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ABSTRACT

Hernandez-Ceron, Nancy PhD, Purdue University, May 2015. Discrete Epidemic
Models with Arbitrarily Distributed Disease Stages. Major Professor: Zhilan Feng.

The use of discrete-time models (or discrete models) in the field of mathematical

epidemiology has been limited while continuous-time models (or continuous models)

are often times preferred, particularly because disease dynamics do occur continu-

ously in time and more mathematical tools are available for model analysis. How-

ever, discrete models are not only more tractable and easier to understand, but also

more directly related to data, particularly when the disease stage distributions are

arbitrarily distributed (e.g., when the data cannot be fitted by distributions from a

parametric family). Under these circumstances continuous models usually lead to

complex system of integral equations.

Deterministic and stochastic epidemic models have commonly assumed that the

disease stages, particularly the infectious period, have constant exit rates (contin-

uous models) or constant exit probabilities (discrete models), which correspond to

exponential and geometric distributions, respectively. The very property of these

distributions that makes models tractable, the memoryless property, is biologically

unrealistic for most infectious diseases. In fact, it has been shown that models with

these simplifying assumptions may generate biased and possibly misleading evalua-

tions for disease control strategies.

Realistic alternatives considered in the literature are the Gamma and Negative

Binomial distributions, a natural generalization due to their relationship with the

above mentioned distributions. The “linear chain trick” can be used to reduce a

system of integro-differential equations to a system of ordinary differential equations

and a similar idea can be applied in stochastic models to allow for the use of Gamma
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distribution, while still preserving the Markov property of the process. Few models,

however, include distributions beyond these alternatives. The focuses of this thesis is

the use of arbitrarily distributed disease stages in discrete models, their formulation

and analysis, as well as the study of the impact of a given distribution on model

predictions.

Chapter 1 includes a brief review of relevant topics and the motivation for this

work. In Chapter 2 several SEIR-type models with arbitrarily distributed infectious

period are introduced and analyzed. This chapter focuses on the use of the next gen-

eration matrix approach to derive analytic expressions for R0 and RC . In Chapter

3 we develop and analyze of a model with quarantine and isolation when arbitrar-

ily distributed disease stages are incorporated. The results obtained in the general

framework are then applied to models with specific distributions (e.g., Geometric vs.

more realistic distributions), which allow us to investigate the influence of disease

stage distributions on the dynamics of single epidemic outbreaks. It is demonstrated

that the discrepancies between model predictions can sometimes be substantial.

In Chapter 4 a stochastic discrete-time model with n patches and (random) infec-

tious period T is developed. The results obtained are then used to investigate how the

distribution of T may affect model outcomes. Specific distributions analyzed include

Geometric, Negative Binomial, Poisson and Uniform. The model predictions are con-

trasted both numerically and analytically by comparing the corresponding R0 values

as well as the probability of disease extinction. It is shown analytically that for n “ 2

the R0 values corresponding to different distributions of T can be ordered based on

the probability generating function φT of T . In addition, numerical simulations are

carried out to examine the final epidemic size, duration and peak of the epidemic.
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1. INTRODUCTION AND BACKGROUND

The birth of mathematical theory of epidemics can be traced to the work of Daniel

Bernoulli in 1760 [1], who developed a discrete epidemic model to analyze the mor-

tality of smallpox, and more recently to Sir Ronald Ross [2], Anderson Gray McK-

endrick [3], and the statistician William Ogilvy Kermack. Sir Ronald Ross, an English

physician and Nobel Laureate, developed the first mathematical models for the study

of the transmission dynamics of malaria [2]. McKendrick and Kermack published a se-

ries of papers, introducing a deterministic epidemiological model and their celebrated

threshold theorem [3–5]. In the first paper of this series a discrete-time epidemic

model is considered, which leads to a continous-time model as the time steps are

taken to the limit.

After the 2003 SARS outbreaks, and more recently the 2009 H1N1 pandemic and

the 2014 Ebola epidemics, efforts to connect models to data have increased greatly.

Single-outbreak epidemic models are now routinely used to estimate the basic re-

production number R0 and the effective or control reproduction number RC , and to

evaluate disease control strategies for continuous [6–15] and discrete models [16–23].

In 2004 Y. Zhou, Z. Ma and F. Brauer developed a discrete-time model for SARS

[24]. Other epidemics of particular diseases have also been modeled in a discrete

framework. These include measles [25], tuberculosis [26], rodent-hantavirus [17, 23],

chytridiomycosis in amphibians [17], plant diseases [27], and diseases involving vector-

host transmission [28] and vertical transmission [29]. More mathematical results

about epidemic models can be found in [30, 31] (permanence and stability of models

with delay), [29, 32, 33] (stability analysis), [32, 34, 35] (presence of chaos) and the

references therein.

The connection between epidemic models in discrete-time and continuous-time

settings has been investigated in the past. For example, Pellis et al. [36] examined
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and extended the insights that can be gained from Ludwig’s result [37], which specified

conditions under which a continuous-time infectious process has the same final size

distribution as another discrete-generation contact process. This topic has also been

discussed in [8] (see Exercise 1.40) and [22,28,38]. However, it is not the focus of this

work to study the relationship between continuous-time and discrete-time models for

epidemics.

The focus of this work is on the formulation and analyses of discrete-time mod-

els that allow for the inclusion of arbitrarily distributed waiting time distributions.

Most existing discrete-time models for infectious diseases implicitly assume a geo-

metric distribution for the disease stage durations (e.g., latent or infectious period),

which makes the models tractable and easy to analyze. However, this assumption is

not realistic for most infectious diseases. Although these simpler models can be very

helpful for gaining important insights into disease dynamics, there are many situa-

tions in which they may not be appropriate and can generate biased or misleading

results, as demonstrated in the following chapters. Therefore, it is important to in-

vestigate how the assumptions on disease stages may influence model outcomes. The

approach presented in this thesis is to develop a model with an arbitrarily distributed

disease durations (latent and/or infectious period). The results can then be used

to compare model outcomes when the arbitrary distribution is replaced by various

distributions (e.g., geometric, binomial, Poisson, or empirical). The measures used

for model comparison include the basic and control reproduction numbers (R0 and

RC), final epidemic size, probability of major/minor outbreaks, duration and peak of

the epidemic.

Chapters 2 and 3 are devoted to deterministic models, while Chapter 4 considers

a stochastic model. In order to bring into the context of epidemiological applications,

formulas for R0 and RC are derived in all cases. Our detailed derivations help reveal

the explicit dependance of R0 and RC on the mean values of the stage distributions,

the mean sojourn times, and other distribution-adjusted probabilities. Throughout,

we highlight the role that modeling assumptions (a priori selection of distributions for
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disease stage durations) have on the qualitative and quantitative assessment of model

outcomes. Examples of discrete-time models under different stage-duration distribu-

tions are considered to illustrate the discrepancies in model evaluation, particularly

when control strategies are present.

The remainder of this chapter is organized as follows. Section 1.1 includes a brief

summary of results involving deterministic epidemic models in discrete-time. Section

1.2 includes a discussion about the importance of considering more realistic distribu-

tions for disease stages, as well as some drawbacks of using the (commonly assumed)

Geometric distribution. Finally, a summary of important results in continous-time

stochastic SIR models with arbitrarily distributed infectious period can be found in

Section 1.3. These results strongly motivated the work presented in Chapter 4.

1.1 Discrete epidemic models

As pointed out in [32], there are usually two ways to construct a discrete epidemic

model. The first approach, used in [34], directly makes use of the property of the

epidemic disease, whereas the second approach, used in [31], consists in discretizing a

continuous-time model using techniques such as the forward Euler scheme or Mickens

non-standard discretization. In this thesis the first approach is used and the discrete-

time single-outbreak model introduced and analyzed in [39] is generalized through

the inclusion of arbitrary distributed disease stages. The building block to do so is

the basic model

Sn`1 “ SnG pIn{Tnq
In`1 “ Sn r1 ´ G pIn{Tnqs ` p1 ´ γqIn
Rn`1 “ Rn ` γIn, n “ 1, 2, . . .

(1.1)

depicted in figure 1.1. Here, Tn “ Sn ` In `Rn is the total population size and In{Tn

is the prevalence, at time n. The proportion of susceptible individuals who become

infected at time n ` 1 is given by 1 ´ G, where G : r0, 1s Ñ r0, 1s is a monotone

function with Gp0q “ 1, G1pxq ă 0 and G2pxq ě 0, as pointed out by Castillo-Chavez



4

and Yakubu in [34]. When the population size is assumed to be constant, a customary

practice for short term single outbreak models, the dependence of G on Tn can be

dropped. This is the case for the models studied in this thesis. Including demographic

effects or disease death is straightforward but some results (specially those involving

final size relations) might no longer hold if this factor is included.

S
1´Gn �� I

γ �� R

Figure 1.1. Transmission diagram for the discrete SIR model (1.1)

If the time between contacts is assumed to be Exponential with parameter β{N
then, at time n ` 1, the number of times a susceptible has been in contact with any

infective follows a Poisson distribution with parameter βIn{N . Thus, the probability

of entering in contact with at least one infective is 1 ´ eβIn{N . For this reason, often

times it is assumed that

GpInq “ eβIn{N , (1.2)

This functional form of G guarantees that the solutions remain nonnegative at all

times. Other options for the function G are explored in [34,40].

One of the main motivations for this thesis comes from the transition from the I to

the R class. Under constant exit probability, the proportion of individuals leaving the

I class after exactly i days is p1 ´ γqi´1γ for i P t1, 2, 3, . . . u, which is the probability

mass function of a Geometric distribution with parameter γ. The proportion of

individuals who stay more that i days in the I class, also called survival probability,

is

pi “
8ÿ

k“i`1

p1 ´ γqk´1γ “ p1 ´ γqi, i P t0, 1, 2 ¨ ¨ ¨ u
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In Section 1.2 drawbacks of the use of this distribution are discussed. An interesting

discussion of a similar restriction in continuous models (constant exit rate) can be

found in [41].

1.1.1 Computations of R0 and RC

The most commonly used quantity in the study of epidemiological models is the

basic reproduction number R0 or the control reproduction number RC . They provide

critical measures for designing strategies for disease control and prevention, as well as

the evolutionary dynamics of the pathogen. Various approaches have been developed

for the derivation of an analytical expression for R0 pRCq. These studies include both
continuous-time models (see, for example, [6–12]) and discrete-time models (see, for

example, [16–23,38])

A commonly used method to compute R0 and RC is the so called next generation

matrix method. Let X0 “ px1, . . . , xmqT and X1 “ pxm`1, . . . , xnqT , where x1, . . . , xm

are the infected classes of the epidemic model and xm`1, . . . , xn are uninfected. Let

Xpn ` 1q “ MpXpnqq, n “ 0, 1, 2, . . . (1.3)

where M : Rn` Ñ R
n` is a continuous and differentiable function. Assume there is a

unique DFE for which, after linearizing one obtains Y pn ` 1q “ JY pnq. Here, J is

the n ˆ n Jacobian matrix at the DFE and has the form

J “
»
–F ` T 0

A C

fi
fl (1.4)

The next theorem by Allen and van den Driessche (Thm 2.1 in [17]) gives a formula

for R0 as well as stability conditions. A complete proof and examples can be found

in [17, 20,22,23].

Theorem 1.1.1 Suppose the system of difference equations (1.3) has a unique DFE

and that linearization of the system about the DFE yields (1.4) with matrices F and
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T nonnegative, F `T is irreducible, and matrices C and T satisfying ρpCq, ρpT q ă 1.

Then the basic reproduction number is given by

R0 “ 

`
F pI ´ T q´1

˘
, (1.5)

In addition, the DFE is locally asymptotically stable if R0 ă 1 and unstable if R0 ą 1.

The key point here, is that the model must be written in the form (1.3), for which

the Geometric function assumption is key. If a different distribution is used for the

transition from I to R then the next generation method cannot be directly applied,

as we will see in Chapter 2, Section 2.4

1.2 Why do we need to consider more realistic distributions?

As mentioned in Section 1.1, constant exit probability from the I class carries with

it the assumption of Geometric distribution for the infectious period. The memoryless

property of the Geometric distribution

PpX ą n ` m|X ą mq “ PpX ą nq (1.6)

means that the probability of X exceeding the value n`m, given that it already has

passed m, is the same as X originally exceeding n regardless of the value of m. In

other words, every instant is the beginning of a new random period and the past has

no bearing on the future behavior ofX. The Exponential and Geometric distributions

are the only memoryless continuous and discrete random variables. The memoryless

property explains an important factor of the I equation in the model 1.1: the number

of individuals who remain in the I class at time n ` 1 depends only on In. For with

Geometric distribution, it is not necessary to keep track of the past in order to know

the values at the present.

The Geometric distribution however, might be biologically unrealistic for most

infectious diseases. Plots of the probability density (fi “ PpX “ iq) and survival

functions (pi “ PpX ą iq), depicted in Figure 1.2, support this claim, as a “bell
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more reliable assessments because of their ability to capture more accurately the de-

scription for the expected remaining sojourns. In Chapter 3 Section 3.4.2 this point

is exemplified with specific distributions, for a model with disease control.

A natural and more realistic alternative to the Exponential (Geometric) distri-

bution is the Gamma (Negative Binomial) distribution. In the continuous-time set-

ting the so called “linear chain trick” can be used to reduce the system of integro-

differential equations (obtained under Gamma distribution) to a system of ordinary

differential equations (for details see, for example, [42–46]). The key idea in this

approach is to introduce multiple sub-stages, each of which follows an exponential

distribution. For stochastic models a similar idea is applied to allow the use of

Gamma distribution, while still preserving the Markov property of the process. Such

models were first developed and studied in [47,48] and more recently in [49–51].

A discrete model with arbitrarily infectious period is considered in [52]. How-

ever, the impact of the choice of distribution is not analyzed in this study. More

recently there has been an interest in the literature to study this topic. For instance,

Castillo-Chavez points out in [53] that the choice of specific distributions in a model

is particularly important when the model is used to evaluate disease control strate-

gies such as quarantine and isolation. Moreover, in [54] Wearing et al explain how

substantial bias are introduced by (i) neglecting the latent period, and (ii) assuming

that the latent and/or infectious periods are exponentially distributed. In short, this

unrealistic assumptions give rise to overoptimistic predictions, i.e. underestimation

of R0. It is shown in [55] how parameter estimates depend sensitively on the assump-

tions made concerning the viral life cycle in within-host models. The assumption of

exponential lifespan can lead to underestimates of R0 and overly optimistic predic-

tions on prevention/eradication of the disease. The results in [45, 56] illustrate how

unrealistic assumptions on the distribution of the infection and recovery process may

change considerably some dynamical properties of a model. In particular, detailed

explanations are provided as to how the inclusion of the more realistic Gamma distri-

bution destabilizes the model and changes persistence. A similar conclusion is reached
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in [43, 57, 58] by showing that models with Exponential and Geometric stage distri-

butions may generate misleading assessments on disease control strategies. Thus, it

is important to consider more realistic distributions, as less dispersed distributions

seem to be more appropriate for modeling diseases with longer latent and infectious

periods [54, 59].

1.3 Stochastic SIR models in a closed population

In this section a brief review of stochastic continous-time SIR models with arbi-

trarily distributed infectious period is included. In Section 1.3.1 the use of branching

processes to approximate such models is discussed. Section 1.3.2 is devoted to the

computation and interpretation of the probability of a minor and major epidemic.

The methods and tools used in this section are modified and adapted to analyze the

the discrete-time model developed in Chapter 4.

Two underlying processes define a stochastic SIR model in a closed population:

infection and recovery. The infection process has mostly been modeled by a homoge-

neous Poisson process, i.e., contacts between any two individuals happen at a random

time according to an Exponential random variable with fixed rate. Few models allow

other transmission structures [60], but in recent years researches have incorporated

network structures in the population to make the modeling of infection process more

realistic, see for example [61] and the references therein.

The recovery process, on the other hand, has been given more flexibility and

several models that allow an arbitrarily distributed infectious period have been de-

veloped. In spite of this, the most commonly used assumption is the Exponential

distribution with a fixed parameter (see Figure 1.3). This, together with exponen-

tially distributed contact times, makes the process a continuous time Markov chain

(CTMC). This explains the popularity of such models, first developed and studied in

the 1950s [62,63].
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S
Exppβq�� I

Exp �� R

Figure 1.3. Depiction of the typical CTMC model in which contacts
are modeled by a Poisson process with an exponential infectious pe-
riod.

As discussed in Section 1.2, the exponential distribution offers tractable models

but this assumption is often times biologically unrealistic. Models with Gamma

distributed infectious period have been studied as early as 1964, when the first one

appeared in [47]. More recently, such a model was analyzed and extended in [48].

A fully generalized SIR model that imposes no assumption on the infectious period

was proposed as early as 1978 in [64], and was further analyzed by Ball in [65,66]. In

this framework individuals recover according to an arbitrary (non negative) random

variable with distribution F , for which the first moment exists. A recursive formula

for the exact probability mass function of the final size was provided by using the rep-

resentation developed by Sellke in [67]. Asymptotic results involving the distribution

of the final size and severity of an epidemic (area under the trajectory of infective)

were also presented in [65]. Furthermore, these results were generalized to epidemics

among a heterogeneous population.

1.3.1 Branching process approximation

The early stages of an epidemic is approximated by a properly defined branching

process (BP). The “convergence” of the epidemic model to its associated BP has been

established previously [68–70]. A less formal but more practical exposition can be

found in [28, 50, 51, 71].

In particular, a simple BP can approximate the epidemic when the infectious

period is exponential. If the Exponential distribution is replaced by Gamma, then a

multi-type BP id used instead of a simple BP [28,50]. More generally, a Crump-Mode-
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Jagers BP can be used to approximate the epidemic when the infectious period is not

Exponential nor Gamma distributed. Some properties of these processes are studied

in [72] (see chapter 6). A Crump-Mode-Jagers BP is generally non Markovian, while

simple BP and multi-type BP are.

S
Exppβq�� I F �� R

Figure 1.4. Depiction of an SIR stochastic model in which (i) con-
tacts are modeled by a Poisson process and (ii) infectious period is
arbitrarily distributed, according to X „ F .

Let Sptq, Iptq, Rptq represent the system depicted in Figure 1.4, with constant

population size and Ip0q initial infectious individuals. On the other hand, let Y ptq
represent a Crump-Mode-Jagers BP with Ip0q ancestors. In this BP, each individual x

has a life span λx while the point process ξxptq represents the reproduction (offsprings)

of x. To approximate the number of infectious individuals Iptq by Y ptq we let

• λx “ X, where X is a random variable with distribution F , and

• ξxptq is a poisson process with constant rate β.

