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ABSTRACT 
 

HFO-1336mzz(Z) is evaluated as a working fluid for combined heat and power generation from low temperature 

natural or waste heat with reduced environmental impact. HFO-1336mzz(Z) safety, health, environmental, chemical 

and thermodynamic properties are reviewed and new data on the miscibility and viscosity of mixtures of HFO-

1336mzz(Z) with ISO 220 and 320 polyol ester lubricants are reported.  HFO-1336mzz(Z) Organic Rankine Cycle 

(ORC) performance was measured in an un-optimized prototype system at an expander inlet temperature of 196 oC 

and at condensing temperatures of 60 oC and 80 oC. Measured net thermal efficiency and net mechanical power 

capacity exceeded 10% and 10 kWmech, respectively.   

 

1. INTRODUCTION 
 

Demand for heating and power continues grow as populations and living standards increase around the world. 

Increasing awareness of the environmental impacts associated with the extraction and combustion of fossil fuels, 

including urban air quality and climate change, and continued uncertainty in fossil fuel supplies and prices are 

motivating a renewed interest in the utilization of abundantly available low temperature heat. Waste heat (e.g. from 

industrial or commercial processes or from mobile or stationary internal combustion engines) or natural heat (e.g. 

geothermal or solar heat) are often available at temperatures in the range of 100 oC to 250 oC.  Conversion of heat to 

mechanical (or electrical) power through Organic Rankine Cycles (ORCs) is one promising approach to low 

temperature heat utilization. It requires the use of working fluids that meet a demanding set of specifications. 

 

HFO-1336mzz(Z) (cis-CF3CH=CHCF3; 1,1,1,4,4,4‐hexafluoro‐2‐butene; CAS No. 692‐49‐9) was first developed as 

a low global warming potential (GWP) blowing agent for the expansion of thermosetting foam (e.g. Loh et al., 

2015).  It was later considered as a refrigerant for the replacement of HCFC-123 in low pressure centrifugal chillers 

(Kontomaris, 2010) and as a component (blended with trans-1,2-dichloro-ethyelene) of refrigerant R-514A 

(ASHRAE registration pending). HFO-1336mzz(Z) exhibited remarkable chemical stability at high temperatures 

that was first reported by Kontomaris (2011) and later more thoroughly documented by Kontomaris (2014b). It was 

then evaluated as a working fluid for high temperature heat pumps (e.g. Kontomaris, 2012, 2013 and 2014a; 
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mailto:mattias.nilsson@vikingheatengines.com
mailto:tim.hamacher@vheg.de%0d
mailto:hnr@vdg.no


 

 2618, Page 2 
 

16th International Refrigeration and Air Conditioning Conference at Purdue, July 11-14, 2016 

Helminger et al. 2016) and ORCs (Kontomaris 2012, 2014b, 2014c, 2015; Molés et al. 2014; Molés et al. 2015).  

HFO-1336mzz(Z) is currently on a path to commercialization in 2017. 

 

The emerging availability of HFO-1336mzz(Z), with a GWP sufficiently low so as to virtually eliminate business 

risk from increasingly restrictive climate protection regulations around the globe and with performance sufficiently 

high so as to reduce payback time for selected applications to attractive levels, is now motivating substantial ORC 

research and development investments. This paper examines the potential of an emerging ORC technology using 

HFO-1336mzz(Z) as the working fluid to provide heat and power from low temperature heat with reduced 

environmental impact. It reviews key HFO-1336mzz(Z) properties, reports newly measured properties and ORC 

system performance and identifies knowledge gaps for future work. 

 

2. HFO-1336mzz(Z) PROPERTIES 
 

2.1 Safety, Health and Environmental Properties 
The basic safety, health and environmental properties of HFO-1336mzz(Z) are compared to those of a familiar 

reference fluid that has been extensively used in ORC applications, namely HFC-245fa, in Table 1.  HFO-

1336mzz(Z) is non-flammable at both 60 oC and 100 oC according to ASTM E681-2004. It has recently received a 

safety classification of A1 (lower toxicity; no flammability) according to ASHRAE Standard 34 with an 

Occupational Exposure Limit (OEL) of 500 ppm. HFO-1336mzz(Z) contains no chlorine, bromine or iodine and, 

therefore, has a zero Ozone Depletion Potential (ODP). The HFO-1336mzz(Z) atmospheric lifetime of 22 days and 

GWP with a hundred-year integrated time horizon of 2 compare favorably to those of HFC-245fa.   

