DπY may differ.

This lemma reveals that the correct generalization of “under the flight path” to

non-flat terrain is the subset of Ψ with minimal travel time to some point on the flight

path. We also provide some intuition for when a covector not under the flight path

lies on a singularity of the projected canonical relation. Let (u, v, ξ, η) ∈ T ∗Y \ 0.

After embedding the tangent plane into R3, this covector can be identified with a

certain vector v1 ∈ TR3, with basepoint ψ(u, v). Similarly, the velocity of the flight

path is also a vector v2 ∈ TR3 with basepoint γ(s). Neither v1 nor v2 has zero length.

There is exactly one affine plane of R3 containing γ(s) and ψ(u, v) such that v2 is

identified with a tangent vector on this plane. If v1 can also be identified with a

tangent vector on this plane, then the projected canonical relation is of folding type

here.

In the sequel, we will refer to Σ as the degenerate subset of Λ′, and all of our work

(e.g., microlocal constructions) will take place away from it, near “non-degenerate

covectors.”

3.3 Cancellation of singularities

In SAR with flat topography, every nondegenerate covector in p ∈ T ∗Y \ 0 is the

image of two distinct covectors in T ∗X \ 0; see for example [43, 53]. We refer to

covectors sharing the same covector in their image under the canonical relation as

“mirror points” (though perhaps “mirror covectors” would have been a better term).

We will exploit these mirror points to construct distributions with wavefront set near
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two mirror points, whose image under the forward operator is microlocally smooth

near their common image. We formalize this intuition with the definition below.

Definition 3.3.1. Fix p ∈ T ∗Y \ 0. Then the mirror point set of p is

Mp = {q ∈ T ∗X \ 0 : (q, p) ∈ Λ′} ⊂ T ∗X \ 0. (3.14)

In other words, Mp is the inverse image of p under Λ′, similar to the definition of the

image under a relation in (1.51).

A covector q ∈ Mp is degenerate (with respect to p) if (q, p) ∈ Σ. Non-degenerate

mirror points are isolated [26, Proposition 3], which is clear from the fact that in a

neighborhood of each non-degenerate covector, Λ′ acts as a bijective diffeomorphism.

There is a related notion of mirror points that are related to multiple covectors,

via “multiple scattering.” These are discussed in connection with a Radon transform

model of SAR in [53], and were recently analyzed in connection with cancellation of

singularities in the model we consider here by Caday [8]. While it is clear that some

of our results extend naturally to these kinds of mirror points, for simplicity we do

not consider them here.

Our main result is the following construction, taking place near a pair of isolated

mirror points, of an infinite dimensional subspace of non-smooth distributions whose

image under the forward operator is smooth near the common image of the mirror

points. This phenomenon, which we refer to as “cancellation of singularities”, shows

that the inverse problem of recovering V from FV is not stable in any Sobolev space.

For the purposes of this construction, fix p ∈ T ∗Y \ 0 and two distinct q1, q2 ∈

Mp ⊂ T ∗X \0 that are nondegenerate in the sense of Definition 3.3.1. It is possible to

find small conic neighborhoods Γ of p and Γ1,Γ2 of q1, q2 respectively so that Λ′(Γ1)

and Λ′(Γ2) both properly contain Γ.

Theorem 3.3.1 ([26, Theorem 1]). Let Γ ⊂ T ∗Y \ 0 and Γ1,Γ2 ⊂ T ∗X \ 0 be

small conic neighborhoods associated to distinct, isolated mirror points q1, q2 ∈Mp as

described above. Assume the amplitude A of the forward operator F is nonzero in a
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neighborhood of (πX(q1), πY (p))× (R \ 0) and in a neighborhood of (πX(q2), πY (p))×

(R \ 0).

Then, for every V1 ∈ E ′(X) such that WF(V1) ⊂ Γ1, there exists V2 ∈ E ′(X) with

WF(V2) ⊂ Γ2, related by a Fourier integral operator whose canonical relation is the

graph of a bijective diffeomorphism between Γ1 and Γ2, such that

WF(F (V1 + V2)) ∩ Γ = ∅. (3.15)

Proof. We apply the construction of Lemma 1.2.9 to both Γ1 × Γ and Γ2 × Γ. This

yields two microlocalizations of the forward operator F , which we refer to as F1 and

F2. Recall that both F1 and F2 are Fourier integral operators of graph type whose

canonical relation is the restriction of Λ′ to their respective defining neighborhoods.

