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ABSTRACT 
 

In addition to the electrical and the thermodynamic losses in hermetic compressors, mechanical losses have a 

significant influence on the performance of the compressor. In the present paper the friction losses in the journal 

bearings of a hermetic reciprocating compressor are investigated using numerical methods. A dynamic model is 

set up to solve the Reynolds equation using a finite volume approach to calculate the pressure field in each 

journal bearing. The calculation of the fluid film thickness is accomplished with the formulas of the parallel gap. 

The resulting hydrodynamic forces are equated with forces obtained by a dynamic multibody model of the 

compressor crank drive to calculate the transient orbit movement of the bearing. Based on the movement of the 

crankshaft at steady-state conditions, the shear stresses in the gap between crankshaft and housing can be 

calculated. Thus the cycle averaged friction power loss can be determined. To consider effects such as surface 

roughness of the bearings or possible contacts between the solids, correlations found in literature are 

implemented. The present method is used to assess the friction power loss of the journal bearings during the 

operation with different oil viscosities. The simulated data is verified by simple analytical friction loss 

calculations based on shear stresses in the Couette flow between bearing and housing. 

 

1. INTRODUCTION 
 

Hermetic compressors either running in ON-OFF or variable speed mode are widely used in domestic 

refrigeration appliances. The hermetic design of the compressors requests a durability of all the compressor parts 

of at least 15 years, which is specified by the producer of the cooling appliance. Another difficulty caused by the 

hermetic design is the complex interaction between electrical, mechanical and thermodynamic losses. The 

identification of the individual losses is one of the main tasks in the development process of modern hermetic 

reciprocating compressors. In addition to challenging experimental investigations, simulation models are 

increasingly used. An example of simulation application in compressor development is the quantification of 

friction losses in moving parts, especially in journal bearings. Due to the low absolute level of friction power 

losses (relative level with regard to compressor power is about 15 %) and the hermetic design, classical strip-

down methods which are used in engine development are not suitable for the investigation of friction losses in 

reciprocating compressors for domestic refrigeration appliance. Several studies dealing with the modelling of the 

journal bearing dynamic behaviour are available. The studies resemble each other concerning the procedure to 

solve the friction loss problem of journal bearings. The procedure can be summarized as follows: (i) a multi body 

simulation of the compressor crank drive is carried out to get the dynamic loads on the journal bearings, (ii) the 

Reynolds equation is solved using numerical schemes to calculate the hydrodynamic forces in the bearings, (iii) 

a Newton-Raphson algorithm is used to get the movement of the shaft orbit and (iv) based on the shaft 

movement the friction losses can be determined. A distinction between these studies can be made concerning the 

modelling of the Reynolds equation or the model accuracy. The use of the short bearing approximation can be 

mailto:posch@ivt.tugraz.at
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mailto:almbauer@ivt.tugraz.at
mailto:p.schoellauf@secop.com


1214, Page 2 
 

 

 

 

23rd International Compressor Engineering Conference at Purdue, July 11-14, 2016 

 

found in e.g. Estupinan and Santos (2009) or Kim et al. (2012). A comparison between results of the short 

bearing approximation and the finite bearing model was carried out by Chieh et al. (2007). Duyar and 

Dursunkaya (2002 and 2006) analysed the dynamic behaviour of compressor journal bearings considering the 

elastic deformation of the shaft using finite element discretization. An investigation of compressor journal 

bearings considering mixed lubrication was presented in the work of Matsui et al. (2010). 

The present paper deals with the investigation of the friction losses in compressor journal bearings for being used 

as input data for a holistic thermal model of a hermetic compressor. The method is similar to the previous 

explained procedure using finite bearing model for the solution of the Reynolds equation. Furthermore, mixed 

lubrication models found in the literature are considered. The gap in the bearing is approximated as parallel. The 

simulation is used to calculate the influence of the oil viscosity and gap width on the friction losses. The 

simulated data is compared to simple analytical friction loss calculations based on shear stresses in the Couette 

flow to give an assessment of the required accuracy of the model to fulfil the requirements of a thermal 

compressor model. 

