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ABSTRACT 

Halcomb, Meredith E. Ph.D., Purdue University, May 2015. Elucidation of 
Pharmacologically Manipulated Responding in the Delay Discounting Task in High 
Alcohol-preferring Mice Major Professor: Nicholas Grahame. 
 
 
 

Impulsive behavior is the hallmark of many psychopathologies. Uncovering the 

neurobiological mechanisms driving impulsivity is paramount in the development of 

through the delay discounting (DD) task in both human and animal models. The present 

study is an examination of the predictive validity of the two primary types of DD 

procedures in animals, the Adjusting Amounts (AA) and within session Increasing 

Delays (ID) tasks. Methods: Subjects were administered either1.25 mg/kg d-

amphetamine (AMP), 1.5 g/kg ethanol (EtOH) or saline and tested in either the AA or ID 

method for 15 days to evaluate drug effects on impulsive behavior. Results: Stimulant 

administration resulted in a reduction of impulsivity in the AA group, but had no effect in 

the ID group. There was no effect on impulsivity of EtOH administration in AA or ID 

groups. Conclusion: Given the ability of stimulant administration to reduce impulsivity in 

clinical studies, the AA version of DD provides the best predictive validity for the animal 

model
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CHAPTER 1. INTRODUCTION 

1.1 Introduction 

 Impulsive behavior is an evolutionarily developed trait which motivates 

individuals to act in situations where they may have otherwise remained stagnant. In 

moderation, impulsivity drives conduct that is essential to survival, such as the ability to 

adapt to changing environments and deal with complex situations that require immediate 

action. Impulsivity has been defined as action without forethought or regard to 

consequences and may be delineated into separate, yet overlapping, constituent elements, 

including motor and cognitive impulsivity (Evenden 1999). The inability to physically 

inhibit a primed action is interpreted as motor impulsivity, while the disregard for future 

consequences or aversion to delayed rewards is representative of cognitive impulsivity. 

The fractionation of impulsivity is supported by findings in self-report studies. The 

Barratt Impulsiveness Scale (BIS) is categorized into smaller sub-scales representing 

these separate aspects of impulsivity, including motor impulsivity, non-planning 

impulsivity and cognitive impulsiveness, which maintain only moderate correlations with 

each other (Miller, Joseph et al. 2004). This segregation of impulsive drives allows 

researchers to develop more targeted methods for evaluation, ultimately increasing 

knowledge of the role of impulsivity in general behavior
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Unfortunately, impulsivity may also lead to detrimental behaviors that are 

prominent aspects of many psychological disorders. Bipolar disorder, compulsive 

disorders, attention deficit-hyperactivity disorder (ADHD) and substance use disorders 

(SUDs) are all characterized by heightened levels of impulsivity, which invariably 

contribute to the many maladaptive behaviors observed in these populations (Swann, 

Anderson et al. 2001; Alessi and Petry 2003; Dawe and Loxton 2004; Winstanley, Eagle 

et al. 2006). Impulsivity is considered a contributing factor in the high levels of substance 

abuse and incidents of suicidal behavior in patients suffering from schizophrenia 

(Dervaux, Bayle et al. 2001; Gut-Fayand, Dervaux et al. 2001). Impulsivity is a also a 

state-independent trait of bipolar disorder, influencing behavior regardless of manic or 

depressive episodes (Swann, Anderson et al. 2001). Drugs demonstrated to reduce 

impulsivity in animal models are effective in attenuating suicidal behaviors in bipolar 

populations, highlighting the significance of impulsivity in those behaviors (Goodwin, 

Fireman et al. 2003; Ohmura, Tsutsui-kimura et al. 2012; Halcomb, Gould et al. 2013). 

 Impulsivity is a dominant facet of ADHD, and a heightened level of impulsive 

behavior is one of the diagnostic criteria of the disorder (Wolraich, Hannah et al. 1996). 

ADHD populations typically exhibit deficits in both inhibition of pre-potent responding 

on a Stop Signal Reaction Task (SSRT) (Nigg 2003) and increased errors of omission on 

the Continuous Performance Task (CPT) (Advokat, Martino et al. 2007), both measures 

of motor impulsivity. When ADHD populations are analyzed with the (DD) task, the 

primary measure of cognitive impulsivity, they consistently display a preference for a 

smaller, immediate reward over a larger delayed reward, indicating an inability to delay 

gratification or appreciate future consequences (Sonuga-Barke, Taylor et al. 1992; 
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Solanto, Abikoff et al. 2001). This impulsivity trait is associated with numerous academic 

and social issues, including lower overall success in both verbal and mathematical arenas, 

and difficulties with aggression and social interaction, which can extend past adolescence 

into adulthood (Barkley, Anastopoulos et al. 1991; McKay and Halperin 2001; de Boo 

and Prins 2007). There is also evidence that children diagnosed with ADHD are more 

likely to develop SUDs and alcohol use disorders in adolescence and adulthood than age-

matched controls (Molina and Pelham 2003). Unfortunately, ADHD populations are not 

only more likely to develop SUDs, they are also less likely to commit to rehabilitation 

(Wilens, Biederman et al. 1998). 

 Not surprisingly, exaggerated impulsive behavior is also prominent in the 

pathogenesis of alcoholism and other SUDs (Moeller, Dougherty et al. 2001; Whiteside 

and Lynam 2009). Studies evaluating impulsivity with selfreport questionnaires, like the 

BIS or Eysenck Impulsiveness Questionnaire (EIQ), have demonstrated that scores 

reflecting elevated levels of impulsivity are correlated with earlier onset of alcohol 

consumption and increased frequency of binge episodes in adolescents (Lejuez, 

Magidson et al. 2010). In addition, higher scores on the BIS (indicating a higher level of 

impulsivity) also correlate with more severe symptoms and an earlier onset of alcoholism 

(Dom, Hulstijn et al. 2006).  

Alcoholic populations typically display elevated levels of impulsivity in 

behavioral measures evaluating both motor and cognitive impulsivity, as well. 

Individuals diagnosed as heavy drinkers displayed an inability inhibit responding in the 

CPT and the Stop Signal Task (SST), both of which measure motor impulsivity.  There is 

also evidence that a family history of alcoholism is associated with impulsive responding 
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in the DD paradigm, indicating effects on cognitive impulsivity, as well (Fallgatter, 

Wiesbeck et al. 1998; Petry 2001). Scores compiled from DD measures may also be used 

to accurately predict responses on the Alcohol Use Disorders Identification Test 

(AUDIT), highlighting the substantial correlation existing between these two behaviors 

(Murphy and Garavan 2011). In neurobiological terms, subjects from high-risk AUD 

families showed decreased right and left volume of the medial orbital-frontal cortex 

(mOFC) than subjects from healthy control families (Hill, Wang et al. 2009). The OFC is 

often implicated in emotion regulation and impulsivity, particularly in updating incentive 

values and perceived rewards (Winstanley, Theobald et al. 2004).  

This same trend is observed in animal models of impulsivity, in which more 

impulsive subjects self-administer higher amounts of drug than subjects displaying lower 

levels of impulsivity (Perry, Larson et al. 2005). Additionally, animals which display 

elevated levels of impulsive behavior also demonstrate addictive-like behavior, 

continuing to self-administer even in the face of aversive outcomes (Belin, Mar et al. 

2008). In a T-maze version of DD, animals that consistently responded in an impulsive 

manner (high impulsive) consumed significantly more of a 12% EtOH solution than two 

other groups (medium and low impulsive) (Poulos, Le et al. 1995). Tasks measuring 

motor impulsivity in animals have also uncovered evidence that subjects exhibiting 

difficulty with behavioral inhibition were more likely to self- administer cocaine than low 

impulsivity animals (Dalley, Fryer et al. 2007). 

 Given the demonstrated influence of impulsivity in the development and 

maintenance of alcoholism and other psychological disorders, increasing knowledge of 

underlying neurobiological mechanisms regulating impulsive behavior is paramount for 



4 

 

the structuring of viable treatment options. The dissimilation of impulsivity into separate 

factors aids in this endeavor. There are several primary measures of motor impulsivity in 

both human and animal models, including the CPT and its animal analogue, the 5 Choice 

Serial Reaction Time Task (5CSRTT), the Go No Go Task and the SST. Cognitive 

impulsivity has also been heavily investigated with the DD task which allows researchers 

to evaluate choices and responding in a systematic, behavioral form. It has been 

successfully adapted for use in animal models as well, allowing evaluation and 

manipulation of neural processes that are not available in human studies. 

