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“Remember to look up at the stars and not down at your feet. Never give up work. Work 

gives you meaning and purpose and life is empty without it. If you are lucky enough to 

find love, remember it is there and don't throw it away.”  

― Stephen Hawking 
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ABSTRACT 

Hemphill, Amanda J.  Ph.D. Purdue University, May 2015.  Development of 
Experimental and Instrumental Systems to Study Biological Systems.  Major Professor: 
Brian A. Todd. 

 

       Chapters 1-4 of this thesis describes the development of an experimental system to 

measure diffusion-limited reaction kinetics in a biological environment.  About 100 

years ago, the relationship between reaction rate and diffusion in homogenous solution, 

ie water or buffer, was described as a linear relationship by Smoluchowski.  Applying 

this theory naively would suggest that since the diffusion coefficients drop by factors of 

4-100 then the rates of reaction would drop by the same amount.  However, recent 

theory and simulations suggest that this does not hold.  Even though biological diffusion 

coefficients drop to 0.1-20% of that in buffer, these recent studies show that the reaction 

kinetics are much more weakly affected by the biological environment.  Due to the lack 

of experimental evidence for biological diffusion, there is a great need for information 

in this area.  Here, I describe a protein system, exogenous to E. coli¸ that will form a 

dimer in the presence of a small molecule.   

       I also describe the development of a new type of multivariate hyperspectral Raman 

instrument (MHI); the instrument is developed for use to study biological tissues and 

for high speed cell sorting applications.  The new instrument design has a large speed 
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advantage over traditional Raman instrumentation for rapid chemical imaging.  While 

the MHI can reproduce the functionality of a traditional Raman spectrometer, its true 

speed advantage is realized after pre-training on known sample components.  The MHI 

makes use of a spatial light modulator as a programmable optical filter that can be 

programmed with filters based on multivariate signal processing algorithms, such as 

PLS, in order to rapidly detect chemical components and create chemical maps.  

Chapters 5-8 of this thesis describe the development and construction of the MHI, as 

well as provide proof-of-concept experimental results demonstrating its functionality.        
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1.1 The Diffusion-Limit 

 In order for a reaction to take place, the reactants must first be transported to a 

common location; this transport is achieved through either diffusion or active transport.  

The speed of this transport, consequently, sets an upper bound on the kinetics of the 

reaction.  Many biological reactions are transport-limited, meaning that their reaction 

kinetics closely approach their transport kinetics [18].  Active transport plays a large role 

in some scenarios such as transporting molecules across large cells [19], enriching 

regions of the cell with particular molecules [20], and the transport of vesicles [21].  

However, even when active transport mechanisms are present, diffusion still provides the 

final search mechanism for biomolecules in their local space to find their reaction 

partners.  In many cases however, diffusion is the exclusive mechanism of transport.  

Since diffusion always plays a role in transport, its contribution is an important factor in 

the kinetics of biological reactions. 

 Often times, biological reactions involve many intermediate steps.  Typically, the 

reactants must first be transported to a common location, then they must rotate into the 

proper orientation so that the reaction centers of the molecules are properly aligned.  The 

overall reaction rate can be affected by interactions between the reactants in these 

intermediate steps [22].  Specific reaction mechanisms vary from reaction to reaction but 

generally, reactions can be classified into two categories based on their rate-limiting step: 

diffusion-limited and reaction-limited.  If the overall rate is limited by the chemical 

process, the rate is reaction-limited.  When the overall rate is limited by diffusional 

transport, the rate is diffusion-limited.   



3 
 

 The simplest reaction mechanism of two reactants forming a single product is 

given by,  	 → 	          (1.1) 

where A and B are reactants forming product C with rate constant, k.  The reaction rate of 

this second order reaction is 

    (1.2) 

 

where k is the rate constant and [A] and [B] are concentrations of reactants A and B.  In a 

diffusion-limited reaction, the time for A and B to react and produce C is negligible 

compared to the diffusion of A and B.  Therefore, k is primarily affected by the diffusion 

time and can be noted as the diffusion-limited rate constant.   

 Since many biological reactions are diffusion-limited, a prediction of the diffusion 

limit gives a good approximation of the reaction rate.  For other biological reactions, in 

which diffusion plays a crucial role, the diffusion-limit sets the upper bound for the 

reaction rate since molecules cannot react any faster than they encounter one another.   

 

1.2 Homogeneous Diffusion 

 

1.2.1 Random Walk 

 Microscopically, diffusion is the random migration of molecules as a result of 

their kinetic energy.  In liquids, the mean free path is much shorter than that for gases; 

diffusion in liquids follows Brownian motion.  For an isotropic random walk, the average 

position of the molecules does not change as a function of time; the average displacement 
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of the particles is always zero.  A way to estimate how much the particles spread is using 

the mean square displacement, ‹x2›.  In one dimension, the mean-square displacement is 

given by  〈 〉 2      (1.3) 

where D0 is the translational diffusion coefficient for the molecule in a particular solvent 

at a particular temperature.  For two or three dimensions, the mean-square displacement 

can be derived, using the fact that the square of the displacement from the origin r2 equals 

x2 + y2 in two dimensions and x2 + y2 + z2 in three dimensions.  The mean-square 

displacement therefore is given by  〈 〉 4      (1.4) 

in 2D, and  〈 〉 6      (1.5) 

in 3D.   

 

1.2.2 Fickian Diffusion 

 Fick’s law is a classical theory that describes diffusion.  Fick’s first law states that 

the net flux of a solute is proportional to the spatial concentration gradient with 

proportionality constant, -D0. 

         (1.6) 

where J is the net diffusion flux, D0 is the diffusion coefficient, and ϕ is the 

concentration.   
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 Fick’s second law predicts how the concentration changes with time as a result of 

diffusion.   

     (1.7) 

The solution to Fick’s law describes how diffusing particles distribute themselves in 

space and time in a homogeneous environment.  Diffusion that obeys Fick’s laws is 

referred to as “Fickian diffusion”.   

 

1.2.3Translational and Rotational Diffusion Coefficients 

Both the translational diffusion coefficient, D0, and the rotational diffusion 

coefficient, Dr, can be obtained from the Einstein-Smoluchowski equation 

     (1.8) 

and  

     (1.9) 

where kB is the Boltzmann constant, T is the temperature, and fx is the frictional drag 

coefficient.  According to Stoke’s relation, for a particle that can be represented as a 

uniform sphere in an incompressible, viscous solvent, the translational frictional drag 

coefficient is  6      (1.10) 

where η is the viscosity of the solvent and a is the radius of the sphere.  The frictional 

drag coefficient for rotation, for the same conditions listed above, is  8      (1.11) 
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For both instances, the frictional drag coefficient, is directly proportional to the viscosity 

of the solvent.  Therefore, changes in viscosity result in proportional changes in both the 

translational and rotational diffusion coefficient.  

 

1.2.4 The Smoluchowski Equation 

 Smoluchowski’s theory gives an upper bound for the second order rate constant 

for a diffusion-limited reaction.  The equation was derived by Smoluchowski in 1917 

[23] by solving Fick’s laws for diffusion.  The classical Smoluchowski equation is  4      (1.12) 

This equation considers the diffusion-limited reaction of two reacting molecules A and B; 

both are considered to be spheres with a reaction radius, R.  Any barrier, due to the 

formation of a transition state, will result in a slower reaction rate.  Therefore, for any 

reaction, the Smoluchowski equation is an upper bound, and the rate constant can be 

expressed as an inequality,  4 .     (1.13) 

 

1.3 Biological Diffusion 

 After reviewing measurements of biological diffusion, Verkman wrote “The view 

of the cell interior has evolved from that of a viscous gel to that of a watery but crowded 

compartment” [24].  In this view, at short length scales, rapid, water-like, diffusion 

predominates and at longer length scales, as obstacles are encountered, diffusion becomes 

slowed.  This heterogeneity in diffusion cannot be explained using Fickian diffusion 

relations.   
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 Experimental data has shown that translational diffusion coefficients measured in 

vivo are reduced 3-100 fold as compared to those measured in vitro [6-15].  This large 

reduction in diffusion was once characterized by a high viscosity of the biological 

medium [14].  However, this interpretation is now precluded by Verkman’s view of the 

biological environment as a “watery but crowded” compartment.  Direct evidence for the 

heterogeneity of biological diffusion is provided by comparing the translational and 

rotational diffusion coefficients.  Equations 1.8 and 1.9 show that both the translational 

and rotational diffusion coefficients will be proportionally effected as a result of a more 

viscous medium.  However, rotational diffusion coefficients measured in cells are 

maintained at 70-90% of their values in buffer [25-27], whereas translational diffusion 

coefficients drop to 0.1-20% of their values in buffer [6-15].  

 This contrast between translational and rotational diffusion coefficients can be 

interpreted as meaning that the solution seen by a molecule in its immediate vicinity has 

the same viscosity as water.  For rotation, this “watery” environment is all that matters.  

However, as the molecule translates over longer length scales, it encounters obstacles that 

hinder its translational diffusion.  The obstacles in biological environments are usually 

macromolecules, cytoskeletons, filaments, microtubules, and membranous boundaries.    

 The size dependence for biological diffusion also provides evidence that 

translational diffusion in biological environments is impeded by obstacles.  Small 

molecules are more weakly affected by macromolecules in the biological environment 

than larger ones.   
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1.3.1 Diffusion-Reaction Coupling in Biological Systems 

 Smoluchowski’s equation sets an upper limit for reaction rates for systems 

diffusing in a homogeneous environment (equation 1.12).  If this equation is applied to 

biological diffusion, k, the biological reaction rate, bound by Smoluchowski’s inequality 

(equation 1.13), D0 is replaced with D, the biological diffusion coefficient.  This predicts 

the biological diffusion limit in vivo as,  4 .     (1.14) 

This version of Smoluchowski’s equation predicts that the 3-100 fold reduction in the 

diffusion coefficient will cause a proportional decrease in the rate constant.  However, 

Brownian dynamics simulations find that this equation does not hold [28].  Also, a recent 

study of protein dimerization in HeLa cells and in vitro found that the rate constants were 

similar [29].  This recent data shows that Smoluchowski’s does not apply in biological 

systems.  This is a result of the fact that Smoluchowski’s equation was derived under the 

assumption that diffusion is homogeneous at all length scales.  However, the diffusion 

limited reaction rate is not linearly related to the diffusion coefficient.  Some theory has 

been developed to predict reaction rates in biological environments [30-32].  Even fewer 

experiments have been done to correlate diffusion and reaction rates in living cells [29].  

There is thus a great need for more experiments to develop this relation.    
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CHAPTER 2. SYSTEM DEVELOPMENT FOR MEASUREMENT OF BIOLOGICAL 
DIFFUSION-LIMITED REACTION KINETICS 

 
 
 

Traditionally biochemical reaction parameters, such as reaction rates, are studied 

in vitro, in controlled buffer solutions.  However, real biochemistry takes place in vivo, 

which is a crowded, complex environment [1].  Attempts have been made to bridge the 

gap between the in vitro and in vivo environments by conducting studies in the presence 

of crowding agents, such as synthetic polymers or proteins [2].  Still, the actual cellular 

environment is too complex to be able to be modeled appropriately by this approach.  

Therefore, measurements inside living cells are required to fully understand the 

biochemistry that occurs [3].  With only one notable exception, little work has been done 

to measure reaction dynamics inside living cells [1].       

 

2.1 System Exploration 

One of the simplest biological reactions to be thought of is a protein dimerization.  

As reaction candidates were considered, there were two key factors to be considered.   

First, this reaction should be exogenous to the biological environment in which it is going 

to be measured; this allows only proteins introduced into the environment to react and 

thus no need to correct for possible reactions with intracellular protein.  Second, there 
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needs to be a way for the reaction to be initiated once the system has reached equilibrium; 

this prevents the reaction from occurring prior to observation.    

An initial concept for studying this type of reaction was to cage the monomeric 

states of the dimer forming protein.  These “cages” disrupt the structure of the peptide 

and upon removal the protein folds back to its native state [4-7].  After incubation in the 

biological material, a pulse of ultra-violet (UV) light can be used to “uncage” the 

monomer and initiate dimerization.  One reaction of this type was initially considered as 

a candidate for kinetics measurements; the Alzheimer Aβ peptide, which has previously 

been “caged” in an unfolded state [7].  However, this protein is known to form higher 

order oligomers [8, 9] and would thus not be useful for studying a simple dimerization.  

Another approach to the caging strategy is to choose an inducible dimerization 

and cage the induction agent.  This way, the proteins as well as the caged inducer can be 

introduced into the biological environment and allowed to equilibrate before initiating the 

dimer reaction by uncaging and monitoring dimer formation.  Common dimerization 

induction partners are the Ca2+ ion and acid, or H+.  One reaction considered as a 

candidate for the measurement of kinetics, was the acid induced dimerization of Troponin 

C from rabbit skeletal muscle; Troponin C is known to be a monomer at pH 7.5, but at 

pH 5.4, it exists as a dimer [10].  This same protein will also form a dimer in the presence 

of excess Ca2+ ions [11].  Two other calcium-induced reactions were also candidates; the 

dimerization of isoforms of phospholipase A2 isolated from snake venom [12, 13] and the 

calcium induced dimer formation of calmodulin [14].  Both caged calcium and caged H+ 

are commercially available; however experimental biological systems for measurement 

of Troponin C, phospholipase A2, and calmodulin dimerization have not yet been 
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explored, as well as whether the caging strategy will be successful for prevention of their 

dimer formation.    