Let ζ be the number of offspring produced by an individual in its entire life. Clearly ζ

is equal to the poisson process ξ evaluated at X, thus ζ „ Poisson(βX). In particular

Ppζ “ k|X “ xq “ pβxqke´βx

k!
(1.7)

It is known that either Y ptq Ñ 8 or Y ptq Ñ 0 as t Ñ 8. This asymptotic behavior

strongly depends of the mean value of ζ. If Epζq ă 1, Y ptq is called subcritical and

P plimtÑ8 Y ptq “ 0q “ 1. On the other hand, if Epζq ą 1, Y ptq is called supercritical

and P plimtÑ8 Y ptq “ 0q ă 1.

Generally speaking, a threshold condition for deterministic models is well known:

if R0 ă 1 then there is no epidemic, and if R0 ą 1 then an epidemic can occur.
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On the other hand, for stochastic models, is harder to define what is meant by an

“epidemic”. For instance, unlike the deterministic Îptq, the stochastic Iptq can (and

most of the times will) go up and down several times before converging to zero. This

motivated the use of the BP as an approximation for stochastic epidemic processes.

In the literature, the probabilities of a minor and major epidemic are defined as

Ppmajor epidemicq “ P

´
lim
tÑ8 Y ptq “ 8

¯
, Ppminor epidemicq “ P

´
lim
tÑ8 Y ptq “ 0

¯
.

For ease of notation, let P0 “ P(minor epidemic). Notice that, with probability one

Y ptq either vanishes or goes to infinity as t Ñ 8. Therefore, Ppmajor epidemic) “ 1 ´ P0.

The following theorem from the theory of branching processes gives an explicit for-

mula to compute P0

Theorem 1.3.1 Let φ be the moment generating function of the infectious period X

φpsq “ Epe´sXq “

$’’’&
’’’%

ż 8

0

e´sxfpxqdx if X is continuous,

8ÿ
k“1

e´skpxk
if X is discrete,

(1.8)

A major epidemic can only occur if R0 “ βEpXq ą 1, in which case this happens

with probability 1 ´ P0. Moreover, P0 “ qI0, where q is the smallest root of equation

φpβp1 ´ sqq “ s. (1.9)

A complete proof (not included here) can be found in [66, 68, 72]. Intuition for

equation (1.9) comes from the fact that P0 is the smallest root of the reproduction

generating function of the BP Y ptq, given by

s ÞÑ Epsζq s P r0, 1s

The key in finding an expression for Epsζq is writing

Ppζ “ kq “ E
`
E

`
Itζ“ku|X˘˘ “ E

ˆpβXqke´βX

k!

˙
.
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Then, (see 6.4.4 in [73] for details)

Epsζq “
8ÿ

k“0

skPpζ “ kq “
8ÿ

k“0

skE

ˆpβXqke´βX

k!

˙
“

8ÿ
k“0

E

ˆpsβXqke´βX

k!

˙

“ E

˜ 8ÿ
k“0

psβXqke´βX

k!

¸
“ E

˜
e´βX

8ÿ
k“0

psβXqk
k!

¸
“ E

`
e´βXesβX

˘

“ E
`
e´βp1´sqX˘

.

A generalization of Theorem 1.3.1 is used in Section 4.2.2, Chapter 4 to compute

the probability of a minor epidemic for our discrete metapopulation model.

1.3.2 The probability of a minor and major epidemic

An important feature of any BP is the so called extinction probability, i.e. the

probability that the process vanishes as t Ñ 8. This number has been widely studied

and its exact value can be computed. For us, this means that it is possible to have an

expression for P0. Theorem 1.3.1 gives a “recipe” to compute P0 that depends on the

distribution F through its mgf φ, given by (1.8), and the initial number of infected

Ip0q. From basic probability theory it is known that ϕpsq “ φ
`
βp1´ sq˘

is increasing

and convex in the interval r0, 1s. Also, ϕp0q ą 0, ϕ1p1q “ R0 and ϕp1q “ 1 (see Fig

1.7). If R0 ă 1 then s “ 1 is the only root of ϕpsq “ s, but if R0 ą 1 then there exist

another root, smaller than one. Due to the geometric properties of ϕ, the iteration

method is a perfect candidate to numerically find this root.

Once the parameters β and EpXq have been chosen, R0 and P0 can be computed.

If R0 ă 1 then P0 “ 1, but if R0 ą 1 then the value of P0 depends on the distribution

chosen forX. Although possible, it is unlikely that different distributions will produce

the same P0. To investigate how the choice of the distribution F may affect the value

of P0, we compare several models with different distributions F . We consider two

models to be comparable if they have the same parameters β and EpXq, and thus the

same R0.
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Four examples of comparable models are considered bellow. Then, assuming that

R0 ą 1, the q value produced for each model, see equation (1.9), are computed. Let

q be denoted by qpEq, qpG,kq, q and qppq in examples A–D, respectively.

A. X „ Exponentialpγq. In this case, EpXq “ 1{γ, R0 “ β{γ, φpsq “ γ
γ`s

and

qpEq “ 1

R0

.

B. X „ Gammapk, kγq. In this case, EpXq “ 1{γ, R0 “ β{γ, φpsq “
´

kγ
kγ`s

¯k

,

and qpG,kq is the smallest root of

1`
1 ` R0

1´s
k

˘k “ s, s P r0, 1s.

C. X “ 1{γ, i.e. fixed duration. In this case EpXq “ 1{γ, R0 “ β{γ, φpsq “ e´s{γ

and q is the smallest root of the equation

e´R0p1´sq “ s, s P r0, 1s.

D. X is discrete with finitely many points and mass function equal to

PpX “ xq “

$’&
’%

pk if x “ xk, k “ 1, 2, ¨ ¨ ¨ , n
0 otherwise

Then, from equation (1.8), φpsq “
nř

k“1

pke
´sxk , φpβp1 ´ sqq “

nř
k“1

pke
´βp1´sqxk

and q is the smallest root of

nÿ
k“1

pke
´βp1´sqxk “ s, s P r0, 1s. (1.10)

For instance, case D represents empiric data, in which case typically xk “ k; pk is

equal to the proportion of people who recover after k units of time; and

φ
`
βp1 ´ sq˘ “

nÿ
k“1

pke
´βp1´sqk.
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Figure 1.5. Example of X with finite support (D) and parameters
R0 “ 1.946735, β “ 0.25, EpXq “ 7.786942

Figures 1.5 and 1.6 present a “fictitious” examples in which X could be empiric

data. Figures 1.5a) and 1.6a) show the probability mass function PpX “ kq, while
1.5b) and 1.6b) are plots of the cumulative function PpX ď kq. Notice that the

infectious period, X in Figure 1.6 is bimodal. Such X would be extremely difficult

to model if we restrict to commonly used families of distributions. In particular,

Exponential and Gamma distributions are a terrible fit for a distribution like this.
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Figure 1.6. Example of bimodal X with finite support (D) and R0 “
1.623, β “ 0.15, EpXq “ 10.82
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The four examples above illustrate how different the probability of no epidemic

can be, even when the models are comparable. The relationship between qpEq, qpG,kq

and q has been studied before, see for example [48]. It is known that if R0 ą 1, then

@ k ě 2, k P Z we have

q ă qpG,k`1q ă qpG,kq ă qpEq ă 1 and lim
kÑ8 qpG,kq “ q.

Figure 1.7 suggest that q may be the smallest possible value for q among other com-

parable models. The following result proves this conjecture.
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Exponential
Gamma, k=2
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Gamma, k=6
Fixed duration

Figure 1.7. Graphic of φ
` ´ βp1 ´ sq˘

for comparable models A–C
with: a) R0 “ 0.9, b) R0 “ 1.5 and c) R0 “ 2.

Theorem 1.3.2 If R0 ą 1 then the model in which X is constant (fixed duration)

predicts the smallest probability of minor epidemic.

Proof Let X be the constant m and X be any arbitrary comparable infectious

period. This is, EpXq “ EpXq “ m. Denote by φ and φpsq “ e´sm the mgf of X

and X, respectively. Let q, q P p0, 1q be the smallest root of φ
`
βp1 ´ sq˘ “ s and

φ
`
βp1´sq˘ “ s. Apply Jensen’s inequality to the convex function x ÞÑ e´sx to obtain

e´sEpXq ď Epe´sXq ñ φpsq ď φptq.
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This, implies that q ď φpβp1´ qqq and q ě φpβp1´ qqq. Let ϕpsq “ φpβp1´ sqq ´ s “
e´R0p1´sq ´ s, clearly f is continuous and strictly convex. Since ϕp0qϕpqq ď 0, f must

vanish at some s1 P p0, qs. Finally, since q is the smallest zero of f , it follows that

q ď q.

Theorem 1.3.2 gives a lower bound for the value of q. It turns out it is also possible

to find an upper bound, as shown in the following result

Theorem 1.3.3 Consider all comparable models for which EpXq “ m (thus R0 “
βm) and VarpXq ď σ2. The probability of a minor epidemic is bounded above by q̄,

the smallest root of

φ̄psq “ σ2

m2 ` σ2
` m2

m2 ` σ2
e´βp1´sqm2`σ2

m “ s, s P r0, 1s.

This upper bound is attained when the infectious period X̄ is the two point r.v.

X̄ “

$’&
’%

0 with probability σ2

m2`σ2 ,

m2`σ2

m
with probability m2

m2`σ2 .

The proof of this theorem, based on a result in [74], is not included here because of

the similarities with the proof of Theorem 4.3.3. See details at the end of Section

4.3.2.
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Figure 1.8. Upper and lower bounds for φ
`
βp1 ´ sq˘

as given by
Theorems 1.3.2 and 1.3.3. The points ‚ and ˛ contain all possible
values for q for comparable models with β “ 0.1875, R0 “ 1.5 and
VarpXq ď 64.
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2. DISCRETE EPIDEMIC MODELS WITH

ARBITRARILY DISTRIBUTED INFECTIOUS PERIOD

The work presented in this chapter was done in collaboration with Feng and van

den Driessche. Most of the results and ideas in this chapter were published in the

Journal of Difference Equations and Applications [57]. My contribution includes

model formulation and analysis as well as the writing of the manuscript. All models

considered in this chapter are deterministic and for discrete-time.

2.1 Introduction

In this chapter several SEIR-type of models are introduced and analyzed. We

begin by presenting models without control (Sections 2.2 and 2.3) and finish by an-

alyzing a model with a control measure (isolation). The focus of this chapter is on

the development of a general framework for formulating and analyzing discrete-time

models that allow for the inclusion of arbitrarily distributed waiting times.

It is known that the 2.14 property (see equations (1.6) and (2.14)) of the Geometric

distribution (an analogue property of the exponential distribution in continuous-time

models) may generate biased and possibly misleading evaluations on disease control

strategies; see, e.g., [21, 43]. It is also known that less dispersed distributed stages

seem to be more appropriate for modeling diseases with longer latent and infectious

periods [45, 54–56,59], see Section 1.2 for a discussion along these lines.

With this is mind, in Section 2.2.2 a model that uses a shifted negative binomial

distribution for the infectious period is presented. In Section 2.2.3, we fully gener-

alized the model so that any discrete distribution with support in t1, 2, 3, . . . ,Mu
can be used to model the infectious period. At this level of generality, the model is

modified to include two strains (Section 2.3.1) or heterosexual transmission (Section
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2.3.2). Finally, in Section 2.4, we consider a model with disease control in the form

of isolation/hospitalization of infectious individuals. In all models demographic pro-

cesses, such as birth and death, are ignored and the total population size is assumed

to be the constant N .

In order to bring into the context of epidemiological applications, R0 and RC

are computed and interpreted. When Geometric distribution is assumed, the next

generation matrix approach is straightforward to apply, but when another distribution

is used this is no longer the case. In this chapter we explore different ways to modify

this approach under those circumstances and show that our formulas are consistent

with those obtained from biological considerations.

Throughout these ideas can be extrapolated to allow an arbitrary distribution of

the latent period as well, but in this chapter we focus on the infectious period only.

In Chapter 3 a model with arbitrary distribution for latent, infectious, quarantine

and isolation periods is considered.

2.2 SIER models with various distributions and computation of R0

In this section SEIR-type of models with several distributions for the infectious

period are considered, including the case of a general distribution. All distributions

are assumed to have the same mean to allow for the comparison of model results.

The outcomes of these models are compared in terms of the reproduction number R0

(or RC) or final epidemic size.

2.2.1 A simple SEIR model with Geometric distribution

We begin by presenting a standard SEIR model inspired by the work of Brauer

et al in [39]. The distribution used to model the latent and infectious stages is Geo-

metric, which is equivalent to assuming that individuals exit a stage with a constant

probability at each time step. This assumption is commonly encounter throughout

the literature, as it makes the model easier to formulate and analyze.
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Table 2.1.
List of parameters and symbols commonly used in Chapter 2

Symbols Definitions

β Transmission parameter

βi Stage dependent transmission parameter

α Exit probability of E class, α P p0, 1q
γ Exit probability of I class, γ P p0, 1q, Geometric model (2.1)

φ, φi Exit probability of I subclasses, φ, φi P p0, 1q, sNB model (2.6), (2.9)

ρ Reduction factor of H class (Section 2.4)

Y Length of the infectious period

Yw Length of the infectious period, strain

(w “ s, r) or sex (w “ f,m) dependent

W Age since infection at which an individual is isolated

fi Probability mass function of Y

pi Survival function of Y

pw,i Survival function Yw, w “ s, r (strain) or w “ f,m (sex)

qi Survival function of W

In the equations bellow Sn, En, In and Rn represent the number of susceptible,

exposed, infected and recovered at time n P t0, 1, 2, . . . u. A complete list of symbols

and parameters can be found in Table 3.2.

Sn`1 “ SnGpInq, GpInq “ e´βIn{N

En`1 “ Snr1 ´ GpInqs ` p1 ´ αqEn

In`1 “ αEn ` p1 ´ γqIn
Rn`1 “ Rn ` γIn, n “ 1, 2, . . .

(2.1)

Notice that, since the total population is constant, the last compartment can be

dropped from the system. In the future, an equation for R will not be included since
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we could easily let Rn “ N ´ Sn ´ En ´ In. A transition diagram for this model is

shown in Figure 2.1.

S
β �� E α �� I

γ �� R

Figure 2.1. Disease transmission diagram for model (2.1). The con-
stant exit probabilities from E and I are α and γ, respectively.

The survival probability of a susceptible individual from being infected, per unit

of time, given the per capita infection rate is given by GpInq “ e´βIn{N . See equation

(1.2) in Chapter 1, Section 1.1 for details.

Under constant exit probability, the proportion of individuals leaving the I class

after exactly i days is fi “ p1 ´ γqi´1γ for i P t1, 2, 3, . . . u, this is known as the

probability mass function. The proportion of individuals who stay more that i days

in the I class, also called survival probability, is

pi “
8ÿ

k“i`1

p1 ´ γqk´1γ “ p1 ´ γqi, i P t0, 1, 2 ¨ ¨ ¨ u (2.2)

This is, under constant exit probability the number of days spent in the I compart-

ment follows a Geometric distribution with parameter γ. Figure 2.2.1 depicts the

Geometric mass and survival functions corresponding to different parameter values

γ. The average time spent in the I class is

1

γ
“

8ÿ
k“1

ifi “
8ÿ

k“0

pi (2.3)

For the computation of R0, we adopt the method described in [17] (see Chapter

1 Section 1.1.1). To use the approach of next-generation matrix, the disease stages

(S,E and I) at time n ` 1 must be written in the form

r En`1, In`1, Sn`1 sT “ Mr En, In, Sn sT ,

Then, F (the matrix associated with new infections) and T (the matrix associated

with other transitions) are calculated on the infected variables only evaluated at the
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respectively. See that 
pT q “ maxt1 ´ α, 1 ´ γu ă 1, and

pI ´ T q´1 “
»
– α 0

´α γ

fi
fl

´1

“
»
–1{α 0

1{γ 1{γ

fi
fl ñ F pI ´ T q´1 “

»
–β

γ
β
γ

0 0

fi
fl .

Finally,

R0 “ 

`
F pI ´ T q´1

˘ “ β

γ
, (2.5)

Notice that R0 is the product of the average number of secondary infections pro-

duced per day pβq and the mean infectious period p1{γq. Since latent individuals do

not transmit disease, the latent period plays no role in the final expression of the

reproduction number. Because of this, Geometric distribution was used to model the

latent period (E class), and focus only on the distribution of the infectious period

(transition from I to R).

2.2.2 The case of negative binomial distribution

For continuous-time models, the Gamma distribution is usually considered to be

more appropriate to model the infectious period than the Exponential distribution.

In fact, the latter is a special case of the former, obtained when the shape parameter

is equal to one. A discrete equivalent of the above relation occurs with the Geometric

and the shifted Negative Binomial distribution (sNB).

The “linear chain trick” used in continuous time models consists in breaking the

infectious class I into subclasses Ipkq (see, for example, [42–46, 71]). This relies on

the fact that a Gamma is the sum of iid Exponential random variables. Such ideas

can also be applied to our discrete mode, so that the I class is separated into k

different sub-stages. The idea behind this is to recover the infectious period as a

sum of k geometric distributions. The transition diagram for this modified model is

given in Figure 2.3. Ipiq represents the ith sub-stage corresponding to the ith geometric

distribution in the sNB distribution. Individuals in the infectious classes can progress

with probability φ or satay with probability 1 ´ φ. For this model, it is shown that
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the structure of R0 remains the same, although the formula for the mean infectious

period can be different.

S �� E α �� Ip1q φ �� ¨ ¨ ¨ φ �� Ipkq φ �� R

Figure 2.3. A transition diagram for a model with infectious sub-
classes. With this structure the infectious period follows a sNB. The
superscript i represents the ith geometric sub-stage for the negative
binomial distribution.

The system

Sn`1 “ Sne
´βrIp1q

n ` ¨¨¨ `I
pkq
n s{N

En`1 “ Sn

”
1 ´ e´βrIp1q

n ` ¨¨¨ `I
pkq
n s{N

ı
` p1 ´ αqEn

I
p1q
n`1 “ αEn ` p1 ´ φqIp1q

n

I
pjq
n`1 “ φI

pj´1q
n ` p1 ´ φqIpjq

n , 2 ď j ď k

(2.6)

corresponds to the transition diagram depicted in Figure 2.3. At any given time the

exit probability of the class Ipiq is φ, this restriction is relaxed at the end of this

section.

