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ABSTRACT 

Electric clothes dryers in the US consume about 6% of residential electricity consumption. Available electric clothes 

dryers today are either based on electric resistance (low-cost but energy-inefficient) or vapor compression (energy-

efficient but high-cost). Thermoelectric dryers have the potential to alleviate the disadvantages of both through a low-

cost, energy-efficient solution. This paper presents experimental results and steady state simulation of a prototype 

thermoelectric dryer. A thermoelectric model is coupled with a psychrometric dryer system model to design the 

experimental prototype. The results from the prototype are used to calibrate the model and identify important 

parameters that affect performance, such as relative humidity of air leaving the drum.  

1. INTRODUCTION 

Approximately 80% of households in the US have a clothes dryer and 30% of these are at least 10 years old (EIA, 

2009). Typical dryers use a tumble-type drum with air pushed through by a blower to dry clothes. The state of the art 

includes electric resistance (ER) dryers with once-through air flow, condensing dryers with closed-loop air flow, and 

vapor-compression (VC) heat pump dryers with closed-loop air flow. Of these, the VC heat pump dryers are most 

energy-efficient. Although they are based on mature technology and are used extensively in Australia and Europe, 

they have had poor market penetration in the US, with the major barriers being high cost and longer dry times 

(Denkenberger, et al., 2013). There is therefore a significant potential for advanced clothes dryers to provide energy 

savings over standard ER models (York, et al., 2015). 

Despite this, research efforts in new and alternative advanced clothes drying technology is relatively limited. Some 

studies have been performed on understanding and further improving the efficiency of condensing dryers. Condensing 

dryers typically use an air-to-air heat exchanger to dehumidify the air from the dryer. Because some models are 

ventless, installation is easier than conventional vented ER dryers. A pertinent example of work in this area is by 

Cochrane et al. (2009), who proposed that surface tension elements (STE) be used to replace the air-to-air plate heat 

exchanger condensing surface in the dryer. The objective was to use the STE configuration to enhance 

dehumidification compared to the conventional heat exchanger condensing surface and reduce overall energy 

consumption. An analytical model was first developed to predict vapor removal from the STE. An experimental 

prototype was then constructed based on the results of the analytical prediction and implemented into a condensing 

dryer system. The study showed that in addition to an improvement in the energy efficiency rating, the dryer also 

operated at a reduced temperature and required less time to dry a given load. Cochrane et al. concluded that 

optimization in the analytical model and incorporation into condensing dryers would further reduce residential energy 

consumption. 
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Do et al. (2013) conducted an experimental study to fully characterize the performance of a condensing dryer with an 

air-to-air heat exchanger. They evaluated energy consumption of a closed-loop tumbler dryer as a function of the 

electric resistance heater capacity, drying air flow rate, cooling air flow rate, dry time and water condensation rate. 

The parametric study showed that the larger heater power produced shorter dry times, higher air temperature and 

higher water condensation rates. However, the drying air flow and cooling air flow did not significantly affect the 

drying performance.  

Other research in advanced clothes dryers has been conducted by Bansal et al. in modeling (2010a) and experimental 

development (2010b) of a novel dryer based on a heat exchanger using hot water (potentially sourced from process 

heat of external combined heat-and-power plants) as the medium. For the experimental development, a conventional 

once-through dryer was modified by replacing the electric resistance element with a water-to-air finned tube heat 

exchanger. The experimental performance of the modified and unmodified dryer was evaluated for the same operating 

conditions. Their new dryer concept was found to have shorter dry times (of 15-18 min) with lower moisture extraction 

rates for the same total power input, resulting in energy efficiency improvement of up to 11% compared to the 

conventional unmodified electric resistance dryer. 

In vapor-compression heat pump dryers, the heat pump is a refrigeration loop which includes a compressor, 

evaporator, condenser and expansion valve. In closed-loop systems, air circulates through the loop continuously. VC 

heat pump dryers are efficient because they use the evaporator to condense moisture from the humid air leaving the 

dryer drum, and the condenser to heat up the dried air before it re-enters the drum. However, they involve a 

complicated mechanical system with a secondary heat transfer fluid. Thermoelectric (TE) elements on the other hand 

are a purely solid-state heat pump technology consisting of two distinct semiconductors sandwiched together in a thin 

layer. When a DC current is applied, a temperature difference is created between the two sides of the element (Rowe, 

1995), and the TE can be used as a heat pump. In the context of clothes dryers, the cold side of the TE elements can 

be used to condense moisture from the humid air leaving the dryer drum, and the hot side can be used to re-heat the 

dried air before it re-enters the dryer drum. This can allow for the development of a new type of heat pump clothes 

dryer with less moving parts compared to VC heat pump dryers, and without any refrigerant.  

