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ABSTRACT

He, Xian Ph.D., Purdue University, May 2015. Uncertainty Quantification and Cali-
bration of Physical Models. Major Professor: Hao Zhang.

An ecosystem model is a representation of a real complex ecological system, and

is usually described by sophisticated mathematical models. Terrestrial Ecosystem

Model (TEM) is one of the ecosystem models, that describes the dynamics of car-

bon, nitrogen, water and other vegetation related variables. There are uncertainties

in the TEM which are attributed to inaccurate input data, insufficient knowledge

of the parameters, inherent randomness and simplification of the physical model.

Quantification of uncertainty of such an ecosystem model is computationally very

heavy. Bayesian calibration method has been used as an efficient way to calibrate

and quantify uncertainties of the computer models.

In this work, I develop a new approach to emulate the TEM, and to estimate

the parameters along with associated uncertainties. TEM has been implemented as

a deterministic computer code model. In this computer model, the inputs are envi-

ronmental variables and underlying parameters, and the outputs are gross primary

production (GPP), net ecosystem production (NEP) and other variables. To make

predictions of future outputs from the computer model, I also estimate the under-

lying parameters. With an efficient Bayesian approximation, statistical models are

developed to obtain inference for the parameters and then make predictions at future

time point.

Chapter 1 is an introduction to the research problems. In Chapter 2, I discuss

the uncertainty arose from temporal scales. In Chapter 3, I discuss the Bayesian

uncertainty quantification method and further developed Bayesian calibration of pa-

rameters with application to TEM in Chapter 4.
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1. INTRODUCTION

1.1 Motivation

An ecosystem model is a representation of the real complex ecological system, and

is usually described by sophisticated mathematical models. Terrestrial Ecosystem

Model (TEM) is one of the complex ecosystem models. It describes the dynamics

of carbon, nitrogen, water and other vegetation related variables using environment

variables such as temperature, precipitation, global radiation and carbon dioxide to

make estimation of carbon and nitrogen fluxes. Gross primary production (GPP)

and net primary production (NPP) are the two important carbon fluxes modeled

by TEM. GPP is the total amount of energy primarily produced by plants through

photosynthesis. Part of this energy is used by plants for respiration and maintenance

of existing tissues. The remaining energy is referred to as NPP, which is the entire

amount of energy produced minus the respiration by plants. Some NPP goes toward

growth and reproduction of primary producers, while some is consumed by herbivores.

NPP is a measure of the plant growth, which is an important reflection of the global

climate change. So the estimation of NPP is very essential to the entire carbon

dioxide exchange in ecosystem. It would reflect the assessment of pollution levels and

influence potential regulatory policies.

Many process-based computer code models have been developed based on the

differential equations of TEM [Raich and Schlesinger, 1992]. However, due to inac-

curate inputs, insufficient knowledge of the parameters in the model and inherent

randomness of the system, the model output has inherited uncertainty. Quantifying

the uncertainty in the physical model is very important in forecasting and assessing

the variability of outputs from the system. Most previous work focused on the estima-

tion of carbon and nitrogen fluxes using process-based environmental models, while
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very few work discussed about the uncertainty quantification. Uncertainty analysis

is the study about how the distribution of the outputs depends on the inputs and

parameters. The quantification of uncertainty provides us the confidence level in the

estimation of outputs and how robust the conclusion of the model results. Also, we

could assess the efficiency of various models based on their corresponding uncertainty

levels and decide weight on different models. Further study of how much uncer-

tainty might be induced by learning about some specific inputs is called a sensitivity

analysis. It tells us the source of the uncertainties and what are more important to

know. [Zhuang et al., 2009] estimated NPP and their associated uncertainties using

geospatial statistical approaches.

It is widely recognized that accurate quantification of carbon fluxes (e.g., GPP,

NPP and NEP) is becoming increasingly important both scientifically and economi-

cally. With the development of satellite and remote sensing technology, it is feasible

to get massive and finer temporal and spatial resolution data. Then, how to improve

model parametrization with these massive data? How to quantify uncertainties from

various sources? This dissertation will address these questions. In next section, I will

discuss the sources of uncertainties in ecosystem models.

1.2 Background

1.2.1 Sources of Uncertainties

Uncertainties exist in observations and physically-based ecosystem models, and

can be caused by many factors, such as measurement error, model simplification,

inherent randomness of the system, etc. Uncertainty analysis is to assess the distri-

bution of output induced by distribution of inputs. In this work, I focus on three

important sources of uncertainties: the temporal scale variation, model inadequacy

and parameter uncertainty in the model.

(1) Scale Variation
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With different choices of spatial or temporal scales, the input variables will be

different, and there will be uncertainties in the model output. Many statisti-

cal models for environmental studies can be run at different scales, e.g., daily,

weekly or monthly data. It is important to know when and how these models

of different scales differ. Although there are some empirical studies on models

of different scales ([Berrocal et al., 2012, Mueller et al., 2010, Patil and Deng,

2012]), there is a lack of theoretical discussion and explicit conclusions on the

scaling problem.

In many environmental studies, choosing a suitable temporal scale (e.g, hourly,

daily, weekly or monthly) is one of the most important steps. With the im-

provement of remote sensing technology, it is feasible to acquire data at various

spatial and temporal resolutions. We can therefore run a model at a larger scale

or run it at a finer scale and then upscale the results. How would the results

differ? I will discuss this problem in Chapter 2.

(2) Model Inadequacy

The real ecosystem is so complex that any physical model or mathematical

model only reflects the current knowledge guided by observations. While the

data have limitations and our knowledge is limited, how to quantify the un-

certainties of model inadequacy? In Chapter 3, I will quantify this type of

uncertainty using Bayesian framework with monthly temporal scale. Then, the

uncertainty is obtained by comparing the real observations with the statistical

models.

(3) Parametric Uncertainty

Physical models, which are implemented as computer code models, have many

input parameters which are chosen in advance for the system. The computer

models are deterministic, while the real systems are random. In the computer

model, there are two types of inputs: variable inputs (temperature, precipitation

and etc.) and unknown parameters. Outputs are unknown functions of inputs.
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Some of the parameters are very sensitive that which value to choose makes big

difference in the behavior of the process. Especially when the parameters are

continuous. Uncertainty quantification and calibration of those parameters are

of vital importance in developing computer code models. Hence it is always one

of the essential problems for environmental scientists to calibrate the models.

1.2.2 Calibration

Calibration is the process of adjusting the parameters until the model outputs fit

the observations. It is the very first step for any further application of the physical

models. Traditional method for calibration is to manually adjust the parameters by

comparing some metrics from the physical model and the observations (e.g., [Chen

and Zhuang, 2012];[Zhu and Zhuang, 2013]). This approach is very computationally

expensive. [Kennedy and O’Hagan, 2001] thoroughly describes the Bayesian calibra-

tion approach on unknown calibration parameters. This work considered all sources

of uncertainties and improved the discrepancy between the model predictions and

observations. [Tang and Zhuang, 2009] applied the Bayesian inference approach on

the calibration of TEM.

Under the Bayesian framework of [Kennedy and O’Hagan, 2001], the computer

code model of TEM could be approximated by Gaussian process in which the com-

puter model is viewed as random process. By comparing the computer model and

real observations, the parameters are estimated to minimize the discrepancy between

them. However, to estimate the parameters in dynamic ecosystem model where the

output is time dependent, we need to improve the existing Bayesian calibration ap-

proach to handle the time series inputs and outputs. Inspired by the approaches in

[Chen and Zhuang, 2012] as well as [Kennedy and O’Hagan, 2001], I developed a new

Bayesian calibration method on dynamic ecosystem models. In this new approach,

the first step is to develop an efficient emulator to represent the computer model.

Kriging and CoKrging are two different ways to develop the emulator. In these two
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ways, estimation of parameters in covariance functions is one essential step. Next, I

will discuss different covariance functions.

1.2.3 Covariance Functions

Covariance function describes the spatial covariance of a random process. In

spatial statistics, it is defined as

C(s, t) = cov(y(s),y(t)) (1.1)

where s and t are different two locations. y(s) and y(t) are the corresponding random

variables of these two locations. A second-order stationary(SOS) process is a process

which satisfies the following two conditions

E(y(s)) = constant, s 2 Rd

C(s, t) = C(0, t� s)

The covariance function of SOS only depends on the distance h = t � s. Fur-

thermore, if a stationary covariance function only depends on the norm ||t � s||, it

is called isotropic. There are a few parametric families of covariance functions which

are frequently used in literatures. Here, we will introduce them. For h 2 Rd, any

d > 0,

(1) Powered Exponential Covariogram

C(h) = ✓1exp(�(khk/✓2)↵), ✓1 > 0, ✓2 > 0, 0 < ↵  2 (1.2)

when ✓2 = 2, it is squared exponential covariogram.

(2) Spherical Covariogram

C(h) =

8
<

:
✓1(1� 1.5(khk/✓2) + 0.5(khk/✓2)3) if khk < ✓2

0 if khk � ✓2
(1.3)

✓1 > 0 is the variance and ✓2 is the range. It is not a valid isotropic covariogram

when d � 4. Spherical covairance function is only once differentiable.
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(3) Matern Covariogram

C(h) =

✓1(khk/✓2)⌫

2

⌫�1
�(⌫)

K⌫(khk/✓2) (1.4)

where K⌫ is the modified Bessel function of the second kind of order ⌫ > 0.

✓1 is the variance, ✓2 is the range parameter, ⌫ is smoothness parameter. The

Matern family does not have a closed form, and there are three special cases:

a. When ⌫ = 0.5, C(h) = ✓1exp(�khk/✓2). It is called exponential covari-

ogram. The range parameter ✓2 has a practical interpretation: 3✓2 is the

practical range of the covariogram, at which the correlation is approxi-

mately 0.05.

b. When ⌫ = 1.5, C(h) = ✓1(1 + khk/✓2)exp(�khk/✓2).

c. When ⌫ ! 1, C(h) = ✓1exp(�kh/✓2k2). It is called Gaussian covari-

ogram.

1.2.4 Kriging

Kriging is an interpolation method for spatial data, which is governed by the

correlation structure. The result of kriging is the expected value and variance for

every point within a region. In geostatistics, kriging is the best linear unbiased

predictor (BLUP) based on observational data with weighted spatial covariance. It

is named after Danie G. Krige ([Krige, 1951]) who first applied this technique to

estimate the most likely distribution of gold in South Africa.

Suppose we observed some variable Y = (y(s1), ...,y(sn))0 at n locations (s1, ..., sn).

To estimate the mean and variance of y(s0) at an unknown location s0, we consider

the following linear predictors:

ˆ

y(s0) = y(�) =

nX

i=1

�iy(si) (1.5)

where � = (�1, ...,�n)0. To determine the weights �, we need assumptions on y and

minimize the mean squared error (MSE), E((

ˆ

y(s0) � y(s0))
2
) under the constraint
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E(

ˆ

y(s0)) = E(y(s0)). These assumptions distinguish among simple, ordinary and

universal kriging. Assuming the mean function is µ(s) = E(y(s)) and deterministic,

we will discuss various kriging methods.

(1) Simple kriging is kriging with known means. Assuming E(y(s)) = m0, the

prediction at s0 is

ˆ

y(s0) = m0 +K 0
V

�1
(Y � µ) (1.6)

The prediction variance or kriging variance, which is also the MSE, is:

�2
sk(s0) = V ar(y(s0))�K 0

V

�1K (1.7)

where K = Cov(y(s0),Y ) and V = V ar(Y ).