 

2. KINEMATICS AND DYNAMICS 
 

The friction analysis of the compressor journal bearings requires the determination of the bearing forces. For this 

purpose a multibody dynamics model of the piston-conrod-crankshaft system is developed. A detailed 

description of the friction behaviour of the junctions between piston and conrod respectively conrod and 

crankshaft is not carried out in the present study. Moreover, the misalignment of the piston is not considered. 

Figure 1 shows the coordinate systems used for the kinematic description of the crank mechanism parts. The 

inertial coordinate system is located in the static position of bearing A. The misalignment of the crankshaft due 

to the bearing eccentricity is considered in the distance and rotating vector of the crankshaft regarding to the 

initial coordinate system.  

 

 
Figure 1: Coordinate systems 

 

Using the Newton-Euler method the equations of motion can be expressed for each part. 

 

Piston: 

𝑚𝑃𝑖 ∙ 𝒂𝑰 𝑃𝑖 = 𝑭𝑝 −𝐼 𝑭4 + 𝑭𝐼 𝐶𝑦𝑙𝐼  (1) 

 

Conrod: 

𝑚𝐶𝑟 ∙ 𝒂𝑰 𝐶𝑟 = 𝑭4 − 𝑭𝐼 3𝐼  (2) 

𝛩𝐼 𝐶𝑟 ∙ �̇�𝐶𝑟 + 𝑚𝐶𝑟 ∙ 𝒓𝐼 3−𝐶𝑟 × 𝒂𝑰 𝐶𝑟 = 𝒓𝐼 3−4  × 𝑭4𝐼  (3) 

 

Crankshaft: 
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𝑚𝐶𝑠 ∙ 𝒂𝑰 𝐶𝑠 = 𝑭𝐴 + 𝐼 𝑭𝐵 + 𝑭3  𝐼𝐼  (4) 

𝛩𝐼 𝐶𝑠 ∙ �̇�𝐶𝑠 + 𝜔𝐶𝑠 × ( 𝛩𝐼 𝐶𝑠 ∙ 𝜔𝐶𝑠) + 𝑚𝐶𝑠 ∙ 𝒓𝐼 1−𝐶𝑠 × 𝒂𝑰 𝐶𝑠 = 𝒓𝐼 1−2  × 𝑭𝐴𝐼 + 𝒓𝐼 1−3  × 𝑭3 + 𝑻𝐼  (5) 

 

The set of equations gives the time dependent functions of the reaction forces in the main journal bearings 

according to the cylinder pressure. The cylinder pressure can be determined by experiments or computational 

fluid dynamics (CFD), respectively. In the present study the cylinder pressure is given by CFD simulation of the 

compressor gas line. 

𝑭𝑝𝐼 = (
0

𝑝𝐶𝐹𝐷 ∙ 𝐴
0

) (6) 

 

 

3. HYDRODYNAMIC FORCES 

 

The modelling of the hydrodynamic forces in the journal bearings is carried out by solving the Reynolds 

equation which links the hydrodynamic pressure and the fluid film thickness. 

 

𝜕

𝜕𝑥
 (

𝜌 ℎ³

12𝜂
 
𝜕𝑝ℎ

𝜕𝑥
) +

𝜕

𝜕𝑦
 (

𝜌 ℎ³

12𝜂
 
𝜕𝑝ℎ

𝜕𝑦
) =  

(𝑢𝐼 + 𝑢𝐼𝐼)

2
 
𝜕(𝜌ℎ)

𝜕𝑥
+

𝜕(𝜌ℎ)

𝜕𝑡
 (7) 

 

The terms on the left-hand side of the Reynolds equation represent the Poiseuille flow, the terms on the right-

hand side represent the Couette flow and the displacement flow, respectively. To solve this kind of partial, 

inhomogeneous elliptic differential equation, numerical methods have to be applied. In the present study the 

Reynolds equation is solved using the finite volume approach. The fluid film area in each bearing is divided in a 

certain number of cells and the terms of the Reynolds equation can be discretised. To avoid negative fluid film 

pressures, the Gümbel boundary condition is used which sets negative pressure values to zero. Figure 2 shows 

the hydrodynamic pressure distribution in bearing A without (a) and with (b) Gümbel boundary condition. 

