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ABSTRACT 
 

Generally, domestic refrigerators and freezers are running in non-continuous operation mode most of the time, 

which is a necessity to match cooling capacity to thermal loads. In currently available domestic appliances it can be 

observed, that this matching is mainly realized in two different ways: On the one hand, a simple on/off control of the 

hermetic compressor is installed in lower priced appliances with limited energy efficiency for the mass market. On 

the other hand, modern top efficiency class appliances have a variable frequency controlled compressor installed. 

Both control strategies have a repetitive and transient change of thermodynamic states of the refrigerant in common. 

 

For better understanding of these cyclic patterns in terms of internal temperature distribution, a state of the art 

domestic refrigeration compressor with a displacement of approximately 6 cubic centimeters is integrated in a 

commercial freezer. The compressor which has an on/off control is equipped with extensive measurement 

instrumentation. Several temperature probes are inserted and temperatures on surfaces inside and outside the 

compressor as well as refrigerant temperatures are logged for both cyclic and steady-state behavior. Finally, a 

comparison between transient experimental data and steady-state data from a standardized calorimeter test bench is 

done. 

 

1. INTRODUCTION 
 

Since a respectable part of the worldwide energy consumption can be attributed to household refrigerators and 

freezers, it is a necessity to increase the overall efficiency of cooling systems. These systems consist of several parts 

whereat the compressor plays the key role concerning the energy consumption. The energy consumption of hermetic 

compressors is mainly influenced by three aspects: the electrical, the mechanical and the thermodynamic efficiency. 

The electrical efficiency of the motor is usually about 90%, the mechanical efficiency, which is essentially affected 

by the bearing system, is also mostly around 90% and the thermodynamic efficiency is usually about 80 to 83% 

(Ribas et al., 2008). Therefore, the thermodynamic analysis of reciprocating compressors for domestic refrigerators 

was the main focus of several different studies which were published in the last few years. Most of them were based 

on a quasi-static behavior of the hermetic compressor under certain standardized conditions. 
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Kara and Oguz (2010) investigated the thermal behavior of a small hermetic reciprocating compressor. They 

measured the gas and surface temperature on several positions while the compressor was tested in a calorimeter that 

enabled stabilized operating conditions (ASHRAE conditions) and compared the experiments with results by 

numerical models. Another work, wherein a thermal analysis of a hermetic reciprocating compressor was made, was 

published by Cavallini et al. (1996). The authors investigated several computational models and compared them 

with experimental data. These experimental measurements had been carried out on a hermetic compressor which 

also was operating under steady conditions (ASHRAE conditions). In the field of thermal analysis of reciprocating 

compressors, transient conditions represent very often only the unsteady phenomena during one revolution as in the 

study of Longo and Caracciolo (2002). Similar investigations were done by Negrao et al. (2010). 

 

To investigate the complex thermal phenomena inside reciprocating compressors, experiments and numerical 

calculations are almost always carried out at stabilized operating conditions with standardized boundary conditions. 

These conditions can differ from the real world operating conditions especially for non-variable speed compressors. 

If a compressor should be improved in order to increase the overall efficiency and therefore, to reduce the annual 

energy consumption of the entire cooling system, measuring data from a calorimeter test bench could lead to 

misleading potentials for improvements. Therefore, this work compares steady-state and transient temperature 

measurements of a fixed speed compressor (50 Hz) operating at different conditions. 

 

2. EXPERIMENTAL SETUP 
 

Experimental measurements are carried out with a commercial hermetic reciprocating compressor for domestic 

refrigerators with a displacement of approximately 6 cubic centimeters. The refrigerant flows through the suction 

pipe into the shell of the compressor. There it enters the suction muffler and flows through a reed valve into the 

cylinder. The compressed refrigerant is then discharged and leaves the shell, passing the cylinder head, discharge 

mufflers and the serpentine. 

 

The investigated compressor, running with R600a, is equipped with extensive measurement instrumentation. In 

order to measure the temperature profile during a duty cycle, which is in a range of several minutes, T-type 

thermocouples are used. Thirteen thermocouples are distributed on several positions inside the compressor to get a 

meaningful statement of the thermal behavior. The description of the locations of these thermocouples is given in 

Table 1. Additionally, the temperatures of the suction pipe (T14) and discharge pipe (T15) outside the compressor 

are measured. To get the outer surface temperature distribution of the compressor, another six thermocouples are 

placed around the shell. These measuring positions are described in Table 2. Furthermore, two pressure transducers 

are placed at the cylinder head (P1) and the suction muffler neck (P2). Figure 1 shows drawings of the compressor, 

wherein the temperature and pressure measuring positions are depicted. 