1.1.1 Delay Discounting 

  DD is based on the premise that the ability of some reinforcer to influence 

behavior decreases as a function of the delay to its delivery (Ainslie and Herrnstein 1981). 

As the time for reward delivery becomes more imminent, the subject will reverse 

preference from the larger, delayed reinforcer to the small, but immediately available 

reinforcer. This reversal of preference and accompanying propensity to choose immediate 

over delayed rewards can be described empirically through the use of the hyperbolic 

discounting function. The equation is V = (A/1+kD), wherein V represents the reward 

value at delay D, A is the non-discounted subjective value of the reinforcer and k is a free 

parameter used to typify individual variations in impulsivity (Bickel and Marsch 2001). 

In a DD study, participants are asked to choose between a small, immediate reinforcer 

and a larger, delayed reinforcer. A persistent preference for the immediate reinforcer is 

thought to indicate a higher level of impulsivity. This choice ultimately results in 

suboptimal amounts of reinforcer, suggesting the participant is disregarding the 

consequences. The reinforcer amounts and delay lengths are titrated throughout a session 



5 

 

or across several sessions and the hyperbolic function is employed to determine 

discounting rates for individuals or groups.  

Although the influence of impulsivity in maladaptive behavior would ideally 

be accomplished through evaluation of human subjects, clinical studies present 

limitations that reduce their efficacy. They are often plagued with confounding 

variables and several pharmacological manipulations are not available for 

administration in human subjects; therefore, animal models can be a more practical 

method for evaluation of impulsivity. A key aspect of the viability of an animal model 

is its translatability to human results or predictive validity. Predictive validity is 

essential to establish the usefulness of the model. If data uncovered in an animal model 

cannot be translated to human subjects, its utility in research is severely hampered. The 

viability of an animal model rests in its ability to aid in understanding behavior or neural 

mechanisms driving behavior in humans; therefore, the subjects in those models must 

demonstrate similar behavioral changes or adaptations to those observed in human 

versions of the task.  

The evaluation of predictive validity is often determined through the use of 

pharmacological manipulations. Drug administration should produce similar effects on 

impulsivity in both human and animal populations. Pharmacological predictive validity 

has been established for animal models of several disorders, including depression and 

panic disorders (Jenck, Moreau et al. 1995; Willner 1995). A great deal of research has 

sought to establish the predictive validity of DD for its use in animal models. 

Traditionally, findings from these investigations have supported the translatability of 

DD (Monterosso and Ainslie 1999). Animal subjects tend to discount future rewards in 
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the same hyperbolic manner as humans, displaying a reversal in preference for the small, 

immediate reward as the delay to the large reward increases.  

Unfortunately, studies have thus far failed to definitively establish the predictive 

validity of DD through pharmacological manipulations. Numerous investigations into DD 

have revealed that while there are often behavioral changes associated with drug 

administration in the animal version of DD, these changes are not always consistent with 

changes observed in human populations (Winstanley 2011). These discrepancies alone 

are not sufficient to eliminate the suitability of the task; rather, they call into question 

particular aspects of the task which may be influencing results.  

Although the basic premise for DD is straightforward, the procedural methodology is 

more malleable, which may underlie the heterogeneity observed in results. There are 

numerous avenues for discrepancies, including housing environment, reward magnitudes, 

baseline impulsivity levels and the use of cue lights to signal a reward; however, the most 

prominent alterable aspect of the task is the method used to present the various reinforcer 

amounts and delay lengths. There are two primary versions of DD utilized in animal 

models: the adjusting amounts (AA) method and the within session increasing delays (ID) 

method.  

1.1.2 Adjusting Amounts 

 In the AA version of DD, the amount of reinforcer available immediately is 

titrated up and down based upon the responses of the animal, while the amount of 

reinforcer available after a delay does not vary. During the session, a choice of the 

immediate reinforcer will result in a reduction of reinforcer available immediately on the 

next trial. A choice of the delayed reinforcer increases the amount of reinforcer available 
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immediately on the subsequent trial. The length of the delay to the large reward remains 

stable throughout a single session. An indifference point is the amount of reward 

available on the immediate side when the subject is choosing both options equally. 

This is a measure of the subjective value of the delayed reward. These indifference 

points are established for several different delays and then used to create a discounting 

curve based upon the hyperbolic discounting equation ( Ru b i n s t e i n  2 0 0 3 ) . A 

disadvantage of this method is that testing requires several sessions since each session 

only represents one delay and animals are often tested for several sessions at each delay.  

1.1.3 Increasing Delays 

 The ID method is more straightforward. During one session, the amounts of 

reinforcer available immediately or after a delay remain unchanged, while the length of 

the delay increases across blocks of trials. This allows accumulation of data for several 

delays in one session; however, there is a major drawback investigators must contend 

with when implementing this type of DD. As a session begins, there is no delay to the 

large reinforcer, however, after a certain number of trials, the delay is initiated and is 

repeatedly increased across a one- or two- hour session. It is possible that responses are 

influenced through a contrast effect: the tendency for an animal to perceive a reward 

value as diminished or enhanced relative to normal as a result of exposure to a greater or 

lesser value (Bower 1961). In fact, recent research suggests that contrast effects are a 

prominent aspect of behavior in this task (Lattal and Smith, 2011). More recent evidence 

indicates that responding in this task may also be directed by perseverative behavior, 

resulting in consistent responding that is inflexible to delay implementation and entirely 

independent of impulsivity (Maguire, Henson et al. 2014; Tanno, Maguire et al. 2014). 
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1.2 Pharmacological Manipulations 

 Pharmacological manipulations are important tools in investigating underlying 

neurobiological mechanisms driving impulsivity. DD has been used to evaluate numerous 

neurotransmitter systems, brain regions and drug classes. In addition, these studies help 

provide predictive validity for animal models. Several investigations have demonstrated 

that both human and animal subjects discount future rewards in a hyperbolic manner; 

however, pharmacologically- driven alterations in behavior in the DD task in humans and 

animal subjects do not always replicate.  

1.2.1 Stimulants 

 Given the established ability of stimulant medications, such as d-amphetamine 

(AMP) and methylphenidate, to reduce impulsive behavior in ADHD populations 

(Greenhill, Kollins et al. 2006; Van der Oord, Prins et al. 2008) and the high prevalence 

of stimulant misuse in substance abusing populations, these drugs are the most commonly 

studied in both clinical and pre-clinical research (Maxwell and Rutkowski 2008).  

 In human studies, stimulants are typically successful at reducing impulsivity in 

the DD task (de Wit, Enggasser et al. 2002; Pietras, Cherek et al. 2003; Shiels, Hawk et al. 

2009); although patients with ADHD may present difficulty introspectively assessing 

behavior in a hypothetical rewards paradigm (Shiels, Hawk et al. 2009). Stimulants are 

also the mainline treatment for ADHD and are effective at reducing the hyperactive 

impulsivity aspect of the disorder (Castle, Aubert et al. 2007). This suggests that 

stimulant administration, as noted in clinical settings, results in a decrease in impulsive 

behavior.  
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drug responding on behavioral changes after administration, the data are not consistent. 

One study determined that only moderate levels of baseline impulsivity may be altered by 

drug exposure (Barbelivien, Billy et al. 2008). An alternate study observed that animals 

exhibiting high levels of baseline impulsivity exhibit a decrease in impulsive behavior 

and animals with low levels of baseline impulsivity will increase impulsive behavior after 

stimulant administration (Huskinson, Krebs et al. 2012). Another variable evaluated 

above is housing type. Whether group, pair or individually housed, no one type of 

housing was found to be consistently associated with either an increase or decrease in 

impulsivity.  

 Evaluation of the contribution of each of these factors to behavior revealed that 

only one component of the task was consistently associated with replicable results: the 

version of the task. When the AA task is administered, there was always a reduction in 

impulsivity after stimulant exposure (Richards, Sabol et al. 1999; Wade, de Wit et al. 

2000; Oberlin, Bristow et al. 2010). In contrast, presenting animals with the ID version of 

DD leads to either a decrease or increase in impulsive responding or no effect at all after 

stimulant administration (Evenden and Ryan 1999; Cardinal, Robbins et al. 2000; Isles, 

Humby et al. 2003; Winstanley, Dalley et al. 2003; Pitts and McKinney 2005; Winstanley, 

Theobald et al. 2005; van Gaalen, van Koten et al. 2006; Barbelivien, Billy et al. 2008; 

Koffarnus, Newman et al. 2011; Slezak and Anderson 2011; Huskinson, Krebs et al. 

