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Predicting Two-Phase Flow Distribution and Stability in Systems with Many 

Parallel Heated Channels1 

Tijs Van Oevelen2, Justin A. Weibel3, Suresh V. Garimella4 

School of Mechanical Engineering 

Purdue University, 585 Purdue Mall, West Lafayette, IN 47907 USA 

 

Abstract 

Two-phase heat exchangers are used in a variety of industrial processes in which the boiling fluid 

flows through a network of parallel channels.  In some situations, the fluid may not be uniformly 

distributed through all the channels, causing a degradation in the thermal performance of the system.  A 

methodology for modeling two-phase flow distributions in parallel-channel systems is developed.  The 

methodology combines a pressure-drop model for individual parallel channels with a pump curve into a 

system flow network.  Due to the non-monotonicity of the pressure drop as a function of flow rate for 

boiling channels, many steady-state solutions exist for the system flow equations.  A new numerical 

approach is proposed to analyze the stability of these solutions, based on a generalized eigenvalue 

problem.  The method is specifically designed for analyzing systems with hundreds of identical parallel 

channels. 

The method is first applied to analyze the flow distribution and stability behavior in two-channel and 

five-channel systems.  The asymptotic behavior of the flow stability is then analyzed for increasing 

numbers of channels, and it is shown that the stability behavior of a system with a constant flow-rate 

pump curve simplifies to the stability behavior for a constant pressure-drop pump curve.  A parametric 

study is conducted to assess the influence of inlet temperature, heat flux, and flow rate on the stability of 

the uniform flow distribution solution as well as on the severity of flow maldistribution.  Below some 

critical inlet subcooling, uniform flow distribution is always stable and maldistribution does not occur, 

regardless of heat flux and flow rate.  Above this critical inlet subcooling, there is a range of operating 

parameters for which uniform flow distribution is unstable.  With increasing inlet subcooling, this range 

broadens and the severity of the associated maldistribution increases. 
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Nomenclature 

Ac channel cross-section area (HcWc) 

A linearized system matrix 

C Chisholm constant 

cp specific heat capacity 

Dh hydraulic diameter (4Ac/Dh) 

e natural eigenvalue, Eq. (12) 

Fp (W, p) pump curve 

Fw volumetric wall shear force 

f friction factor 

f (W) channel load curve 

G mass flux (W/Ac) 

g () characteristic function 

Hc channel height 

h specific enthalpy 

J relative average flow rate starvation, 

Eq. (21) 

Lc channel length 

M mass matrix 

m channel inertial coefficient (Lc/Ac) 

N number of parallel channels 

Nboil boiling number (Q’Lc/(Wavghfg)) 

Nsub subcooling number ((hf-hin)/hfg) 

Nz number of streamwise grid cells 

n channel fraction 

P[0,1] projection on the interval [0,1] 

p pressure 

p pressure drop (pin − pout) 

Q’ heat input per unit length 

Re Reynolds number Eq. (39) 

Ri flow rate fraction (Wi/W) 

S slip ratio (ug/uf) 

T temperature 

t time coordinate 

u streamwise velocity 

v specific volume 

v eigenvector 

W flow rate 

i
W


   flow rate starvation, Eq. (19) 

Wc channel width 

x vapor quality 

y vector of state variables 

z streamwise coordinate 

 

Greek symbols 

 void fraction 

 aspect ratio (smallest of Wc/Hc or Hc/Wc) 

 partial derivative of load/pump curve 

 deviation 

 relative finite difference step size 

 eigenvalue 

 dynamic viscosity 

 

Subscript 

avg average 

c channel 

eq thermodynamic equilibrium 

f liquid 

g vapor 

I/II/III flow rate region, Figure 1 

i channel index 

in inlet 

out outlet 

p pump 

sat saturation 



1.  Introduction 

Two-phase heat exchangers are used in a variety of industrial processes such as steam generation, air 

conditioning, and nuclear reactor cooling.  Increased attention is being targeted at microscale two-phase 

heat sinks for cooling of advanced microelectronics devices used in high-performance computing clusters, 

power conversion systems, and radar technologies.  Such two-phase flow cooling strategies allow for 

increased heat transfer coefficients with reduced temperature gradients as they exploit the latent heat of 

evaporation.  However, two-phase flow instabilities may reduce heat sink performance and limit 

predictability and reliability.  These instabilities can pose a severe impediment to industrial-scale 

implementation of such cooling strategies. 

Two-phase flow instabilities are commonly categorized into static and dynamic instabilities [1,2].  

Static instabilities occur when a disturbance causes a steady-state operating point to jump to a different 

operating point.  Examples are the Ledinegg (excursive) instability, boiling crisis, and flow pattern 

transition instabilities.  Dynamic instabilities occur when several physical mechanisms interact through 

feedback, influenced by inertia and delay.  Pressure-wave (acoustic) oscillations, density-wave 

oscillations, and pressure-drop oscillations are the most common dynamic instabilities.  Two-phase heat 

sinks usually comprise a large number of parallel channels to maximize the heat transfer area density.  

Additional instability mechanisms that may occur in these parallel channels include flow maldistribution 

instability and parallel-channel instability.  Flow maldistribution occurs when the distribution of flow rate 

across parallel channels becomes non-uniform.  Parallel channel instabilities constitute sustained out-of-

phase channel-to-channel oscillations.  

Two-phase flow instabilities have been reviewed in the literature [1-6].  A comprehensive literature 

review on flow maldistribution in systems with two-phase inlet mixtures, as often encountered in air 

conditioning systems, can be found in Ref. [7].  In those systems, the uniformity of the phase distribution 

in the inlet header to the different channels plays a dominant role.  The focus of this work is instead on 

two-phase flow maldistribution in parallel-channel systems with a subcooled inlet state.   

 

1.1. Flow maldistribution 

Flow maldistribution in parallel-channel two-phase heat sinks has been observed experimentally in 

various studies [8-13].  Maldistribution can have several causes: asymmetrical inlet header designs, 

differences in channel geometry or surface properties, non-uniform heating, and the non-monotonic 

nature of channel pressure drop as a function of flow rate.  The latter two causes are specific to the boiling 

flows of interest in the current work.  Mechanisms underlying these two causes can be explained using 

Figure 1.  
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Figure 1 includes a schematic representation of the pressure drop across a boiling channel as a 

function of flow rate for a fixed uniform heat flux.  This kind of curve is referred to as the channel load 

curve.  A pump curve represents the pressure head provided by the pump as a function of flow rate.  One 

general pump curve and two special cases, viz., constant flow rate (vertical line) and constant pressure 

drop (horizontal line), are shown in the figure.  Steady-state system operating points are at the 

intersections between the channel load curve and the pump curve (e.g., points B, D, and F are all possible 

operating points when flow is supplied according to the general pump curve).  In networks of parallel 

channels, each channel has its own load curve, but the operating points of each channel are not 

independent of each other.  In particular, the system must satisfy mass conservation, i.e., the sum of all 

channel flow rates must equal the total pump flow rate, and the pressure drop across each channel must be 

the same. 

The N-shaped load curve of the heated channel is in contrast to the monotonic adiabatic channel load 

curve (Figure 1).  At high enough flow rates, the heated channel load curve is similar to the adiabatic case 

because the coolant is in the liquid state throughout the full length of the channel.  At lower flow rates, 

boiling occurs in the heated channel.  The vapor generation leads to increased frictional and accelerational 

pressure drops, causing the load curve to deviate from the adiabatic curve.  At very low flow rates, the 

channel is almost completely filled with vapor, and the pressure drop decreases monotonically with 

decreasing flow rate.  This behavior introduces a local maximum (point C) and a local minimum (point E) 

in the load curve, allowing three regions to be distinguished based on flow rate: region I (below WC), 

region II (between WC and WE) and region III (above WE).  These regions correspond roughly to 

superheated outlet, two-phase outlet, and subcooled outlet states, respectively. 