The proportion of population spending exactly i days in the infectious compart-

ments is equal to fi “ PpX1 ` ¨ ¨ ¨ ` Xk “ iq, where Xj „ Geompφq. From basic

probability theory [75–77]

fi “
ˆ
i ´ 1

i ´ k

˙
φkp1 ´ φqi´k, i “ k, k ` 1, k ` 2, . . . (2.7)

See that, an infected individual spends at least k days in the infectious classes (one

day per subclass), which explains the φk factor above. The factor p1´φqi´k accounts

for the remaining i ´ k “stay days”. Finally, there are
`
i´1
i´k

˘
ways to distribute this

event. The distribution given in (2.7) corresponds to a shifted Negative Binomial

(sNB) with parameters pk, φq and support on tk, k ` 1, . . . u. When k “ 1 and γ “ φ

this distribution corresponds to a Geometric with parameter γ. The mean infectious
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Stage dependent transmission and exit probability

If epidemiological data suggest that either the exit probabilities or transmission

parameters are stage dependent, the model (2.6) can easily be modified to include

this dependance. The system

Sn`1 “ Sne
´rβ1I

p1q
n ` ¨¨¨ `βnI

pkq
n s{N

En`1 “ Sn

”
1 ´ e´rβ1I

p1q
n ` ¨¨¨ `βnI

pkq
n s{N

ı
` p1 ´ αqEn

I
p1q
n`1 “ αEn ` p1 ´ φ1qIp1q

n

I
pjq
n`1 “ φj´1I

pj´1q
n ` p1 ´ φjqIpjq

n , 2 ď j ď k

(2.9)

incorporate this features. The infectious period however is no longer a sNB but a

more “general sum” of geometric distributions with different parameters φi.

The pk ` 1q ˆ pk ` 1q new infection matrix F and the transition matrix T matrix

are given by

F “

»
——————–

0 β1 ¨ ¨ ¨ βk´1 βk

0 0 ¨ ¨ ¨ 0 0
...

...
...

...

0 0 ¨ ¨ ¨ 0 0

fi
ffiffiffiffiffiffifl

and T “

»
————————————–

1 ´ α 0 0 ¨ ¨ ¨ 0 0

α 1 ´ φ1 0 ¨ ¨ ¨ 0 0

0 φ1 1 ´ φ2 ¨ ¨ ¨ 0 0

0 0 φ2 ¨ ¨ ¨ 0 0
...

...
...

...
...

0 0 0 ¨ ¨ ¨ φk´1 1 ´ φk

fi
ffiffiffiffiffiffiffiffiffiffiffiffifl
.

Simple calculations yield

R0 “
kÿ

i“1

βi

φi

. (2.10)

If βi “ β and φi “ φ, then equation (2.10) reduces to (2.8).

2.2.3 A general model with arbitrary distribution

In this section we develop a discrete SEIR model with arbitrarily distributed in-

fectious period and compute R0 using the next generation matrix approach. Several
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models of this nature have been developed and analyzed in a continuous time frame-

work (see for example [43]). These models however, are rather complex even without

control measures like isolation or hospitalization, involving a set of integral-differential

equations

S 1 “ ´ β
N
SI

E 1 “ β
N
SI ´ αE

Iptq “
ż t

0

αEpsqP pt ´ sqds
The discrete counterpart of the model above is much simpler, easy to understand and

interpret, giving it an edge over continuous-time models. If we take under considera-

tion the fact that data is collected at most daily, we see that discrete models offer an

advantage for biologists and public health researchers.

Consider an arbitrary discrete distribution on N with compact support. In other

words, if Y represents the length of the infectious period of and average individual in

the population, let

fi “ PpY “ iq and pi “ PpY ą iq, i P t1, 2, . . . ,Mu.

By definition fi P r0, 1s, p0 “ 1, pM “ 0,
řM

i“1 fi “ 1 and pi “ ř8
k“i`1 fi “ řM

k“i`1 fi.

The mean infectious period is given by

EpY q “
Mÿ
i“1

ifi “
Mÿ
i“0

pi “
M´1ÿ
i“0

pi (2.11)

The discrete-time model with survival function tpiu for the infectious period, de-

picted in Figure 2.5 is given by the set of difference equations

Sn`1 “ Sne
´ β

N
In ,

En`1 “ Snp1 ´ e´ β
N
Inq ` p1 ´ αqEn

In`1 “ in`1 ` inp1 ` ¨ ¨ ¨ ` i1pn, ik “ αEk´1

(2.12)

with initial conditions S0 “ N ´ E0, E0 ą 0, I0 “ 0. Here, ik is the input to the I

class at time k and in`1´jpj is the number of individuals who entered the I class j
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time units ago and are still in I at time n ` 1. The biological interpretation of the

reproduction number R0 leads once again to the formula

R0 “ βEpY q. (2.13)

S �� E α �� I

distribution

pi

�� R

Figure 2.5. Disease transmission diagram with an arbitrarily dis-
tributed infectious period.

Computing R0 using the next generation matrix approach for this system presents

some challenges since, without the memoryless property

PpY ą n ` m|Y ą mq “ PpY ą nq (2.14)

of the geometric distribution, it is necessary to keep track of the past in order to know

the values at the present. Since the disease stages S,E and I, at time n ` 1 cannot

be written in the form

r En`1, In`1, Sn`1 sT “ M `r En, In, Sn sT ˘
, M : R3 Ñ R

3

it is impossible to use the next-generation matrix method directly, see Chapter 1

Section 1.1.1 . To overcome this difficulty we can consider multiple I stages, an

approach similar to the “linear chain trick”. To the best of our knowledge, this

technique has not been used in discrete models.

Since In in (2.12) depends on other variables besides In and En, the subclasses

Ip1q, . . . , IpMq are introduced, see Figure 2.6. The superscript i corresponds to the

age-since-infection. Notice that these subclasses are different from those in the sNB

model (2.6) and (2.9), because an individual can only stay in Ipiq for one unit of time,

and must either progress to Ipi`1q or recover.
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S �� E α �� Ip1q ��

��

¨ ¨ ¨ ��

��

IpMq

1��

R

Figure 2.6. A transition diagram for a model with arbitrarily dis-
tributed infectious period. The superscript i in Ipiq represents age
since infection.

An equivalent system for (2.12) is given by

Sn`1 “ Sne
´βpIp1q

n `¨¨¨`I
pMq
n q{N .

En`1 “ Sn

”
1 ´ e´βpIp1q

n `¨¨¨`I
pMq
n q{N

ı
` p1 ´ αqEn

I
p1q
n`1 “ αEn, I

p2q
n`1 “ p1I

p1q
n

I
pjq
n`1 “ pj´1

pj´2
I

pj´1q
n , 3 ď j ď M

(2.15)

Notice that the transition probability from the pj ´ 1qth class to the jth class is given

by the probability that an infectious individual is still infectious j time units after

acquiring the disease pPpY ą j´1q “ pj´1q given that the person remained infectious

j´1 time units ago, pPpY ą j´2q “ pj´2q. Thus, the proportion of individuals in the

pj ´ 1qth class that progress to jth class is pj´1{pj´2, while the remaining proportion,

p1 ´ pj´1{pj´2q, go to the R compartment. A disease diagram for (2.15) is depicted

in Figure 2.6.

The computation of R0 in this case is more challenging. Although the next gen-

eration matrix method cannot be applied to the system (2.12), it can be used to

compute R0 for the system (2.15). The pM ` 1q ˆ pM ` 1q matrices F and T are



31

F “

»
——————–

0 β ¨ ¨ ¨ β

0 0 ¨ ¨ ¨ 0
...

...
...

0 0 ¨ ¨ ¨ 0

fi
ffiffiffiffiffiffifl

and T “

»
————————————–

1 ´ α 0 0 ¨ ¨ ¨ 0 0

α 0 0 ¨ ¨ ¨ 0 0

0 p1 0 ¨ ¨ ¨ 0 0

0 0 p2
p1

¨ ¨ ¨ 0 0
...

...
...

...
...

0 0 0 ¨ ¨ ¨ pM´1

pM´2
0

fi
ffiffiffiffiffiffiffiffiffiffiffiffifl
.

Thus,

F pI ´ T q´1 “

»
———————–

β
Mř
i“1

βipi´1 β
Mř
i“1

pi´1 ¨ ¨ ¨ β

0 0 ¨ ¨ ¨ 0
...

...
...

0 0 ¨ ¨ ¨ 0

fi
ffiffiffiffiffiffiffifl
.

Therefore

R0 “ 
pF pI ´ T q´1q “ β
Mÿ
i“1

pi´1 “ βEpY q (2.16)

which is consistent with the formula given in (2.13).

Stage dependent transmission

Just like in the second part of Section 2.2.2, transmission parameters can depend

on age since infection. Let βi be the transmission parameter for the substage Ipiq. In

this case (2.15) becomes

Sn`1 “ Sne
´pβ1I

p1q
n `¨¨¨`βnI

pMq
n q{N .

En`1 “ Sn

”
1 ´ e´pβ1I

p1q
n `¨¨¨`βnI

pMq
n q{N

ı
` p1 ´ αqEn

I
p1q
n`1 “ αEn, I

p2q
n`1 “ p1I

p1q
n

I
pjq
n`1 “ pj´1

pj´2
I

pj´1q
n , 3 ď j ď M

(2.17)
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In this case,

F “

»
——————–

0 β1 β2 ¨ ¨ ¨ βM

0 0 0 ¨ ¨ ¨ 0
...

...
...

...

0 0 0 ¨ ¨ ¨ 0

fi
ffiffiffiffiffiffifl

and T “

»
————————————–

1 ´ α 0 0 ¨ ¨ ¨ 0 0

α 0 0 ¨ ¨ ¨ 0 0

0 p1 0 ¨ ¨ ¨ 0 0

0 0 p2
p1

¨ ¨ ¨ 0 0
...

...
...

...
...

0 0 0 ¨ ¨ ¨ pM´1

pM´2
0

fi
ffiffiffiffiffiffiffiffiffiffiffiffifl
.

Therefore,

F pI ´ T q´1 “

»
————————–

Mÿ
i“1

βipi´1

Mÿ
i“1

βipi´1 ¨ ¨ ¨ βM

0 0 ¨ ¨ ¨ 0
...

...
...

0 0 ¨ ¨ ¨ 0

fi
ffiffiffiffiffiffiffiffifl

and

R0 “ 
pF pI ´ T q´1q “
Mÿ
i“1

βipi´1. (2.18)

If βi “ β, then formula (2.18) reduces to (2.16).

To interpret (2.18), recall that that for a given function h

Mÿ
m“1

PpY “ mqhpmq “ ErhpY qs.

This follows from the definition of expectation and the fact that Y has an upper

bound M . In particular, let hpmq “ řm
i“1 βi, to obtain

R0 “
M´1ř
i“0

βi`1pi “
M´1ř
i“0

βi`1

Mř
m“i`1

PpY “ mq “
M´1ř
i“0

Mř
m“i`1

βi`1PpY “ mq

“
Mř

m“1

m´1ř
i“0

βi`1PpY “ mq “
Mř

m“1

„
PpY “ mq

mř
i“1

βi

j
“ E

ˆ
Yř
i“1

βi

˙
.

In plane words, R0 is the average of adding the transmission parameters for as long

as the individual is infectious.
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2.3 Models with more complexities and computation of R0

For the models considered in the previous section, the computation of R0 is rela-

tively easier due to the fact that the next generation matrix has rank 1. When models

involve more complexities, the next generation matrix may have rank greater than 1.

a couple of such examples are presented in this section.

2.3.1 A two-strain pathogen model

Building from the equivalent models (2.12) and (2.15), we now consider two para-

site strains (e.g., drug-sensitive and drug-resistant strains) that compete for a single

susceptible population. Assume that the infectious periods for both strains follow

arbitrary discrete (bounded) distributions denoted by Ys and Yr, respectively. Here

the subscript s stands for the sensitive strain and the subscript r stands for resistant

strain. Suppose that Mw for w “ s, r are the maximum length of the infectious period

Yw. Let

ps,i “ PpYs ą iq and pr,i “ PpYr ą iq.

The model equations under this circumstances are

Sn`1 “ Sne
´

“ řMs
i“1 βs,iI

piq
s,n ` řMr

i“1 βr,iI
piq
r,n

‰
{N .

Ew,n`1 “ Sn

“
1 ´ e´ řMw

i“1 βw,iI
piq
w,n{N‰ ` p1 ´ αwqEw,n

I
p1q
w,n`1 “ p1 ´ αwqEw,n

I
p2q
w,n`1 “ pw,1I

p1q
w,n

I
pjq
w,n`1 “ pw,j´1

pw,j´2

Ipj´1q
w,n 3 ď j ď Mw, w “ s, r

(2.19)

Notice that the transmission parameter depend on the age since infection, and the

exit probability of the latent class, αw, is strain dependent. A transition diagram is

illustrated in Figure 2.7.
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Figure 2.7. A transition diagram for the model with two strains. The
subscripts s and r denote drug-sensitive and drug-resistant strains,
respectively.

The corresponding F and T matrices for model (2.19) are

F “
»
–Fs 0

0 Fr

fi
fl and T “

»
–Ts 0

0 Tr

fi
fl ,

where Fw and Tw (w “ s, r) are the pMw ` 1q ˆ pMw ` 1q matrices

Fw “

»
————————————–

0 βw,1 βw,2 ¨ ¨ ¨ βw,Mw

0 0 0 ¨ ¨ ¨ 0

0 0 0 ¨ ¨ ¨ 0

0 0 0 ¨ ¨ ¨ 0
...

...
...

...

0 0 0 ¨ ¨ ¨ 0

fi
ffiffiffiffiffiffiffiffiffiffiffiffifl
, Tw “

»
————————————–

1 ´ αw 0 0 ¨ ¨ ¨ 0 0

αw 0 0 ¨ ¨ ¨ 0 0

0 pw,1 0 ¨ ¨ ¨ 0 0

0 0 pw,2

pw,1
¨ ¨ ¨ 0 0

...
...

...
...

...

0 0 0 ¨ ¨ ¨ pw,Mw´1

pw,Mw´2
0

fi
ffiffiffiffiffiffiffiffiffiffiffiffifl
.

Then

F pI ´ T q´1 “
»
–FspI ´ Tsq´1 0

0 FrpI ´ Trq´1

fi
fl ,

where

FwpI ´ Twq´1 “

»
———————–

Mwř
i“1

βw,ipw,i´1

Mwř
i“1

βw,ipw,i´1 ¨ ¨ ¨ βw,Mw

0 0 ¨ ¨ ¨ 0
...

...
...

0 0 ¨ ¨ ¨ 0

fi
ffiffiffiffiffiffiffifl
, w “ s, r.
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Since FwpI ´ Twq´1 reduces to a block diagonal matrix, with each of the two blocks

having one positive eigenvalue, it follows that

R0 “ 
pF pI ´ T q´1q “ max

"
Msř
i“1

βs,i ps,i´1 ,
Mrř
i“1

βr,i pr,i´1

*

“ max

"
E

ˆ
Ysř
i“1

βs,i

˙
, E

ˆ
Yrř
i“1

βr,i

˙*

2.3.2 A two-gender model for sexually transmitted infections

In this section we introduce a system that includes two sub-populations, female

and male, with heterosexual mixing (i.e., no sexual contacts between individuals of

the same sex). Assume that the infectious periods for female and male populations

follow arbitrary discrete (bounded) distributions denoted by Yf and Ym, respectively.

The subscripts f and m stand for female and male, respectively. Let

pf,i “ PpYf ą iq and pm,i “ PpYm ą iq.

Denoted by Mw (for w “ f,m) the maximum length of the infectious period. The

model equations are

Sw,n`1 “ Sw,ne
´ řMw̃

i“1 βw̃,iI
piq
w̃,n{N ,

Ew,n`1 “ Sw,n

“
1 ´ e´ řMw̃

i“1 βw̃,iI
piq
w̃,n{N‰ ` p1 ´ αwqEw,n

I
p1q
w,n`1 “ αwEw,n

I
p2q
w,n`1 “ pw,1I

p1q
w,n

I
pjq
w,n`1 “ pw,j´1

pw,j´2
I

pj´1q
w,n , 3 ď j ď Mw, w “ f,m.

(2.20)

Here, w̃ represents the opposite sex of w. The constant βf̃ ,i (βm̃,i) is the transmission

parameter to a female (male) by infectious male (female) individuals with age since

infection i.

The corresponding F and T matrices for (2.20) are

F “
»
– 0 Fm

Ff 0

fi
fl , T “

»
–Tf 0

0 Tm

fi
fl ,
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where Fw and Tw (w “ f,m) are the pMw ` 1q ˆ pMw ` 1q matrices

Fw “

»
——————–

0 βw,1 βw,2 ¨ ¨ ¨ βw,Mw

0 0 0 ¨ ¨ ¨ 0
...

...
...

...

0 0 0 ¨ ¨ ¨ 0

fi
ffiffiffiffiffiffifl
, Tw “

»
————————————–

1 ´ αw 0 0 ¨ ¨ ¨ 0 0

αw 0 0 ¨ ¨ ¨ 0 0

0 pw,1 0 ¨ ¨ ¨ 0 0

0 0 pw,2

pw,1
¨ ¨ ¨ 0 0

...
...

...
...

...

0 0 0 ¨ ¨ ¨ pw,Mw´1

pw,Mw´2
0

fi
ffiffiffiffiffiffiffiffiffiffiffiffifl
.

Then,

F pI ´ T q´1 “
»
– 0 FmpI ´ Tmq´1

Ff pI ´ Tf q´1 0

fi
fl

where

FwpI ´ Twq´1 “

»
———————–

Mwř
i“1

βw,ipw,i´1

Mwř
i“1

βw,ipw,i´1 ¨ ¨ ¨ βw,Mw

0 0 ¨ ¨ ¨ 0
...

...
...

0 0 ¨ ¨ ¨ 0

fi
ffiffiffiffiffiffiffifl
, w “ f,m.

The matrix F pI ´ T q´1 has rank 2 and the only two non-zero eigenvalues are

˘
gffe˜

Mfÿ
i“1

βf,i pf,i´1

¸ ˜
Mmÿ
i“1

βm,ipm,i´1

¸
.

It follows that

R0 “ 
pF pI ´ T q´1q “
gffe˜

Mfř
i“1

βf,i pf,i´1

¸ ˆ
Mmř
i“1

βm,ipm,i´1

˙

“
gffeE

˜
Yfř
i“1

βf,i

¸
E

ˆ
Ymř
i“1

βm,i

˙

Secondary infections need to be computed from one female (male) to other females

(males) through the male (female) population. This is the reason behind the square

root in the formula above. Let

Rpfmq
0 “ E

˜
Yfÿ
i“1

βf,i

¸
, Rpmfq

0 “ E

˜
Ymÿ
i“1

βm,i

¸
.
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These quantities describe the average number of secondary infections an infectious

female (male) individual can produce in a susceptible male (female) population during

her(his) infectious period. Thus, R0 is the geometric mean of Rpfmq
0 and Rpmfq

0 .

