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ABSTRACT 
 

Comprehensive knowledge about the heat transfer mechanisms and the temperature field inside hermetic 

compressors is very important for the thermal management and thus their performance. A numerical model to 

predict the temperature field in a hermetic reciprocating compressor for household refrigeration appliances is 

presented in this work. The model combines a high resolution three-dimensional heat conduction formulation of 

the compressor’s solid parts, a three-dimensional computational fluid dynamics (CFD) approach for the gas line 

domain and lumped formulations of the shell gas and the lubrication oil. Heat transfer coefficients are 

determined by applying CFD to the gas line side and correlations from the literature on the shell gas and oil side, 

respectively. The valve in the gas line simulation is modelled as a parallel moving flat plate. By means of an 

iterative loop the temperature field of the solid parts acts as boundary condition for the CFD calculation of the 

gas line which returns a cycle averaged quantity of heat to the solid parts. Using an iteration method which is 

based on the temperature deviation between two iteration steps, the total number of iterations and consequently 

the computational time can be reduced. The loop is continued until a steady-state temperature field is obtained. 

Calculated temperatures of the solid parts are verified by temperature measurements of a calorimeter test bench. 

The numerical results show reasonable agreement with the measured data. 

 

1. INTRODUCTION 
 

Thermal management is one of the main topics in the development process of modern hermetic reciprocating 

compressors for household refrigeration application. Due to the hermetic design of the compressor, electrical and 

mechanical losses influence the thermodynamic efficiency of the compressor. Heat transfer mechanisms like 

convection and conduction determine the temperature field inside the compressor and consequently, the 

compressor performance. The knowledge of the temperature field inside the compressor is essential to quantify 

loss mechanisms like superheating. 

One possibility to obtain the heat transfer and the temperature field inside the compressor is the experimental 

investigation using heat flux sensors (Dutra and Deschamps, 2010) or thermocouples (Kara and Oguz, 2010). 

The spatial resolution of these methods is low, they are not suitable for compressors in the design phase and the 

usage of sensors may affect the compressor behaviour. Another possibility to investigate the thermal 

performance of a hermetic reciprocating compressor is the use of simulation tools. Several strategies to model 

the temperature field and heat transfer mechanism inside the compressor have been developed and can be found 

in the open literature.  

Simple approaches split the compressor into several lumped volumes using the first law of thermodynamics to 

calculate the temperature field (e.g. Meyer and Thompson, 1988; Todescat et al., 1992). Such models use either 

experimental data or correlations for the convective heat transfer formulation. The lumped volumes are 

connected via thermal conductance adjusted to experimental data. The low spatial resolution of these models and 
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the dependence on experimental data yield a very rough and inflexible estimation of the temperature field in a 

hermetic reciprocating compressor. 

A more flexible modelling strategy is the Thermal Network approach (TNW). The usage of TNW for thermal 

modelling of a hermetic reciprocating compressor for refrigeration application can be found in e.g. 

Sim et al. (2000) and Ooi (2003). TNW uses mass points to model the considered compressor parts and the heat 

transfer between the mass points is represented with the Lumped Conductance Method. Convective heat transfer 

is modelled with correlations based on forced or natural convection Nusselt number. Due to the reduction of 

geometrical information, the heat transfer modelling is characterized by a high level of uncertainty especially for 

regions with transient 3d flows like in the suction or discharge line. Also the validation of TNW with 

experimental data can cause problems because it is not clear if the chosen measuring points represent the 

temperature of the lumped mass. 

The use of Computational Fluid Dynamics (CFD) in the development process of hermetic reciprocating 

compressors leads to another approach for thermal modelling, the so called hybrid simulation models. Although 

the performance of CPUs increased significantly over the last years, an overall 3d simulation of a compressor is 

still not possible within a reasonable time. Hybrid models use different combinations of complex 3d 

formulations and simple correlations for convective and conductive heat transfer, respectively. 

Almbauer et al. (2006) applied 1d flow simulation of the gas line, 3d formulation of the cylinder solid domain 

and lumped formulation of the remaining compressor parts. Ribas (2007), Sanvezzo and Deschamps (2012) and 

Lohn et al. (2015) combined 3d heat conduction formulation for the solid parts of the compressor and lumped 

formulation of the gas path. The authors used either experimental data or correlations from the literature to 

model the heat transfer. 