The condition on the amplitude ensures that, in addition, F1 and F2 are elliptic

Fourier integral operators of graph type, in accordance with Definition 1.2.8. Let F−1
1

and F−1
2 be microlocal parametrices for F1, F2 respectively. We claim that

V2 = −F−1
2 F1V1 (3.16)

satisfies the conditions of the theorem. Recall that from Lemma 1.2.8 it follows that

WF(V2) ⊂ Γ2. Then

F (V1 + V2) = FV1 − FF−1
2 F1V1. (3.17)

Since WF(V1) ⊂ Γ1, we may replace in the first term F with F1, as (F − F1)V1 is

microlocally regular near Γ. Similarly, we may replace in the second term F with F2.

Therefore

F (V1 + V2) = F1V1 − F2F
−1
2 F1V1. (3.18)

By construction F2F
−1
2 = I +R, where R is smoothing. Hence

WF(F (V1 + V2)) ∩ Γ = ∅. (3.19)

This is the sense in which singularities from V1 cancel singularities in V2, under F .

This proof may also be extended to construct microlocally smooth images of

distributions whose wavefront set is contained in a small conic neighborhood of
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any subset of isolated, nondegenerate mirror points in Mp. In particular, given

Vi ∈ E ′(X), i = 1, . . . , n − 1, each microlocally supported near some nondegenerate

qi ∈Mp, there is a distribution

Vn = −F−1
n

n−1∑
i=1

FiVi (3.20)

microlocally supported near qn ∈Mp that is again microlocally regular near p.

3.3.1 Cancellation of singularities on degenerate mirror points

We conclude this section with the example considered in [26] that shows continuous

families of mirror points may also cancel each other out. We consider a cylindrical

valley with flight path along its axis of revolution, as in the Figure 3.1.

γ(s0)

mirror points

Figure 3.1. A cylindrical valley. From [26, Figure 2], used with permission.

Every covector in this setting is degenerate. The mirror points over any fixed

covector have two components, each a continuous curve lying over a cross-section of

the half-cylinder.

Let Ψ be the cylinder given by ψ(u, v) = (cosu, v, 1−sinu), where (u, v) ∈ (0, π)×

R, and γ(s) = (0, s, 1). Let V = f(u)H(v) where H(v) = χ[0,∞) is the Heaviside
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function and f(u) ∈ C∞((0, π)). Assume A = 1 uniformly. When A = 1, the forward

operator reduces to the Fourier transform of a delta function. We calculate explicitly,

FV (s, t) =

∫
R×Ψ

e
−iω

(
t− 2

c0

√
(v−s)2+1

)
f(u)H(v) du dv dω

=

〈
δ

(
t− 2

c0

√
(v − s)2 + 1

)
, f(u)H(v)

〉
=

〈
δ

(
t− 2

c0

√
(v − s)2 + 1

)
, H(v)

〉∫ π

0

f(u) du.

The map

w(v) = t− 2

c0

√
(v − s)2 + 1

is two-to-one onto the interval (−∞, t− 2/c0). To calculate the pull-back, we divide

the domain of w into two intervals, (−∞, s) and (s,∞). Then there are two inverses

v− and v+ with range on each interval, respectively:

v±(w) = s±
√
c2

0

4
(w − t)2 − 1.

In either case, the derivative is non-zero on (−∞, t− 2/c0), and explicitly,∣∣∣∣dv±dw (w)

∣∣∣∣ =
c2

0

4

t− w√
c2

0(t− w)2/4− 1
.

Using this, we may calculate the pullback of δ(w) via w(v). Let

α(t) =
√
c2

0t
2/4− 1.

Then:

〈δ(w(v)), H(v)〉 =

〈
δ(w),

∣∣∣∣dv±dw (w)

∣∣∣∣ [H(v−(w)) +H(v+(w))]

〉
=
c2

0

4

t√
c2

0t
2/4− 1

[H(s+ α(t)) +H(s− α(t))]

So, the forward operator reduces to

FV (s, t) =
c2

0

4

t[H(s+ α(t)) +H(s− α(t))]√
c2

0t
2/4− 1

∫ π

0

f(u) du,
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which vanishes whenever the integral of f vanishes. There is a subspace of C∞((0, π))

for which this is true with infinite dimension. Since

WF(f(u)H(v)) = ({v = 0} × {ξ = 0}) \ 0

and WF(FV (f(u)H(v))) = ∅, this shows that singularities on degenerate mirror

points may also cancel.
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4. GENERALIZED RADON TRANSFORM