2012; Maguire, Henson et al. 2014; Tanno, Maguire et al. 2014).  

More recent research has attempted to uncover possible effects of the order of 

presentation of the delay in the ID method. These studies have determined that if the 

delays are presented in an ascending order, as they are generally given, then AMP 
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exposure will result in a decrease in impulsivity; however, if the delay order is reversed 

and the session begins with the longest delay and decreases across blocks, then AMP 

administration results in an apparent increase in impulsivity (Maguire, Henson et al. 2014; 

Tanno, Maguire et al. 2014). A possible explanation is that the animal is perseverating on 

the lever that is associated with the best option in the first block of trials. AMP causes 

increases in perseverative behavior, increasing the likelihood that the results of this study 

are influence by this type of responding rather than a change in impulsivity (Evenden and 

Robbins 1983). Although the findings from Tanno (2013) and Maguire (2014) are 

intriguing, it is clear that not all studies utilizing an increasing order of delays uncover 

decreases in impulsivity. Thus far, there is no definitive research clearly indicating a 

consistent factor contributing to the discrepancies found in the stimulant literature.  

1.2.2 Alcohol 

Although the majority of pharmacological manipulation studies in DD evaluate 

effects of stimulant administration, behavioral response alterations after alcohol exposure 

are also investigated. Given the strong association between alcohol use disorders (AUDs) 

and heightened impulsivity levels, most studies seek to determine if impulsivity is a 

consequence of or a risk factor for alcoholism. Animal research demonstrates that 

animals selectively bred to prefer and consume pharmacologically relevant amounts of 

EtOH are significantly more impulsive than animals bred to avoid alcohol intake (Oberlin 

and Grahame 2009). In human studies, twin data also suggest that heightened impulsive 

behavior is significantly associated with SUDs (Anokhin, Golosheykin et al. 2011). 

These studies indicate a genetic component to impulsive behavior, but inherited versus 

state-dependent impulsivity are not mutually exclusive. Studies evaluating alcohol effects 





13 

 

the likelihood that the animal was adequately informed of the new contingencies in 

each block prior to choice (Evenden and Ryan 1999). In the Tomie (1998) study, 

only 50% of the rats were deemed to be sensitive to the delay, in that they 

consistently chose the immediate reward even when the delay to the large reward 

was 0 seconds. Although this is a very rare occurrence in the literature, the authors 

do not attempt to explain the phenomenon and it seems clear that some confounding 

variable likely contributed to this anomaly. It calls into the question the results since 

the animals apparently had great difficulty performing the task even prior to 

pharmacological manipulation. The animals in the Hellemans (2005) study were 

exposed to the delays in a descending, rather than an ascending order, in contrast to 

the majority of ID studies (Hellemans, Nobrega et al. 2005). There is evidence that 

the presentation order of the delays can completely alter response patterns and it is 

difficult to rely on findings that are generated from a protocol that is not in keeping 

with the generally accepted parameters (Tanno, Maguire et al. 2013).  

The Wilhelm (2012) study, the only investigation which employed the AA 

method, has two primary issues detracting from its results. The study only assessed 

responding at a 4 second delay, which is the median delay. This delay was evaluated 

to avoid floor or ceiling effects surrounding the lower or higher delays. The concern 

with using this delay is that there is a great deal of variability at median delay, 

making it more difficult to detect effects. In addition, the dose of EtOH administered, 

0.5 g/kg, was lower than any effective dose from previous studies and there is no 

evidence that this dose elevated blood alcohol to pharmacologically relevant levels. 

The significance of determining the influence of alcohol on impulsivity cannot be 
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denied, yet from the studies described here, there is as of yet no definitive resolution. 

A thorough examination of the effect of acute EtOH administration in both the ID 

and AA methods using doses of EtOH known to produce pharmacological effects 

would aid in illuminating this relationship more thoroughly.  

 As stated above, research evaluating the effects of alcohol administration on DD 

in human subjects is largely inconclusive; however, these studies were conducted in 

healthy populations, rather than samples with a family history of alcoholism or current 

alcoholics. A family history of alcoholism is associated with relatively elevated levels 

of impulsivity and assessing alcohol effects in these populations may potentially 

illuminate factors contributing to overconsumption in these populations (Linnoila, De 

Jong et al. 1989). Binge drinking has been repeatedly correlated with increases in 

impulsive behavior among college students (Balodis, Potenza et al. 2009; Carlson, 

Johnson et al. 2010), which is particularly problematic in alcoholic populations. 

Understanding the relationship between alcohol overconsumption an impulsive 

behavior would significantly increase the ability to develop treatment options and 

efficacy. 

 One method for evaluation of this association is through the use of animal 

models of alcoholism. The high alcohol-preferring (HAP) mouse lines have been 

selectively bred to prefer EtOH over water and typically display elevated levels of 

impulsive behavior in the DD task, compared to animals selectively bred to be low 

alcohol-preferring (LAP) (Oberlin and Grahame 2009). These traits make the HAP 

mice ideally suited for investigation of the effects of EtOH on cognitive impulsivity. 

Since they consistently display high levels of impulsive behavior, there is generally 
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little variability in responding within cohorts, increasing the ability to detect effects of 

pharmacological manipulation.  

Clearly the AA and ID procedures operate in drastically disparate fashions. 

However, at this time, there have been no investigations directly comparing the results 

from these two versions of DD. Although both methodologies yield discounting 

curves that are comparable with human findings, there are often discordant results 

found in studies using pharmacological manipulations. There are two primary 

differences between these methods that may contribute discordant findings. In the AA 

version, the investigator is able to derive a specific indifference point for each delay, 

which may lead to a more accurate description of behavior. In addition, the subject is 

allowed to titrate the amount of reinforcer available immediately, describing the 

subjective value of the delayed reinforcer, and is not required to adjust to new 

contingencies within a one- or two-hour session. This is particularly important when 

administering a drug which may impair short term memory or attentional processes. 

 During the ID version, the animal is rapidly exposed to increasingly longer 

delays and there is no mechanism for identifying an indifference point. In fact, this 

rather rapid method of increasing the delays within a session inherently supposes that 

the animal is able to correctly comprehend the new contingencies presented in each 

block and is responding with that knowledge. Although the ID version has been 

demonstrated to reflect impulsive responding in the same hyperbolic manner that 

human DD studies generate, recent evidence suggests that contrast effect and 

perseveration may be influencing behavior rather than impulsivity (LAS RESPUESTAS, 

DEMORADO et al. 2011). An evaluation of the possible differences in responding 
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prompted by the administration of a specific method of DD, particularly with 

pharmacological manipulations, will ultimately establish a better foundation for 

conclusions from those studies.  

1.3 Specific Aims and Hypotheses 

1.3.1 Specific Aim 1 

In order to evaluate the possible impact of task administration procedures on 

responding, a series of experiments was designed assessing impulsive behavior after 

stimulant or EtOH exposure in either the AA or ID method of DD. The first aim of this 

study was to evaluate the ability of both versions of DD to create a hyperbolic shift in 

preference to the immediate reinforcer when the delay to the larger reinforcer is increased. 

All animals were trained to perform a series of behaviors to receive reward and then 

assigned to either the AA or ID version of DD and administered EtOH, (AMP) or saline. 

It was hypothesized that both methods of DD would result in hyperbolic discounting. 

1.3.2 Specific Aim 2 

 Considering the controversy surrounding the results from stimulant administration 

in the DD task in animals, the primary goal of the second aim was to evaluate the effect 

of AMP administration in both versions of DD, when all other possible variables are 

identical. Other variables, previously investigated, such as the use of the cue light, the 

baseline levels of impulsivity and the housing conditions will remain constant between 

the two groups. It was expected that AMP administration would lead to a decrease in 

impulsive responding in the AA condition, particularly at the longer delays. This 

expectation is supported by previous work both in the literature and our own lab 

(Wade, de Wit et al. 2000; Oberlin, Bristow et al. 2010).   
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 The ID version of DD is more difficult to predict. As described above, previous 

work with this method has sought to uncover possible confounds in administration 

practices to explain discrepant findings. These include varying housing conditions, 

evaluating baseline levels of impulsivity, the use of cue lights to signal a response or 

strain differences (Cardinal, Robbins et al. 2000; Barbelivien, Billy et al. 2008; 

Huskinson, Krebs et al. 2012). While all of these studies have added to the overall 

picture, none of them have definitively explicated the conflicting results and 

replicating results has proven difficult.  