 

 

 
(a) 

 

 
(b) 

 

Figure 2: Hydrodynamic pressure in bearing A without (a) and with (b) Gümbel boundary condition [MPa] 

 

To create a link between the eccentricity of the bearing and the fluid film thickness, the gap in the bearing is 

assumed to be parallel. According to the geometric relations shown in Figure 3 the fluid film thickness can be 

expressed as follows (Woschke, 2013): 

 

ℎ(𝜑) = (𝑟𝐼 − 𝑟𝐼𝐼) − 𝑒𝑥 ∙ cos(𝜑 − 𝜉) (8) 
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Figure 3: Determination of the fluid film thickness 

 

The basic form of the Reynolds equation (7) considers only the macro geometry of the bearing parts. Patir and 

Cheng (1978 and 1979) introduced an extended form of the Reynolds equation to consider also micro effects due 

to surface roughness. The authors used flow factors which depend on the roughness of the bearing surface and 

called the new form Average Reynolds Equation. 

 

𝜕

𝜕𝑥
 (𝜙𝑥  

𝜌 ℎ³

12𝜂
 
𝜕𝑝ℎ̅̅ ̅

𝜕𝑥
) +

𝜕

𝜕𝑦
 (𝜙𝑦  

𝜌 ℎ³

12𝜂
 
𝜕𝑝ℎ̅̅ ̅

𝜕𝑦
) =  

(𝑢𝐼 + 𝑢𝐼𝐼)

2
( 

𝜕(𝜌ℎ𝑇
̅̅ ̅)

𝜕𝑥
+ 𝜎𝛿

𝜕𝜙𝑆

𝜕𝑥
) +

𝜕(𝜌ℎ𝑇
̅̅ ̅)

𝜕𝑡
 (9) 

 

For a more detailed description of the flow factor determination the interested reader is referred to the primary 

works by Patir and Cheng (1978 and 1979). To calculate the possible solid contact between the surfaces the 

model of Greenwood and Tripp (1970) is used in the present study. 

 

4. NUMERICAL ALGORITHM 
 

The solving procedure starts with the input of the geometric data of the compressor crank mechanism parts. 

Initial values of eccentricity ex and minimum fluid film thickness angle ξ are set to zero as well as their time 

derivatives. Time resolution is fixed for the whole procedure and corresponds to a crank angle of two degrees. 

Starting at a certain position of the crankshaft (here crankshaft angle is zero) the cylinder pressure of the CFD 

calculation is read into the bearing simulation program. Solving the multibody dynamic system, the bearing 

forces can be calculated for the current crank angle. The calculation of the hydrodynamic bearing forces starts 

with the determination of the fluid film thickness according to (8) with the defined start values of the new time 

step. The start values of the new time step are the calculated eccentricity ex and minimum fluid film thickness 

angle ξ of the previous time step or the initial values if it is the first time step, respectively. To get the orbit of the 

crankshaft for the current time step, a two-dimensional Newton algorithm depending on ex and ξ is used (10). In 

each iteration step the Averaged Reynold Equation (9) is solved numerically for both bearings and the 

hydrodynamic bearing forces are compared with the calculated bearing forces of the multibody system regarding 

absolute value and force direction. If the deviation between hydrodynamic and multibody forces in both bearings 

is higher than the convergence criteria βF the iteration procedure is repeated, otherwise the algorithm proceeds to 

the next time step. The numerical algorithm is carried out until the deviation of the time-dependent shaft orbit 

between the current and the previous cycle is lower than the convergence criteria βC and steady-state conditions 

are reached. 

