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ABSTRACT 
 
Heat transfer has an important role on the efficiency and reliability of hermetic reciprocating compressors adopted 
for household refrigeration. Most analyses of such compressors are carried out for steady-state operating conditions 
based on established procedures and standards. However, since household refrigeration systems work by alternating 
periods in which the compressor is on (ON) and idle (OFF), the performance assessment of compressors should take 
into account the ON/OFF cyclic operation. This paper presents an experimental study of the heat transfer in 
components of a hermetic reciprocating compressor during thermal transients due to ON/OFF cyclic operation. The 
compressor was instrumented with thin-film heat flux sensors and thermocouples to evaluate time-varying heat 
transfer coefficients. We found that heat flux in some regions is significantly affected by the cyclic operating 
condition. Moreover, the investigation revealed the presence of different time scales due to distinct thermal inertia 
and heat transfer associated with each component. 
 
 

1. INTRODUCTION 
 
Heat transfer can considerably affect the efficiency and reliability of hermetic reciprocating compressors. In one 
hand, the superheating of the suction gas reduces the compressor volumetric and isentropic efficiencies. On the other 
hand, reliability issues limit the electrical motor and lubricant oil temperatures. Hence, significant research has been 
developed to better understand the heat transfer between the compressor components. 
 
Thermal simulation models have been developed based on lumped-parameter formulation (Todescat et al., 1992; 
Ooi, 2003), in which the heat transfer between lumped elements is approached from measurements or correlations 
available in the literature. Other simulation models adopt differential formulation (Raja et al., 2003; Birari et al., 
2006), solving the heat conduction in solid components and the fluid flow via the finite-volume method. Such 
models do not require convective heat transfer coefficients to estimate heat transfer between the gas and solid 
components. Although a full differential formulation provides a detailed thermal characterization of the compressor, 
the numerical solution of the governing equations is associated with high computation cost. Hybrid simulation 
models (Sanvezzo Jr. and Deschamps, 2012) formed by lumped and differential formulations for the gas and solid 
components, respectively, have been proposed to reduce the computational cost while retaining a detailed 
characterization of heat transfer in the solid components. 
 
Experimental studies have considered different aspects of heat transfer in reciprocating compressors. Meyer and 
Thompson (1990) used thermocouples to measure the gas temperature along the flow path and, by applying energy 
balances, determined the heat transfer rate through components. Dutra and Deschamps (2013) carried out 
measurements of heat flux and temperature in a single-speed small reciprocating compressor by using thin-film heat 
flux sensors (HFSs) and thermocouples, and combined such measurements to estimate local heat transfer 
coefficients. 
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All the aforementioned investigations were conducted for the compressor operating under steady-state condition, 
following well-established standards for evaluation and certification criteria of compressors (EN12900:2005). 
Nevertheless, household refrigeration systems operate under cyclic ON/OFF conditions and such transients can 
affect the compressor performance. Available studies in the literature concerning the ON/OFF operation of 
refrigeration systems are focused on heat exchangers and expansion devices (Hermes and Melo, 2008). Only 
recently, Lohn et al. (2015) presented a hybrid thermal model to predict the temperature distribution in a hermetic 
reciprocating compressor under a cyclic ON/OFF condition. 
 
The present paper reports an experimental investigation aimed at characterizing the heat transfer in a hermetic 
reciprocating compressor during transient conditions. Evaporating and condensing temperatures were fixed at -21°C 
and 40°C, respectively. The compressor was tested under steady-state operating condition and two ON/OFF cyclic 
conditions: (i) 12 min. ON/15 min. OFF; and (ii) 25 min. ON/30min. OFF. Measurements of temperature and heat 
flux were carried out in different regions and components of the compressor, allowing estimates of local heat 
transfer coefficients as a function of time. 
 