 

Table 1: Basic HFO-1336mzz(Z) safety, health and environmental properties compared to HFC-245fa 

 

 HFC-245fa HFO-1336mzz-Z 

 CHF2CH2CF3 CF3CH=CHCF3(Z) 

IUPAC name 1,1,1,3,3-pentafluoro-propane (Z)-1,1,1,4,4,4-hexafluoro-2-butene 

Mol. w. (kg/kmol) 134.05 164.056 

Flammability Non-flammable(1) Non-flammable(2) 

Occupational Exposure Limit (ppmv) 300(1) 500(3) 

Safety Class(3) B1(1) A1(3) 

Atmospheric Lifetime (yr) 7.7(4) 0.060274 (22 days)(4) 

Ozone Depletion Potential None None 

Global Warming Potential 

(100 year Integrated Time Horizon) 

858(4) 2(4) 

(1) Calm and Hourahan (2007); (2) At 60 oC and 100 oC according to ASTM E681-2004; (3) According to 

ASHRAE Standard 34; (4) Myhre et al. (2013) 

 

Hydrocarbons, such as pentanes, are often used as working fluids in ORC systems. They are considered volatile 

organic compounds (VOCs) and are subject to regulation because they contribute to the formation of ground-level 

ozone, which is the primary contributor to urban "smog".  HFO-1336mzz(Z) has a Maximum Incremental Reactivity 

(MIR) of only 0.04 gO3/g (Carter, 2011) or only 14% of that of ethane. HFO-1336mzz(Z) has a photochemical 

ozone creation potential (POCP), a measure of atmospheric reactivity to ground-level ozone favored in the European 

Union, of only 3.4 (Baasandorj, et al., 2011) or only 27.6 % of that of ethane (Federal Register, 2008). Therefore, 

despite its very short atmospheric lifetime, HFO-1336mzz(Z) is expected to be exempt from VOC regulations. 

 

2.2 Thermodynamic Properties 
Availability of accurate thermodynamic properties is key in the selection of a new working fluid and subsequent 

application development.  Accurate thermodynamic properties in the vicinity of the working fluid critical point are 

particularly important for the ORC applications of interest in this paper. 

 

HFO-1336mzz(Z) thermodynamic properties for early ideal cycle performance evaluations were estimated from 

limited measurements of liquid density, vapor pressure and critical temperature and pressure.  They were derived 

through either cubic equations of state (EOS) or – for increased accuracy near the critical point – through an EOS 

based on an expression for the Helmholtz free energy with a number of terms limited by the available data. 
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Thermodynamic properties for equipment design must meet a higher standard of accuracy that requires 

measurements over a wide range of conditions including the region near (above and below) the critical point. 

Extensive HFO-1336mzz(Z) pressure-temperature-density measurements have recently been reported by Tanaka et 

al. (2016a) and Tanaka et al. (2016b). They covered a temperature range from 49.85°C to 229.85°C and pressures up 

to 10 MPa and they included measurements in the liquid, vapor, liquid-vapor and super-critical region. The reported 

temperatures and pressures were accurate within 0.028 K and 4 kPa, respectively. Densities lower than 100 kgm-3 

were measured with a 0.6% accuracy and densities higher than 100 kgm-3 were measured with a 0.4% accuracy. 

Table 2 compares a few basic HFO-1336mzz(Z) thermodynamic properties to those of HFC-245fa. The HFO-

1336mzz(Z) atmospheric boiling point, critical temperature and critical pressure reported by Tanaka et al. (2016a 

and 2016b) are in close agreement with the values reported earlier by Kontomaris (2010; 2014b). 