 

  
Figure 1: Temperature and pressure measuring positions 
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Due to the requirement of hermetical tightness of the compressor, every cable-feedthrough represents a potential 

vulnerability. Therefore, the Teflon®-insulated sensor wires are passed through the shell with a specially sealed 

feedthrough. The left side of Figure 2 shows the compressor without the upper part of the shell. One of the 

challenges is to arrange all the measurement instrumentations in a way that the influence on the behavior of the 

compressor is as small as possible. Thermocouples which measure a surface temperature inside the shell are fixed 

with epoxy resin which can be seen in Figure 2 (right). 

 

Table 1: Thermocouple measuring positions at the compressor 

No. Temperature measuring position description Location 

T1 Suction muffler neck (gas) - 

T2 Serpentine end (surface) - 

T3 Cylinder head outside (surface) Front 

T4 Shell inside (surface) Bottom 

T5 Stator windings (surface) Top 

T6 Stator lamination (surface) Top 

T7 Cylinder (surface) Top 

T8 Discharge muffler-2 (surface) Top 

T9 Suction muffler intake tube (gas) - 

T10 Suction muffler wall (surface) Centre 

T11 Oil Centre 

T12 Discharge muffler-1 (surface) Top 

T13 Shell (gas) - 

 

Table 2: Thermocouple measuring positions at the shell (outside) 

No. Temperature measuring position description Location 

TB1 Shell cover (surface) Middle 

TB2 Shell cover (surface) Front 

TB3 Shell (surface) Left 

TB4 Shell (surface) Bottom 

TB5 Shell (surface) Front 

TB6 Shell cover (surface) Right 

 

To get steady state-data, the compressor is running on a fully automated calorimeter test bench under four different 

stabilized operating conditions. Thereby, ambient temperature is set to 32 °C and the adjusted evaporation and 

condensation temperature can be seen in Table 3. Each test takes several hours, whereat only the data which is 

recorded during the last 50 minutes is analyzed to ensure steady-state conditions. 

 

The transient measurements are done with the same compressor installed in a commercial freezer with a net capacity 

of approximately 100 liters. Several different measurements are carried out such as varying the ambient temperature, 

varying the cycle duration or varying the duty-cycle ratio. Table 4 describes the operating conditions of the 

respective transient measurements whereat evaporation and condensation temperatures refer to the ON-period of the 

compressor. 

 

Table 3: Evaporation and condensation temperature of calorimeter measurements 

Measurement Evaporation temperature 

Teva 

[°C] 

Condensation temperature 

Tcon 

[°C] 

Calo -23/45 -23.3 45.0 

Calo -23/55 -23.3 55.0 

Calo -37/49 -37.0 49.0 

Calo -34/50 -34.0 50.0 
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Figure 2: Compressor without upper shell (left), suction muffler details (right) 

 

Table 4: Operating conditions of transient measurements 

Measurement 

 

(Tamb/tcyc/r) 

Ambient 

temperature 

Tamb 

[°C] 

Cycle duration  

 

tcyc 

[min] 

Duty-cycle 

ratio 

r 

[%] 

Evaporation 

temperature 

Teva 

[°C] 

Condensation 

temperature 

Tcon 

[°C] 

Real 32/30/67 32 30 67 -33.8 50.0 

Real 32/45/67 32 45 67 -34.9 50.0 

Real 32/105/80 32 105 80 -37.2 49.1 

Real 25/30/65 25 30 65 -31.2 41.2 

 

3. RESULTS AND DISCUSSION 
 

In the following chapter, the experimental data is presented and discussed. All measurements are carried out with the 

same hermetic compressor which is either running on a calorimeter test bench or in a commercial household freezer. 

Several operating conditions of the compressor are tested and effects on temperature distribution are investigated. 

Finally, a comparison between steady-state and transient operating behavior is done. 