4.1 Historical notes

In this chapter, we study the injectivity and stability of a certain class of gener-

alized Radon transforms on analytic Riemannian manifolds. Given a smooth family

of hypersurfaces Σ on a Riemannian manifold (M, g), there is an operator mapping

functions f ∈ C∞0 (M) to a function on C∞(Σ) whose values are the integrals of f

over each hypersurface, with respect to the induced volume form. The simplest ex-

ample is the Euclidean Radon transform on Rn, in which case Σ is the space of affine

hyperplanes. In the previous two chapters, we also saw circular Radon transforms

appear as basic models of thermoacoustic tomography and synthetic aperture radar.

We refer the reader to [23, 16, 24] for an overview of classical results on the Euclidean

Radon transform and its generalization to Lie groups and homogeneous spaces.

When Σ is a smooth manifold, we define the incidence relation R ⊂ M × Σ to

be the set of ordered pairs (x, σ) such that x is a point on the hypersurface σ. The

incidence relation is a double fibration [18] if it is a smooth, embedded submanifold of

M ×Σ, and the two canonical projections on R are smooth maps giving R the struc-

ture of a fiber bundle over M,Σ respectively. When a generalized Radon transform R

has an incidence relation that is also a double fibration, it is known that both R and

its adjoint R∗ are Fourier integral operators, and the canonical relation of R is the

conormal bundle N∗R [21, 19, 20]. If, in addition, R satisfies the Bolker condition,

then R∗R is an elliptic pseudodifferential operator, and is therefore invertible up to

smoothing error. However, this is not enough to show injectivity.

The first half of this chapter considers the injectivity of a class of analytic general-

ized Radon transforms, satisfying the Bolker condition. Such transforms were studied

by Boman and Quinto [4, 5, 46, 47], who showed injectivity and Helgason-type sup-
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port theorems for several sub-classes of analytic generalized Radon transforms. Both

their approach and the one used here relies on analytic microlocal analysis to study

the analytic microlocal regularity of the generalized Radon transform. In particular,

we show that if Rf is analytic on a neighborhood of hypersurfaces, then f is microlo-

cally analytic near the conormal bundle of that neighborhood. We follow Sjöstrand’s

development of analytic microlocal analysis, using the techniques set forth in Section

1.2.4.

From this regularity result, injectivity for those f ∈ E ′(M) whose generalized

Radon transform is analytic follows immediately, and Lemma 1.2.6 yields a stability

estimate for this analytic class of generalized Radon transforms. We then perturb

this estimate using the symbol calculus to obtain a similar estimate for a neighbor-

hood of smooth generalized Radon transforms (see Definition 4.2.3) near the analytic

ones. Throughout we assume all transforms satisfy the Bolker condition. This yields

injectivity and stability for a generic class of generalized Radon transforms defined

on analytic manifolds.

This chapter is based on joint work with Hanming Zhou [27].

4.2 Bolker condition

Let (M, g) be a compact Riemannian manifold with boundary. The generalized

Radon transforms that we have in mind are those given by a space of oriented hyper-

surfaces Σ parametrized as the level sets of a defining function, after the definition of

Beylkin [3]. We consider M to be isometrically embedded in a slightly larger mani-

fold M1, whose metric we also refer to as g. We may identify L2(M,dVol) with the

subspace of L2(M1, dVol) consisting of those functions supported on M by extending

the former to M1 by zero. We begin by describing the class of defining functions that

we will consider.

Definition 4.2.1. Let ϕ ∈ C∞(M1× (Rn \0)). We say ϕ is a defining function when

the following criteria are satisfied.
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1. ϕ(y, θ) is positive homogeneous of degree one in the fiber variable.

2. ϕ is nondegenerate in the sense that dy,θϕ(y, θ) 6= 0.

3. The mixed Hessian of ϕ is strictly positive, i.e.,

det

(
∂2ϕ

∂yi∂θj

)
> 0. (4.1)

Given a fixed defining function, the level sets of ϕ will be denoted by

Hs,θ = {y ∈M1 : ϕ(y, θ) = s}. (4.2)

Note that by homogeneity, Hs,θ = Hλs,λθ for all λ > 0. Therefore we can consider

(s, θ) ∈ R×Sn−1 as coordinates on Σ. We will also implicitly consider ϕ as a function

on M × Sn−1.