 

Table 2: Basic thermodynamic properties of HFO-1336mzz(Z) compared to HFC-245fa 

 

 HFC-245fa HFO-1336mzz(Z)(2) 

Normal Boiling Point oC 15.1(1) 33.47 

Critical Temperature oC 154(1) 171.27 

Critical Pressure MPa 3.65(1) 2.901 

Critical Density kgm-3 517(3) 471 

(1) Calm and Hourahan (2007); (2) Tanaka et al. (2016a and 2016b); (3) Honeywell literature 

 

An equation of state explicit in the Helmholtz free energy was recently developed for HFO-1336mzz(Z) by Akasaka 

and Lemmon (2016).  It was composed of an ideal-gas part and a residual part.  In the absence of speed of sound 

measurements, the ideal-gas part was derived from an ideal-gas isobaric heat capacity expression based on Joback’s 

group contribution method (Joback and Reid, 1987).  In view of the limited available pressure-temperature-density 

data, the residual part was expressed in only polynomial and exponential terms (i.e. no Gaussian terms) that were 

regressed to represent the measurements by Tanaka et al. (2016a & 2016b) and the normal boiling point by 

Kontomaris (2014b). The Akasaka-Lemon equation of state represents the available vapor pressure and density data 

outside the critical region to within 0.2%; it deviates from the measured densities near the critical point by up to 2%. 

 

2.3 Chemical Stability and Compatibility with Plastics and Elastomers 
The remarkable chemical stability of HFO-1336mzz-Z at high temperatures, despite its unsaturated chemical nature 

has been documented by Kontomaris (2014b). In summary, HFO-1336mzz-Z is comparably stable to HFC-245fa at 

temperatures up to 250 oC in the presence of metals commonly used in equipment construction and small levels of 

air and oxygen that could occasionally infiltrate power generation equipment.  HFO-1336mzz(Z) has been found to 

be compatible with a wide range of plastics and elastomers (Kontomaris, 2014a). 

 

2.4 Lubricant Selection 

Although oil-free expanders are, in principle, feasible, a suitable lubricant would be required for most practical ORC 

applications with HFO-1336mzz(Z). A preferred lubricant must balance several, potentially, conflicting 

requirements. It would, generally, be miscible with HFO-1336mzz(Z), it would form sufficiently viscous blends 

with HFO-1336mzz(Z) to meet expander specifications and it would remain chemically stable over the intended use 

conditions.  Although other classes of lubricant may be suitable, only polyol ester (POE) type lubricants are 

considered in this paper. Only HFO-1336mzz(Z)/POE blend miscibility and viscosity are partially addressed in this 

section. 

 

2.4.1 Miscibility 

 

A lubricant selected for the ORC applications in this paper must form, preferably, homogenous mixtures with HFO-

1336mzz(Z) at the expected operating conditions. Commercially available POE lubricants of, relatively, low ISO 

viscosity grades (32 and 68) were tested for miscibility with HFO-1336mzz(Z) in blends containing up to 70 wt% 

lubricant by Kontomaris (2010). They were found to be miscible at temperatures higher than -15 oC up to the highest 

temperature tested, namely 85 oC. 

 

Lubricants of ISO grades 170-220 or higher could be needed for ORC applications with HFO-1336mzz(Z) to meet 

minimum viscosity requirements at temperatures that would typically exceed 100 oC.  Blends of a commercially 
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available ISO 220 POE lubricant with HFO-1336mzz(Z) containing up to 70 wt% lubricant were tested for 

miscibility.  The lowest test temperature was -25 oC, i.e. well below the condenser temperature for most ORC 

applications.  The highest test temperature was 150 oC, i.e. significantly higher than the usual miscibility test 

temperatures for air conditioning and refrigeration applications. In principle, separation of lubricant/refrigerant 

blends to lubricant-rich and refrigerant-rich phases is possible at high temperatures such as those expected in the 

evaporator of an ORC application with HFO-1336mzz(Z). 