A more promising candidate was discovered which is based on small-molecule 

induced dimerization.  The proteins FKBP12, the FK506 binding protein 12, and FRB, 

the rapamycin binding domain of mTOR, form a dimer in the presence of the small 

molecule rapamycin.  Previously, this reaction has been demonstrated to respond to the 

caging effect of rapamycin, with a slight modification of FKBP12 [15, 16].  This reaction 

has also been shown to function in E. coli cells [17].  Table 2.1 is a summary of reaction 

candidates for the study of biological diffusion-limited kinetics.  The heterodimerization 

of FKBP12 and FRB in the presence of rapamycin was selected for use in this study.  

This reaction has the ability to be exogenously expressed in E. coli cells and the reaction 

can be initiated by the UV uncaging of rapamycin.     

 

Table 2.1 Possible dimerization reactions considered as candidates for biological kinetic 
measurements 
 

Protein Induction Method 
Alzheimer peptide Aβ caged peptide 

Troponin C H+ or Ca2+ 
Phospholipase A2 Ca2+ 

Calmodulin Ca2+ 
FKBP/FRB rapamycin 
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2.2 Measures of Dimerization 

 Once the dimer system was selected, a method to study the dynamics of the 

reaction, ie formation of the dimer, was required.  The dimerization of FKBP12 and FRB 

has previously been monitored using a variety of fluorescence measurements [16, 18, 19].  

In one example, the FRB monomer is tethered to the cell membrane and FKBP12 is fused 

to a variant of yellow fluorescent protein (YFP).  Upon dimer formation, FKBP12 is 

localized to the membrane; as is the YFP variant and dimerization is monitored by 

following the localization of YFP fluorescence to the membrane [18].  Similarly, 

Karginov et. al. use fluorescence localization of GFP fluorescence to kinase receptors 

inside cells to monitor dimer formation [16].  Finally, FKBP12 and FRB are fused to 

fluorescent proteins Cerulean and Venus, respectively, and their dimerization is 

monitored by Förester Resonance Energy Transfer (FRET) [19].   

 A most idealistic mechanism for measuring the diffusion-limited reaction kinetics 

is when both dimer-forming proteins are allowed to diffuse freely through the biological 

environment.  For this reason, the reaction system was developed using fluorescent 

proteins Cerulean and Venus for monitoring dimer formation by FRET.      

 

2.3 FKBP-FRB System Description 

 The system chosen to study the diffusion-limited reaction kinetics in living cells 

was the rapamycin induced, heterodimerization of FKBP12 and FRB.  Rapamycin is a 

product of the bacterium Streptomyces hygroscopicus that was found in a soil sample 

from Easter Island that is used as an immunosuppressive drug often administered to 

organ transplant patients to prevent transplant rejection [20-24].  FKBP12 is a protein in 
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rapamycin, experiments are to be carried out with the standard dimer pair and uncaged 

rapamycin, which is commercially available.     

The rate of dimer formation will be monitored by FRET between fluorescent 

proteins Cerulean and Venus, fused to FKBP12 and FRB, respectively.  Cerulean is a 

variant of cyan fluorescent protein and Venus is a variant of yellow fluorescent protein; 

this pair is known to be a good FRET pair for measurement [27].   
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CHAPTER 3.  STOICHIOMETRIC COEXPRESSION OF FKBP-CERULEAN AND 
FRB-VENUS IN E. COLI 

 
 
 
 Co-expression of FKBP-cerulean and FRB-venus in E. coli at stoichiometric 

levels is the first key step of being able to study their diffusion and reaction rate inside a 

biological environment.  The ratio of expression was determined using both fluorescence 

spectroscopy and microscopy.  Achieving a near 1 to 1 expression ratio of FKBP-

Cerulean and FRB-Venus is necessary to perform further experiments measuring 

diffusion and reaction rates.  Without a close to 1 to 1 stoichiometry, the reaction could 

be limited by the concentration of the reactants and therefore not produce an accurate rate 

determination.   

 

3.1 Experimental Methods 
 

 All work toward protein expression and purification was done in the laboratory of 

Dr. Chittaranjan Das in the Purdue Department of Chemistry.  E. coli cells were always 

cultured in his lab and taken to a secondary location for either microscopy or 

spectroscopy.   
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3.1.1 Genes and Expression Vector selection 

 While expression of a single protein in an individual cell is somewhat trivial, co-

expression of 2 different proteins has proven to be more difficult.  After initially 

achieving individual expression of FKBP-cerulean and FRB-venus using custom-made 

genes (Life Technologies), it was discovered that the selected expression vectors were 

not compatible in a single E. coli cell; each cell favored one of the plasmids and would 

only express one of the proteins.  This incompatibility was due to a site on each plasmid 

called an origin of replication; a section of the genetic sequence on the plasmid where 

replication is initiated for the propagation of the DNA plasmid in living E. coli cells [1].  

Upon careful consideration of this and other key factors, such as antibiotic resistance and 

plasmid copy number, expression plasmids, pET-45(b) and pCDF-1b, were chosen.  The 

pET-45(b) vector has a copy number of ~40, an ampicillin antibiotic resistance, and the 

origin of replication is pBR322.  The pCDF vector has a copy number of 20-40, with a 

streptomycin resistance and the replication of origin, CDF (which is compatible with 

pBR322).  New genes for the fusion proteins previously expressed in HeLa cells [2] were 

obtained, as well as expression plasmids pET-45(b) and pCDF-1b.   

Prior to protein expression, the genes for FKBP-Cerulean and FRB-Venus were 

subcloned into pET-45(b) and pCDF-1b, respectively.  Briefly, the genes are amplified 

using a polymerase chain reaction (PCR) procedure.  The products from PCR, along with 

the expression vectors are digested using appropriate restriction enzymes.  This step cuts 

the expression vectors leaving “sticky” ends, or DNA base overhangs that are 

complimentary to those on the genes.  Once both the genes and the expression vectors 

have sticky ends, they undergo a ligation reaction which will cause the complimentary 
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individually was tested prior to co-transformation.  E. coli cells (Rosetta strain) were 

transformed with 2μL plasmid DNA and plated on an agar plate containing the 

appropriate antibiotic and allowed to grow at 37°C overnight.  A single colony from the 

plate was then added to a tube of 3mL of LB media supplemented with antibiotics and 

again grown overnight on an orbital shaker (220rpm) at 37°C.  From this overnight 

culture, a fresh culture was innoculated, in LB media containing antibiotics, and allowed 

to grow at 220 rpm and 37°C until optical density, OD, 0.5.  Then 1mM Isopropyl β-D-1-

thiogalactopyranoside (IPTG) was added to the culture to induce protein expression and 

the culture grows overnight at 220 rpm and 18°C.  These cultures were then harvested by 

centrifugation at 2900rpm for 10 minutes and resuspended in either 1mL phosphate 

buffered saline for lysis by sonication or 1mL BugBuster lysis buffer (EMD Millipore 

Corp.), which will lyse the cells at room temperature in 30 minutes.  Protein expression 

was confirmed in the lysates using a Cary Eclipse fluorescence spectrophotometer (see 

section 3.1.4).  The spectra for lysates containing FKBP-Cerulean and FRB-Venus are 

shown in figure 3.2.   
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Figure 3.2 Fluorescence spectra of separate E. coli lysates testing for FKBP-Cerulean 
(blue curve) and FRB-Venus (yellow curve) expression.  Also shown are cultures that 
were not induced with IPTG (black curves).  Cerulean excitation was 430nm, and an 
emission peak is expected at 475nm.  Venus excitation was 500nm and an emission peak 
is expected at 528nm.     
 

   

For co-expression of both FKBP-cerulean and FRB-venus, the same procedure for 

DNA transformation and cell culture described above is followed except: 5μL of each 

DNA strain is added to the cells and a single agar plate is supplemented with both 

antibiotics.  Fluorescence spectroscopy is not sufficient, however, to determine successful 

co-expression.  A culture may contain a mixture of cells expressing either FKBP-cerulean 

or FRB-venus – a spectrum for this type of mixture will look the same as a culture in 

which individual cells are co-expressing both proteins.  Fluorescence microscopy (see 
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section 3.1.5) is required to prove co-expression in individual cells by visualizing both 

fluorescent protein in each cell.  Cultures grown for fluorescence microscopy 

measurements are taken to Dr. Ken Ritchie’s lab for measurement.   

 

3.1.3 Protein Purification 

 Expression vectors pET-45(b) and pCDF-1b both contain gene sequences such 

that the expressed proteins will contain an N-terminal 6x-Histidine tag for purification.  

FKBP-Cerulean and FRB-Venus were individually expressed as described in section 

3.1.2, except the first overnight culture was 50mL and the expression cultures were 3x 1L 

cultures to achieve a higher protein yield.  Cells from the 3 large cultures were harvested 

by centrifugation and resuspended in buffer for lysis by pressure using a French press.  

The lysate from the French press was then centrifuged in an ultra-centrifuge at 50,000rpm 

for 1 hour.  The clean supernatant was then applied to a clean, charged Ni2+ column, 

which binds the histidine tag.  An imidazole concentration gradient was then used to elute 

the protein; imidazole competed with histidine for column binding.  All elutions were 

collected in 5mL fractions beginning with an initial wash to remove any un-adhered 

remains from the supernatant.  The collected fractions were tested for protein and all 

those containing the protein, either FKBP-Cerulean or FRB-Venus, were pooled together 

and concentrated down to approximately 1.5mL.  After concentration, a buffer exchange 

was performed to remove imidazole from the purified protein samples.  Protein was then 

flash frozen in 100μL aliquots and stored at -80°C.   
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3.1.4 Fluorescence Spectroscopy 

 Fluorescence spectroscopic measurements were done using a commercial Cary 

Eclipse fluorescence spectrophotometer.  Figure 3.3 shows a diagram of a Cary Eclipse 

fluorometer [3].  The excitation monochrometer automatically adjusts to its fixed position 

depending on the given excitation wavelength and the emission monochrometer scans the 

range of wavelengths selected for the emission spectrum.  For all measurements, both the 

excitation and emission slits are set to 5nm; the slit widths determine the resolution of the 

spectrum.  For fluorescent proteins Cerulean and Venus, which produce a reasonably 

high fluorescence signal, these slits can be set quite narrow.  When measuring the 

fluorescence spectrum of Cerulean, the excitation wavelength was set to 430nm and the 

emission range was 440 to 650nm.  For Venus, the excitation wavelength was 500nm 

with an emission range of 510 to 650nm.  Sample cuvettes were filled with a minimum of 

1mL of sample, either cell lysate or pure protein.  Peaks indicating Cerulean and Venus 

expression are expected at 475nm and 528nm, respectively.      
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3.1.5 Fluorescence Microscopy 

 All fluorescence microscopy was done using the optical setup in the lab of Dr. 

Ken Ritchie in the Purdue Department of Physics and Astronomy.   

 

3.1.5.1 Fluorescence Microscopy Optical Set-up 
 

The optics of the microscopy system can be divided into 3 groups: an illumination 

group, which contains all the optical components for sample excitation including the 

lasers; the microscope group which includes primarily the inverted microscope and the 

lenses which direct the light into the objective and back out to the detector; and the 

imaging group which contains the optics that direct the light from the microscope group 

into the CCD detector [4].  A schematic of the optical set-up is shown in figure 3.4 

 In the illumination group, excitation of Cerulean and Venus was achieved using 

diode and argon-ion lasers with center wavelength lines of 445nm and 488nm, 

respectively.  Two lenses, labeled L1 and L2 in figure 3.2, and two periscopic mirrors 

guide the collimated laser beams into the microscope.  Two manually controlled shutters 

control the length of time the sample is exposed.  Notch, or single-band pass, filters, 

labeled ExF1 and ExF2, isolate the excitation wavelength (removing any light that may 

include shorter or longer wavelengths than what the filter is centered around).  The cyan 

laser, or 445nm, line includes a single edge dichroic mirror (instead of a plane mirror like 

the blue laser, or 488), labeled Di-M1, which transmits the blue laser into the same 

optical path as the cyan laser into the microscope.   

 The microscope group is made up primarily of the microscope itself which is an 

inverted type microscope with a high NA (1.45) 100x, oil immersion objective.  The 
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incident laser light is focused into the microscope with a lens, L3.  Two more dichroic 

mirrors, Di-M2 and Di-M3, reflect the incident laser into the objective while allowing the 

fluorescent light from the sample to pass through.  The fluorescent light from the sample 

is then focused and reflected with a plane mirror and another lens, L4, at an image plane 

outside of the microscope.   