 

2. EXPERIMENTAL PROCEDURE 
 
2.1 Compressor Instrumentation 
Several HFSs and thermocouples were fitted onto the surface of the electrical motor, suction muffler and discharge 
system, so as to obtain a detailed thermal characterization of the compressor: (i) three on the electrical motor 
surfaces: em1, em2 and em3; (ii) two on the suction muffler: sm1 and sm2; and (iii) five on the discharge system: 
dp1, dm1, dm2, dm3 and dm4. The location of each HFS on these components is shown in Figures 1-3.  
 

  
Figure 1: Instrumentation of the electrical motor. 

 

  
Figure 2: Instrumentation of the suction muffler. 

em1em2

em3

em2

sm1 sm2
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Figure 3: Instrumentation of the 
 
The operating principle of a thin-film HFS consists of a self
through the sensor. The generated voltage (V) is the result of a temperature difference (
the HFS, which is measured by a thermocouple serial association (V = N 
thermocouple junctions and the thermoelectric sensiti
HFS surfaces, q”, is a function of its thermal conductivity, k, thickness, t, and temperature difference 
/ t). Therefore, a linear relationship between heat flux and voltage outpu
k) is defined as the HFS sensitivity. Although the value of S can be theoretically determined, this is not a common 
practice. The HFS sensitivity is usually assessed from a standardized calibration procedure p
manufacturer which supplies a datasheet containing all the technical specifications, including the HFS sensitivity. 
 
The instrumentation of HFSs on the compressor components is not a simple task, due to the high temperature levels 
and the presence of lubricant oil. An epoxy
wires were carefully positioned inside the compressor to minimize disturbances in the lubricant oil flow. This is a 
relevant aspect, because the lubricant oil significantly affects the heat transfer inside the compressor, increasing the 
heat loss to the external ambient (Dutra and Deschamps, 2013). 
were also positioned in the gas within the compre
to estimate the local heat transfer coefficients: 
 

 

 
where Ts is the temperature of the sensor surface, measured by a thermocouple embedded in 
 
2.2 Experimental Setup 
A calorimeter setup was employed 
4 illustrates a schematic of the calorimeter
heat exchangers (HX), a thermocouple (TC) and pressure transducers (PT). The compressor (C) raises the refrigerant 
pressure from point 1 up to point 2, which is then cooled by a
refrigerant is throttled to an intermed
is measured by a Coriolis mass flow meter (FM) and then the refrigerant is cooled again with another heat excha
(HX2) at point 5. The refrigerant is throttled 
(point 6). Finally, an electrical heater (EH1) and a thermocouple (TC1) are used to 
the compressor suction line (point 1), completing the cycle. 
Figure 5, the refrigerant remains as 
 
The first step in experimental test is to submit the compressor and the calorimeter pipeline to a
condition, in order to remove air and
system and the operating condition is
ON/OFF period. The transient tests 
ON/OFF cycles. The first 5 cycles are 
to sample an average representative cycle.

dm1 dm2

gap

suction muffler

motor
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Instrumentation of the cylinder head and discharge muffler.

film HFS consists of a self-generated voltage output proportional to a heat flux 
The generated voltage (V) is the result of a temperature difference (∆

the HFS, which is measured by a thermocouple serial association (V = N α ∆T), being N and 
thermocouple junctions and the thermoelectric sensitivity of the materials, respectively. The heat flux through the 
HFS surfaces, q”, is a function of its thermal conductivity, k, thickness, t, and temperature difference 
/ t). Therefore, a linear relationship between heat flux and voltage output is obtained (q” = V / S), where S (= N 
k) is defined as the HFS sensitivity. Although the value of S can be theoretically determined, this is not a common 
practice. The HFS sensitivity is usually assessed from a standardized calibration procedure p
manufacturer which supplies a datasheet containing all the technical specifications, including the HFS sensitivity. 