The third condition in the definition of a defining function is a local form of

the Bolker condition, which ensures that, locally, the incidence relation is a double

filtration [18]. It also allows us to locally identify

M1 × Sn−1 3 (y, θ)⇐⇒ dθϕ(y, θ)

|dθϕ(y, θ)|g
∈ S∗yM1. (4.3)

However, for our analysis below, we also require a stronger, global Bolker condition.

Definition 4.2.2. A defining function ϕ satisfies the global Bolker condition if:

1. For each θ ∈ Sn−1, the map y 7→ dθϕ(y, θ) is injective.

2. For each y ∈M , the map θ 7→ dyϕ(y, θ) is surjective.

The first condition is essentially a “no conjugate points” assumption, similar to

that used for similar results involving the geodesic ray transform [17, 37]. Without

this assumption, at least in dimension two, there are examples of cancellation of

singularities [41], which, as we saw in the previous chapter, is an obstruction to

stability. The second condition ensures that all singularities are conormal to at least

one hypersurface.

We may now define the class of generalized Radon transforms that we will consider

in this chapter.
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Definition 4.2.3. Given a Riemannian manifold with boundary (M, g) (realized as

a compact submanifold of M1 as above), a defining function ϕ satisfying the global

Bolker condition (Definition 4.2.2), and a nonvanishing weight w ∈ C∞(M1×Sn−1),

then Rw : C∞(M)→ C∞(Σ) is defined as the integral

Rwf(s, θ) =

∫
Hs,θ

w(y, θ)f(y) dµs,θ(y) (4.4)

where dµs,θ is the volume form on Hs,θ induced by dVol.

We say Rw is an analytic generalized Radon transform if (M, g) is an analytic

manifold, and both the defining function and weight are analytic.

By the assumptions made on the defining function, there exists a smooth, nonva-

nishing function J(y, θ) such that

J(y, θ) dVol(y) = dµs,θ(y) ∧ ds. (4.5)

The adjoint of Rw on L2(Σ, ds∧dθ) (sometimes called a “generalized backprojection”)

is given by

R∗wg(x) =

∫
Sn−1

w(x, θ)J(x, θ)g(ϕ(x, θ), θ) dθ. (4.6)

This is just the usual generalized backprojection with weight wJ .

4.3 Analytic microlocal regularity

In this section, we consider the class of analytic generalized Radon transforms

satisfying the Bolker condition. Recall that (M1, g) is in this case an analytic manifold.

Our first object will be a study of the analytic microlocal regularity of an analytic

generalized Radon transform Rw, given by the defining function ϕ. The analytic

microlocal regularity of a distribution f ∈ D′(M) is characterized by its analytic

wavefront set, WFA(f) ⊂ T ∗M \ 0 as stated in Definition 1.2.10.

Fix a covector (y0, θ0) ∈ T ∗M1 \ 0, with s0 = ϕ(y0, θ0). From now on we will work

in a small conic neighborhood of this covector.
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Theorem 4.3.1. Let Rwf(s, θ) = 0 in a neighborhood of (s0, θ0). Then f is analytic

microlocally near (y0, dyϕ(y0, θ0)).

Proof. First, let us fix coordinate systems. We have (y, θ) as local coordinates on

T ∗M1\0. Without loss of generality we can take s0 = 0 and |θ0|g = 1. To simplify the

corresponding coordinates on Σ, we perform a stereographic projection of θ ∈ S∗yM1 to

the tangent plane of the sphere at θ0, whose image we refer to as η. This is a bijective

analytic diffeomorphism from a neighborhood of θ0 ∈ Sn−1 to a neighborhood of the

origin in Rn−1.

Recall (s, θ) form a system of local coordinates for Σ, and so (s, η) also serves

as a system of coordinates for Σ. In this case, it is clear that Σ is also an analytic

manifold. We will work in a neighborhood of Σ such that |ξ| < δ, |s| < 2ε, where

ε, δ > 0 are small parameters, small enough that Rwf(s, η) = 0.

Let χN(s) be the sequence of quasianalytic cut-off functions in Lemma 1.2.10. We

assume these are supported in (−2ε, 2ε), and are equal to one on (−ε, ε). Take λ� 1

to be a large parameter, to be fixed later. We integrate Rwf(s, η) against eiλsχN(s)

to obtain

0 =

∫
eiλsχN(s)

∫
Hs,η

w(y, η)f(y) dµs,η ds. (4.7)

By (4.5), this reduces to the oscillating integral∫
eiλϕ(y,η)aN(y, η)f(y) dVol(y) = 0. (4.8)

Here aN(y, η) is a sequence of local analytic symbols (Definition 1.2.9) defined on the

same neighborhood of (y0, 0) ∈M1 × Rn−1.