 Finally, the imaging group is made up of the optics which receive the light from 

the microscope and focus it onto the CCD detector.  The emitted light is collimated by a 

lens, L5, is split into Cerulean and Venus emission by a long-pass dichroic mirror, Di-

M4, and is recombined by a short-pass dichroic mirror, Di-M5.  While the emitted signal 

is split into its separate colors, the signal from Cerulean and Venus fluorescence emission 

is isolated using respective emission filters, EmF1 and EmF2.   A final lens focuses the 

collimated light onto the CCD detector.   
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3.1.5.2  Fluorescence Microscopy Sample and Chamber Preparation 

 Cultures were grown fresh and brought to the microscope on the day of the 

experiment as described in section 3.1.2.   

 Sample chambers for microscopy experiments were constructed using a 

commercially available flexiPERM® silicone ring that is reversibly adhered to a clean 

glass coverslip.  Once the silicone ring is adhered, the clean glass is treated with poly-L-

lysine (Sigma) which electrostatically adheres the cells to the glass.  E. coli cells are then 

deposited into the sample chamber and allowed to settle for approximately 20 minutes 

prior to observation.  To prevent a large excess signal coming from outside of the focal 

volume of the objective, unadhered cells are washed away with phosphate-buffered saline 

solution.   

 The flexiPERM® silicone rings are washed with 50% ethanol solution between 

samples and allowed to air dry before a new piece of glass is adhered.  For added 

sterilization, the rings are autoclaved weekly at 250°F for 55 minutes.   

 Before use, the glass coverslips are cleaned thoroughly.  They are first soaked in a 

5% Contrad detergent solution for 24 hours followed by a high power sonication for 30 

minutes.  The glass is then washed 10 times with distilled water followed by a triplicate 

wash with ultra-high quality water.  The same soak, sonicate, wash cycle is repeated 

using 1 M hydrochloric acid instead of Contrad detergent.  After the final water wash, 

they are washed with methanol.  The glass coverslips are stored in methanol until use.   

 The poly-L-lysine layer is deposited by pipetting 100μL of 0.1mg/mL poly-L-

lysine solution onto the glass surface.  The poly-L-lysine solution incubates on the glass 
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for 30 minutes to allow the polymer to coat the glass.  Excess polymer is washed away 

with ultra-high quality water.    

 Once the surface is coated with poly-L-lysine, 200μL of the cell culture was 

pipetted into the chamber and allowed to settle for approximately 20 minutes.  Excess 

cell culture with unadhered cells were washed away by aspirating with PBS three times.  

A final 400μL aliquot of fresh PBS is added to the chamber to prevent the cells from 

drying out during image collection.   

 

3.2 Data Collection and Analysis 

 The expression levels of FKBP-Cerulean and FRB-Venus in E. coli were 

determined using both fluorescence spectroscopy and microscopy.  While an absolute 

concentration scale was not determined, the concentration ratio was determined by 

normalizing the measured value with the ratio from a 1 to 1 mixture of the purified 

proteins.   

 

3.2.1 Fluorescence Spectroscopic Data 

 Fresh samples were centrifuged and lysed as described in section 3.1.2.  Spectra 

were collected, according to the settings described in section 3.1.4, of each of the lysates 

under both excitation wavelengths.  The spectrum of a mixture of pure protein at a ratio 

of 1 to 1 FKBP-Cerulean to FRB-Venus is collected at each excitation for normalization.  

Figure 3.3 shows emission spectra of 4 cell lysates expressing protein, a strain of wild 

type E. coli, as well as the spectra of the pure proteins for both excitations.  The 

concentration ratio of the expressed proteins in the lysate was determined by dividing the 
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area under the Cerulean emission curve by that of the Venus curve.  Ratios are reported 

as the area of FKBP-Cerulean emission to the area of FRB-Venus emission, normalized 

by the same ratio of the purified protein mixture.    

 

 

 

 

 

  

 
 
 
 
 
 
Figure 3.5. Fluorescence spectra of cell lysates and purified protein mixture collected at 
A) 430 nm excitation and 440-650 nm emission range and B) 500 nm excitation and 510-
650 nm emission range using a commercial Cary Eclipse Fluorescence 
Spectrophotometer.  Cultures 1-4, shown in red, purple, green and orange, are induced 
cultures expressing proteins FKBP-Cerulean and FRB-Venus.  Wild type E. coli, shown 
with the black curve, express no protein.  The spectra of the purified protein mixture is 
shown in blue and yellow, in A and B respectively.   
 

 
 

3.2.2 Fluorescence Microscopic Data 

 Daily cultures were grown for each measurement, so that only fresh cells are 

sampled to determine the expression levels.  Samples were prepared and images were 

collected according to the details outlined in section 3.1.5.  Images were collected under a 

single laser excitation at a time; no movement of the sample occurred between.  Figure 

3.6 shows example fluorescent images of cells transformed with DNA plasmids encoding 
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for expression of FRBP-Cerulean and FRB-Venus, as well as wild type E. coli, used as 

the control to compare fluorescence from protein expression to that of cellular auto-

fluorescence.  The normalization values of the protein mixture were obtained by pipetting 

a drop of the 1 to 1 mixture onto a clean glass slide (the same as used for the sample 

chamber) and leaving the focus of the objective set to the same position as required for 

cell imaging.  This is simply used as a metric to correct for the differences in optics and 

inherent intensity levels of Cerulean and Venus.  The normalization factor is also a ratio, 

so there is once again not an actual concentration measurement, but a ratio of intensities.  

The calculated intensity ratio of each cell analyzed is divided by the ratio of the pure 

mixture intensities.  

Image analysis is carried out in Image J software (National Institute of Health).  

For each image, the background is removed using the available background subtraction 

tool in Image J, which removes smooth, continuous backgrounds from images[5].  The 

algorithm used is based on the “rolling ball” concept described in Stanley Sternberg’s 

Biomedical image processing [5, 6].  Images obtained with Cerulean (445nm) and Venus 

(488nm) excitation are compared side by side and the intensity of cells expressing both 

FKBP-Cerulean and FRB-Venus was measured by manually outlining each cell in each 

image and using ImageJ’s measure function to record the mean brightness calculated.  

Since cells in the images exhibit a variety of appearances and do not all look like what a 

“typical” E. coli is expected to, and some formed clumps of cells stacked with 

undefinable edges, the spots were categorized into 3 categories.  The first category 

includes those which have a “typical” E. coli shape; having an oblong shape with the 

longest dimension being 1.5 times or greater than the short dimension with definable 
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edges.  Category 2 included those cells that still show a definable edge, but do not exhibit 

a large enough aspect ratio, i.e. they are more round than oblong.  The last category 

includes spots of any size that can be contributed to clumped cells, with no definable 

edges.  
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3.3 Stoichiometric Ratio of FKBP-Cerulean and FRB-Venus Expressed in E. coli 
Determined by Fluorescence Spectroscopy 

 
 Fluorescence spectroscopy was used to determine the ratio of the concentration of 

expressed FKBP-Cerulean and FRB-Venus in E. coli.  Table 3.1 shows the normalized 

ratio values obtained from four separate E. coli cultures transformed with DNA plasmids 

encoding the proteins (see section 3.2.1 for an explanation of how these values were 

determined).  According to fluorescence spectroscopy, in a culture of E. coli transformed 

with DNA including the genes for FKBP-Cerulean and FRB-Venus, there is 1.721 ± 

0.125 times as much Cerulean protein expression than Venus protein.  This value is not 

expected to be as accurate as that obtained by fluorescence microscopy (result in section 

3.4).  The values obtained using spectroscopy were determined for an entire culture 

which may contain cells expressing only one of FKBP-Cerulean or FRB-Venus.  These 

cells are contributing to the fluorescence emission spectra of only the protein they are 

expressing, resulting in a falsely high fluorescence emission.  Without microscopy, there 

is no way to determine how many E. coli cells only expressing one protein are present in 

a given culture.   

 

Table 3.1 Expression Ratio of FKBP-Cerulean to FRB-Venus in E. coli as determined by 
fluorescence spectroscopy  

 
Normalized Ratio of Cerulean/Venus 

Average 1.721 
Standard Deviation 0.125 
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3.4 Stoichiometric Ratio of FKBP-Cerulean and FRB-Venus Expressed in E. coli 
Determined by Fluorescence Microscopy 

 
 The ratio of expression levels of FKBP-Cerulean and FRB-Venus in E. coli was 

also determined using fluorescence microscopy.  This method was expected to give a 

more accurate concentration ratio since only cells evident to be expressing both FKBP-

Cerulean and FRB-Venus were evaluated.  Cells in all images were divided into 3 

categories (outlined in section 3.2.2).  Histograms of each of the 3 categories are shown 

in figure 3.7.  Each of the histograms were fitted with a Gaussian.  Both category 1 and 3 

display Gaussian properties and the population in category 2 displays a plateau from 

ratios 0.75-1.25; however, all three can be fit to a reasonable Gaussian.  These Gaussian 

fits are centered at 1.014 ± 0.016, 0.972 ± 0.031, and 0.963 ± 0.022 for cells of category 

1, 2 and 3, respectively.  When all three categories are combined into a single histogram, 

shown in figure 3.8, a Gaussian was fit with a center of 0.995 ± 0.012.  These Gaussian 

centers were used as the determined ratio of expression of FKBP-Cerulean to FRB-

Venus.  For all cell types, this value is approximately 1; specifically, the ratio of 

expression levels of FKBP-Cerulean to FRB-Venus in E. coli was determined to be 1.014 

± 0.419 for cells in category 1, 0.972 ± 0.350 for cells in category 2, 0.963 ± 0.317 for 

cells in category 3, and 0.995 ± 0.391 when all cells are included (errors are one standard 

deviation value).  Table 3.2 summarizes these concentration ratios of FKBP-Cerulean to 

FRB-Venus expressed in E. coli determined by fluorescence microscopy.   
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Figure 3.7 Histograms showing the distribution of normalized concentration ratios for 
expression of FKBP-Cerulean to FRB-Venus in E. coli, for A) image spots that meet the 
criteria for category 1; spots having well-defined edges that are oblong in shape, having 
the longest dimension being at least 1.5 times greater than the shortest dimension.  The 
dotted line is a Gaussian fit to the histogram data.  The Gaussian is centered 1.014 ± 
0.016. B) Image spots that meet the criteria for category 2; spots having well-defined 
edges that do not meet the aspect ratio (≥1.5:1) criteria for category 1, and are thus more 
round in shape.  The dashed curve is a Gaussian fit to the histogram data; the Gaussian fit 
is centered at 0.972 ± 0.031.  C) Image spots that meet the criteria for category 3; spots 
without well-defined edges with no aspect ratio criteria – clumps of cells.  The dashed 
curve is a Gaussian fit to the histogram data; the Gaussian fit is centered at 0.963 ± 0.022.     
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Figure 3.8 Histogram showing the distribution of normalized concentration ratios for 
expression of FKBP-Cerulean to FRB-Venus in E. coli for all cells in all images.  The 
dashed curve is a Gaussian fit to the histogram data; the Gaussian fit is centered at 0.995.     
 
 
 
Table 3.2. Summary of the concentration ratios of FKBP-Cerulean to FRB-Venus express 
in E. coli determined by fluorescence microscopy.   
 

Cell Type 

Concentration Ratio of 
Cerulean to Venus 

Expressed in E. coli 

Category 1 1.014 ± 0.419  
Category 2 0.972 ± 0.350  
Category 3 0.963 ± 0.317  
All Types 0.995 ± 0.391  
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3.5 Conclusion  

Tables 3.1 and 3.2 are the main results.  The concentration ratio of FBKP-

Cerulean to FRB-Venus expressed in E. coli was determined by fluorescence 

spectroscopy and microscopy.  While the ratios determined using microscopy are more 

accurate, since only cells expressing both proteins are considered, both methods 

demonstrate a nearly 1 to 1 stoichiometric concentration ratio of FKBP-Cerulean to FRB-

Venus.  These results indicate that the rapamycin induced dimer-forming system of 

FKBP-FRB with fusion to Cerulean and Venus, respectively, is a good candidate to study 

biological diffusion and reaction rates.  Both fusion proteins were able to be purified, thus 

measurements could be made both in vitro and in vivo.  Development of this dimer 

forming system for measurement in E. coli provides a means to test the previously 

developed theory on reaction rates in biological systems [7].  
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CHAPTER 4. SUMMARY AND FUTURE WORK RELATED TO FKBP-CERULEAN 
AND FRB-VENUS 

 
 
 

 An experimental system was developed to measure reaction rates inside living E. 

coli cells.  One of the simplest reactions to measure inside a cell is a protein dimerization.  

The system developed here is a protein dimer that is induced by a small molecule; the 

dimer between FKBP12 and FRB forms in the presence of the small molecule rapamycin.  

The rate of increase in the concentration of the product is to be monitored by FRET 

(Förester Resonance Energy Transfer) between fluorescent proteins Cerulean and Venus 

fused to FKBP12 and FRB, respectively.   