(2) Ordinary kriging is kriging with unknown means. If the mean function at all

locations is unknown but constant, we need to estimate the mean first, then

apply simple kriging to get the covariance. Assuming E(y(s0)) = m where m is

some unknown constant, the ordinary kriging(BLUP) and prediction variance

at s0 are:

ˆ

y(s0) = µ̂+K 0
V

�1
(Y � 1µ̂) (1.8)

µ̂ =

10
V

�1
Y

10
V

�11

�2
ok(s0) = V ar(y(s0))�K 0

V

�1K +

(1� 10
V

�1K)

2

10
V

�11
(1.9)

The second term of �2
ok(s0) is always nonnegative, so ordinary kriging has a

larger variance than simple kriging. The reason is because the ordinary kriging

needs to estimate the mean function. If we replace m0 in the simple kriging

predictor with BLUP, we get the ordinary kriging predictor.

(3) Universal kriging is kriging with a trend. If the mean function can be expressed

as a linear function of some explanatory variables, it is called universal kriging.



8

Ordinal kriging is a special case of universal kriging. Suppose X is the matrix

of explanatory variables at n locations, universal kriging will be:

Y = X

0
� + ✏ (1.10)

Where � is the parameter to be estimated, and ✏ is the error term and captures

the correlation structure in Y . The resulting BLUP and prediction variance

are:

ˆ

y(s0) = X(s0)
0
ˆ

� +K 0
V

�1
(Y �X

0
ˆ

�) (1.11)

�2
uk(s0) = V ar(y(s0))�K 0

V

�1K (1.12)

+ (X(s0)�XV

�1K)

0
(XV

�1
X

0
)

�1
(X(s0)�XV

�1K)

where ˆ

� = (XV

�1
X

0
)

�1
XV

�1
Y is the best linear unbiased estimator of �.

Comparing the variance structure of simple kriging and universal kriging, uni-

versal kriging has larger variance.

1.2.5 CoKriging

If we observe p variables and p > 1, there might be cross correlation between

different variables in addition to spatial correlation. Then, we could model the cor-

relation function properly and make predictions using other variables. This process

is called cokriging.

Let yi(s) denote the ith underlying spatial process at different locations, we want to

predict y1 at unknown location s0 based on all observations yi(sj), i = 1, · · · , p, j =

1, · · · , ni. Then, y1 is called the primary variable and the rest auxiliary variables.

Let y = (y1, y2, · · · , yp)0 and yi is a vector of observations of the ith variable, K =

Cov(y, y1(s)) and ⌃ = V ar(y). The cokriging is

ŷ1(s0) = E(y1(s0)) +K 0
⌃

�1
(y � E(y)) (1.13)

With different assumptions on E(y1(s0)), we have the following two types of cok-

riging.
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(1) Simple cokriging is cokriging with known means

ŷ1(s0) = E(y1(s0)) +K 0
⌃

�1
(y � E(y)) (1.14)

and variance

�2
sck = V ar(y1(s0))�K 0

⌃

�1K

In general, simple cokriging variance is less than kriging variance with exception

of proportional model ([Zhang, 2014]).

(2) Ordinary cokriging is cokriging with unknown constant mean.

Let e1 = (1, 0, · · · , 0)p, the ordinary cokriging is

ŷ(s0) = e01(J⌃
�1
J

0
)

�1
J⌃

�1
y+K 0

⌃

�1
y�K 0

⌃

�1
J

0
(J

0
⌃

�1
J

0
)

�1
J⌃

�1
y (1.15)

Let µ̂ = (J⌃

�1
J

0
)

�1
J⌃

�1
y, the ordinary cokriging can be simplified as

ŷ(s0) = e01µ̂+K 0
⌃

�1
(y � J

0µ̂)

The prediction variance is

�2
ock = V ar(Y1(s0))�K 0

⌃

�1K + (e1 � J⌃

�1K)(J⌃

�1
J

0
(e1 � J⌃

�1K))

Comparing the prediction variance between simple cokriging and ordinary cok-

riging, the latter one has larger variance.
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2. UNCERTAINTY QUANTIFICATION: SCALE VARIATION

2.1 Models for Different Scales

In ecosystem models, the input variables and output variables are usually time

series at different temporal scales. When we are developing models, the prediction

and data set in coarse scales are usually aggregated over finer scales. Then, which

model is better in terms of predictability and accuracy as well as computational cost?

Which temporal scale should we choose? To provide guidance for future research, we

will compare the prediction accuracy and uncertainties from different temporal scale

models. To illustrate the problem, we start with multiple linear regression models.

Section 2.1.1 will discuss the scaling issues, and Section 2.1.2 will compare different

temporal scale models theoretically, Section 2.2 will compare prediction of GPP from

different temporal scale models.

2.1.1 The Scaling Issues

Suppose Y is the response variable to be regressed on p� 1 explanatory variables

x1, . . . , xp�1. Each of the variables is observed at time points t = 1, . . . , n, say daily.

The linear regression model becomes

yt = �0 +
p�1X

i=1

xt,i�i + ✏t, t = 1, . . . , n, (2.1)

where the error terms ✏t are assumed to be i.i.d. N(0, �2
).

However, there are situations when the model is applied at a larger scale, say,

weekly. The aggregated variables y(w)
t =

Ps
i=1 ys(t�1)+i, x

(w)
t,k =

Ps
i=1 xs(t�1)+i,k, k =



11

1, . . . , p � 1 are used in the regression, where s denotes the time units the variables

are aggregated upon (e.g., s = 7 for the weekly scale). The model becomes

y(w)
t = s�0 +

p�1X

i=1

x(w)
t,i �i + ✏(w)

t , t = 1, . . . ,m, (2.2)

The two models share the same linear parameters � = [�0, �1, ..., �p�1]
0, but the

error terms in (2.2) has a larger variance than (2.1). In addition, there are fewer

observations for the larger scale model (2.2). Hereafter, we assume that n = ms.

The two central questions this work concerned of are as followed. First, how do

the two scales affect the estimation of the parameters �i and the variance �2? Second,

how do the scales affect the prediction? More specifically, suppose we want to predict

y(w)
m+1, we can obtain this prediction from both models. How different would these two

predictions be?

2.1.2 Theoretical Results

In this section, we provide some theoretical results that allow us to draw some

explicit conclusions. Denote by �̂ and �̂2 the least squares estimators of � and �2,

respectively, which are obtained by fitting model (2.1), and by �̂

(w)
and �̂2(w) the least

squares estimators according to model (2.2). If we denote by X the design matrix in

model (2.1) and by y the vector of response variable, then

�̂ = (X

0
X)

(�1)
X

0
y, �̂2

= ||y �X�̂||2/(n� p).

The design matrix X

(w) and the vector aggregated response variable y

(w) are related

to X and y in the following way

X

(w)
= JX, y

(w)
= Jy,

where J = Im ⌦ 1s is an m⇥ n matrix where Im is an m⇥m identity matrix and 1s

is an s-dimension vector of all 1s. The estimates from model (2.2) can be written

�̂

(w)
= (X

(w)0
X

(w)
)

(�1)
X

(w)0
y

(w), �̂2(w)
= s||y(w) �X

(w)
�̂

(w)||2/(m� p)



12

where s is the period of time units the large scale is aggregated upon.

The following proposition says that the smaller scale model yields more efficient

estimators than the larger scale model.

Proposition 2.1.1 Observing y1, . . . , yn with n = ms, the estimators given through

the vector of response variable of two models (2.1) and (2.2) have the following prop-

erties.

(i) Both �̂

(w)
and �̂ are unbiased estimators of � but the former is more efficient,

i.e.,

E(�̂

(w)
) = E(�̂) = �,

and V ar(�̂
(w)

)� V ar(�̂) is positive semi-definite.

(ii) Both �̂2 and �̂2(w) are unbiased estimators of �2. In addition,

V ar(�̂2
) =

2�4

n� p
, V ar(�̂2(w)

) =

2�4

m� p
.

Hence �̂2 is more efficient.

The Proposition readily follows the Gauss-Markov theorem [Stapleton, 1995]. We

only sketch the proof here. It is obvious that both �̂

(w)
and �̂ are unbiased. Since

�̂

(w)
is a linear unbiased estimator, the Gauss-Markov theorem implies that �̂ is more

efficient than �̂

(w)
. It is well known that ||y �X�̂||2/�2 has a �2-distribution with

(n� p) degrees of freedom. It follows

V ar(�̂2
) =

2�4

n� p
.

Indeed, the above can be found in classical textbooks on regression. Similarly, because

||y(w) �X

(w)
�̂

(w)||2

�4/s

has a �2-distribution with (m � p) degrees of freedom with a variance 2(m � p), it

follows that

V ar(�̂2(w)
) =

2�4

m� p
.
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Next, we consider the effects of scales on prediction. If we observe the explanatory

variables at s consecutive time points, n+1, . . . , n+s, and want to make a prediction

of the aggregated response variable y(w), we could obtain the prediction in two ways,

using the two models (2.1) and (2.2). The explanatory variables for the larger scale

model is x

(w)
m+1 =

Pn+s
t=n+1 xi, where xi is the vector of explanatory variables at time

i. We could get the prediction of y from the two different temporal scale models as

follows:

ˆY =

n+sX

i=n+1

x

0
i�̂ = x

(w)0
�̂. (2.3)

ˆY (w)
= x

(w)0
�̂

(w)
. (2.4)

Comparison of the two predictions is given in the following proposition.

Proposition 2.1.2 Under the formulation of models (2.1) and (2.2), the two predic-

tors (2.3) and (2.4) have the following properties:

(i) E(

ˆY ) = E(

ˆY (w)
) = x

(w)0
�.

(ii) V ar( ˆY (w)
) � V ar( ˆY ).

This proposition follows from the unbiasedness of �̂ and �̂

(w)
, and the fact that �̂

is the best unbiased linear estimator of �. Indeed, the Gauss-Markov theorem implies

that for any vector x,

V ar(x0
�̂

(w)
) � V ar(x0

�̂).

2.1.3 Scaling Issues with Polynomial Regression

In this section, we consider the scaling issue in the polynomial regression. What

complicates in this case is that there are two possible ways to run the model at the

larger scale. Suppose the regression model at the smaller scale is

yt = �0 +
p�1X

i=1

xt,i�i +
X

(i,j)2�

xt,ixt,j�ij + ✏t, t = 1, . . . , n, (2.5)
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where � is an index set for the high order term. For example, � = {(i, j), i, j =

1, . . . , p� 1, i 6= j} if all second order terms are included in the model.

One way to formulate the larger scale model is to aggregate all variables as in

model (2.2)

y(w)
t = s�0 +

p�1X

i=1

x(w)
t,i �i +

X

(i,j)2�

x(w)
t,ij�ij + ✏(w)

t , t = 1, . . . ,m, (2.6)

where y(w)
t and x(w)

t,i are defined the same as in (2.2), x(w)
t,ij =

Ps
k=1 xs(t�1)+k,i xs(t�1)+k,j

is the aggregated cross product xt,ixt,j. Comparison between models (2.5) and (2.6)

follows the discussion in the previous section. We can say that model (2.5) at the

smaller scale results in more efficient estimation and better prediction.