 There have been no direct comparisons between AA and ID where the version 

of task is the only differing variable, with all others being held constant. Although the 

ID method of DD creates a decrease in preference for the delayed reward across time, it 

is possible that other factors, such as attention, perseveration and contrast, may be 

influencing responding as much as, if not more than, impulsivity. There is evidence that 

AMP withdrawal results in an increase in successive negative contrast effects, which 

suggests that there are likely effects of repeated exposure to AMP (Barr and Phillips 

2002). In addition, AMP is known to play a role in attention and perseveration, which 

may hamper the ability of the animal to perform in the ID task (Evenden and Robbins 

1983; Weiner, Lubow et al. 1988). If the subjects behave in a perseverative or habitual 

manner, the results were hypothesized to reveal an apparent decrease in impulsivity after 

AMP administration due to the inflexible responding on the large, delayed reward lever. 

If, in contrast, the animal shaped responding based upon a negative contrast effect, there 

was predicted to be either no effect or an increase in impulsivity.  
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1.3.3 Specific Aim 3 

Although human studies in DD have not established the effect of acute alcohol 

administration on cognitive impulsivity, the research from the animal model has revealed 

a pattern of delineated results based upon DD version. Given the previous work 

conducted in our lab and the work in other labs utilizing the AA procedure , an effect of 

acute EtOH administration on impulsivity was not expected in the AA version of this task 

(Wilhelm and Mitchell 2012).  

An inherent component of the ID version of DD is time perception. The delay to 

the large reward increases in approximately 10 – 20 minute intervals, forcing the subjects 

to adjust responding in a more rapid manner than in the AA task. EtOH affects time 

perception through a deceleration of time sense, possibly decreasing the preference for 

the large, delayed reward by increasing the perceived wait to delivery (Tinklenberg, Roth 

et al. 1976) Given the effects of EtOH on attention and spatial working memory, it was 

hypothesized that acute EtOH exposure would result in an increase in impulsivity in the 

ID groups (Givens 1995; Givens and McMahon 1997). The premise of the ID task 

includes the ability to understand new contingencies and focus attention on those current 

parameters, which would be greatly hampered by EtOH administration. These deficits 

were predicted to result in an increase in preference for the immediate reward in the ID 

task. 

These studies were designed specifically to ascertain the most reliable animal 

model of DD and to confirm the impact of administration procedures on responding when 

all other possible variables are held constant. An animal model is considered reliable 
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when its results may be translated to clinical studies and used to increase knowledge 

about neurochemical or behavioral responding in humans.  
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CHAPTER 2. METHODS 

2.1 General Methods 

2.1.1 Training 

 All mice were trained identically to operate the manipulanda over the course of 

four stages. The operant chambers are in sound and light attenuating boxes. During Stage 

1, the chamber was fitted with a nose poke illuminated with an LED light and a sipper 

descender containing a 0.312% saccharin in tap water solution located in the center front 

plate of the chamber. The animals were given non-contingent access to the reinforcer for 

10 seconds every 30 seconds and any nose poke resulted in 10 seconds of access. In 

Stage 2, access to reinforcer is only available upon the animal completing a nosepoke. 

The animal was given 5 seconds of access and all nose pokes resulted in reinforcer 

administration. Once animals completed a minimum of 18 trials per one-hour session, 

they progressed to Stage 3. During this stage, once a nosepoke was completed and 

reinforcer access ended, the nosepoke light was extinguished and the chamber was in a 

timeout state for 30 seconds. Nose pokes during the timeout were recorded but did not 

result in reinforcer delivery. After subjects met the criterion of 18 trials completed they 

were moved to Stage 4. At this point, levers were inserted on either side of the nosepoke 

apparatus directly beneath LED lights. For each trial, the animals had to perform a 
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nosepoke, which extinguished the nosepoke light and resulted in illumination of the LED 

lights above each lever. When the animal selected a lever, the other lever light was 

extinguished and the animal was given reinforcer access for 5 seconds. After reinforcer 

delivery, a 30 second timeout began. All nose pokes and lever presses were recorded. 

When the subjects reached a criterion of at least 18 completed trials for three out of four 

consecutive days, they were separated into AA and ID groups balanced across mean 

completed trials for the least three days of training. Because the lever associated with the 

delay to reinforcement may create a conditioned place aversion, delay levers were 

assigned to the preferred lever for each mouse. Each of the protocols for the DD tasks 

were designed to represent the most common practices employed in previous studies. 

 

2.1.2 Adjusting Amounts Procedure 

 In this version of DD, when a session begins, a choice of the immediate lever 

results in one second of access to the reinforcer immediately. A choice of the delayed 

lever results in two seconds of access to the reinforcer after a set delay. Each choice of 

the immediate reinforcer decreases access time to the immediate reinforcer on the next 

trial by 0.2 seconds. A choice of the delayed reinforcer increases the access time to the 

immediate reinforcer on the next trial by 0.2 seconds. In this way, the amount of 

reinforcer availability titrates up and down across the session until the subject reaches a 

point when it chooses both sides equally. The amount of reinforcer (adjusted amount) 

available at that time is called the indifference point and represents the subjective value 

of the delayed reinforcer. The delay to the large reinforcer remains stable throughout the 

session and each delay is tested for several consecutive days. 
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 During training, the delay is set at 0 seconds and the animal must demonstrate that 

it has magnitude discrimination. In other words, when there is no delay to the large 

reinforcer, the subject should be choosing the large reward the majority of the time. This 

is determined by an adjusted amount of at least 1.6 for three out of four consecutive days. 

High adjusted amounts are indicative of a preference for the large or delayed reinforcer. 

Once an animal has demonstrated magnitude discrimination and completed 18 or more 

trials in one session, the subject moves to the testing phase wherein delays are 

incorporated for the large reinforcer. The primary dependent variable is the indifference 

point for each animal. Trials completed and volumes of reinforcer consumed are also 

evaluated.  

2.1.3 Increasing Delay Procedure 

 In the ID task, there are a set number of trials per session and the reinforcer sizes 

remain at 0.5 seconds immediately or two seconds of access availability after the delay. 

The session is broken up into five blocks of 10 trials each, for a total of 50 trials. The first 

two trials of each block are forced choice for the immediate and delayed reinforcers. 

During the first block, there is 0 second delay to the large reinforcer and it is increased 

across the blocks.  

 Each trial consists of a nose poke and a lever press and is exactly 72 seconds long, 

which includes an inter-trial interval (ITI). The length of the ITI is dependent upon how 

long it takes the subject to complete the trial. The subjects have 20 seconds to initiate a 

nose poke. If they fail to, the light is extinguished and the chamber moves to the ITI state 

until the next trial. If a nose poke is performed, the nose poke light is turned off and the 

LED lights above the levers illuminate. The animals have 10 seconds to complete a lever 
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press. If they fail to complete a lever press, the lights are extinguished and the chamber 

returns to the ITI state until the next trial. If the animal chooses a lever, the light above 

the other lever is turned off and the sipper tube descends. Once the sipper access is 

concluded, all lights are extinguished until the next trial.  

The primary dependent variable is the percent choice of the large reinforcer in 

free choice trials in each block. In order for the subject to proceed to the testing phase, 

the subject must demonstrate magnitude discrimination at the 0 second delay, choosing 

the large reward at least 85% of the time in the first eight free choice trials. They must 

also demonstrate a discounting curve, choosing the delayed amount less than 35% of the 

time at the longest delay. In addition, the animal was required to complete at least four 

free-choice trials in a block for those data to be considered accurate measures of choice 

for that block. 

