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 ABSTRACT 
 

A study of two-phase flow and heat transfer in a mini tube has been conducted experimentally. R134a has been used 

as the working fluid. This paper presents experimental results on boiling and condensation heat transfer coefficient 

in rectangular and rectangular grooved mini channels which hydraulic diameters of 0.81 and 0.64 mm, respectively. 

The boiling and condensation heat transfer coefficients were measured for saturated condition of R134a flowing in 

the horizontally placed mini channel tube. Length of the mini channel tube is 852 mm and it was heated or cooled by 

the water that flows through the upper and lower side of the mini channel tube. Wall temperature was measured by 

24 thermocouples embedded in the tube surface.  The boiling and condensation heat transfer in the mini channel has 

been measured over mass flux of 50,100,200 kg/m2s respectively. The measured heat flux is 2 to 10 kw/m2 for 

boiling and 1.5 to 9 kw/m2 for condensation test. 

 

1. INTRODUCTION 
 

Nowadays, mini/micro channels are present in many applications ranging from different heat exchangers in the 

process industry, automotive, electronics and home applications. The ability of mini channel to provide high heat 

transfer coefficients, high efficiencies and system compactness are among the major advantages. However, two 

phase flow characteristic in the mini channels is different from conventional tube. 

Enoki et al. (2013) conducted an experiment of vertical up flow and down flow in micro circular, rectangular, and 

triangle tube with about 1mm equivalent diameters by using R410a.They reported that the effect of the surface 

tension becomes dominant due to the diameter reduction, non-circularity of the heat transfer tube.  

The characteristics and mechanism of boiling in mini channel are not completely understood yet. According to the 

published results, boiling heat transfer could be control by nucleate boiling, due to nearly exclusively dependency on 

heat flux Tran et al. (1996) or by convective boiling, with the dependence of mass flux and vapor quality Qu and 

Mudawar (2003) or by both, depending on vapor quality range, Yan and Lin (1998). Lee and Lee (2001) 

demonstrated that the boiling heat transfer coefficient grows with the heat flux and vapor quality, but the effect of 

heat flux on boiling heat transfer coefficient is small. 

Jeong Seob Shin and Moo Hwan Kim (2005) experimentally studied flow condensation heat transfer inside circular 

and rectangular mini channel. They revealed that the influence of mass flux and vapor quality for all the test sections. 

The condensation Nusselt numbers increased with increasing vapor quality and mass flux due to the increase of 

higher vapor shear force. Also, the Nusselt number became more sensitive to the mass flux as the average vapor 

quality increased. Wang and Rose (2005) developed the heat transfer theory model during condensation in a 

horizontal micro channel with rectangular and triangular cross section. They revealed that the behavior of the 

general flow patterns, local average heat transfer coefficient, and the change in vapor quality.  

The present paper aims to provide boiling and condensation heat transfer phenomena in rectangular and rectangular 

grooved mini channels. Moreover, the experimental results were compared with established mini channel 

correlations. 
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2. EXPERIMENTAL APPARATUS AND THE DATA REDUCTION METHOD 
 

2.1 Experimental Facility and Instrumentation  
An experimental facility was developed to investigate boiling and condensation heat transfer in horizontal mini 

channel. A schematic diagram of the test facility is shown in Fig. 1. The experimental system consists of a forced 

circulation loop. The main part of the loop has a pump, a pre heater, condenser and a test section. The refrigerant 

was circulated by the pump. Flow rate through the channel was controlled precisely by using a flow controller. The 

refrigerant then entered a pre heater and flowed through the test sections where the refrigerant heated or cooled. 

Preheater 1 is used for condensation and boiling test and preheater 2 is used for as well as condensation test. After 

passing though the accumulator it was directed to the cooler. Finally, refrigerant returned to the pump. Refrigerant 

temperature and pressure were measured at inlet of the preheater and at the inlet and outlet of the test section. 

Refrigerant R-134a were tested, Physical property of that refrigerant were determined by REFPROP Ver9.13.  The 

test facility is fully automated through a PC using LabVIEW. 

 

 
Fig.1 Experimental setup 

 

2.2 Test Section 
Fig.2 shows a schematic diagram of the test section. It consists basically of three sub sections. The wall temperature 

on the tube external surface is measured by twenty four T-type thermocouples. The thermocouples used for wall 

temperature measurement are directly fixed on the tube external wall with thermal conductive paste. The 

thermocouple is distributed in the tube wall as follows; the first thermocouple is located at 0.075m from the water 

outlet header, and all other thermocouples are located at 0.125, 0.175, 0.225, 0.325, 0.375, 0.425, 0.475, 0.575 m 

respectively. The test section is well shielded by using foam and tape. 