The coordinates (y, η) are real-analytic, and so we may extend their domain of

definition slightly, by analytic continuation, to a small Grauert tube of a neighborhood

of H0,0 × {0} ⊂ M1 × Rn−1. This continuation in principle depends on the choice of

analytic coordinates, but as we are concerned with the analytic wavefront set, which

is invariantly defined, the final result will not depend on this choice of coordinates.

We choose a perhaps smaller parameter δ such that {|η| < δ/2} is contained in this

complex neighborhood. Denote the complex coordinate patch of y0 as U ⊂ Cn.
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At this point we cannot yet apply Definition 1.2.10, as the phase function is not

of the form required by that definition. Our next goal will be to augment the phase

function with additional variables, in such a way that an application of the complex

stationary phase lemma will leave a phase function amenable to the definition of

analytic wavefront set.

Take (x, ξ) ∈ U × Cn−1, with |ξ| < δ/2, and take ρ(η) = 1 for |η| ≤ δ and zero

otherwise. We then integrate (4.8) against the function

ρ(η − ξ) exp

(
−λ

2
|η − ξ|2 − iλϕ(x, η)

)
, (4.9)

with respect to η. This yields a new oscillating integral∫
eiλΦ(x,y,ξ,η)bN(y, η, ξ)f(y) dVol(y) dη = 0. (4.10)

The augmented phase function is

Φ(x, y, ξ, η) =
i

2
|η − ξ|2 + ϕ(y, η)− ϕ(x, η), (4.11)

and the augmented symbol is

bN(y, η, ξ) = aN(y, η)ρ(η − ξ) = ρ(η − ξ)χN(ϕ(y, η))w(y, η). (4.12)

This is a sequence of analytic local symbols in the sense of Definition 1.2.9, all defined

on the same neighborhood of H0,0 × {0} × {0}.

To apply complex stationary phase, we need to have some control over the critical

points of η 7→ Φ(x, y, ξ, η). We have

Φη(x, y, ξ, η) = i(η − ξ) + ∂ηϕ(y, η)− ∂ηϕ(x, η). (4.13)

If |η| < δ/2 is real, then the only critical points are those with η = ξ and y = x.

These critical points are non-degenerate, and therefore extend to a family of complex

critical points ηc(x, y, ξ) = ξ + i(x− y) +O(δ).

Consider the case x 6= y and |η| < δ/2. The only real critical points in this regime

are where η = ξ and ∂ηϕ(y, η) = ∂ηϕ(x, η). However, by the global Bolker condition,
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the latter condition is never satisfied, as y 7→ ∂ηϕ(y, η) is injective for all η. By non-

degeneracy again this extends to y in a small complex neighborhood of H0,0 ⊂ M1,

with |η − ξ| < δ.

For now, treat (x, ξ) ∈ U ×Cn−1 as fixed. Then we can contain the critical points

of Φ with respect to η in a neighborhood

I+ = {(y, η) : |x− y| ≤ δ/C0, |ξ − η| < δ}, (4.14)

with C0 > 1 large enough that (y, η) ∈ I+ implies |ϕ(y, η)| < ε. We have then

excluded these critical points from the neighborhood

I− = {(y, η) : |x− y| > δ/C0, |ξ − η| < δ}. (4.15)

Here, C0 > 1 is a positive constant. In I−, we have |∂ηΦ| > 0. Let

L =
∂ηΦ · ∂η
iλ|∂ηΦ|2

(4.16)

be a first-order differential operator, which is well-defined on I−.

Using this operator, we may repeatedly integrate by parts with respect to η,

obtaining the estimate,∣∣∣∣∫
I−

eiλΦbNf dVol(y) dη

∣∣∣∣ =

∣∣∣∣∫
I−

(LNeiλΦ)bNf dVol(y) dη

∣∣∣∣
≤
∣∣∣∣∫
I−

eiλΦ(L∗)N [bNf ] dVol(y) dη

∣∣∣∣+
N∑
k=1

|Bk|.