The model in the present study is based on the hybrid approach. Compared to the hybrid models found in the 

literature, this work contains 3d formulation of the full gas line and 3d formulation of solid components of the 

entire compressor in combination with lumped volume formulation of the gas inside the compressor shell and the 

lubrication oil. The simulation of the fluid flow in the gas line considers 3d phenomena in the suction and 

discharge mufflers, the flow in the cylinder as well as interactions with the compressor valves. Special focus is 

laid on the high geometric resolution of the solid compressor parts. A simulation algorithm is presented to 

combine the transient flow calculation and the steady-state heat conduction calculation to model the thermal 

behaviour of a hermetic reciprocating compressor running at calorimeter test conditions. The simulation results 

are verified by experimental data of a calorimeter test bench.  

 

2. SIMULATION MODEL 
 

The R600a (isobutane) hermetic reciprocating compressor used in the present study has a displacement of 

5.5 ccm and the COP (ASHRAE test conditions -23.3 °C/55 °C) is approximately 1.8. A schematic view of the 

compressor is shown in Figure 1. The simulation model can basically be split up into three main parts: (i) 

simulation of the gas flow using commercial CFD software, (ii) heat conduction in the solid parts also using 

commercial CFD software and (iii) the energy balance for oil and refrigerant by assuming lumped control 

volumes. The three simulation parts exchange data in terms of heat flux and temperatures.  

 

 
Figure 1: Schematic view of the investigated compressor 
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2.1 Gas flow 
The simulation of the gas flow is done with the commercial CFD software package ANSYS Fluent. The 

simulation domain includes suction line, suction muffler, valves, cylinder, ports, discharge muffler and discharge 

line. To reduce the computational time the valves are assumed to be parallel moving flat plates. The valve 

motion is calculated via User Defined Functions solving the single-degree of freedom system considering oil 

stiction forces. The number of cells in the computational mesh varies between 3.1 and 5.5 million cells 

depending on the position of the piston. The k-ε turbulence model is used and 1st order spatial discretization of 

density, momentum, energy and turbulence is applied. Pressure-velocity coupling is used with coupled solver 

setting. 

 

2.2 Conduction in the solid parts 
Heat conduction in the solid parts of the hermetic compressor is also solved with the commercial software 

package ANSYS Fluent. The whole domain is meshed with about 2.4 million cells with refinements at the 

interfaces between the single parts. Heat flux boundary conditions are applied on the surfaces of the solid parts 

depending on the flow conditions. Surfaces that are in contact with the gas flow use area-weighted average heat 

flux values determined by the CFD calculation of the gas flow. Heat flux values for the convective heat transfer 

between the solid parts, the compressor oil and the gas inside the shell are calculated with correlations from the 

literature (e.g. flow over flat plates, flow inside pipes). The heat flux between the compressor shell and the 

ambient air is modelled by means of a natural convection correlation. Electrical power losses are considered as 

volumetric source terms in the energy equation of the corresponding part. Mechanical power losses are 

considered as heat input to the compressor oil (Zach, 2013). 

 

2.3 Lumped control volumes 
To complete the thermal modelling of the entire hermetic compressor, the refrigerant and the oil inside the 

compressor shell have to be taken into account. The gas caught inside the shell is regarded as one control 

volume. Leakage mass flow rates are neglected and the gas is assumed to be in thermal equilibrium. The sum of 

the heat fluxes between the shell gas and the adjacent parts 𝑄̇𝑆𝐺 are calculated with the results of the solid part 

conduction simulation. The temperature of the gas can be calculated by applying the energy balance to the 

control volume: 

 

𝑇𝑆𝐺
𝑛+1 = 𝑇𝑆𝐺

𝑛 +
𝑄̇𝑆𝐺 ∙ ∆𝑡

𝑚𝑆𝐺 ∙ 𝑐𝑣 𝑆𝐺
 (1) 

 

The oil inside the compressor shell is divided into three control volumes, namely the oil in the sump, the oil 

transported by the oil pump and the expelled oil on the oil covered walls. The oil mass flow rate at steady-state 

operating conditions is determined by experiments (Posch et al., 2015). Applying a first order upwind scheme 

for the calculation of the outlet enthalpy flow, the energy balance of the considered control volume yields the 

following equations for the oil temperatures: 

 

𝑇𝑂𝑆
𝑛+1 =

𝑄̇𝑂𝑆 + 𝑐𝑜𝑖𝑙 (𝑚̇𝑜𝑖𝑙 ∙ 𝑇𝑂𝑊 + 𝑚𝑂𝑆
𝑇𝑂𝑆

𝑛

∆𝑡
)

𝑐𝑜𝑖𝑙 (𝑚̇𝑜𝑖𝑙 +
𝑚𝑂𝑆

∆𝑡
)

 (2) 