 

Sealed glass tubes containing the selected ISO 220 POE lubricant and HFO-1336mzz-Z in various proportions were 

prepared and immersed sequentially first in a cold and then in a warm agitated constant temperature bath controlled 

at the targeted temperature levels. The miscibility characteristics of each HFO-1336mzz-Z/lubricant blend were 

visually observed and recorded, after temperature equilibration, at temperature increments of 5 oC.  Blends with a 

homogeneous, translucent solution appearance were qualified as miscible, “M”, at the observation temperature.  

Blends separating into distinct phases divided by a meniscus or exhibiting turbidity (i.e. cloudiness or haziness) 

indicative of the formation of individual droplets were designated as non-miscible, “N”. Test results, summarized in 

Table 3, showed that blends of the selected ISO 220 POE with HFO-1336mzz(Z) were miscible throughout the 

range of conditions tested. 

 

Table 3: Miscibility of HFO-1336mzz(Z) with an ISO 220 POE lubricant 

 

 

 

 

 

 

(*) These conditions were not tested because the HFO-1336mzz(Z)/POE blend could have expanded to fill the glass test tube. 

 

2.4.2 Working Viscosity 

 

ORC applications can generate large differentials between the high- and low-side system pressures that lead to 

strong thrust forces and heavily loaded bearings. The lubricant must provide adequate lubricity to protect against 

frictional wear to and ensure long-term reliability and extended useful life of moving parts. It must also seal 

passages to minimize leakage of the working fluid from high to low pressure regions. It must form mixtures with 

HFO-1336mzz(Z) at the points of lubrication sufficiently viscous at the high typical operating temperatures to meet 

(but not greatly exceed) the minimum required viscosity specified by the expander manufacturer. Blends of a 

selected lubricant with HFO-1336mzz(Z) must have, for adequate lubrication, kinematic viscosities under working 

conditions of at least a few to several cSt. Lubricant/HFO-1336mzz(Z) blend viscosity at a given temperature and 

pressure can be significantly lower than the viscosity of the neat lubricant at the same temperature as a result of 

HFO-1336mzz(Z) solubility in the selected lubricant. 

 

The Daniel plot (Daniel, 1983) for blends of a commercially available ISO 220 POE lubricant with HFO-

1336mzz(Z) is shown in Figure 1. It provides estimated values of the kinematic viscosity and liquid-phase 

composition of HFO-1336mzz(Z)/lubricant blends over a range of temperatures and pressures. The relationships 

between temperature, pressure, liquid-phase composition and blend viscosity were determined from saturated 

pressure and viscosity measurements over a range of temperatures and liquid-phase compositions. It was assumed 

that the oil was effectively nonvolatile and the vapor phase consisted of pure HFO-1336mzz(Z), the fugacity of 

which was calculated through a Helmholtz-explicit EOS (Akasaka and Lemmon, 2016). The non-ideality of the 

liquid phase was described through the NRTL activity coefficient model (Renon and Prausnitz, 1968) with binary 

interaction parameters regressed to the measured Vapor-Liquid Equilibrium (VLE) data. With the relationship 

between temperature, pressure and liquid-phase composition determined, the liquid-phase mixture viscosity as a 

function of temperature and lubricant wt% content was correlated with a two-parameter version of the mixing rules 

proposed by Yokozeki (1994). Figure 1 was constructed from experimental viscosity and VLE data over the 

temperature range of 20 to 100 °C that were regressed within 3.9% and 0.28%, respectively. The mixture viscosity 

values at high temperatures, estimated through distant extrapolation from data at temperatures at or below 100 oC, 

Temperature, 
o
C 
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are more uncertain than at lower temperatures within the experimental range. Figure 1 suggests that the viscosity of 

blends of HFO-1336mzz(Z) with the selected ISO 220 POE lubricant would be adequate for a wide range of 

applications except, possibly, those involving the high temperature and pressure region of Figure 1. 

 

HFO-1336mzz(Z)/POE ISO 220

 
 

Figure 1: Daniel plot for HFO-1336mzz(Z) with an ISO 220 POE lubricant 

 

 

 

HFO-1336mzz(Z)/POE ISO 320

 
 

Figure 2: Daniel plot for HFO-1336mzz(Z) with an ISO 320 POE lubricant 
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The liquid-phase equilibrium composition and kinematic viscosity of blends of a commercially available ISO 320 

POE lubricant with HFO-1336mzz(Z) are shown in Figure 2.   Figure 2 was constructed from experimental viscosity 

and VLE data over the temperature range of 20 to 80 °C that were regressed within 0.4% and 0.3%, respectively. 