 

3.1. Steady-state data of the calorimeter test bench 
Figure 3 shows a chart where the arithmetic mean values of the measured temperatures can be seen. Considering the 

outer surface temperatures of the shell (TB1 – TB6), it can be observed that the left (TB3) and the right side of the 

shell (TB6) show the highest temperatures. The lowest temperatures of the shell occur at the middle of the shell 

cover (TB1). One would expect that the temperatures of the three mentioned positions are more similar and higher 

than the other ones (TB2, TB4 and TB5) because they are close to the discharge line which has the highest 

temperature level inside the compressor. One explanation for this phenomenon could be the influence of the air flow 

inside the calorimeter test bench on the heat transfer between compressor shell and ambient air. When comparing 

the calorimeter-datasets among each other, it should be kept in mind that different operating conditions lead to 

different mass flow rates. 
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The highest temperatures occur along the discharge line. From the cylinder head (T3) to the second discharge 

muffler (T8) a temperature drop of approximately 10 K can be observed for all four operating conditions. Along the 

serpentine, the temperature drops for another 8-10 K. The temperature of the gas inside the shell (T13) and 

temperatures of the electric machine (T5 and T6) are at similar levels, leading to the assumption that measuring 

position T13 is influenced by the motor. Due to the limited space inside the compressor, it is hardly possible to find 

a position, where influences from other parts could be fully excluded. The heating of the suction gas (T9, T1) is 

about 4.5 K for the measurements "Calo -23/45" and "Calo -23/55", and approximately 8 K for the other two 

operating conditions. This discrepancy results from the different mass flow rates. 

 

3.2 Transient experimental data 
To gain transient experimental data, the hermetic compressor is installed in a commercial freezer with a net capacity 

of approximately 100 liters. Thereby, cycle duration and duty-cycle ratio are varied. In this work, the duty-cycle 

ratio is defined as the duration of the ON-cycle divided by the total cycle duration. Additional to the three 

measurements at ambient temperature of 32 °C, another measurement at 25 °C is done to investigate the influence of 

different ambient temperatures. 

 

 

Figure 4: Arithmetic mean values of temperatures at different measuring positions (transient data, total cycle 

duration) 

 

Figure 4 shows measured temperatures which are averaged over the total cycle duration. A closer look at the outer 

surface temperatures of the shell (TB1-TB6) shows that the lowest temperature occurs at the bottom (TB4) and the 

highest at the right and the left side of the shell (TB3 and TB6). This temperature distribution indicates the influence 

of the hot and cold compressor components on the surface shell temperature more pronounced than those 

determined by the steady-state measurements on the calorimeter test bench. 
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Figure 3: Arithmetic mean values of temperatures at different measuring positions - calorimeter data 
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Similar to the calorimeter measurements, it can be seen, that the temperature drops approximately 8.5 K between the 

cylinder head (T3) and the second discharge muffler (T8) and another 8 K along the serpentine. The suction gas 

temperature increases by 7.5 K from the intake tube to the neck of the suction muffler for measurements at an 

ambient temperature of 32 °C and increases by 6.5 K for the measurement at 25 °C ambient temperature. Comparing 

the real-world measurements among each other, rather small differences can be seen when varying the cycle 

duration (Real 32/30/67 and Real 32/45/67). A similar thermal behavior but at higher temperature level (1.5-2.5 K 

higher) can be found when increasing the duty-cycle ratio up to 80 percent (Real 32/105/80). Due to the control 

logic of the commercial freezer, the total cycle duration has also increased. Decreasing the ambient temperature 

from 32 °C to 25 °C leads to an approximately 6 K lower shell surface temperature. However, the temperature level 

reduction of the discharge line, the suction gas and the electrical machine is only about 1.7-3 K, 4.5 K and 4 K, 

respectively. 

 

Figure 5 illustrates differences between temperatures averaged over the ON-period, OFF-period and total cycle, on 

the basis of the transient measurement "Real 32/30/67". Concerning the outer surface temperature of the shell, it can 

be noted, that the deviation between ON- and OFF-period is smaller than 1 K except TB4 (shell bottom) which 

seems to correlate stronger with the oil temperature (T11). Inside the compressor, the same small temperature 

deviation can be observed for components with a high thermal mass such as the electric machine and the two 

discharge mufflers. Temperatures at measuring positions T3 and T7 (cylinder head and cylinder) show a significant 

deviation between ON- and OFF-period because they are directly affected by the heat generation resulting from the 

compression of the refrigerant. The temperature drop of the serpentine (T2) is similar to that of T3 and T7. Further 

considerable differences appear at measuring positions T1, T9 and T10 (suction muffler neck, suction muffler intake 

tube and suction muffler wall) which show the heating of the suction line during the OFF-period. 