𝑇𝑂𝐶
𝑛+1 =

𝑄̇𝑂𝐶 + 𝑐𝑜𝑖𝑙 (𝑚̇𝑜𝑖𝑙 ∙ 𝑇𝑂𝑆 + 𝑚𝑂𝐶
𝑇𝑂𝐶

𝑛

∆𝑡
)

𝑐𝑜𝑖𝑙 (𝑚̇𝑜𝑖𝑙 +
𝑚𝑂𝐶

∆𝑡
)

 (3) 

𝑇𝑂𝑊
𝑛+1 =

𝑄̇𝑂𝑊 + 𝑐𝑜𝑖𝑙 (𝑚̇𝑜𝑖𝑙 ∙ 𝑇𝑂𝐶 + 𝑚𝑂𝑊
𝑇𝑂𝑊

𝑛

∆𝑡
)

𝑐𝑜𝑖𝑙 (𝑚̇𝑜𝑖𝑙 +
𝑚𝑂𝑊

∆𝑡
)

 (4) 

 

 

2.4 Solution algorithm 
At the beginning of the simulation process an initial temperature field in all solid parts, refrigerant and oil in the 

compressor is guessed. The solid part temperatures are used as boundary conditions for the following CFD 

simulation of the gas flow. The results of the CFD simulation are averaged over one rotation of the compressor 

and are considered as heat flux boundary conditions for the simulation of the solid part heat conduction. Since a 

steady-state temperature field of the compressor should be calculated, the solid part heat conduction model in 

ANSYS Fluent is set to steady. After calculating the temperature distribution in the solid parts, the energy 
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balance for the refrigerant in the shell and the respective oil volumes are carried out using the CFD heat fluxes. 

The lumped control volumes are modelled as quasi-transient using a time step of 1s. The boundary conditions for 

the solid part conduction simulation are updated with the gas and oil temperatures. Lumped volume energy 

balance and solid part conduction forms an iteration loop which is continued until heat flux deviation between 

two consecutive iteration steps is below a certain limit. Using the new solid part temperature field the CFD 

simulation is carried out again. The iteration loop between CFD simulation of the gas line and the solid part heat 

conduction calculation is executed until heat flux deviations between two consecutive iteration steps are also 

below a certain convergence criteria. 

 
Figure 2: Flow chart of the solution algorithm 
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3. EXPERIMENTAL WORK 
 

To validate the thermal modelling of the hermetic compressor, temperature measurements on several positions in 

the compressor are carried out. 22 thermocouples type T are distributed inside the compressor, on the shell and 

in the gas line. Furthermore, two pressure sensors are placed in the suction and discharge muffler. A special 

sealed feedthrough is used to pass the Teflon®-insulated sensor wires through the hermetic shell. Table 1 gives 

an overview of the thermocouples which are used for the validation of the present thermal model. A schematic 

overview of the sensor positions is illustrated in Figure 3. 

 

 

 

Figure 3: Schematic overview of the sensor positions 

 

Table 1: Thermocouple measuring points 

 

No. Measuring point description 

T1 Stator lamination (surface) 

T2 Stator windings (surface) 

T3 Cylinder (surface) 

T4 Shell (gas) 

T5 Discharge muffler (surface) 

T6 Suction muffler (surface) 

T7 Valve plate (surface) 

T8 Shell top outside (surface) 

T9 Shell bottom outside (surface) 

T10 Oil sump 

T11 Shell inside (surface) 

 

 

4. RESULTS 
 

The presented thermal model is used to simulate the temperature distribution in solid parts, gas and oil of a 

hermetic reciprocating compressor. The operating conditions of the compressor are set to -23 °C evaporating 

temperature, 45 °C condensing temperature and 32°C ambient temperature, respectively. The compressor works 

at constant speed of 2950 rpm.  

Figure 4 shows exemplarily the velocity field in the cylinder of the gas flow obtained by CFD simulation. 

Regions with high local gradients of the heat transfer coefficient like suction and discharge port are treated as 

separated areas in the iteration loop between gas flow simulation and solid part conduction. Specific heat flux 

values for the individual regions can be seen in Table 2. The sign of the values is related to the heat flux 

direction from solid part to gas flow. The specific heat flux acts as boundary condition for the heat conduction 

simulation of the solid parts. 

