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ABSTRACT 
 

The performance of two evaporators (round tube plate fin and microchannel) and their effect on system 

performances were experimentally investigated in R410A residential air conditioning systems. Both systems share 

identical components except evaporators and system performance were measured under AHRI A, B and C 

conditions. Under all test conditions, the system with the microchannel evaporator outperformed the baseline system 

with the round tube plate fin evaporator. Up to 10.6% increase of capacity and 13.1% increase of COP were 

achieved if both systems were operated under the same compressor speed. Up to 23.8% improvement of COP was 

obtained if the cooling capacities of both systems were kept the same. The refrigerant charge was reduced by 13.4% 

compared with the baseline system, due to the smaller internal volume of the microchannel evaporator. The air side 

heat transfer area of microchannel evaporator was just ½ of the baseline round tube plate fin evaporator, and so was 

the face area. 

 

1. INTRODUCTION 

 

In residential air conditioning systems, round tube plate fin (RTPF) heat exchangers are more widely used than 

microchannel heat exchangers probably because of tradition and some say because of the cost advantage. Under 

increasingly tighter regulation of energy efficiency, microchannel heat exchangers, as a potential solution for 

efficiency improvement, start to draw more attention from the residential air conditioning industry. The major 

advantages of microchannel heat exchangers over RTPF heat exchanger are compactness and enhancement of heat 

transfer. These advantages can lead to reduction of refrigerant charge and material used in manufacturing. Some say 

that the cost can be also lower due to design without currently very costly copper. 

Park and Hrnjak (2008) used a microchannel condenser to replace the original RTPF condenser. The face area and 

air-side heat transfer area of both heat exchangers are similar. The system with microchannel condenser had 13.1% 

higher COP than the system with RTPF condenser under AHRI condition A. The system charge was also reduced by 

9.2%. Qi et al,. (2009a) investigated the possibility of replacing a plate fin evaporator which is commonly used in 

automotive air conditioning systems by a microchannel evaporator.  The microchannel evaporator is 17.2% smaller 

in volume and 2.8% lighter in weight. 4.3% higher heat transfer rate and more uniform air exit temperature 

distribution was achieved by the microchannel heat exchanger, at the penalty of slightly higher refrigerant side and 

air side pressure drop. Qi et al,. (2009b) replaced the plate fin evaporator and microchannel condenser in the 

baseline system with a microchannel evaporator and a microchannel condenser with a designated subcooling path. 

The microchannel evaporator and plate fin evaporator were the ones used in Qi et al., (2009a). Compared with the 

baseline, the new condenser is 15.1% smaller and 14.9% lighter. Charge in the system was reduced by 4%. Cooling 

capacity and COP was increased by 5% and 7.9% under 3000 rpm driving condition. 
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In this study, two evaporators (one is RTPF and the other is microchannel) with similar rated capacity were tested in 

the same facility. The system performances were compared and the advantage of microchannel evaporator was 

identified. 

 

2. EXPERIMENTAL SETUP AND TEST CONDITIONS 

 

The experimental setup consists of two environmental chambers which are used to simulate indoor and outdoor 

conditions. One insulated wind tunnel is placed in each chamber, and each wind tunnel is equipped with a variable 

speed blower to simulate different air flow rate conditions. Figure 1 shows the schematic of the experimental 

facility.  The uncertainties of measurements are summarized in Table 1. The uncertainties for capacity and COP are 

calculated by the method proposed by Moffat (1988), which are ±3% (both refrigerant side and air side) and ±5% 

respectively. 

 

Table 1: Instruments and uncertainties of measurements 

 

Measurement Unit Uncertainty 

Temperature ℃ ±0.5 

Refrigerant pressure kPa ±0.11%  

Refrigerant pressure Drop kPa ±0.25%  

Nozzle pressure drop Pa ±1% 

Air-side HX pressure drop Pa ±1% 

Refrigerant mass flow rate g/s ±0.5% 

Compressor power kW ±0.2% 

 

 
Figure 1: Schematic of experimental facility 

The original system containing a RTPF evaporator is a high efficiency off the shelf residential system which can be 

used for both AC and HP. It has a rated capacity of 7kW and up to 20.5 SEER cooling efficiency. The evaporator 

unit has an A-shaped RTPF evaporator and an installed thermal expansion valve (TXV). The condenser unit has a 

RTPF condenser, variable speed scroll compressor and an accumulator. The system was tested under three 
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conditions (A, B and C) from AHRI Standard (2008). The details of the conditions are summarized in Table 2. 

Under AHRI conditions A and B, which are wet, dewpoint monitors were used to control humidifiers to achieve the 

required humidity in the indoor chamber.  