 Using E. coli expression vectors that encode an N-terminal histidine tag, both 

fusion proteins were able to be expressed and purified for measurement in buffer; this 

allows comparison between in vivo and in vitro diffusion and kinetics.  A key factor for 

the success of the FKBP-Cerulean/FRB-Venus dimerization system is coexpression of 

both proteins in single E. coli cells at a nearly 1 to 1 stoichiometry.  This was achieved 

and verified using fluorescence spectroscopy and fluorescence microscopy.  The 

stoichiometric ratio of the expression level of FKBP-Cerulean to FRB-Venus in E. coli 

determined for all cells was 1.721±0.125 and 0.995±0.391 by spectroscopy and 

microscopy, respectively.    

Previously, FKBP12 and FRB have been observed to form a dimer in E. coli in 

the presence of rapamycin [1]; and the fusion protein dimer has been demonstrated to 
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form in HeLa cells [2].  Currently, the dimer has not been observed for this specific 

system (FKBP and FRB fused to Cerulean and Venus) in E. coli.  Possible reasons for the 

inability to visualize the dimer could be: an error in protein folding of either FKBP or 

FRB, a disruption of the binding pocket, or perhaps the rapamycin is not able to permeate 

the E. coli.  The latter of these possibility is unlikely however, since dimer formation has 

been observed in E. coli previously [1].  Future work would include troubleshooting the 

inability to observe dimer formation, followed by diffusion and reaction rate 

measurements in vivo and in vitro.    

 



46 
 

4.1 References 

1. Davis, J.H., T.A. Baker, and R.T. Sauer, Small-molecule control of protein 
degradation using split adaptors. ACS Chem Biol, 2011. 6(11): p. 1205-13. 

 
2. Chen, H., H.L. Puhl, 3rd, and S.R. Ikeda, Estimating protein-protein interaction 

affinity in living cells using quantitative Forster resonance energy transfer 
measurements. J Biomed Opt, 2007. 12(5): p. 054011. 

 



47 
 

CHAPTER 5.  INTRODUCTION TO RAMAN SPECTROSCOPY AND THE 
MULTIVARIATE HYPERSPECTRAL RAMAN INSTRUMENT 

 
 

  

Raman scattering provides molecular, vibrational spectra that can be used to 

distinguish and identify a variety of chemical components of many types of systems, 

especially biological systems [1].  A known advantage of Raman over infrared 

spectroscopy is that there is little interference from water, which is important when 

studying biological systems since they typically contain large amounts of water.  Raman 

is increasingly becoming recognized as a powerful tool for biological and biomedical 

analysis [2-8].  

Recent studies of biological systems have shown that Raman spectroscopy can be 

used to classify and quantify intracellular chemical components [6, 9-14].  While Raman 

can provide a unique view of biological systems, the time required using current methods 

is too long to be useful for high-resolution imaging, high-throughput cell 

sorting/screening, and cellular dynamics.  Chapters 5-8 of this thesis describe the 

development of a new type of Raman spectrometer which employs a multivariate, 

hyperspectral imaging technique, using a low-noise single channel compressive detection 

strategy to rapidly perform the aforementioned tasks.   
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5.1 Fundamentals of Raman Spectroscopy 

Raman is an inelastic light scattering process in which an incident photon 

exchanges energy with molecular vibrations.  This leads to either a decrease (Stokes 

Raman scattering) or increase (anti-Stokes Raman scattering) in the energy of the photon, 

by an amount that is exactly equal to the corresponding vibrational transition.  Figure 5.1 

shows the possible shifts, Stokes Raman, Anti-Stokes Raman, as well as Rayleigh 

scattering (when the photon is elastically scattered, without producing a molecular 

vibrational energy change).  When Stokes scattering occurs, the molecules will absorb 

some of the incident photons energy causing the outgoing photon to have a lower energy.  

Anti-stokes scattering arises when the molecules are initially in an excited state and they 

lose some of their energy to the incident photon causing the emitted photon to have a 

higher energy than the incident photon.  

Stokes scattering provides information about the vibrational normal mode 

frequencies of molecules in the fingerprint region from 400 – 2000 cm-1.  Raman 

scattering can occur due to changes in polarizability of the molecules upon excitation.  

Therefore, structural information about the molecules of interest can be obtained by 

measuring shifts in vibrational frequencies.   
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Figure 5.1.  Energy diagram for Raman and Rayleigh excitation and emission.  Green 
lines represent the incident beam of photons and, for Rayleigh scattering the emitted 
photons. The red line signifies the emitted photons for Stokes scattering and the blue line 
represents the emission for Anti-stokes scattering.  The energy of the incident light is 
denoted by E = hνin.  
 
 
 
 

5.2 Motivation for the Multivariate Hyperspectral Imaging Instrument 

 Increasing Raman imaging speed requires a shift in methodology – the last major 

advances in this area came with the introduction of multiplexing [15, 16] and optical 

array detectors [17].  Despite ongoing improvements in these detectors, the time required 

for hyperspectral image collection is still the main obstacle for wider implementation of 

Raman chemical imaging.  Typical Raman instruments used for imaging generally 
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operate as raster scanning instruments.  Imaging is performed by collecting spectra at 

each x, y and spectral (wavenumber) dimension producing “data cubes” which are 

converted into an image via a univariate or multivariate analysis.  For a typical point 

scanning, CCD-based spectrometer, at each image pixel there would be a 1 second 

spectra collected, making large images nearly impossible; a 1 megapixel image at this 

speed would take approximately 12 days.  There have been a few attempts at global 

illumination with a tunable wavelength detection band [18-20] , and while these greatly 

speed up the data collection at each pixel, they do so at the expense of discarding any 

Raman photons outside the detection band.  A superior alternative to the global 

illumination strategy is line scanning [17, 18], which distributes the laser power and 

simultaneously collects full spectra at each point along a line; however, this method 

suffers due to the dispersion of the full laser power across the wavelength range.   

 

5.2.1 Single-Channel Detection 

 One of the advantages of the new MHI method described in the following 

chapters is that it makes use of a single channel detector which simultaneously detects all 

of the scattered Raman photons transmitted through a programmable optical filter.  The 

single channel detector provides a fundamental signal to noise advantage over traditional 

CCD-based scanning Raman spectroscopy.  For example, 100 Raman scattered photons 

detected across a CCD with many wavelength channels (>100) would barely be 

detectable with a signal to noise ratio of ~1.  These same photons detected on a single 

channel detector would have a higher signal to noise ratio of ~10.  Because of this 

intrinsic advantage of the single channel detector, the MHI would be able to function at 
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higher speeds requiring less accumulation time while still collecting the same quality 

information as a CCD-based spectrometer.  However, it is important to note that the full 

speed advantage of the MHI detection strategy is only realized after training to determine 

the optimal optical filters for each application.  While this is the advantage of the new 

detection method, the spectrometer is also able to reproduce the speed, quality and 

functionality of a traditional spectrometer.  

 
 

5.2.2 Spectral Data Compression  

 The MHI detection strategy enables the single channel detector to collect spectral 

information by making use of hardware based spectral data compression.  A few studies 

have illustrated the use of hardware based spectral compression that make use of a single 

channel detector to collect all the light transmitted through a specialized optical filter [21-

23].  One of the earliest implementations of this method [21] used static optical 

interference filters that were customized for sets of transmission spectra.  This method, 

however, requires manufacturing new filters for each sample set since they are chemical 

specific.  These previous studies often make use of chemometric techniques to optimize 

the filters for each chemical system.  Some of these systems may result in optimal filters 

that are quite complex, producing optical filters which are difficult to manufacture and 

result in a much less efficient instrument.  An attractive alternative to these complex 

static filters would be a programmable optical filter which can be programmed with a 

filter of any spectral shape.   

 

 



52 
 

5.2.3 Spatial Light Modulators 

 Spatial light modulators (SLMs) provide an attractive alternative to static optical 

filters because they are a means of producing variable programmable filters.  There are 2 

main types of SLMs – liquid crystal (LC) based and digital micromirror devices (DMDs).  

LC based SLMs operate based on polarization of light and can use either phase or 

amplitude modulation to produce variable filters [24, 25].  DMDs provide binary filtering 

since each mirror is either in an “on” state (reflecting toward the detector) or an “off” 

state (reflecting away from the detector).  Since this new detection method works based 

on variable, programmable filters, a LC-SLM is the best fit.  The LC-SLM is able to 

provide not only “on” and “off” states, but also a gray-scale that can be used to produce 

any filter shape.  Previously, an application of a transmissive LC-SLM suffered from low 

signal throughput (<20%) [22].  Another type of LC-SLM, reflectance based LC-SLMs, 

are reported to have a much higher signal throughput [26] and has therefore been selected 

for use.      

 

5.3 The MHI 

 The unmatched speed of this new detection strategy is derived from the high 

throughput, reflectance based LC-SLM and the low noise single channel detector.  The 

MHI can be used for either full spectral detection or high-speed compressive detection by 

implementing optimized filter functions.  The following 3 chapters of this thesis 

(Chapters 6, 7, and 8) will discuss the design of the new type of Raman spectrometer as 

well as provide preliminary results illustrating its ability to rapidly classify samples, 

quantitate mixtures and produce high quality chemical images.   
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CHAPTER 6. MHI INSTRUMENTATION AND DETECTION 
 
 
 

6.1 MHI Instrument Design 
 

 The MHI is built around a microscope with backscattering geometry.  A 785nm 

single mode laser diode (Innovatie Photonic Solutions Inc.) is focused on to the sample 

through a 20X (NA 0.4) NIR objective (Olympus).  Light scattered from the sample is 

collected back through the objective and Raman (Stokes-shifted) photons are collected 

through a 45° dichroic long pass filter (Semrock Inc.).  Additionally, Rayleigh photons 

are rejected by a 785nm notch filter (Semrock Inc.) placed outside of the microscope.  

After the microscope, the Raman photons pass into the path of the MHI detection optics. 

 The optical path of the MHI is illustrated in the schematic shown in Figure 6.1 

and a detailed parts list is given in Table 6.1.  The MHI instrument operates by 

manipulating the polarization of light.  First, the light passes through a half-wave plate 

(Edmund Optics), which rotates the light and determines which polarization is detected.  

The second component is a Glan-Laser polarizing beam splitting cube (ThorLabs), which 

only passes p-polarized light toward the SLM.  The p-polarized light then passes through 

the volume phase holographic (VPH) grating (Edmund Optics) where it is dispersed by 

wavelength and focused onto individual pixels of the SLM by an achromatic lens 

(Edmund Optics).  A second half-wave plate, between the focusing lens and the SLM, is 

used to align the polarization of the incoming light to the polarization of the liquid 
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crystals of the SLM to allow for maximum reflection and rejection.  A key factor for the 

success of the SLM-based detection is that the distances between the VPH grating and the 

achromatic lens and the SLM are matched.  This ensures that the light reflected off the 

SLM will return on the same optical path to the VPH grating.  Depending on the filter 

function loaded into the SLM, some of the light focused onto the SLM will have its 

polarization flipped.  Any light whose polarization has been rotated away from p-

polarization will be reflected by the Glan-Laser beam splitting cube and directed to the 

detector.    

The key feature of the MHI is the LC-SLM.  It is a programmable filter which 

allows for high speed imaging of many systems.  The SLM selected for use in the MHI is 

reflectance, rather than transmission based, for its higher throughput (>80%).  It is an 

array of 12,288 individually addressable linear pixels.  Figure 6.2 is a diagram of the 

SLM used in the MHI.  Each pixel is an individual optical phase modulator that can 

rotate the light from p to s polarization.  Only light that is rotated away from p-

polarization will be reflected to the detector.  Neighboring pixels have a pixel pitch, 

center to center distance, of 1.6 μm with a pixel size of 1.0 μm and gap of 0.6 μm.  The 

digital filters programmed into the SLM determine the degree of rotation of the 

polarization of light hitting each pixel thus determining how much of the incoming light 

will be reflected back through the Glan-Laser cube and detected.  