2.2 Pilot Study 

2.2.1 Subjects 

For the pilot study, conducted in order to verify the ability to detect a discounting 

curve in high alcohol-preferring (HAP) replicate line II mice in the ID version of DD, 12 

male and 12 female HAP II mice, born between 1/1/14 and 1/12/14, were trained in the 

ID task. Training began when the animals were ~ 45 days old. They were individually 

housed and kept on a reverse light/dark cycle with lights out at 7:00 am and back on at 

7:00 pm. They were given ad libitum access to food and access to water for two hours per 

day.  
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2.2.2 Methods 

The animals were trained in the ID method outlined above. Delays to the large 

reinforcer were initially set at 0, 2, 4, 8 and 12 seconds. These delays were based upon 

previous research in our lab and available literature from other labs using mice rather 

than rats (Isles, Humby et al. 2003). The training progressed as outlined above, however, 

the mice were not consistently choosing the large reward at the 0 second delay and the 

trial numbers were extremely low. In order to encourage the mice to choose the large 

reinforcer, and to increase trial numbers, the delays were lowered to 0, 1, 2, 4 and 8 

seconds. After 11 days of ID training, the animals were still not completing enough trials, 

so the saccharin concentration was increased from 0.032% saccharin in tap water to 0.32% 

saccharin in tap water, which is the preferred concentration for HAP mice (Oberlin, Best 

et al. 2011). Access times for the reinforcers were 0.5 seconds for an immediate 

reinforcer and 2.0 seconds for the delayed reinforcer. This ratio of 3:1 for reinforcer sizes 

is typical in many ID studies, although there is no specific standard.  

2.2.3 Statistics 

 In order to determine gender influence, two repeated measures ANOVAs were 

run examining the percent choice of the large reward and trials completed per delay block. 

These were 2 X 5 designs used to evaluate any possible effects or interactions of sex and 

delay on responding. Following these analyses, two repeated measures ANOVAs were 

run to assess the effect of delay on percent choice of the delayed reward and trials 

completed per delay block, collapsed across sex. Follow up t-tests were used to examine 

differences between the 0 second and 8 second delay in percent choice of the large 

reinforcer and number of trials completed. Also, a paired samples t-test was used to 
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analyze any changes in trial numbers completed after delays were lengthened and 

saccharin concentration was increased.  

A paired samples t-test was conducted to compare volume of saccharin solution 

consumed during the session prior to ID training and on the last day of ID training. An 

increase in volume consumed would suggest a devised strategy to increase saccharin 

access and demonstrate the ability of this saccharin reinforcer to motivate behavior. In 

addition, since this task has not been evaluated in HAP mice, it is helpful to determine the 

mean amount of solution consumed without any type of manipulation. To identify 

vigilance decrement, a paired samples t- test was used to analyze mean nosepoke 

latencies in the first block of trials compared to the last block of trials. Vigilance 

decrement is the tendency for subjects to increase response time across the course of a 

single session, decreasing the number of trials completed as the session comes to a close. 

This may be particularly problematic in the ID task since it results in significantly fewer 

exposures to the longest delay. All of these factors may be influenced by pharmacological 

manipulations in future studies.  

2.2.4 Results 

After 39 days of training, 14 mice out of 24 were able to meet criteria of greater 

than 85% preference for the large reward at 0 second delay and less than 35% choice of 

the large reward at the 8 second delay. Three mice were removed for failure to meet 

criteria to begin ID training (not completing the nose poke, lever press chain) and five 

were removed for failure to demonstrate magnitude discrimination. The remaining two 

mice were removed for continuing to choose the large reward at the longest delay, 

indicating a lack of discounting. 
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6/11/14 in cohort 1 and 8/20/14 and 8/29/14 in cohort 2, hereafter referred to as cohorts 1 

and 2, were individually housed and kept on a reverse light/dark cycle with lights out at 

7:00 am and back on at 7:00 pm. They were restricted to two hours of water access per 

day, but given ad libitum food access. Subjects were approximately 45 – 60 days old 

when training began. 

2.3.2 Drugs 

  The AMP dose was set at 1.25 mg/kg dissolved in isotonic saline. The 1.25 

mg/kg injection dose was determined to be a dose which most often results in 

pharmacological alteration of behavior in previous work; therefore it was be the only 

dose of AMP administered (Winstanley, Eagle et al. 2006; Oberlin and Grahame 2009). 

Lower doses may produce no effect while higher doses interfere with responding and 

may induce stereotypy (Porrino, Lucignani et al. 1984; Weiner, Lubow et a1988) 

 For the EtOH groups, the low dose was set at 1.5 g/kg of 20% EtOH in isotonic 

saline and the high dose was 2.0 g/kg. The 1.5 g/kg dose is necessary to maintain contact 

with earlier studies mentioned above; however, the HAP mouse lines have demonstrated 

an ability to metabolize EtOH at rates exceeding other strains. To ensure that the animals 

are maintaining pharmacologically relevant EtOH blood levels, the 2.0 g/kg dose was 

also administered. 

In this experiment, animals were trained as outlined above and then divided into 

AA or ID groups, balanced across mean trials completed during training. This ensured 

that both high and low performing animals were present in equal amounts in both groups. 

Delayed levers were assigned based upon side preference during Stage 4 training. In 

order to compensate for a possible conditioned place aversion to the delayed lever, the 
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lever the subject prefers during training was assigned as the delayed lever for both the ID 

and AA groups.  

The subjects in the AA group were trained according to the protocol described 

above. Briefly, during the AA training phase, the subjects could adjust the immediate 

reinforcer access time up or down based upon responding, which is termed the adjusted 

amount. At the beginning of the session, a response on the immediate lever resulted in 

one second of access to saccharin reinforcer (0.32% saccharin in tap water) and a 

response on the delayed lever resulted in two seconds of access. There was no delay to 

the large reward during this training. Importantly, any time during the session that the 

subject chose the same lever twice in a row, the subject was forced to choose the opposite 

lever on the following trial. Only the light for that lever was illuminated and responses on 

the other lever had no effect. This helps prevent perseveration by consistently reminding 

the animal what the contingencies are for the opposite lever and does not result in any 

titration of the immediate reward. Animals were trained in this method until they reach 

the criteria of a minimum adjusted amount of 1.6 seconds and 18 trials completed in one 

session. 

 Based upon the parameters established in the pilot study, the animals in the ID 

groups were exposed to initial delays of 0, 1, 2, 4 and 8 seconds, using a saccharin 

concentration of 0.32% saccharin in tap water with reinforcer access times of 0.5 seconds 

for an immediate lever press and two seconds of access for a delayed lever press. 

Although this framework resulted in discounting behavior in the pilot study, the subjects 

in cohorts 1 and 2 were not demonstrating discounting curves, even after over 25 days of 

ID training. The majority of subjects were responding on the delayed lever during every 
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delay block. In order to increase discounting behavior, the delays were doubled, 

becoming 0, 2, 4, 8 and 16 seconds. This change resulted in a sharp decrease in 

preference for the large reward across delay blocks. However, a total of 16 subjects in 

cohort 2 were still systematically choosing the delayed lever; therefore, two methods 

were implemented to subvert this behavior. First, since delay order presentation impacts 

responding, all animals were presented the delay blocks in a descending order (16, 8, 4, 2 

and 0 seconds) for 2 days. This exposes the subjects to the aversive, long delay condition 

during the first block of trials, promoting choice of the immediate lever. Next, the delay 

blocks were returned to an ascending order and the delayed lever was removed from the 

operant chambers. These methods were instituted to remind the subject what the 

contingencies were for a response on the immediate lever. Although the first two trials of 

each block are forced-choice trials, there is no guarantee that the animal will complete 

those trials, severely limiting the exposure to immediate reinforcement. These strategies 

altered behavior in 14 of the 16 animals, allowing them to continue to the drug testing 

phase. 

