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ABSTRACT 
 

Liquids have been commonly used in different types of compressors to cool the compressed gas and to seal the 

leakage gaps in order to increase the efficiency. CFD simulation provides valuable insights to help design engineers 

to verify, to analyze, and  to improve the performance of a compressor. However two phase flow with moving parts 

and small gaps is a very challenging CFD problem. For compressor simulation, thermal effects and heat transfer are 

also essential. Therefore simulation of liquid flooded compressors is extremely difficult. 

 

In this paper a full 3D transient CFD model for a generic oil flooded scroll compressor will be described in detail. 

Volume Of Fluid (VOF) multiphase approach will be used to model gas and liquid  phases. Effects of flooded oil 

will be evaluated by comparing the simulation results for the cases with and without oil. Simulation will also 

demonstrate that the approaches used in the paper are robust, fast, and user friendly, and can be readily applied to 

industrial compressor systems. 

 

Keywords:  oil flooded, scroll compressor, CFD, two phase flow, VOF. 

 

1. INTRODUCTION 
 

Compressors are designed to compress gases. However, liquids, such as oil and water, are often introduced to 

compression process for various purposes. For example, oil in compressor not only lubricates the moving 

components, but also cools the compressed gas, and seals the leakage gaps to help improve the efficiency of the 

process (Bell, 2011). 

 

In recent years, CFD has been widely used to analyze performance of varies Positive Displacement (PD)  

compressors. Those models cover different types of PD compressors including rolling piston compressor (Lenz and 

Cooksey, 1994, Geng et al., 2004, Liang, et al., 2010, Ding and Gao, 2014,), scroll compressor (Feng et al., 2004, 

Cui, 2006, Gao and Jiang 2014, Gao, et al., 2015), twin screw compressor (Voorde et al., 2005, Kovacevic et al., 

2007, Pascu et al., 2012, Kovacevic et al., 2014), and reciprocating compressor (Birari et al., 2006, Pereira et al., 

2010, Dhar et al., 2016). Intake and/or discharge valves are also included in some of the models. However almost all 

of the models are running as a "dry" process, meaning no liquid modeled in the compression chamber. The lack of 

CFD model of liquid flooded PD compressors is mainly due to the difficulties in CFD multiphase flow simulation. 

 

Even for a relatively simple two phase problem, high density ratio between liquid and gas, sophisticated interaction 

among the phases, and the interface tracking with complex shape make the flow difficult to solve. It becomes even 

more difficult to solve a multiphase flow in a PD compressor. In such a case, gas phase has to be treated as 
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compressible, heat transfer is also essential, and interface tracking has to be done in moving, deforming volumes. 

The major issues users experience with many CFD solvers in multiphase simulations are poor convergence, very 

long simulation time, and unsatisfactory mass/energy conservation. 

 

Simerics-PD (also known as PumpLinx) has been designed to model PD machines including PD compressors. Its 

VOF based multiphase model has also been validated with many different industrial applications including, liquid 

ring vacuum pump (Ding et al., 2015), and oil pump priming (Kucinschi and Shieh, 2016). Recently, heat transfer 

capability was added to Simerics-PD's VOF multiphase model. Oil flooded PD compressor is one of the targeted 

application for this new capability. 

 

Scroll compressors are widely used in many industries, such as refrigeration, air-conditioning and automotive.  It  is  

believed  that  scroll  compressors  have  the  advantages  of  high efficiency,  lower noise and vibration levels. 

Scroll compressor can run dry or oil flooded, and it was chosen as the candidate for this study.  

 

This paper presents a full 3D transient CFD model for a generic oil flooded scroll compressor. Due to the time 

limitation, the focus of this paper will be on the demonstration of the new capability with emphasis on the 

qualitative trends revealed from simulation results, and the conservation of mass and energy in the results. 