 

Table 2. Test conditions for the systems of interest 

 

Test Description Air entering indoor unit temperature (℃) Air entering outdoor unit temperature (℃) 

Dry-Bulb Wet-Bulb Dry-Bulb Wet-Bulb 

A 26.7 19.4 35 (b) 

B 26.7 19.4 27.8 (b) 

C 26.7 (a) 27.8 (b) 

(a) Wet-bulb temperature is low enough that there is no condensation on the indoor coil. 

(b) The wet-bulb temperature is not required if the unit does not reject condensate to the outdoor coil. 

 

Upon completion of the experiments of the original system, the RTPF A coil was replaced by a commercially 

available microchannel heat exchanger, and the same experiments was repeated for the new system. The pictures of 

these two heat exchangers are shown in Figure 2 and the detailed geometries are listed in Table 3. It is worthy to be 

pointed out that the face area and air-side heat transfer area of microchannel evaporator is less than half of those in 

the A coil. 

 

 
Figure 2: Pictures of two heat exchangers 

 

Table 3: Geometry of two heat exchangers 

Geometry RTPF A coil  Microchannel heat exchanger 

Width (m) 0.445 0.451 

Height (m) 0.759 0.751 

Depth (m) 0.057 0.062 

Face area 0.675 0.308 

Volume (m3) 0.038 0.017 

Airside area (m2) 37.5 18.1 

Refrigerant-side area (m2) 2.26 6.52 

Fin spacing (mm) 1.75 2.12 

Tube OD (mm) 9.5 0.845×24 

Configuration 3 rows staggered and 8 circuits 2 slabs and single pass 
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3. EXPERIMENTAL RESULTS 

 

3.1 Air Side Pressure Drop 

Air-side pressure drop of two heat exchangers were measured under dry condition with the temperature around 

26.7℃ (required by AHRI conditions) and various face velocity. Since RTPF A coil has 3 row staggered design, it 

has higher pressure drop than microchannel heat exchanger with 2 slabs design under the same face velocity. 

0.42m3/s indoor air flow rate will be used for later experiments, which translates to 0.7m/s and 1.3m/s air velocity 

for RTPF and MC evaporators respectively. Through linear extrapolation, the pressure drops under this 

circumstance are 24.4 Pa for RTPF evaporator and 19.3 Pa for MC evaporator. 

 

 
Figure 3: Microchannel heat exchanger has lower air-side pressure drop than RTPF A coil 

 

3.2 Comparison of System Performance at the Same Compressor Speed 

The original system with A coil was charged according to the procedure provided by the manufacturer: refrigerant 

was charged into the system under AHRI condition A till the subcooling reached the demanded value. The indoor air 

flow rate and outdoor air flow were also selected based on the manufacture recommendation. In the system with 

microchannel evaporator, refrigerant charge and opening of an electronic expansion valve (EEV) were adjusted so 

that the subcooling and superheat are kept the same with the original system. The total charge of the systems with A 

coil and microchannel evaporator are 7492g and 6479g respectively. After compensating the charge difference in 

liquid lines and assuming all other difference in charge is due to evaporator replacement, microchannel evaporator 

was believed to have 1004g less charge than the A coil, which accounts for 13.4% of the total charge. 

 

Parameters summarized in Table 4 are kept relatively constant for both systems under all three operation conditions 

(AHRI A, B and C). The evaporator capacity and COP for both systems employing RTPF and MC evaporators are 

presented in Figure 4. It can be seen that the system with MC evaporator outperformances the system with RTPF 

evaporator in all experimental conditions for both capacity and COP. Most significant improvement is seen under 

AHRI condition C in which 10.6% capacity increase and 13.1% COP increase are achieved.  The overall heat 

transfer coefficients (U value) are calculated (based on the air side heat transfer area) for both evaporators under all 

three conditions.  Significant enhancement of heat transfer can be seen from Figure 5. 
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Table 4: Desired operation conditions for both systems 

System  Indoor air flow rate 

(m3/s) 

Outdoor air flow rate 

(m3/s) 

Superheat 

(℃) 

Subcooling 

(℃) 

Compressor speed 

(rpm) 

RTPF 0.42 1.09 3.5 5.5 3200 

MC 0.42 1.09 3.5 5.5 3200 

 

 
Figure 4: Comparison of capacity and COP between systems with RTPF and MC evaporators 

 

 
Figure 5: Comparison of U value between RTPF and MC evaporators 

Since thermal resistance is dominant on the air side in evaporators, it is reasonable to believe that the significant 

improvement of heat transfer is mainly on the air side. The air side performances under AHRI condition C (dry 

condition) are chosen to explain the advantage of MC evaporator over RTPF evaporator, not only because that the 

highest improvement is achieved under this condition, but also because that the condensation handling ability of heat 

exchangers are excluded to simply the problem. The experimental air side heat transfer coefficients for both heat 
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exchangers are calculated based on experimental U values and estimated refrigerant side heat transfer coefficients. 

