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ABSTRACT 
 

In this paper, we proposed a dynamic model for a two-bed adsorption refrigeration system. Different from most 

existing researches which assume saturation vapor pressure in each device, the proposed method models the 

pressure in each device by considering both the liquid and vapor content in the device. Therefore, it can be more 

accurate in describing the system response and more suitable for studying the system instrumentation. The 

components included in this system model are: adsorption bed, evaporator, condenser, expansion valve, and etc. 

Each device is modeled based on the energy and mass conservation. Furthermore, the adsorption phenomenon is 

modeled by the “Freundlich equation,” and “linear driving force model.” The phase change of the refrigerant in 

evaporator and condenser is modeled by Hertz-Knudsen theory. In a case study, the pressure of the adsorption bed 

during the adsorption process is estimated to be 0.7kPa by the proposed model, while it was 1.6kPa by conventional 

method which assuming saturated vapor pressure. The coefficient-of-performance of the adsorption system is 

estimated to be 0.246 by this model, 0.36 by conventional method, and 0.28 by experimental data. The proposed 

model can estimate system performance more accurate than the conventional method. Moreover, the proposed 

model also inspire a new instrumentation strategy for the adsorption system, in which the system efficiency is 

improved and the pressure surge is avoided. 

 

1. INTRODUCTION 
 

Adsorption refrigeration system consists of sorption beds, evaporator, condenser, expansion valve, and etc. It can 

provide an effective way to transform waste heat, such as solar system, internal combustion engine (ICE), solid 

oxide fuel cell (SOFC), etc., into useful cooling power. Therefore, comparing to conventional refrigeration systems, 

the adsorption refrigeration system has a unique advantage in eco-friendly. Current research activities of the 

adsorption refrigeration system focus on two aspects. The first one is to decrease the operating temperature of the 

adsorption bed, in which the lower grade of waste heat can be used to drive the system. For example, by using 

different adsorption material or multi stage adsorption techniques (Saha et al., 1995a), the operation temperature can 

be reduced to about 50 , which is close to the temperature of a solar water heater system. The second one is to 

improve the coefficient of performance (COP) of the refrigeration system. This factor is always important for 

discriminating a refrigerator is good or bad, and its value of an adsorption refrigeration system is around 0.5~0.6. To 

improve the COP of a system, several system architectures and operation techniques have been proposed, such as 

multi-bed adsorption, heat recovery cycle (Wang and Chua, 2007), thermal wave techniques (Sward et al., 2000), 

cascading adsorption system (Liu and Leong, 2006), and etc. Since an adsorption system consists of many 

components, no matter in which research direction, a precise mathematic model of the overall system always plays 

an important in the system development. 
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Among most of the modeling work of the adsorption refrigeration system presented in paper, a common assumption 

is that the pressure in each component is determined either by the saturation vapor pressure of the condenser or 

evaporator. Under that assumption, the work of system modeling can be quite simple because the pressure of the 

adsorption bed is either the same as the condenser or evaporator, and the mass conservation is considered only in 

calculating the refrigerants in “adsorbed phase” and “liquid phase” (Liu and Leong, 2006). But, the pressure of the 

sorption bed would not be the same as the pressure of its upstream (evaporator) or downstream (condenser) devices. 

Therefore, this error would lead to errors in estimating the amount of refrigerant cycling in the system. To improve 

the modeling accuracy, the mass conservation and energy conservation are considered in modeling each system 

component. And, the flow rate between each component is modeled by “Bernoulli’s equation.” Furthermore, the 

adsorption/ desorption process is modeled by “Hertz-Knudson theory” (Badam et al., 2007). 

 

2. SYSTEM DESCRIPTION 

 
2.1 Working principle 
As shown in Figure 1, the adsorption refrigeration system considered in this paper includes two sorption beds, 

evaporator, condenser, expansion valve, and four control valves. The complete adsorption refrigeration cycle 

requires four thermodynamic processes which are adsorption, heating, desorption, and cooling. During the 

adsorption process, the valve 1 is open and the valve 2 is closed. The refrigerant, which is water in this case, 

evaporate in the evaporator and adsorbed by silica gel in the adsorption bed 1.  During the  heating process, the 

valve 1 and 2 are both closed. The adsorption bed 1 is then heated up by heat exchanger and the temperature and 

pressure of the adsorption bed is raised. During the desorption process, the valve 2 is open and valve 1 is closed. The 

water vapors start to desorb from the adsorbent and flow to the condenser. Water vapors condense to liquid and then 

flow back to evaporator through expansion valve. The adsorption bed 2, valve 3, and valve 4 works in an alternating 

manner such that the adsorption bed 2 is in the adsorption process when the adsorption bed 1 is in the desorption 

process.  