Figure 2, shows that higher working viscosities become feasible (particularly at high temperatures and pressures) 

with the ISO 320 POE lubricant than with the ISO 220 POE lubricant of Figure 1.  

 

3. HFO-1336mzz(Z) PERFORMANCE IN A PROTOTYPE ORC SYSTEM 
 

HFO-1336mzz(Z) has been evaluated as an ORC working fluid through computational modeling by Kontomaris 

(2012, 2014b, 2014c, 2015), Molés et al. (2014), Molés et al. (2015) and Sakaue et al. (2016).  In addition to its 

attractive safety, health, environmental and chemical properties, HFO-1336mzz(Z) was predicted to enable attractive 

ORC performance. 

 

A prototype ORC system for distributed power generation from renewable and waste heat sources has been 

developed by Viking Heat Engines of Norway in collaboration with AVL Schrick of Germany.  It is based on a 

novel, relatively small reciprocating piston expander capable of generating up to about 12-14 kWmech of mechanical 

power at a maximum speed of 1,500 rpm.  A new active expander valve train with variable opening timing 

(including brief opening durations) was developed to realize a wide range of expansion/pressure ratios. As a result, 

the system operates efficiently over wide ranges of source heat temperatures (from about 90 oC to 200-220 oC), 

output heat temperatures (from about 20 oC to 90 oC) and part loads (as low as 30% of full load). The system is 

capable of handling, typically, evaporating pressures from about 2 MPa to 3 MPa and condensing pressures from 0.1 

to 0.9 MPa. 

 

The main prototype ORC system components are shown in Figure 3. The evaporator is a plate-type heat exchanger 

including liquid preheating and vapor superheating sections.  A plate-type recuperator is included to desuperheat the 

expanded vapor and transfer heat to preheat the liquid working fluid leaving the pump on its way to the evaporator.  

The recuperator is significantly smaller than the evaporator. The recuperator heat flux and efficiency are increased 

with higher expanded vapor superheat and lower condensing temperature, which lead to higher heat transfer driving 

temperature differences in the recuperator. The condenser is, typically, also a plate-type heat exchanger.  However, 

dry air coolers external to the ORC system are installed when ORC heat is rejected to the ambient. The condenser 

slightly sub-cools the liquid to protect the pump from cavitation. It discharges into a liquid accumulator which 

supplies the pump.  The prototype ORC system generator/inverter can provide electrical power (e.g. to the grid) at a 

fixed frequency even when the expander is operated at a variable speed. Therefore, the variable expander speed can 

be optimized, in addition to the variable expander inlet valve opening time, to maximize energy efficiency. 

 

 

 
Figure 3:  Main prototype ORC system components and simplified flow diagram 
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The performance of the prototype ORC system was tested with HFO-1336mzz(Z) as the working fluid and an ISO 

220 POE lubricant over a range of conditions representative of potential small-scale Combined Heat and Power 

applications (micro-CHP).  The prototype had been designed for a working fluid with substantially higher vapor 

pressure than HFO-1336mzz(Z) and was not optimized or adapted for testing with HFO-1336mzz(Z). 

 

Stable operation was established at an evaporating temperature of Tevap = 170 oC and a vapor superheat at the 

expander inlet of Tsuperh_exp_in = 26 K, i.e. at an expander inlet temperature of Texp_in = 196 oC.  A commercially 

available thermal oil was used to carry heat to the evaporator.  System performance was measured at two, relatively, 

high condensing temperatures at which the heat released could be used to meet some heating duty (e.g. heat a nearby 

building or supply a local district heating network): 60 oC and 80 oC (with corresponding liquid sub-cooling at the 

condenser of 14 and 11 K, respectively).  The work generated by the expander was measured with a high-precision 

torque flange. System net thermal efficiency and net mechanical power generating capacity were measured at each 

pair of expander inlet and condensing temperatures, (Texp_in, Tcond), at three levels of the expander speed, nominally 

900, 1,250 and 1,500 rpm. At each expander speed, the expander inlet valve opening duration was varied to vary the 

fluid volumetric flow rate, so as to observe the resulting efficiency/capacity relationship.  It should be noted that the 

maximum liquid flow rate feasible with the prototype system pump limited performance under some test conditions. 