 

 
Fig.2 Test section 
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The test section is made from one piece of multiport tube with 20 channels as shown in Fig.3.The multiport 

rectangular and grooved tubes studied in this work have hydraulic diameters of 0.81 and 0.64 mm, respectively. In 

addition, the tube length of both test section is 0.75 m.  

 

 
Fig.3 Mini-channels cross-sectional view 

(Up: Rectangular tube   Down: Grooved tube) 

 

2.3 Data Reduction Method 
Results from experimental data, including vapor quality, internal wall temperature, saturation temperature and the 

heat transfer coefficient, were calculated from measured data of refrigerant temperatures, wall temperatures in the 

test section, pressure and flow rate. The local heat transfer coefficient is defined as the following equation.  

 

 
satxwall

ref

TT

q




,

  (1) 

 

Where xwallT ,  is the tube internal wall temperature. It was calculated from the one dimensional heat conduction 

equation from the measured tube outer wall temperature. satT  is the saturation temperature of the refrigerant; it was 

calculated from the temperature and pressure in the test section inlet or outlet mixing chamber. Local heat flux of the 

refrigerant refq was determined by the following equation. 

 

 
x

wat
ref

LZ

HBQ
q   (2) 

 

Where L is the wetted perimeter length and Z x is the effective heat transfer length of the sub section. The quantity of 

heat exchange watQ  and heat balance HB  was determined by the following equation.  

 

 watwatwat hmQ    (3) 

 

 watref QQHB /  (4) 

 

Where, watm  is the heat source water flow rate. wath  is the variation in enthalpy of the heat source water side, 

was calculated based on the heat source water temperature difference between the atmospheric pressure. refQ  is the 

amount of heat exchange in refrigerant in the test section which was calculated by test section inlet and outlet 

enthalpy difference. refQ  is calculated as follows: 

 

 refrefref hmQ    (5) 

 

refm  refers to the refrigerant flow rate.  

The vapor quality in the test section was calculated from the following equation: 

 
liqvap

liqx

hh

hh
x




  (6) 
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The above expression for vapor quality xh  is calculated by the heat balance of the tube inlet or outlet enthalpy. liqh  

is the value of the specific property of refrigerant saturated liquid state. 

 

 

 

3. RESULT AND DISCUSSION 

 
3.1 Boiling Test Result 
Fig.4 shows the boiling test result of rectangular and grooved tube. It illustrates the heat transfer coefficient as a 

function of vapor quality at a fixed saturation temperature of 12°C. 
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Fig.4 HTC of boiling flow at saturation temperature 12°C 

 

In Fig. 4(a), for the lower mass velocity (G=50 kg/m2s) and heat flux (q=2 kw/m2) the heat transfer coefficient in the 

rectangular grooved tube is found to be higher up to x=0.3, compared with rectangular tube. In the case of higher 

mass velocity (G=200kg/m2s) and heat flux (q=10kw/m2s), Fig.4 (b) shows that, the heat transfer coefficient in the 

rectangular and grooved tube almost same in all vapor quality ranges. The heat transfer coefficient data obtained 

from the present study are compared with one well-known [Mori et al.] heat transfer correlation. This result agrees 

with Mori et al. (2013) who conducted an experiment of a circular smooth tube with tube diameter d=8.4 mm. At 

G=50kg/m2s and low quality, we can find out that the heat transfer coefficient of the grooved tube is higher than 

rectangular tube one and the heat transfer enhancement effect of the groove appears. Beside, in both tubes, we can 

confirm that the heat transfer coefficient decreased due to dry out from quality around 0.6, and the heat transfer 

coefficient showed same value in high quality range. On the other hand, in all quality range, the heat transfer 

coefficient showed same value at G=200kg/m2s. The quality of the starting time of dry out is slightly higher in 

G=200kg/m2s. In addition, in the comparison with Mori et al. correlation, heat transfer properties of the 

experimental value and the calculated value are totally different at both mass velocity conditions. The heat transfer 

coefficient of the experimental value shows almost constant regardless of changing quality before starting dry out, 

however, the heat transfer coefficient of calculated increased with increased quality. It means that we can consider 

the heat transfer properties in the non-circular min channels appear with the test heat transfer tubes. 
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3.2 Condensation Test Result 
Fig.5 shows the heat transfer coefficient against the vapor quality of the condensation flow at saturation temperature 

of 30°C. In Fig.5 (a) and (b), shows the measured data on mass velocities of 50 [kg/m2s] and 200 [kg/m2s] , 

respectively. 