2.4 SEIR models with disease control and derivation of RC

In this section, the system (2.15) in Section 2.2.3 is modified to include disease

control in the form of isolation/hospitalization. Continuous-time models with arbi-

trarily distributed disease stages and control have been studied before, consider for

example

S 1 “ ´ δ
N
SrI ` p1 ´ ρqHs

E 1 “ δ
N
SrI ` p1 ´ ρqHs ´ p1 ´ αqE

Iptq “
ż t

0

p1 ´ αqEpsqloooooomoooooon
input to I at time s

¨ P pt ´ sqQpt ´ sqlooooooooomooooooooon
still in I at time t

ds

Hptq “
ż t

0

ż τ

0

p1 ´ αqEpsqr´P pτ ´ sqQ1pτ ´ sqdsloooooooooooooooooooooooomoooooooooooooooooooooooon
input to H at time τ

P pt ´ τ |τ ´ sqlooooooomooooooon
still in H at time t

dτ

“
ż t

0

p1 ´ αqEpsqP pt ´ sqr1 ´ Qpt ´ sqsds.

This model allows the use of distributions P and Q for the infectious period and

isolation time, respectively. Unless P and Q are Exponential or Gamma distributions,

we are left with a set of integral-differential equations that a might be hard to interpret

implement. Models along this lines are presented in [41] and [43]. Several findings of

the latter study suggest that the use of more realistic assumptions on the distribution

of the infectious period can be critical when isolation/hospitalization of infectious

individuals is included in the model.

With this in mind, a discrete model capturing such features is developed in this

section. A transition diagram is described in Figure 2.8. The isolated (or hospitalized)
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S �� E α �� I distrib
pi

��

distrib qi
��

R

H

distrib pi

��

Figure 2.8. A transition diagram for the model with isolation and an
arbitrary bounded distribution for the infectious period.

class is denoted by H. As before, let Y be the length of the infectious period and, in

addition, let W be the age since infection at which an individual is isolated, then

pi “ PpY ą iq and qi “ PpW ą iq.

Denote by M the upper bound of Y and W , i.e., pm “ qm “ 0 for all m ě M .

Assume that isolated individuals have a reduced transmission factor ρ P p0, 1q so that

the force of infection can be written as

λpIn, Hnq “ β

N
rIn ` p1 ´ ρqHns.

The model equations read

Sn`1 “ Sne
´λpIn,Hnq,

En`1 “ Snp1 ´ e´λpIn,Hnqq ` p1 ´ αqEn

In`1 “ in`1 ` inp1q1 ` in´1p2q2 ` ¨ ¨ ¨ ` i1pnqn

Hn`1 “ inp1p1 ´ q1q ` in´1p2p1 ´ q2q ` ¨ ¨ ¨ ` i1pnp1 ´ qnq,

(2.21)

where ij`1 “ αEj is the input from the E class to the I class at time j ` 1. Initial

conditions are given by S0 “ N ´ E0, E0 ą 0 and I0 “ H0 “ 0.

As for (2.12) in Section 2.2.3, the classes S,E, I and H at time n ` 1 cannot be

written in the form

r En`1, In`1, Hn`1, Sn`1 sT “ M `r En, In, Hn, Sn sT ˘
,

where M : R4 Ñ R
4. Therefore, in order to compute RC using the next generation

matrix method, the set of equations (2.21) must be reformulated. Consider substages
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stage distributions and the ‘isolation-adjusted’ mean sojourn time. From the set of

equations (2.22) the 2M ˆ 2M matrix F associated with new infections is

F “

»
——————–

0 β ¨ ¨ ¨ β p1 ´ ρqβ ¨ ¨ ¨ p1 ´ ρqβ
0 0 ¨ ¨ ¨ 0 0 ¨ ¨ ¨ 0
...

...
...

...
...

...

0 0 ¨ ¨ ¨ 0 0 ¨ ¨ ¨ 0

fi
ffiffiffiffiffiffifl
.

As before, T denotes the 2M ˆ 2M block matrix associated with transitions. Then

I ´ T “
»
–A 0

C D

fi
fl, where the matrices A of dimension pM ` 1q ˆ pM ` 1q; C of

dimension pM ` 1q ˆ pM ´ 1q; and D of dimension pM ´ 1q ˆ pM ´ 1q are

A “

»
———————————————–

α 0 0 ¨ ¨ ¨ 0 0

α 1 0 ¨ ¨ ¨ 0 0

0 ´p1q1 1 ¨ ¨ ¨ 0 0

0 0 ´p2q2
p1q2

¨ ¨ ¨ 0 0
...

...
...

...
...

0 0 0 ¨ ¨ ¨ 1 0

0 0 0 ¨ ¨ ¨ ´pM´1qM´1

pM´2qM´2
1

fi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifl

, D “

»
————————————–

1 0 0 ¨ ¨ ¨ 0 0

´p2
p1

1 0 ¨ ¨ ¨ 0 0

0 ´p3
p2

1 ¨ ¨ ¨ 0 0
...

...
...

...
...

0 0 0 ¨ ¨ ¨ 1 0

0 0 0 ¨ ¨ ¨ ´pM´1

pM´2
1

fi
ffiffiffiffiffiffiffiffiffiffiffiffifl
,

C “

»
——————–

0 ´p1p1 ´ q1q 0 ¨ ¨ ¨ 0 0 0

0 0 ´p2pq1´q2q
p1q1

¨ ¨ ¨ 0 0 0
...

...
...

...
...

...

0 0 0 ¨ ¨ ¨ 0 ´pM´1pqM´2´qM´1q
pM´2qM´2

0

fi
ffiffiffiffiffiffifl
.
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The inverse of I ´ T is given by

»
– A´1 0

´D´1CA´1 D´1

fi
fl, where

A´1 “

»
————————————–

1
1´α

0 0 ¨ ¨ ¨ 0 0

1 1 0 ¨ ¨ ¨ 0 0

p1q1 p1q1 1 ¨ ¨ ¨ 0 0

p2q2 p2q2
p2q2
p1q1

¨ ¨ ¨ 0 0
...

...
...

...
...

pM´1qM´1 pM´1qM´1 pM´1qM´1 ¨ ¨ ¨ pM´1qM´1

pM´2qM´2
1

fi
ffiffiffiffiffiffiffiffiffiffiffiffifl
,

D´1 “

»
————————————–

1 0 0 ¨ ¨ ¨ 0 0

p2
p1

1 0 ¨ ¨ ¨ 0 0

p3
p1

p3
p2

1 ¨ ¨ ¨ 0 0
...

...
...

...
...

pM´2

p1

pM´2

p2

pM´2

p3
¨ ¨ ¨ 1 0

pM´1

p1

pM´1

p2

pM´1

p3
¨ ¨ ¨ pM´1

pM´2
1

fi
ffiffiffiffiffiffiffiffiffiffiffiffifl
,

and

´D´1CA´1 “

»
—————————–

p1p1 ´ q1q ˚ ¨ ¨ ¨ ˚
p2
p1
p1p1 ´ q1q ` p2pq1 ´ q2q “ p2p1 ´ q2q ˚ ¨ ¨ ¨ ˚

p3
p1
p1p1 ´ q1q ` p3

p2
p2pq1 ´ q2q ` p3pq2 ´ q3q “ p3p1 ´ q3q ˚ ¨ ¨ ¨ ˚

...
...

pM´1

p1
p1p1 ´ q1q ` ¨ ¨ ¨ ` pM´1pqM´2 ´ qM´1q “ pM´1p1 ´ qM´1q ˚ ¨ ¨ ¨ ˚

fi
ffiffiffiffiffiffiffiffiffifl
.
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Notice that only the first column of the previous matrix is relevant for computing the

eigenvalues of the next generation matrix since F has rank 1 and

F pI ´ T q´1 “

»
—————————–

0 β ¨ ¨ ¨ β p1 ´ ρqβ ¨ ¨ ¨ p1 ´ ρqβ
0 0 ¨ ¨ ¨ 0 0 ¨ ¨ ¨ 0

0 0 ¨ ¨ ¨ 0 0 ¨ ¨ ¨ 0
...

...
...

...
...

...

0 0 ¨ ¨ ¨ 0 0 ¨ ¨ ¨ 0

fi
ffiffiffiffiffiffiffiffiffifl

»
– A´1 0

´D´1CA´1 D´1

fi
fl

“

»
———————–

β
M´1ř
i“0

piqi ` βp1 ´ ρq
M´1ř
i“0

pip1 ´ qiq ˚ ¨ ¨ ¨ ˚
0 0 ¨ ¨ ¨ 0
...

...
...

0 0 ¨ ¨ ¨ 0

fi
ffiffiffiffiffiffiffifl

To interpret R0 in biologically relevant terms, see that

M´1ÿ
i“0

piqi “ E pmintY,W uq and
M´1ÿ
i“0

pip1 ´ qiq “ EpY q ´ E pmintY,W uq .

EpY q represents the mean time spent in compartments I and H, E pmintY,W uq
is the mean time spent in I (‘isolation-adjusted’ mean sojourn time) and EpY q ´
E pmintY,W uq is the mean time spent in H. Using this expressions, a formula for

RC is given by

RC “ βE pmintY,W uqloooooooomoooooooon
RI

` βp1 ´ ρqrEpY q ´ E pmintY,W uqsloooooooooooooooooooomoooooooooooooooooooon
RH

. (2.23)

Here, RI represents the number of secondary infections produced in a susceptible

population by an individual in the I class, during his/her infectious period. Similarly,

RH is the number of secondary infections produced by an individual in the H class.

If ρ “ 0, i.e., isolation does not reduce the transmission rate, this model is compa-

rable to the systems (2.12) and (2.15). Clearly, RC

ˇ̌
ρ“0

“ βEpY q, which is identical

to R0 obtained in (2.16), Section 2.2.3. On the other hand, if ρ ą 0 then RC ă R0,

as expected.



43

2.4.1 Effect of disease stage distribution on RC

Equation (2.23) provides a simple way to asses the effect that our choice on the

distributions pi, qi has on the value of RC . To illustrate this effect, consider the

following distributions for the infectious period Y .

(i) Shifted Binomial. Let Y1 ´ 1 „ Binomial
`
19, 4

19

˘
, then Y1 P t1, 2, 3, ¨ ¨ ¨ , 20u,

EpY1q “ 5 and 1 “ p0 ą p1 ą ¨ ¨ ¨ ą p19 ą p20 “ 0. The probability mass

function of Y1 is

PpY1 “ iq “ pi´1 ´ pi “
ˆ

19

i ´ 1

˙ ˆ
4

19

˙i´1 ˆ
1 ´ 4

19

˙19´i`1

, i “ 1, 2, ¨ ¨ ¨ , 20

and its survival function is recursively given by p0 “ 1 and

pi “ pi´1 ´
ˆ

19

i ´ 1

˙ ˆ
4

19

˙i´1 ˆ
1 ´ 4

19

˙19´i`1

, i “ 1, 2, ¨ ¨ ¨ , 20

A graph of both functions can be found in Figure 2.10a and 2.10b.

(ii) Truncated Geometric. Let Y2 be a truncated Geometric with parameter ψ “
0.197548, and Y2 P t1, 2, 3, ¨ ¨ ¨ , 20u. The value for ψ has been chosen so that

EpY2q « 5. The survival function is given by pi “ 0.802452i for i “ 0, 1, ¨ ¨ ¨ , 19
and p20 “ 0. The plots of its mass and survival functions are shown in Figures

2.10a and 2.10b, respectively.

(iii) “Artificial”. Y3 is a distribution that does not belong to any family of discrete

distribution. Our goal here is to show that any distribution (particularly empir-

ical distributions obtained directly from data) can be used in (2.21) and (2.22).

The made up distribution has probability mass function

PpY3 “ iq “ pi´1 ´ pi “

$’’’’’’&
’’’’’’%

a if i “ 1, 2, 3,

b if i “ 4, 5, 6,

0.01 if i “ 7, ¨ ¨ ¨ , 20,
0 otherwise.
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also used in the analyses of other models including multiple strains or structured

populations (e.g., structured by sex), as well as for a model with isolation.

For the model with isolation (Section 2.4), RC was also computed using the next

generation matrix approach. It is shown that the control reproduction number RC

depends, among other factors, on the mean infectious period EpY q and the isolation-

adjusted mean sojourn time EpmintY,W uq (see equation (2.23)). This formula is

particularly useful for model applications as it works for general distributions, and can

be applied to a particular disease or population for which a specific stage distribution

can be identified. RC depends both on the parameters related to the infectious stage

distribution and on the distribution associated with isolation probability during the

infectious period. To control the disease it is necessary to decrease RC below one and

having an explicit formula of RC makes it easier to identify the most effective control

strategies, based on specific probability distributions associated with the disease.

More importantly, the choice of distributions may have significant influence on the

applications of the model in evaluating control strategies (see Figure 2.13 and the

related discussion in Section 2.4.1).

Previous studies have shown that epidemiological models with different assump-

tions on the distribution of disease stage durations can generate dramatically different

conclusions. In this chapter we show that for discrete models, the use of a geometric

distribution (the analogue of an exponential distribution in continuous models) can

lead to biased evaluations on disease control strategies when compared with models

with other disease stage distributions [21]. These findings suggest that it is important

to study models with more realistic assumptions on disease stage distributions.

For future directions, some interesting problems include the uses of the results for

the study of specific diseases for different regions and populations, the application of

the formulas for RC when particular distributions are suggested by epidemiological

data, and the computations of RC for discrete-time models that incorporate more

complex factors.
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3. INFLUENCE OF STAGE DISTRIBUTIONS ON

MODEL PREDICTIONS

The work presented in this chapter was done in collaboration with Feng and Castillo-

Chavez. Most of the results and ideas in this chapter were published in Bulletin of

Mathematical Biology [21]. My contribution includes model formulation and anal-

ysis as well as the writing of the paper. All models considered in this chapter are

deterministic and for discrete-time.

3.1 Introduction

In this chapter, we expand on the discrete-time single-outbreak models introduced

and analyzed in Chapter 2 through the inclusion of (1) two control measures: quaran-

tine (of latent individuals) and isolation (of infectious individuals); and (2) arbitrary

distributions of the latent and infectious periods. The main goal of this chapter is to

evaluate the impact of alternative stage-duration distributions on model predictions.

To do so, a single epidemic outbreak model built on geometric period distributions,

which is the baseline model in our analyses and discussion, is introduced and ana-

lyzed. Results from the geometric distribution model will provide the reference frame

for comparisons with models with more realistic distributions.

Throughout, we highlight the role that modeling assumptions (a priori selection

of disease stage duration distributions) have on the quantitative assessment of disease

control strategies. Examples of models under different stage-duration distributions

are considered to illustrate the discrepancies in model evaluations of disease control

strategies. Similar discrepancies in model evaluations of disease control strategies

under different distribution assumptions have also been observed in continuous-time

models (see [43]).
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One of the main contributions of this chapter is to develop an epidemic model

with arbitrarily distributed stage durations in a discrete setting, as well as to derive

analytical formulas for the reproduction number RC and the final epidemic size. Such

formulas depend on the characteristics of these arbitrary distributions and allow for

comparison between distribution. Compared with continuous time models, when

arbitrary stage distributions and disease control are included (which will lead to

complex system of integral equations as in Feng et al. [43]), our discrete models are not

only more tractable and more directly related to data (particularly when the disease

stage distributions cannot be fitted well by continuous probability distributions), but

also easier to analyze and adopt by biologists.

The organization of this chapter is as follows. In section 3.2, we develop a general

discrete-time model with arbitrarily distributed disease stages. Formulas for RC and

the final size relation are also included. In Sections 3.3 and 3.4 the general model is

analyzed under specific distributions. Particularly, we compare model outcomes when

the disease durations follow classical distributions (Geometric, Poisson, or Binomial).

A discussion of model results and final thoughts are included in Section 3.5.

3.2 A general model with quarantine and isolation

In this section we present a general single-outbreak model involving arbitrarily

distributed stage-durations for disease stages. This model is a discrete-time analogue

of the continuous-time epidemiological model in [43]. The model is derived following

the approach taken in Chapter 2, with an added probabilistic perspective.

As usual, let n denote time (time step or generation time), Sn, En, In and En

represent the number of susceptible, exposed but not yet infectious, infectious, and

recovered at time n. In addition, let Qn and Hn be the number of quarantined and

isolated individuals at time (generation) n. It is also assumed that only individuals

in the I and H classes are capable of transmitting the disease. Let β denote the
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transmission coefficient and ρ the isolation efficiency, i.e. ρ “ 0 represents no isolation

and ρ “ 1 perfect isolation. Define

pLi “ proportion of individuals that remain latent i steps after infection;

pIi “ proportion of individuals that remain infectious i steps after becoming infectious;

kQi “ proportion of individuals who are not quarantined i steps after infection;

kHi “ proportion of individuals who are not isolated i steps after becoming infectious.

(3.1)

The applications of our framework is extremely flexible because the probabilities

pi, qi, ki, and li do not have to come from a particular parametric family of discrete

distributions. Model (3.5) can in fact incorporate directly empirically estimated (from

the raw data) probabilities. That is, no specific assumptions on the shape of the

duration-stage distribution of latent and infectious stages or on the waiting-time

distributions in quarantine and/or isolation classes are required within the framework

of this chapter.

Making use of probabilistic terminology facilitates the interpretation and appli-

cability of our deterministic model results. For this reason let X and Y represent

the time an individual spends in latent (E,Q) and infectious (I,H) classes, respec-

tively. Similarly, denote by Z the time at which an exposed individual is quarantined

(transition from E to Q), and W the time at which an infected individual is isolated

(transition from I to H). X, Y , Z and W must take values on t1, 2, 3, . . . u and have

survival probability functions tpLi u, tpIi u tkQ
i u and tkH

i u. Under this notation,

pLi “ PpX ą iq, pIi “ PpY ą iq, kQ
i “ PpZ ą iq and kH

i “ PpW ą iq

By definition pLi ě pLi`1, PpX “ iq “ pLi´1 ´ pLi and EpXq “ ř8
i“0 p

L
i , where EpXq is

the mean or expectation of X. Similar equalities hold for pIi , k
Q
i and kH

i . Assume

that

pL0 “ pI0 “ kQ
0 “ kH

0 “ 1, (3.2)
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meaning that the latency, infectious, quarantine and isolation periods last at least

one time step. For ease of presentation, we introduce the following notation:

en input to E at time n (new infections),

in input to I at time n,

qn input to Q at time n,

hn input to H from Q at time n,

A transition diagram using the above notation is shown in Figure 3.1.

S
en �� E

in ��

qn
��

I ��

��

R

Q
hn

�� H

��

Figure 3.1. Transmission diagram for the discrete model with arbi-
trarily distributed stage durations.

The equation related to susceptible is given by

Sn`1 “ SnGn, n “ 0, 1, 2, 3, ¨ ¨ ¨ , (3.3)

where Gn “ GpIn, Hnq is the force of infection at generation n. It is commonly

assumed in the literature that the functional form of G is given by GpIn, Hnq “
e´ β

N
rIn`p1´ρqHns, which follows from an argument that assumes that contacts between

individuals in a population happened after an exponential amount of time. For details,

see equation 1.2 in Section 1.1, Chapter 1.