Considering the above, the research in this paper has two primary objectives. The first is to present a novel energy-

efficient thermoelectric clothes dryer as a possible cost effective alternative to existing electric resistance and vapor-

compression heat pump dryers. The second is to provide new information in the literature about advanced solid-state 

heat pump clothes dryer technology, through a combined modeling/experimental study. This includes performance 

characterization, determination of energy factor and drying time and identification of important parameters that affect 

overall performance.  

2. EXPERIMENT DESIGN AND SETUP 

2.1 Prototype dryer setup 

The experimental design of the prototype thermoelectric clothes dryer was based on a steady-state, system level, 

coupled psychrometric and thermoelectric model which was developed in Engineering Equation Solver (EES). The 

model allows for calculation of the thermoelectric dryer energy factor (EF) and expected dry time for a compact (bone-

dry weight of 3.00 lb) DOE load of fabric as described in 10 CFR 430 (2013). The model outlines constraints for the 

design of the thermoelectric module (described below), such as cooling capacity, leaving hot air temperature, leaving 

cold air temperature, maximum physical size and pressure drop. This information led to design and fabrication of the 

TE module, which was then installed in the experimental prototype thermoelectric clothes dryer. 

The prototype was a modified donor electric resistance dryer. The electric resistance elements were removed and 

thermoelectric modules were installed. All controls and switches on the donor dryer were deactivated. Since the donor 

dryer was vented, the duct work was re-routed so that the blower recirculated the air through the drum rather than 

exhausting out the back. Figure 1 shows a schematic illustrating pertinent state points in the thermoelectric clothes 

dryer (left) and a photo of the fabricated experimental prototype (right). 
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Figure 1: Schematic with state points labeled (left) and photo of fabricated thermoelectric dryer prototype (right) 

The order of the state points and arrows in Figure 1 indicate the direction of air flow through the cycle. Pressure 

transducers were installed at points [1-4] to measure the static pressure in the ducts relative to ambient. A traversing 

pitot station was installed at point [4] to measure the air flow rate through the cycle. T-type thermocouple probes were 

installed at points [1-4] to measure air temperature. Dewpoint sensors were installed at points [1], [3] and [4], which 

(along with corresponding dry bulb air temperatures) allowed the relative humidity to be determined at these points. 

A new blower was installed in the prototype to allow flexibility in flow rates. This was used in series with the original 

blower (which was on a common shaft with the drum rotation belt drive).  

2.2 Thermoelectric module 

The thermoelectric module for the prototype dryer was made up of unit engines which consisted of a thermoelectric 

element sandwiched between two aluminum pin-fin heat sinks and an aluminum spacer block which acted as a 

standoff. Off-the-shelf thermoelectric modules were selected for the initial prototype (Thermonamic, 2015). The 

performance of these modules was measured using a custom evaluation stand. The measured performance was then 

matched in a model and the resulting TE parameters were used in the design model. This design model was used to 

devise a design consisting of a 6 x 6 array of thermoelectric elements (total of 36). The 6 x 6 array was designed for a 

cooling capacity of 1 kW. On the hot side, it was designed to heat air from 35°C to 57°C. A spacer (41mm x 41mm x 

15mm) was provided between each TE module and its cold sink.  