This reflected light is then collected with an aspheric lens (Edmund Optics) and 

focused into a 200μm core fiber optic cable (ThorLabs) coupled to an avalanche photo-

diode (APD) single channel detector (Hamamatsu).  The APD detector was selected for 

its high photosensitivity and low noise characteristics in the wavelength range of interest, 
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Figure 6.2. A schematic representation of the LC-SLM used in the MHI [2].  The SLM is 
made of 12,288 individually addressable linear pixels (represented by the blue 
rectangles).  Each pixel has a width of 1.6 μm and a gap between them of 0.6μm, 
resulting in a center-to-center distance, or pixel pitch, of 1.6 μm.   
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Table 6.1.  MHI Parts List 
 

PART DESCRIPTION MANUFACTURER PART NUMBER 

785 nm Diode Laser Module Innovative Photonic Solutions IO785SU0100B 

12,288 Linear Pixel LC-SLM Boulder Nonlinear Systems P12,288-0785 
Avalance Photodiode Module Hamamatsu C4777-01 
Triple Output Power Supply, 

+5V, ± 20V Agilent Technologies E3630A 
Upright Research Microscope Olympus BX-51 
NI USB-6211 Bus Powered 

M Series Multifunction DAQ National Instruments 779676-01 
 

Motorized Microscope Stage Prior Scientific ProScan 
Volume Phase Holographic 
Grating, 1200 l/mm, 830 nm Edmund Optics 48-590 
λ/2 achromatic waveplates, 

30 mmØ Edmund Optics 48-500 
 Achromatic Lens 

 f=100mm, NIR coated Edmund Optics 47-317 
Aspheric Lens 25 mmØ, 0.66 

N.A., NIR Coated Edmund Optics 49-113 
Glan Laser Calcite Polarizers, 

600-1050 nm Coating, 1" ThorLabs GL15-B 
Broadband Dielectric 

Mirrors, 700-1100nm, 1"Ø ThorLabs BB1-E03-10 
0.22 NA, 200 μm core SMA, 

Multimode Patch Cable, 2 
meter ThorLabs M25L02 

785 nm MaxLine Bandpass 
Filter, 1" dia. Semrock LL01-785-25 

785 nm RazorEdge Dichroic 
45° Beamsplitter Semrock 

LPD01-785RU-
25X36X2.0 

 
785 nm StopLine Notch Filter Semrock NF01-785U-25 
20X NIR objective, 9 mm FL, 

8.1 mm WD, NA 0.40 Olympus LMPL20XIR 
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6.2 MHI Detection Strategies 
 
 
 

6.2.1 Conventional Raman Spectroscopy 
 

 While the full potential of the MHI instrument is only realized after pre-training 

based on system components, it is also fully functional as a conventional Raman 

spectrometer.  The MHI spectrometer can collect full Raman spectra in one of two main 

ways.  Both involve programming a series of filters into the SLM.  First, the MHI can 

imitate functionality of a simple scanning CCD-based Raman spectrometer by using a 

series of programmable notch, or band-pass, filters for the SLM.  For this method, only a 

short section of pixels are turned “on”, or set to a full polarization rotation from p to s, for 

each filter.  Each filter will then have a different short section of pixels active, and this 

section will scan sequentially across the SLM.  Figure 6.3 is a diagram of this filter 

method for a 28 pixel system.  This method is, however, much less efficient than the 

traditional scanning CCD-based spectrometer since most of the Raman photons are 

reflected away from the detector.   
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Figure 6.3. Example of a set of sequential scanning notch-filters for a 28-pixel spectra.    

 

Another more efficient method for collecting full Raman spectra using the MHI is 

to employ Hadamard transform.  Hadamard transform is analogous to Fourier transform; 

however, instead of sines and cosines, Hadamard uses square waves.  Few Hadamard 

based systems have been reported in the literature, but these are not commonly available 

due to the high cost of limited mechanical devices to produce these filters.  These systems 

require moving mechanical parts to sequence through the necessary Hadamard filters for 

data collection.  By programming these filters into the SLM, the MHI can overcome this 

issue.   

Both band-pass scanning and Hadamard require the same amount of time; for 

both methods, N resolution elements (or N wavelength points) require N consecutive 

measurements.  However, Hadamard measurements are advantageous due to a higher 

signal to noise ratio giving more accurate spectra.  While during a band-pass scan, only a 
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small section of the SLM is rotating the polarization at time, during Hadamard collection, 

exactly half the SLM elements are “on” at a time.  This allows for the collection of many 

more photons at a time, while the noise remains approximately the same. 

The Hadamard matrix is translated to a series of filters for the SLM using 1s and 

0s.  For an individual filter, a pixel encoded with a 1 is set to 100% reflectance, or the 

polarization is fully rotated.  Conversely, a pixel coded with a 0 is set to 0% reflectance 

and the polarization remains the same.  A simple 3 point Hadamard matrix application is 

shown in Figure 6.4.  For a Hadamard measurement, S represents the set of Hadamard 

filters programmed into the SLM and Y is the measured voltage from the APD.  The 

spectrum is obtained by multiplying the APD voltage response by the inverse of the 

Hadamard matrix.  A typical Hadamard spectrum taken using the MHI will have 128 or 

256 spectral points, requiring 128 or 256 Hadamard filters.  

 

 

        Y: Filter Response 
  S: Hadamard Matrix 

             X: Spectrum 
 

Y = S X 
 

           Y              S           X 1	1	0	1	0	10	1	1	  

 
X = S-1 Y 

Figure 6.4. Example Hadamard transformation for a 3-element system [3]. Hadamard 
transform is typically done with 128 elements when using the MHI for spectroscopy.  
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Raw data is recorded from the APD detector as a voltage versus pixel; each 

voltage measurement is the MHI response to a single Hadamard filter programmed into 

the SLM.  Figure 6.5(a) shows the plot of the APD voltage responses to the Hadamard 

filters for the organic compound n-hexane.  Using the Hadamard transform algorithm, 

which multiplies this voltage response by the inverse Hadamard matrix, yields the 

spectrum of n-hexane (Figure 6.5(b)).  Also, to illustrate the improvement in signal to 

noise from the band-pass scanning SLM filters to the Hadamard method, Figure 6.5(c) 

shows the notch scan spectrum of n-hexane.  

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
Figure 6.5.  Hadamard transform spectra versus notch-scan spectra of n-hexane with 128 
resolution elements.  A) Response of the MHI to the set of 128 Hadamard filters.  B) 
Hadamard transform of A.  C) Notch-scan spectra of n-hexane with 128 notch filters.  
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6.2.2 Filter Methods for High-Speed Detection 
 

 The true efficiency of the MHI instrument is realized using SLM filter functions 

that contain information about the compound of interest.  These filters can be functions 

whose shapes match that of the components or whose shapes match that of eigenvectors 

optimized for each component.  In other words, the high speed advantage of the MHI 

instrument requires pre-training using filters tuned to the components of interest.  One 

method is to use spectral angle mapping [4], or using the component spectra themselves 

as filters, and another is to use a partial least squares (PLS) regression [5] to obtain 

loading vectors which can be translated into SLM filters.    

 Of these two methods, spectral angle mapping is the simplest to implement, as it 

only requires the analyte spectra to be converted into an SLM filter function [4].  The 

spectra are scaled to an intensity range of 0 to 1 which will convert to 0 to 100% 

reflectance on the SLM.  Both the SLM filter function and the Raman scattered light at 

different wavelengths can be represented as n-dimensional vectors.  By measuring the 

amount of light directed toward the detector from the SLM, this method is effectively 

measuring the dot-product, or correlation coefficient, of those vectors.  The spectral 

information obtained from the sample can then be classified according to the correlation 

coefficient of the spectral vector, or the scattered light from the analyte, with the SLM 

filter function [1]. 

  Although spectral angle mapping can be quite useful for classifying simple 

systems, it is not always sufficient for more complex systems with more complex spectra, 

such as biological samples.  For these more complex samples, SLM filter functions are 

made using the PLS regression technique [5].  Although it is more computationally 
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intensive to obtain the filters, it is advantageous since PLS maximizes the variance 

between each component of the system allowing for increased selectivity [1].    

 

 
6.2.2.1 Principles of the PLS Regression Method 

 
 Partial least squares is a multiple linear regression(MLR) model [5].  Multiple 

linear regression can be used with many factors, however, if the number of factors 

becomes too large, then the data become over-fitted.  This means that the model will fit 

the sampled data perfectly, but will fail to predict accurately.  There are actually only a 

small number of underlying factors that account for most of the variance in the data.  The 

general goal of PLS is to extract these “latent” factors, while accounting for as much of 

the variation as possible [6].  In other words, PLS finds the regression vector that defines 

the components in a sample by relating a matrix of sample spectra (X) to a concentration 

vector (Y).  In a very simplified sense, the use of the PLS regression vector is similar to a 

simple chemical concentration calibration curve.  The regression vector accounts for 

variance in the sample spectra while relating it to the concentration matrix.  The resulting 

PLS model can then predict the concentration (Y) of an unknown sample by applying the 

regression coefficient [7].   

 When using PLS to produce SLM filter functions, training spectra are recorded 

using the MHI in order to produce the sample spectra matrix (X).  These spectra should 

include samples of known components of known concentration.  The concentrations 

should span the range of possible concentrations of the components in the unknown 

samples.  The PLS algorithm will then compute a set of regression coefficients (or 
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loadings) that will account for the variance among the spectra, given the information 

about the concentration matrix.  Each regression vector will account for a certain degree 

of the variance among the spectra.  The one which captures the largest amount of 

variance is chosen for use as an SLM filter.  For a 2 component system on the MHI, this 

is typically the second eigenvector. 

 The PLS method can also be used for classification problems.  In this case, 

instead of having a set of training spectra of varying concentrations, the spectra matrix 

will contain only spectra of the pure components.  For the concentration matrix, one 

component should be chosen to be encoded as 100% and the other as 0%.  For example, 

for a simple classification of n-hexane and n-hexanol, the spectra matrix would contain 

perhaps 5 spectra of pure n-hexane and 5 spectra of pure n-hexanol.  Then the 

corresponding concentration matrix would encode the n-hexane spectra as 0 and the n-

hexanol spectra as 100.   

 Regardless of the application, quantitation or classification, the second PLS 

regression coefficient, chosen for use as an SLM filter function, has both positive and 

negative portions.  In order to use this as a filter, the vector needs to be split into 2 parts, 

a positive part and a negative one.  Both the positive and the negative portions of the 

filter are then scaled to an intensity range from 0 to +1.  Figure 6.6 shows a PLS 

eigenvector from an n-hexane/n-hexanol quantitation example being divided into its 

positive and negative portions.   
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Figure 6.6.  PLS-derived n-hexane/n-hexanol filter process.  
A) Second PLS regression vector for quantitation of n-hexane and n-hexanol.  B)  
Regression vector from B deconstructed into its positive (yellow) and negative (green) 
portions and scaled from 0 to +1. 
 

 
 

6.2.3 Post-Acquisition Analysis 

 Once the SLM filters are used to collect information about a sample, some post-

acquisition analysis is necessary to reconstruct the response of the sample to the filter.  

This analysis is quite minor for the spectral angle mapping method, as this only requires 

taking into account the scaling factor that was necessary in order to scale the spectra to an 

intensity range from 0 to 1.   

 In order to regenerate the response of the samples to the PLS filters shown in 

Figure 6.6B, there is some post-acquisition analysis required.  Let R, P and N be the MHI 

responses to the SLM filters ri (Figure 6.6A), the positive portion pi (Figure 6.6B – 

yellow) and the negative portion ni (Figure 6.6B – green), respectively.   
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The normalized signal arising from each wavelength pixel (i) is 

 

∑ ;                 (6.1) 

 

where Si is the raw APD output voltage and ∑  is the APD output voltage when the 

SLM is set to “all on” or 100% reflectance.  The APD signal when both the positive and 

negative filters are applied to the SLM can be expressed as follows: 

 ∑       (6.2) 

 ∑      (6.3) 

 

 where c+ and c- are the scaling factors necessary to translate each filter into a full 

intensity range from 0 to 1.  The response to R can then be reconstructed simply by 

summing P and N, R = P + N.  This final output, R, relates to the classifier, 0 or 1, or 

concentration scale, percent composition from 0 – 100%, used in the PLS algorithm. 
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CHAPTER 7.  CLASSIFICATION, QUANTITATION AND IMAGING USING THE 
MHI INSTRUMENT 

 
 
 

 The MHI instrument was used to perform “proof-of-concept” measurements to 

classify and quantitate liquid mixtures, as well as to rapidly image a pharmaceutical 

sample.  Liquids whose Raman spectra are quite different in the fingerprint region (400 to 

2000 cm-1), cyclohexane and n-hexane, are used to demonstrate the classification ability 

of the spectral angle mapping filter method.  Conversely, liquids whose Raman spectra 

are similar in this region, n-hexane and n-hexanol, are used to demonstrate the ability of 

the PLS regression filter method to correctly identify the concentration of each 

component in a mixture.  Finally, the PLS regression filter method is used to rapidly 

produce an image of a composite aspirin tablet.   

 

7.1 Classification of Hexane and Cyclohexane 

 Spectral angle mapping, which uses the component spectra themselves as filter 

functions for the SLM [1], was used to classify liquid samples of cyclohexane and n-

hexane.    Figure 7.1 shows the spectra of liquid cyclohexane and n-hexane obtained 

using the Hadamard detection method for collecting full spectra using MHI (see section 

6.2.1).  These spectra were then converted to SLM filters by scaling their intensities from 

0 to 1.   
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Figure 7.1.  MHI (Hadamard transform) spectra of cyclohexane (red) and n-hexane 
(blue).  These spectra were used as SLM filters for spectral angle mapping classification 
application of the MHI. 
 