It is clear from the above discussion that the channel load curve depends on the amount of heat input, 

since the heat input determines the thermodynamic state of the fluid in the channel.  If parallel channels 

have different load curves because of non-uniform heating, then they must have different flow rates to 

match their pressure drops.  As a result, non-uniform heating can cause flow maldistribution between 

parallel boiling channels.  However, flow maldistribution can occur even if all parallel channels have the 

same heat flux, i.e., the same load curve, as a result of the inherent non-monotonic nature of the channel 

load curve.  Operating points in parallel channels must have the same pressure drop, but can have very 

different flow rates.  For example, operating points A, D, and G in Figure 1 all have the same pressure 

drop but at very different flow rates.  In a parallel array, the channels could assume some combination of 

these operating points, resulting in maldistribution. 

Not every steady-state system operating point is practically achievable in view of the Ledinegg 

instability.  This static instability arises from interaction between the pump and load curves in flow 

boiling systems.  In a single-channel system, it occurs when the slope of the load curve is lower than the 
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slope of the pump curve.  Under this condition, small disturbances cause an exponentially growing 

excursion from the original steady-state operating point, eventually transitioning to a different but stable 

operating point.  For a pump supplying a constant pressure drop, the Ledinegg instability occurs when the 

channel load curve has a negative slope (e.g., point D in Figure 1).  In contrast, a single channel with a 

constant flow-rate pump is unconditionally stable.  A comprehensive study of the Ledinegg instability 

was reported by Zhang et al. [14].  Ruspini et al. [15] modeled the Ledinegg instability dynamics.  For 

systems of multiple parallel channels, the stability criterion is more complex than for the single-channel 

case described here.  Interactions between the pump and all the channels simultaneously govern stability. 

Since maldistribution causes some channels to be starved of flow relative to a uniform distribution, 

premature critical heat flux (CHF) can be triggered [3].  This limits the heat flux that can be safely 

dissipated without inducing an extreme temperature rise in the heat source.  Several remedies have been 

proposed to suppress two-phase flow maldistribution and other (parallel-channel) instabilities: inlet 

restrictions [3,11,16,17], reentrant cavities [18], diverging cross-sections [19], seed bubbles [20], 

increased system pressure [21], self-sustained high-frequency oscillations [22], and active control of 

pump and/or valves [23-26].  However, these measures may not effectively suppress maldistribution 

specifically, may be infeasible to implement in some applications, or may increase pressure drop.  It is 

therefore necessary to better understand the mechanistic behavior of flow maldistribution in channels with 

flow boiling, and develop appropriate models to allow prediction and control of flow in two-phase heat 

sinks. 

 

1.2. Literature review 

Whereas there is a rich literature on various kinds of two-phase flow instabilities, relatively few 

studies focus on modeling two-phase flow distribution with subcooled inlet flow; we review this subset of 

the literature here.  

Flow rate distribution among parallel evaporator tubes has been studied by Akagawa et al. [27].  They 

experimentally obtained channel load curves for individual tubes experiencing flow boiling, which 

displayed the N-shape as in Figure 1.  They also conducted experiments in parallel tube systems where 

the flow distribution, excursion and hysteresis phenomena, and flow instabilities were observed and 

recorded.  In configurations of two or three parallel channels, flow rate distributions could be estimated 

from their individual load curves.  However, some of the predicted operating points could either not be 

reached or needed temporary throttling of an inlet valve on one of the channels.  In all channel 

configurations, significant deviations from uniform flow distribution could be observed when one of the 

individual channel load curves had a negative slope.  The authors also presented a stability criterion 

derived from a Laplace transformation of the linearized momentum equations for the system of parallel 
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channels.  This criterion involves the slopes of every individual load curve.  It is used to explain why 

some operating points are stable even when one of the channels has a negative slope in the load curve.  

This criterion was a good predictor of which operating points could be experimentally obtained. 

Natan et al. [28] studied flow distribution in parallel evaporator pipes and noted in their analysis the 

number of different flow distributions possible at a given pressure drop.  Minzer et al. [29] used the 

stability criterion of Ref. [27] to predict which of these flow distributions could occur in practice, when 

the inlet flow rate is fixed.  This prediction corresponds well with experimental observations.  Later, a 

model was proposed that enabled transient simulations [30].  This model was validated against steady-

state experimental data of flow distributions in two parallel pipes.  Furthermore, the transient simulations 

were used to confirm the results of the linear stability analysis; whenever the operating conditions were 

steered into an unstable region, the flow distribution would quickly diverge from the unstable steady-state 

operating point and move to a different stable steady-state point.  Baikin et al. [31] extended the work of 

Ref. [30] to study up to four parallel pipes.  Experimentally obtained steady-state flow distributions with 

different combinations of heated and unheated channels were predicted by the model and stability 

criterion.  In general, the fraction of flow to the heated channels in which boiling occurred was reduced 

below average.  A similar study was performed [32] on two parallel channels using a model like in Ref. 

[30], but with higher spatial resolution.  Barnea et al. [33] then obtained transient experimental data of 

flow distribution and showed qualitative agreement with this model.  However, the rate of change of state 

variables in the experimental system was lower than the theoretical prediction.  Nevertheless, the model 

was able to generally predict the correct paths and end points of the transients.  Zhou et al. [34] applied 

the method of Refs. [30,31] to several different configurations of heated and unheated channels with four 

parallel channels. 

The stability of parallel channel systems was studied by Zhang et al. [24,25] by examining the 

linearized dynamic system equations.  Their analysis of the system dynamics revealed an interesting 

feature.  If all parallel channel load curves had different slopes, it was found that the system was 

controllable and observable.  This means that controlling the pump pressure is theoretically sufficient to 

suppress unstable behavior in the parallel channels (flow excursions or pressure-drop oscillations) and 

that the flow distribution can be inferred from the total flow rate.  This has been demonstrated in Ref. [25] 

by transient simulations.  However, pump control alone is insufficient when two or more channels are 

identical, in which case control with inlet valves is needed [24]. 

Manavela Chiapero et al. [35] studied maldistribution resulting from the multiplicity of solutions in 

parallel-channel heat exchangers.  They used a dynamic lumped-parameter network model, incorporating 

upstream compressibility, to study the evolution of pressure drop and flow rate through each channel.  
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Steady-state solutions were deemed ‘stable’ when each channel operates in a positive-slope region of its 

load curve.  Pressure-drop oscillations occurred in the unstable solutions. 

While a number of methodologies have been developed in the literature for flow distribution 

modeling and stability analysis, the applicability of these methods and the cases investigated have been 

limited to a small number of channels.  However, heat sinks typically have a large number of parallel 

channels.  The present work develops a methodology for two-phase flow distribution modeling that is 

capable of simulating systems having a large number of identical parallel channels.  A theoretical 

investigation of the characteristic eigenvalue problem governing the stability of the system leads to an 

efficient solution approach.  Examples representative of microchannel heat sinks are discussed to 

demonstrate the methodology and study the flow maldistribution.  In addition, the effect of operating 

parameters on the stability of flow distributions has not yet been investigated in the literature.  A 

parametric analysis is performed to study the effects of inlet temperature, heat flux, and flow rate on the 

severity of flow maldistribution. 

 

2.  Methodology 

This section describes a new methodology used to model the flow distribution in parallel channels 

experiencing flow boiling.  Our approach is modified from the method used by Akagawa et al. [27], 

Minzer et al. [30], and Baikin et al. [31] to allow prediction of stable flow distributions for a larger 

number of channels.  The critical modifications required for this purpose are emphasized throughout this 

section.  The flow through each channel is modeled separately and coupled in a dynamic network model.  

All steady-state solutions of the resulting system of equations are first calculated.  A linear stability 

analysis of the dynamic equations is then used to differentiate between stable and unstable steady-state 

solutions. 