As shown in Figure 2, the TE modules were sub-divided into 3 banks of 12 thermoelectric elements each. Each bank 

had a dedicated DC power supply and the elements within a bank were connected in series. Each unit engine in the 

above 6 x 6 grid was assembled individually and all mated surfaces were coated with a heat sink compound to 

minimize contact resistances. The unit engines were then installed on a polycarbonate mounting plate and wired 

according to their bank and dedicated power supply. The hot side of the thermoelectrics faced up and the cold side 

faced down. Liquid that condensed on the TE cold side was removed from the heat sinks by gravity. When assembly 

of the 6 x 6 array was complete, the mounting plate slid into a clear housing (labeled “6 x 6 grid” in Figure 1)Figure 

1. For airflow, the housing had an inlet and outlet on one end, and a 180° bend on the other. Air flowed as follows 

through the TE module: inlet  TE cold side heat sinks  180° bend  TE hot side heat sinks  outlet.  
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Air flow and 

dewpoint 

transducers 
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Blower 
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3. MODEL DEVELOPMENT 

3.1 Further development of initial model 

In addition to the design model used for the experimental prototype design, a separate controls model followed a 

similar structure and was developed based on initial experimental results from the prototype. Parameters were 

empirically calibrated for approach temperatures (AT), overall heat transfer coefficient (UA), and relative humidity 

(RH) on the condensing side of the thermoelectrics. Figure 2 shows the process schematic used in the most recent 

iteration. State points [1–4] are shared with the design model and Figure 1, while state points [5–9] were added to 

capture effects of each TE bank. Each of the state points [5–9] is defined (a) on the air side for the psychrometric state 

leaving each bank and (b) for each TE bank’s heat sinks.  

 

Figure 2: Schematic of thermoelectric dryer model showing state points 

During operation, humid air leaves the drum (after gaining moisture from wet fabric) and passes through the lint filter 

to reach point [1]. It flows through the blower and enters the cold side of the TEs at point [2]. The TE grid is divided 

into three banks: referring to the labels in Figure 2, the [5] is the cold side of one bank corresponding to [9] on the hot 

side; and similarly for the second bank (state [6] and [8]) and third bank (states [3] and [7]). As air flows over the cold 

sinks it is dehumidified as condensation occurs. The air then makes a bend at point [3] and flows over the hot sinks. 

Sensible heating of the air occurs and it exits the TE duct. Between state [9] and [4], an empirical heat loss parameter 

accounts for system energy losses in order to ensure an energy balance in the steady state model. The hot, dry air re-

enters the drum at point [4], becomes humidified by passing over the moist cloth, and the cycle is complete.  
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3.2 Calibration 

The thermodynamic model was calibrated by tuning a set of parameters to match their experimentally observed values. 

The calibration parameters fall into two categories: those that were maintained at a constant value across trials, and 

those that were varied for each trial. Each of these is described briefly below.  

Values calibrated and globally applied to all trials (see Table 1):  

 AT[3], AT[5–9]: Approach temperatures: how closely the air temperature approached the sink temperature.  

 UAloss[1], UAloss[4] (corresponding to the Qloss terms at state points [1] and [4]): to maintain a system-wide 

steady state energy balance, empirical thermal losses were applied proportionally to the temperature 

difference between these two state points and ambient. 

 RH[3], RH[5], RH[6]: The RH of air leaving each of the three cold banks  

 Thermoelectric materials: thermoelectric performance is captured by the model proposed by Goldsmid 

(1995). Empirical parameters are the thermophysical properties of the thermoelectrics themselves, and good 

agreement was found with the manufacturer data (Thermonamic, 2015). 

Values calibrated and individual applied to each trial (see Table 2) 

 Starting and final moisture content (SMC and FMC) 

 Bone dry weight (BDW) of cloth load 

 Air flow rate  

 Mean electrical current applied to TEs 

Two additional model calibration parameters were the RH exiting the drum and the electrical resistance of TE 

elements.  

 The RH exiting the drum was modeled based on linear regression to drum entering temperature based on 

experimentally measured values. 

 The electrical resistance of TE elements was modeled based on linear regression to TE hot and cold side 

temperature, based on experimentally measure values.  

Table 1: Calibrated values used for all trials 

Parameter Calibration value 

AT[3] 3.0 K 

AT[5] 1.0 K 

AT[6] 3.0 K 

AT[7] 2.0 K 

AT[8] 4.0 K 

AT[9] 8.0 K 

UAloss[1] 0 W/K 

UAloss[4] 29 W/K 

RH[3] 0.80 

RH[5] 0.60 

RH[6] 0.65 

Note that each approach temperature in Table 1 corresponds to the state points in Figure 2 as follows:  

TTE[i] = Tair[i] + AT[i] (hot side, [7], [8], and [9]) 

TTE[i] = Tair[i] – AT[i] (cold side, [5], [6], and [3]) 