  
 
 Figure 7.2 shows the MHI classification results using the spectral angle mapping 

method on cyclohexane and n-hexane.  These results were obtained by applying the 

spectral filters, along with an “all on” filter for normalization, to the SLM for various 

integration times.  Results are plotted as the response to the cyclohexane filter versus the 

response to the n-hexane filter.  Samples that were cyclohexane were expected to be in 

the upper left corner at (0,1) of the plot and samples that were n-hexane were expected to 

be in the lower right corner at (1,0).  Using these results, it is evident that accurate 

classification of these 2 representative liquids was achieved at as low as 100µs.    
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Figure 7.2. Classification results for cyclohexane n-hexane for spectral equivalent filters 
at integration times of 100ms (red points), 10ms (blue points), 1ms (green points) and 
100µs (yellow points) [2].  The results are plotted as the response to the cyclohexane 
filter (left axis) versus the response to the n-hexane filter (bottom axis).  Samples 
classified as cyclohexane are represented as circles and samples classified as n-hexane 
are represented as squares.  Error bars are based on the standard deviation of 15 separate 
measurements at each integration time.  (Image adapted from reference 2). 
 
 
 

7.2 Quantitation of Hexane and Hexanol Mixtures 

 Like spectral angle mapping, PLS regression can also easily classify two 

components.  PLS also has the added benefit of being able to determine the concentration 

of a known component of a mixture.  Liquid samples of n-hexane and n-hexanol, whose 

Raman spectra are similar in the fingerprint region from 400-2000 cm-1, were used to 

demonstrate the capability of the MHI to accurately quantify the concentration of their 

mixtures.  

 Figure 7.3 shows the Raman spectra and SLM filter functions for n-hexane and n-

hexanol, whose Raman spectra look similar in the fingerprint region of 400-2000 cm-1.  
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The spectra of n-hexane and n-hexanol in figure 7.3a were obtained using the Hadamard 

transform collection technique for the MHI (see section 6.2.1).  These spectra, along with 

spectra of a range of concentrations (0-100% n-hexane), were used as input into the 

SIMPLS [3] algorithm, which performs PLS (using MATLAB along with the PLS 

toolbox, Eigenvector research inc.).  The output of the PLS algorithm is a set of 

regression vectors; since there are two components in this system the one that captures 

the largest amount of variance to be used as an SLM filter is the second vector, shown in 

figure 7.3b.  In order for this regression vector to be used as an SLM filter function, it 

must be split into its positive and negative parts and scaled to an intensity range of 0 to 1.  

Figure 7.3c illustrates the splitting of the regression vector from figure 7.3b.   

 The PLS-derived SLM filters were then used to measure test samples to determine 

the capability of the PLS method for determining the concentration of the components in 

mixtures.  Like for the spectral angle mapping classification method, the PLS method for 

quantitation was tested at multiple APD integration times.   Figure 7.4 shows the 

concentration quantification results for n-hexane/n-hexanol mixtures using the PLS-

derived filter functions described above with APD integration times ranging from 100ms 

to 1ms per filter.  These results are quite good, considering the similarity of their spectra 

in the fingerprint region.   The correlation coefficient of a linear fit to the data points in 

figure 7.3 increases from 0.921 to 0.995 as the integration time increases from 1ms to 100 

ms respectively (the linear fit of the 100ms data is the line shown in figure 7.4).  As 

expected, the longer integration time of 100ms provides the most accurate concentration 

measurements.   
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Figure 7.3.  PLS-derived SLM component filter algorithm.  (A) Pure component spectra 
of n-hexane (red curve) and n-hexanol (blue curve) taken using the MHI [2].  These as 
well as spectra of mixtures were used as input into the PLS algorithm.  (B) PLS 
regression output eigenvector used to for the SLM filter functions.  (C) The PLS 
eigenvector from B is split into a positive portion (yellow curve) and negative portion 
(green curve) and scaled to an intensity range of 0 to 1 for use as SLM filter functions.   
(Image adapted from reference 2) 
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Figure 7.4. MHI concentration measurements using the PLS-derived SLM filter functions 
as compared with the known mixture concentrations of n-hexane/n-hexanol mixtures for 
3 different APD integration times per filter [2]: 100 ms (red circles), 10ms (blue squares), 
and 1ms (green triangles).  The black curve is the linear fit for the 100ms data points, 
which has a correlation coefficient of 0.995.  Error bars represent the standard deviation 
of 10 individual measurements at each integration time.  (Image adapted from reference 
2) 
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7.3 Pharmaceutical Imaging application – Composite Aspirin Tablet 
 

 The high-speed imaging capability of the MHI was tested using a composite 

aspirin tablet; a store bought aspirin tablet was drilled with 3 holes that were then filled 

with theophylline (a common pharmaceutical excipient).  This application was tested to 

show that the MHI could potentially be used to rapidly determine the distribution of 

active ingredients and excipients in a pharmaceutical sample.  The PLS regression 

method was used to produce SLM filter functions as described for the hexane/hexanol 

quantitation.  Figure 7.5 shows the PLS-derived SLM filter algorithm for a sample 

containing aspirin and theophylline.  Spectra of pure aspirin and theophylline, figure 7.5a, 

were taken using the Hadamard transform method (see section 6.2.1).  These pure spectra 

were used as input into the PLS algorithm with aspirin coded as 1 and theophylline coded 

as 0.  Since this is a two-component system, the second PLS regression vector is used for 

the SLM filter, figure 7.5b.  Figure 7.5c shows the second regression vector split into its 

positive and negative portions and scaled from 0 to 1 intensity range.   

 Figure 7.6 shows the chemical image created using the PLS-derived SLM filters 

for aspirin and theophylline as described above.  The total APD integration time was 1 

ms per filter, resulting in a 30 second total signal collection.  It is evident from the image 

that the MHI can create a chemical map of the aspirin tablet with theophylline packed 

craters.  If the integration time is increased, the accuracy of the map is expected to 

increase and contain less uncertainty.    
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Figure 7.5.  PLS-derived SLM component filter algorithm [2].  (A) Pure component 
spectra of aspirin (red curve) and theophylline (blue curve) taken using the MHI.  (B) 
PLS regression output eigenvector used to for the SLM filter functions.  (C) The PLS 
eigenvector from B is split into a positive portion (green curve) and negative portion 
(yellow curve) and scaled to an intensity range of 0 to 1 for use as SLM filter functions.  
(Image adapted from reference 2) 
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Figure 7.6.  MHI chemical image (100x100 pixels) of an aspirin tablet (blue) with 
theophylline (red) packed holes at an APD integration time of 1ms per filter [2].  Total 
signal collection time was 30s.  The image color map is continuous from red (0) to white 
(0.5) to blue (1).  (Image adapted from reference 2) 
 
 

0.0 

5.0 

0.0 5.0 mm 

m
m

 
1.0

0.8

0.6

0.4

0.2

0.0



80 
 

7.4 References 
 
1. Yuhas, R.H., A.F.H. Goetz, and J.W. Boardman, Discrimination Among Semi-

arid Landscape Endmembers Using the Spectral Angle Mapper (SAM) Algorithm, 
in Third Annual JPL Airborne Geoscience Workshop, R.O. Green, Editor. 1992: 
Pasadena, CA. p. 147-149. 

2. Davis, B.M., et al., Multivariate hyperspectral Raman imaging using compressive 
detection. Analytical Chemistry, 2011. 83(13): p. 5086-92. 

3. De Jong, S., SIMPLS: an alternative approach to partial least squares regression. 
Chemometrics and Intelligent Laboratory Systems, 1993. 18(3): p. 251-263. 



82 
 

CHAPTER 8.  MHI SUMMARY AND CONCLUSIONS 
 
 
 

 The MHI instrument described in chapter 6 makes use of a programmable optical 

filter to produce a high-throughput Raman spectrometer and hyperspectral imaging 

system.  The instrument described is based on a Raman spectrometer with specially 

designed detection optics.  The detection optics are based on a reflectance type liquid 

crystal spatial light modulator; a type of programmable optical filter that is programmed 

with filter functions optimized for analytes of interest, as well as filters to reproduce the 

functionality of a traditional spectrometer.       

The results discussed in chapter 7 demonstrate that the MHI instrument can 

reproduce the functionality of a traditional Raman spectrometer by making use of 

Hadamard transform filter functions, as well as produce rapid chemical classifications, 

concentration measurements and chemical images by making use of specialized filter 

functions from PLS regression analysis or spectral angle mapping.  Test samples of 

cyclohexane and n-hexane were used to illustrate the rapid classification ability of the 

MHI using spectral angle mapping.  Mixtures of n-hexane and n-hexanol were also used 

to demonstrate the ability of the MHI to use PLS regression coefficients as optimized 

filter functions to determine the concentration of each component.  Finally, a chemical 

map of an aspirin tablet with theophylline packed craters was produced rapidly using 

PLS-derived filters after pre-training with the pure components.  This is when the true 



82 
 

advantage of the MHI is realized; after pre-training on components of interest to produce 

optimized filter functions.   

 Although the instrument described in the previous chapters focuses on Raman 

spectroscopy, the MHI detection strategy could be adapted to a variety of other spectral 

detection methods.  For instance, one could think of a fluorescence based application 

where filter functions are optimized for different chromophores with highly overlapping 

emission spectra for high-speed sorting.  The MHI detection method could also be 

adapted to study high-speed chemical kinetics.  Filters could be optimized for variance 

between reactant, intermediate and product species and used to track the changes in their 

concentrations as a function of time in a variety of reaction types.   
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Increasing the speed at which Raman chemical imaging is
performed requires a shift in paradigm. The last major advances

in Raman imaging speed occurred with the introduction of
multiplexing1�4 and optical array detectors.5 The recent develop-
ment of compressive sampling data collection strategies,6�12 which
have been used to create such devices as single pixel cameras,13 has
set the stage for the creation of fast hyperspectral imaging instru-
ments. Although previous studies have demonstrated the feasibility
of such a hyperspectral detection paradigm,6,8,11,12,14�16 none of
these have realized its potential speed advantages. Here we describe
the design and performance of a new multivariate hyperspectral
imaging (MHI) instrument which is optimized to facilitate the
rapid collection of chemical images using a low-noise single-
channel compressive detection strategy.

Despite ongoing improvements in optical array detector
technologies (such as charge-coupled device, CCD, and elec-
tron-multiplying-CCD cameras, as well as time-delayed integra-
tion, TDI, strategies),5,17 the time required to collect hyper-
spectral images remains an obstacle to the wider application of
Raman spectroscopy for chemical imaging. More specifically,
point scanning with CCD-based spectral detection methods
typically requires of the order of 1 s per spectrum and thus is
impractical for the collection of large spectral images (as the
collection of a 1 megapixel image would require 106 s or ∼12
days). Global illumination18�21 strategies with a tunable detec-
tion band-pass filter and a two-dimensional (e.g., CCD camera)
detector can be used to rapidly collect single wavelength images
but do so at the expense of discarding the Raman scattered
photons outside the wavelength detection band. Thus, tunable
band-pass filter imaging is fundamentally less efficient (slower)

than full-spectral detection. Line scanning5,18 can provide a
superior alternative, by distributing the laser power and simulta-
neously collecting full spectra from each point along a line. Both
point and line scanning methods simultaneously collect full
spectral information from each image pixel with a signal-to-noise
(S/N) that is limited only by the sample’s Raman scattering cross
section, excitation laser power, and integration time.

A key advantage of the MHI detection strategy described in
this work is provided by using a single channel detector to
simultaneously detect all the photons transmitted by a multi-
variate optical filter of arbitrary programmable spectral shape.
Thus, for example, a Raman spectrum with a total intensity of the
order of 100 detected photons (counts) would have a S/N∼ 10
if all the photons were detected on an ideal single channel
detector. However, if those same photons were spread over
>100 wavelength channels (using a CCD detector), they would
be practically undetectable, given that the signal (∼1 count/
channel) is less than the typical read-noise (of a few counts/
channel). This is the fundamental reason why theMHI detection
strategy can outperform conventional optical array detection
methods. Moreover, the MHI detection strategy could poten-
tially be implemented using low-cost SLM and single channel
detector components11 (although the research grade compo-
nents used in the present system are comparable in price to a
CCD/spectrograph, as further described in the Experimental
Section and the Supporting Information).

Received: December 14, 2010
Accepted: May 23, 2011

ABSTRACT: A multivariate hyperspectral imaging (MHI)
instrument has been designed and constructed to achieve
greatly increased Raman imaging speeds by utilizing a com-
pressive spectral detection strategy. The instrument may be
viewed as a generalized spectrometer, which can function either
as a conventional monochromator or in a wide variety of other
hyperspectral modalities. The MHI utilizes a spatial light
modulator (SLM) to produce programmable optical filters to
rapidly detect and map particular sample components. A
sequence of Hadamard-transform or random filter functions
may be used to regenerate full Raman spectra. Compressive
detection is achieved either using multivariate signal processing filter functions or the actual component spectra. Compressive
detection is shown to be capable of achieving sampling speeds exceeding 1 ms per image pixel and the collection of chemical images
in less than a minute.
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It is important to stress that the full speed advantages of the
MHI are only realized after pretraining to establish the optimal
programmable filter functions for a given imaging application,
with no pretraining the MHI can reproduce the functionality
and speed of a conventional array detection scheme. Moreover,
the MHI detection strategy is most advantageous (relative to
full-spectral detection methods) under very high speed (or low
signal) conditions, such that the total number of detected pho-
tons are comparable to (or smaller than) the number of full-
spectral wavelength channels.