In practice, however, the larger scale model is often run as follows.

y(w)
t = �(w)

0 +

p�1X

i=1

x(w)
t,i �

(w)
i +

X

(i,j)2�

x(w)
t,i x

(w)
t,j �

(w)
ij + ✏(w)

t , t = 1, . . . ,m, (2.7)

where x(w)
t,i is same as defined previously. The high order terms are now aggregated

differently. The larger scale model (2.7) and the small scale model (2.5) have different

sets of parameters. Therefore, unlike in the previous section, a direct comparison

between the two models is difficult if not impossible. For example, it does not make

sense to compare the efficiency of estimators because the parameters in the two models

are different. Similarly, for prediction, the two models assume different expected value

to start with. Therefore, the two models may yield different prediction results.

The example in the next section reveals that the predicted value given by the

larger scale model may be either smaller or larger than that given by the smaller

scale model.

2.2 An Example

In this section, we consider an example of real data set, which motivated this work

and also helps to show the difference the scales can make to statistical inferences. The

response variable in this example is the gross primary production (GPP), which is the
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total amount of energy primarily produced by plants through photosynthesis. The

GPP can be calculated from the observations at the eddy flux towers. However, for

a region such as a country or continent, the GPP has to be estimated by employ-

ing either statistical models or ecosystem models, which may range in complexity

from empirical models (e.g., [Xiao et al., 2010], [Yang et al., 2007]) to biogeochemical

models (e.g.,[Prince and Goward, 1995], [Running et al., 2004], [Turner et al., 2004]).

Linear regression models have been employed to estimate the regional GPP. For ex-

ample, [Zhang et al., 2007] used an empirical piecewise regression model to map GPP

for the Northern Great Plains grasslands from flux tower measurements. [Xiao et al.,

2010] developed an upscaling model based on the regression tree method to extrap-

olate eddy flux GPP data to the continental scale and producing continuous GPP

estimates across multiple biomes. [Mueller et al., 2010] studied the variability of car-

bon flux measurement across different temporal scales. We will examine estimations

of regional GPP given by models of different time scales.

2.2.1 Data and Model

We used the data collected at the AmeriFlux towers at 70 sites (http://ameriflux.

ornl.gov/). We obtained the level 4 data from http://cdiac.ornl.gov/ftp/

ameriflux/data/Level4/. The data consist of observations collected every half

hour ranging from 2000 to 2007 at each site. The response variable is GPP and

six explanatory variables are air temperature, global radiation, precipitation, vapor

pressure deficit, land-cover type and enhanced vegetation index (EVI). These six vari-

ables were chosen based on previous studies. The first five variables were observed at

the AmeriFlux sites and EVI was calculated from the Moderate Resolution Imaging

Spectroradiometer (MODIS) every 8 days, which is the reason we choose the 8-day

scale instead of the weekly scale. The land-cover type is a qualitative variable with

6 levels representing 6 land-cover categories. Based on these data, we fitted a poly-

http://ameriflux.ornl.gov/
http://ameriflux.ornl.gov/
http://cdiac.ornl.gov/ftp/ameriflux/data/Level4/
http://cdiac.ornl.gov/ftp/ameriflux/data/Level4/
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Table 2.1.: The predicted annual GPP(Units: TgCyr�1) over the US by year.

Year 2001 2002 2003 2004 2005 2006 2007

Daily 6328 6109 6528 6587 6697 6299 6673

8-Day 6338 6133 6572 6604 6753 6348 6728

Monthly 5770 5509 5903 5941 6128 5744 6084

nomial regression of order 2 from (2.7) at three different scales: daily, 8-day, and

monthly. We therefore have three fitted regression models.

To predict GPP at a site that is not part of AmeriFlux net, we use data from the

North American Regional Reanalysis (NARR) (http://www.emc.ncep.noaa.gov/

mmb/rreanl/). This data set has a spatial resolution of 0.5⇥0.5 degrees over the

conterminous US, and the time range is 2001-2007. In total, the whole US has 3252

pixels. We predict the GPP at each of the pixel using the three fitted models and

calculated the total GPP over the US by adding the pixel-level GPP.

2.2.2 Results

The first conclusion we can draw is that a large scale model can result in larger or

smaller prediction. This can be seen in Table 2.1 which summarized the total GPP

over the US for each year. We see that the 8-day model yields higher total GPP than

the daily model in each of the seven years while the monthly model yields lower total

GPP than the daily model. Figure 2.1 shows three predicted monthly total GPP over

the US for each month between 2001 and 2007 in the whole US, from which we can see

that the predicted monthly GPP from the three different temporal scale models are

different. The 8-day model consistently provides higher predicted total GPP, which

is consistent to what we observed from Table 2.1.

http://www.emc.ncep.noaa.gov/mmb/rreanl/
http://www.emc.ncep.noaa.gov/mmb/rreanl/


17

0 20 40 60 80

2
0

0
4

0
0

6
0

0
8

0
0

1
0

0
0

1
2

0
0

1
4

0
0

Month

G
P

P

Figure 2.1.: Predicted monthly GPP (Tg C) across 2001-2007 given by the daily

model (�), the 8-day model (4), and the monthly model (+).

In Figure (2.2), we plot the predicted annual GPP for the year 2007 at each

pixel. The three different models reveal about the same spatial trend, but a careful

examination also reveals some differences of the predicted GPPs in some areas.

Next we compare the prediction variances given by the three models at each pixel.

Figure 2.3 plots the standard errors given by the three different temporal scale models

at each pixel for year 2007. It is evident that the prediction error is smaller for finer

resolutions, although we cannot justify this theoretically in this case.
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Figure 2.2.: Annual GPP(Units: gCm�2yr�1) predicted by three models for year

2007: monthly model (top), 8-day model (middle) and daily model (bottom).

2.3 Discussion

In this chapter, we provided some theoretical discussions on the scale issue in

linear models. When there is no high order terms in the model, the smaller scale

model is preferred whenever possible. However, if the model includes high order

terms of the explanatory variables, direct comparisons are difficult and no explicit

conclusions are given in this paper. The example revealed that a larger scale model
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Figure 2.3.: Standard error of of GPP(Units: gCm�2yr�1) at each pixel for year 2007:

monthly model (top), 8-day model (middle) and daily model (bottom).

can yield either larger or smaller predictions. For the polynomial regression, it would

be an interesting problem to provide some conditions under which the larger scale

model yields larger predictions, or conditions under which the larger scale model

yields smaller predictions. It would be also interesting to investigate how the scales

affect the prediction variance.
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The prediction of GPP does not vary significantly across different temporal scales,

but the uncertainties are different significantly. In more complexed models than

regression models, we should choose an appropriate temporal scale balancing accuracy

and computational cost. The TEM is at monthly temporal scale. In the following

chapters, we develop our models at monthly temporal scale.
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3. MULTI-OUTPUT EMULATOR FOR TERRESTRIAL

ECOSYSTEM MODEL

3.1 Review of Methods

A physical model refers to a mathematical model that is built partially based upon

physical or biological principles. It is a deterministic model and is usually defined

by a set of differential equations. Physical models are used widely in atmospheric

sciences, hydrology, ecology, and ecosystem studies. Because a physical model is

deterministic, quantification of its uncertainty is of vital interest. The uncertainties

may be attributed to inaccurate input data, insufficient knowledge of the parameters

of the model, inherent randomness of the physical system, simplification of the model

structure and so on.

Let y = u(t,x,✓) be the deterministic output of a physical model where t and x 2

R2 represent time and input variables, respectively, and ✓ is the model parameters.

One source of uncertainty is the uncertainty in the parameters ✓ which is usually

unknown and needs to be estimated in some way. Therefore the parameters can be

regarded as random variables whose distribution G is either assumed to be known

or unknown. The study of how the distribution of Y (t,x) = u(t,x,#) depends on

G is the essential part of the uncertainty analysis. ✓ is used to denote the random

variables, and # is a particular value of ✓. The function u usually is determined in

a complex way such as by differential equations. The structure of u, or equivalently,

the structure of the differential equations, is another source of uncertainty for the

model output.

To quantify the uncertainty in model structure is a difficult problem and has

not been dealt with directly. However, it is possible to combine information from

ensembles of multiple models as a way to indirectly assess the uncertainty in the
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model. It borrows strength from different models. [Tebaldi et al., 2005] developed a

Bayesian framework to combine a multi-model ensemble with observations to quantify

uncertainty. I will review the methods to quantify the uncertainties attributed to the

the parameters.

(1) Ensemble

If the model can be run thousands of times in a reasonable time, it is sometimes

called a cheap model. For a cheap model, simulation is the major technique to

quantify the uncertainty. Basically, the samples are simulated from the parameter

distribution G. For each sample value of ✓, the model is run to yield the output

y(t,x) = u(t,x,✓). The outputs so obtained are also called an ensemble. This

ensemble approach is usually the first choice of quantification of uncertainty if the

computation is affordable.

The probability distribution of the ensemble reveals the variation and therefore

the uncertainty of the model output. One may further study the contribution of each

individual parameter ✓i to the uncertainty, which is usually called the sensitivity

analysis.

(2) Emulation

However, there are many cases where the model is so complex that the calculation

of the output y(t,x) for any given set of input values is computationally heavy and

it is precluded to simulate a large number of model outputs. In this case, suppose

one can afford to obtain output at n design points (t1,x1,#1), ..., (tn,xn,#n). One

would use this limited amount of data to quantify the uncertainty of u(t,x,✓) for any

given (t,x,✓). Obviously, this is possible only if some statistical relationship between

u(t,x,✓) and u(ti,xi,#i) is postulated. Statistical emulation is a technique for this

purpose. In particular, Gaussian process emulation has been used in the Bayesian
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approach to quantifying uncertainty(e.g., [Oakley and O’Hagan, 2004] and [Conti and

O’Hagan, 2010]).

In the Gaussian process emulation, it is assumed that ✓ is Gaussian and, given ✓,

Y (t,x) is a Gaussian process with a parametric mean function and some covariance

function, which depend on two separate sets of parameters. The mean function is

usually assumed to be a linear function h(t,x,✓)
0
� for some parameter � and the co-

variance function may be stationary, i.e., depending only on the Euclidean distance.

When the output is obtained at n design points (t1,x1,#1), ..., (tn,xn,#n), the pos-

terior mean E(u(t,x,✓)|Y ) and variance V (u(t,x,✓)|Y ) can be calculated, both of

which quantify the uncertainty of the output u(t,x,✓), where Y represents the ran-

dom output at the n design points. The spatial linear interpolation method, kriging,

may be applied, which would require that the covariance functions be known. To

account for uncertainty in the mean and covariance function, [Oakley and O’Hagan,

2004] and [Conti and O’Hagan, 2010] considered a Bayesian approach and studied an

efficient computational method for calculating the posterior distributions.

There are two choices that have to be made in the statistical emulation. One is

the choice of the design points and the other is the choice of the spatial covariance

function. In practice, the design points should be spread to cover the input space.

[Sacks et al., 1989] discussed the choice of design points. [Conti and O’Hagan, 2010]

used Latin Hypercube Sampling (LHS) method to get the design points.The Gaussian

covariance function has been applied in many applications. However, it is too smooth

and is known to have undesirable properties [Stein, 1999]. The Matern family with

an adjustable parameter for the smoothness of the process is a better choice.