 

2.2 Assumptions for system modeling 
Several assumptions are made when developing a mathematic model for the refrigeration system. (1) Temperature 

and pressure in each device are homogeneous. (2) The water vapor in the piping system is ignored. (3) Temperature 

of the liquid and vapor are the same for each device. (4) No heat loss from the evaporator, condenser, and adsorption 

beds. (5) Properties such as specific heat capacity, heat transfer coefficient, etc. are considered to be constant. 

 

  
 

Figure 1: A schematic of a two-bed adsorption refrigeration system. 
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3. MATHEMATICAL MODELING 

 
3.1 Mass flow rate between components 
In this paper, we use the Bernoulli’s equation to model the flow rate of the water between each system component. 

If the viscous loss, height difference of the flow are ignored, and the flow rate in downstream is assumed to be much 

larger than in upstream, the mass flow rate can be modeled as follows. 

   (1) 

where   is mass flow rate at downstream of the piping system, A is the cross sectional area of the pipe,  

is density of the flow, and  &  are upstream and downstream pressure, respectively. 

 

3.2 Adsorption bed 
To model the adsorption phenomenon, we use the Freundlich equation (Chihara and Suzuki, 1983) to describe the 

amount of adsorption when the system is at equilibrium. 

       (2) 

where  is the amount adsorption per kilogram of adsorbent in the saturation condition,  is the maximum amount 

of adsorption per kilogram of adsorbent,   is the saturation pressure of water at the temperature of the adsorbent,  

is the pressure of the adsorption bed, and  is material constant. The values of   and  are functions of the 

adsorbent temperature, which can be represented in Equation 3 and 4 (Saha et al., 1995b).   

        (3) 

         (4) 

where  is the temperature of the adsorbent,  and  are the coefficient to be determined by experiment 

(Saha et al., 1995b). The values of these coefficients used in this paper are listed in Table 1. The frequently used 

“linear driving force (LDF)” method is used to describe the transient response of the adsorption (Wang and 

Chua,2007).  

           (5) 

          (6) 

where x is the amount adsorption per kilogram of adsorbent, K is the mass transfer coefficient,  is the surface 

diffusion coefficient,  is surface affinity, R is the gas constant of the water,  is the average diameter of pores in 

the adsorbent. 

Other than the adsorption behaviors, the mathematics modeling of the adsorption bed includes the continuity 

equation, the first law of thermodynamic, and the phase change between liquid and vapor. For the mass balance 

equation: 

          (7) 

where  is mass of water vapor in the adsorption bed,  is mass flow rate from the evaporator to adsorption bed, 

 is the mass flow rate from the adsorption bed to condenser,  is the mass of the adsorbent in the adsorption bed. 

For the energy balance equation: 

     

      (8) 

where  and  are mass of copper tube and aluminum fin of the heat exchanger,  and  are the respective 

specific heat capacity of copper and aluminum,  is the specific heat capacity of the adsorbent,  and  are 

respective specific heat capacity of water liquid and vapor,  is the inlet temperature of the heat exchanger,  is 

the effectiveness of heat exchanger that can be calculated using equation (9),   is adsorption heat for phase 

change  (Sakoda and Suzuki, 1984),  is the flow rate of the heat exchanger.  



 

 2467, Page 4 
 

16th International Refrigeration and Air Conditioning Conference at Purdue, July 11-14, 2016 

 

Table 1: Characteristic coefficient for adsorbent-adsorbate material (B.B. Saha et al., 1995b) 

  

  

  

  
 

          (9) 

where U is the overall heat transfer coefficient. A is the area for the heat exchange. 

 

3.3 Evaporator 
We use a simplified Hertz-Knudsen model to simulate the rate of evaporation. After assuming the evaporation 

coefficient equals to one, the amount of evaporation can be described as follows.  