 

2.1. Dynamic flow network equations 

Our analysis is based on the ideal open-loop flow network shown in Figure 2.  It consists of a pump 

that supplies subcooled liquid into an array of parallel heated channels.  The momentum equation for each 

channel is given by: 

  i
i i i

dW
m W

dt
f p     (1) 

This equation governs the time evolution of the mass flow rate 
i

W  of a channel with index i.  The steady-

state pressure drop as a function of flow rate, i.e., the channel load curve, is given by  i i
f W .  The 

pressure-drop model used in this paper is derived in Appendix A.  With an imbalance between the steady-
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state pressure drop  i i
f W  and the actual pressure drop p, the flow rate 

i
W  will change.  The rate of 

change is affected by the inertial coefficient 
i

m , which is equal to the ratio of channel length 
c

L  to cross-

section area 
c

A .  The actual pressure drop p is the same for all channels and is the same as the pressure 

head provided by the pump.   

The pump curve is given by: 

  p0 , pF W    (2) 

The implicit function  p
,F W p  specifies the relation between the pump flow rate W and the pressure 

drop p.   

Mass conservation dictates that the pump flow rate W must equal the sum of individual flow rates 
i

W : 

 
1

0
N

i

i

W W


 
  
 
   (3) 

where N is the number of channels and W is also referred to as the total flow rate. 

The system of differential-algebraic equations (1)-(3) describes the dynamic behavior of the flow rate 

distribution and pressure drop in a system of parallel channels.  Flow distribution predictions based on 

this general approach have been successfully validated experimentally in the literature [27,30,31,33]. 

 

2.2. Steady-state flow distributions 

The calculation of steady flow rate distributions is performed as follows.  The cumulative load curve 

for the array of parallel channels is calculated by summing individual flow rates at each pressure drop 

level p.  In the typical N-shaped load curve of individual heated channels, the same pressure drop 

occurs at three different flow rates, one in each of the three flow rate regions I, II, and III.  This means 

that the cumulative load curve consists of up to 3
N  combinations of individual flow rate distributions at 

any given pressure drop.  Therefore, the computational complexity increases exponentially with the 

number of channels N.  

In principle, steady-state operating points are only found at the intersections of the cumulative load 

curve and the pump curve.  However, every point on the cumulative load curve could be an operating 

point of the system for some arbitrary pump curve.  To retain generality, we will discuss the entire 

cumulative load curve without narrowing to a specific pump curve.  
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2.3. Stability analysis 

The stability of the steady-state operating points is calculated to determine if they would be realized 

in practice.  A stability analysis is performed on the linearization of the system dynamics given by 

Equations (1)-(3).  This linearization is given by: 

 

   

1 11 1 1

d
1

d
0

0 1 1

δ δ

δ δ

δ δ

δ 1 0 δ

N N N

W p

N

W Wm

W Wm
t

W W

p p



      
      
      
        
      
      
             

  (4) 

where  is used to denote small deviations from the steady-state operating point.  The following shorthand 

notation for the partial derivatives is used: 

 , ,
p pi

i W p

i

F Ff

pW W


 



 
  

  (5) 

Unless the pump curve sets a constant flow rate, its slope 
p

 can be obtained as follows: 

 
p

pump

W

p

p

W 


  



  (6) 

Otherwise, in case of a constant flow rate pump curve, the slope of the pump curve is undefined.  This 

motivates the use of the implicit formulation for the pump curve in Equation (2) to ensure that all 

coefficients in the linearized system dynamics are real numbers.   

Equation (4) can be written as: 

 
d

d

y
M Ay

t
   (7) 

where the vector y contains all the state variables 
i

W , W, and p.  Note that the matrix M is singular, 

which is typical of differential-algebraic equations.  The stability of this system is determined by the 

eigenvalues  of the following generalized eigenvalue problem [36]: 

 Mv Av    (8) 

where  is a (generalized) eigenvalue and the (generalized) eigenvector v is composed as: 

 
1 NW W W pv v v v v   

T

  (9) 

The system stability depends on the signs of the eigenvalues.  It is stable at an operating point if the real 

part of every eigenvalue  is negative.  Otherwise the operating point is unstable. 

The generalized eigenvalue problem is solved numerically using the MATLAB built-in eigenvalue 

solver to obtain a set of eigenvalues and eigenvectors.  The stability is then judged based on the signs of 
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the eigenvalues at every possible operating point, i.e., at every pressure drop level for every combination 

of individual channel flow rates.  A numerical approach was chosen because it allows automatic 

application to cases with differing number of channels. 

While stability analysis method is straightforward and easy to implement, the number of different 

flow rate combinations increases exponentially with the number of channels N.  In addition, the size of 

the eigenvalue problem increases with N as well.  This means that interrogating the behavior of systems 

with a large number of parallel channels is an intrinsic challenge in terms of computational complexity, 

which we will address in Section 4. 

 

3.  Analysis of the generalized eigenvalue problem 

This section presents a theoretical analysis of the structure of the generalized eigenvalue problem 

(Equation (8)).  This analysis aids in understanding the stability of flow distributions in parallel channels.  

Furthermore, these theoretical results help enable the development of an efficient approach for simulating 

a large number of identical parallel channels in Section 4. 

The structure of the generalized eigenvalue problem depends on the pump curve.  First, we will 

analyze the special case of a constant pressure-drop pump curve.  Then, a general pump curve is 

considered, which is also applicable to the case of a constant flow-rate pump curve.  

 

3.1. Constant pressure-drop pump curve 

For the constant pressure-drop pump curve, the coefficient 
W

 is zero.  In Equation (4), the second-to-

last row (corresponding to the pump curve) and the last column (corresponding to the variable  δ p ) 

can be eliminated.  The following special case of the eigenvalue problem emerges: 

 

   

1

1, ,0,

0

i

i

N

i

i i W

W W

m Nv i

v v





  

 
 
 

 

 
  (10) 

This system has N eigenvalues  : 

 i

im


 
  
 

  (11) 
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The corresponding eigenvectors are given in Table 1.  Note that the eigenmodes of this special case are 

determined by each channel independently.  A constant pressure-drop pump therefore effectively 

decouples the behavior of each individual channel.  We define the natural eigenvalues 
i

e  of a system of 

parallel channels as follows: 

  , 1, ,i
i

i

e
m

i N      (12) 

The natural eigenvalues 
i

e  describe the dynamic behavior of each individual channel operating at 

constant pressure drop, isolated from other channels. 

The stability of the system with constant pressure-drop pump curve is determined by the signs of the 

natural eigenvalues 
i

e .  For stability, all natural eigenvalues need to be negative, or equivalently, the load 

curve of every channel must have a positive slope 
i
. 

 

3.2. General pump curve 

For a general pump curve, the coefficient 
W

 is nonzero.  The eigenvalue problem is as follows: 

 

   

1

0,  1, ,

0,

0

i

i

i i p

W W p p

N

W W

i

Wm v v

v

i N

v v

v

 

 



 



  



 
 

 


  (13) 

There are two kinds of solutions to this eigenvalue problem, depending on whether  is equal to a natural 

eigenvalue 
i

e .  The first kind occurs when the natural eigenvalue 
i

e  of at least two channels is identical, 

i.e., multiplicity of 
i

e  is higher than one.  Then, this natural eigenvalue 
i

e  is also an eigenvalue  of the 

system.  The corresponding eigenvectors are given in Table 1.  Note that in this kind of eigenmodes, the 

flow rate does not change in the channels with a different natural eigenvalue. 

In the second kind of solutions,  is not equal to a natural eigenvalue 
i

e .  Then, 
i i

m   is nonzero 

for every channel.  The following characteristic equation is obtained by substitution of the first and 

second expressions of Equation (13) into the third: 

   p

W

g 


    (14) 

The characteristic function  g   is defined as follows: 

  
1

1

i

N

i im
g 

 
   (15) 
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The eigenvalues of Equation (13) are given by the roots of Equation (14).  The corresponding 

eigenvectors are given in Table 1.  In this eigenmode, the flow rate changes in all channels 

simultaneously.  A special case occurs for a constant flow-rate pump curve, when 
p

 is zero.  The 

characteristic equation is then   0g   . 