(3) Polynomial Chaos

Another approach to the quantification of uncertainty is centered around the ap-

proximation to stochastic differential equations that decouples the random part and
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the deterministic part of the model output. Suppose the model is given by the differ-

ential equations

@u

@t
(t,x,✓) = L(u)

With initial and boundary conditions, ✓ represents model parameters and is re-

garded as random, t and x represent time and input variables, L is a general opera-

tor. Hence the model output u(t,x,✓) is random and allows the following generalized

polynomial chaos(gPC) representation

u(t,x,✓) =
X

k

uk(t,x)�k(✓) (3.1)

where �k(✓), k = 1, 2, ... are polynomials of ✓, orthogonal with each other in the

sense that E(�j(✓)�k(✓)) = �jk. The particular polynomials satisfying this orthogo-

nality depend on the distribution of ✓ (e.g., [Xiu and Em Karniadakis, 2002]). The

coefficients are deterministic and are determined by the structure of the differential

equations governing u. In practice, the polynomial chaos is truncated at some finite

terms, resulting in an approximation to the solution u(t,x,✓). Therefore, once the

coefficients uk(t,x) are determined, Monte Carlo samples can be generated efficiently

through the approximation.

There are primarily two ways to determine the coefficients in (3.1): the Galerkin

projection method and the collocation method. The former method usually yields bet-

ter approximation results but involves solving a new deterministic differential equa-

tion while the latter does not need to solve new differential equations. However, the

curse of dimensionality arises with the collocation method when the dimension of ✓

increases.
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3.2 Multi-Output Emulator

Emulator is an approximation of complex computer model, but faster to run

than the computer model. It gives a probability distribution of the model output,

and make predictions at training data points without uncertainty. For untried data

points, it makes predictions and provides associated uncertainties. When the output

is time series as y1:T , [Conti and O’Hagan, 2010] suggests the multi-output emulation

method. This emulator is computationally cheap but statistically rigorous.

In Gaussian process emulation, the essential idea is to treat the model y = u(x) as

a black-box which is then modeled as a multivariate Gaussian process. This Gaussian

process has a specified mean and covariance function which depends on two sets of

parameters, where y is the output of the model and x is the input variables of the

model. Given the model outputs y(x1), . . . ,y(xn) at n design points x1, . . . ,xn, the

model output at any input value x will be approximated by the conditional mean of

y(x) given y(x1), . . . ,y(xn). It is represented as follows

y(x) ⇠ GP (m(x), c(x,x0
)),y(x) 2 Rq (3.2)

where the mean function m(x) = BTh(x), h(x) 2 Rm, and B is a m⇥ q matrix. For

example, h(x) = (1, x1, x2, ..., xp)
T ,m = p+ 1.

The covariance function c(x,x0
) describes the correlation between y(x) and y(x

0
).

The most commonly used multivariate correlation function are proportional model,

linear coregionalization model and multivariate Matern model. Here, proportional

model is chosen for computational efficiency [Conti and O’Hagan, 2010],

c(x1,x2) = ⇢(x1,x2)V.

where V is a q ⇥ q positive-definite symmetric matrices, ⇢(x1,x2) = exp(�(x1 �

x2)
TR(x1 � x2)). R is a diagonal matrix with diagonal elements r = (r1, ..., rp).

To get the training sample, the computer model is run at a pre-selected design set

S = {s1, ..., sn} and denote the simulated output by matrix D = [u(sr)] 2 Rn,q. The

design points are sampled from the distributions of x. The data D has matrix-normal
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distribution Nn,q(HB,A, V ) ([Rowe, 2002]) with mean HB and covariance matrix

being the Kronecker product A⌦V , where H = [h(s1), ..,h(sn)] and A = [⇢(sl, sr)]n,n.

It follows the property of normal distributions that u(x):

u(x)|B, V, r, D ⇠ GP (m⇤
(x), ⇢⇤(x1,x2)V ) (3.3)

Here, for x1,x2 2 Xp

m⇤
(x1) = BTh(x1) + (D �HB)

TA�1t(x1)

⇢⇤(x1,x2) = ⇢(x1,x2)� tT (x1)A
�1t(x2)

with tT = [⇢(., s1), ..., ⇢(., sn)].

Assuming the prior distribution of (B, V, r):

p(B, V, r) _ ⇧

p
i=1

1

(1 + ri)2
|V |�(q+1)/2. (3.4)

B will be integrated out of (3.3) to get

u(x)|V, r, D ⇠ GP (m⇤⇤
(x), ⇢⇤⇤(x1,x2)V ) (3.5)

Here, for x1,x2 2 Xp

m⇤⇤
(x1) =

ˆBT
GLSh(x1) + (D �H ˆBT

GLS)
TA�1t(x1) (3.6)

⇢⇤⇤(x1,x2) = ⇢⇤(x1,x2) + [h(x1)�HTA�1t(x1)]
T

·(HTA�1H)

�1
[h(x1)�HTA�1t(x2)] (3.7)

where ˆBGLS = (HTA�1H)

�1HTA�1D is the generalized least squares(GLS) estimator

of B. The conditional posterior distribution of u given r is the q-variate T process

with n�m degree of freedom:

u(x)|r, D ⇠ T (m⇤⇤
(x), ⇢⇤⇤(x,x) ˆVGLS;n�m) (3.8)

where, ˆVGLS = (n�m)

�1
(D�H ˆBT

GLS)
TA�1

(D�H ˆBT
GLS) is the GLS estimator of V .

The final step is to estimate the range parameters r. Using Bayes’ theorem, the

posterior distribution of the parameters (B, V, r) are:
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p(B, V, r|D) _ f(D|B, V, r) · p(B, V, r)

_ ⇧

p
i=1

1

(1 + ri)2
· |V |�

q+1
2 · |A|�q/2

·|⌃|�n+� q+1
2
exp{�1

2

S2
R} (3.9)

Here, S2
R = tr{A�1

(D�HB)⌃

�1
(D�HB)

0}. After integrating out (B, V ) from (3.9),

the posterior distribution is

p(r|D) _ ⇧

p
i=1

1

(1 + ri)2
· |A|�q/2

·|HTA�1H|�q/2|DTGD|�
n�p�1

2 (3.10)

The mode or median of the posterior distribution (3.10) can be used to estimate r.

3.3 Application: Terrestrial Ecosystem Model

3.3.1 Terrestrial Ecosystem Model

The Terrestrial Ecosystem Model is an ecosystem model which describes the dy-

namics of carbon, nitrogen, soil, water and other vegetation variables. The model has

been developed and examined to describe the global carbon dynamics (e.g. [Zhuang

et al., 2003]). It uses space time variables such as temperature, precipitation, cloudi-

ness, to make monthly estimates of carbon and nitrogen fluxes. Other fixed input

variables are CO2, vegetation type, location and latitude. The output variables most

people are interested in is net primary production (NPP) which is the difference

between gross primary production (GPP) and the vegetation respiration.

NPP is mostly modeled by process-based Terrestrial Ecosystem Model. The main

random variables which relates to NPP are temperature, precipitation and global

radiation. Here, I will consider emulating the monthly NPP(gm�2month�1) using

multi-output Gaussian process emulation with fixed parameters ✓. The vegetation

type considered is "temperate deciduous forest".
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3.3.2 Data

Let NPP be denoted by y 2 Rq where q = 12 represents 12 months. For a fixed

location, the input variables x are temperature (Jan-Dec), precipitation (Jan-Dec)

and global radiation (Jan-Dec). Other variables such as location, soil type, vegetation

type are fixed.

In this study, the input variables x is assumed to follow multivariate normal

distribution in which the mean and covariance are estimated from historical monthly

data http://hydrology.princeton.edu/data/pgf/0.5deg/monthly/. To get the

training data set, n = 200 data points are sampled from the multivariate normal

distribution, which spread out the input space. Compared with the LHS method,

our approach is much closer to the real environmental data for the same number of

simulation runs.

The model output is obtained by running TEM for each training data point, and

is denoted by D. Then, the method described in Section 3.2 is applied to compute the

posterior distribution of NPP including posterior mean and covariance. Furthermore,

nv = 200 validation data are simulated to validate the statistical emulator. The

spatial covariance function is a separable covariance function.

3.3.3 Results

Here, the output y(x) is monthly NPP in one year. To get data D, the first step

is to sample training data from the input space. There are many ways to sample

training data, like Latin Hypercube sampling method used in [Conti and O’Hagan,

2010]. Next, D is the output of computer model with the training samples. Then,

to evaluate the performance of our emulator, nv = 200 validation data points are

sampled from the input space. In Fig. 3.1, I compared the emulated NPP with the

validation sample. It shows that the emulated NPP is very close to TEM model

output.

http://hydrology.princeton.edu/data/pgf/0.5deg/monthly/
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Figure 3.1.: Validation output(—) and emulated (· · · ) NPP. (- -) is the 95% confidence

band.

3.3.4 Model Validation

To quantify how accurate the emulator approximating the TEM model output,

the actual coverage rate of the 95% confidence interval are calculated, which is the

percentage of NPP falling into the confidence intervals. The actual coverage rate is

95.5%, which is very close to the theoretical rate of 95%.
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Table 3.1.: The root mean squared standardized error for each month

Jan Feb Mar April May Jun

0.920 0.770 1.028 1.005 0.862 0.892

Jul Aug Sep Oct Nov Dec

.941 0.977 1.044 0.931 0.978 0.999

The another measure to quantify the performance of statistical emulation is the

root mean squared standardized error(RMSSE) defined below. For a validation x,

define the vector of standardized errors s(xi) = (s(xi)1, · · · , s(xi)q)
T 2 Rq,

s(xi)j =

u(xi)j �m⇤⇤
(xi)jp

⇢⇤⇤(xi,xi)�jj,
, j = 1, 2, · · · , q (3.11)

RMSSEj =

vuut 1

nv

nvX

i=1

(s(xi)j)
2, j = 1, 2, · · · , q (3.12)

Table 3.1 shows us the twelve month’s RMSSE. For a good model fit, the RMSSE

should be close to 1 (e.g., [Conti and O’Hagan, 2010]). From Table 3.1, the emulator

mimics the model output very well.

3.3.5 Summary

In this section, I first described a statistical approach for quantifying uncertainty

of an ecosystem model through a Bayesian framework. The results show that the

emulator approximates TEM output very closely and therefore reliably quantifies the

uncertainty of the model. A separable multivariate covariance function is used follow-

ing some existing work [Conti and O’Hagan, 2010, Oakley and O’Hagan, 2002, 2004].

Although this separability of covariance function simplifies computation significantly,

it may not yield the best predictive performance. An interesting problem for future

work is to use a more flexible and less restricted multivariate covariance function.
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In Chapter 4 and Chapter 5, I will use Bayesian emulation approach to calibrate

unknown parameters and quantify uncertainties in the physical model.
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4. CALIBRATION OF PHYSICAL MODELS

4.1 Introduction

In physical models, there are two types of inputs: input variables (e.g. tem-

perature, precipitation, cloudiness) and input parameters (e.g. maximum rate of

photosynthesis at 0 °C). The latter one is assumed to be fixed and unknown. Usu-

ally, physical models are implemented as computer models (simulators) in which the

parameters are chosen in advance. Since all models are mainly approximating the

real physical process, there are discrepancies between a physical model and the real

process. Calibration is the process of adjusting the unknown parameters to minimize

this discrepancy, and methods have been developed to calibrate the parameters. For

example, if y is defined as output from computer model, z as real observation and

✓ as the unknown parameters, least squares calibration is to find ✓ which minimizes

the discrepancy

ˆ

✓LS = argmin

✓

NX

i=1

(y(xi,✓)� z(xi))
2 (4.1)

One common calibration method is ad hoc and adjusts the parameters by com-

paring selected metrics from the computer model and the corresponding observations.