When training was complete for both groups, they were further subdivided into 

four drug administration groups, balanced across mean adjusted amounts for the AA 

group and percent choice of the delayed reward at the 0 second delay for the ID group: 
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CHAPTER 3. STATISTICS 

3.1 AA groups 

 Two repeated measures ANOVAs were used to identify effects of gender on 

responding. These were 2 X 5 designs with sex as the independent variable and adjusted 

amounts and trials completed as dependent variables. All other tests were conducted 

collapsed across sex. After eliminating gender effects, repeated measures ANOVAs were 

used to assess effects of drug administration on Adjusted Amount (AA), trials completed 

and volumes of saccharin reinforcer consumed during the session. Single k values 

representing the impulsivity level for each mouse, integrating choices over all delays, 

were calculated according to the formula: Mean Adjusted Amount = Delayed Reinforcer 

Magnitude/1 + (k*Delay). Larger values of k indicate steeper discounting. Mice with 

higher levels of impulsivity will generate steeper discounting curves. In addition, 

goodness of fit values, collapsed across groups, were calculated to determine how well 

the hyperbolic discounting functions describes the data. Independent samples t - tests 

were used to analyze the k values in SAL versus AMP group and the SAL versus EtOH 

group. A repeated measures ANOVA was also used to analyze delay and drug effects on 

response latencies. In addition, independent samples t-tests were used to analyze response 

latencies between all groups at the 0 second delay. In addition, Observed Power statistics 

were calculated to ensure group sizes were sufficient for detection of effects.
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3.2 ID groups 

 Gender effects on percent choice of the delayed reward and trials completed per 

delay were evaluated with repeated measures ANOVAs. After analyzing the effect of 

gender, all further studies were collapsed across sex. Repeated measures ANOVAs were 

used to assess effects of drug and delay on percent choice of the delayed reinforcer and 

trials completed per delay. A repeated measures ANOVA was also used to analyze 

differences in percent choice of the large reinforcer in the 0 second delay block for all 

groups before drug exposure and after drug exposure. In addition, independent samples t 

– tests were used to assess differences at the 0 second delay between the SAL and EtOH 

groups during drug testing. Paired samples t-tests were also run to examine volume 

saccharin consumed on the final day of training and the final day of drug testing. Given 

the small sample sizes in the ID groups, Observed Power was also calculated to 

determine if the analyses had enough power to detect drug effects on percent choice of 

the delayed reward and number of trials completed per delay block. Correlations were 

also used to evaluate relationships between percent choice of the delayed reward and 

number of trials completed per delay block. To detect effects of repeated drug exposure 

on choice of the delayed reward and trials completed, repeated measures ANOVAs were 

run in a 3 X 15 design, with drug administered being the independent variable and 

percent choice or trials completed daily were the dependent variables. Response latencies 

were also analyzed with a repeated measures ANOVA to identify effects of drug on 

response times across delays. The sample sizes for all groups within the ID task were 

extremely modest, which decreased the ability to detect drug effects. 
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3.3 AA and ID GROUPS 

 One key aspect that differs between these tasks, and which may have greatly 

affected responding, is the completion of forced choice trials. While the ID version 

presents the subjects with forced choice trials at the beginning of every new block of 

trials, the completion of those trials is not mandatory. If the subject fails to complete the 

trials, the program simply continues to the next trial after a total of 72 seconds. On the 

other hand, in the AA version, if the subject chooses one option twice in a row, the next 

trial is forced choice on the alternate option and the subject must complete the trial in 

order to continue to a free choice trial. Paired sample t-tests were used to evaluate 

differences in completion of forced choice immediate and delayed trials in the both the 

AA and ID versions. This was followed by independent samples t-tests comparing 

completion total forced choice trials completed.  

 Another aspect that differed between the two groups was the number of subjects 

per group. The primary factor in this difference was the high attrition rate in the ID 

groups. During training, approximately 50% of the subjects in the ID group never met 

criteria for advancement to the drug test phase. In order to assess the association between 

DD group and attrition, a chi square test was administered using the total number mice in 

each group at the start of training and the number remaining during the drug test phase.
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CHAPTER 4. RESULTS 

4.1 Attrition 

The chi square test found a significant association between the DD group and 

attrition rates, with subjects in the ID groups being more likely to be removed from the 

study, p < 0.001. In the ID groups, a total of 34 mice were removed from the study for 

failure to meet criteria. In the AA groups, only 17 mice were removed prior to drug 

testing. 

4.2 AA Groups 

Repeated measures ANOVAs found no main effect of sex on either AA, F(1,30) 

= 0.08, p > 0.05, or number of trials completed F(1, 30) = 0.30, p > 0.05. There were also 

no interactions of sex and delay on AA, F(4, 124) = 1.20, p > 0.05 or trials completed, 

F(4, 124) = 0.53, p > 0.05. Collapsing across sex, further repeated measures ANOVAs 

revealed a main effect of delay on AA, F(4, 120) = 51.14, p < 0.001, with AA decreasing 

across delay (Figure 6). There was no main effect of drug on AA, F(2, 30) = 0.46, p > 

0.05, however, there was a non-significant trend for the interaction of drug and delay, F(8, 

120) = 1.98, p = 0.06. A Tukey’s post hoc analysis found no significant differences 

between drug groups on AA, p > 0.05. Although there was no main effect of drug on AA, 

independent samples t – tests examining the k values of each group found a significant 
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4.3 ID Groups 

Repeated measures ANOVAs found no effect of sex on percent choice of the 

delayed reward, F(1,21) = 0.03, p > 0.05, nor was there an interaction of sex and delay on 

percent choice, F(4,84) = 1.62, p > 0.05.There was also no main effect of sex on number 

of trials completed, F(1,21) = 1.44, p > 0.05 or an interaction of sex and delay on trials 

completed, F(4,84) = 0.39, p > 0.05. Given these results, all other analyses were 

collapsed across sex. 

 There was a main effect of delay on percent choice of the delayed reinforcer, with 

preference for the delayed reinforcer decreasing as delay increased, F(4,80) = 28.10, p < 

0.001; however, there was no significant main effect of drug, F (2,20) = 2.82, p > 0.05 

(Figure 10). There was a significant interaction of drug group and delay, F(4,80) = 2.17, 

p < 0.05 and a Tukey’s post hoc analysis found a non-significant trend toward a 

difference between the SAL group and the 1.5 g/kg EtOH group, with the EtOH group 

showing lower percent choice, p = 0.07.  

A repeated measures ANOVA found a significant difference in percent choice for 

the delayed reward at the 0 second delay from pre-drug training in all groups, F(2,20) = 

6.98, p < 0.01. During the 0 second delay block under drug testing, all groups 

significantly decreased percent choice for the delayed reward compared to training. 

While the observed power to detect an interaction between delay and drug group was 

high, 0.82, the observed power to detect drug effects alone was only moderate, 0.48.  
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CHAPTER 5. CONCLUSIONS 

5.1 General conclusions 

 Specific aim 1 of this study predicted that both the ID and AA versions of DD 

would result in a decrease in preference for the large reward as delay to the reward 

increased, which was supported by the findings here. Both types of DD created a main 

effect of delay, with subjects decreasing preference for the large, delayed reward as delay 

increased.  

Specific aim 2 proposed that AMP administration would result in a decrease in 

impulsive responding in the AA group, but would not decrease impulsivity the ID group. 

As predicted, there was no decrease in impulsive responding in the ID group after AMP 

administration, since there was no significant difference between the AMP and SAL 

groups in percent choice of the delayed reward at any delay. AMP administration in the 

AA group resulted in a significant decrease in discounting, as indicated by the lower k 

values in the AMP group versus the SAL group. This implies that AMP administration 

resulted in lower levels of impulsivity as measured by the AA task, further supporting the 

hypothesis of specific aim 2.  

Specific aim 3 hypothesized that EtOH administration would have no effect on 

impulsivity in the AA group, but would create an increase in impulsive responding in the 

ID group. Although this hypothesis was partially supported by the finding of no effect on 
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impulsivity in the AA groups, neither in adjusted amounts nor k values, there was 

also no effect on impulsivity found in the ID groups. The absence of effect of EtOH on 

impulsive responding in the ID task is likely perpetrated by a lack of power to detect 

effects, as described above.  

5.2 Drug effects 

5.2.1  Specific Aim 2 

5.2.1.1 AA Group 

Although there was no significant effect on adjusted amounts in the AA task, the 

AMP group had significantly lower k values. Subjects with higher k values discount 

rewards at a steeper rate and the k value is used to describe the discounting curve for 

individuals or groups of subjects. This difference implies that despite the lack of effect 

demonstrated for adjusted amounts, subjects in the AMP curve were not discounting as 

steeply as subjects in the SAL group. Since this indicates that there is indeed a difference 

between the AMP and SAL groups, it is possible that a larger cohort may have attenuated 

the impact of the high rates of variability and allowed detection of effects on adjusted 

amount. It is unlikely that this effect was driven by motor or motivational effects, since 

there were no differences in the number of trials completed or the latency to respond. 

There was a decrease in volume of saccharin consumed during the session; however, this 

was likely due to the appetite suppressant effects of AMP administration (Epstein 1959). 

These findings are consistent with previous work evaluating the effect of AMP on 

impulsivity utilizing the AA task and strengthen the predictive validity of the method 

(Wade, de Wit et al. 2000; Oberlin, Bristow et al. 2010).  
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5.2.1.2 ID Groups 

There was no significant difference in percent choice of the delayed reinforcer 

between the AMP and SAL groups in the ID task. Since there were also no significant 

differences in trials completed or response latencies, it is possible that some extraneous 

variable was impairing the ability to detect effects. Two primary concerns are the effects 

of injections themselves and insufficient group sizes.  