 

𝒙 = (
𝑒𝑥
𝜉 ) 

𝒇(𝒙) = 𝑭𝑀𝐵𝑆 − 𝑭𝑅𝑒𝑦 

𝒙𝑛+1 = 𝒙𝑛 − (𝑱𝑓(𝒙𝑛))
−1

𝒇(𝒙𝑛) 

(10) 
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5. RESULTS 
 

The present numerical bearing model is used to simulate hydrodynamic bearings of a hermetic reciprocating 

compressor running at 3000 rpm. The pressure in the cylinder is determined by CFD simulation of the 

compressor gas line considering fluid-structure interaction of the compressor valves. Operating conditions are set 

to -23 °C for evaporating temperature and 45 °C for condensing temperature (R600a), respectively. The baseline 

value for oil viscosity is 8 cSt and bearing clearance is 5 μm. Bearing width of bearing A is one quarter less than 

bearing B, whereas the shaft diameter is equal for both bearings. 

Figure 4 shows the shaft orbits of both bearings as a function of the oil viscosity. The illustrated curves represent 

one crankshaft revolution after steady-state conditions are reached which is the case after 7-8 cycles depending 

on the considered configuration. According to the higher forces due to the compression process at bearing B the 

eccentricity ratio of bearing B is higher than bearing A. An increase of the oil viscosity results in a decrease of 

the shaft deflection. Furthermore, higher oil viscosities damp the relative motion between the bearing parts and 

thus the crankshaft orbit is focused on a smaller region. The influence of the shaft orbit on the bearing clearance 

is shown in Figure 5. The curves show an increase of the eccentricity ratio of both bearings with an increased 

bearing clearance. This behaviour is a result of the nonlinear relation between the bearing pressure and the local 

oil film thickness. Small bearing clearance already yields in higher oil pressure at small shaft movement, so the 

deflection of the crankshaft is kept at low values. This effect can be seen in the shape of the crank orbit which is 

smoother at smaller bearing clearance values. 

 

 
Figure 4: Shaft orbits with different oil viscosity 
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Figure 5: Shaft orbits with different bearing clearances 

 

An addition illustration of the simulated shaft movement in terms of the absolute eccentricity ratio ε over the 

crank angle φ can be seen in Figure 6 and 7. According to the shaft orbit curves the eccentricity ratio of bearing 

B is higher than of bearing A. The figures show the peak in the eccentricity curve in the area of the top-dead 

centre of the compressor piston and the resulting high reaction forces in the piston-conrod-crankshaft system. 

The nonlinear dependence between bearing pressure and local oil film thickness (and its time derivatives) can 

also be seen in the eccentricity ratio curves. Curves of different viscosity or gap width can intersect especially in 

regions of low reaction forces and small eccentricity ratios. 

 

 
(a) 

 
(b) 

Figure 6: Eccentricity ratio over one crank shaft revolution of bearing A (a) and bearing B (b) 

 

 

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

ε y
 

εz 

A 3 μm 
B 3 μm 
A 5 μm 
B 5 μm 
A 7 μm 
B 7 μm 

0.05

0.15

0.25

0.35

0.45

0.55

-3.15 -2.15 -1.15 -0.15 0.85 1.85 2.85

ε 

φ [rad] 

6 cSt

7 cSt

8 cSt

9 cSt

10 cSt

11 cSt

0.05

0.15

0.25

0.35

0.45

0.55

-3.15 -2.15 -1.15 -0.15 0.85 1.85 2.85

ε 

φ [rad] 

6 cSt

7 cSt

8 cSt

9 cSt

10 cSt

11 cSt

Bearing A 

Bearing B 



1214, Page 7 
 

 

 

 

23rd International Compressor Engineering Conference at Purdue, July 11-14, 2016 

 

 
(a) 

 
(b) 

Figure 7: Eccentricity ratio over one crank shaft revolution of bearing A (a) and bearing B (b) 

 

Results of the determination of the friction power loss in the bearings are shown in Figure 8. Friction power loss 

values of bearing B are higher than of bearing A.  This is because of the higher reaction forces in addition with 

the larger bearing width of bearing B which results in higher friction surface. Viscosity variations show a linear 

dependency of the friction power loss increasing with higher viscosities. The numerical simulation of the friction 

power loss with different gap widths shows a stronger power loss increase at smaller gap widths. A comparison 

between numerical results and simple analytical Couette flow calculation show constant curve offset for a 

viscosity variation. For gap width investigation, the offset between numerical and analytical results increases for 

higher gap widths. Generally, the deviation between numerical and analytical results is significantly higher for 

higher loaded bearings like bearing B in the present study. 