Note also that the UAloss corresponds to the state points in Figure 2 as follows: 

Qloss[i] = UAloss[i]*(Tair[i] – Tambient)  
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Table 2: Measured calibration values specific to each trial 

Parameter 
Experimentally measured value 

Trial 3 Trial 4 Trial 5 Trial 6 Trial 8 Trial 9 Trial 10 Trial 11 Trial 12 

SMC 

FMC 

57.5% 

4.4% 

57.5% 

4.3 

57.2% 

2.8% 

57.6% 

3.6% 

57.6% 

1.8% 

57.6% 

3.56% 

57.5% 

1.5% 

57.8% 

2.5% 

57.6% 

3.65% 

BDW [lb] 3.00 3.00 3.00 8.45 3.00 3.00 3.00 8.45 8.45 

Air flow 

rate 

[CFM] 

100 100 115 115 115 115 115 115 115 

Electrical 

currents 

for TE 

banks 1, 2, 

and 3 [A] 

1.59 

1.47 

1.18 

2.27 

2.35 

2.05 

2.27 

2.38 

1.58 

2.18 

2.44 

2.59 

2.11 

2.18 

2.43 

2.55 

2.18 

1.52 

2.06 

2.05 

1.63 

2.49 

2.28 

1.99 

1.47 

1.47 

1.50 

4. RESULTS AND DISCUSSION 

Several experimental trials were conducted on the prototype TE dryer. The main variation from one trial to another 

was the electrical current applied to the TE banks. Additionally, variations were made in air flow rate and test load 

size. The comparison between modeled and experimental values of thermoelectric DC power consumption and total 

dry time are shown graphically in Figure 3. 

  

Figure 3: Comparison between experimental and model predicted thermoelectric energy use (left) and dry time 

(right) for 9 trials 

The deviation between experimental and model-predicted thermoelectric energy use is within ±10%. This is an 

important result because unlike other energy usage in the system which does not vary greatly (i.e. blower and drum 

motor energy usage), the thermoelectric energy consumption depends on many factors such as the current and 

temperature difference. During a given test, the temperatures on the hot and cold sides of the TE change with time as 

the fabric is dried. The dry time is also an important metric; it is closely tied to the energy consumption and accurate 

prediction via modeling is essential. The results show that model prediction of dry time is within ±25% of experiments. 

The modeling and experimental results also revealed that the relative humidity of the air exiting the dryer drum and 

temperature of the air entering the drum were key factors in the overall performance of the system. The best results 

were expected from high RH leaving the drum since that means (i) the vaporization of the moisture on the cloth was 

maximized for a given temperature and (ii) less heat needed to be removed from the air before the onset of 

condensation. The temperatures also played a large role in the thermoelectric efficiency since the thermoelectric COP 

worsens at higher temperature lifts. In Figure 4 it can be seen that the model could accurately predict the RH of the 

air exiting the drum by ±10% and the maximum deviation in drum inlet temperature was within ±5°C.  
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Figure 4: Comparison between experimental and model predicted RH exiting the drum (left) and temperature of air 

entering the drum (right) for 9 trials 

Finally, to compute an EF, the bone dry weight (in lb) of the cloth was divided by the energy used during the drying 

process (in kWh). This energy included the AC electrical energy consumption of the thermoelectric power supply, the 

blower, and the drum motor. Power to the thermoelectrics was supplied by DC power supplies that allowed for precise 

control and measurement. A conversion efficiency of 90% was assumed to account for AC to DC conversion losses. 

The drum motor power was calculated by using the measured torque required to turn the drum time rotational speed 

(a constant 37.4 W) divided by an assumed motor efficiency of 60% (for constant 62 W electrical). The blower power 

was determined from the measurement of flow work done by the blower on the air (i.e. the product of the measured 

pressure drop and volumetric flow rate), divided by the assumed fan efficiency of 17% and motor efficiency of 60%. 

The trials conducted so far reached an EF of 4.9, and the maximum deviation between model and experiment was 

<15% for all trials.  

4. CONCLUSIONS 

A preliminary experimental and modeling study of thermoelectric clothes dryer was conducted. The results indicate 

that not only is this novel technology viable for clothes drying, it also can be captured by the model proposed in this 

work. The results also show that parameters such as the relative humidity and air temperature at given state points are 

key factors in the overall performance of the system. 
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