 

 
 

0 0.2 0.4 0.6 0.8 1
0

10

20

30

1-x

H
T

C
[k

W
/m

2
K

]

rectangular 
grooved
 Jige et al.

R134a
condensation
G=50[kg/m

2
s]

Tsat=30[°C]
q=1.5[kW/m2]

   

0 0.2 0.4 0.6 0.8 1
0

10

20

30

1-x

H
T

C
[k

W
/m

2
K

]

 rectangular 
 grooved
 Jige et al.

R134a
condensation
G=200[kg/m2s]
Tsat=30[°C]
q=9[kW/m2]

 
                    (a)Mass velocity G=50[kg/m2s]   (b) Mass velocity G=200[kg/m2s] 

 

Fig.5 HTC of condensation flow at saturation temperature 30°C 

 

For low mass velocity G=50 [kg /m2s], the heat transfer coefficient of rectangular tube is higher than that of grooved 

tube at lower vapor quality, merely 0.7 or less. However, in case of high mass velocity, G= 200 [kg/m2s] the heat 

transfer coefficient of grooved tube is higher than that of rectangular tube at lower vapor qualities, merely 0.7 or less. 

The solid black lines in the both Figures HTC calculated using the correlations of Jige et al (2012). In less than 

wetness 0.7 at G=50kg/m2s, we can confirm that the heat transfer coefficient of the rectangular tube is higher than 

grooved one, and then we can find out that there are few effects of the groove at the low mass velocity and low 

wetness. However, with the high mass velocity of G=200kg/m2s, the heat transfer coefficient of the grooved tube 

shows higher than rectangular one in less than wetness 0.7. we can consider that this is because liquid film is held by 

the corner part, and a liquid film is easy to be maintained in corner region of the groove due to the influence of 

groove by a surface tension with increased wetness. the heat transfer coefficient of the grooved tube shows the same 

value of rectangular tube one due to fill groove completely with refrigerant liquid at more than wetness 0.8. In 

addition, in the comparison with the correlations of Jige et al, the heat transfer coefficient of the grooved tube 

showed that it was higher than the calculated value at G=200 kg/m2s and the range of low wetness. But, I assume the 

modification of the data reduction method is problem because the heat transfer coefficient was calculated by using a 

real cross area in this experiment. 

 

4. CONCLUSION 
 

In this study, we experimented boiling and condensation test by using rectangular and rectangular grooved mini 

channels with hydraulic diameters of 0.81 and 0.64 mm, respectively. Then we considered the heat transfer 

characteristic in these tubes from that results and then the followings are the results. 

 

I. In boiling test, the heat transfer coefficient of the rectangular and rectangular grooved showed a same value in 

area with more than of quality 0.5 and same mass velocity. 

The difference of cross sectional shape remarkably shows in low mass velocity. 
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II. In boiling test, compared with the Mori et al. equation, the heat transfer coefficient in mini channel tube is very 

different from circular tube one. 

 

III. In condensation test, the heat transfer coefficient of rectangular grooved shows that high mass velocity one is 

higher than low mass velocity. 

It means that the difference of the cross section influenced i.e. this is because the heat transfer enhancement 

effect with the groove is high in high mass velocity. 

 

IV. In condensation test, compared with the Jige et al. equation, this equation can predict heat transfer coefficient 

well after low wetness area at G=200kg/m2s 

 

 

 

NOMENCLATURE 

 

α heat transfer coefficient (kW/m2K)  

T temperature (K)   

q heat flux (kW/m2) 

Q                                  heat exchanger rate                    (kW) 

HB                               heat balance                                (–) 

L                                  wetted perimeter lenghth            (m) 

Z                                  effective heat transfer length      (m) 

m                                 flow rate                                      (kg/s) 

h                               variation in enthalpy                    (kJ/kg) 

h                                  enthalpy                                       (kJ/kg) 

G                                  mass velocity                               (kg/m2s) 

 

Subscript  

liq liquid  

ref refrigerant 

sat                                saturation 

vap                               vapor 

wat                               water 

wall                              wall 
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