 

 
(a) 

 
(b) 

Figure 8: Power loss as function of viscosity (a) and gap width (b) 

 

A comparison between the simulations with and without the usage of Patir and Cheng’s (1978 and 1979) 

Average Reynolds Equation yields in friction power loss deviations below 1 %. It should be mentioned, that the 

maximum determined eccentricity ratios of both bearings in the present study are significant smaller than 1 so 

the influence of the surface roughness on the friction power loss is also small. In simulations of compressor 
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operating points with higher cylinder pressure which results in higher reaction forces in the bearings the 

eccentricity ratio will increase and thus the surface roughness influence on the friction power loss will also 

increase. Similar considerations can be made regarding the influence of the shaft movement in the multibody 

dynamics. Stronger shaft movement influences the dynamics of the piston-conrod-crankshaft system and 

consequently the hydrodynamics of the bearings. In the present study the influence of the shaft movement 

consideration on the friction power loss is below 1 %.  

 

6. CONCLUSION 
 

A numerical investigation of the hydrodynamic bearing system of a hermetic reciprocating compressor is shown 

in this study. The model is based on the solution of the Average Reynolds Equation of Patir and Cheng (1978 

and 1979) to compare hydrodynamic bearing forces with reaction forces gained by multibody dynamics 

calculation which results in a two-dimensional Newton algorithm problem for the fluid film properties ex and ξ. 

The presented algorithm is used to calculate the dynamic behaviour of the journal bearings of the compressor 

operating at -23 °C evaporating temperature and 45 °C condensing temperature (R600a). A parameter study for 

several oil viscosities and gap widths are carried out to show the abilities of the method for the compressor 

development. Additionally, the present algorithm is used to calculate the friction power losses of the journal 

bearings. In terms of the friction power loss modelling, the following conclusions can be emphasized: 

 The comparison between numerical and analytical (simple Couette flow) simulations show a similar 

dependence of the parameters, but analytical simulation underestimates friction power losses especially 

at higher loaded bearings. 

 The use of the complex Averaged Reynolds Equation of Patir and Cheng (1978 and 1979) can be 

avoided at lower loaded bearings with small shaft movements. In this case, the classical Reynolds 

equation can be used. 

 A similar conclusion can be made for the consideration of the shaft movement in the multibody 

dynamics. Small shaft movements can be neglected here. 

 

 

NOMENCLATURE 
 

𝒂 acceleration vector (m/s²) Cyl cylinder  

A area (m²) I inertial system  

ex eccentricity (m) I, II shaft, bearing  

F force vector (N) MBS multi body system  

h fluid film thickness (m) Pi piston  

𝑚 mass (kg) Rey Reynolds forces  

p pressure (N/m²) Greek symbols 

𝒓, 𝒙 distance vector (m) β convergence criteria (-) 

𝑡 time (s) ε relative eccentricity (-) 

T torque moment vector (N m) η dynamic viscosity (N s/m²) 

u velocity (m/s) Θ inertia tensor (kg m²) 

x, y, z distance components (m) ξ minimum fluid film 

thickness angle 

(°) 

Subscripts ϕx, ϕy, ϕs flow factors (-) 

0, 1, 2, 3, 4 coordinate system index  φ attitude angle (°) 

A, B bearing index  ω rotational speed (s-1) 

Cr conrod  ρ density (kg/m³) 

Cs crankshaft  σδ standard deviation of the 

combined roughness 

(m) 
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