The input to E at time n, en, is recursively defined by

e0 “ E0, en`1 “ Sn ´ Sn`1 “ Snp1 ´ Gnq, n ě 0.

An expression for En is formulated in terms of en and pLn following this argument:

individuals who entered the E compartment j units of time ago (en`1´j) and have
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Table 3.1.
List of parameters and symbols commonly used in Chapter 3

Symbols Definitions

β Transmission parameter

α, γ Exit probability of latent and infectious class (GDM)

θQ, θH Quarantine and Isolation probability (GDM, PDM, BDM)

en input to E at time n (new infections)

in input to I at time n

qn input to Q at time n

hn input to H from Q at time n

X Latent period, time spent in latent (E,Q) classes

Y Infectious period, time spent in infectious (I,H) classes

Z Time at which an exposed individual is quarantined (E Ñ Q)

W Time at which an infected individual is isolated (I Ñ H)

pLi Survival probability function of X, PpX ą iq
pIi Survival probability function of Y , PpY ą iq
kQ
i Survival probability function of Z, PpZ ą iq

kH
i Survival probability function of W , PpW ą iq

DE Mean sojourn time in the exposed stage

DE˚ ‘Quarantine adjusted’ mean sojourn time in the exposed stage

DI Mean sojourn time in the infectious stage

DI˚ ‘Isolation adjusted’ mean sojourn time in the infectious stage

PEÑI Proportion of individuals in the E class who enter the I class

PEÑQ Proportion of individuals in the E class who enter the Q class

MU Expected remaining sojourn pU “ X, Y q

not been quarantined (kQ
j ) no have become infectious (pLj ) are still in E time n ` 1,

therefore

En`1 “ en`1 ` enp
L
1 k

Q
1 ` ¨ ¨ ¨ ` e1p

L
nk

Q
n ` e0p

L
n`1k

Q
n`1.
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To obtain an equation for Qn, notice that the total number of latent individuals at

time n` 1 (En`1 `Qn`1) consists of individuals who became infected j units of time

ago (ej), whose latent period has not ended qLj . Therefore

En`1 ` Qn`1 “ en`1 ` enp
L
1 ` ¨ ¨ ¨ ` e1p

L
n ` e0p

L
n`1.

Combine the last two equations to obtain

Qn`1 “ enp
L
1 p1 ´ kQ

1 q ` ¨ ¨ ¨ ` e1p
L
np1 ´ kQ

n q ` e0p
L
n`1p1 ´ kQ

n`1q.

The input to the I compartment at time n`1 pin`1q include all individuals who were

infected at time j (ej), remained in E after n´j steps (kQ
n´j) and whose latent period

was over after n ´ j ` 1 time units (PpX “ n ` 1 ´ jq). This yields

in`1 “ enPpX “ 1q ` en´1k
Q
1 PpX “ 2q ` ¨ ¨ ¨ ` e0k

Q
n PpX “ n ` 1q

“ enp1 ´ pL1 q ` en´1ppL1 ´ pL2 qkQ
1 ` ¨ ¨ ¨ ` e0ppLn ´ pLn`1qkQ

n .

The I compartment at time n consists of individuals who entered at time j pijq and

after n`1´j steps, have not recovered ppIn`1´jq nor have they been isolated pkH
n`1´jq.

Therefore,

In`1 “ in`1 ` inp
I
1k

H
1 ` ¨ ¨ ¨ ` i1p

I
nk

H
n . (3.4)

An expression for qn`1, the input to Q at time n ` 1, can be useful to find a formula

for Hn`1. Clearly

qn`1 “ En ´ En`1 ` en`1 ´ in`1,

because individuals who leave the E class enter either I orQ, thus En´pEn`1´en`1q “
in`1`qn`1. On the other hand the input intoH from Q, hn`1, is given by the recursive

relationship

hn`1 “ Qn ´ pQn`1 ´ qn`1q.
Finally, since the total number of infectious at time n ` 1 pIn`1 ` Hn`1q include all

individuals who became infectious at time j (ij `hj) and did not recover after n`1´j

units of time (pIn`1´j), then

In`1 ` Hn`1 “ pin`1 ` hn`1q ` pin ` hnqpI1 ` ¨ ¨ ¨ ` pi1 ` h1qpIn,
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Collecting all of the above formulas, we are now ready to formulate a model with

arbitrarily distributed stage duration. The set of difference equations is given by

Sn`1 “ SnGn, Gn “ e´ β
N

rIn`p1´ρqHns

En`1 “ en`1 ` enp
L
1 k

Q
1 ` ¨ ¨ ¨ ` e1p

L
nk

Q
n ` e0p

L
n`1k

Q
n`1

Qn`1 “ enp
L
1 p1 ´ kQ

1 q ` ¨ ¨ ¨ ` e1p
L
np1 ´ kQ

n q ` e0p
L
n`1p1 ´ kQ

n`1q
In`1 “ in`1 ` inp

I
1k

H
1 ` ¨ ¨ ¨ ` i1p

I
nk

H
n .

Hn`1 “ pin`1 ` hn`1q ` pin ` hnqpI1 ` ¨ ¨ ¨ ` pi1 ` h1qpIn ´ In`1,

(3.5)

with initial conditions S0, E0 ą 0, I0 “ Q0 “ H0 “ R0 “ 0 and inputs

en`1 “ Sn ´ Sn`1 “ Snp1 ´ Gnq,
qn`1 “ En ´ En`1 ` en`1 ´ in`1,

in`1 “ enp1 ´ pL1 q ` en´1ppL1 ´ pL2 qkQ
1 ` ¨ ¨ ¨ ` e0ppLn ´ pLn´1qkQ

n ,

hn`1 “ Qn ´ pQn`1 ´ qn`1q.

(3.6)

Initial conditions for the inputs are e0 “ E0 ą 0 and q0 “ i0 “ h0 “ 0. Since a

constant population size (N) is assumed, the number of recovered can be computed

by Rn “ N ´ Sn ´ En ´ Qn ´ In ´ Hn.

Theorem 3.2.1 All the variables in the system given by (3.5) and (3.6) are non

negative.

Proof Since 1 ´ Gn P r0, 1s for all n, then 0 ď Sn`1 ď Sn and en ě 0 for all

n P N. Since pLj , p
Q
j P r0, 1s then En ě 0 and Qn ě 0. The inequality in ě 0 follows

from the fact that pLj ě pLj`1 and kQ
j ě 0. As a consequence In ě 0. See that

qn`1 “ En ´ En`1 ` en`1 ´ in`1 reduces to

qn`1 “
nř

j“0

ejp
L
n´jk

Q
n´j ´

n`1ř
j“0

ejp
L
n`1´jk

Q
n`1´j ` en`1 ´

nř
j“0

ejppLn´j ´ pLn`1´jqkQ
n´j

“
nř

j“0

ej

´
pLn´jk

Q
n´j ´ pLn`1´jk

Q
n`1´j ´ ppLn´j ´ pLn`1´jqkQ

n´j

¯
“

nř
j“0

ejp
L
n`1´j

´
kQ
n´j ´ kQ

n`1´j

¯
,
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which means that qn ě 0. Finally, hn`1 “ Qn ´ Qn`1 ` qn`1 reduces to

hn`1 “
n´1ř
j“0

ejp
L
n´jp1 ´ kQ

n´jq ´
nř

j“0

ejp
L
n`1´jp1 ´ kQ

n`1´jq `
nř

j“0

ejp
L
n`1´j

”
kQ
n´j ´ kQ

n`1´j

ı
“

n´1ř
j“0

ej

”
pLn´jp1 ´ kQ

n´jq ´ pLn`1´jp1 ´ kQ
n`1´jq ` pLn`1´j

´
kQ
n´j ´ kQ

n`1´j

¯ı
´enp

L
1 p1 ´ kQ

1 q ` enp
L
1

´
kQ
0 ´ kQ

1

¯
“

n´1ř
j“0

ej

”
pLn´jp1 ´ kQ

n´jq ´ pLn`1´jp1 ´ kQ
n´jq

ı
“

n´1ř
j“0

ejppLn´j ´ pLn`1´jqp1 ´ kQ
n´jq

which implies hn ě 0, hn ` in ě 0 and Hn ě 0 for all n P N.

3.2.1 Computation of RC

In this section we study the control reproduction number RC . It is proven that

the structural form of the RC formulae remains the same no matter the distribution

assumed for disease stages. In order to find this expression, the following notation is

introduced.

DE mean sojourn time in the exposed stage

DE˚ “quarantine adjusted” mean sojourn time in the exposed stage

DI mean sojourn time in the infectious stage

DI˚ “isolation adjusted” mean sojourn time in the infectious stage

PEÑI proportion of individuals in the E class who enter the I class

PEÑQ proportion of individuals in the E class who enter the Q class

Formulas for these quantities are given by

DE “ EpXq “
8ř
j“0

pLj , DE˚ “ EpmintX,Zuq “
8ř
j“0

pLj k
Q
j ,

DI “ EpY q “
8ř
j“0

pIj , DI˚ “ EpmintY,W uq “
8ř
j“0

pIjk
H
j .

(3.7)

and

PEÑI “ PpX ď Zq “
8ř
j“1

PpX “ j, j ď Zq “
8ř
j“1

PpX “ jqPpj ´ 1 ă Zq

“
8ř
j“1

ppLj´1 ´ pLj qkQ
j´1,

PEÑQ “ 1 ´ PEÑI

(3.8)
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Remark. An expression for DE˚ and DI˚ was found using (3.2) and the fact that

PpmintX,Zu ą jq “ PpX ą jqPpZ ą jq “ pLj k
Q
j .

PpmintY,W u ą jq “ PpY ą jqPpW ą jq “ pIjk
H
j .

Making use of the above defined notation, we introduce the term

RI “ βPEÑIDI˚ , (3.9)

which represents the number of secondary infections produced in a susceptible pop-

ulation by an individual in the I class during his/her infectious period. Individual

in the H class, on the other hand, can be classified as (i) those who entered H from

I; and (ii) those who entered H from Q. Again, using terminology from (3.7) and

(3.8), the average time spent in H is given by DI ´ DI˚ for type (i) individuals and

DI for type (ii) individuals. The proportions of type (i) and type (ii) individuals are

PEÑI and PEÑQ, respectively. Considering the isolation efficiency determined by ρ,

we know that the average numbers of secondary infections produced by type (i) and

type (ii) individuals are

RIH “ βp1 ´ ρqPEÑIpDI ´ DI˚q and RQH “ βp1 ´ ρqPEÑQDI . (3.10)

The above arguments prove the following

Theorem 3.2.2 The control reproduction number RC for the model (3.5) can be ex-

pressed in terms of the mean DI , the isolation-adjusted mean Dl˚, and the quarantine-

adjusted probability of disease progressions PEÑI , PEÑQ. That is,

RC “ RI ` RIH ` RQH (3.11)

where RI , RIH and RQH are the stage-specific reproduction numbers defined in (3.9)

and (3.10).

The usefulness of the RC formula given in (3.11) emerges from the fact that it

was derived for general stage distributions. This expression for RC allows for the
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investigation of its dependence on the means and control-adjusted means (e.g., DI ,

DI˚ etc.) of the stage distributions. It also allow us to explore the role of control

measures (quarantine and isolation) in reducing RC as a function of pre-selected

stage distributions (see Section 3.4). For simpler epidemic models, the reproduction

number can be derived using the next generation matrix approach presented in [17].

3.2.2 Final epidemic size

In this section, the final size of the epidemic p lim
nÑ8 Snq is explored, and an expres-

sion for S8 is derived. This expression includes RC as one of its main components.

Theorem 3.2.3 The final epidemic size generated by the dynamics of Model (3.5)

satisfies the following final size relationship

ln
S0

S8
“

ˆ
1 ´ S8

N

˙
RC . (3.12)

Proof The E and Q equations in (3.5) together with (3.7) yield

8ř
n“0

En “
8ř

n“0

˜
nř

j“0

en´jp
L
j k

Q
j

¸
“

8ř
j“0

8ř
n“j

en´jp
L
j k

Q
j “

8ř
j“0

ˆ
pLj k

Q
j

8ř
n“0

en

˙

“ pN ´ S8q
˜

8ř
j“0

pLj k
Q
j

¸
“ pN ´ S8qDE˚

and

8ř
n“1

Qn “
8ř

n“1

nř
j“1

en´jp
L
j p1 ´ kQ

j q “
8ř
j“1

8ř
n“j

en´jp
L
j p1 ´ kQ

j q

“
8ř
j“1

„
ppLj ´ pLj k

Q
j q

8ř
n“0

en

j
“ pN ´ S8q

˜
8ř
j“1

pLj ´
8ř
j“1

pLj k
Q
j

¸

“ pN ´ S8qrEpXq ´ DE˚s.
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Since En ě 0 and
8ř

n“1

En ă 8, then E8 “ 0. Similarly, Qn, in, In, hn and Hn converge

to zero as n Ñ 8. By definition of in (see (3.6)) we get

8ř
n“1

in “
8ř

n“1

nř
j“1

en´jppLj´1 ´ pLj qkQ
j´1 “

8ř
j“1

˜
ppLj´1 ´ pLj qkQ

j´1

8ř
n“j

en´j

¸

“ pN ´ S8q
8ř
j“1

ppLj´1 ´ pLj qkQ
j´1 “ pN ´ S8qPEÑI .

Thus,

8ř
n“1

In “ i1 `
8ř

n“2

˜
in `

n´1ř
j“1

in´jp
I
jk

H
j

¸
“

8ř
n“1

in `
8ř
j“1

˜
pIjk

H
j

8ř
n“j`1

in´j

¸

“
ˆ 8ř

n“1

in

˙ ˜
1 `

8ř
j“1

pIjk
H
j

¸
“ pN ´ S8qPEÑIDI˚ .

(3.13)

In addition (see (3.6)),

8ř
n“1

pin ` hnq “
8ř

n“1

in `
8ř

n“1

pQn´1 ´ Qn ` qnq “
8ř

n“1

in ` Q0 `
8ř

n“1

qn

“
8ř

n“1

in `
8ř

n“1

pEn´1 ´ En ` en ´ inq “ E0 `
8ř

n“1

en

“ N ´ S8.

By the above equation, (3.13), (3.13) and the H equation (in (3.5)) we have that

8ř
n“1

Hn “ i1 ` h1 ´ I1 `
8ř

n“2

˜
in ` hn `

n´1ř
j“1

pin´j ` hn´jqpIj ´ In

¸

“
8ř

n“1

pin ` hnq `
8ř
j“1

„
pIj

8ř
n“1

pin ` hnq
j

´
8ř

n“1

In

“
„ 8ř
n“1

pin ` hnq
j 8ř

j“0

pIj ´
8ř

n“1

In “ pN ´ S8qEpY q ´
8ř

n“1

In

“ pN ´ S8qpDI ´ PEÑIDI˚q.

(3.14)

Finally, from the S equation in (3.5), it follows that

ln S0

S8 “ β
N

„ 8ř
n“1

In ` p1 ´ ρq
8ř

n“1

Hn

j

“ `
1 ´ S8

N

˘ rβPEÑIDI˚ ` βp1 ´ ρqpDI ´ PEÑIDI˚qs

“ `
1 ´ S8

N

˘RC .
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It is worth noticing that each term involved in RC is expresses in terms of quan-

tities associated with specific probability distributions (expectations, etc.). It can

also be observed that the usual final size relation is robust under the distribution

assumed for disease stages [78–81]. However, changes in pLk , p
I
k, k

Q
k , and kH will lead

to quantitatively distinct results.
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Figure 3.2. A contour plot of the function lnS0{pNp1 ´ yqq “ yRC ,
where y “ 1 ´ S8{N represents the final epidemic size

The final size relation in (3.12) can be rewritten using the proportional size of the

final epidemic y “ 1 ´ S8{N as follows:

lnS0{pNp1 ´ yqq “ yRC .

A contour plot of the equation above expression as a function ofRC is shown in Figure

3.2. Although this equation cannot be solved analytically for y, the relation between

RC and the final size y can, from the above expression, be numerically determined.

3.3 Application of the general model in the case of Geometric distribution

In this section we study the general model given in (3.5) and (3.6), under the

assumption that pLj pIj kQ
j kH

j are geometric distributions. The diagram in Figure
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3.3, shows the model with constant exit probabilities corresponding to the geometric

assumption. The set of difference equations is given by

Sn`1 “ SnGn, Gn “ e´ β
N

rIn`p1´ρqHns

En`1 “ p1 ´ GnqSn ` p1 ´ αqp1 ´ θQqEn

Qn`1 “ p1 ´ αqθQEn ` p1 ´ αqQn

In`1 “ αEn ` p1 ´ γqp1 ´ θHqIn
Hn`1 “ αQn ` p1 ´ γqpθHqIn ` p1 ´ γqHn, n “ 0, 1, 2, 3, ¨ ¨ ¨ ,

(3.15)

with initial conditions S0, E0 ą 0 and I0 “ Q0 “ H0 “ R0 “ 0.

In the En`1 equation, the first term represents the new infection and the second

term denotes those individuals who were infected in the previous step (at time n) and

have not become infectious (1´α) or been quarantined (1´ θQ) at time n` 1. Other

equations can be explained in a similar way. In this model we have assumed that

quarantine only captures latent individuals, but not susceptible individuals, which is

reasonable if quarantined individuals are much fewer than the susceptible population.

S �� E α ��

θQ
��

I
γ ��

θH
��

R

Q α
�� H

γ

��

Figure 3.3. Disease transmission diagram for the discrete model (3.15)
with constant transition probabilities.

In what follows we show that the system (3.15) is a particular case of (3.5), ob-

tained when Geometric distribution is assumed for X, Y , Z and W . The geometric

distribution is a discrete probability distribution supported on t1, 2, 3, . . . u. It repre-
sents the number of independent Bernoulli trials needed to get a single success. Prop-

erties of this distribution can be found in (see [75–77]). AssumeX follows a Geometric



62

distribution with parameter α (X „ Geom(α)), in this case PpX “ iq “ p1´αqi´1pαq
for i “ 1, 2, ¨ ¨ ¨ and

pLi “ PpX ą iq “ p1 ´ αqi for i “ 0, 1, 2, . . .

Graphics of the above functions can be seen in Figures 1.2 (Section 1.2) and 2.2

(Section 2.2.1). Like its continuous analogue (exponential distribution) the geometric

distribution is memoryless, i.e. for any i, j P N,

PpX ą i ` j|X ą iq “ PpX ą jq.