For example, the method used in [Chen and Zhuang, 2012] to calibrate the param-

eters is one of these methods. Another example is [Zhu and Zhuang, 2013], which

applied a data assimilation method to calibrate the key parameters in Terrestrial

Ecosystem Model (TEM). With the improvement of remote sensing technology, envi-

ronmental data could be acquired with finer spatial and temporal resolutions. With

the above approaches, it becomes computationally expensive, especially when adjust-

ing the parameters dynamically with sequential data set is needed. To overcome this

problem, people have developed efficient statistical methods to calibrate the param-
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eters. In these methods, a statistical surrogate (emulator) is developed to substitute

the computationally expensive computer models. Furthermore, people have devel-

oped a Bayesian framework to calibrate the unknown parameters (e.g. [Kennedy and

O’Hagan, 2001, Conti et al., 2004]). This calibration approach is also called "in-

verse regression" and requires data from simulators as well as field observations. For

computationally expensive computer models, an efficient emulator is needed in the

process of Bayesian calibration of physical models.

In [Kennedy and O’Hagan, 2001], the authors thoroughly described the Bayesian

calibration approach and also considered all sources of uncertainties to improve the

discrepancy between the model and real process. [Williamson et al., 2013] applied

and improved the Bayesian method by reducing the parameter space with history

matching method. However, very few literatures work on sequential data, while in

environmental science, the inputs and outputs are mostly time series data. In this

situation, one approach is to have one model for each time point, but it will be

very inefficient. [Conti and O’Hagan, 2010] suggests multi-output model to represent

the time dependent outcome. For example, one year data of monthly NEP could

be represented as 12 dimensional output. However, for a substantially long time

period, the dimension of output will be very high. In Bayesian analysis, the curse-

of-dimensionality has often been an issue. To overcome this issue, I will develop

an efficient method to calibrate the dynamic computer model, specifically Terres-

trial Ecosystem Model (TEM). Exploratory analysis shows that the outcome (e.g.,

GPP, NPP) presents strong seasonal pattern, which inspires us to develop statistical

emulator which considers the the temporal pattern and dependency on input space

separately.

4.2 Existing Framework: Bayesian Calibration

In this section, I will introduce the existing framework of Bayesian calibration

method for physical models. The notations in this framework are described in Table
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4.1. Suppose the unknown parameters to be calibrated are ✓ and the known infor-

mation (i.e, data) is d, Bayesian inference of ✓ is to compute conditional distribution

p(✓|d) / p(d|✓)⇡(✓), where ⇡(✓) is prior of ✓ and p(d|✓) is distribution of data con-

ditional on ✓. In the Bayesian framework, I will first work on the Gaussian process

emulator (3.2) as I discussed in Chapter 3

y = ⌘(x,✓) ⇠ N(m1(x,✓), c1((x,✓), (x
0,✓)))

where m1(x,✓) = h1(x,✓)�1, h1(x,✓) is a vector of functions of (x,✓) and �1 is the

corresponding regression coefficients.

Table 4.1.: Variable notations

Notation Description

✓ the true parameters to be estimated

# the design set of input parameters

x the input variables

x

⇤
i set of input variable for computer model

xi set of observed input variables

y the output from computer model

z the observed output

N number of design data set

n number of observations

ti set of calibration parameters

Next, I will work on the discrepancy between z(x) and y(x,✓). In [Kennedy and

O’Hagan, 2001], the discrepancy �(x) is assumed to be independent of y(x,✓). ✏ is

the observational error. Then, the real output z consists of three parts: computer

model emulator, discrepancy and measurement error

z(x) = y(x,✓) + �(x) (4.2)
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�(x) is a discrepancy model, for example, it is also assumed to be multivariate normal

distribution

� ⇠ N(m2(x), c2(x,x
0
))

where m2(x) = h2(x)T�2, h2(x) is a vector of functions of x and �2 is corresponding

regression coefficients. Let � = (�

T
1 ,�

T
2 )

T , c1(., .) and c2(., .) be covariance functions.

Their corresponding hyperparameters in c1 and c2 are represented by �1 and �2. The

prior information of ✓ is independent of the others. The priors of hyperparameters

are assumed to be

p(�) / 1

p(✓,�,�) / p(✓)p(�) (4.3)

Let D1 = {(x⇤
1, t1), ..., (x

⇤
N , tN)} and D2 = {x1, ...,xn} denote input data from

computer model and field observations, H1 and H2 denote matrix [h1(x
⇤
i , ti)]i=1:N and

[h2(x
⇤
i )]i=1:n, respectively. Then, E(y) = H1�1 and E(�) = H2�2. From equation

(4.2), the expectation of z is

E(z) = E(y + �) = H1�1 +H2�2 (4.4)

The variance matrix of y is V1 which is N ⇥ N matrix, and the variance matrix

of z is V2 which is n ⇥ n matrix, C1 is the covariance between y and z. Then, the

full set of data d

T
= (y

T , zT
) is normal with the following mean and covariance

E(d|✓,�,�) = md(✓) = H(✓)�

V (d|✓,�,�) = Vd(✓)

Where

H(✓) =

0

@ H1 0

H1 H2

1

A

and

Vd(✓) =

0

@ V1 C1

CT
1 V1 + V2

1

A
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With prior of p(✓) and p(�) in 4.3, the full posterior distribution of ✓ is

p(✓,�,�|d) / p(✓)p(�)f(d;md(✓), Vd(✓)) (4.5)

� will be integrated out of (4.5), and hyperparameters � from z and y will be

estimated. Then, the posterior distribution p(✓|d) is derived and be used to make

inference about ✓.

As discussed in Section 4.1, the multi-output emulation approach (e.g. [Conti and

O’Hagan, 2010]) has dimensional issues when working not sequential outputs as in

TEM. In the next section, I will introduce a new approach which will overcome this

issue, and furthermore, I will provide an efficient method to estimate parameters and

predict output with sequentially arrived data.

4.3 Proposed Approach

In [Kennedy and O’Hagan, 2001], a Bayesian emulation and calibration method

has been discussed theoretically and applied on a toy model. This approach was also

applied in their following literatures (e.g. [Conti et al., 2004]). Then, they extended

the emulation method to multi-output emulation as in [Conti and O’Hagan, 2010]. In

this literature, the application is on climate model which has time dependent output.

The time varying output is assumed to be a multi-dimensional random vector which

follows a multivariate normal distribution. The emulator is to surrogate the complex

computer model, and is determined by the mean function m(x) and covariance func-

tion c(x,x0
). In their application, the output has 12 time points, so the dimension of

the emulator is 12. However, this multi-output emulation approach is limited in our

application since the TEM model has time dependent outputs which arrived sequen-

tially for many years. So the length of time is undetermined. For example, if there

are 5 years data, the dimension of monthly output will be 60; if there are 6 years

data, then the dimension will be 72. So the current approach becomes impractical

for TEM. Secondly, [Conti and O’Hagan, 2010] did not extend the multi-emulation

to calibration of model parameters. In another literature, [Liu and West, 2009] devel-
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Figure 4.1.: Monthly NEP from 1994 to 2001

oped a dynamic emulator for computer models with time dependent output, which is

also a Gaussian Process model and make time as a covariate. However, they did not

extend the approach to calibration of input parameters. So in our new approach, I

will develop a more efficient algorithm to surrogate the computer model and further-

more to calibrate parameters for the dynamic ecosystem model. In the next section,

I will explore the real data and then develop a novel approach to study the TEM.

4.3.1 Motivation from Data

In TEM, the temporal scale is monthly time step for both input and output

variables. The outputs of TEM include GPP, NEP and NPP. Here, I use NEP as

an example. Figure 4.1 is the field observation of monthly NEP from 1994 to 2001

which has a clear seasonal pattern. In Figure 4.2, the trend magnitude of the data

exhibits homogeneity monthly. Motivated by these facts, consideration of intra-annual

variability would be a novel idea to build the emulator.
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Figure 4.2.: BBplot of NEP from 1994-2001

The computer model output at time t is denoted by yt(x,✓). The field observations

at t is zt(x). The correlation of outputs over time will become negligible when the lag

becomes large. From this point of view, the dynamic linear model is an approximation

to the high dimensional multi-output Gaussian process emulation.

In terms of the discrepancy between yt(x,✓) and zt(x), in [Kennedy and O’Hagan,

2001], it was modeled as �(x) and independent of ✓. Furthermore, [Kennedy and

O’Hagan, 2001] assumes ✓(x) to be Gaussian process which has the same structure

as y. While in our approach, there will be two major differences: 1) the discrepancy

model is assumed to be �t(x,✓) and depends on ✓ because it is apparent that dif-

ferent value of ✓ will result in different discrepancy data; 2) Model of �t(x,✓) is not

necessary to be Gaussian process as in [Kennedy and O’Hagan, 2001] since there is

zero uncertainty at training points. The task of modeling �t(x,✓) is a speed-accuracy

tradeoff.
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4.3.2 Computer Model Emulator: PAR with Gaussian Process

Our emulator is consisted of two parts: time series part which captures dependence

and pattern across time and Gaussian process part which captures the dependence on

inputs. Combination of the two will be the emulator which has zero uncertainty at

training points and quantifies uncertainty at unknown points. It is a simpler surrogate

of the computer model but computationally efficient for calibration of parameters and

uncertainty quantification of dynamic models. Followed by the above discussion, the

one dimensional complete model for zt is

zt(x) = yt(x,✓) + �t(x,✓) (4.6)

yt(x,✓) is time dependent computer output, and zt(x) is field observation at t.

�t(x,✓) is the discrepancy.

Suppose the chosen parameter ✓ = # and t = 1, · · · , T , the computer model

output is

y1:T (x,#) = (y1(x,#), . . . , yT (x,#))

After seasonal pattern of NEP is explored, the periodic autoregression model

(PAR) in [Pagano, 1978] is reviewed here.

Yt =

ptX

j=1

at,jYt�j + ✏t (4.7)

with parameters �t = (at,1, ..., at,p). When �t is constant over time, Y becomes AR(p)

model. Lag pt = p be constant over time. ✏t ⇠ N(0, �2
t ) is uncorrelated over time

with mean zero. Assume period is s, then E(✏t) = �2
t , �2

t = �2
t+s and �t = �t+s.

Assuming input variables are observed at time t, yt(x,✓) is time series depending

on ✓. The univariate model emulator is

yt(x,✓) = ⌘t(✓) +M1(x,✓) (4.8)

⌘t(✓) =

pX

j=1

aj,t⌘t�j(✓) + ✏t (4.9)

M1(x,✓) ⇠ GP (m1(x,✓), c1((x,✓), (x
0,✓))) (4.10)
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where M1(x,✓) is GP with mean m1(x,✓) = h1(x,✓)�1, �1 is regression coeffi-

cients and h1(x,✓) is a vector of functions from set of variables {x,✓}. For example,

h1(x,✓) = (1,x,✓)0. Assuming dimension of x and ✓ are d1 and d2 respectively, the

covariance structure in M1(x,✓) is defined as

c1((x,✓), (x
0,✓)) = �2

exp{�
d1X

l=1

rl(xil � xjl)
2 �

d1+d2X

l=d1+1

rl(✓il � ✓jl)
2} (4.11)

where r = (r1, · · · , rd1+d2)
0. [Higdon et al., 2008] described the half-range method to

estimate hyperparameter r.

4.3.3 Estimation of Parameters in ⌘t

⌘t(✓) is periodic autoregression of order p (PAR(p)) with coefficients �t = (at,1, ..., at,p).