 

T1 

T2 

T3 

T5 

T6 

T7 

T8 

T9 
T10 

T11 
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 Figure 4: CFD simulation of the gas flow 

 

Table 2: Specific heat flux from solid to gas [W/m²] 

 

Solid Value 

piston -7199 

discharge muffler -1289 

suction muffler 351 

valve plate cylinder 239 

cylinder 2082 

valve plate suction 414 

valve plate discharge -24421 

discharge port -10216 

suction port 7485 

serpentine -3799 
 

 

As described in chapter two the present model consists of two iteration loops. The outer iteration loop links the 

gas flow simulation with the simulation of the solid parts, shell gas and oil. The inner iteration loop links the 

solid part conduction with the energy balance of the lumped volumes of gas and oil in the compressor shell. The 

calculation time of the whole procedure is significantly depending on the outer iteration loop due to the time-

consuming CFD simulation of the gas flow. To contain the number of iterations for the outer loop, the initial 

temperature field of the compressor has to be guessed well. In the present study, five iterations for the outer loop 

had to be carried out to fulfil the convergence criteria. Due to the fast calculation of the conduction in the solids 

and of the energy balance, the inner iteration loop has no significant impact on the overall computation time. The 

number of iterations for the inner loop in the present study is between 50 and 60. Figure 5 shows the temperature 

development over the number of iterations of the lumped volumes during the inner iteration loop. 

 

 
Figure 5: Temperature development during the inner iteration loop [K] 

 

The comparison between the simulated and measured temperatures at the specific measuring points is illustrated 

in Table 3. The results of the thermal model are in agreement with calorimeter test data. Maximum absolute 

temperature difference between simulation and measurement is less than 4.2 K. Especially the temperatures of 

the solid parts inside the compressor and the lumped volumes are met very well. Although the thermal modeling 

320

322

324

326

328

330

332

334

336

338

0 10 20 30 40 50 60

T
em

p
er

at
u

re
 [

K
] 

Iteration 

oil crankshaft

gas shell

oil sump

oil wall



1215, Page 7 
 

 

 

 

23rd International Compressor Engineering Conference at Purdue, July 11-14, 2016 

 

of the hermetic compressor in the present study matches the experiment well, the uncertainties in the 

determination of the heat transfer coefficients should be discussed briefly. In general heat transfer can be 

modelled in two different ways: On the one hand by detailed CFD simulation of the complex gas flow inside the 

shell or by means of empirical correlations. With the CFD approach not only the model accuracy should increase 

but also the computation effort. If choosing empirical correlations a bad agreement between simulation and 

experimental data could turn out, that requires a slight calibration of the empirical correlations by experimental 

data. The temperature distribution in the solid parts of the compressor can be seen in Figure 6. 

 

Table 3: Comparison between measured and simulated temperatures [K] 

 

No. Measuring point description Measurement Simulation ΔT 

T1 Stator lamination (surface) 332.9 333.4 0.5 

T2 Stator windings (surface) 333.7 333.4 0.3 

T3 Cylinder (surface) 337.7 338.3 0.6 

T4 Shell (gas) 331.6 330.9 0.7 

T5 Discharge muffler (surface) 350.9 350.9 0.0 

T6 Suction muffler (surface) 328.2 326.8 1.4 

T7 Valve plate (surface) 345.0 342.6 2.4 

T8 Shell top outside (surface) 318.9 321.2 2.3 

T9 Shell bottom outside (surface) 321.8 322.0 0.2 

T10 Oil sump 327.8 326.1 1.7 

T11 Shell inside (surface) 324.7 320.5 4.2 

 

 

  
Figure 6: Temperature field of the solid parts 

 

 

5. CONCLUSION 
 

In this study a thermal model for the investigation of a hermetic reciprocating compressor is shown using mainly 

numerical methods. The method combines CFD simulation of the gas flow, numerical calculation of the heat 

conduction in the solid parts and simple lumped formulations of the refrigerant and oil in the compressor shell. 

Although some heat transfer coefficients are determined by simple correlations from literature, the results of the 

thermal modelling are in good agreement with experimental data gained by calorimeter tests. The present 

method is an advisable tool in the compressor development process along with detailed CFD simulation of the 

gas flow to validate thermodynamic compressor behaviour. Unavoidable uncertainties in the determination of the 

heat transfer coefficients between the solid parts and the fluids (refrigerant and oil) have to be considered in the 

evaluation of the results. To get a thermal model for the usage in thermodynamic parameter studies it is useful to 

calibrate the heat transfer coefficients with experimental data.  
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NOMENCLATURE 
 

c specific heat capacity (J/kg K) OS oil in the sump  

𝑚̇ mass flow rate (kg/s) OW oil on the walls  

𝑚 mass (kg) oil compressor oil  

n iteration step  SG shell gas 

𝑄̇ heat flux (W) SP solid parts  

𝑇 temperature (K) v isochoric  

𝑡 time (s)    

Subscripts Greek symbols 

CV control volumes  Δ difference (-) 

OC oil in the crankshaft  ε convergence criteria (-) 
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