A few previous studies have demonstrated the implementation
of hardware based spectral compression strategies.6,10,11,16 Such
instruments all use a single channel detector to integrate the light
transmitted through optical filters of various spectral shapes. For
example, the filters may be designed to reproduce the eigenfunc-
tions obtained from chemometric techniques such as principal
component analysis (PCA)22,23 or partial least-squares (PLS).24

In other words, such hardware spectral compression methods
utilize spectral eigenvectors (or loadings) for detection rather than
for postprocessing of full-spectral data (or for compressed data
storage). An early implementation of this strategy by Myrick
and co-workers used static optical interference filters with custo-
mized transmission spectra6 for multivariate imaging and optical
computing.25 However, since the required filters are sample
specific, this approach requires manufacturing different filters for
each chemical imaging application. Moreover, with dependence
on the complexity of the filter function, many dielectric layers may
be needed, thus increasing the cost and decreasing the maximum
optical throughput of the required filters.

Spatial light modulators (SLM) offer an attractive alternative, as
they provide a means of producing variable programmable filter
functions. Recent implementations of this strategy have utilized
various types of SLM devices, such as liquid crystal panels10�12,15

and digital micromirror device (DMD) arrays.14,16,26 LC-based
SLMs use optical polarization to produce either phase or amplitude
modulated variable spectral filter functions.27 DMD arrays provide
binary filtering states, as each mirror is either “on” (reflecting
toward the detector) or “off” (reflecting away). Liquid crystal (LC)
based SLMs, on the other hand, provide a variable transmittance
(or reflectance) gray scale and thus may readily be used to produce
spectral filter functions of arbitrary shape (although a DMD can
also reproduce this functionality by controlling the number and
duration of mirrors that are in the “on” state during the data
collection time). Previous applications using transmissive LCSLMs
for spectral compression have suffered from low signal throughput
(∼20%).11 Recently developed reflectance based LC-SLMs pro-
vide much higher throughput (>80%) by increasing the reflectivity
and fill factor of the LC array28 and thus have been selected for use
in the present MHI instrument.

The unprecedented hyperspectral imaging speed of the MHI
derives not only from the increased throughput and high contrast
of the SLM but also from the use of a high-throughput volume
holographic grating and a low noise avalanche photodiode
detector. The MHI can be used either for full spectral detection,
using band-pass or Hadammard-transform filters, or high speed
compressive detection, using PLS or spectral angle mapping
calibration and/or classification.

’EXPERIMENTAL SECTION

Instrument Description. The MHI is built around a Raman
microscope with backscattering collection geometry. The schematic

of the MHI detection optics is shown in Figure 1, and a detailed
parts list is provided as Supporting Information. A 785 nm (single
mode, 100 mW,Δλ = 0.026 nm) laser diode module (Innovative
Photonic Solutions, Inc.) is used as the excitation source. The
laser is directed through a 20� (NA 0.40) NIR objective
(Olympus, LMPL20XIR) using a 45� dichroic long pass filter
(Semrock, LPD01-785RU-25 � 36 � 2.0) which passes the
collected (Stokes-shifted) Raman scattered light from the sam-
ple. Additional Rayleigh scatter rejection is achieved using a
785 nm notch filter (Semrock, NF01-785U-25) placed outside of
the microscope.
After scattering from the sample, the Raman signal passes into

the MHI detection optics, as illustrated in Figure 1. The first
component in the detection optical path is a half waveplate,
which is used to rotate the polarization of the Raman light and
thus determining whether the V or H Raman scattering compo-
nent is detected. The second component is a Glan-Laser
polarizing beam splitter which transmits the p-polarized light
toward the SLM, and reflects s-polarized light coming back from
the SLM (with polarization contrast of at least >1000:1). The
second half-waveplate, between the lens and SLM is required in
order to align the light’s polarization to match the liquid crystal
axis of the SLM for optimal reflectance modulation. The MHI
filter functions are produced by using the SLM phase modulation
to control the degree to which the input p-polarized signal is
rotated to s-polarization and thus reflected by the Glan-Laser
polarizer into the detection optical path. The volume holo-
graphic grating (1200 L/mm, center wavlength 830 nm, Edmund
Optics, 48-590) and an achromatic lens with a focal length of f =
100 mm (Edmund Optics, 47-317) are used to disperse light and
focus different wavelengths onto different pixels of the SLM.
Note that the distances between the holographic grating, lens,
and SLM are matched to f (see Figure 1) to ensure that the light
reflected by the SLM retraces the same optical path as the
incoming light, although its polarization is modulated in accor-
dance with the filter function applied to the SLM.
The SLM (Boulder Nonlinear Systems Inc.) is composed of a

linear array of 12 288 pixels. Each pixel is a separately addressable
optical phase modulator which is used to rotate the polarization
of the detected light between 0� (p-polarization) and 90�
(s-polarization), only light that is rotated away from 0� will be
reflected into the detection optical path by the Glan-Laser
polarizing cube. The degree of polarization rotation of each
SLM pixel is set with an eight-bit control voltage. The eight-bit

Figure 1. Schematic diagram of the MHI detection optics (see text and
Supporting Information for details).
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reflectance scale of the SLM pixels allows the MHI to produce
programmable spectral filter functions of variable shape, as
illustrated in Figure 1. The birefringence of each SLM pixel is
temperature and wavelength dependent.29 The relation between
the SLM voltage setting and percent transmission as a function of
wavelength is shown in Figure 2 (and further details concerning
the SLM transmission vs wavelength calibration are provided as
Supporting Information).
The s-polarized signal which is reflected into the detection

path is collected with an 18 mm focal length aspheric lens
(Edmund Optics) and focused into a 200 μm core optical fiber
(NA 0.22, with SMA terminals, Thor Laboratories Inc.) that is
directly coupled to the APD detector (Hamamatsu, C4777-01).
The APD module has a built-in temperature control and
amplifier and was chosen for its low noise and high photosensi-
tivity between 800 and 950 nm. The APD has an active sensor
diameter of 3 mm and ameasured photosensitivity of∼1.2 e9 V/
W. This current-integrating detector was selected for the MHI
(rather than a photon-counting APD) as MHI Raman signals
may exceed 10 MHz photon count rates. However, a photon-
counting APD can provide lower noise for MHI signals corre-
sponding to detection rates of the order 1MHz or less (as further
described in the Supporting Information).30,31

The voltage output of the APD is connected to a USB data
acquisition device (National Instruments USB-DAQ 6211) for
digitization and computer readout. The DAQ unit has a max-
imum read rate of 250 kHz and can store 250 000 samples before
analog-to-digital conversion. The integration time of the mea-
surements using the APD-DAQ is set by controlling the number
of samples that are collected and signal averaged. The spatial,
spectral, and time resolution performance of the MHI is further
described in the Results and Discussion section (as well as in the
Supporting Information).
MHI Detection Strategies. The MHI may be viewed as

a generalized spectrometer which is capable of functioning
either as a conventional scanning spectrometer or using other
more efficient spectral detection strategies. Different detection

modalities utilize different spectral filter functions. For example,
one may reproduce the functionality of a simple scanning
spectrometer by using the SLM to produce band-pass filters
with variable center wavelengths. The efficiency of the latter
strategy is lower than that of a CCD-based full spectral instru-
ment, since most of the Raman scattered light (away from the
band-pass) is rejected by each filter. Alternatively, one may more
efficiently collect full spectra using either Hadamard3,4,32 or
random (compressive sampling)13 filter functions. The efficiency
(speed) of the Hadamard transform detection method can
approach that of a CCD-based point scanning, or line scanning,
instrument (as half of the Raman scattered light is detected by
each filter). By using random (compressive sampling) filters, one
can in principle achieve higher speeds than when using Hada-
mard filters, since fewer filters are required to regenerate a
complete spectrum.33 Far more efficient (and faster) MHI
spectral imaging data collection may be achieved using trained
filter functions which are tuned to optimally detect particular
components of interest. For example, this can be achieved either
using filter functions whose shape is the same as that of the
component spectra, or using filter functions whose shape repro-
duces loadings (eigenfunctions) optimized for a particular ima-
ging application. In other words, high speed chemical imaging
requires pretraining to construct MHI filter functions. Two such
methods are demonstrated in this paper. One is spectral angle
mapping using component spectral filter functions,34 and the
other utilizes PLS loading vectors as filter functions.24 In both
cases, the full Raman spectra used for training were obtained
using the MHI with a Hadamard transform detection scheme.
For most applications, the measured SLM signals (i.e., APD

voltages obtained when using a particular SLM filter function)
are normalized by the integrated “all-on” signal, obtained by
setting all of the SLM pixels to 100% T (in order to maximize
the reflectivity of the SLM). In other words, the all-on measure-
ment is used to normalize each SLM signal so that it represents
the fraction of the total number of Raman scattered photons
which are detected when using the corresponding SLM filter
function.
Spectral angle mapping uses the analyte spectrum itself as the

filter function.34 This method is quite simple to implement as it
requires only scaling the spectrum to a full intensity range of 0 to
1 for use as an SLM transmittance filter function. Note that any
such SLM filter function can be represented by an n-dimensional
vector, and the same is true for the Raman scattered light
intensity at different wavelengths. Spectral angle mapping effec-
tively measures the correlation coefficient (dot-product) of the
latter two vectors by measuring the amount of the Raman
scattered light which is reflected toward the detector by the
SLM. The Raman scattered light (spectral vector) emerging from
a given point in a sample is thus classified based on its correlation
coefficient with each SLM filter function (detection vector), with
appropriate classification cutoff values.
Alternatively, pretraining using PLS regression may be used to

determine optimal MHI filter functions.24 This method requires
more computation effort prior to data acquisition than spectral
angle mapping but can be advantageous as PLS regression
maximizes the covariance between the spectra of each species
and their concentrations, thus establishing a quantitative con-
centration metric built into the scaling of the loadings (filter
spectral vectors). PLS also has increased selectivity since the PLS
loadings are constructed such that they maximize the variance
between the components of interest.24

Figure 2. SLM reflectance calibration. (A) The measured collected
light intensity at 850 nm (normalized to unit full scale) is plotted as a
function of the voltage applied to the SLM. The thick dashed segment
highlights the voltage range used for setting the % T of the correspond-
ing SLMpixel. (B) Calibrated 100%T (dotted) and 0%T (dashed) SLM
voltage settings are plotted as a function of both SLM pixel number
(bottom axis) and wavelength (top axis).
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Materials and Samples. The following liquid samples were
used in order to validate the chemical classification and quantita-
tion performance of the MHI: n-hexane (Mallinckrodt, 5189,
99.4%), n-hexanol (Sigma Aldrich, reagent grade, 98%, H13303),
and cyclohexane (Sigma Aldrich, 99.9þ%HPLC, 27 062-8). The
high-speed chemical imaging performance of theMHI is demon-
strated using the following pharmaceutical composite and a
powder containing two types of sugar microcrystals. The pharma-
ceutical composite sample was produced using an aspirin tablet
(Equate, lot no. 3CE0649) in which three small craters were
created and packed with theophylline anhydrate (AMEND Drug
and Chemical Co., lot no. Z52258K16). The theophylline powder
was heated at 80 �C for 24 h to ensure that it was in the anhydrate
form. The surface of the aspirin-theophylline tablet was shaved
with a razor blade to create a flat imaging surface. The sugar
imaging sample was created by distributing powders of D(�)

fructose (Sigma-Aldrich, F-0127) and sucrose (Mallinckrodt
Chemicals, 8360-04) granules over a glass microscope slide. The
spatial resolution of the MHI was determined using a standard
1951 USAF test target (Edmund Optics Inc.), consisting of a 2 in.
square clear (soda-lime glass) substrate with a chrome USAF test
target pattern.

’RESULTS AND DISCUSSION

Validation of MHI Imaging Performance. Signal-to-Noise
and Resolution.The total signal throughput of theMHI detection
optics is greater than 50%, as determined by comparing the
intensity of incoming horizontally polarized incoming light
before the MHI Glan-Laser polarizer, with that emerging
from the detection optical fiber (which is coupled to the APD
detector), as shown in Figure 1. These throughput measure-
ments were performed at 785, 850, and 915 nm using diode-laser
light sources. The resulting MHI throughput of >50% is sig-
nificantly higher than that previously reported when using an
transmission LC-SLM (with maximum transmittance of ∼20%,
before including the additional losses associated with other
components in the detection path).11,28

The following measurements were performed in order to
quantify the sensitivity and noise trade-offs associated with the
MHI detection system, under typical experimental Raman detec-
tion conditions. The USB-DAQ device has a noise of (12 μV
per read, as measured using a constant input voltage (obtained
from a battery with resistive voltage-divider). The dark voltage and
noise (standard deviation) of the APD is(0.21 mV, as measured
with the APD completely shielded from light. The latter dark noise
is equivalent to an optical power of approximately (182 fW
(at∼850 nm). The response time of the APD was determined to
be approximately consistent with the manufacturer specifications
of 67 μs. More specifically, the measured APD response time is
55 ( 16 μs (determined as described in the Supporting Infor-
mation). The manufacturer specified APD photosensitivity of
2.7 � 10�10 V s/photon (at 850 nm) was also found to be
consistent with our independent experimental measurements.
The actual S/N performance of the APDwas compared to that

expected using the following expression.