Previous studies, which did find reductions in impulsive responding with the ID 

version typically used cohort sizes of at least 12 -14 subjects per group (Evenden and 

Ryan 1999; Cardinal, Robbins et al. 2000; Koffarnus, Newman et al. 2011). 

Unfortunately, the difficulty associated with training the animals to criteria greatly 

reduced the number of subjects available for testing. The current study was only able to 

provide 8 mice for AMP administration. Not only does the small sample size reduce the 

power to detect effects, power was also further hampered by high levels in variability. 

This is reinforced by the low to moderate level of observed power calculated. Increasing 

the cohort size would increase the power to detect effects, if any, and reduce the impact 

of variability in responding.  

During drug testing, there was a significant difference in the percent choice of the 

delayed reward from pre-drug training in both the AMP and SAL groups at the 0 second 

delay. This indicates that the change in response behavior was an effect of the injection 

itself, rather than an effect of AMP exposure. The change in behavior at the 0 second 

delay in the ID groups reduces the ability to detect effects as the delay increases. A 

possible way to circumvent this would be to administer the drug 10 - 15 minutes prior to 
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testing, as seen in other studies (Evenden and Ryan 1996; Winstanley, Theobald et al. 

2005).  

While previous work has shown that repeated AMP administration leads to 

perseverative behavior, there was no evidence that repeated exposure to AMP affected 

perseveration in the drug testing phase of the study(Evenden and Robbins 1983). There 

was no significant change in responding across the 15 day testing period and no 

indication that the subjects were perseverating on a specific lever, since there was a 

decrease in preference for the large reinforcer as the delay increased during the session.  

5.2.2 Specific aim 3 

5.2.2.1 AA Group 

Specific aim 3 predicted there would be no effect on impulsive responding 

following EtOH administration, in adjusted amounts or k values, which was validated 

here and is consistent with previous work evaluating the effects of acute EtOH exposure 

in the AA paradigm in animals (Wilhelm and Mitchell 2012). This finding is also 

consistent with results from clinical studies utilizing the AA version of DD (Richards, 

Zhang et al. 1999; Reynolds, Richards et al. 2006). Although anecdotal evidence would 

suggest a high correlation between an increase in impulsive behavior and alcohol intake 

(Duffy 1995), there is evidence that this association may only be evident is tasks 

involving high levels of conflict with excessive levels of alcohol intake in human subjects 

(Steele and Southwick 1985). Consistent with that observation, the animals in the 1.5 

g/kg dose in this study displayed a non-significant trend toward increased impulsivity at 

the longest delay.  
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Although there was no effect on the mean number of trials completed, the 

latencies to initiate a new trial were significantly longer in the EtOH group than the SAL 

group across delays. In addition, the subjects in the EtOH group consumed significantly 

lower amounts of saccharin reinforcer than the SAL group. These findings are likely a 

result of the motor impairments often associated with EtOH administration. There is 

evidence that even the moderate dose used here can have depressant effects on animals 

selectively bred to prefer alcohol (Waller, Murphy et al. 1986). These data confirm that 

while there was no effect on impulsive behavior, subjects were experiencing 

pharmacological effects of EtOH. 

5.2.2.2 ID Group 

 Contrary to the hypothesis in Specific aim 3, there was no increase in impulsivity 

after EtOH administration in the ID task. There were also no significant differences in 

number of trials completed per block or response latencies. Similar to the findings in 

Specific aim 2, there are likely several contributing factors affecting results here. The 

most probable element influencing results was the extremely modest sample size. ID 

studies finding an increase in impulsive responding after EtOH exposure had sample 

sizes ranging from 12 – 15 animals per group (Evenden and Ryan 1996; Tomie, Aguado 

et al. 1998). The group size for EtOH administration in the present study was only 8 

subjects, and greatly reduces the ability to detect effects, as noted by the low power 

established above. In addition, responding in the EtOH group was extremely variable 

between subjects.   
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There was also a significant decrease in percent choice of the delayed reward at 

the 0 second delay block compared to pre-drug training. As this decrease was also present 

in the SAL group, it was likely an effect of the injection itself. Since the 0 second delay is 

only tested for the first 12 minutes of the session, this change in behavior greatly inhibits 

the ability to accurately analyze responding for this delay. Previous work analyzing acute 

EtOH effects on impulsivity in ID task administered the drug 15 minutes prior to testing 

and did not observe this difference in responding at the 0 second delay (Evenden and 

Ryan 1996). This earlier work did not find this decrease in preference at the zero delay. 

Since there was no correlation between the percent choice of the delayed reinforcer and 

number of trials completed, the results suggest that EtOH was inhibiting the ability of 

subjects to demonstrate magnitude discrimination.  

Lastly, EtOH not only creates motor impairments, it also impacts both spatial and 

working memory through disruption of hippocampal-dependent behaviors (Givens and 

McMahon 1997). The differences observed at the 0 second delay may reflect an influence 

of EtOH on the subject’s ability to complete the forced choice trials and remember those 

contingencies during the free choice trials. 

5.3 Comparison between AA and ID groups 

Direct comparison of responding between the AA and ID versions of DD is 

limited, given the inherent differences in administration. For instance, while both types of 

sessions were one hour in length, giving subjects the same amount of exposure to all 

delays, the method of presentation of those delays may present problems, particularly 

when analyzing effects of acute pharmacological manipulations. In the AA version, there 

is only one delay to the large reward for the entire hour, allowing the subject ample time 
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to recover from any negative injection effects. In the ID version, the behavior during the 

12 minutes of access to the 0 second delay was hampered by injection effects, rendering 

data from that delay block unreliable. Additionally, it is not possible to analyze the 

volume of saccharin reward consumed during the session across delays in the ID version. 

 In the AA version of the task, there was a significant decrease in volumes 

consumed as the delay increased, which was not accompanied by any decrease in trial 

numbers completed. This may represent a decline in motivation at the longest delay, 

which cannot be measured in the ID task. Finally, the lengths of the actual delays to the 

large reward were twice as long in the ID task as in the AA task. Although this difference 

was instituted simply to aid in successful training of the ID mice, these delays are more 

similar to previous work done in mice, which allowed for greater contact with established 

literature (Isles, Humby et al. 2003).  

 One feature compared between ID and AA groups was the number of forced 

choice trials completed. Subjects in the ID groups completed significantly fewer forced 

choice trials during the session. This is problematic since the forced choice trials serve to 

decrease perseveration, which was particularly strong in the ID task. Unfortunately, the 

available literature from previous work does not describe or mention completion of 

forced choice trials, so it is unclear if this aspect impacts results consistently. 

 Finally, although the study began with equal numbers of subjects in the ID and 

AA groups, there were significantly smaller group numbers in the ID groups during the 

drug test portion due to the high rate of attrition. Subjects in the ID groups were 

consistently failing to demonstrate discounting behavior. Instead, they were choosing the 

delayed reward throughout the session. This type of behavior was also observed in a 
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previous study assessing EtOH effects on impulsivity in the ID task (Tomie, Aguado et al. 

1998). Rather than removing the subjects from the study, they were labeled “insensitive 

to delay” and continued into the drug test phase. The original purpose of that study was to 

associate impulsive responding in the DD task with autoshaping, thus the subjects not 

discounting future rewards were an essential aspect of the investigation. The development 

of the Tomie (1998) study suggests that non-discounting behavior is often an issue in the 

ID task, a problem not observed in studies implementing the AA version of DD. 
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CHAPTER 6. DISCUSSION 

6.1 Discussion 

 This study is the first to directly analyze the impact of DD administration type on 

responding and the results clearly suggest that the AA version of DD has greater 

predictive validity than the ID version. In clinical studies, stimulant administration is 

typically associated with a decrease in impulsive behavior, which is consistent with these 

findings in the AA group here (de Wit, Enggasser et al. 2002; Pietras, Cherek et al. 2003; 

Shiels, Hawk et al. 2009). Additionally, the AA version of DD is the preferred method of 

assessing DD in the computerized version in human studies. Utilizing a similar paradigm 

in the animal model increases translatability of findings to those observed in clinical 

studies. Importantly, the AA version allows investigators to calculate k values with the 

hyperbolic discounting equation, which is not possible with the ID method. The k value is 

generated using the specific adjusted amount of each subject. Since the ID task does not 

allow subjects to adjust the amount of the immediate reward, there is no value available 

to complete the equation for the discounting function.  