 

 

Figure 5: Averaged temperatures of transient measurement “Real 32/30/67” – comparison between ON- and 

OFF-period 

 

3.3. Comparison between steady-state and transient data 
In this section, a comparison between steady-state and transient measurement data is done for two different 

operating conditions. The adjusted evaporating and condensing pressure is 0.386 bar and 7.02 bar for the 

measurements "Real 32/30/67" and "Calo -34/50", and 0.386 bar and 6.68 bar for the measurements "Real 

32/105/80" and "Calo -37/49", respectively. Figure 6 shows the time averaged temperatures of the measurements 

mentioned before. Thereby, the temperatures for the transient measurements are averaged over the entire cycle 

duration. Comparing the outer surface temperatures of the shell (TB1-TB6), a difference of approximately 5-7 K can 

be observed for both operating conditions. Based on the assumption of a similar input power to the compressor for 

transient and steady-state measurements, nearly the same or even a lower temperature level of the transient 

measurements could have been expected. The main reason for this discrepancy is the air flow over the compressor in 

the calorimeter test bench, which is needed to keep the ambient temperature constant at the desired level. During the 

transient measurements, the compressor is located in a small recess at the backside of the freezer. There, the air 

temperature close to the compressor is higher than the ambient temperature and heat transfer only occurs by natural 

convection and heat radiation. 
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Figure 6: Comparison between transient and steady-state temperature measurements 

 

Inside the compressor, higher temperatures along the discharge line (T3, T7, T8, T12) can be observed for steady-

state measurements compared to transient ones, which is expected due to the OFF-period of the compressor. Similar 

differences can be seen for temperatures influenced by the cold suction gas. T1, T9, and T10 show values which are 

significant lower for steady-state measurements. Worth mentioning is that the average temperature level at operating 

condition 0.386 bar/7.02 bar (Real 32/30/67) is lower when comparing both transient measurements, whereas it is 

higher (Calo -34/50) when comparing both steady-state measurements. 

 

 

Figure 7: Temperature profile of measuring positions T1 and T3 – transient versus steady-state operating 

conditions 

 

Figure 7 shows the profile of the gas temperature at the suction muffler neck (T1) and the surface temperature at the 

cylinder head (T3) of the transient (Real 32/30/67) and the steady-state (Calo -34/50) measurement. Therein it can 

be seen, that the deviation between steady-state and transient temperature decreases during the ON-period of the 

compressor and reaches a value of approximately 1-2 K shortly before the compressor stops. The deviations of the 

time averaged temperatures are of course much more significant which can be seen in Figure 6. When the 

compressor is switched on, temperature T1 decreases very fast due to the cold refrigerant which is sucked in. 

Afterwards, the valve plate is heated and influences the gas at the muffler neck which can be seen in the rather fast 

increase of T1 until a state of equilibrium is reached. When the compressor stops and, therefore, the refrigerant mass 

flow is zero, the remaining gas in the neck is heated very fast and then cools down together with the surrounding 

solid parts. 
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4. CONCLUSIONS 
 

This work deals with the investigation of the thermal behavior of a state-of-the-art compressor used in domestic 

refrigerators during steady-state and transient operating conditions. Due to the difficulty of sensor-signal 

feedthrough during operation of hermetic compressors, this investigation is not a standardized measurement and 

provides valuable temperature data. To gain measuring data, the non-variable speed compressor was operated in a 

fully automated calorimeter test bench and in a commercial freezer. The temperature was measured at nineteen 

measuring positions distributed around the shell and inside the compressor. Influences of the duty-cycle ratio, the 

cycle duration or the ambient temperature on the temperature level of the compressor were investigated at transient 

operating conditions. Furthermore, calorimeter measurements at four different stabilized operating conditions were 

compared. Finally the data of transient and steady-state measurements at two different operating conditions were 

compared. Based on these results the following major conclusions can be drawn: 

 

 The temperature drop along the discharge line (without serpentine) is in the same range for all eight 

measurements and is almost independent of the refrigerant mass flow rate. On the contrary, the influence of 

different operating conditions on the heating of the suction gas and the cooling along the serpentine is more 

significant. 

 The influences of the total cycle duration on the temperature levels are rather small. An increase of the 

duty-cycle ratio results in a similar thermal behavior but generally at a higher temperature level, whereas a 

variation of the ambient temperature results also in a slightly different thermal behavior. 

 The comparison between transient and steady-state measurements shows, that the temperature level differs 

significantly due to different environmental conditions. Inside the calorimeter test bench, a forced air 

circulation keeps the exact ambient temperature, whereas inside the recess at the backside of the freezer, 

where the compressor is located, only buoyancy driven flow occurs. This leads to lower heat transfer 

coefficients and a higher air temperature close to the compressor. 
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