Correlations developed by Chen (1966) and Zhang et al.,(2004) are used to estimate the refrigerant side heat transfer 

coefficients for RTPF and MC evaporators and the average qualities in both heat exchangers are assumed to be 0.5. 

The experimental results are plotted against well-known correlations for air side heat transfer coefficients: Wang et 

al,.(1997) for wavy fins and Chang and Wang (1997) for louver fins. Under a same volumetric flow rate, due to 

smaller face area, the air velocity for MC evaporator is 2.1 times of the velocity for RTPF evaporator. Both 

experimental and correlation results in Figure 6 indicates that the air side heat transfer coefficient of MC evaporator 

is about 3.5 times of the coefficient of RTPF evaporator.   

 

 
Figure 6: Air side heat transfer coefficient for MC and RTPF evaporators: Experimental results and correlations 

 

Although there is no direct measurement, refrigerant side heat transfer coefficient is also expected to be higher in the 

MC evaporator. Given similar mass flow rate, mass flux in microchannels is much higher than that in conventional 

tubes, resulting in higher convective heat transfer rate. Normally MC evaporator may suffer from refrigerant 

maldistribution (Li and Hrnjak, 2015) which can significant reduce refrigerant heat transfer coefficient, while the 

MC evaporator in our study, due to special header design,  has nearly uniform distribution as indicated by the 

infrared image in Figure 7. The infrared image shows the temperature distribution on the surface of the second path 

of the evaporator. Although this area is the most downstream part of the evaporator, there is only small amount of 

superheated area close to the left and right edges.  

 

 
Figure 7: Infrared image of MC evaporator surface 
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The significant enhancement of heat transfer in evaporator reflects in the system in the elevation of evaporating 

pressure and temperature (shown in Figure 8). Under AHRI condition C, the evaporating temperature in MC 

evaporator is 3.5℃ higher than that in RTPF evaporator. The pressure drop on refrigerant side is 7.1 kPa and 9.6 kPa 

in RTPF and MC evaporator respectively. The difference between them is almost negligible. 

 
Figure 8: System operation under AHRI condition C indicates much more effective MC evaporator  

 

3.3 COP Enhancement at the Constant Cooling Capacity 

When capacity is maintained the same for two systems, COP becomes the only measurement to quantify 

improvement of system performance. Due to higher heat transfer coefficient of MC evaporator, the compressor 

speed could be lowered to match the capacity of RTPF system which was operated under full speed. Under AHRI 

condition A, B and C, compressor speed of the MC system was 95%, 95% and 90% of the corresponding 

compressor speeds in RTPF system (shown in Table 5). The COP improvement is shown in Figure 9: 7.7%, 10.4% 

and 23.8% improvements were achieved under AHRI condition A, B and C by replacing RTPF evaporator with MC 

evaporator. 

 

Table 5: Compressor speeds for both systems while maintaining the same cooling capacity  

 AHRI A AHRI B AHRI C 

RTPF MC RTPF MC RTPF MC 

Capacity (kW) 7.6 7.4 8.1 7.9 7.0 7.1 

Compressor speed (rpm) 3200 3017 3200 3017 3200 2827 
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Figure 9: COP improvement achieved by replacing evaporator while maintaining the same capacity is even greater. 

 

Although compressor speed was reduced, there was no significant change in isentropic efficiency (0.7 for both 

systems). Due to better heat transfer performance, the evaporating pressure in MC evaporator was 157.2 kPa higher 

than that in the RTPF evaporator (shown in Figure 10). The condensing pressure in the system with MC evaporator 

was 25 kPa lower than that in the system with RTPF evaporator because of less heat rejection in the condenser 

(shown in Figure 10). Both effects significantly reduced compressor work and increased system COP. The pressure 

drops in both evaporators were almost identical: 7.1kPa for RTPF evaporator and 7.7kPa for MC evaporator. 

 

 
Figure 10: Improvement of efficiency due to MC evaporator is even increased for the same cooling capacity 

 

4. CONCLUSION 

 

In this study, benefits of using microchannel evaporator to replace round tube plate fin evaporator in a R410A 

residential air conditioning system were identified. The baseline system was achieving very high energy efficiency 

even with a conventional RTPF evaporator.  Economics issues like manufacturing cost were beyond the scope of 

this research. Compared with the RTPF evaporator baseline, MC evaporator has only 44.7% of the volume and 
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48.3% of the air side heat transfer area, but the capacity was up to 10.6% higher and COP was up to 13.1% higher 

when two systems were operated at the same compressor speed. When same cooling capacity was maintained, the 

system with MC evaporator achieved 23.8% higher COP than the baseline system. That opens opportunity to 

consider reduction in compressor size to maintain same capacity and increase efficiency.  The overall system charge 

was reduced by 13.4% due to the smaller internal volume of the MC evaporator. All improvement were obtained 

under no or minimum penalty of the air side and refrigerant side pressure drop. 
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