Theorem 3.3.1 Assuming that X „ Geom(α), Y „ Geom(γ), Z „ Geom(θQ) and

W „ Geom(θH), then the general model (3.5) becomes the Geometric model given by

(3.15). The control reproduction number for this model is RC “ RI ` RIH ` RQH ,

where

RI “ β
α

α ` θQ ´ αθQ
¨ 1

γ ` θH ´ γθH
,

RIH “ βp1 ´ ρq α

α ` θQ ´ αθQ

ˆ
1

γ
´ 1

γ ` θH ´ γθH

˙
,

RQH “ βp1 ´ ρq p1 ´ αqθQ
α ` θQ ´ αθQ

¨ 1
γ
.

(3.16)

and

ln
S0

S8
“

ˆ
1 ´ S8

N

˙
RC .

Proof Under these Geometric distribution assumptions (3.1) becomes

pLi “ p1 ´ αqi, pHi “ p1 ´ γqi,
kQ
i “ p1 ´ θQqi, kH

i “ p1 ´ θHqi. i “ 0, 1, 2, . . .

Then the En`1 equation in (3.5), enp
L
1 k

Q
1 ` ¨ ¨ ¨ ` e1p

L
nk

Q
n ` e0p

L
n`1k

Q
n`1, simplifies to

enp1´αqp1´θQq`¨ ¨ ¨`e1p1´αqnp1´θQqn`e0p1´αqn`1p1´θQqn`1 “ p1´αqp1´θQqEn.

Therefore,

En`1 “ p1 ´ GnqSn ` p1 ´ αqp1 ´ θQqEn.



63

The in`1 and hn`1 equations in (3.6) can be written as

in`1 “ enα ` en´1αp1 ´ αqp1 ´ θQq ` ¨ ¨ ¨ ` e0αp1 ´ αqnp1 ´ θQqn “ αEn.

and

qn`1 “ En ´ En`1 ` en`1 ´ in`1

“ En ´ p1 ´ GnqSn ´ p1 ´ αqp1 ´ θQqEn ` p1 ´ GnqSn ´ αEn

“ En ´ p1 ´ αqp1 ´ θQqEn ´ αEn “ p1 ´ αqθQEn

This yields

Qn`1 “ p1 ´ αqpθQqEn ` p1 ´ αqQn and In`1 “ pαqEn ` p1 ´ γqp1 ´ θHqIn.
Hence hn`1 “ αQn and Hn`1 “ αQn ` p1´ γqθHIn ` p1´ γqHn. This shows that the

Geometric model (3.15) is a particular case of the general model (3.5), obtained with

Geometric distribution assumptions.

Theorem 3.2.2 can now be used to find an expression for RC . We begin by

computing the mean of X

EpXq “
8ÿ
i“0

pLi “
8ÿ
i“0

p1 ´ αqi “ 1

α
ą 1, α P p0, 1q.

Similarly EpY q “ 1
γ
, EpZq “ 1

θQ
and EpW q “ 1

θH
. Moreover, PpmintX,Zu ą iq “

p1´αqip1´ θQqi, so that EpX ^Zq “ 1
1´p1´αqp1´θQq “ 1

α`θQ´αθQ
. Therefore (see (3.7))

DE “ 1

α
, DE˚ “ 1

α ` θQ ´ αθQ
, DI “ 1

γ
, DI˚ “ 1

γ ` θH ´ γθH
. (3.17)

Similarly,

PpX ď Zq “
8ÿ
j“1

ppLj´1 ´ pLj qkQ
j´1 “

8ÿ
j“1

αp1 ´ αqj´1p1 ´ θQqj´1

“ α

1 ´ p1 ´ αqp1 ´ θQq “ α

α ` θQ ´ αθQ
.

(3.18)

Finally, replacing (3.17) and (3.18) in (3.11), expressions for RI , RIH and RQH are

obtained

RI “ βPEÑIDI˚ “ β
α

α ` θQ ´ αθQ
¨ 1

γ ` θH ´ γθH
,

RIH “ βp1 ´ ρqPEÑIpDI ´ DI˚q “ βp1 ´ ρq α

α ` θQ ´ αθQ
¨
ˆ
1

γ
´ 1

γ ` θH ´ γθH

˙
,

RQH “ βp1 ´ ρqPEÑQDI “ βp1 ´ ρq p1 ´ αqθQ
α ` θQ ´ αθQ

¨ 1
γ
,
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and by RC “ RI ` RIH ` RQH . Finally, by Theorem 3.2.3, the final size relation

ln
S0

S8
“

ˆ
1 ´ S8

N

˙
RC .

holds for this model.

3.4 Other applications of the general model

The control reproduction number and final epidemic size are important measures,

which are often used to compare the effectiveness of control strategies like quarantine

and/or isolation. In our framework, RC can also be used to examine the impact of

the shape of the latent and infectious period time distributions. In this section, the

role of three classical discrete distributions in the modeling process is compared. The

Geometric model (GDM) developed in Section 3.3 will be compared to (i) PDM, a

Poisson distribution model; and (ii) BDM, a Binomial distribution model.

For simplicity, the quarantine and isolation period distributions (described by Z

and W , respectively) are assumed to follow Geometric distributions with

kQ
i “ p1 ´ θQqi, kH

i “ p1 ´ θHqi and EpZq “ 1

θQ
, EpW q “ 1

θH
.

3.4.1 Examples of specific stage distributions

Our baseline model GDM, together with PDM and BDM are introduced in this

section, followed by a comparison among models. Our goal here is to explore the

role that distributions of the latent pXq and infectious period pY q have on control

strategies. To do so, the associated values of RC will be computed, compared and

contrasted. Figure 3.4 shows a diagram for the three models mentioned above. In

order to make these models comparable we fix an average latent and infectious period,

say

EpXq “ μ1, EpY q “ μ2.

The parameters of the distributions mentioned below have been chosen to match these

fixed average times.
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BDM. Linked to this model, we have Xb and Yb following a shifted Binomial

distribution with support in t1, 2, . . . , n ` 1u. This is, Xb „ Binomialpn1, aq
and Yb „ Binomialpn2, bq. Notice that n1 ` 1 pn2 ` 1q is the maximum length

of the latent (infectious) period. The parameters n1, n2, a and b must satisfy

pn1 ´ 1qa ` 1 “ μ1, pn2 ´ 1qb ` 1 “ μ2. The probability mass function for Xp

and Yp are

PpXb “ iq “
ˆ

n1

i ´ 1

˙
ai´1p1 ´ aqm´i´1, PpYb “ iq “

ˆ
n2

i ´ 1

˙
bi´1p1 ´ bqm´i´1.

(3.20)

Figure 3.6 displays the probability mass and survival functions of Binomial

distributions for different parameter values.
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(a) Probability mass function
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(b) Survival function

Figure 3.6. Plots of the probability mass and survival functions of Bi-
nomial distributions with parametersm “ 15 and p “ 0.1, 0.2, 0.6, 0.9.

3.4.2 Expected remaining sojourns

The analysis on the role of exponential and gamma distributed stage durations

distributions in continuous-time models was carried out using expected remaining

sojourns in [43]. In the case of exponential distributions, the mean sojourn and the

expected remaining sojourn are identical (memoryless property) whereas in the case of

the gamma distribution the expected remaining sojourn can be much shorter than the

mean sojourn. Hence, it is not surprising to see that the use of distinct distributions
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leads to discrepancies as well when uses discrete-time models to make predictions.

We follow the philosophy in the above mentioned study as we proceed to document

stage-distribution generated model discrepancies.

Denote by MUpsq pU “ X, Y q the expected remaining sojourn, which represents

the expected remaining time in a stage (latent or infectious) given that s units of

time have already elapsed in the given class. A formula for MUpsq is given by

MUpsq “

$’&
’%

8ř
n“0

PpU ą n|U ą sq “
8ř

n“0

PpU ą n`sq
PpU ą sq if PpU ą sq ą 0

0 if PpU ą sq “ 0

For instance, if U is bounded by M , then MUpmq “ 0 for all m ě M . Clearly

MUp0q “ EpUq for U “ X, Y. In GDM, Xg „ Geompαq, thus pi,g “ p1 ´ αqj and

MXgpsq “
8ÿ

n“0

p1 ´ αqn`s

p1 ´ αqs “
8ÿ

n“0

p1 ´ αqn “ EpXgq “ MXgp0q.

In plain words, the expected remaining sojourn after an individual already spent

s units of time in the latent stage is independent of s. This may contribute in a

significant way to the potentially biased model predictions on the effect of disease

control strategies (See Chapter 1 Section 1.2). The use of PDM and BDM may lead

to more reliable assessments because of their ability to capture more accurately the

description for the expected remaining sojourns. Figure. 3.7 illustrates the difference

among the three distribution assumptions (GDA, PDA, and BDA) by plotting the

expected remaining sojourn as a function of s (the time elapsed after entering the

latent stage). This figure shows that the function is constant under GDA, while the

functions correspond to PDA and BDA decreases with s. Since the Binomial random

variable X is bounded, MXpsq “ 0 after its upper bound.

3.4.3 RC under specific distributions

In this section the control reproduction numbers RC,g, RC,p and RC,b associated

to the GDM, PDM and BCM are computed. A formula for RC,p has already been
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Although, computationally easy, obtaining an expression for RC,b in the BDM is

not simple. For instance, for Xb, q
L
i,b is a simple sum with no more than n1 ` 1 terms

qLi,b “ PpXb ą iq “
n1`1ÿ
k“i`1

PpX “ kq “
n1`1ÿ
k“i`1

ˆ
n1

k ´ 1

˙
ak´1p1 ´ aqn1´k`1.

Therefore PEÑI,b, PEÑQ,b and DI˚,b consist of finite sums that can not be simplified.

For this reason an explicit formula for RC,b is not included.

The derivatives of RC with respect to the control parameters (e.g., θQ and θH)

can provide useful information about the effect of controls on the reduction of RC .

Recall that the average time elapsed before quarantine and isolation are 1{θQ and

1{θH , respectively. Thus, and increment in either θQ or θH represent a higher control

effort. This motivates the following

Theorem 3.4.1 In the GDM and PDM the control measures, quarantine and isola-

tion, have a positive impact on RC. More specifically,

BRC,g

BθQ ,
BRC,g

BθH ,
BRC,p

BθQ and
BRC,p

BθH ď 0.

Proof We begin by computing the partial derivatives of RC,g with respect to both

control parameters. Keeping in mind that β ą 0, and α, ρ, γ, θQ, θH P p0, 1q
BRC,g

BθQ “ ´ βραp1 ´ αq
pα ` θQ ´ αθQq2pγ ` θH ´ γθHq ď 0,

BRC,g

BθH “ ´ βραp1 ´ γq
pα ` θQ ´ αθQqpγ ` θH ´ γθHq2 ď 0,

For the PDM,

BRC,p

BθQ “ ´βρpμ1 ´ 1q ¨ e´pμ1´1qθQ ¨ 1 ´ p1 ´ θHqe´pμ2´1qpθHq

θH
ď 0,

and

BRC,p

BθH “ ´βρe´pμ1´1qθQ “
e´pμ2´1qθH rpμ2 ´ 1qθ2H ´ θHpμ2 ´ 1q ´ 1s ` 1

‰
θ2H
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parameters. Two examples are illustrated in Figure 3.8 for the GDM (left) and the

PDM (right). The solid line represents RCp0.5, θHq, while the dashed curve shows

RCpθQ, .05q. The parameter values used to produce this figure are β “ 0.75, ρ “ 0.95,

μ1 “ 5 and μ2 “ 10.

Figure 3.8 also shows reduction in RC under two control strategies: Strategy I

corresponds to pθQ, θHq “ p0.5, 0.2q, represented by a circle ‚ on the solid (red) curve.

Strategy II, on the other hand, corresponds to pθQ, θHq “ p0.2, 0.5q and is represented

by a diamond ˛ on the dashed curves. According to the left figure (GDM), Strategy

II is more effective than Strategy I, because it leads to larger reductions in Rc,g.

However, it the right figure (PDM), Strategy I is more effective than Strategy II. This

shows that the two models distributions (GDM and PDM) generate contradictory

assessments.

Table 3.2.
Components of RC determined by the GDM and PDM corresponding to Figure 3.8.

‚ Strategy 1: pθQ, θHq “ p0.5, 0.2q ˛ Strategy 2: pθQ, θHq “ p0.2, 0.5q

GDM PDM GDM PDM

PEÑI 0.33 0.14 0.56 0.45

DI˚ 3.57 4.34 1.82 1.99

RI 0.893 0.44 0.758 0.67

RIH 0.08 0.029 0.171 0.135

RQH 0.25 0.324 0.167 0.207

RC 1.223 0.793 1.095 1.011

It is not clear what is the underlying reason for the difference between GDM and

PDM presented in Figure 3.8. To better understand how the distributions may affect

RC , we list in Table 3.2 the values of some components of RC corresponding to these

two scenarios. We observe that for strategy 2, which corresponds to a lower quarantine
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(θQ) and a higher isolation (θH), PEÑI is higher while DI˚ is lower than strategy 1

for both the GDM and PDM. Consequently, RQH “ βp1 ´ ρqPEÑIpDI ´ DI˚q and

RIH “ βp1´ ρqPEÑQDI have larger values under strategy 2 than strategy 1 for both

distributions. However, forRI “ βPEÑIDI , the GDM generates a smaller value under

strategy 2 than strategy 1 whereas the PDM generates a larger value under strategy 2

than strategy 1. As a result, GDM produced a smaller RC under strategy 2 (1.095 vs.

1.223) while GDM produced a larger RC under strategy 2 (1.011 vs. 0.793). From

this set of parameter values, it seems that the most significant difference between

the distributions or strategies is the lower value of RIH ` RI for the PDM when

quarantine is relatively high (strategy 1). This may be due to a lower PEÑI value for

the PDM with high quarantine. This suggests that the GDM may underestimate the

role of quarantine in reducing the control reproduction number RC .

�������	�
�� ����������� ������	�
��������������

������� ������� �������

�������� �������� ��������

Figure 3.9. Joint effect of quarantine (θQ) and isolation (θH) on the
reduction of RC . The two surfaces correspond to the GDM and PDM,
while the plane indicates RC “ 1.

In Figure 3.9, the joint effect of quarantine (θQ) and isolation (θH) on the reduction

ofRC is illustrated. (A) shows the surface under GDA and (B) shows the same surface

but under PDA. The plane corresponds to RC “ 1 and (C) collects the graphs of

both surfaces. The parameter values used are the same as in the previous figure. We

observe that for this set of parameter values, PDA provides a lower estimate of RC

for most values of θQ and θH , except when either θQ is small (less quarantine) or θH

is small (less isolation). We also observe that within PDM is possible to increase θQ
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suggests that reducing RIH,p (e.g., by increasing isolation efficiency ρ) might be more

effective for reducing RC . Hence, the use of the PDM is more likely to emphasize the

importance of isolation efficiency.
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Figure 3.12. Plots of the components of RC (RI , RIH , and RQH)
as functions of the control parameters (θQ and θH). The two models
considered are the GDM and the PDM.

3.5 Conclusions and observations

This chapter focuses primarily on the evaluation of the impact of epidemiological

and control stage-duration distributions on the quantitative dynamics of discrete-

time single-outbreak epidemiological models. The analyses presented here allow the

evaluation of the final epidemic size and the role of stage-duration distributions on

the additive components in the control reproduction number. The models considered

are discrete-time SEIR-type single-outbreak epidemic models with build in control

strategies (quarantine and isolation). The results are discussed in particular within

the context of three classical discrete parametric distributions: Geometric, Poisson

and Binomial. General model results suggest for example, that the use of distinct

parametric distributions can lead to contradictory predictions, see Figure 3.8. Some

of the consequences that arise from the use of selected distributions in the context
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of particular intervention efforts were analyzed. A comprehensive evaluation requires

the use of data sets and model validation approaches, topics left for future work.

Fortunately, the framework introduced in this chapter allows for the incorporating

of empirical stage-duration distributions. The use of data-generated stage-duration

distributions directly provides an approach that some may consider satisfactory, par-

ticularly when model results turned out to be highly sensitive to distribution shape

parameters.

We remark that the main contribution of this study is the construction and anal-

ysis of a discrete-time epidemic model that allows an arbitrarily distributed duration

for the infectious period. This can provide an important advantage of using data

in the application of the model than models that assume a specific parametric dis-

tribution of the disease stage. Indeed, if we were going to try to fit exponentially

waiting times there would not be an advantage in the use of geometric times, but if

the data was just collected and the duration of times was arbitrary then this model

has an advantage as one could just use the data. If one were to fit a model then one

may feel tempted, lets say to use a gamma or generalized gamma distribution (for

continuous-time model) or to use a negative binomial (for discrete-time models), but

as it was shown in the case of HIV/AIDS by the late Stephen Lagakos and Marcelo

Pagano, the use of a parametric distribution [53], is simply not good. They found

a “perfect” fit with incubation period distributions of 10 years and 100 years. In

our modeling framework, using a discrete model allows the use of the data somewhat

closer to what those using non-parametric methods tend to use. Yes, the results from

the discrete-time model are not unexpected but the level of arbitrariness incorporated

allow us for the use of the data which is similar to the distribution-free approaches

that have been argued by the statisticians involved in HIV as most effective and re-

alistic (discrete distributions). Again, the goal here is not to fit data but to use the

data directly.

To the best of our knowledge, no discrete-time epidemic models have been devel-

oped and analyzed that include quarantine and isolation while the disease durations
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are allowed to have arbitrary distributions. Thus, the construction and analysis of a

such discrete-time model provided in this study can contribute to the applicability of

epidemic models in public health policymaking. As mentioned earlier a discrete-time

model is more tractable than continuous-time model, specially when an arbitrary

distribution is used to model waiting times in disease stages.

Another major contribution of this study is the derivation of the analytic formulas

for the reproduction numbers and final epidemic sizes for models with arbitrarily dis-

tributed disease durations, see Theorem 3.2.3 in Section 3.2.2 for details. The general

formula for RC allows further examination of the role of its additive components RI ,

RIH and RQH . In particular, for the analysis of Geometric vs Poisson distributions,

these effects are illustrated in Figure 3.12. It can be observed that the use of the

PDM is more likely to emphasize the importance of isolation efficiency.

Finally, the question of what stage distribution(s) is (are) more appropriate de-

pends on what we actually know about the epidemiological process. The specifics of

each disease provide the most critical information. Researchers involved in the study

of the dynamics of infectious diseases seem to prefer to work with models that make

use of geometric stage-duration distributions. Needless to say, the latent or infectious

stage distributions may be fit better alternative distributions, for a great number

of infectious diseases. Does the general use of geometric distributions matter? In

the goal is to carry out a qualitative study within single-outbreak epidemic models

then no, but if the goal is to assess quantitatively the efficacy of control measures for

specific diseases then the answer is, most likely yes.
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4. MULTI-PATCH MODEL WITH ARBITRARILY

DISTRIBUTED INFECTIOUS PERIOD

The work presented in this chapter was done in collaboration with Chavez-Casillas and

Feng. Most of the results and ideas in this chapter were published in Mathematical

Biosciences [82]. My contribution includes model development and analysis as well

as the writing of the paper. All models considered in this chapter are stochastic and

for discrete-time.