 

Figure 4 shows system net thermal efficiency and net mechanical power generation capacity combinations that were 

realized in the above series of tests. Gross mechanical power generation was measured as delivered at the expander 

shaft. The net mechanical power was calculated by subtracting the power consumed by the pump (about 15% and 

17% of gross power at the 60 oC and 80 oC condensing temperatures, respectively).  It can be used directly, e.g. to 

drive a compressor, or it can be converted to electrical power through a generator. The net thermal efficiency was 

defined as the system net power output as a per cent of the rate at which heat was supplied at the evaporator. 
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Figure 4: Measured performance map for a prototype ORC system with HFO-1336mzz(Z) as the working fluid at 

Tevap = 170 oC and Tsuperh_exp_in = 26 K, (i.e. Texp_in = 196 oC); Tsubc = 14 K at Tcond=60 oC and Tsubc = 11 K at 

Tcond=80 oC 

 

Figure 4 shows that, generally, the larger the difference between the expander inlet temperature and the condensing 

temperature (i.e. between the heat input and output temperatures) the higher the system thermal efficiency.  For a 

given pair of expander inlet and condensing temperatures, higher thermal efficiency (over a limited power capacity 
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range) was achieved at the lowest expander speed of 900 rpm.  Higher working fluid flow rates and, therefore, 

higher capacities were achieved with higher expander speeds.  At a given expander speed, higher flow rates and 

higher capacities were realized with longer admission valve opening durations. Maximum thermal efficiency was 

achieved at intermediate values of valve opening durations. The highest capacities, at the longest valve opening 

durations tested, were realized with suboptimal efficiencies. 

 

4. SUMMARY-DISCUSSION 
 

Climate protection, improved air quality and energy security are motivating the utilization of low temperature 

(natural or waste) heat to increase energy efficiency and reduce dependence on fossil fuels.  HFO-133mzz(Z) was 

evaluated as a working fluid for combined heat and power generation through organic Rankine cycles driven by heat 

at temperatures of about 200 oC.  HFO-1336mzz(Z) has been recently classified as an A1 (lower toxicity; no 

flammability) refrigerant according to ASHRAE standard 34 and it has a GWP of only 2. It has demonstrated in past 

studies (Kontomaris, 2014b) chemical stability comparable to that of HFC-245fa, a working fluid that has been used 

extensively in ORC applications. HFO-1336mzz(Z) is currently under laboratory and field testing for various 

targeted applications. It is on a path to full-scale commercial production in 2017. 

 

A fundamental equation of state for HFO-1336mzz(Z) based on the Helmholtz free energy has been developed by 

Akasaka and Lemmon (2016) based on extensive measurements by Tanaka et. al (2016a and 2016b). It would allow 

a more accurate estimation of HFO-1336mzz(Z) thermodynamic properties (including at conditions near the critical 

point) required for power generation equipment design. It could, possibly, be further improved through more 

extensive measurements, including vapor and/or liquid speed of sound. 

 

A commercially available POE lubricant with an ISO viscosity grade of 220 was evaluated for use with HFO-

1336mzz(Z) in ORC applications. The ISO 220 POE lubricant was found to be miscible with HFO-1336mzz(Z) over 

a wide range of conditions. It is projected to maintain a kinematic viscosity of about 4 cSt at 170 oC and to form 

mixtures with HFO-1336mzz(Z) of adequate working viscosities for a wide range of conditions. It was used in ORC 

system tests at evaporator temperatures up to 170 oC and expander inlet temperatures up to 215 oC without any 

observed issues.  For applications that may require higher working viscosity values than those feasible with the ISO 

220 POE, a commercially available ISO 320 POE lubricant was evaluated. The ISO 320 POE lubricant is projected 

to maintain a viscosity of over 10 cSt at 170 oC. 