S=NAPD ¼ ffiffiffi

n
p SL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σD
2 þ σL

2
p ð1Þ

SL = VAPDτAPD/CAPD represents the light induced APD signal,
expressed as a number of photons detected by the APD during its
response time of τAPD ∼ 55 μs, where VAPD is the APD output

voltage and CAPD ∼ 2.7 � 10�10 V s/photon is the APD
photosensitivity. The total detection noise includes both
the APD dark noise σD∼ 43 (expressed as an equivalent number
of photons) and photoelectron�hole (Poisson) noise σL =
(2SAPD)

1/2, where the factor of 2 is included because each
detected photon produces an electron�hole pair.35 In order to
obtain the optimal signal-to-noise, the APDmust be sampled at a
rate that is greater than 1/τAPD ∼ 20 kHz (and we typically
sampled the APD at 250 kHz). Under these conditions n =
τ/τAPD represents the number statistically independent APD
output voltages which are measured in a total read time.
The points in Figure 3 were each obtained from 30 replicate

APD signal measurements of Raman scattered light from a liquid
n-hexanol sample using different excitation laser intensities
(ranging from 1 to 100mW) and integration times (from bottom
to top) of 100 μs, 1 ms, 10 ms, and 100 ms. The experimental
S/N of these measurements was then compared to predictions
obtained using eq 1, which was used to generate the solid curves
in Figure 3. The dashed lines in Figure 3 represent predictions for
an ideal electron�hole detector (with no dark noise σD = 0).
These results indicate that for APD voltages of 1 mV < VAPD <
10 mV, which are typical of the MHI Raman signal levels, the
MHI signal-to-noise ratio is no more than about a factor of 2 less
than that of an ideal electron�hole Poisson detector. A photon-
counting APD may be used to further improve the MHI signal-
to-noise performance, particularly under low signal conditions
(as further discussed in the Supporting Information).
The spatial resolution of the MHI instrument is∼4 μm using

the 20� objective, as illustrated in Figure 4 (see Supporting
Information for further details). The MHI spectral resolution is

Figure 3. MHI/APD S/N versus signal voltage at different integration
times: τR = 100 ms, 10 ms, 1 ms, and 100 μs, from top to bottom.
Experimental data points are compared to predictions obtained using
eq 1 (solid curves) and to the performance of an ideal (dark noise free)
electron�hole detector (dashed lines).

Figure 4. (Left) MHI reflectance image of 1951 USAF test target
Group 7 with a 20� IR objective. (Right) Cross section of image along
the arrow. (Inset) first derivative of cross section from within the
rectangular box. The width of the negative-going peak in the first
derivative represents the width of the edge of a target line, giving a spot
size of 4 μm.
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dictated by the sample excitation spot size imaged on the SLM.
The resolution was determined to be ∼18 cm�1 by measuring
the fwhm of the 991 cm�1 benzene peak and the 811.7 nm line
from an argon lamp. The latter spectra were measured with the
MHI using the Hadamard transform spectral collection proce-
dure. This resolution corresponds to a spot size on the SLM of
∼190 μm, which is about a factor of 4 larger that expected under
ideal imaging conditions (given the 4 μm spatial resolution at the
sample and the 100/9∼11� magnification of the collection
optics at the SLM surface). The spectral range of the MHI is
∼240 cm�1 to 2 100 cm�1, which is dictated by the 19.6 mm
width of the SLM (as well as the 1200 g/mm groove density of
the holographic volume grating and the f = 100 mm focal length
of the lens between the grating and the SLM, see Figure 1). Thus,
the MHI effectively has ∼103 independently addressable wave-
length channels (as dictated by its full spectral range of
1 860 cm�1 and resolution of∼18 cm�1). Further improvement
in spectral resolution may be obtained by introducing a vertical
slit in the detection path (as further described in the Supporting
Information).
Liquid Classification and Concentration Measurements.

Figure 5 shows the MHI classification results obtained using
liquid cyclohexane and n-hexane samples and either PLS or
spectral equivalent (spectral angle mapping) MHI filters, with an
APD signal averaging time of either 1 or 0.1 ms per filter. The
MHI signals from each pure liquid have all been scaled to an
average value of ∼1. The line in Figure 5 was obtained using
linear discriminant analysis (LDA), which provides a classifying
metric for distinguishing these two compounds based on their
MHI signals. Although similar performance was in this case
obtained using both the PLS and spectral angle mapping detec-
tion strategies, the same is not the case for samples whose Raman
spectra are much more similar to each other, such as n-hexane
and n-hexanol. Similar tests performed using the latter two
liquids demonstrated that accurate classification (with standard
deviation error bars smaller than the distance between the
n-hexane and n-hexanol points) is possible using PLS filters with
a 10 ms APD signal averaging time but not when using
spectral angle mapping with spectral equivalent filters (as further
described below).
Figure 6 shows Raman spectra and MHI filter functions for

liquid n-hexane and n-hexanol, whose Raman spectra look quite
similar (in the fingerprint region from 400 to 2000 cm�1). These
results were obtained using PLS filter functions derived from the
Hadamard transform training spectra of n-hexane and n-hexanol

shown in Figure 6A. The latter training spectra for the PLS
algorithm are normalized to unit area (with a concentration
vector that codes n-hexane as 0 and n-hexanol as 1). The
SIMPLS36 algorithm was used to perform the PLS analysis of
the input spectra (using MATLAB along with the PLSToolbox,
eigenvector Research, Inc.). The output from the SIMPLS
algorithm for a two component system is a set of two regression
vectors, as shown in Figure 6B; the solid curve in Figure 6B
resembles the sum of the spectra of the two liquids, and the
dashed curve in Figure 6B resembles the difference between the
two spectra. Figure 6C illustrates the way that the latter PLS
regression vector is split into two parts, each of which are non-
negative functions.10 The latter two regression vectors are scaled
to a maximum value of 1 (which corresponding to a maximum
SLM transmittance) and the corresponding scaling constants, cþ

and c�, are subsequently used to regenerate the full PLS response.
Further details concerning the generation of MHI filter functions
are provided as Supporting Information (which also includes
comparisons of MHI and CCD spectra of various liquid and solid
samples in Figure S-1 in the Supporting Information).
Figure 7 shows MHI concentration quantification results

obtained for various n-hexane/n-hexanol liquid mixtures, using
PLS filter functions defined as described above (and shown in
Figure 6), with APD signal averaging times ranging from 1 to
100 ms. These MHI based concentration measurement results
are remarkably good considering the similarity of the fingerprint
spectra of these two liquids as well as the fact that only the
pure liquid spectra were used to train the PLS filter functions.
The correlation coefficient of the linear fit to the data points
shown in Figure 7 increased from 0.959 to 0.997, as the
integration time (per SLM filter measurement) increased from
1 to 100 ms, respectively.
Imaging of Solid Composites and Powders. The chemical

image shown in Figure 8 was obtained from the aspirin/
theophylline composite sample. Initial (training) measurements
were performed by collecting five Hadamard spectra of each of
the two pure components with a high S/N (∼50:1) using the

Figure 5. PLS (square points) and spectral equivalent (circle points)
filter classification of n-hexane (upper-left points) and cyclohexane
(lower-right points) samples at integration times 1 ms (solid points)
and 100 μs (open points). Spectral equivalent filter measurements
are plotted as the response to the cyclohexane filter (left axis) versus
the response to the n-hexane filter (bottom axis). PLS filters are plotted
as the predicted % n-hexane (right axis) versus the actual % n-hexane
(top axis).

Figure 6. PLS-derived SLM analyte filter algorithm. (A) Pure compo-
nent Hadamard spectra of n-hexanol (solid) and n-hexane (dashed). (B)
PLS output regression vectors using spectra from part A. (C) Splitting of
the second PLS regression vector (solid curve in part B) into a positive
part (solid) and the absolute value of the negative portion (dashed).
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Hadamard spectral collection strategy. The pure component
spectra were then processed using PLS and classified with
theophylline coded as 1 and aspirin coded as 0.
The chemical map shown in Figure 8 was obtained using a

1 ms APD signal averaging time with two PLS filters (for the
positive and negative components of the second PLS loading
vector) and one all-on filter. The total signal collection time was
30 s for the tablet chemical map in Figure 8. The average voltage
response to the two PLS filters was typically 2�3 mV (with S/N
ratios between 20:1 and 30:1, see Figure 4). When the integra-
tion time per filter was decreased to 100 μs, the total signal
collection time decreased to 3 s, with a S/N ratio of ∼10. The
actual data measurement time may be longer than the signal
collection time, depending on the dead-time associated with
moving the sample stage and reading the signal. When reading
the MHI signal continuously while linearly raster-scanning the
stage we have collected MHI images in a total time that is less
than 1.5 times longer than the associated total signal collection
time (and further improvement is undoubtedly possible).
Sugar Crystal Mixture Imaging. Sugars have relatively weak

Raman scattering intensities. The average APD voltage reading
obtained from powders of sucrose and fructose (with the PLS
filters) was ∼300 μV, which is about 10 times lower than that
obtained for aspirin and theophylline (as well as various liquid
samples). A powder composed ofmixture of sucrose and fructose
microcrystals was dusted onto a glass microscope slide. The
region that was imaged contained two large sucrose crystals
surrounded by smaller crystals composed primarily of fructose,

separated by regions revealing the glass substrate. Three sets of
MHI filters, obtained using PLS training, were used to obtain the
classification image shown in Figure 9. The top-left panel in
Figure 9 contains a white-light image of the sugar microcrystal
sample, and the other three panels contain MHI chemical
classification maps obtained using different integration times
(per pixel, for each SLM filter function). Good chemical images
were obtained with integration times down to 1 ms, although the
accuracy of classification clearly improved with increasing
integration time.

’CONCLUSIONS

The MHI instrument design described in this work utilizes a
programmable optical filter to produce a high-throughput near-
infrared micro-Raman spectrometer and hyperspectral imaging
system. The results demonstrate that this instrument can either
reproduce the functionality of optical array based spectrometers
(using Hadamard transform filter functions) or far more rapidly
collect hyperspectral images using either PLS or spectral angle
mapping filter functions derived from the sample components of
interest. The latter speed advantage can be of the order of 100 or
more, as it is approximately equal to the ratio of the number of
full-spectral wavelength channels and the number of MHI filters
that are required for a particular imaging application.

Although we have focused on hyperspectral Raman imaging
applications, the MHI detection strategy can readily be adapted
to a wide variety of other high speed spectral detection applica-
tions. For example, the MHI may be used to increase the
multiplexing capability of fluorescence-based bioarray sensing
and high-speed sorting applications. More specifically, program-
mable fluorescence detection filters trained using multivariate
signal processing algorithms may be used to distinguish chro-
mophores with highly overlapping emission spectra and thus
increase the multiplexing capability relative to that obtained using
conventional fluorescence band-pass detection strategies.37�39

Moreover, the MHI compressive detection strategy may be used
for chemical kinetics measurements with millisecond (or faster)
time resolution. More specifically, programmable filters trained to
project reactant, product, and/or intermediate species may be
used to track time dependent concentration changes in liquids,
solids, polymers, glasses, or biological samples.

The fundamental advantages of the MHI detection strategy,
relative to optical array (CCD) based micro-Raman detection
schemes, derive from the lower noise and higher speed of the

Figure 9. MHI chemical image (100� 88 pixels) of sucrose (red) and
fructose (violet) crystals spread on a glass microscope slide (green) at
different integration times.

Figure 7. MHI concentration measurements are compared with the
actual mixture concentrations results for n-hexane/n-hexanol liquid
mixtures, with filter functions obtained using PLS and three different
MHI integration times (per filter signal). The error bars (standard
deviations of 10 repeated measurements) of the 100 ms integration
results are similar to the size of the corresponding data points.

Figure 8. MHI chemical image (100� 100 pixels) of an aspirin (blue)
tablet with theophylline (red) packed craters at 1 ms per pixel per filter
with a total integration time of 30 s. The image color ramp is continuous
from blue (0) to green (0.5) to red (1).
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MHI. More specifically, the detection limit of a CCD-based
point- or line-scanning micro-Raman system is limited by the
CCD read-out speed and noise. The MHI detection scheme is
expected to outperform a conventional micro-Raman detection
strategy for signals which approach or are below the latter CCD
detection limits. For example, if a Raman signal consisting of a
total of ∼3000 counts measured in an integration time of 1 ms
were distributed over∼1000 pixels of a CCDwith a read noise of
∼3 counts/pixel, the resulting spectrum would have an average
S/N of ∼1. Equation 1 (and Figure 3) indicates that the same
signal would produce an MHI APD voltage of ∼0.8 mV and a
S/N of∼15. Moreover, a photon counting APD detector may be
used to further improve the MHI signal-to-noise and detection
limit (as described in the Supporting Information).
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