The eigenvalues of the second kind can be understood from the graph of the characteristic function 

 g  .  Figure 3 shows a schematic graph of  g   for a system with N = 3 channels.  If all natural 

eigenvalues 
i

e  of the system are distinct, the function  g   has N poles located at the natural 

eigenvalues 
i

e .  Between every pair of poles,  g   has exactly one zero.  This accounts for the N-1 

eigenvalues for a system with a constant flow-rate pump, i.e., 0
Wp
 .  For general pump curves, the 

solutions of the characteristic equation (14) are obtained at the intersections of  g   with a horizontal 

line at 
p W

 .  This results in an additional eigenvalue to the left of the lowest natural eigenvalue 
i

e  to 

form a total set of N eigenvalues; the existing eigenvalues shift to the right.   

If a natural eigenvalue 
i

e  has multiplicity higher than one, the corresponding pole locations collapse 

and the number of distinct poles reduces, as does the number of eigenvalues of the second kind.  

Simultaneously, the repeated natural eigenvalue 
i

e  gives rise to eigenvalues of the first kind.  Each 

vanishing eigenvalue of the second kind is replaced by a new eigenvalue of the first kind.  The total 

number of eigenvalues  is therefore always N (or N-1 for the constant flow-rate pump curve as an 

exception), regardless of the multiplicity of the natural eigenvalues 
i

e . 

It follows from the above discussion that the stability of a system with a general pump curve or 

constant flow rate-pump curve can be estimated by studying the pole locations of  g  , i.e., the natural 

eigenvalues 
i

e .  Because all eigenvalues need to be negative for the system to be stable, the stability can 

be determined solely from the sign of the largest eigenvalue.  This largest eigenvalue 
 1

  lies between the 

two largest natural eigenvalues 
 1

e  and 
 2

e , with 
   1 2

e e .  When 
 1

e  is negative, all eigenvalues 

are negative and the system is definitely stable.  When 
 1

e  and 
 2

e  are both positive, there must be a 

positive eigenvalue in-between and the system is definitely unstable.  When 
 1

e  is positive and 
 2

e  is 

negative (e.g., Figure 3), the sign of the largest eigenvalue cannot be graphically estimated and the 

eigenvalue problem must be solved numerically.  This leads to the conclusions that the flow distribution 

in an array of parallel channels subject to a general pump curve or constant flow-rate pump curve:  (a) is 

definitely stable when all channel load curves have a positive slope, (b) is definitely unstable when at 

least two channel load curves have a negative slope, or (c) may be stable or unstable when there is exactly 
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one channel load curve with a negative slope.  In the last case, a flatter pump curve, i.e., with higher 

Wp
, increases 

 1
  and makes the system less stable, approaching the behavior of a system with 

constant pressure-drop pump curve. 

 

4.  Efficient methodology for identical parallel channels 

In the case of all channel load curves being identical, the methodology discussed in Section 2 can be 

adapted to reduce the computational complexity.  The reason is two-fold:  the number of distinguishable 

flow rate distributions is lower, and the size of the eigenvalue problem can be reduced.  We consider a 

general pump curve.  The stability for a constant pressure-drop pump curve is trivial, because it is directly 

determined by the natural eigenvalues 
i

e . 

In the general case with non-identical channels, there are 3
N  different flow rate distributions; each 

channel can operate in one of the three flow rate regions I, II, or III.  However, if the channel load curves 

are identical, only   2 1 2N N   of these combinations can be distinguished from each other.  This 

makes a significant impact on the number of combinations that needs to be calculated, especially for large 

N. 

Furthermore, using the results from the theoretical analysis in Section 3, the size of the eigenvalue 

problem can be reduced.  At every pressure-drop level, only three flow rates are possible: 
I

W  in region I, 

II
W  in region II, and 

III
W  in region III.  The channels therefore belong to one of three groups depending 

on their flow rate.  The numbers of channels in each group are 
I

N , 
II

N , and 
III

N , respectively, and the 

corresponding slopes of the channel load curve are 
I
,

II
, and 

III
.  The inertial coefficient m is the same 

for all channels. 

The analysis of the eigenvalue structure revealed two kinds of eigenmodes.  The first kind occurs 

when two or more channels have the same natural eigenvalue 
i

e .  For identical channels, this happens 

when the number of channels in a group is two or more.  Then, an eigenvalue  (with multiplicity) is 

associated with this natural eigenvalue 
i

e .  The second kind of eigenvalues is governed by Equation (14).  

It follows from Table 1 that the coefficients 
iW

v  of the eigenvector are identical for channels belonging to 

the same flow rate group.  This means that the change in flow rate of all channels in the same flow rate 

group is identical.  Therefore, the corresponding eigenvalue problem can be significantly reduced to: 
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  (16) 

Combining all eigenvalues of the first and second kind obtained by the aforementioned approach 

gives the same result as directly solving Equation (8), but the matrix size of Equation (16) is only 55 

instead of (N+2)(N+2).  This enables a significant reduction in computational complexity when the 

number of channels N is large. 

 

5.  Results and Discussion 

This section presents results obtained using the flow distribution and stability analyses developed in 

this work.  First, the load curve of a single heated channel is discussed.  This individual channel load 

curve is subsequently used in several case studies with multiple identical parallel channels, and also to 

show the asymptotic behavior for an increasing number of channels.  Finally, the effects of inlet 

temperature, heat input, and flow rate on the stability of the uniform flow distribution as well as on the 

severity of maldistribution are investigated. 

 

5.1. Single channel 

The flow distribution modeling methodology is based on individual channel load curves, which 

determine the steady-state pressure drop p as a function of individual channel flow rate 
i

W .  We use the 

pressure-drop model described in Appendix A and the channel parameters given in Table 2.  These 

parameters are representative of a microchannel heat sink.  The heat flux and flow rate ranges ensure 

laminar flow in all of the results presented. 

The resulting load curve for an individual channel is shown in Figure 4.  A heated and an unheated 

case are shown.  The load curves follow the trend shown schematically in Figure 1, owing to the 

mechanisms described in Section 1.  The three flow rate regions for this case are:  region I from a flow 

rate of 0 mg/s to 0.27 mg/s; region II from 0.27 mg/s to 1.2 mg/s; and region III for all flow rates higher 

than 1.2 mg/s. 

The stability of a system with a single channel is straightforward.  For a constant pressure-drop pump, 

the flow is stable if the slope of the channel load curve is positive.  This is true in regions I and III of the 

heated channel load curve.  The flow is unstable in region II where the slope is negative.  For a constant 

flow-rate pump, the flow is unconditionally stable.  
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5.2. Two identical parallel channels 

The load curve for an individual boiling channel from Section 5.1 is used in a system of two identical 

parallel channels.  The cumulative load curve is shown in Figure 5, obtained as described in Section 2.  

Note that the resulting graph is multivalued, i.e., there is no unique pressure drop at a given total flow 

rate.  Also, the cumulative load curve crosses itself, meaning that different flow distributions can lead to 

the same total flow rate W and pressure drop p. 

The flow distribution is visualized in Figure 6 as a graph of the flow rate fraction 
i i

R W W  through 

each channel as a function of the total flow rate.  Note that the sum of the flow rate fractions over all 

channels equals one.  The flow rate fractions of every channel and in every flow distribution are shown 

simultaneously.  This graph again shows that several different flow distributions can occur at a given total 

flow rate.  The flow distribution is uniform when the flow rate fraction in both channels is 50%.  There is 

an alternative path of flow distributions in which most of the flow rate goes through one channel while 

flow in the other channel is significantly reduced. 

The uniform flow distribution is a special case.  The corresponding flow rate region combinations, 

i.e., I+I, II+II and III+III, are indicated on the cumulative load curve in Figure 5 and occur on the 

horizontal line at 0.5
i

R   in Figure 6.  Non-uniform flow distributions are possible for total flow rates 

W  between 0.54 mg/s and 3.5 mg/s.  These cases are referred to as maldistributed.  They occur as 

combinations of channels in different flow rate regions, viz., I+II, I+III, or II+III.  In these cases, one 

channel always has a lower flow rate than the other.  With respect to nominal uniform flow conditions, we 

can generally say that a channel with a flow rate lower than the average of all channels is starved of flow.  