 

The chemical stability at high temperatures of a POE lubricant and of its 50/50 wt% mixture with HFO-1336mzz(Z) 

was examined by Kontomaris et al. (2013). It was evaluated according to the sealed glass tube testing procedure of 

ASHRAE 97 in the presence of metals and small levels of air and moisture, representative of air infiltration into 

power generation and other equipment. The neat lubricant and its mixture with HFO-1336mzz(Z) were found to 

generate Total Acid Number (TAN) values of 1.6 and 2.3 mg KOH/g oil, respectively, under continuous exposure to 

250 oC for seven days. The measured TAN values indicate a non-negligible degree of lubricant degradation.  

However, the test temperature and continuous exposure conditions were more severe than the actual intermittent 

exposure to lower temperatures that would be encountered in many ORC applications. Further work is required to 

establish whether the chemical stability of currently available POE lubricants would be adequate or stabilization 

additives, periodic lubricant replacement or other lubricant types must be considered. 

 

HFO-1336mzz(Z) Organic Rankine Cycle (ORC) performance was measured in an un-optimized prototype system 

designed for working fluids with vapor pressures significantly higher than HFO-1336mzz(Z). The prototype 

expander operated stably with HFO-1336mzz(Z). The evaporator operated with a sufficiently uniform distribution of 

the entering and evaporating HFO-1336mzz(Z), as indicated by infrared thermography, to make effective use of the 

available heat exchange surface area. The power output in some tests with HFO-1336mzz(Z) was limited by the 

pump capacity; a larger pump will be considered in future tests. The liquid sub-cooling could be reduced without 

undue pump cavitation risk to further increase thermal efficiency (by about 0.4%). Measured net thermal efficiency 

and net mechanical power capacity exceeded 10% and 10 kWmech, respectively. 

 

The performance map of Figure 4 can be used to evaluate the potential of the prototype ORC system with HFO-

1336mzz(Z) in prospective applications, including small-scale Combined Heat and Power.  In view of the 

efficiency/capacity trade-off observed at high capacities, optimum system operation would be determined by the 

relative value of the output power and heat (and the cost of the input heat, if any). Higher power generation would, 



 

 2618, Page 9 
 

16th International Refrigeration and Air Conditioning Conference at Purdue, July 11-14, 2016 

probably, outweigh higher efficiency in most applications, especially when the source heat is provided free of 

charge. 

 

The prototype ORC system that was tested in this paper has been designed for minimal mechanical and flow 

frictional losses. As a result, it achieves high isentropic efficiency despite its relatively small size which, generally, 

magnifies the proportion of frictional losses relative to useful power output. However, relatively higher flow rates 

required with HFO-1336mzz(Z) for a given power generating capacity lead to (quadratically) higher frictional flow 

losses.  Experience with other working fluids has shown that, with system optimization, efficiency can be 

significantly improved. Further optimization of the ORC system for HFO-1336mzz(Z) would focus on further 

minimization of frictional flow losses in restricted vapor flow passages (e.g. expander valves, small-diameter piping 

sections, pipe steep diameter and flow direction changes, heat exchanger flow restrictions). 
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DISCLAIMER 

The information set forth herein is furnished free of charge and based on technical data that Chemours believes to be 

reliable. It is intended for use by persons having technical skill, at their own risk. Since conditions of use are outside 

our control, we make no warranties, expressed or implied and assume no liability in connection with any use of this 

information. Nothing herein is to be taken as a license to operate under, or a recommendation to infringe any patents 

or patent applications. 


	Purdue University
	Purdue e-Pubs
	2016

	Combined Heat and Power From Low Temperature Heat: HFO-1336mzz(Z) as a Working Fluid for Organic Rankine Cycles
	Konstantinos Kontomaris
	Luke D. Simoni
	Mattias Nilsson
	Tim Hamacher
	Harald Nes Rislå

	21ST INTERNATIONAL CONGRESS OF REFRIGERATION