To estimate �t which could be different over time, there have the following constraints

when period is defined as s and {t = (n� 1)s+m,n 2 N+,m = 1, · · · , s}

1). �t = (a1,t, ..., ap,t), �m = (a1,m, ..., ap,m), �t = �m

2). ✏t(✓) are uncorrelated with mean zero, variance �2
t

3). E(✏2t (✓)) = �2
t , �2

t = �2
t+s and �t = �t+s

In TEM, the period is one year, so s = 12 in the monthly temporal scale. ⌘t(✓)

is nonstationary since the variance and covariance are different within a year. Next,

I will discuss how to estimate the parameters �t. [Franses, 1996] discussed and im-

plement how to estimate parameters in PAR(2) with period 4. In our study, I will

introduce how to estimate PAR(3) with period 12.

To estimate the parameters �t, the first step is to determine the order of PAR.

[Franses and Paap, 1994] discussed how to determine p using BIC in combination with

diagnostic tests on residual autocorrelation. For example, if p = 3 and ⌘t(✓) = ⌘m,n,

then in year n
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m = 1 : ⌘1,n = a1,1⌘12,n�1 + a2,1⌘11,n�1 + a3,1⌘10,n�1 + ✏1,n

m = 2 : ⌘2,n = a1,2⌘1,n + a2,2⌘12,n�1 + a3,2⌘11,n�1 + ✏2,n

m = 3 : ⌘3,n = a1,3⌘2,n + a2,3⌘1,n + a3,3⌘12,n�1 + ✏3,n

m = 4 : ⌘4,n = a1,4⌘3,n + a2,4⌘2,n + a3,4⌘1,n + ✏4,n

m = 5 : ⌘5,n = a1,5⌘4,n + a2,5⌘3,n + a3,5⌘2,n + ✏5,n

m = 6 : ⌘6,n = a1,6⌘5,n + a2,6⌘4,n + a3,6⌘3,n + ✏6,n

m = 7 : ⌘7,n = a1,7⌘6,n + a2,7⌘5,n + a3,7⌘4,n + ✏7,n

m = 8 : ⌘8,n = a1,8⌘7,n + a2,8⌘6,n + a3,8⌘5,n + ✏8,n

m = 9 : ⌘9,n = a1,9⌘8,n + a2,9⌘7,n + a3,9⌘6,n + ✏9,n

m = 10 : ⌘10,n = a1,10⌘9,n + a2,10⌘8,n + a3,10⌘7,n + ✏10,n

m = 11 : ⌘11,n = a1,11⌘10,n + a2,11⌘9,n + a3,11⌘8,n + ✏11,n

m = 12 : ⌘12,n = a1,12⌘11,n + a2,12⌘10,n + a3,12⌘9,n + ✏12,n

Let En = (⌘1,n, · · · , ⌘12,n)T , where En is vector of quarters [VQ] representation.

Then,

�0En = �1En�1 + ✏n (4.12)

with

�0(i, j) =

8
>>><

>>>:

1 i = j

0 j > i or i� j > 3

�ai�j,i 1  i� j  3

and

�1(i, j) =

8
<

:
0 j � i  8

ai�j+12,i 9  j � i  11

where i, j = 1, 2, · · · , 12. The matrix form of �0 and �1 is in appendices.
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For forecasting purpose, ��1
0 to (4.12) is applied and

En = �

�1
0 �1En�1 + �

�1
0 ✏n (4.13)

which is VAR(1). �

�1
0 is a lower triangle matrix too.

To analysis the trend in ⌘t, the solutions is solved from the characteristic equation

of (4.12)

|�0 � �1z| = 0 (4.14)

Suppose there are k unit root solutions of En process. En is stationary autoregression

([Pagano, 1978]).

To estimate the parameters am,n and �2
m, there are N years data. Suppose the

mean function of ⌘t is m(t) = E(⌘t), and the covariance kernel is

R(t1, t2) = E{(⌘t1 �m(t1))(⌘t2 �m(t2))} (4.15)

For periodically correlated ⌘t, for all integers t1 and t2, then

m(t1) = m(t2), R(t1, t2) = R(t1 + s, t2 + s) (4.16)

Without loss of generality, let m(t) = 0. Then, for integer v � 0,, multipling both

sides of (4.9) by ⌘t�v, it becomes

⌘t⌘t�v =

pX

j=1

aj,t⌘t�j⌘t�v + ✏t⌘t�v (4.17)

Take expectations of the obove equation, it becomes

R(t, t� v) =
pX

j=1

aj,tR(t� j, t� v) + �2
t Iv=0 (4.18)

where I is identity function. Then, for m = 1, 2, · · · , 12, v � 0,

R(m,m� v) =
pX

j=1

aj,tR(m� j,m� v) + �2
mIv=0 (4.19)

If there are N years data, R(m, v) is approximated by

RN(m, v) =
1

N

kX

j=0

⌘m+s⇤j⌘v+s⇤j (4.20)
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where m = 1, 2, · · · , s, v = 0, 1, · · · , N ⇤ s�m� 1, and k = [N �max(m, v)/s].

Replacing R by RN in (4.19) and solving the linear equations, aj,m and �2
m can be

estimated.

4.3.4 Estimation of parameters in M1(x,✓)

Assuming d2 = 1 and d1 = 3, there are n set of design points {#1, · · · ,#n} and

x = (x1, x2, x3)
0 at t = 1, · · · , T . The output yt(#j) are as follows:

#1 : y1(x1,#1), y2(x2,#1), · · · , yT (xT ,#1)

#2 : y1(x1,#2), y2(x2,#2), · · · , yT (xT ,#2)

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

#n : y1(x1,#n), y2(x2,#n), · · · , yT (xT ,#n)

After aj,m and �2
m been estimated, M1(xt,#i) = yt(xt,#i) � ⌘t is calculated from

(4.10), where t = 1, . . . , T and j = 1, . . . , n. In principle, h1(x, ✓) could be any func-

tion of (x, ✓). For example, if h1(x, ✓) = (1, x1, x2, x3, ✓)
0 and � = (�0, �1, �2, �3, �4)

0 ,

then

H1 =

0

BBBBBBBBBBBBBBBBBB@

h1(x1,#1)

· · ·

h1(xT ,#1)

h1(x1,#2)

· · ·

h1(xT ,#2)

· · ·

h1(xT ,#n)

1

CCCCCCCCCCCCCCCCCCA

and M 1 =

0

BBBBBBBBBBBBBBBBBB@

M1(x1,#1)

· · ·

M1(xT ,#1)

M1(x1,#2)

· · ·

M1(xT ,#2)

· · ·

M1(xT ,#n)

1

CCCCCCCCCCCCCCCCCCA

(4.21)

Now, M 1 will be multivariate normal distribution as

M 1 ⇠ MVN(H1�,⌃) (4.22)
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Similar as in Section 3.2 and with reference to ([Oakley and O’Hagan, 2002]), let

⌃ = �2⇤A and A = [⇢(M1(i),M1(j))]nT,nT . COV (M1(x, ✓),M1(x
0, ✓0)) = �2c((x, ✓)�

(x

0, ✓0)) Conditional on M 1, then

M1(.)|�,⌃,M 1 ⇠ N(m⇤
1(.), COV ⇤

(., .)) (4.23)

where

m⇤
(x, ✓) = h1(x, ✓)

T
� + t(x, ✓)T⌃�1

(M 1 �H1�)

COV ⇤
(M1(x, ✓),M1(x

0, ✓0)) = COV (M1(x, ✓),M1(x
0, ✓0))� t((x, ✓)T⌃�1

t(x

0, ✓0)

t((x, ✓) = (⇢(M1(x, ✓),M1(x1,#1)), · · · , ⇢(M1(x, ✓),M1(xT ,#n)))

The least squares estimation and variance of � is

ˆ

� = (HT
1 ⌃

�1H1)
�1HT

1 ⌃
�1
M 1

V (

ˆ

�) = (HT
1 ⌃

�1H1)
�1

Integrate our � from (4.23), then

M1(.)|⌃ ⇠ N(m⇤⇤
1 (.), COV ⇤⇤

(., .)) (4.24)

where

m⇤⇤
(x, ✓) = h1(x, ✓)

T
ˆ

� + t(x, ✓)T⌃�1
(M 1 �H1

ˆ

�)

COV ⇤⇤
(M1(x, ✓),M1(x

0, ✓0)) = COV ⇤
(M1(x, ✓),M1(x

0, ✓0)) +

(h1(x, ✓)� t(x, ✓)T⌃�1H1)(H
T
1 ⌃

�1H1)
�1 ⇤

(h1(x
0, ✓0)� t(x

0, ✓0)T⌃�1H1)
T

The emulator will be a combination of (4.13) and (4.24). Another issue is periodic

integration. If (4.14) has unit root, then ⌘t is periodically integrated if there exist

some am for m = 1, · · · , 12 that (1 � amB)⌘t does not have unit root, where B is

backward operator. I will address this issue in our application.
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4.3.5 Computer Model Emulator: PR with Gaussian Process

Periodic regression (PR) is regression on sinusoidal functions. Suppose the period

is s, for each #, ⌘t(#) defined in 4.8, it will be models as periodic regression as follows

⌘t(✓) = ↵0 + ↵1(✓)sin(2⇡t/s) + �1(✓)cos(2⇡t/s) + . . .

· · ·+ ↵p(✓)sin(2⇡pt/s) + �p(✓)cos(2⇡pt/s) (4.25)

For each set of #i, the coefficients: ↵j(#i) and �j(#i) are estimated. With all the

N sets of ↵j(#i) and �j(#i), ↵j(✓) and �j(✓) will be interpolation from them. For

example, ↵̂j(✓) = ia + a1 ⇤ ✓1 + a2 ⇤ ✓2 and ˆ�j(✓) = ib + b1 ⇤ ✓1 + b2 ⇤ ✓2 which use

linear regression models. This approach is an easier way to estimate the coefficients

than PAR. The modeling of M1(x,✓) is the same as in previous section, but data M1

will be calculated corresponding to the results from PR.

4.3.6 Computer Model Emulator: Uni-output Gaussian Process

Since each monthly NEP exhibits different trend and magnitude, the whole time

period is divided to Jan, Feb, · · · , Dec. Then, there will be twelve separate models

as followed

yj = ⌘(x,✓)j ⇠ N(m1(x,✓), cj((x,✓), (x
0,✓))), j = 1, · · · , 12

where yj is the emulator for the jth month, m1(x,✓) and cj((x,✓), (x0,✓) are the

corresponding mean and covariance functions. The estimation of coefficients and

parameters will be the same as in [Kennedy and O’Hagan, 2001]. With all the twelve

one-dimensional model, a complete emulator is a combination of them.

4.3.7 Computer Model Emulator: Multi-output Gaussian Process

A little revise to [Conti and O’Hagan, 2010], the output data is arranged by the

12 months and each year as a repeated measurement. In this way, the output y is
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12 dimension, and each entry has multiple replicates (years). Then, the multi-output

emulation will be

y = ⌘(x,✓) ⇠ N(m(x,✓), C((x,✓), (x0,✓)))

where y is 12 dimension output. m(x,✓) and C((x,✓), (x0,✓) are the corresponding

mean and covariance function. The estimation of coefficients and parameters will be

the same as in [Conti and O’Hagan, 2010].