 
 

 

2. CFD SOLVER AND GOVERNING EQUATIONS 
 

2.1 Conservation Equations For Gas Liquid Mixture 

 

The CFD package used in this study solves conservation equations of mass, momentum, and energy of a 

compressible fluid using a finite volume approach. Those conservation laws can be written in integral representation 

as 
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The standard     two-equation model (Launder and Spalding, 1974) is used to account for turbulence, 
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Together with equation of state, where properties are functions of temperature and pressure, to form a closed system: 

 

                   (6) 

 

In the solver, each of the fluid properties can be a function of local pressure and temperature, and can be input as a 

formula or in a table format. 

 



 

 1616, Page 3 
 

23
rd 

International Compressor Engineering Conference at Purdue, July 11-14, 2016 

2.2 VOF Model for Multiphase 

 
VOF models are widely used in simulation of two phase flow (Ubbink 1977, Hirt and Nichols, 1981) . VOF solves a 

set of scalar transport equations representing the fraction of the volume each fluid component occupies in every 

computational cell. In the region close to a sharp interface, reconstruction will be used to determine the shape of the 

interface. The transport equation of the volume fraction for each fluid component can be written as: 
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Where Fi is the volume fraction of the ith fluid component, and i is the local density of ith fluid component. The 

weighted mixture density of the fluid in equation (1) to (5) are then calculated as: 

 

                        (8) 

 

Both implicit and explicit methods are implemented to solve this equation. Close to the sharp phase interface, high 

resolution scheme was implemented for reconstruction of the interface.  

 
This software package has been validated against many different types of compressors including: centrifugal 

compressor, lobe compressor, twin screw compressor (Kovacevic1 et al., 2014), scroll compressor (Gao and Jiang, 

2014, Gao et al., 2015), rolling piston (Ding and Gao, 2014), and reciprocating compressor (Dhar et al., 2016) for 

single phase compression of air, refrigerants, and other type of gases. The VOF model has also been validated 

against many industrial applications (Ding et al., 2015, Kucinschi and Shieh, 2016) for multiphase flow without 

solving heat transfer directly. 

 

3. SCROLL COMPRESSOR TEST CASE 

 
A generic scroll model was used to demonstrate the functionality and capability of proposed approach. The complete 

system includes an inlet port, a scroll, and an outlet port. Mesh of the scroll was created using Simerics-PD Scroll 

Template (Gao and Jiang, 2014). The rest of fluid volumes are meshed using Simerics binary tree unstructured 

mesher. All the fluid volumes are connected together using Miss Matched Grid Interface (MGI). The total number of 

cells is around 0.3 million. Figure 1 shows the complete fluid domain. Figure 2 shows the mesh in a cutting plane. 

 

  
Figure 1: All fluid volumes Figure 2: Mesh in a cutting plane 

 

The inlet is set to a fixed pressure, fixed temperature boundary condition. The outlet is set to a fixed pressure 

boundary condition. The refrigerant is R410a, modeled using ideal gas law. The molecular weight of R410a is 72.63 

g/mole, and the heat capacity is 1035 J/kgK. The compressor rotation speed is 3500 RPM. The oil was assumed to 

be incompressible with a density of 800 Kg/m3, and a heat capacity of 1670 J/kgK. In order to demonstrate the 

effects of the flooded oil, a similar case with the same parameters but without oil was also simulated for comparison. 
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Start from properly prepared CAD geometry, the meshing and the setup of the simulation take less than half an hour 

with the help of the Scroll template. Simulation time is about 1.5 hours per revolution for oil flooded simulation and 

about 20 minutes per revolution without oil on a PC with quad-core Intel Xeon CPU at 2.67GHz. 

 

4. RESULTS AND DISCUSSION 

 
In the simulation, the inlet and the outlet pressure are set to 1MPa and 3.4MPa respectively. The inlet temperature is 

set to 300K. The oil is assumed uniformly mixed with refrigerant at the entrance. Two oil concentrations were 

simulated. The oil mass fraction were set to 2.4% and 18.1% respectively. The corresponding inlet oil volume 

fraction were about 0.086% and 0.65%. Simulation results start to stabilize after around 6 revolutions. Table 1 

shows the mass and energy imbalance for the three simulations. 