The instrumentation of HFSs on the compressor components is not a simple task, due to the high temperature levels 
nd the presence of lubricant oil. An epoxy-adhesive was necessary to attach the HFSs onto the surfaces and their 

wires were carefully positioned inside the compressor to minimize disturbances in the lubricant oil flow. This is a 
e lubricant oil significantly affects the heat transfer inside the compressor, increasing the 

heat loss to the external ambient (Dutra and Deschamps, 2013). After the installation of the HFSs
were also positioned in the gas within the compressor shell, in order to establish suitable reference temperatures, 
to estimate the local heat transfer coefficients:  

� �
�"

�� � ��
 

is the temperature of the sensor surface, measured by a thermocouple embedded in 

 to establish the operating conditions in which the compressor was tested. 
tic of the calorimeter composed of pipelines, control valves (CV), a mass flow meter (FM), 

ngers (HX), a thermocouple (TC) and pressure transducers (PT). The compressor (C) raises the refrigerant 
pressure from point 1 up to point 2, which is then cooled by a heat exchanger (HX1) at point 3. After that, the 
refrigerant is throttled to an intermediate pressure level (point 4) by means of a control valve (CV1). 

Coriolis mass flow meter (FM) and then the refrigerant is cooled again with another heat excha
(HX2) at point 5. The refrigerant is throttled again (CV2), reducing its pressure to the required 
(point 6). Finally, an electrical heater (EH1) and a thermocouple (TC1) are used to adjust 

(point 1), completing the cycle. As can be seen in the pressure
superheated vapor along the entire thermodynamic cycle.

experimental test is to submit the compressor and the calorimeter pipeline to a
order to remove air and humidity within the system. After that, a refrigerant charge

operating condition is defined by setting the evaporating and condensing temperatures
 are carried out by switching on and off the compressor 

cycles are necessary to attain a periodically stationary condition and the 
to sample an average representative cycle. For the steady state condition, the compressor

dm2

muffler
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and discharge muffler. 

generated voltage output proportional to a heat flux 
The generated voltage (V) is the result of a temperature difference (∆T) across the thickness of 

∆T), being N and α the number of 
respectively. The heat flux through the 

HFS surfaces, q”, is a function of its thermal conductivity, k, thickness, t, and temperature difference ∆T (q” = k ∆T 
t is obtained (q” = V / S), where S (= N α t / 

k) is defined as the HFS sensitivity. Although the value of S can be theoretically determined, this is not a common 
practice. The HFS sensitivity is usually assessed from a standardized calibration procedure performed by the sensor 
manufacturer which supplies a datasheet containing all the technical specifications, including the HFS sensitivity.  

The instrumentation of HFSs on the compressor components is not a simple task, due to the high temperature levels 
adhesive was necessary to attach the HFSs onto the surfaces and their 

wires were carefully positioned inside the compressor to minimize disturbances in the lubricant oil flow. This is a 
e lubricant oil significantly affects the heat transfer inside the compressor, increasing the 

of the HFSs, thermocouples 
ssor shell, in order to establish suitable reference temperatures, T∞, 

(1) 

is the temperature of the sensor surface, measured by a thermocouple embedded in the HFS.  

to establish the operating conditions in which the compressor was tested. Figure 
composed of pipelines, control valves (CV), a mass flow meter (FM), 

ngers (HX), a thermocouple (TC) and pressure transducers (PT). The compressor (C) raises the refrigerant 
(HX1) at point 3. After that, the 

iate pressure level (point 4) by means of a control valve (CV1). The mass flow 
Coriolis mass flow meter (FM) and then the refrigerant is cooled again with another heat exchanger 

required evaporating pressure 
adjust the level of superheating in 
the pressure-enthalpy diagram of 

cycle. 

experimental test is to submit the compressor and the calorimeter pipeline to a suitable vacuum 
refrigerant charge is supplied to the 

the evaporating and condensing temperatures, as well as the 
switching on and off the compressor in an alternate mode for 8 

a periodically stationary condition and the last 3 are used 
compressor runs uninterruptedly for 
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approximately 4 hours until no temperature variation higher than 1°C is observed in one hour
is met, data are acquired during 45 minutes
sampling rate was 0.25 Hz.  
 

Figure 4: Schematic of the calorimeter facility.
 