This can be considered an unfavorable situation compared to uniform flow; the lack of flow rate can 

cause the fluid to evaporate to superheated vapor state at the exit and consequently reduce thermal 

performance. 

For constant total flow rate, the stability of the steady-state operating points is assessed using the 

eigenvalue method explained in Section 4.  The color of each operating point in Figure 5 and Figure 6 

denotes the stability.  Steady operation cannot be maintained at unstable points without external control.  

For a constant pressure drop (not indicated in Figure 5 and Figure 6), the trivial stability assessment is the 

same as the single-channel case, because this boundary condition effectively decouples parallel channels 

from one another.  In the remainder of this text, stability will be assessed assuming the system operates at 

a fixed total flow rate, unless otherwise stated. 

The stability behavior can be explained using our theoretical analysis of the eigenvalue problem in 

Section 3.  The combinations I+I, III+III, and I+III are stable because both channels operate in a positive-
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slope region.  The combination II+II is unstable because both channels operate in a negative-slope region.  

The stability of the remaining combinations (I+II and II+III) is determined by the relative magnitudes of 

the individual channel load curve slopes.  Combination I+II is stable because the positive load curve slope 

of the one channel is steeper than the negative load curve slope of the other.  The opposite is true for the 

unstable combination II+III.  These conclusions are in agreement with the criterion of Akagawa et al. 

[27]. 

The uniform flow distribution is unstable in combination II+II for a total flow rate W  between 

0.54 mg/s and 2.4 mg/s.  The unfavorable maldistributed case is the only stable flow distribution over a 

large range of total flow rates yielding two-phase flow.  Additionally, even if the uniform flow 

distribution is stable at a given total flow rate W, maldistribution can still occur as seen in the total flow 

rate W range between 2.4 mg/s and 3.5 mg/s.  This indicates that maldistribution is not limited to the 

range where uniform distribution is unstable.  Also, in such regions where multiple stable flow 

distributions are possible at a single total flow rate W, the stability analysis cannot predict which stable 

distribution will occur.  This is commonly regarded as a hysteresis phenomenon, where the actual flow 

distribution depends on the transient path leading up to the operating point.  This hysteresis phenomenon 

has also been encountered experimentally in the literature [27,29,31,33]. 

 

5.3. Five identical parallel channels 

The two-channel case is the simplest parallel-channel system, and allowed a detailed explanation of 

the cause of maldistribution and the stability of different flow distributions.  Our next example features a 

system with five identical heated parallel channels to illustrate the flow distribution behavior for larger 

numbers of channels, as in practical applications.  The five-channel system is again based on the 

individual channel load curve from Figure 4, corresponding to the channel parameters given in Table 2. 

Figure 7 presents the cumulative load curve for the five-channel system.  There are clearly many 

more possible solutions at a fixed flow rate or pressure drop compared to the two-channel system.  As in 

the two-channel case, the cumulative load curve crosses itself.  Figure 8 shows the flow rate fractions 
i

R   

as a function of total flow rate W.  The relative flow distribution behavior is more complicated than for 

the two-channel case because the number of channels and possible flow distributions is larger.  The 

uniform flow distribution occurs when all five channels have 20% of the total flow rate.  However, 

several flow distributions have one or more channels with much less flow rate than the others. 

A pattern emerges in the stability of operating points.  The stable operating points involve almost only 

individual channels operating in a positive-slope region, i.e., I or III.  Intermediate flow rates have stable 

operating curves that correspond to different combinations of the region I and region III curves.  There is 

only one exception, as indicated in Figure 7.  This ‘stability exception’ is a combination involving one 
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channel in region II and all other channels in region I that is stable for some flow rates.  The results show 

that at most one channel can be in the negative-slope region in stable distributions.  The same conclusion 

has been made based on the theoretical analysis of the eigenvalue problem in Section 3.  Hence, the 

uniform flow distribution with all channels in region II, for a total flow rate W between 1.4 mg/s and 6.0 

mg/s, is entirely unstable.  This is a similar observation as in the two-channel case.  Also, hysteresis can 

again be observed. 

 

5.4. Stability behavior for increasing number of parallel channels 

To further investigate the flow distribution and stability behavior for an increasing number of 

channels, several test cases with increasing numbers of channels N up to 200 have been simulated.  

Graphs of the cumulative load curve and the flow distribution as a function of total flow rate can be found 

in Appendix B (Supplementary Data) for the cases up to N = 100; once N exceeds a value of 

approximately 20, the results cannot be effectively visualized due to the very large number of individual 

lines needed to render these graphs.  The stability behavior in all these cases can be summarized as 

follows.  If all channels have a positive load curve slope, then the system is always stable.  If two or more 

channels have a negative load curve slope, then the system is always unstable.  In particular, uniform flow 

distribution was always found to be unstable in the negative-slope region II.  If exactly one channel has a 

negative load curve slope, the system is sometimes stable and sometimes unstable.  This agrees with our 

theoretical prediction (Section 3.2) that at most one channel with negative slope in the load curve occurs 

in the stable distributions.  The stability behavior when there is exactly one negative-slope channel is 

determined by a “forbidden” flow rate region (contained in region II) in the individual channel load curve.  

If the negative-slope channel operates in this forbidden region, the system is unstable, and vice versa.  

This behavior is exemplified by the ‘stability exception’ that was discussed in Section 5.3 for a five-

channel system (Figure 7). 

The location of the forbidden region depends on the number of parallel channels N.  The forbidden 

region for several systems with different numbers of channels is depicted in Figure 9.  Note that the 

vertical axis uses arbitrary units for visualization purposes to offset the otherwise overlapping curves 

(shifted without rescaling).  The bounds of the forbidden region for these cases are given in Table 3.  It is 

clear from the data in Figure 9 and Table 3 that the location of the forbidden region converges for 

N  .  In the limit, the forbidden region occupies the entire negative-slope region of the individual 

channel load curve.  

This observation leads to the conclusion that the asymptotic limit of the stability of a system of 

parallel channels with constant total flow rate is determined in a straightforward fashion from the slopes 

of the individual channel load curves.  In the limit of N  , the system is stable if and only if all 
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channels have a positive channel load curve slope, and unstable otherwise.  Remarkably, this behavior is 

exactly the same as for a system with constant pressure drop, as indicated in the last row of Table 3 and 

on Figure 9.  We conclude that the stability behavior for a system of identical parallel channels operating 

at constant flow rate converges asymptotically to the stability for the same system operating at constant 

pressure drop with an increasing number of channels. 

This is an important conclusion, because it yields an approximate method for analyzing the stability 

of systems with many identical parallel channels for any kind of pump curve.  Instead of applying the full 

numerical stability analysis presented in Sections 2 and 4, it is sufficient to simply look at each of the 

individual channel load curve slopes.  As an approximate guideline, the system operating point is stable if 

and only if all channels have a positive load curve slope, and is otherwise unstable.  The accuracy of this 

approximation increases with increasing number of channels, which can be estimated by the information 

contained in Table 3.   

 

5.5. Parametric effects on the stability of uniform flow distribution 

The stability of the uniform flow rate distribution is of primary practical concern.  We pointed out in 

Section 5.4. that uniform flow distribution is unstable in the negative-slope region (II).  The uniform 

distribution is stable in the positive-slope regions (I and III).  This holds for any number of parallel 

channels higher than one, regardless of pump curve.  