4.1 Introduction

Historically, some of the first stochastic models with arbitrarily distributed in-

fectious period were considered in [64, 68, 83], but Sellke’s construction [67] helped

derive stronger results such as those in [65, 66]. In general, mathematical formu-

lations of continuous-time models are complicated when an arbitrarily distributed

infectious period is included [64–66, 68, 83–85]. In contrast, analogous discrete-time

models can be formulated in a way that is much easier to understand and analyze (see,

for example, [21, 28, 57]). Discrete models also have the capability of incorporating

distributions directly from empirical data, whereas for continuous-time models the

parameters for a standard distribution have to be estimated via data fitting. In spite

of this, little attention has been given to discrete models in a stochastic framework.

In this chapter, a stochastic discrete-time model is developed to study the spread

of an infectious disease in an n-patch environment. The model includes an arbitrary

distribution of the (random) infectious period T , and the results are used to investi-

gate how the distribution of T may influence the model outcomes. Although discrete,

the model developed in this chapter goes one step further than the model discussed

in Section 1.3. As a result of this added complexity the formulas for both R0 and
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P0 are significantly more complicated (compare Theorem 1.3.1 vs Theorem 4.2.1 and

4.2.2).

In Section 4.2, a general model with n patches and Markov displacement is de-

scribed. For an infected individual, the infectious period (T ) is assumed to be a

discrete random variable with an arbitrary distribution and finite mean. We derive

a formula for the basic reproduction number R0, which is given by the spectral ra-

dius of the mean offspring matrix, a matrix that depends on D and the probability

generating function (pgf) of T . An equation for the probability of minor epidemic

(extinction probability) P0 is also derived. Our model was inspired by the work of P.

Neal, presented in [85].

In Section 4.3, the general results are applied to the case n “ 2 patches. In addition

to an exact formula, lower and upper bounds for R0 are also identified. To examine

the effect that the distribution of T has onR0, we consider three specific distributions:

shifted Geometric, shifted Negative Binomial, and shifted Poisson. The reproduction

numbers corresponding to these distributions have a specific order relation. Numerical

simulations for the two-patch model are carried out to explore the influence of the T

distribution on the final epidemic size (F), duration of epidemic (D), as well as the

probability of disease extinction (P0).

4.2 Formulation and analysis of the general model

We adopt the approach used in [84, 85] for continuous models to develop a dis-

crete stochastic SIR metapopulation model, in a closed population, for an epidemic

outbreak with an arbitrarily distribution for the infectious period (IP). The main

objective of this study is to investigate how the distribution of IP may affect the

model outcomes, particularly the basic reproduction number R0 and the probability

of major epidemic (1 ´ P0).

Consider a metapopulation with n sub-populations (patches). Let Niptq denote

the size of population i at time t for i “ 1, 2, ¨ ¨ ¨ , n. Assume that the total population
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Table 4.1.
List of parameters and symbols commonly used in Chapter 4

Symbols Definitions

Ni, N Population sizes, N “ N1 ` ¨ ¨ ¨ ` Nn

T Random infectious period

U Markov Chain that controls movement between patches

D “ pσijq, Markov matrix associated of U

πi Stationary probability of U

βi Number of effective contacts per unit of time in population i (Poisson)

mij Average number of offsprings (secondary infections) generated in population

j by an individual from population i during the lifetime (T )

M “ pmijq, Mean offspring matrix

Gp�sq pgf of the offspring distribution

φpsq pgf of T

F Final size of the epidemic

D Duration of the epidemic

P Peak of the epidemic

P0 Probability of disease extinction, Probability of minor epidemic

Model with n “ 2 populations

a Probability of staying in population 1 per time unit, (σ11)

b Probability of staying in population 2 per time unit (σ22)

λ Smaller eigenvalue of D

R0i Basic reproduction number for population i “ 1, 2

R0 Weighted average of R01 and R02 according to π1 and π2

size N “ řn
i“1 Niptq remains constant for all time. Individuals can move between any
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peak hours from city to city or (ii) domestic animals who are transported from farm

to farm at night.

Assume that, at time t “ 0, Nip0q « Nπi (i “ 1, 2, ¨ ¨ ¨ , n), where π “ pπiqni“1 is

the stationary probability (i.e. πD “ π). Thus, although random, the subpopulation

Niptq will remain close to its initial value throughout time. Some of the properties of

the model are described in the following sections.

4.2.1 Computation of R0

In this section, we follow the approach presented by Neal in [85]. The early stages

of an epidemic is approximated by a properly defined multi-type branching process,

see Section 1.3.1 for a discussion on the use branching process on the computation of

the basic reproduction number R0.

To facilitate the derivation of a formula forR0 the following notation is introduced:

ζij “ random time spent in patch j (before recovery) by an infectious individual from

patch i;

mij “ average number of “offspring” (i.e., secondary infections) that an individual,

from patch i, can produce in patch j during the entire “life span” (i.e. the

random infectious period modeled by T );

M “ pmijq, the mean offspring matrix.

Then, R0 is given by the spectral radius of the matrix M [16, 17, 68, 71, 86], which

entries mij can be written as

mij “ βjEpζijq. (4.1)

By conditional expectation Epζijq “
8ř
t“0

Epζij|T “ tqPpT “ tq and

Epζij|T “ tq “ E

˜
t´1ÿ
k“0

IUipkq“j

¸
“

t´1ÿ
k“0

PpUipkq “ jq “
t´1ÿ
k“0

σ
pkq
ij ,

where σ
pkq
ij denotes the ij´th entry of the matrix Dk, Uipkq the state of the Markov

chain at time k given that Uip0q “ i, and IUipkq“j the indicator function of the event
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Uipkq “ j. Notice that new infections at time t are generated by infective individuals

at time t´ 1, which is why the sum above has been taken from 0 to t´ 1. Combining

the last two equations we obtain the matrix of expectations of ζij»
———–
Epζ11q ¨ ¨ ¨ Epζ1nq

...
. . .

...

Epζn1q ¨ ¨ ¨ Epζnnq

fi
ffiffiffifl “

8ÿ
t“1

PpT “ tq
t´1ÿ
k“0

Dk “ E

˜
T´1ÿ
k“0

Dk

¸
. (4.2)

Let λ1, . . . , λn be the eigenvalues of the stochastic matrix D “ pσijq. Since D is a

Markov matrix, λi “ 1 for some i and |λi| ď 1 @i. If D is diagonalizable, then there

exists a nonsingular matrix Λ such that Dk “ Λ diagp1, λk
2, . . . , λ

k
nq Λ´1, so that

t´1ÿ
k“0

Dk “ Λ diag

˜
t,

t´1ÿ
k“0

λk
2, . . . ,

t´1ÿ
k“0

λk
n

¸
Λ´1. (4.3)

Substitution of (4.3) into (4.2) yields»
———–
Epζ11q ¨ ¨ ¨ Epζ1nq

...
. . .

...

Epζn1q ¨ ¨ ¨ Epζnnq

fi
ffiffiffifl “ Λ

« 8ÿ
t“1

PpT “ tq diag

˜
t,

t´1ÿ
k“0

λk
2, . . . ,

t´1ÿ
k“0

λk
n

¸ff
Λ´1

“ Λ diag
`
ϕp1q, ϕpλ2q, . . . , ϕpλnq˘

Λ´1,

(4.4)

where ϕ is the function defined by

ϕpsq “
8ÿ
t“1

PpT “ tq
t´1ÿ
k“0

sk “

$’&
’%

EpT q if s “ 1,

E

´
1´sT

1´s

¯
if s ‰ 1.

(4.5)

The following theorem, a discrete equivalent of a result presented in [85], is obtained

using equalities (4.1) and (4.4).

Theorem 4.2.1 R0 is given by the spectral radius of M , 
pMq, where

M “ E
`
1 ` D ` ¨ ¨ ¨ ` DT´1

˘
diagpβ1, . . . , βnq.

Moreover, if the Markov matrix D is diagonalizable then

M “ Λ diag
`
ϕp1q, ϕpλ2q, . . . , ϕpλnq˘

Λ´1 diagpβ1, . . . , βnq.



85

Remark. Notice that the trivial case T “ 0 yields M “ 0 and R0 “ 0. For this

reason T ‰ 0 is assumed from now on.

This result can also be expressed using the probability generating function (pgf)

of T , which we denote by φpsq, i.e.,

φpsq “ E
`
sT

˘
. (4.6)

For s ‰ 1 (see (4.5)),

ϕpsq “ 1 ´ φpsq
1 ´ s

. (4.7)

The series φpsq “
8ř
t“1

stPpT “ tq is absolutely convergent in |s| ď 1, and so is ϕpsq.
An explicit formula for the pgf is usually available for most commonly used discrete

distributions. In addition, it is easily verified that 0 ď ϕpsq ď EpT q @s P r´1, 1s.
Applications of Theorem 4.2.1 are illustrated later when specific distributions for

T are considered in the model with n “ 2 patches (see Section 4.3.1). This result

also allows us to compare the reproduction numbers R0 corresponding to different

distributions of T (see Section 4.3.2).

4.2.2 Probabilities of minor and major epidemics

When it comes to stochastic models, the probability of extinction of the branching

process, also known as the probability of a minor epidemic,pP0q, provides insightful

results about the model [50, 51, 65, 68]. In this section, a formula for P0 is derived

using the probability generating function of the offspring distribution.

Obtaining an expression for the pgf of the offspring distribution, denoted by G,

is important because the probability of extinction of a branching process can be de-

termined using G [72]. Let ηij be the number of offsprings (secondary infections)

generated in population j by an individual from population i. Since the sum of inde-
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pendent Poisson random variables is still Poisson we have that ηij|ζij “ Poissonpβjζijq.
Let �s “ ps1, . . . , snq. Then the function G : r0, 1sn Ñ r0, 1sn can be expressed as

Gip�sq “ E

´ śn
j“1 s

ηij
j

¯
“ E

´
E

´ śn
j“1 s

ηij
j

ˇ̌̌
ζi1, . . . , ζin

¯¯

“ E

´ śn
j“1 E

´
s
ηij
j

ˇ̌̌
ζi1, . . . , ζin

¯¯
“ E

´
e´ řn

j“1 βjζijp1´sjq
¯
.

(4.8)

Define ζijptq to be the time spent in group j by an individual from group i up to time

t, and

Xiptq “
nÿ

j“1

βjζijptqp1 ´ sjq.

Using the conditional expectation formula, equation (4.8) becomes

Gip�sq “ E

´
e´ řn

j“1 βjζijp1´sjq
¯

“
8ř
t“1

E

´
e´ řn

j“1 βjζijp1´sjq
ˇ̌̌
T “ t

¯
PpT “ tq

“
8ř
t“1

E
`
e´Xiptq˘PpT “ tq

(4.9)

An explicit formula for G is provided in the following

Theorem 4.2.2 Let Ap�sq be the nˆ n matrix given by Ap�sqij “ e´θiσij. Let Ep�sq be

the nˆ1 matrix given by Ep�sqi “ e´θi, where θj “ βjp1´sjq. Then G : r0, 1sn Ñ r0, 1sn
is given by

Gp�sqtr “ `
G1p�sq, . . . , Gnp�sq˘tr “

8ÿ
t“1

Ap�sqt´1Ep�sq PpT “ tq

Proof To simplify notation, let θj “ βjp1 ´ sjq. Then

Xiptq “ θ1ζi1ptq ` θ2ζi2ptq ` ¨ ¨ ¨ ` θnζinptq.

Alternatively, Xiptq “ θi ` θUip1q ` ¨ ¨ ¨ ` θUipt´1q. Thus, by conditional expectation

Epe´Xipt`1qq “ E
“
E

`
e´Xipt`1q|Uip1q˘‰ “

nÿ
j“1

E
`
e´Xipt`1q|Uip1q “ k

˘
PpUip1q “ kq

“
nÿ

j“1

E
`
eθi`θk`¨¨¨`θUiptq |Uip1q “ k

˘
σik “

nÿ
j“1

eθiE
`
e´Xkptq˘σik
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The last equality makes use of the stationary property of the Markov Chain Ui. For

ease of notation, let A and E represent the matrices Ap�sq and Ep�sq, this is

A “

»
——————–

e´θ1σ11 e´θ1σ12 ¨ ¨ ¨ e´θ1σ1n

e´θ2σ21 e´θ2σ22 ¨ ¨ ¨ e´θ2σ2n

...
...

. . .
...

e´θnσn1 e´θnσn2 ¨ ¨ ¨ e´θnσnn

fi
ffiffiffiffiffiffifl
, E “

»
——————–

e´θ1

e´θ2

...

e´θn

fi
ffiffiffiffiffiffifl

It follows by induction that
`
Epe´X1ptqq, . . . ,Epe´Xnptqq˘tr “ At´1E: clearly, for t “ 1,

Epe´Xip1qq “ e´θi and A0E “ E. Now, assume the statement is true for t and prove

for t ` 1 :

AtE “ ApAt´1Eq “ A

»
——————–

Epe´X1ptqq
Epe´X2ptqq

...

Epe´Xnptqq

fi
ffiffiffiffiffiffifl

“

»
————————–

nř
k“1

e´θ1σ1kEpe´Xkptqq
nř

k“1

e´θ2σ2kEpe´Xkptqq
...

nř
k“1

e´θnσnkEpe´Xkptqq

fi
ffiffiffiffiffiffiffiffifl

“

»
——————–

Epe´X1pt`1qq
Epe´X2pt`1qq

...

Epe´Xnpt`1qq

fi
ffiffiffiffiffiffifl

From equation (4.9), the ith component of G is given by

Gip�sq “
8ÿ
t“1

E
`
e´Xiptq˘PpT “ tq,

therefore

Gp�sq “ `
G1p�sq, . . . , Gnp�sq˘ “

8ÿ
t“1

At´1E PpT “ tq

The extinction probability (or probability of minor epidemic) is determined by

the equation Gp�sq “ �s. This is a well known fact from the theory of branching

process [72], see Section 1.3.2 for a discussion on this topic. If R0 ă 1, the only

fixed point of Gp�sq is p1, 1, . . . , 1q. If R0 ą 1, the equation Gp�sq “ �s has a nontrivial

solution �z “ pz1, . . . , znq P p0, 1qn. Each value zi represents the extinction probability

given the initial condition Iip0q “ 1 and Ijp0q “ 0 @j ‰ i. Thus, if there are mi
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initial infective individuals in population i at t “ 0, then the extinction probability

P0 (probability of minor epidemic) is

P0 “
nź

i“1

zmi
i . (4.10)

Naturally, the probability that a major epidemic occurs is 1 ´ P0.

Theorem 2 is valid for any distribution of T and any number n of subpopulations.

When a specific distribution of T is used, the formula may simplify and (4.10) can be

determined numerically. Examples with n “ 2 patches are presented in Section 4.3.3.

4.3 Additional insights from the two-patch model

When n is large, an explicit expression for the spectral radius of the matrix M can

be difficult to obtain. However, for n “ 2 patches, most formulas can be dramatically

simplified, especially when specific distributions of T are used. In Section 4.3.1,

explicit formulas for R0 and the pgf of offspring distribution Gp�sq are derived. In

Section 4.3.2, the effect of the distribution of T onR0 is analyzed.Finally, Section 4.3.3

includes some simulation results and Section 4.3.4 presents a more detailed formula

for G, which is used to compute the probabilities of major and minor epidemics.

4.3.1 Properties of R0

Without loss of generality, assume that the transmission parameters βi satisfy

β1 ě β2. To simplify the notation, let a “ σ11 and b “ σ22. Then, the transition

matrix of the Markov chain becomes

D “
»
– a 1 ´ a

1 ´ b b

fi
fl . (4.11)

To avoid extreme cases, let a, b P p0, 1q. The eigenvalues of D are 1 and

λ “ a ` b ´ 1. (4.12)
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Let π denote the stationary probability distribution of the Markov chain described

by D (i.e. πD “ π). It is easy to verify that π “ rπ1, π2s with

π1 “ 1 ´ b

2 ´ a ´ b
P p0, 1q, π2 “ 1 ´ a

2 ´ a ´ b
P p0, 1q.

The matrix D can be diagonalized and rewritten as

D “ Λ

»
–1 0

0 λ

fi
flΛ´1, where Λ “

»
–1 1 ´ a

1 ´p1 ´ bq

fi
fl . (4.13)

From Theorem 1, the mean offspring matrix is given by

M “ Λ

»
–EpT q 0

0 ϕpλq

fi
flΛ´1

»
–β1 0

0 β2

fi
fl “

»
–β1rπ1EpT q ` π2ϕpλqs β2π2rEpT q ´ ϕpλqs

β1π1rEpT q ´ ϕpλqs β2rπ2EpT q ` π1ϕpλqs

fi
fl .

Recall from (4.5) that ϕp1q “ EpT q is the mean infectious period and ϕpλq “
E

´
1´λT

1´λ

¯
. For ease of notation, let

R0i “ βiEpT q, R0 “ π1R01 ` π2R02. (4.14)

R0 can be interpreted as the weighted average of R01 and R02, the intuitive patch

reproduction numbers. Finally, by analyzing M we can find not only the exact value

of R0 but also other important properties that are listed in the next Theorem.

Theorem 4.3.1 Let z “ ϕpλq and φpλq, ϕpλq, λ, R0, R01 be defined as in (4.6),

(4.7), (4.12), (4.14). For n “ 2 patches,

(i) An explicit expression for R0 is

R0 “ R0 ` zpβ1π2 ` β2π1q `
b“R0 ` zpβ1π2 ` β2π1q‰2 ´ 4β1β2EpT qz

2
; (4.15)

(ii) R0 has the following upper and lower bounds:

R0 ď R0 ď R01;

(iii) R0 is decreasing with respect to φpλq and increasing with respect to z.
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Proof Following a similar approach that the one presented in [85], define z “ ϕpλq.
Denote by

fzpxq “ rR01π1 ` zβ1π2 ´ xsrR02π2 ` zβ2π1 ´ xs ´ pEpT q ´ zq2β1β2π1π2

the characteristic polynomial of M . Straightforward calculations yield

fzp0q ą 0, fzpR02q ď 0, fzpR0q ď 0, and fzpR01q ě 0.

Therefore, fzpxq has two real roots. R0, the dominant eigenvalue of M , is in the

interval rR0,R01s, as illustrated in Figure 4.2. To analyze the connection between

the distribution of T and R0, consider two random variables with different distri-

butions but the same mean, i.e., EpT1q “ EpT2q (so that the two distributions are

“comparable”). Let zi “ ϕpλ, Tiq “ 1´EpλTi q
1´λ

. Through zi, the two distributions may

yield different reproduction numbers, which we denote by RT1
0 and RT2

0 . Notice that

R01,R02 and R0 do not depend on zi (see (4.14)). Assume that z1 ď z2, then it can

be verified that

fz1pRT2
0 q “ z2 ´ z1

EpT1q
“pR01 ´ RT2

0 qpRT2
0 ´ R02q ` RT2

0 pRT2
0 ´ R0q

‰ ě 0.