4.4 Bias estimation

After the emulator developed for the dynamic computer model, I will develop a

model to estimate the discrepancy between computer model and real process. In

the framework of [Kennedy and O’Hagan, 2001], the authors assume y(x,✓) is inde-

pendent of bias �(x). After examining the discrepancy between y(x,✓) and z(x), �

depends on ✓ obviously because different #j, j = 1, . . . , N results in different y(x,#j),

so does �(x,#j). So in our model, I assume the bias part is functions of (x,✓). The

input data for bias model is (xt,#), and the corresponding bias data is given by

�t(x,#j) = zt(x)� yt(x,#i) (4.26)

All the output up to time T is denoted by �1:T . The structure of �t would be

different depending on the discrepancy between y and z.

(1). If the bias is not critical, the bias effect may be confounded with measurement

error. Modeling of �t(x,✓) is not necessary.

(2). If the bias plays a crucial role, it needs to be estimated according to different

patterns.

– If �t(x,#) does not have temporal pattern, then

�t(x) ⇠ GP (m2(x), COV (x,x0
)) (4.27)
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– if �t(x,#) exhibits temporal pattern

�t(x,#) = ⇣t +M2(x,#), t = p+ 1, ..., T (4.28)

⇣ =

pX

j=1

bt,j⇣t�j(x) (4.29)

M2(x,#) ⇠ GP (m2(x,#), COV (x,x0
)) (4.30)

– if �t(x,#) has seasonal pattern, the following predictive model is developed

�t(✓) = a0 + a1(✓)sin(2⇡t/s) + b1(✓)cos(2⇡t/s) + . . .

· · ·+ ap(✓)sin(2⇡pt/s) + bp(✓)cos(2⇡pt/s) (4.31)

where ⇣ is the temporal trend pattern of bias data. The estimation of coefficients in

�t follow the same procedure as in previous sections as in (4.9) and (4.25).

4.5 Calibration and Prediciton

Calibration is to estimate the unknown parameters in underlying physical model

by comparing field observations and computer model outputs. For example, in TEM,

Table 5.3 gives the key parameters to be estimated in the computer model, and the

observations from AmeriFlux tower. There are two sets of data set available: training

data set in computer model D1 = {x,#, y1:T} and field observations D2 = {x, z1:T}.

The full set of data is dTt = (yt, zt)
T . After estimation of two sets of parameters

in yt and �t. The field observations zt is given by (4.6). Then, the expectation of z is

E(zt(x)|D1,D2) = E(yt(x,✓)|D1,✓)) + E(�t(x,✓)|D2)

=

pX

j=1

at,j⌘t�j +M1(x,✓) + �t(x,✓) (4.32)

Hence the N + 1 vector dt

E(dt|✓, r,�1:s, 1:s,⌃, ⌫1:s) = E((yt, zt)
T |✓, r,�1:s, 1:s,⌃, ⌫1:s)

=

0

@
Pp

j=1 at,jyt�j(✓) +M1(x,✓)
Pp

j=1 at,jyt�j(✓) +M1(x,✓) + �t(x,✓)

1

A (4.33)
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Let V1 be variance matrix of yt, and V2 be variance of �t. Then, the variance of

zt will be V1 + V2 + �2. C1 is the covariance between yt and zt, which is estimated

from the observations. Then, the variance matrix of dt

V (dt|✓, r,�1:s, 1:s,⌃, ⌫1:s) =

0

@V1 CT
1

C1 V1 + V2 + �2In

1

A (4.34)

With (4.33) and (4.35), the full distribution

p(dt|✓, r,�1:s, 1:s,⌃, ⌫1:s) ⇠ MVN(E(dt), V (dt)|✓, r,�1:s, 1:s,⌃, ⌫1:s) (4.35)

With previously estimated r,�1:s, 1:s,⌃, ⌫1:s and prior of ✓, the posterior of ✓ is

p(✓|d1:T ) / p(✓)
Ta

t=p+1

p(dt;E(dt|✓), V (dt|✓)) (4.36)

The prediction of the outcome zt at T +1 will be given by the prediction mean of

yt(x, ˆ✓) and bias estimation �t from Section 5.4. The variance will be given by (4.35).

Estimation of ✓ is the inference from posterior distribution of ✓.
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5. APPLICATION TO AN ECOSYSTEM MODEL

5.1 Illustration of the Problem

In recent years, climate change has become a global environmental challenge facing

the world. Greenhouse gases (e.g. CO2, H2O) play an important role in keeping

the earth warm, but an increase of them might lead to warmer environment and

climate change. After the industry revolution, human activities have led to increased

emission of greenhouse gases. In the meantime, vegetation plants convert CO2, H2O

and energy to food through photosynthesis. So the cycle of C and N is greatly

influenced by human activities and vegetations. Many environmental scientists have

already developed various versions of ecosystem models to simulate this cycle. Here,

Terrestrial Ecosystem Model (e.g. [Zhu and Zhuang, 2014]) is presented as an example

to illustrate the cycle:

dCV

dt
= GPP �RA � LC

dCS

dt
= LC �RH

dNV

dt
= NUPTAKE � LN

dNV

dt
= LN �NETMIN

dNAV

dt
= NINPUT +NETMIN �NLOST �NUPTAKE

where Table 5.1 describes the variables in above equations, and the equations have

been solved with Runge-Kutta-Fehlberg method in [Fehlberg, 1969].

The TEM is driven by monthly data of temperature, precipitation and cloudiness

as well as CO2 concentrations. Besides the vegetation variables, there are some fixed

but unknown parameters, such as initial and boundary conditions, which influences

the model outputs even with slightly change of the value. Uncertainty quantification
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of these parameters and furthermore sensitivity analysis are carried out in many

literatures (e.g. [Zhu and Zhuang, 2014, 2013], [Tang and Zhuang, 2009], [Chen

et al., 2011]). From the sensitivity analysis in [Zhu and Zhuang, 2014], CMAX and

KC are the two most sensitive parameters in TEM. In the following applications,

CMAX and KC are assumed to be unknown and all the other parameters are fixed.

Hence, ✓ = (CMAX , KC), and xt = (temperature, precipitation, cloudiness)t where t

is monthly scale. The output interested in is yt = NEPt = GPPt � Rt, where Rt is

respiration by plants, heterotrophs and decomposers (the microbes).

Before the approaches from Chapter 4 applied to TEM, the inputs and outputs

data in Section 5.2 will be explored. In Section 5.3, different types of emulator will be

carried out and compared. Followed by Section 5.4, the bias model will be developed.

In Section 5.5, the key parameters will be estimated and used to forecast future NEP.

Furthermore, comparison of the results will be discussed in the last section.

5.2 Data

United States is covered by five major vegetation types: boreal, coniferous, de-

ciduous, grassland and shrub land. For each vegetation type, the true ✓ might be

different. For example, CMAX (maximum rate of photosynthesis) of grassland is differ-

ent from that of deciduous. Generally, people assume that different vegetation types

follow different models. In our application, the deciduous broadleaf forest model is

chosen for application.

The field observation data is obtained from AmeriFlux level-4 data located at

(42.5�N, 72�W ) which represents deciduous broadleaf forest land type. This data con-

sists of half-hourly observed temperature, precipitation, cloudiness and NEP. They

are aggregated to monthly scale in our application. The computer model data is from

process-based TEM developed by Ecosystems & Biogeochemical Dynamics Labora-

tory at Purdue University. These two sets of data are both used in the modeling and

validation process. From the TEM, nt = 30 sets of training data and nv = 6 sets
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Table 5.1.: Variable in the differential equations of TEM

Notation Type Description

CV state variable carbon in vegetation

CS state variable carbon in soil

NV state variable nitrogen in vegetation

NS state variable nitrogen in soil

NAV state variable nitrogen in detritus

GPP fluxes gross primary production

NEP fluxes net ecosystem production

RA fluxes autotrophic respiration

LC fluxes carbon in litters

RH fluxes heterotrophic respiration

LN fluxes nitrogen in litters

NINPUT fluxes nitrogen input from outside ecosystem

NETMIN fluxes net rate of mineralization of NS

NLOST fluxes nitrogen losses from ecosystem

NUPTAKE fluxes nitrogen uptake by vegetation

of validation data are simulated. For each set, monthly NEP from 1992 to 2006 are

simulated from TEM. The input variables are field observations of monthly temper-

ature, precipitation and cloudiness from 1992 to 2006. In the field observation, there

are missing data (January and February in 2002), and bootstrap and multiple linear

regression model are used to imputed the missing data.
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Table 5.2.: Input variables in Terrestrial Ecosystem Model

x Description temporal scale unit

TEMP surface air temperature monthly oC

PREC precipitation monthly mm

CLDINESS cloudiness monthly %

5.2.1 Model Inputs and Parameters

The input variables x are described in Table 5.2. They are time series data and

obtained from field observations. Figure 5.1 shows the field observations of monthly

temperature, precipitation and cloudiness between 1992 and 2006 at (42.5�N, 72�W ).

It is obvious that monthly temperature exhibits seasonal pattern, while the patterns

of precipitation and cloudiness are less obvious.

Next, I will introduce the parameters ✓. As discussed in previous sections, CMAX

and KC are the two most sensitive parameters ([Zhu and Zhuang, 2014] and described

in Table 5.3. The range of them refers to [Zhu and Zhuang, 2013].

Table 5.3.: Most sensitive parameters for deciduous broadleaf forest

ID Acronym Definition a Prior b Units

✓1 CMAX Maximum rate of photosynthesis C [1200, 1700] gm�2mon�1

✓2 KC Half saturation constant for CO2 uptake by plants [200, 500] µLL�1

a Reference: [Zhu and Zhuang, 2014].
b Referred to [Zhu and Zhuang, 2014] and [Zhu and Zhuang, 2013].

After input variables and parameters are setup, the TEM is run for 36 times and

the monthly NEP is simulated for both training and validating sets. The prior of

parameters are based on previous research results (e.g. [Zhu and Zhuang, 2013]).
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Figure 5.1.: Observations of monthly TEMP, PREC, and CLDS

5.2.2 Model Outputs and Field Observations

The output NEP is the difference between GPP and respiration by plants. Usually,

people estimate GPP and respiration separately, and NEP is derived from them. To

understand NEP better, the field observations are explored. Figure 5.2 shows the
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Figure 5.2.: Field observations of NEP between 1992 and 2006

monthly NEP from 1992 to 2006. From this graph, the seasonal pattern of NEP

is very obvious and NEP reaches high peak during summer. Also, within month

variations from May to September are relatively higher than that of other months,

which implies a model considering the difference among months. Figure 5.3 further

examines the variation of monthly NEP and presents the difference. I will consider

two ways to take into account the within month variation of NEP: 1) different model

for each month; 2) removal of seasonal pattern.
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Figure 5.3.: Field observations of monthly NEP (gCm�2mon�1)

Next, monthly NEP from TEM which depends on input variables x and chosen

parameter ✓ values are explored as well. With uniform prior of ✓: [1200, 1700] ⇥

[200, 500], 36 sets of parameter values are designed using LHS method, of which 6

sets are for validation purpose. Figure 5.4 shows the training points (black) and

validation points (red) which span the whole input space.

In Figure 5.5, a parameter value (1606, 272) is chosen, and the monthly NEP from

model (black) with field observations(blue) are compared. The bias (red) between

them is on the right and not negligible as shown in Figure 5.5. This further suggests

that bias is not just noise, and there should be a model to estimate it. In the following
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sections, the emulator for TEM will be developed and furthermore to estimate ✓.

After that, I will proceed to forecast future NEP from the calibrated models.