The flow rate range with a negative channel load curve slope, and its implications on flow 

distribution, is therefore crucial to the design and analysis of two-phase heat transfer systems with parallel 

channels.  This flow rate range depends on the geometry of the channel, the fluid, and other operating 

conditions.  Studies on the parametric dependency of boiling channel load curves in the literature to date 

[14,37,38] lack an assessment of the effect on the system stability (see Table 4).  Therefore, we 

specifically characterize the extent of the negative-slope region as a function of system operating 

conditions.  The effect of three operating parameters is considered: average channel flow rate 
avg

W , heat 

input Q', and inlet subcooling 
sub sat in

TT T   .  The following dimensionless numbers are used: 

 The boiling number 
boil

N  represents the ratio of heat input to latent heat of evaporation: 

 
 c out in

boil

fg fg

avgQ L W h
N

h

h

h


    (17) 
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 The subcooling number 
sub

N  represents the ratio of inlet subcooling sensible heat to latent heat of 

evaporation:  

 
 p,f sat inin

sub

fg g

f

f

c T Th h
N

h h


   (18) 

These two numbers determine the thermodynamic state of the fluid in the channel. 

Figure 10(a) shows a 
sub

N -
boil

N  diagram.  In this diagram, the dashed lines delineate regions in which 

the outlet state is saturated liquid and saturated vapor.  The former is a straight line running through the 

origin, 
boilsubN N , and the latter is a parallel line starting from 

boil
1N  .  All lines parallel to these two 

have a constant outlet quality 
boileq,out subx N N  .  Figure 10(b) shows the same diagram zoomed-in on a 

region near the origin.  The diagrams in Figure 10 also show the loci of the operating points where the 

slope of the channel load curve is zero for two heat flux values (1 W/m and 200 W/m).  These points 

correspond to the local maximum and minimum of the N-shaped load curve, i.e., the bounds of the 

negative-slope region within which the uniform flow distribution is unstable.  We refer to the locus of 

these points as the uniform distribution stability boundary (UDSB).   

The UDSB in general depends on the heat input Q', but Figure 10 shows that this effect is small.  This 

is due to the near similarity of the individual channel load curves for different heat flux values.  The small 

deviation from perfect similarity is a result of the low accelerational pressure-drop contribution predicted 

by the pressure-drop model (Appendix A).  The dominant pressure-drop contribution is due to viscous 

stress, which would result in perfectly similar channel load curves and a UDSB independent of heat flux 

if it was the only contribution.  Also note that the UDSB for the higher heat flux appears to be 

discontinuous in Figure 10(b).  This is due to the fact that the simulations are subject to an upper flow rate 

limit to avoid transition to turbulent flow, which results in a lower limit for 
boil

N , depending on the value 

of Q'.  Regardless, we conclude that the uniform distribution stability boundary (UDSB) is fairly 

insensitive to variations in the heat flux.  This allows us to interpret variations in 
boil

N  either as a variation 

in flow rate W for constant heat flux Q', or as a variation in heat flux Q' for constant flow rate W. 

The UDSB resembles a wedge shape, originating from a point close to the origin of Figure 10.  One 

leg is very close to the dashed line given by 
boilsub NN  , which corresponds to a saturated liquid outlet 

state.  Almost as soon as a change in flow rate or heat flux causes the liquid to boil near the channel 

outlet, the uniform distribution becomes unstable.  This is a result of the sudden vapor generation that 

increases the pressure drop, and causes a negative channel load curve slope.  The other leg of the UDSB 

lies approximately at a line given by 
boilsub 0.2 NN   .  The location of this leg of the UDSB depends on 

the specific case details such as channel geometry and fluid properties.  
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The shape of the UDSB reveals that the range of 
boil

N  in which the uniform distribution is unstable 

increases with increasing subcooling number 
sub

N .  This means that a larger difference between inlet 

temperature and saturation temperature causes the range of unstable uniform distribution to increase.  The 

unstable range can extend to about 
boil

0.5N   for the highest inlet subcooling 
sub

0.1N   (corresponding 

to 53.6 C  inlet subcooling for water).  This is a large range relative to the region with two-phase outlet 

states, i.e., 
eq,out

x  between 0 and 1. 

Note that the UDSB has lower bounds for 
boil

N  and 
sub

N  of ~0.005 and ~0.003 (corresponding to 

1.6 C  inlet subcooling for water) respectively, for the case details here.  When operating below one of 

these values, the uniform distribution is always stable, regardless of the other parameter.  Importantly, the 

minimum of 
sub

N   suggests that maldistribution should not occur in practice when the inlet temperature is 

sufficiently close to saturation. 

 

5.6. Parametric effects on maldistribution severity 

The effect of operating conditions on the stability of uniform flow distribution does not necessarily 

describe their influence on the severity of maldistribution.  We first propose a metric to quantify the 

severity of flow maldistribution.  This metric is then used to assess the effect of operating conditions on 

flow maldistribution severity in the limiting case where the number of channels N goes to infinity; this 

limit approximates systems with a large number of channels.  Only the stable flow distributions are 

considered in this parametric analysis. 

It has been shown for the two-channel and five-channel cases that different flow rate distributions can 

have the same total flow rate W and pressure drop p as a consequence of the cross-overs in the 

cumulative load curve.  However, there are no cross-overs in the stable parts of the cumulative load 

curves (see Figure 5 and Figure 7).  Therefore, the total flow rate W, or equivalently the average flow rate 

avg
W W N , and the pressure drop p correspond to a unique stable flow distribution.  All stable flow 

distributions are properly parameterized by 
avg

W  and p, and the severity of maldistribution in these cases 

can be represented in a p-
avg

W  diagram. 

In order to arrive at a maldistribution metric, we first define the flow rate starvation 
i

W


  for each 

channel: 

 
avg avg

avg

,

0,

i i

i

i

W W

W

W W
W

W



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








  (19) 
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The flow rate starvation 
i

W


  is the amount of flow rate that channel i is lacking with respect to the 

average flow rate.  Higher-than-average flow rates are considered as zero flow rate starvation; thus, 
i

W


  

is positive by definition.  The average flow rate starvation is: 

 
1

1
i

N

i

W W
N 

      (20) 

As a metric to quantify the severity of maldistribution at a given operating point, we propose a relative 

average flow rate starvation J, defined by: 

 
avg

W
J

W


   (21) 

This metric incorporates both the amount of flow starvation of individual channels and the number of 

starved channels.  Note that J quantifies the severity of maldistribution in a range between zero and one:  

J is zero for uniform flow, and J approaches one when the flow rate is confined to one channel, with zero 

flow rate in all other channels. 

In order to evaluate the value of J in the limit for an infinite number of channels, the asymptotic flow 

distributions need to be retrieved from 
avg

W  and p.  As discussed in Section 5.4, there are no stable flow 

distributions with channels in region II in this limit.  Therefore, the stable asymptotic flow distributions 

are completely determined by the fractions of channels, 
I

n  and 
III

n , and flow rates, 
I

W  and 
III

W , in the 

low-flow-rate region I and high-flow-rate region III, respectively.  The flow rates 
I

W  and 
III

W  are 

functions only of the pressure drop p.  These variables are related by the mass conservation equation: 

 
I Ia g I I IIIv IW W n Wn    (22) 

Using Equation (22) and 
I III

1nn   , the fraction of channels in region I can be calculated from 
avg

W  and 

p: 
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As an example, Figure 11(a) shows contours of 
I

n  in a p-
avg

W  diagram.  It is clear that a higher average 

flow rate 
avg

W  leads to a lower fraction of channels in region I 
I

n , as follows from Equation (23).  The 

relative average flow rate starvation J  can be evaluated from 
avg

W  and p as follows: 

    
 I

avg I avg

avg

1, ,
W

J W n W
W

p
p p

 
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




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

  (24) 
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Figure 11(b) shows contours of the value of J in a p-
avg

W  diagram.  Uniform distributions are found 

where the value of J is zero.  This only occurs along two specific lines where 
avg IW W  or where 

avg III
W W .  In between these lines, and for pressure drops between the local maximum and local 

minimum of the N-shaped load curve, lie all stable flow distributions (which are combinations of 
I

W  and 

III
W ).  The highest values of J (the most maldistributed cases) are found in the interior of this area.  

Depending on the average flow rate, the value of J decreases or increases with pressure drop.  