Thus, fz1pRT2
0 q ě fz1pRT1

0 q “ 0. Since R0 ď RTi
0 ď R01 (i “ 1, 2) and f is an

increasing function on pR0,R01q, it follows that RT1
0 ď RT2

0 . A graphical representa-

tion of this argument is provided in Figure 4.2. Finally, since z1 ď z2 if and only if

EpλT2q ď EpλT1q, we conclude that R0 is a decreasing (increasing) function of φpλq
(ϕpλq). This completes the proof of Theorem 4.3.1.

Remark. If β “ β1 “ β2 (i.e., identical transmission in both sub-populations),

formula (4.15) reduces to R0 “ R0i “ R0 “ βEpT q, which is consistent with the

standard simple SIR model with a single population. In the following sections we

assume that β1 ą β2, to avoid this trivial case.
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If k “ 1, this distribution is equivalent to a sGeompγq.

C. T is sPoissonpκq with parameter κ. The pmf is PpX “ tq “ e´κ κt´1

pt´1q! for

t P t1, 2, 3, . . . u and κ ą 0. The mean and pgf are

EpT q “ κ ` 1, φppλq “ E
`
λT

˘ “ λe´κp1´λq “ λe´rEpT q´1sp1´λq.

D. T is discrete with support on t1, 2, . . . ,mu. The pmf is

PpX “ xq “

$’&
’%

pk if x “ k, k “ 1, ¨ ¨ ¨ ,m
0 otherwise.

The mean and pgf are

EpT q “
mÿ
k“1

kpk, φepλq “ E
`
λT

˘ “
mÿ
k“1

pkλ
k.

Plots of the pgf φpλq for the distributions A–C are shown in Figure 4.3. We

observed that the order of the pgfs can be very different depending on the sign of λ,

the smallest eigenvalue of the transition matrix D (4.12). By Theorem 4.3.1, φpλq
can be used to compare the R0 values associated with these specific distributions.

Denote the reproduction numbers corresponding to distributions A - C by Rg
0, Rnb

0 ,

and Rp
0, respectively. Figure 4.3 suggests that these numbers follow a certain order

based on the corresponding distributions. This finding is described in the following

result.

Theorem 4.3.2 Let λ “ a` b´1 be the smaller eigenvalue of the Markov matrix D.

Let T ‰ 0. The reproduction numbers corresponding to the distributions A–C can be

ordered as follows:

Rg
0 ď Rnbk

0 ď Rnbk`1

0 ď Rp
0 if λ P r0, 1q,

Rp
0 ď Rnbk`1

0 ď Rnbk
0 ď Rg

0 if λ P p´1, 0s.
(4.16)

Moreover,

Rnbk
0 Ñ Rp

0 as k Ñ 8.

Equality is attained only if λ “ 0 or k “ 1.
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for the IP [85]. The similarity between continuous and discrete models exists for

λ ą 0 because the pgf can be expressed in terms of the mgf

φpλq “ EpλT q “ EpeT log λq. (4.17)

On the other hand, the above equality is no longer valid for λ ă 0. A possible

biological reason for this discrepancy between continuous and discrete models has

not been identified. In practice, most models would assume that individuals are more

likely to stay in their patch than to migrate to the other patch. This implies a, b ě 0.5,

and therefore λ “ a ` b ´ 1 ě 0.

If λ ą 0, sharper bounds than those given in Theorem 4.3.1 can be obtained for

R0, regardless of the distribution of T .

Theorem 4.3.3 Let λ ą 0.

(i) An upper bound for R0 is given by

1
2

"
R0 ` 1´λEpT q

1´λ
pβ1π2 ` β2π1q

`
c”

R0 ` 1´λEpT q
1´λ

pβ1π2 ` β2π1q
ı2 ´ 4β1β2EpT q1´λEpT q

1´λ

*

This value is attained when T has a constant distribution with fixed duration

EpT q.

(ii) If VarpT q ď σ2, a lower bound for R0 is given by

1

2

«
R0 ` zpβ1π2 ` β2π1q `

b“R0 ` zpβ1π2 ` β2π1q
‰2 ´ 4β1β2EpT qz

ff
,

where

z “
EpT q2

´
1 ´ λ

EpT q2`σ2

EpT q
¯

rEpT q2 ` σ2s p1 ´ λq .

This value is attained if T is the two point distribution

T “

$’&
’%

0 with probability σ2

EpT q2`σ2 ,

EpT q2`σ2

EpT q with probability EpT q2
EpT q2`σ2 .
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Proof For the upper bound, by Jensen’s inequality EpeT log λq ě eEpT q log λ. Therefore,

for all comparable T , φpλq ą λEpT q. Substitution of this value in (4.15) leads to the

upper bound expression.

For the lower bound, let φpλq “ EpλT q then it is easy to check that

VarpT q “ EpT q2σ2

EpT q2`σ2 `
”
EpT q2`σ2

EpT q ´ EpT q
ı2

EpT q2
EpT q2`σ2 “ σ2,

φpλq “ E
`
λT

˘ “ σ2

EpT q2`σ2 ` EpT q2
EpT q2`σ2λ

EpT q2`σ2

EpT q .

It is known that the mgf of a non-negative random variable with variance σ2 is

maximized by T (see Theorem 1 in [74]). From (4.17) T also maximizes the pgf of all

comparable infectious periods T . Moreover,

gpσq “ σ2

EpT q2 ` σ2
` EpT q2

EpT q2 ` σ2
λ

EpT q2`σ2

EpT q

is an increasing function of σ. Consider g as a function of z “ σ2. Then

gpzq “ z ` EpT q2λ EpT q2`z
EpT q

EpT q2 ` z
and g1pzq “ EpT qg1ptq

pEpT q2 ` zq2 ,

where g1pzq “ EpT q ` rlogpλqEpT q2 ` logpλqz ´ EpT qsλ EpT q2`z
EpT q . Clearly, the sign of

g1pzq is determined by g1pzq. Since e´EpT q logpλq ě ´EpT q logpλq ` 1, then

1 ě r´EpT q logpλq ` 1sλEpT q ñ 1 ` rEpT q logpλq ´ 1sλEpT q ě 0.

Therefore g1p0q “ EpT q “
1 ` rlogpλqEpT q ´ 1sλEpT q‰ ě 0. Since

g1
1pzq “ “

logpλqEpT q2 ` logpλqz ´ EpT q‰ logpλq
EpT q λ

EpT q2`z
EpT q ` logpλqλ EpT q2`z

EpT q

“
„
logpλq2EpT q ` z logpλq2

EpT q
j
λ

EpT q2`z
EpT q ě 0,

it follows that g1pzq is an increasing function of z. Thus, g1pzq ě g1p0q ě 0 @z ě 0;

and, g1pzq ě 0 @z ě 0. Therefore, conclude gpσ1q ď gpσ2q @σ1 ď σ2. This implies

that, if T satisfies VarpT q ď σ2, then its pgf is no greater than φ for any λ P r0, 1s.
Since R0 is a decreasing function with respect to the pgf φ, we conclude that R0 is

minimized when T “ T . Finally, substituting the expression z “ ϕpλq “ 1´φpλq
1´λ

for z

in (4.15) we obtain the expression for the lower bound.
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Remark Since our model is discrete, we consider random variables with support on

the set t0, 1, . . . u, thus if EpT q or EpT q2`σ2

EpT q R N0 are not integers, then the upper and

lower bound might not be attained.

4.3.3 Results of stochastic simulations

Numerical simulations of the model with n “ 2 subpopulations have been con-

ducted. Let Siptq, Iiptq, Riptq denote the numbers of susceptible, infective, and re-

covered individuals, respectively, of the population i at time t (i “ 1, 2, t P N).

Initial populations N1p0q and N2p0q are chosen near the Markov equilibrium, i.e.,

N1p0q « π1N, N2p0q « π2N . Recall that the total population size N “ N1ptq `N2ptq
remains constant for all time. Assume Iip0q ą 0 for at least one sub-population i. To

determine the number of individuals in each epidemiological classes at time t, we first

run the epidemic process (updating the number of susceptible, infected, recovered),

and then shuffle the population from one patch to the other according to the Markov

matrix D (4.13). The epidemiological process is simulated using a similar approach as

in [28]. Since the number of effective contacts per person in population i is Poissonpβiq,
the number of secondary infections is determined by xptq „ Poiss

´
βiIipt ´ 1q Sipt´1q

Nipt´1q
¯
.

If T „ sGeompγq (see distribution A in Section 4.3.2), then the probability that

an infected individual recovers at time t is equal to γ. Let xiptq and yiptq denote the

newly infected and newly recovered individuals at time t, respectively, in population

i. Note that yiptq is distributed as BinomialpIipt ´ 1q, γq. Then

Sipt´q “ Spt ´ 1q ´ xptq, Iipt´q “ Iipt ´ 1q ` xptq ´ yptq,

Ript´q “ Ript ´ 1q ` yptq

The notation t´ is used because of the following consideration. To obtain Siptq, Iiptq,
and Riptq we must simulate the movement from patch i to patch j. Let siÑi denote the

number of susceptible individuals staying in patch i (i “ 1, 2). Then, the number of

susceptible individuals staying in patch 1, s1Ñ1, is distributed as BinomialpS1pt´q, aq.
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To examine how good these approximations are, the second column in Table 4.2

contains the “empirical” probabilities of minor epidemic. These quantities have been

determined by the proportion of observations that have total infections ď 10 (see

Figure 4.6). The last (Error) column shows the difference between the analytic value

P0 and the value from model simulations. Our simulations suggest that P0 provides

a very good approximation.

Table 4.2.
Comparison of the probabilities of minor epidemic (extinction proba-
bility P0) and simulation results for different initial values I1p0q and
I2p0q. A sample path for which the final size is less than 10 was
considered to be a minor epidemic.

Initial value Proportion`
I1p0q, I2p0q˘

P0 from simulations Error

(1,0) 0.4426690 0.43962 0.003048985

Geometric (0,1) 0.5324051 0.52236 0.010045121

(1,1) 0.2356792 0.22546 0.010219235

(1,0) 0.2815446 0.28798 -0.006435354

NegBinom (0,1) 0.3728444 0.37072 0.002124375

(1,1) 0.1049723 0.10308 0.001892338

(1,0) 0.18068085 0.2353 -0.05461915

Uniform (0,1) 0.25198173 0.31478 -0.06279827

(1,1) 0.04552827 0.07218 -0.02665173
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4.4 Discussion

In this chapter, discrete-time stochastic epidemic models in a metapopulation

setting were studied. Although some of the ideas and methods are adopted from [85],

which deals with an analogous continuous-time model, new findings and results were

obtained. A particular new behavior that is absent in continuous models is that, in

the two patch model, the effect of distributions of T on R0 depends critically on the

sign of λ (the smaller eigenvalue of the Markov matrix D). The consideration of a

(random) arbitrarily distributed infectious period T in the discrete model is also a

new feature that has not been studied previously. The results obtained for the general

distribution allow us to compare model outcomes under different assumptions on the

distribution of infectious period.

For the model with n populations and an arbitrary infectious period T , we derived

the expression for R0 (Theorem 1) and the equation for the probability of disease

extinction P0 (see (4.9) and (4.10)). These general results are applied to the case of

n “ 2 populations, from which an explicit formula for R0 was derived in terms of the

pgf φ of T . More importantly, it was proved that R0 is a decreasing function of φ,

which allows us to obtain an order relation among the R0 that is dependent on the

distributions of T (including sGeometric; sNegative Binomial; sPoisson; and a discrete

distribution with finite support, representing the case of empirical data). It was shown

that, when λ ą 0 the Geometric distribution gives the smallest reproduction number

(Rg
0) while the Poisson distribution gives the largest (Rp

0). However, when λ ă 0, the

order is reversed (see Theorem 3). In addition, an upper and lower bounds for R0

were provided for the case λ ą 0. Notice that, if individuals in population i are more

likely to stay than to move to the other population, i.e., a, b ą 0.5, then λ ą 0 will

be a more likely scenario.

Because our model includes several random factors, e.g., the infectious period T

and the number of effective contacts βi, some of the results are obtained by carrying

out a large number of numerical simulations for the model with n “ 2 populations.
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From these simulation results we can obtain insights into the effect of distributions of

T on the final epidemic size F , duration of an epidemic D, peak of an epidemic P and

probability of minor epidemic P0 (e.g., see Figures 4.6 - 4.8). Traditionally, models

with Geometric infectious period are preferred due to its tractability. However, our

findings suggest that when the model with T „ Geom is compared with the model

with T „NegBinom and T „Uniform, the GDM predicts a milder epidemic (when

λ ą 0). This is supported by our analytical (see (4.16), (4.18)) and numerical results

(see Figures 4.6-4.8). From the numerical simulations we also observe that the GDM

is likely to generate a longer duration when compared to the NBDM and UDM.

A formula for the probability of disease extinction P0 has also been derived based

on the approximations by a branching process. Comparisons of the P0 value with the

proportion of minor epidemics from simulations of the three models (GDM, NBDM

and UDM) suggest that the formula for P0 provides very good approximations (see

Table 4.2). From the results shown in Table 4.2 we also observe that the Geometric

model predicts a higher (smaller) probability of minor (major) epidemic.
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5. SUMMARY AND DISCUSSION

In this thesis several discrete-time epidemic models, both deterministic and stochastic,

are developed and studied. The driving questions that motivated most of these models

are the following:

(i) What are the drawbacks of Geometric distribution assumption on disease stages

when the model is used to evaluate control measures?

(ii) How will the model predictions alter when the Geometric distribution is replaced

by more realistic distributions?

(iii) Can we derive a formula for the reproduction numbers R0 (RC) and a final

epidemic size relation when an arbitrarily distributed disease duration is used

in a discrete SEIR type of model?

These questions are addressed in this thesis, and the results obtained can be very

useful for providing important insights into disease transmission dynamics and eval-

uations of disease control strategies such as quarantine and isolation.

In Chapter 2, a systematic derivations for the reproduction numbers of various

discrete-time epidemic models are presented. Models without disease control (Sec-

tions 2.2 and 2.3) and with isolation (Section 2.4) are considered, most of which allow

for an arbitrarily distributed (bounded) infectious period. The inclusion of the gen-

eral distribution makes the model analysis challenging, particularly the computation

of R0 and RC due to the fact that the commonly employed method, the next gener-

ation matrix approach, cannot be applied. The technique developed in this thesis is

one of the main novelties, which provides a useful method for analyzing discrete-time

epidemic models.

Because RC depends on the mean infectious period and the isolation-adjusted

mean sojourn time (see formula (2.23)), among other factors, we demonstrated that
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models assuming Geometric distributions can lead to biased or misleading evaluations

on disease control strategies. For example, Figure 2.13 in Section 2.4 illustrates

that the choice of distributions may have significant influence on the applications

of the model in evaluating control strategies. This is in agreement with previous

findings, suggesting the importance of using more realistic assumptions on disease

stage distributions in some cases.

Chapter 3 presents more examples of using discrete-time epidemic models to evalu-

ate control strategies and the effect of stage-duration distributions on the quantitative

dynamics. To the best of our knowledge, no discrete-time epidemic models have been

previously developed and analyzed that include quarantine and isolation while al-

lowing the disease stages to have arbitrary distributions. The analyses presented in

this chapter provide useful tools for evaluating the final epidemic size. The results

are discussed in particular within the context of three classical discrete parametric

distributions: Geometric, Poisson and Binomial. The results suggest that the use

of distinct parametric distributions can lead to contradictory model predictions (see

Figure 3.8).

The framework introduced in Chapter 3 also allows for the incorporation of em-

pirical stage-duration distributions. This can provide a particular advantage of using

data directly in the application of the model due to the flexibility in the distribution

assumption. Another major contribution of this study is the derivation of the ana-

lytic formulas for RC and final epidemic sizes. The general formula for RC makes it

possible to further examine the role of its additive components (RI , RIH and RQH),

which can help identify critical factors for the most effectively control of the disease.

Finally, in Chapter 4 a discrete-time stochastic epidemic model in a metapop-

ulation setting was studied. The (random) infectious period T is assumed to be

arbitrarily distributed, which represents a new feature that has not been studied

previously in the stochastic/discrete setting. For the model with n sub-populations,

an expression for R0 (Theorem 4.2.1) and the probability of disease extinction P0

(Theorem 4.2.2 and equation (4.10)) are obtained. These general results are then
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applied to the case of n “ 2 sub-populations, from which an explicit formula for R0

can be derived in terms of the pgf φ of T . More importantly, we proved that R0 is a

decreasing function of φ, which allows us to obtain an order relationship among the

R0 values corresponding to the distributions of T . We compared these reproduction

numbers under specific distributions (e.g., Geometric, Poisson and Negative Bino-

mial) and established a hierarchical relationship. More generally, upper and lower

bounds for R0 are provided for the case λ ą 0.

Because our model includes several random factors, some of the results are ob-

tained by carrying out a large number of numerical simulations for the model with

n “ 2 sub-populations. From these simulation results we can obtain insights into

the effect of distributions of T on the final epidemic size F , duration of an epidemic

D, and probability of minor epidemic P0 (e.g., see Figs. 4.6 and 4.7). Traditionally,

models with Geometric infectious period are preferred due to the tractability of the

model. However, our findings suggest that when the model with T „ Geom is com-

pared with the model with T „NegBinom or T „Uniform, the geometric distribution

model (GDM) predicts a milder epidemic (when λ ą 0). This is supported by our

analytical (see (4.16), (4.18)) and numerical results (see Fig. 4.6, 4.7). From the

numerical simulations we also observe that the GDM is likely to generate a longer

duration when compared to the negative binomial distribution model (NBDM) and

the uniform distribution model (UDM).

We have also derived a formula for the probability of disease extinction P0 based

on the approximations by a branching process. Comparisons of the P0 value with the

proportion of minor epidemics from simulations of the three models (GDM, NBDM

and UDM) suggest that the formula for P0 provides very good approximations (see

Table 4.2). From the results shown in Table 4.2 we also observe that the Geometric

model predicts a higher (smaller) probability of minor (major) epidemic.

In summary, the studies included in this thesis provide new methods and frame-

works for formulating and analyzing discrete-time epidemic models, particularly when

more realistic distributions for disease stages need to be considered. The use of ar-
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bitrarily distributed stage durations in the general model provide formulas for sev-

eral quantities including R0 (RC), final epidemic size relation, and probability of

minor/major epidemic that can be easily applied when specific distributions are con-

sidered. Model results provide useful tools for evaluating disease control strategies.
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