The terms Bk are exponentially small in λ, as =Φ > 0 for |ξ−η| = O(δ). From (4.12),

we see that the worst growth of (L∗)N [bNf ] occurs when all derivatives are applied

to χN(ϕ(y, η)). In this case, Lemma 1.2.10 yields an estimate of the form

∣∣∂(N)
s χN(s)

∣∣ ≤ (C1N)N , (4.17)

with C uniform in N . (In the sequel, C will stand for various positive constants, all

uniform with respect to N .)
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As for the integral over I+, notice that bN is independent of N here, so we remove

the dependence on N . Apply the complex stationary phase lemma of Sjöstrand, in

the form Lemma 1.2.11. This yields an estimate of the form∫
I+

eiλΦbf dVol(y) dη = Cλ−n/2
∫
I+

eiλψBf dVol(y) +R(x, ξ), (4.18)

where R(x, ξ) is a remainder term of the order

R(x, ξ) = O
(
(CN/λ)N +Ne−λ/C

)
. (4.19)

On the right-hand side of (4.18), the new phase function is

ψ(x, y, ξ) =
i

2
|ηc(x, y, ξ)− ξ|2 + ϕ(y, ηc(x, y, ξ))− ϕ(x, ηc(x, y, ξ)), (4.20)

and the new amplitude is

B(x, y, ξ) = b(x, y, ηc(x, y, ξ), ξ). (4.21)

We may now fix N ≤ (λ/Ce) ≤ N + 1. Then CNλ−1 ≤ e−1 and by monotonicity we

have (
CN

λ

)N
≤ e−N ≤ e−N−1 ≤ e−λ/Ce. (4.22)

Using this in (4.18), we conclude that∫
eiλψ(x,y,ξ)B(x, y, ξ)f(y) dVol(y) = O(e−λ/C). (4.23)

This estimate is uniform for (x, ξ) near a small conic neighborhood of (y0, η(θ0)).

However, the new phase function ψ still does not quite satisfy the assumptions of

Definition 1.2.10. We will show that it can be made to do so after a final change of

coordinates.

Note that, for x real, ηc(x, x, ξ) = ξ and therefore ψ(x, x, ξ) = 0. In addition,

∂yψ(x, x, ξ) = ∂yϕ(x, ξ). (4.24)

By the global Bolker condition, we may make a change of variables ξ′(x, ξ) so that

ξ′ = ∂yϕ(x, ξ). Finally, it is clear that =ψ(x, y, ξ′) ≥ C|x − y|2 for x, y real. Now

Definition 1.2.10 applies and (y, dyϕ(y0, θ0)) 6∈WFA(f).
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From this theorem, we can show that Rw is injective. Let f ∈ D′(M) be extended

by zero to a distribution on M1, and assume Rw(f) = 0. Then the above theorem

shows that WFA(f) = ∅, i.e., f is analytic. Its support is compact, so therefore f = 0.

Hence Rw is injective on D′(M).

It is sufficient, in the proof of the theorem, to assume merely that WFA(Rwf)∩Γ =

∅, where Γ is a small conic neighborhood of T ∗Σ \ 0. After microlocalizing near the

hypersurface Hs0,θ0 , the left-hand side of (4.7) will be exponentially decaying, perhaps

after shrinking ε and δ further.

This result also yields a support theorem of Helgason type, for analytic generalized

Radon transforms. Take f with analytic singular support in a subset of M that is

convex with respect to Σ. If the generalized Radon transform of f is analytic in a

neighborhood of a fixed hypersurface conormal to the convex set, then it is possible

to continue f analytically from the exterior across the hypersurface.

4.4 Stability

We now return to those generalized Radon transforms that are given by a smooth

defining function and smooth weight, though we keep the underlying manifold to be

analytic. The object of interest in this section is the normal operator N = R∗wRw,

where R∗w is the L2(Σ)-adjoint given in (4.6).

It is known that N is an elliptic pseudodifferential operator [21, Proposition 8.2]

mapping L2(M) to Hn−1(M1) continuously. However, elliptic regularity only yields

the following estimate for every s > 0:

||f ||L2(M) ≤ C||Nf ||Hn−1(M1) + Cs||f ||H−s . (4.25)

Here C > 0 is independent of s, while Cs > 0 does depend on s. To promote this

inequality to a stability estimate, we again turn to [56, Propostion V.3.1], which

permits this (with different constant) under the assumption that N is known to be

injective.
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Theorem 4.3.1 proves that N is injective when it is the normal operator of an an-

alytic generalized Radon transform. In this section, our goal is to perturb the result-

ing stability estimate for analytic generalized Radon transforms to a corresponding

stability estimate for a class of smooth generalized Radon transforms (on analytic

manifolds). As a consequence, this larger class is injective. Throughout we continue

to assume that these Radon transforms are given by a defining function, and satisfy

the global Bolker condition.