 There are numerous issues in training and acquisition of the ID task which limits 

its ability to assess pharmacological manipulation of behavior. It is clear, from findings 

reported here, that detecting effects in the ID task is complicated by the difficulty in 

achieving and maintaining stable criteria responding. In fact, subjects in the ID version of 
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DD were significantly less likely to reach criteria for responding than subjects in the AA 

version. Additionally, there are several other factors likely contributing to behavior in this 

task, including perseveration, decrease of trials completed across delay blocks and 

contrast effects associated with the delay order presentation. 

  

6.1.1 Problems with the ID task 

6.1.1.1 Forced choice trials and perseveration 

 The use of forced choice trials is essential in the DD task. They serve the purpose 

of reminding the subject what the alternate contingencies are and aid in the prevention of 

perseverative or habitual responding. They are particularly imperative when using 

pharmacological manipulations, given the propensity for many drugs to increase these 

types of behaviors. An unfortunate aspect of the ID version of DD is that, while each new 

block of trials is initiated with at least two forced-choice trials, the nature of the task 

permits the subjects to omit those trials. If the subject does not respond during the set 

amount of time, the program moves into an ITI state and the trial is omitted. The exact 

number of forced choice trials per block varies from two per block to six per block across 

studies, as does the length of time the response is available, and completion rates of the 

forced choice trials are rarely reported (Evenden and Ryan 1996; Winstanley, Dalley et al. 

2003; Koffarnus, Newman et al. 2011). The fact that the training and administration of 

this task varies so widely hinders accurate analysis of the methodology.  

 In contrast, in the AA version, forced choice trails are mandatory for subjects 

whenever they choose one option twice consecutively. In order to continue with the 



59 

 

session, the animal must complete the forced choice trial on the opposite lever. In the 

present study, subjects in the AA groups completed significantly more forced choice 

trials than subjects in the ID groups, leading to significantly higher numbers of exposure 

to both contingencies throughout a session. Subjects in the ID groups were completing 

only approximately 50% of the available forced choice trials, decreasing the ability of the 

following free choice trials to accurately measure preference for that block. The omission 

of forced choice trials is especially problematic for those studies utilizing only five free 

choice trials, since it could be argued that almost half of those choices were made without 

prior exposure to the new contingencies in that block if forced choice trials were not 

completed (Winstanley, Dalley et al. 2003; Maguire, Henson et al. 2014).  

 While the forced choice trials serve to decrease perseverative responding in the 

animal model of DD, they are not included in DD models used in human studies. This 

difference leads to a slight reduction of the face validity of the task. Face validity is used 

to describe how well a test measures what it is claiming to measure. In this case, the task 

should appear to measure impulsivity in both humans and animals and use similar 

standards and practices. Maintaining only slight procedural variations allows for greater 

translatability of findings, thus also supporting predictive validity. Unfortunately, this is 

seldom possible with animal models; however, the AA of version of DD in animals is 

analogous to the version used in clinical studies in function and time course. Although 

the forced choice trials may influence behavior while the subjects are training, there is 

not any evidence at this point to suggest that they influence impulsive behavior. 
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6.1.1.2 Delay order presentation 

 Perseveration was a particular problem during training of the ID task. Subjects in 

the pilot experiment and both cohorts in the primary experiment required numerous 

manipulations in training protocol to establish discounting curves. During the first block 

of trials, there is no delay to the large reward, promoting preference for this option across 

the first 10 free choice trials. According to DD theory, preference for the large reward 

should decrease as a function of the delay to its delivery (Ainslie and Herrnstein 1981); 

however, the majority of subjects in the current study were not demonstrating this 

reversal of preference. Subjects continued to choose the large delayed reward exclusively, 

even at the longest delays. In order to facilitate discounting behavior, the order of the 

delay presentation was reversed to descending delays rather than ascending delays.  

The presentation of the delays was reversed for two sessions so that subjects were 

exposed to the longest delay during the first block of trials, promoting choice of the 

immediate reward. When the delay order presentation was returned to an ascending order, 

several subjects displayed preference reversal at the longest delays, highlighting the 

importance of exposure to both contingencies. Prior to reversing the delay order 

presentation, subjects were not choosing the immediate reward during forced or free 

choice trails, focusing instead on the larger reward. Other studies evaluating the 

presentation of delay order have revealed effects after AMP administration, with AMP 

exposure decreasing impulsive responding in an increasing order paradigm and 

increasing impulsive responding in the descending order paradigm. (Tanno, Maguire et al. 

2013; Maguire, Henson et al. 2014). This suggests that the behavioral alterations 

observed in the ID task are not indicative of changes in impulsivity, but rather an effect 
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of perseveration. For an increasing delay paradigm, subjects initially prefer the large 

reinforcer then continue to perseverate on this lever across the session, while in 

descending delay paradigm, subjects prefer the immediate reward to avoid the long delay 

and then perseverate on that lever across the session. Although no effect of AMP was 

uncovered in the current study, the change in behavior observed after the delay order 

reversal implies that the perseveration impacted training behavior in this task. 

The order of delay presentation may also create a negative contrast effect. Recent 

evidence reveals that negative contrast effects decrease responding to delayed 

reinforcement (LAS RESPUESTAS, DEMORADO et al. 2011). Rapidly exposing 

subjects to increasing longer delays may also decrease the preference for the delayed 

reward as a result of this negative contrast effect rather than impulsivity.  

6.1.1.3 Decrease in trials across blocks 

 A notable issue with the ID task is the decrease in trial completions as the session 

progresses. In the present study, subjects in the SAL and the AMP groups, and all 

subjects during training, significantly decreased responding by the final block of trials. 

The lack of responding in the longest delay block presents two problems. First, if enough 

trials are not generated, there arenot enough data for analysis. Indeed, in order to 

accumulate sufficient data points for this study, percent choice of the large reward was 

averaged across the entire drug test period for each delay block. Second, if the subjects 

are not completing trials at the longest delay, there is significantly more exposure to the 

short delays, increasing the likelihood of perseveration. This, in turn decreases the 
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probability that the subject will reverse preference to the immediate reward at the long 

delays.  

6.2 Future Directions 

 Although the use of HAP mice in DD tasks likely decreases the variability in 

response patterns often observed in heterogeneous lines (Barbelivien, Billy et al. 2008), it 

may also inhibit the ability to learn the ID version of DD. The high level of perseveration 

observed in training for the ID task indicates an inherent difficulty in interpretation of the 

new contingencies presented in each block of trials. Several subjects in the ID groups 

continued to choose the delayed reward exclusively, even at the longest delays. One way 

to circumvent this possibility would be to assess differences between the AA and ID 

methods using the LAP II line of mice rather the HAP II line. The LAP mice typically 

display lower levels of impulsive behavior, maintaining a low rate of variability within 

the cohort, while eliminating the correlated trait of high alcohol preference.  

 An alternate method for assessing differences in behavior between the AA and ID 

versions is the use of cortical lesions to influence response patterns. Work in human 

studies evaluating reward discrimination following damage to the orbitofrrontal (OFC) 

cortex reveals deficits in reward processing, an ability that is essential in accurate 

completion of a DD task (Manes, Sahakian et al. 2002). These lesions are also associated 

with increased impulsive behaviors in humans while lesions of the nucleus accumbens 

core promote increases in impulsivity in animal models (Cardinal, Pennicott et al. 2001; 

Berlin, Rolls et al. 2004). Future work evaluating the validity of both the AA and ID 

versions of DD in animals could focus on lesioning specific brain regions known to 

influence responding the DD task, such as the OFC and the nucleus accumbens core. 
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Confirming findings in previous work would greatly increase the predictive validity of 

the paradigm.  

Overall, the ID task was extremely difficult to train and administer and there were 

no significant effects on impulsive-like responding after pharmacological manipulation, 

suggesting that the predictive validity of this task is questionable. Although ID testing for 

multiple delays may be much shorter than the AA task, the longer training periods and 

the unreliability of results should discourage the use of this task for examining 

impulsivity. The AA animal model of DD consistently replicates findings from clinical 

studies and is more similarly modeled after those studies. In order to ensure accurate 

findings, investigators should administer the AA version of DD for analysis of 

impulsivity.
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