 

 
A 60 Hz reciprocating compressor operating with R134a was adopted 
discharge pressures correspond to saturation pressures associated with the evaporating and condensing temperatures 
of -21°C and 40°C, respectively. These pressures were set and controlled within a range of ±1% whereas 
temperatures of the gas in suction line and 
Temperatures, heat fluxes and heat transfer coefficients are normalized in relation to 
the shell temperature, Tshell, (in °C)
coefficient between shell and environment,
 

 �∗ �
�

��
���
 

 
Results under steady-state condition 
 
3.1 Gas inside the Compressor 
Figures 6-8 show measurements for 
the cyclic ON/OFF conditions (12 min
the highest temperatures occur near the shell cover and discharge muffler
measured in the suction muffler and 
the compressor shell, the reference temperature
close to the surfaces of interest.  
 

Figure 6: Gas temperatures - 
12 min/15 min. 

 
3.2 Electrical Motor  
Measurements of heat flux, temperature and local heat transfer coefficients 
(12 min/15 min; 25 min/30 min) and the 
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no temperature variation higher than 1°C is observed in one hour
, data are acquired during 45 minutes and the test is finished. For both cyclic and steady

 

Schematic of the calorimeter facility. Figure 5: p-h diagram of the 

3. RESULTS 

A 60 Hz reciprocating compressor operating with R134a was adopted for the measurements. The suction and 
discharge pressures correspond to saturation pressures associated with the evaporating and condensing temperatures 

21°C and 40°C, respectively. These pressures were set and controlled within a range of ±1% whereas 
suction line and of the environment inside the calorimeter were 

Temperatures, heat fluxes and heat transfer coefficients are normalized in relation to steady
(in °C), the heat transfer rate released through the shell, �

coefficient between shell and environment, hshell: 

�"∗ �
�"

�"�
���
 �∗

state condition are presented with uncertainty bars corresponding to a 95% confidence interval. 

 
measurements for the gas temperature in four different positions inside the compressor shell

12 min/15 min; 25 min/30 min) and the steady-state condition. 
near the shell cover and discharge muffler, while the lowest 
and near the region em3 of the motor. Due to such temperature 

, the reference temperatures adopted to estimate the local heat transfer coefficients were

  
Figure 7: Gas temperatures - 

25 min/30 min. 
Figure 8:

of heat flux, temperature and local heat transfer coefficients for the electrical motor 
(12 min/15 min; 25 min/30 min) and the steady-state conditions are shown in columns (a), (b) and (c) of
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no temperature variation higher than 1°C is observed in one hour. After this requirement 
yclic and steady-state conditions the 

 
h diagram of the hot-cycle calorimeter. 

the measurements. The suction and 
discharge pressures correspond to saturation pressures associated with the evaporating and condensing temperatures 

21°C and 40°C, respectively. These pressures were set and controlled within a range of ±1% whereas the 
were controlled within ±0.5°C. 

steady-state measurements of 
��
���
" , and the heat transfer 

�
�

��
���
 (2) 

are presented with uncertainty bars corresponding to a 95% confidence interval.  

inside the compressor shell under 
condition. The results show that 

the lowest temperatures are 
temperature differences inside 

adopted to estimate the local heat transfer coefficients were those 

 
Figure 8: Gas temperatures - 

steady state. 

electrical motor under the cyclic 
columns (a), (b) and (c) of Figure 9. 
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During the ON period of the cyclic operation (12 min/15 min), the heat fluxes through the motor surfaces decrease 
in the first minutes and when this period is longer (25 min/30 min), the heat fluxes start to increase. This is a 
consequence of the temperature difference between the surfaces (em1, em2 and em3) and the gas inside the 
compressor shell, which is initially decreased and increased again in the case of a period of 25 min. Immediately 
after the compressor is switched off, the heat fluxes increase suddenly, since the gas temperature decreases at a 
much faster rate than the temperature of the solid components. The heat fluxes through the motor surfaces are on the 
same level when the compressor runs under the cyclic condition. On the other hand, the heat flux through surface 
em2 is much higher than the others when the compressor operates in steady-state condition. This is due to the 
proximity between the surface em2 and the suction muffler (Figure 3), which is the coldest component of the 
compressor under steady-state condition. 
 