         (10) 

where  is phase changing rate, M is molecular weight of water,  is the temperature of water in the evaporator, 

 is the saturation vapor pressure at the temperature ,  is vapor pressure of the evaporator. The total mass 

of refrigerants in the evaporator is divided into liquid and vapor. Using Equation 11~13, one can calculate the 

change rate of the refrigerant in the evaporator. 

      (11) 

      (12) 

           (13) 

where  is the total mass of refrigerant in evaporator,  and  are the respective mass of liquid and vapor, 

 is the mass flow rate from the expansion valve. For the energy conservation, one can write down the following 

equations.  

     

  (14) 

where  is the effectiveness of the heat exchanger,  is the mass flow rate of the heat exchanger in the evaporator 

subsystem,  is the latent heat of the water.  

 

3.4 Condenser 
The working principle of the condenser is almost the same as that of the evaporator. The major difference between 

these two devices is that the phase change and heat exchange take place in the opposite direction. Therefore, the 

mathematic model of the condenser is almost identical to that of the evaporator, with the subscription of the system 

parameters changing from “e” to “c”.  The model of the condenser can be written as follows.  

         (15) 

          (16) 

        (17) 

         (18) 

   

  (19) 
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Table 2: Physical property values 

Values used in simulation 

Symbol Unit Value Symbol Unit Value 

Ac m2 3.73 Udes kW/m2•K 1.72414 

Ae m2 1.91 Ueva kW/m2•K 2.55754 

Aa m2 2.46 hads kJ/kg 2.8 103 

Aexp m2 3.85 10-5 Rp m 7.1 10-4 

Cp Al kJ/kg•K 0.905 Mcon Cu kg 24.28 

Cp Cu kJ/kg•K 0.386 Meva Cu kg 12.45 

Cwf kJ/kg•K 4.18 Wef kg 50 

Cwg kJ/kg•K 1.85 Ma Al kg 64.04 

Cpb kJ/kg•K 0.924 Ma Cu kg 51.20 

Dso m2/s 2.54 10-4 Mb kg 47 

Ea J/mol 4.2 104 Va m3 6.046 10-3 

Ua kW/m2•K 1.60256 Vc m3 1.622 10-2 

Ucon kW/m2•K 4.11523 Ve m3 8.318 10-3 

 m/s 1.3 
adsorption/desorption 

time 
s 420 

 m/s 1.6 heating/cooling time s 30 

 m/s 0.7  

 

3.5 Expansion valve 
The flow rate of the throttling valve is similar to Equation 1, but needs to add a constant to simulate the intended 

energy loss in an expansion valve design. 

          (20) 

where C is the discharge ratio of the expansion valve. 

 

4. RESULT AND DISCUSSION 

 
In order to track the effect due to complicated system modeling, the values of system parameters used in this model 

are obtained from the work of B.B. Saha et al. (1995a & b) and Wang and Chua (2007). These values are listed in 

Table 2 for reference. The following properties are observed to justify the feasibility of the proposed model which 

includes the pressure of each system component, and COP, cooling power under different operation conditions. 

 

 
Figure 2: The pressure of the adsorption bed, evaporator, and condenser when operating the system by conventional 

approaches. 
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4.1 Pressure in the each system component 
Figure 3 shows the pressure of the adsorption bed 1, condenser and evaporator within a complete thermal cycle. The 

adsorption bed 1 is at the adsorption process before the 450 second. The valve 1 closes at the 450 second and the 

system enters the heating process. After 30 seconds of the heating process, the valve 2 opens and the system enters 

the desorption process. At the 900 second, valve 2 is closed and the system is ready for the next adsorption process.  

 

According to the simulation results, this model predicts the operation pressure of the condenser that is larger than its 

saturation pressure. And, the operation pressure of the evaporator is slightly smaller than its saturation pressure. 

Therefore, the amount of refrigerant cycling in this system, predicted by this model, would be less than the amount 

predicted by the conventional models which use the saturation pressures for the condenser and evaporator. 

Furthermore, at the 480 second when the valve 2 is open, the pressure of the adsorption bed is less than that of the 

condenser. Therefore, the refrigerant may flow in the reverse direction for a couple seconds which may decrease the 

system efficiency. Besides, since the valves do not operate at the proper timing, the pressure surge happens at the 

450 second and 900 second, which may damage the adsorption bed. These simulation results illuminate the 

importance of the accurate pressure modeling of the adsorption bed.  