The value of the relative average flow rate starvation J is not uniquely defined at a given 
avg

W .  In 

order to map the dependency of relative average flow rate starvation J on the boiling number 
boil

N  and 

subcooling number 
sub

N , we consider the best and worst cases only.  These are respectively given by the 

minimum and maximum values of J for a given average flow rate 
avg

W .  These results are depicted in the

sub
N -

boil
N  diagram in Figure 12 for the case with parameters from Table 2.  Note that the sensitivity of 

the result to the heat flux Q   (here 10 W/m) is again small.  This is due to the similarity between channel 

load curves for different heat flux values, as is discussed in Section 5.5.  Figure 12(a) reveals that the best 

case is given by the uniform distribution outside of the UDSB, where the value of relative average flow 

rate starvation J is zero.  The J values are above zero only inside the UDSB where the uniform 

distribution is unstable.  The worst-case maldistribution in Figure 12(b) presents a more pessimistic view.  

Within the UDSB, the value of J is significantly higher compared to the best case.  Furthermore, even 

outside of the UDSB, there is an expansive region where the worst-case value of J is very high (i.e., 

severe maldistribution).  Recall that maldistribution can occur even when the uniform distribution is 

stable, as pointed out in Section 5.2 for the two-channel case.   

The dependence of the relative average flow rate starvation J on boiling number 
boil

N  and subcooling 

sub
N  is qualitatively similar between the best (Figure 12(a)) and worst case (Figure 12(b)).  For low 

boil
N , 

there is little to no maldistribution, and J increases with increasing 
boil

N .  This is due to the individual 

channels transitioning from operating in region III to operating in region I, one channel after another.  

Further increase of 
boil

N  eventually leads to a reduction in J as nearly all channels are operating in region 

I.  The range of 
boil

N  in which this transition happens increases with 
sub

N .  Notice also that there is a 

region for very low values of 
sub

N  where maldistribution does not occur at all. 
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6.  Conclusions 

Two-phase flow maldistribution in systems of heated parallel channels with a subcooled inlet state 

has been investigated.  Such maldistribution can result from the non-monotonic behavior of channel 

pressure drop as a function of flow rate.  A methodology is presented to model flow rate distributions in 

parallel channels.  A pressure-drop model applied to every individual channel is integrated together with a 

pump curve into a system model.  Multiple different flow distributions can occur for a given operating 

condition; the stability of each flow distribution is assessed by solving a generalized eigenvalue problem. 

A theoretical analysis of the stability properties of systems with identical parallel channels is 

performed.  The stability of steady-state flow distributions is dependent on the type of pump curve.  For a 

constant pressure-drop pump curve, the stability of each individual channel is independent of the other 

channels.  The flow in a channel is stable if and only if the slope of the channel load curve is positive.  

The flow distribution in a system of parallel channels is stable when all channels are at a stable operating 

point.  For a general pump curve, the stability is determined by all channels simultaneously.  It is 

concluded that stable flow distributions can have at most one channel with a negative slope in the channel 

load curve.  However, one negative-slope channel load curve could make the system unstable.  When all 

slopes are positive, the flow distribution is definitely stable.  Using these theoretical results, we have 

developed and implemented a more efficient flow distribution and stability analysis method for systems 

with identical parallel channels, compared to the general approach for non-identical channels.  This 

algorithm requires significantly less calculation time and memory, and is hence a critical enabling factor 

for the study of the asymptotic stability behavior for many parallel channels.  

The methodology is applied to several cases with varying numbers of identical parallel boiling 

channels.  Severe maldistribution, with several channels almost completely starved of fluid flow, can 

occur.  Furthermore, the uniform distribution appears to be unstable for a significant flow rate range.  

These results indicate the potential for severe maldistribution.  Additionally, the asymptotic stability 

behavior as the number of parallel channels increases is investigated.  We demonstrate that the stability 

behavior for a system with constant flow-rate pump curve converges to that of the system under a 

constant pressure-drop condition, which is much simpler to predict.  It therefore serves as a useful 

reference case for approximating stability if the number of channels is sufficiently large.   

Finally, parametric effects of inlet subcooling, heat flux, and flow rate on the stability of the uniform 

distribution and on the severity of maldistribution are investigated.  Using a diagram of the dimensionless 

boiling number 
boil

N  and the subcooling number 
sub

N , we identify the operational regions where uniform 

flow distribution is unstable and where the severity of maldistribution is high.  The severity of 

maldistribution is measured by a new metric, namely, the relative average flow rate starvation J.  There is 
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a minimum inlet subcooling below which the uniform distribution is always stable and maldistribution 

cannot occur, regardless of the boiling number. 
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Appendix A.  Pressure-drop model 

A pressure-drop model is used to calculate the steady-state channel load curve, which is the basis for 

the flow distribution model discussed in Section 2.  The load curve of a single channel is given by: 

  fp W    (25) 

The pressure-drop model is based on the separated-flow assumption with local thermal equilibrium of 

the phases, i.e., the phases are separated from each other and have distinct properties.  There can be 

velocity slip between the phases, but no temperature difference.  We use a one-dimensional approach in 

which properties only change in the flow direction.  Figure 13 schematically shows the channel geometry 

and nomenclature used. 

The flow of the liquid-vapor mixture is governed by following conservation equations: 

Mass conservation: 

 0
G

z





 (26) 

Momentum conservation: 

 
 

2 2

2gf

w

1

1

v xv x p
G F

z z 

   
     
      

  (27) 

Energy conservation equation: 

  
c

Q
hG

z A





  (28) 

It is assumed that the gravitational force as well as potential and kinetic energy contributions are 

negligible.  These assumptions are generally true for heated pipe flow in microchannels.  Heating from 

viscous dissipation is not included for simplicity. 
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The primary variables in these equations are G, p, and h.  Three boundary conditions are used to solve 

these first-order differential equations: 

 ininlet
G G   (29) 

 outoutlet
p p   (30) 

   in ininlet inlet
, 0T T h h T p     (31) 

The following secondary variables are required to fully close the system of equations: 

Thermodynamic equilibrium quality: 

 f
eq

g f

h h
x

h h




   (32) 

The vapor quality is the same as 
eq

x  but limited to the range [0,1]: 

 
   0, eq1

x P x   (33) 

Void fraction: 

 
L

V

1

1
1

v x
S

v x

 




  (34) 

where
g fS u u  is the slip ratio between the vapor and liquid phases.   

Empirical correlations are needed to obtain the slip ratio S and the frictional pressure gradient 
wF .  

The slip ratio is estimated by the Zivi correlation [39]: 

 

1

3
g

f

v
S

v

 
  
 

  (35) 

The frictional pressure gradient is calculated with the Lockhart-Martinelli method [40] using the 

correlation by Chisholm [41].  We adopt the following formulation by Muzychka and Awad [42]: 

 
g

w

f f g

p p p
C

z
F

p

z z z

          
        

   


       
  (36) 

The single-phase frictional pressure gradients assume that the liquid or vapor fractions of the flow occupy 

the entire cross-section of the channel, without the other phase being present: 

 
 

2 2 22

gf

f g

f gh h

1
2 , 2

v x Gv x Gp p
f f

z D z D

    
    

    
  (37) 
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The friction factor f of fully-developed laminar flow in a rectangular channel is given by [43]: 

  2 3 4 524
1 1.3553 1.9467 1.7012 0.9564 0.2537

Re
f             (38) 

where  is the aspect ratio of the channel (0    1).  The Reynolds number should be calculated based 

on the flow rate of each phase alone: 

 
  h h

f g

f g

1
Re , Re

x GD xGD

 


    (39) 

In Eq. (36), C is the Chisholm constant, which accounts for the interaction between the two phases.  For 

laminar flow in both phases, its value is 5 [41].  

The model is solved numerically by finite-volume discretization of the governing equations on a one-

dimensional streamwise grid with 
z

N  uniformly sized finite volumes.  The number of grid cells 
z

N  used 

is 104.  The solutions of p and h are then obtained by numerical integration (using the trapezoidal rule) of 

the momentum and energy equations from their respective given boundary values.  The continuity 

equation is trivially solved by   in
G z G .  The model uses constant fluid properties evaluated at 

saturation conditions at the given outlet pressure.  The properties of water/steam are evaluated using 

CoolProp [44] in MATLAB.   