The temperature on the motor surfaces em1, em2 and em3 point out similar results, with a slightly higher value on 
em1, since this region is near the discharge muffler. The temperature of the gas close to the surface em2 was not 
measured, but estimated as the average of the measurements on the motor and suction muffler surfaces, em2 and 
sm2, respectively. This approach was adopted because the narrow gap between the electrical motor and the suction 
muffler (Figure 3) hinders the installation of a thermocouple in that location. Thus, the temperature in the gap is 
similar to that observed for the em2 region, making it difficult to correctly estimate the local heat transfer coefficient 
in the idle period. Since the difference between the surface and gas temperatures becomes very small when the 
compressor is switched off, the heat transfer coefficient suddenly increases and reaches excessive values. Despite 
this shortcoming, the estimates of heat transfer coefficients, h*, for the remaining regions are reasonable, in the 
range of 0.5 - 2, being on the same magnitude for ON/OFF and steady-state conditions.  
 

   

   
(a) (b) (c) 

Figure 9: Electrical motor: Heat flux, temperatures and local heat transfer coefficients 
(a) 12min/15 min; (b) 25min/30 min; (c) steady state. 
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3.3 Suction Muffler  
The results of heat flux, temperature and local heat transfer coefficients associated with the suction muffler surfaces 
are shown in Figure 10. The measurements of heat flux suggest that the electrical motor thermally interacts with the 
suction muffler, since the surface sm2 is subjected to higher heat flux than the surface sm1. Moreover, there is a 
sudden decrease of heat flux immediately after the compressor is switched off, reaching negative values. When the 
compressor is idle (OFF), heat transfer occurs first towards the suction muffler, since the gas temperature is still 
higher than the temperature of the muffler wall. However, eventually during the idle period the temperature of the 
solid surpasses the gas temperature, and heat flux has its direction changed. These temperature variations can be 
clearly observed in Figure 10, with the exception of the gas temperature near the region sm2 that is the reference 
temperature for the surface em2. 
 
As the surface and gas temperatures approach each other, a sudden increase in the heat transfer coefficient is 
observed on the surface sm1. Naturally, this is not associated with any modification of the flow pattern in the suction 
muffler vicinity, but simply a result of the approach used to estimate the coefficient, represented by Equation (1). 
More representative results for the heat transfer coefficients in the idle period can be obtained just before the 
compressor is switched on, h* ~ 1. The heat transfer coefficients obtained for the ON period and the steady-state 
operation are on the same order of magnitude, 0.8 – 3.5, compared to those associated with the surface of the 
electrical motor.  
 

   

   

   
(a) (b) (c) 

Figure 10: Suction muffler: Heat flux, temperatures and local heat transfer coefficients.  
(a) 12min/15 min; (b) 25min/30 min; (c) steady state. 
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period for the two cyclic conditions and the steady-state condition. As can be seen, gas superheating varies 
according to how long the compressor runs before being switched off. For the 12min/15min ON/OFF condition, the 
non-dimensional temperature in the suction chamber reaches 0.72, whereas the temperature measured in the steady-
state condition is 0.78.     
 

  
Figure 11: Suction chamber. Figure 12: Suction chamber gas temperature. 

 
3.4 Discharge System 
Experimental data of temperature, heat flux and local heat transfer coefficients at the discharge system regions are 
shown in Figures 13-15 for the steady-state and ON/OFF operating conditions. As can be noted in Figure 13, the 
cylinder head, dp1, is the component of the discharge system with the highest temperature, regardless the 
compressor operating condition. This is the reason for the higher heat flux found at dp1 in comparison to the 
locations dm1 and dm2 (Figure 14). It is interesting to observe in Figure 15 that h* is about 1 – 1.5 for the surfaces 
dm1 and dm2, which are much smaller than the values obtained at the surfaces dm3 and dm4 (in the range 7 - 12). 
Such a difference can be explained by the proximity of each surface in relation to the crankshaft, as depicted in 
Figure 3. Specific to this type of compressor, the oil stored in the sump is taken to the upper parts by the centrifugal 
action of an oil pump that is coupled to the crankshaft. As the shaft spins, the lubricating oil flows inside the pump 
by centrifugal action until it reaches the other extremity of the crankshaft. Part of the oil that leaves the crankshaft 
impinges against the surfaces dm3 and dm4, increasing the heat flux there. The highest heat transfer coefficient is 
found at dm3 because this surface is the closest to the crankshaft. On the other hand, the temperature at dm4 is 
higher than at dm3, and this explains its greater heat flux. 
 