First, we obtain a representation for the Schwartz kernel of N .

Lemma 4.4.1 ([27, Lemma 1]). The Schwartz kernel KN ∈ D′(R × Sn−1 ×M1) of

N is

KN(x, y) = (2π)−1

∫
Sn−1

∫
R
eis
′(ϕ(x,θ)−ϕ(y,θ))w(x, θ)J(x, θ)w(y, θ)J(y, θ) ds′ dθ. (4.26)

Recall J(x, θ) is the smooth, nonvanishing function of (4.5).

Proof. Let Fs be a partial Fourier transform, taking s to the dual variable s′. If we

apply this to Rwf , we obtain,

FsRwf(s′, θ) =

∫
R
e−iss

′
∫
Hs,θ

w(y, θ)f(y) dµs,θds

=

∫
M1

e−is
′ϕ(y,θ)w(y, θ)J(y, θ)f(y) dVol(y).

Taking the inverse Fourier transform of this with respect to s′, we see that the

Schwartz kernel of Rw is given by,

KRw = (2π)−1δ(s− ϕ(y, θ))w(y, θ)J(y, θ). (4.27)

The kernel of the adjoint is found in a similar manner, and then the two may be

composed, resulting in the oscillating integral of (4.26).

The form of this kernel is roughly the kernel of the normal operator of the geodesic

ray transform, see [12, 17]. We will now use their techniques to calculate the principal

symbol of the normal operator.



71

Lemma 4.4.2 ([27, Lemma 2]). The principal symbol of N is

σ1−n(N)(x, ξ) = (2π)1−n|ξ|1−n [W (x, x, ξ/|ξ|) +W (x, x,−ξ/|ξ|)] . (4.28)

where W is the auxillary function

W (x, y, θ) = w(x, θ)J(x, θ)w(y, θ)J(y, θ). (4.29)

Proof. We divide the representation of KN given in (4.26) into two terms, K+
N cor-

responding to integration over {s′ > 0} and K−N corresponding to integration over

{s′ < 0}. These two kernels yield two operators N±, such that N = N+ + N−. We

have,

K±N = (2π)−1

∫
Sn−1

∫ ∞
0

e±i(ϕ(x,s′θ)−ϕ(y,s′θ))W (x, y, θ) ds′ dθ. (4.30)

In what follows we will take ξ = s′θ to be polar coordinates for a new phase variable

ξ taking values in Rn. This change of variables is justified when the kernel is applied

to a test function; by the proof of [30, Theorem 7.8.2] it is justified for the kernel

itself. From this we obtain

K±N =

∫
Rn
e±i(ϕ(x,ξ)−ϕ(y,ξ))W

(
x, y,± ξ

|ξ|

)
|ξ|1−n dξ. (4.31)

As KN is the kernel of a pseudodifferential operator, we know that K+
N+K−N is smooth

away from the diagonal of M1 ×M1.

Fix x0 ∈M1 and take χ ∈ C∞0 (M1) to be a smooth cutoff function equal to one in

a neighborhood U of x0. To determine the principal symbol of N , we restrict K±N to

U ×U and rewrite each χN±χ as a pseudodifferential operator. Let (xi) be a system

of local coordinates on U ; then take (xi, yi) to be a system of local coordinates on

U × U , with xi = yi. In these coordinates, we can expand the phase function near

the diagonal as

ϕ(x, ξ)− ϕ(y, ξ) = (x− y) ·
∫ 1

0

∂xϕ(x+ t(y − x), ξ) dt. (4.32)

We will make a change of coordinates in the phase variable, given by the map

ξ′(x, y, ξ) =

∫ 1

0

∂x(x+ t(y − x), ξ) dt. (4.33)
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This map is positive homogeneous of degree one in ξ; therefore, there is a strictly

positive function c(x, y) such that |ξ′(x, y, ξ)| = c(x, y)|ξ|. Near the diagonal, ξ′

yields a smooth change of coordinates whose Jacobian is

det

(
∂ξ′

∂ξ

)
(x, x, ξ) = det

(
∂2ϕ

∂ξi∂xj
(x, ξ)

)
. (4.34)

This is the mixed Hessian of the defining function, which we assumed was strictly

positive. Under this change of variables, we have

χK±Nχ =

∫
Rn
ei(x−y)·ξ′W

(
x, y,

ξ′

ξ′

)
χ(x)χ(y)|ξ′|1−nc(x, y)n−1

∣∣∣∣det
∂ξ′

∂ξ

∣∣∣∣ dξ′. (4.35)

This is a pseudodifferential operator of order 1 − n. The principal symbol of N is

the sum of the restrictions of the two amplitude to the diagonal; for convenience, we

state this symbol in the original phase coordinates ξ.