5.3 Computer Model Emulators

In this section, emulators for TEM are developed from different methods as de-

scribed in Chapter 4. Afterwards, I will compare the model accuracy of these three

methods: 1) One dimensional emulation as in [Kennedy and O’Hagan, 2001]; 2) Multi-

Output emulation as in [Conti and O’Hagan, 2010]; 3) PR with Gaussian process as

in Chapter 4. Table 5.4 gives the notation and brief comparison of the three different

methods.

Table 5.4.: Comparison of three emulation methods

Methods
Models Dimension

Notation Description ✓ x t y

1 Uni_GP Uni-output emulator 2 3 0 1

2 Multi_GP Multi-output emulator 2 36 0 12

3 PAR_GP Time dependent emulator 2 3 1 1

After the emulators built, I will evaluate how well they represent the computer

model. The three methods to be evaluated and compared are described in Table 5.4,

and the measurements for comparison are RMSE, error rate and R-square defined

as follows.

• Data

– Training samples of ✓ : S1 = {#1, · · · ,#30}. For each sample point,

monthly NEP ranging from 1992-2002 from TEM are simulated.

– Validation samples of ✓ : S2 = {#31, · · · ,#36}. For each sample point,

monthly NEP ranging from 1992-2002 are simulated from TEM .
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• Emulation

– Uni-output: for each month (Jan - Dec), j = 1, 2, · · · , 12, there is

yj ⇠ GP (mj(x,✓), cj((x,✓), (x
0
,✓

0
)) (5.1)

The emulation is combined by 12 models. yj is jth monthly NEP and

depend on ✓ and x.

– Multi-output: for one years monthly NEP, it becomes

y ⇠ GP (m(x,✓), C((x,✓), (x
0
,✓

0
)) (5.2)

where y is 12-dimensional ( or 24-dimensional for two years). Each dimen-

sion of y is one month of NEP. The covariance function C((x,✓), (x
0
,✓

0
) =

�2
⌃.

– PAR with GP: it will follow the equations (4.8) and (4.9), which is a trend

model and a GP model.

• Validation

– RMSEj =

pPnv

i=1(ŷij � yij)2/nv

– error% = RMSEj/SEj

– R2 = R-square of linear regression model: yj ⇠ aj ŷj + ✏i, aj is scaler.

5.3.1 Compare Different Emulators

In this section, I will compare the new approach with existing approaches in terms

of accuracy and efficiency. In the new approach, we present the results from PR_GP

which results in more accurate prediction than PAR_GP.

Table 5.5 is the evaluation results for each monthly NEP. In this table, the RMSE

of PR_GP is slightly higher than that of Uni_GP, but both are smaller than that of

Multi_GP. Furthermore, I compared the annual NEP from three different emulation
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Figure 5.6.: PR_GP emulator on validation set

methods as in Table 5.6. The results reinforces that Uni_output model has the best

emulation accuracy, PR_GP follows and Multi_GP is worst. However, since Uni_GP

has 12 models, the computation time of Uni_GP is much longer than PR_GP. Table

5.6 further compares the annual RMSE from each model. Overall, Uni_GP gives

the best model accuracy but take the most time. PR_GP works slightly worse than

Uni_GP in terms of model accuracy, but is more computational efficient.

5.4 Bias Models

In this section, I will build the model to predict bias between the computer model

and field observations. The field observations does not depend on ✓, while the com-

puter model depends on ✓. Since bias is the difference between computer model

and field observations, it also depends on ✓. This is different from [Kennedy and
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Figure 5.7.: Comparison of Emulation on yearly scale NEP

O’Hagan, 2001] which assumes bias is independent of ✓. The bias model is not an

emulator since there is no complex computer model for bias, and no need for zero

uncertainty at training points. From the bias plot as shown in Figure 5.5 and 5.8, it

is larger in growing season than non growing season. Multiple regression model on

(x,✓) with seasonal trend best fits the bias data. With the fitted model, the observed

and predicted bias are shown in Figure 5.9 from one parameter value.

5.5 Calibration and Forecasting

The predictions of future NEP will be bias corrected with �t(x) and compared

with the real observations zt.
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Table 5.5.: Comparison of RMSE with Emulation for each month

Month Uni_GP Multi_GP PR_GP

1 0.783 1.880 0.781

2 0.776 1.880 0.782

3 0.843 2.160 0.863

4 2.010 2.840 3.475

5 15.290 13.430 15.979

6 12.500 16.840 14.903

7 7.680 7.870 8.253

8 3.220 3.420 3.408

9 1.630 2.210 1.797

10 3.630 4.360 4.762

11 1.570 1.630 1.855

12 0.840 2.390 0.851

Table 5.6.: RMSE of annual NEP comparison

Emulations
Simulation Monthly Annual

nt nv RMSE(M) error.rate(%) RMSE(M) error.rate(%)

Uni_GP 30 6 6.35 11.30 5.86 11.40

Multi_GP 30 6 8.65 18.60 15.80 30.90

PR_GP 30 6 7.08 12.60 7.49 16.5

After the emulator of computer model and bias model developed, the distribu-

tion of p(✓|D1, D2) is derived. Then, Metropolis algorithm is used to estimate the

parameters. Here is the algorithm.
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Figure 5.8.: Monthly Bias of NEP from 1992 to 2006

Step 1: Likelihood of function of data

p(di|✓) / 1p
V (di)

˙exp{�(d(✓)� di)2

2V (di)
}

log(p(di|✓)) = �0.5
(d(✓)� di)2

V (di)
� log(

p
V (di)) + const

log(Likelihood|✓) = ⌃

T
i=1log(p(di|✓)) + const (5.3)

Step 2: Posterior distribution of ✓

p(✓|d) / p(✓)⇧T
i=1p(di|✓)

Step 3: Sample from posterior distribution of ✓ with Metropolis algorithm

1). Select the starting point in the parameter space, eg.

2). Calculate the likelihood of the prior
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Figure 5.9.: Observed vs. Predicted Bias (blue) between 2004 and 2006

3). Set i=1

4). Run the following: (i) Generate the new point (ii) Calculate the new like-

lihood (iii) Calculate the Metropolis ratio (iv) Accept the candidate with

probability equal to min(Ratio, 1) (v) If the candidate is accepted (vi) Set

i= i +1

5). A representative sample from the posterior distribution p(✓|d).

Before making predictions, the parameters will be estimated. The posterior dis-

tribution of the parameters are shown in Figure 5.10. The 2 dimensional plot of

posterior samples is shown in Figure 5.11. From the posterior distribution, the ✓ is

estimated.
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Figure 5.12 gives us the histogram of NEP and fitted NEP from our final model.

The residual looks normal, so it would be reasonable to assume Gaussian process on

the residuals.

Table 5.7.: Comparing predictive accuracy in 2003-2006

Methods
Estimation Forecasting

ˆCMAX
ˆKC MSE SCALE R2

Uni-output 1231.00 495.00 52.3 0.972 0.725

Multi-output 1231.00 495.00 83.3 0.606 0.303

PR with GP 1231.00 495.00 41.3 1.06 0.828

[Zhu and Zhuang, 2014] 1498.00 420.00 73.2 1.21 0.461

[Zhu and Zhuang, 2013] 1141.02 219.83 74.3 1.20 0.444
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Figure 5.11.: Samples from posterior distribution of (CMAX , KC)

Table 5.7 shows the comparison of precision with different methods. R2 is the

R-square of field observed NEP regressed on predicted NEP. Figure 5.13 shows the

comparison of forecasting in 2004-2006 from three different methods. The PR_GP

gives the best prediction results in terms of R-square and MSE. From the computer

model dat and field observations, I constructed a new relationship between x, ✓ and

y as in Figure 5.13. The predicted NEP vs field observation is adding up Figure 5.9

and Figure 5.15.

5.6 Conclusion and Discussion

In this chapter, I have developed a new dynamic emulator as a surrogate for TEM.

This approach consists of PR and GP, where the PR part captures the time varying

effect of inputs, and the GP captures the correlation structure among input variables.

To determine which model structure to choose for the emulator and bias correction
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part, I explored the real observations carefully at first. Next, I compared the real

observations with computer model output and assessed the difference.

With small number of training data set, our emulator works well with the dy-

namic computer model. The bias model was built based on the difference between

computer model output and field observations. Different from the existing approach,

I have considered to model the bias while varying the parameters, and this improve-

ment helps us to make better predictions. Furthermore, I extended the emulation to

calibrate the computer model and make predictions of future NEP after I built bias

model. Finally, I evaluated our method with comparison to existing approaches with

a set of validation data. Compared with the existing approach interns of forecasting

future NEP, our approach works the best in prediction accuracy and efficiency.

Overall, Bayesian calibration method is an effective approach to calibrate ecosys-

tem models. With available data, I could estimate the unknown parameters along
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Figure 5.13.: Field observation (black) vs Predicted NEP (blue)

with their uncertainties. However, for a specific computer model, I need to investigate

the model itself and explore the real data thoroughly to make assumptions on the

emulator structure. In the future, I will extend current work to regional level with

all the five vegetation types: deciduous, boreal, coniferous, grassland, shrub land.

Then, I could evaluate our results in regional level. Furthermore, I will assess other

important carbon fluxes (e.g., gross primary production) as an additional output.
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Appendix A

�0 =

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1 0 0 0 0 0 0 0 0 0 0 0

�a1,2 1 0 0 0 0 0 0 0 0 0 0

�a2,3 �a1,3 1 0 0 0 0 0 0 0 0 0

�a3,4 �a2,4 �a1,4 1 0 0 0 0 0 0 0 0

0 �a3,5 �a2,5 �a1,5 1 0 0 0 0 0 0 0

0 0 �a3,6 �a2,6 �a1,6 1 0 0 0 0 0 0

0 0 0 �a3,7 �a2,7 �a1,7 1 0 0 0 0 0

0 0 0 0 �a3,8 �a2,8 �a1,8 1 0 0 0 0

0 0 0 0 0 �a3,9 �a2,9 �a1,9 1 0 0 0

0 0 0 0 0 0 �a3,10 �a2,10 �a1,10 1 0 0

0 0 0 0 0 0 0 �a3,11 �a2,11 �a1,11 1 0

0 0 0 0 0 0 0 0 �a3,12 �a2,12 �a1,12 1

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA
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and

�1 =

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

0 0 0 0 0 0 0 0 0 a3,1 a2,1 a1,1

0 0 0 0 0 0 0 0 0 0 a3,2 a2,2

0 0 0 0 0 0 0 0 0 0 0 a3,3

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

Appendix B

To fit a PAR(p), the first step is to select the order p. Here, we use AIC and

hypothesis test on ap+1,m = 0 to determine p. The results are reported in Table 8.

When p = 5, AIC reaches the lowest value and the p_value of a5,m = 0 is significant.

p_value of a6,m = 0 is not significant. Therefore, we will choose a PAR(5) with

seasonal intercept for the time dependent model output.

We also test for the periodicity in the autoregressive parameters, and the results

suggest that a PAR model fits better to the data.

Test for periodicity in the autoregressive parameters .

Null hypothesis: AR( 5 ) with the selected deterministic components.

Alternative hypothesis: PAR( 5 ) with the selected deterministic components.
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Table 8.: Order selection of PAR(p)

Criterion p

1 2 3 4 5

AIC 1494 1490 1500 1501 1473

p-value 0.1788 0.9573 0.6056 0.0165 0.7624

F-statistic: 1.47 on 55 and 158 DF, p-value: 0.0352 *

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Periodic integration test shows that there is no seasonal unit root. So, the model

process is not PIAR.

> nsdiffs(nep.avg.ts, test="ch") # average trend

[1] 0
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