   

   
(a) (b) (c) 

Figure 13: Temperatures at the discharge system wall: (a) 12 min/15 min; (b) 25 min/30 min; (c) steady state. 
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The heat transfer enhancement mechanism at the surfaces dm3 and dm4 due the crankshaft spinning suddenly stops 
when the compressor is switched off (Figures 14 and 15). During the idle period, the heat transfer coefficients for all 
the compressor surfaces become similar, within a range 0.8 – 1.5. This is a further evidence of the influence of the 
flow of lubricant oil on the heat transfer in the discharge muffler. 
 

   

   
(a) (b) (c) 

Figure 14: Heat flux at the discharge system wall: (a) 12min/15 min; (b) 25min/30 min; (c) steady state. 
 

   

   
(a) (b) (c) 

Figure 15: Heat transfer coefficients at the discharge system wall:  
(a) 12 min/15 min; (b) 25 min/30 min; (c) steady state. 
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system components and the refrigerant gas is nearly constant during the ON period, inducing roughly constant heat 
fluxes (Figure 14), and which do not change regardless the operating condition, as shown in Table 1 for the surfaces 
dm1 and dp1. On the other hand, the temperature difference between the suction muffler (sm1) surface and the gas 
increases continuously, bringing about an increase of the heat flux at different operating conditions (Table 1). 
Moreover, the temperature difference between the electrical motor (em1) and the refrigerant gas first decreases and 
then increases. Such a slight variation do not affects the heat flux during the cyclic operation, as shown in Table 1. 
However, if the compressor is kept under operation for a longer period (i.e. until reaching the steady-state 
condition), the temperature difference continues to increase, bringing about a higher heat flux. It is worthwhile to 
note from Table 1 that the average heat fluxes at the surfaces sm1 and em1 are 50% higher in the steady-state 
condition in comparison to the ON period of the 12 min/15 min. This highlights the importance of taking into 
account thermal transients in analyses of compressor performance. 
 

 

Table 1: Average heat flux for cyclic and steady state 
operating conditions. 

 

Figure 16: Temperature difference at different 
components for the 25 min/30 min operating condition. 

 

 
 

4. CONCLUSIONS 
 
The present paper reported an experimental investigation of heat transfer in a hermetic reciprocating compressor 
during cyclic and steady-state operating conditions. The compressor was instrumented with heat flux sensors and 
thermocouples fitted onto the surfaces of the suction muffler, electrical motor and discharge system. The results 
revealed the presence of two levels of heat transfer coefficients during the compressor operation: (i) 0.8 – 3.5 at 
most components and (ii) 7 - 12 at the surface of components closest to the crankshaft, brought about by forced 
convection of lubricant oil and refrigerant gas provided by the crankshaft motion. Furthermore, we found different 
time scales associated with the heat transfer process of each component, and the heat flux at the suction system and 
electrical motor during the cyclic condition are quite different of those for the steady state condition. This is an 
aspect that should be taken into account in the thermal modeling of compressors. 
 
 

NOMENCLATURE 
 
h heat transfer coefficient (W/m².K) Subscript  
h* non-dimensional heat transfer coefficient (–) s surface 
q" heat flux (W/m²) shell shell 
q"* non-dimensional heat flux (–) ∞ reference 
T temperature (°C)   
T* non-dimensional temperature (–)   
em electrical motor (–)   
dm discharge muffler (–)   
dp discharge plenum (–)   
sm suction muffler (–)   
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