 

Figure 4 shows a new instrumentation strategy for operating the adsorption system, which is suggested by this 

system modeling work. In this new approach, the system still enters the heating process at the 450 second. And, the 

valve 1 closes at 475.2 second when the pressure of the adsorption bed is about to be higher than the pressure of the 

evaporator, the valve 2 opens at 508.3 second when the pressure of the adsorption bed is about to be higher than that 

of the condenser. In this case, the refrigerant would flow in the designated direction. The system efficiency can be 

improved and the pressure surge is avoided. 

 

4.2 COP values under different operation conditions 
In this case study, the temperature of the hot water in the heating process is set to be either 85℃ or 70℃, and 

cooling water in the cooling process is set to be either 32℃ or 30℃. The cold side of the heat exchange process of 

the evaporator ranges from 10℃ to 16℃. The predicted COP and cooling power under different temperature 

conditions are shown in Figure 5 and 6. The legend “COP_e” are the experimental results obtained by Boelman et al. 

(1995),  “COP_ref” are the COP value predicted by the conventional model (Boelman et al. ,1995), and “COP_s” 

are the COP value predicted by this model. According to the simulation results shown in Figure 5 and 6, the 

proposed method can estimate the COP value more close to the experimental results than the conventional model in 

most of the conditions. For example, in the case of Figure 6 (a), the COP of the adsorption system is estimated to be 

0.246 by this model, 0.36 by conventional method, and 0.28 by experimental data. However, the cooling power 

predicted by this model is not as accurate as predicted by the conventional model. This model tends to underestimate 

the cooling power as compared to the experimental data. This deficiency is still under investigation.  

 

 
Figure 3: The pressure of the adsorption bed, evaporator, and condenser when operating the system by new 

instrumentation approaches. 
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Figure 4: COP and cooling power of the system under different operating temperatures.  

Cooling water in the cooling process are at 32℃. The hot water in the heat process are at 70℃ in (a)(b) and 85℃ in 

(c)(d). 

 

 
Figure 5: COP and cooling power of the system under different operating temperatures. The cooling water in the 

cooling process are at 30℃. The hot water in the heating process are at 70℃ in (a)(b) and 85℃ in (c)(d). 
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5. CONCLUSIONS 
 

This paper proposed a dynamic model for a two-bed adsorption refrigeration system, in which the mass conservation 

and energy conservation are used to model the liquid and vapor content in each device. This new system model 

suggested that the conventional mathematic model may overestimate the amount of the refrigerant cycling in the 

refrigeration system, which results in the overestimation of the COP and cooling power of the system. In a case 

study, the COP of the adsorption system is estimated to be 0.246 by this model, 0.36 by conventional method, and 

0.28 by experimental data.  

 

The proposed model also suggested that the adsorption refrigeration system may experience pressure surge and low 

efficiency if the pressure of the adsorption bed is not modeled accurately and the control valves do not operated at 

the correct timing. A modified instrumentation strategy is proposed in which the operation of the control valves is 

determined by the pressure of the adsorption bed, instead of the onset of the heating and cooling processes.  

 

NOMENCLATURE 
 

A heat transfer area (m2) 

C discharge coefficient (dimensionless) 

CP specific heat capacity (KJ/Kg-K) 

CON. Condenser 

DS0 surface diffusion coefficient (m2/s) 

E effectiveness (dimensionless) 

Ea surface affinity (J/mol) 

EVA. Evaporator 

K mass transfer coefficient (1/s) 

M mass of solid (kg) 

m mass flow rate (kg/s) 

P pressure (kPa) 

R gas constant (kJ/kg-K) 

RP adsorbent particle diameter (m) 

Sat. Saturation 

T temperature (K) 

U heat transfer coefficient (W/m2K) 

W mass of fluid (kg) 

h adsorption heat (kJ/kg-K) 

x amount adsorbed (kg/kg) 

ρ fluid density (kg/m3) 

 

 

Subscript 

a adsorption bed 

ads adsorption 

Al aluminum 

b adsorbent 

c condenser 

Cu copper 

e evaporator 

exp expansion valve 

f fluid 

g gas 

i inlet 

sat saturation 

w water 

1~4 numbers of valves 
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