 

Table 1 Conservation of simulation results 

 Oil flooded (2.4%) Oil flooded (18.1%) Dry 

Gas mass imbalance 1.2% 2.0% 0.2% 

Oil mass imbalance 0.7% 1.2% N/A 

Energy imbalance 1.3% 1.8% 0.5% 

 

 

Figure 3 shows typical pressure contour at 4 different crankshaft angles. The pressure in each isolated fluid "pocket" 

keeps increasing with crankshaft angle due to the continuous volume reduction of the pocket till it reaches outlet.  

 

    
90 degree 180 degree 270 degree 360 degree 

Figure 3: Pressure contour at different crankshaft angles 

 

Figure 4 shows typical temperature contour at 4 crankshaft angles. Temperature in the pocket follows a similar 

trend. However unlike the pressure, the temperature inside each pocket is not very uniform. The non-uniformity is 

caused by the leakage flow from the high pressure/high temperature region towards the low pressure/low 

temperature region. Pressure propagates with pressure wave in the speed of sound, while temperature propagates 

with much slower convection and diffusion process. It is expected that the pressure in each chamber equalizes much 

fast than the temperature.  

 

 

    
90 degree 180 degree 270 degree 360 degree 

Figure 4: Temperature contour at different crankshaft angles 

 

Figure 5 shows oil volume fraction contour for 2.4% oil case at 4 crankshaft angles. When pocket pressure 

increases, volume of the gas phase will decrease, and the volume fraction of oil will increase. Therefore oil volume 

fraction also increase when pocket moves towards the center.  
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90 degree 180 degree 270 degree 360 degree 

Figure 5: Oil volume fraction at different crankshaft angles 

 

Figure 6 and Figure 7 compare the pressure and the temperature for the cases with and without oil at the same 

crankshaft angle. Although the pressure distribution looks very similar, the temperature for the dry compression is 

apparently higher.  

 

 

    
Oil flooded Dry Oil flooded Dry 

Figure 6: Pressure with/without oil Figure 7: Temperature with/without oil 

 

 

Figure 8 and Figure 9 plot the pressure and the temperature history of a single fluid pocket for three simulated cases. 

Those data are read from monitor points moving together with the pocket. From the plots, the pressure history are 

similar for all the cases, and the 2.4% oil flooded case is almost identical to the dry case. But there are much more 

differences in temperature history. The temperature for the case with 18.1% oil dropped about 20 degree at the 

outlet. 

 

 

  
Figure 8: Pressure history of a pocket Figure 9: Temperature history of a pocket 

Figure 10 compares the leakage velocity for the cases with 2.4% oil and without oil at the same crankshaft angle. 

The leakage velocity for the dry compression is higher than the oil flooded one.  
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Oil flooded Dry 

Figure 10. Leakage flow velocity with/without oil 

 

 

Table 2 shows the major performance difference when compressor run dry or with oil flooded. The results show a 

gradual increase in refrigerant mass flow rate, a gradual decrease in power consumption, and a significant 

temperature reduction when the oil contents in compressor increases. Those trends match the expected oil cooling 

and sealing effects. 

 

 

Table 2 Differences in compressor performance 

Oil flooded/Dry 2.4% Oil  18.1% Oil 

Gas mass flow rate 101.3% 107.1% 

Outlet temperature rise 90.4% 63.9% 

Rotor power 99.5% 97.6% 

 

 

5. CONCLUSIONS AND FUTURE WORK 

 
A newly improved VOF multiphase model has been successfully applied to an oil flooded scroll compressor. 

Simulation results predict correctly the oil cooling and sealing effects on compression process, and show good mass 

and energy conservation. With the help of template design and robustness of flow solver, the setup and simulation 

are also easy and fast. The new model has demonstrated great potential for modeling two phase flow problems in PD 

compressors. Next step will be validation against available test data. Further improvement of simulation speed, and 

inclusion of phase change model are in the future development plan. 

 

NOMENCLATURE 
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p 

RPM 

Pressure  

Revolution per minute 

 

Pa 

 
 Control volume 
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