The pressure drop 
in outp p p    is obtained from the solution by subtracting the outlet pressure 

from the inlet pressure.  The slope of the channel load curves is approximated by forward finite 

differences: 

 
    1f W f W

W





 
   (40) 

A relative step size  of 10-3 is used for all the simulations in this article.  A parameter dependency study 

of  was performed to verify that this choice yields accurate results. 

 

Appendix B.  Supplementary Data 

Supplementary data associated with this article can be found in the online version. 
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Table 1.  Summary of solutions of eigenvalue problem given by Equation (8). 
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Note: The eigenvectors are not unique.  A set of linearly independent eigenvectors can be 

easily obtained from the conditions in the last column. 

 

  



34 

 

Table 2.  Individual channel parameters. 

Parameter Symbol Value 

Channel width c
W  200 m 

Channel height c
H  200 m 

Channel length c
L  10 mm 

Fluid - Water 

Outlet pressure out
p  1 bar 

Inlet temperature in
T  80 °C 

Heat flux Q   10 W/m 
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Table 3.  Effect of the number of parallel channels on the bounds of the forbidden region in the individual 

channel load curve, in a system with a constant flow-rate pump.  Channel parameters are given in Table 2. 

Number of 

channels, N 

Lower bound of 

forbidden region [mg/s] 

Upper bound of 

forbidden region [mg/s] 

1 - - 

2 - - 

3 0.300 0.462 

4 0.288 0.571 

5 0.284 0.639 

7 0.278 0.711 

10 0.277 0.749 

20 0.273 0.976 

50 0.269 1.14 

100 0.269 1.17 

200 0.269 1.18 

Constant p 

pump curve 
0.269 1.18 
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Table 4.  Literature summary of parametric effects on the channel load curve. 

Parameter Effect References 

Heat flux Q' Higher heat flux increases the pressure drop and shifts the 

local maximum and minimum in the channel load curve to 

higher flow rates.  The relative shape of the load curve remains 

almost unchanged.  At a given flow rate, the magnitude of the 

negative channel load curve slope increases for increasing heat 

flux at low vapor qualities; vice versa for high vapor qualities. 

[14,37,38]  

Axial heat flux 

distribution 

With an upstream concentration of the heat flux, the negative 

slope of the channel load curve becomes steeper. 

[37,38]  

Inlet subcooling 
sub

T  Increased inlet subcooling makes the negative slope in the 

channel load curve steeper. 

[14,37,38]  

System pressure 
out

p  Higher system pressure makes the magnitude of the negative 

channel load curve slope lower.  

[14,37,38] 

Type of fluid The effect of the fluid choice is mainly determined by the 

reduced pressure (
crit

p p ).  See the effect of system pressure. 

[14] 

Hydraulic diameter 
h

D  When the hydraulic diameter decreases, the heat input and 

flow rate decrease at fixed heat flux and mass flux.  Since the 

effect on flow rate is stronger, decreasing the hydraulic 

diameter has a similar effect as increasing the heat flux.  See 

the effect of heat flux. 

[14] 

Channel length 
c

L  Increasing the channel length is similar to increasing the heat 

flux.  See the effect of heat flux. 

[14] 
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Figure 1.  Diagram of pressure drop p versus flow rate W, including schematic pump curves as well as 

load curves for single adiabatic and uniformly heated channels. 
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Figure 2.  Schematic layout of flow through system of parallel channels. 
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Figure 3.  Schematic graph of an example characteristic function  g   (see Eq. (15)), with one positive 

(
 1

e ) and two negative (
 2

e ,
 3

e ) natural eigenvalues defining the poles.  The right-hand side of the 

characteristic equation   p Wg     is determined by the pump curve.  With 0p W  , the 

characteristic equation has two roots (
 1

 ,
 2

 ) that are both negative, despite the positive sign of 
 1

e .  

With 0p W  , the characteristic equation in this example has three roots: one positive (
 1

 ), and two 

negative (
 2

 ,
 3

 ).  This example shows that the relative positive magnitude of 
 1

e  and the pump 

curve can alter the sign of 
 1

  to be either positive or negative, and demonstrates that the natural 

eigenvalues are insufficient to determine the sign of 
 1

  when there is exactly one positive natural 

eigenvalue. 
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Figure 4.  Pressure drop p versus individual-channel flow rate 
i

W , i.e., the individual channel load 

curve, with and without heat input (parameters in Table 2).  The three flow rate regions (defined in Figure 

1) are identified with schematical channel symbols.  The length (short to long) and color (red-green-blue) 

of the included arrows represent the magnitude of the flow rate. 
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Figure 5.  Pressure drop p versus total flow rate W, i.e., the cumulative load curve, for two identical 

heated parallel channels (parameters in Table 2).  The stability of each operating point is judged for a 

system with a constant flow-rate pump.  The length and color of the arrows in the channel-like symbols 

have the same meaning as in Figure 4 to represent the flow rate combinations in the different parts of the 

curve. 
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Figure 6.  Relative flow rate distribution, shown as flow rate fraction (
i i

R W W ), versus total flow rate 

W, for two identical heated parallel channels (parameters in Table 2).  The stability of each operating 

point is judged for a system with a constant flow-rate pump. The length and color of the arrows in the 

channel-like symbols have the same meaning as in Figure 4 to represent the flow rate combinations in the 

different parts of the curve. 
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Figure 7.  Pressure drop p versus total flow rate W, i.e., cumulative load curve, for five identical heated 

parallel channels (parameters in Table 2).  The stability of each operating point is judged for a system 

with a constant flow-rate pump.  The ‘stability exception’ points to the only stable flow distribution 

involving a channel with flow rate in region II. 
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Figure 8.  Relative flow rate distribution, shown as flow rate fraction (
i i

R W W ) versus total flow rate 

W, for five identical heated parallel channels (parameters in Table 2).  The stability of each operating 

point is judged for a system with a constant flow-rate pump. 
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Figure 9.  Load curve of an individual channel in a system with N identical heated parallel channels 

(parameters in Table 2).  The vertical axis uses arbitrary units to offset the curves for visualization 

(shifted without rescaling).  The red color denotes the forbidden region:  if any individual channel 

operates in this range, a system with constant flow-rate pump curve is unstable, regardless of the other 

channels.  For comparison, the result for a system with constant pressure-drop pump curve is also shown. 
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(a) 

 

(b) 

Figure 10.  Uniform distribution stability boundary (UDSB) in a 
sub

N -
boil

N  diagram for several values of 

the heat input Q'.  (a) Full range of 
sub

N -
boil

N , and (b) zoom-in near the origin.  Channel parameters in 

Table 2; inlet temperature range:  in
45.8 °C, 99.1 °CT  ; flow rate range:  avg

0 mg/s, 60 mg/sW  .  
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(a) 

 

(b) 

Figure 11.  p- avg
W  diagrams depicting the asymptotic limit of the flow distributions through an infinite 

number of identical parallel channels with contour plots of: (a) the fraction of channels in the low-flow-

rate region 
I

n  (yellow: no channels in region I; dark blue: all channels in region I); (b) the relative 

average flow rate starvation  I I avg
1J n W W   (yellow: uniform distribution; dark blue: extreme 

maldistribution).  Channel parameters are given in Table 2.  
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(a) 

 

(b) 

Figure 12.  (a) Lowest and (b) highest possible value of the relative average flow rate starvation 

 I I avg
1J n W W   over all stable flow distributions presented in a 

sub
N -

boil
N  diagram, overlaid by the 

stability boundary of uniform distribution (UDSB) for 10 W/mQ  .  Channel parameters in Table 2; 

inlet temperature range:  in
45.8 °C, 99.1 °CT  ; flow rate range:  avg

0 mg/s, 60 mg/sW  .  
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Figure 13.  Schematic channel geometry and boundary conditions. 
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