We can now give a stability estimate for analytic generalized Radon transforms.

Proposition 4.4.1. Let Rw be an analytic generalized Radon transform (as in Def-

inition 4.2.3) on the analytic Riemannian manifold (M, g). Then for all f ∈ L2(M)

there exists C > 0 such that

||f ||L2(M) ≤ C||Nf ||Hn−1(M1). (4.36)

Proof. Since N is an elliptic pseudodifferential operator of order 1 − n, we have by

Lemma 1.2.6 and Theorem 4.3.1 a stability estimate for analytic generalized Radon

transforms.

Finally, we may perturb this stability estimate slightly to smooth generalized

Radon transforms (still defined on (M1, g)). This yields an open subset of generalized

Radon transforms on analytic manifolds that are both injective and stable.

Theorem 4.4.1. Let (M1, g) be an analytic manifold with M a compact submanifold

with boundary. Let R be an analytic generalized Radon transform on M1 given by

defining function ϕ and weight w. Let R̃ be a smooth generalized Radon transform
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also on M1 given by defining function ϕ̃ and weight w̃. Then there exists an integer

K � n and a parameter 0 < δ � 1 such that if

||ϕ− ϕ̃||CK(M1×Sn−1) + ||w − w̃||CK(M1×Sn−1) < δ, (4.37)

then we have, for Ñ = R̃∗R̃, a stability estimate of the form

||f ||L2(M) ≤ C||Ñf ||Hn−1(M1). (4.38)

In addition, R̃ is injective on L2(M).

Proof. A similar estimate holds for N = R∗R by Proposition 4.4.1. By Lemma 1.2.2,

there exists K > 0 such that for all ε > 0, there exists δ′ > 0 so that∑
|α|,|β|≤N

|σ(N)− σ(Ñ)|N,α,β < δ =⇒ ||N − Ñ ||L2(M)→Hn−1(M1) < ε. (4.39)

If the CK–norms of the pair of defining functions and the pair of weights are less

than some small δ, then Lemma 4.4.2 shows that the CK−2–norms of the respective

symbols are smaller than C ′δ, for some C ′ > 0. Given ε > 0, take δ < δ′/Cprime.

Then we have, for K large enough,

||f ||L2(M) ≤ C1||Nf ||Hn−1(M1)

≤ C1||Ñf ||Hn−1(M1) + C1ε||f ||L2(M).

Let ε� min{C−1, 1}. Then the second term on the right-hand side can be absorbed

into the left. The resulting stability estimate for Ñ implies that R̃ is injective.

While the theorem holds for K sufficiently large, we recall that [17] showed that

K = 2 was sufficent for the geodesic ray transform. One would then expect the above

theorem to hold for K = n.
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[29] L. Hörmander. Uniqueness theorems for wave front sets for solutions of linear
differential equations with analytic coefficients. Comm. Pure and Appl. Math.,
24(5):671–704, 1971.
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Scand., 7:211–218, 1959.

[45] J. Qian, P. Stefanov, G. Uhlmann, and H. Zhao. An efficient Neumann-series
based algorithm for thermoacoustic and photoacoustic tomography with variable
sound speed. SIAM J. Imaging Sciences, 4:850–883, 2011.

[46] E. T. Quinto. Radon transforms satisfying the Bolker assumption. In Proceedings
of conference ”Seventy-five Years of Radon Transforms,” International Press Co.
Ltd., Hong Kong, pages 263–270, 1994.

[47] E. T. Quinto. Support theorems for the spherical Radon transform on manifolds.
Internat. Math. Res. Notices, 2006:1–17, 2006. Article ID 67205.

[48] M. Reed and B. Simon. Methods of Modern Mathematical Physics, volume 2.
Academic Press, 1975.

[49] M. Sato, T. Kawai, and M. Kashiwara. Hyperfunctions and pseudodifferential
operators. Springer, 1973.
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